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ABSTRACT 
 

Conventionally cultured mouse bone marrow (mBM) mesenchymal stromal cells 

(MSC) are a heterogeneous population that often initially contain contaminating 

haematopoietic cells. Variability in isolation methods, culture protocols and the 

lack of specific MSC surface markers might explain this heterogeneity. In this thesis 

it is shown that during early passaging of bone chip-derived MSC not only do 

haematopoietic cells disappear, but there is also a change in surface marker 

expression. 

To further dissect bulk MSC populations, fluorescence activated cell sorting of 

mBM suspensions based on Sca-1 expression among non-hematopoietic cells was 

carried out and cells expanded in hypoxic conditions. During early passaging, there 

was a change in the surface phenotype of MSC affecting particularly CD44 and Sca-

1 expression. It became evident that CFU-F frequencies and proliferation was 

greater among Sca-1+ compared with Sca-1- cells. As evaluated by in vitro 

differentiation and qRT-PCR assays, both populations were capable of tri-lineage 

differentiation along osteocyte, chondrocyte, and adipocyte lineages.   

By prospective isolation of Sca-1+PDGFRα+CD90+ non-hematopoietic mBM cells, 

clones of MSC could be isolated with a CFU-F frequency of 1/4. This is one of the 

highest CFU-F frequencies for mouse MSCS reported so far. Functional 

investigations demonstrated that these MSC clones had immuno-modulatory 

activity in that they inhibited T-lymphocyte proliferation.  

 

“Inside every cynical person, there is a disappointed idealist.” - George Carlin 
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Mesenchymal stromal cells (MSC) are used in many research fields and have 

generated much interest for cell therapies due to their ability to differentiate into 

various cell types including osteocytes, chondrocytes and adipocytes [Pittenger et 

al. 1999]. While a lot is known about human MSC (hMSC) the understanding of 

mouse MSC (mMSC) biology is less advanced.  

 

1.1 CLINICAL IMPACT AND USE 

 

Stem cells have been used in clinical therapy since 1957 with the first bone 

marrow transplantation with haematopoietic stem cells (HSC) [Thomas et al. 

1957].The bone marrow is still the main source for HSC today, but peripheral 

blood and the umbilical cord are used as well. Besides HSC, another type of stem 

cell the mesenchymal stromal cell (MSC) was identified in the bone marrow over 

40 years ago and this cell type holds great promise for human therapy 

[Friedenstein, Gorskaja, and Kulagina 1976]. Over the last decade there has been 

an increased interest in this new type of stem cell as seen by an increased growth 

of publications regarding MSC (http://www.ncbi.nlm.nih.gov/pubmed). Also, the 

numbers of new clinical trials using MSCs have been increasing from 13 for 2004 to 

135 for 2013 (www.clinicaltrials.gov). In addition, according to analysts, the 

market for stem cell therapies and products is expected to increase from $2.7 

billion in 2011 to $8.8 billion in 2016 [Syed and Evans 2013]. Despite all these 

efforts, to date, there is no MSC therapy approved by the U.S. Food and Drug 

Administration (FDA) or the European Medicines Agency (EMA) (as of: 

08/10/2014). Clinical trials for the exploration of the therapeutic potential of MSC 

focus on a wide range of applications (Figure 1.1). One of the main areas is the 

treatment of graft versus host disease (GvHD) a situation that arises following 

bone marrow transplantation and HSC engraftment.  
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Figure 1.1 Diseases being addressed using MSCs  for clinical trials (n = number of 

trials)[Trounson et al. 2011]. 

 

HSC transplantation is the gold standard for the treatment of haematological 

malignancies. One of the main complications of HSC transplantation is GVHD, 

which is caused by the reaction of donor’s T lymphocytes against the recipient’s 

antigens. Standard therapies against severe GVHD include the use of steroids, 

which are able to control the immunoreaction in about half of the cases. 

Unfortunately, steroid resistant-GVHD is associated with a very poor prognosis for 

the patient, with an expected survival of less than 10% [Mielcarek et al. 2003; 

Deeg 2007]. To address these problems, MSC have been used to treat these 

steroid-resistant GVHD [Ringdén et al. 2006; Fang et al. 2006]. Several clinical trials 

have investigated the potential benefits of MSC in the treatment of GVHD. One 

multicentre Phase II study investigated the effect of MSC in treatment of steroid-

resistant, severe, acute GVHD [Le Blanc et al. 2008]. Patients were receiving mainly 

one or two infusions of in vitro expanded third-party HLA-mismatched BM-MSC. 

This treatment resulted in a higher overall survival two years after HSC 

transplantation and had no side-effects related to the infusions of MSC. Two Phase 

III clinical trials sponsored by Osiris Therapeutics, Inc., which is using their product 

Prochymal® to treat severe GVHD, failed to reach its primary clinical endpoint of 
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achieving a significant increase of complete response of steroid-resistant graft-

versus-host disease lasting at least 28 days compared with placebo [Allison 2009; 

Galipeau 2013].  

There is also much interest in the potential use of MSC in wound healing. MSC-

based therapies offer a new treatment option for preventing morbidity and 

disability associated with chronic wounds. Healing of cutaneous wounds requires a 

well-orchestrated chain of events, both biological and molecular, which might be 

impaired in chronic diseases [Singer and Clark 1999]. The functional characteristic 

of MSC, such as their ability to migrate to the site of inflammation, stimulate 

resident progenitor cells to proliferate and differentiate, and their anti-

inflammatory effects, may benefit wound repair. Studies have shown that 

treatment of cutaneous wounds with MSC can accelerate wound healing and 

increase epithelialization and angiogenesis [Wu et al. 2007; Falanga et al. 2007]. 

This suggests two main mechanisms by which MSC affect wound repair namely 

MSC differentiation and paracrine interactions with specific cell types within the 

wound [L. Chen et al. 2008]. Clinical studies have shown that the treatment of 

wounds with MSC is in general beneficial with no adverse effects [Lataillade et al. 

2007; Yoshikawa et al. 2008]. One major field for wound healing in Western 

societies is diabetic foot ulcer, which affects 25% of diabetic patients and could 

result in amputation of the affected foot [Singh, Armstrong, and Lipsky 2014]. 

Current standard care only heals about 24% of wounds after 12 weeks of therapy 

[Markowitz et al. 2005]. A recent multi-centre study was investigating the efficacy 

of Grafix®, a human viable wound matrix from placental membrane containing 

living MSCs, compared with standard wound care [Lavery et al. 2014]. It showed 

that Grafix® treated patients had a significantly higher wound healing rate and less 

wound-related infections compared to standard treatment. 

MSC are also considered for the biological repair of bone and articular cartilage. 

The osteogenic abilities were one of the first notions associated with MSCs 

[Ashton et al. 1985]. The differentiation of MSCs towards the osteogenic lineage 

has been shown in vitro and in vivo [Aslan et al. 2006]. Studies also confirmed that 

MSCs can be used to repair large bone defects in vivo, both in large animals [Kon 
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et al. 2000] and humans [Quarto et al. 2001]. Osteoarthritis (OA) is the most 

common form of degenerative joint disease with increasing numbers in the aging 

population worldwide [Lutz, Sanderson, and Scherbov 2008]. Unlike focal cartilage 

defects occurring in elite athletes, OA is a systematic, inflammatory disease which 

affects the whole joint, including articular cartilage, subchondral bone, synovium, 

muscle and tendon [Goldring and Goldring 2007]. It is characterized by the 

degeneration of cartilage, synovial inflammation and alterations in subchondral 

bone and surrounding soft tissues, leading to joint pain, stiffness and loss of 

function in the hands and the weight-bearing joints. So far, there are only 

symptom-modifying pharmacological treatments available, none of which are able 

to improve the overall disease outcome [Mobasheri et al. 2014]. This highlights the 

need for a non-surgical treatment option which will allow a more long-term 

improvement of disease. While the differentiation towards the osteogenic lineage 

is relatively straightforward, the formation of stable cartilage by MSCs is more 

challenging. Although in vitro pellet cultures are well established in human, the 

question remains whether this in vitro model represents the equivalent of stable 

or transient cartilage formation [Dell’Accio, De Bari, and Luyten 2001]. In fact, 

stable cartilage formation from synovial derived MSCs have proven unsuccessful 

[De Bari, Dell’Accio, and Luyten 2004]. 

Heart failure / Cardiovascular disease (CVD) is the leading causes of death in the 

world [Flynn and O’Brien 2011]. Acute myocardial infarction (AMI) is associated 

with ischaemia which leads to the death of cardiomyocytes by apoptosis and 

necrosis [Kajstura et al. 1996]. Even though it has been reported that 

cardiomyocytes exhibit some regenerative potential, this seems not be sufficient 

to replace the significant loss caused by AMI [Beltrami et al. 2001]. The only 

treatment option to counter the loss of cardiomyocytes is cardiac transplantation. 

Problems associated with this therapy include limited donor supply and need of 

life-long immunosuppressive therapy [Segers and Lee 2008]. The remodelling 

process is also associated with hypertrophy and fibrosis of cardiomyocytes which 

leads to reduced ventricular compliance, ventricular dilatation and eventually 

heart failure [Braunwald and Pfeffer 1991]. Current evidence indicates that MSCs 
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do not directly differentiate into cardiomyocytes, but deliver their effects through 

paracrine factors [Laflamme and Murry 2011]. It is worth noting that a recent, 

comprehensive study has shown that clinical trials with bone marrow derived 

adult stem cells, which do not show any factual discrepancies, do not benefit 

cardiac repair [Nowbar et al. 2014]. In this study 133 reports from 49 trials were 

investigated for discrepancies that could affect the degree of improvement of left 

ventricular function. It has been shown that only 5 trials were without 

discrepancies and these trials had no significant beneficial effect on the left 

ventricular function.  

Overall it can be said that despite the enormous amount of clinical trials and 

research in recent years, no approved therapy has reached the commercial 

market. Although there is considerable encouraging in vitro data, in general, this 

has not translated into successful treatments.  

Plastic-adherent culture condition is the traditional method for culturing MSCs in 

vitro. Single cell suspensions are obtained from tissues and cultured in media 

containing FCS. Cultures are expanded for a variable amount of passages to obtain 

sufficient numbers of cells and to remove contaminating haematopoietic cells. 

Still, the isolation and culture expansion of MSC is not standardized between 

research groups which have led to considerable variations in protocols. Some 

examples for different isolation techniques for BM-derived MSCs include density 

centrifugation with FicollTM [Bara et al. 2014], retroviral selection [Kitano et al. 

2000], culture in non-adherent conditions [Mendez-Ferrer et al. 2010], use of BM 

“plugs” [Suire et al. 2012] and FACS isolation [Jones et al. 2006; Jones et al. 2010]. 

But even by using the same isolation technique, differences in processing 

extracted cells, choice of density medium, wash and centrifugation steps, duration 

of cell attachment, media/serum type, additional growth factors and oxygen 

conditions further contribute to the diversity making it nearly impossible to 

compare studies from two different laboratories. This has been shown by a study 

from Seeger et al. [Seeger et al. 2007] which compared two similar randomized, 

placebo-based trials regarding the prevention of cardiac failure post-myocardial 

infarction [Lunde et al. 2006; Schächinger et al. 2006]. The MSCs used in these 
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trials differed in regard to the density media, centrifugation speeds, wash steps 

and storage conditions used for their preparation which affected the clinical 

outcome significantly. For example, it has also been shown that low density 

centrifugation, using PercollTM or FicollTM, reduces the yield of mononuclear cells 

from bone marrow [Mareschi et al. 2012].  

Besides the lack of knowledge, there are other obstacles for bringing stem cells 

into the clinic. These include the risk of immune rejection, possible pathogen 

contamination, change of phenotype during in vitro expansion, high costs, 

effectiveness of cell delivery and in vivo behaviour and safety of the long-term 

transplanted cells [Frenette et al. 2013]. Based on the 60 year history of HSC 

therapy, it has been argued that clinical trials with MSCs might be too far ahead of 

science and more basic/fundamental research needs to be done to fully 

understand the biology and therapeutic potential of MSC [Prockop, Prockop, and 

Bertoncello 2014]. 

 

1.2 THE BONE MARROW NICHE 

 

The bone marrow (BM) has been studied intensively due to its important role in 

haematopoiesis. Due to the lifelong production of blood cells, haematopoietic 

stem cells (HSC) have the ability to self-renew and to asymmetrically differentiate 

towards haematopoietic progenitor cells (HPC). These progenitor cells then give 

rise to more specialized cells of the myeloid and lymphoid lineages. HSC are 

quiescent and differentiation as well as self-renewal has to be carefully regulated 

to not exhaust the stem cell pool. Therefore HSC reside in a special compartment 

within the bone marrow known as the HSC niche. The niche is regarded to be a 

physical construct which consists and transmits exogenous instruction to keep 

stem cells in a stem cell-like state [Potten and Loeffler 1990]. In this niche 

regulation is achieved by a number of means including cell-bound and soluble 

cytokines, cell - cell interactions and binding to extracellular matrix (ECM) 

components [Eliasson and Jönsson 2010]. In order to decipher the molecular code 
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of cell signals in the niche, researchers try to identify special instructor cells that 

interact with HSC. The hope is that the global niche effect can be brought down to 

a single cell with unique effector signals. To acknowledge the complex nature of 

stem cell biology this view has been extended from one single cell to a 

microenvironment of different, hierarchically organized “niche” progenitor cells 

[Bianco 2011]. In the mouse BM, a number of different anatomical locations (e.g. 

endosteal surfaces, sinusoidal walls, haematopoietic tissue proper) and cell types 

(e.g. osteoblasts, perivascular cells, adipocytes and stromal cells) have emerged 

over the last 10 years [Garrett and Emerson 2009; Kiel and Morrison 2008]. It is 

however possible that the niche is not a static location but instead dynamic and 

able to directly respond to injury or other cell signals [Milsom and Trumpp 2011]. 

One landmark study supporting this notion was done by Mendez-Ferrer et al. 

which showed that HSC supporting MSC, identified by nestin expression, are both 

near the endosteum and perivascular [Mendez-Ferrer et al. 2010]. Originally 

discovered in the developing central nervous system on neuroepithelial stem cells, 

the nestin gene transcribes intermediate filament protein type VI [Lendahl, 

Zimmerman, and McKay 1990]. It was later discovered that other progenitor cells 

from different anatomic locations also express nestin during development, e.g. 

muscle [Sejersen and Lendahl 1993; Kachinsky, Dominov, and Miller 1994], eye 

[Yang et al. 2000] and tooth development [Terling et al. 1995]. These nestin+ MSC 

expressed high levels of HSC maintenance factor transcripts, such as CXCL12, stem 

cell factor (SCF), angiopoietin-1 (Ang-1), vascular cell adhesion molecule 1 (VCAM-

1, also CD106), and osteopontin (OPN). Depletion of nestin+ MSC led to the 

mobilisation of ~ 50% of HSC to the spleen. In addition homing to the bone 

marrow of HSC was impaired by ~90% in nestin depleted mice. In contrast, 

another study by Ding et al. has shown that depletion of SCF in nestin+ cells and 

osteoblasts does not affect HSC numbers, but deletion in endothelial and 

perivascular cells  significantly reduced HSC cells [Ding et al. 2012]. Another type of 

cell with many similarities to nestin+ cells was described as CXCL12-abundant 

reticular cells (CAR) cells [Omatsu et al. 2010; Greenbaum et al. 2013]. These cells 

produce high amounts of CXCL12 and SCF which leads to an increase in HSC self-

renewal and cycling and inhibits HSC differentiation. They are predominantly 
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found in the central BM but some are also located near the endosteum. Given that 

nestin+ cells are approximately four times less abundant than CAR cells, contain all 

colony-forming-unit fibroblast (CFU-F) activity within the marrow, have high self-

renewal activity and are capable of tri-lineage differentiation, it has been 

speculated that nestin+ cells might be a more primitive subset of CAR cells 

[Ehninger and Trumpp 2011].  

On the other hand, given that the process of haematopoiesis in adults is 

exclusively located in the BM, a relationship between HSC and bone has long been 

suggested [Lord, Testa, and Hendry 1975]. This is further supported by the close 

proximity of HSC and osteoblasts (OB) at the endosteum [Taichman and Emerson 

1994; Calvi et al. 2003; Jung et al. 2007]. The endosteum is the inner surface of the 

bone next to the marrow space and is covered by a layer of bone-lining OB. It has 

been shown that Notch signalling from OB increases the number of HSC in vivo 

[Calvi et al. 2003]. HSC also express the calcium-sensing receptor (CaSR), enabling 

HSC to follow the Ca2+ gradient which results from bone re-modelling processes 

occurring at the endosteum and therefore support HSC engraftment at the 

endosteum [Adams et al. 2006]. Other factors produced by OB that are known to 

be involved in HSC maintenance and retention include CXCL12, OPN and N-

Cadherin in addition to factors involved in keeping HSC in a quiescent state, such 

as Ang-1, membrane-bound SCF and thrombopoietin [Arai et al. 2004; Thoren et 

al. 2008; Yoshihara et al. 2007]. Interestingly, is has been  suggested that osterix+ 

osteoprogenitor cells rather than mature osteocalcin+ OBs are needed for 

maintaining haematopoiesis [Raaijmakers et al. 2010]. Also HSC isolated from the 

endosteal region had a higher proliferated capacity and homing efficiency 

compared to their counterparts from the central BM [Grassinger et al. 2010]. 

Similar to nestin+ cells, depletion of OB leads to a mobilisation of HSC to the spleen 

and an increase of OB simultaneously leads to an augmentation of HSC [Visnjic et 

al. 2004; Calvi et al. 2003; Jung et al. 2006]. Furthermore, by transplanting 

osteoprogenitor cells under the kidney capsule, these cells were able to form a 

HSC niche in vivo through endochondral ossification [Chan et al. 2009]. It has been 

reported that stromal cells exist near the surface of the bone [Hisha et al. 1995]. 
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This is no surprise as MSCs generate OBs that remain in close proximity. These OBs 

may not contribute directly to the niche activity, as osterix+ osteoprogenitors 

rather than mature osteocalcin+ OBs are required for the integrity of the niche 

[Raaijmakers et al. 2010]. This is further supported by the fact that MSCs seem to 

express higher levels of HSC maintenance factors (CXCL12, SCF, IL-7, VCAM1, and 

OPN) compared with OBs [Mendez-Ferrer et al. 2010]. A study by Siclari et al. has 

shown that MSCs isolated from the endosteal region contain more proliferate MSC 

and more immunosuppressive than their central BM counterpart [Siclari et al. 

2013]. 

Taken together it can be said that HSCs can be found near the endosteum lined by 

OB or near sinusoidal endothelium. Depletion experiments have shown that even 

when various niche cells (MSC, CAR or OB) where ablated, not all HSC disappear or 

get mobilized [Visnjic et al. 2004; Mendez-Ferrer et al. 2010; Omatsu et al. 2010; J. 

Zhu et al. 2007]. This could be a result of inefficient experimental depletion 

systems or biological redundancy in the system. It could also indicate that there is 

more than one niche environment housing different subsets of HSC. These 

different subsets of HSC might include slow-cycling, dormant HSC near the 

endosteal region and fast-cycling, self-renewing HSC near the perivascular region 

[Trumpp, Essers, and Wilson 2010] (Figure 1.2).  
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Figure 1.2 Location of HSC niches in long bones. HSCs are located at the 

endosteum, which is lined by OBs and osteoclasts. Vascular sinusoids are also 

found near the endosteum, but more frequently towards the centre of the BM. 

Adapted from [Ehninger and Trumpp 2011].  

 

Another point to take into consideration is that HSC might not be as passive in the 

niche as someone might think. In this dynamic environment, HSC play an active 

part in the formation of the niche. As shown by Jung et al., HSC do not rest 

passively in the niche but actively participate in its formation by directing bone 

formation of MSCs and participation in niche activities [Jung et al. 2008]. 

All these results could be result of overlapping of different kind of HSC supporting 

niche cells, confirming the earlier statement of a hierarchically organisation of the 

bone marrow niche. 
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1.3 EXTRACELLULAR MATRIX (ECM) 

 

Based on the niche concept, it became clear that the plasticity of MSCs in vivo and 

in vitro is dependent on the microenvironment [Barry and Murphy 2004]. The 

bone marrow niche contains haematopoietic cells, stromal cells, adipocytes and 

vascular elements [Bianco et al. 2001]. All these cells are within a complex ECM 

composed of fine reticular fibres produced by the stromal cells [Campbell 1987]. 

Therefore the great variations in tissues or ECM microenvironments exhibit 

specific conditions that will guide cell maintenance and differentiation. Three 

variations of ECM can be distinguished based on their elasticity: 1) softer tissues 

such as the brain, 2) stiff tissues such as muscles, and 3) rigid tissues such as bones 

[Engler et al. 2006]. This elasticity seems to be vital for MSCs lineage 

differentiation. During cell-matrix interaction, adhesion complexes and the actin-

myosin cytoskeleton transduce chemical signalling, which affects cytoskeletal 

organisation  [Discher, Janmey, and Wang 2005]. In their niche, the stiffness of the 

matrix influences the mechanical forces that cells are exposed to. These forces 

trigger a variety of physiological responses such as cell motility, proliferation and 

differentiation [Griffith and Swartz 2006]. By influencing the focal- adhesion 

structure and the cytoskeleton, the stiffness of the matrix directly influences the 

lineage commitment of MSCs [Engler et al. 2006]. In addition to the matrix 

stiffness, soluble factors modulate MSC lineage commitment via RhoA signalling 

and Rho-kinase activity, which regulates the actin–myosin contractility [McBeath 

et al. 2004]. Analysis of BM, as well as the ECM made by cultured marrow stromal 

cells, has shown the presence of collagens I, III, IV, V, and VI, fibronectin, laminin, 

and other adhesive proteins, as well as large molecular weight proteoglycans and 

small leucine-rich proteoglycans [X. Chen et al. 2007]. Another study by Davis et al. 

looked at the influence of bone morphogenic protein-2 (BMP-2) and three-

dimension (3D) osteoconductive substrates in osteogenesis. They observed 

enhanced effects in the osteogenic response of MSCs due to activation of multiple 

pathways mediated by the substrate and growth factors [Davis et al. 2011]. Still, 

most in vitro studies have been carried out using two-dimensional (2D) surfaces. 
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However, it was shown that cell types derived from in vivo settings quickly lose 

their differentiated phenotype when plated onto 2D surfaces [Raghavan et al. 

2010]. In fact, studies revealed that chondrogenesis and osteogenesis can be 

induced by using 3D in vitro settings, using either collagen type II hydrogels or 

chorion-derived scaffolds [Jurgens et al. 2012; Mohr et al. 2010]. Not only can the 

differentiation of MSCs towards a specific lineage be influenced by ECM, but their 

ability to proliferate and preserve their stem cell phenotype is also dependent on 

ECM signals. By using murine bone marrow cell-derived ECM, it was shown that it 

inhibits “spontaneous” osteoblast differentiation and enhanced proliferate 

properties [X. Chen et al. 2007]. Additionally, mice lacking biglycan exhibit defects 

in the ability of marrow-derived progenitors to differentiate into osteoblasts, 

highlighting the role of ECM in the control of MSC behaviour [X.-D. Chen et al. 

2002]. Another study showed that fibroblast derived ECM maintain human 

embryonic stem cells (hESC ) in an undifferentiated state without inducing 

chromosomal aberrations [Escobedo-Lucea et al. 2012].  

 

1.4 IMMUNOMODULATORY PROPERTIES 

 

One of the reasons for the use of MSC in clinical therapy is their ability to mediate 

immunosuppressive and immunomodulatory effects on both adaptive and innate 

immunities [Marigo and Dazzi 2011]. Their effect on T lymphocytes is particularly 

well characterized. MSC suppress helper CD4+ and cytotoxic CD8+ T lymphocytes 

independently of whether the latter are naïve, antigen experienced, their 

functional state or the type of T lymphocyte receptor expressed [Krampera et al. 

2003; Prigione et al. 2009]. This effect is also MHC independent, as it can be 

mediated by both autologous and allogeneic MSC. The Immunomodulatory effect 

is anti-proliferative, mediated by soluble factors acting in a paracrine fashion and 

is not a result of T-lymphocyte apoptosis [Di Nicola et al. 2002]. These paracrine 

signals include indoleamine 2,3-dioxygenase (IDO), prostaglandin E2 (PGE2), nitric 

oxide (NO) and transforming growth factor-β (TGF-β) [Duffy, Ritter, et al. 2011]. 
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This anti-proliferate effect is not restricted to T lymphocytes. Thus, the 

proliferation of enriched B lymphocytes from the spleen and BM is also inhibited 

[Glennie et al. 2005; Corcione et al. 2006]. In a mouse model of systemic lupus 

erythematosus, an autoimmune disease, MSC inhibited in vivo B lymphocyte 

proliferation, activation and IgG secretion [Deng et al. 2005]. Enigmatically, MSC 

are essential for B lymphopoiesis in the BM and have been shown to promote B 

lymphocyte function [Rasmusson et al. 2007; Traggiai et al. 2008]. 

MSC can modulate the activity of natural killer (NK) cells, a key player of the innate 

immunity, by suppressing interleukin (IL) -2 or IL-15 driven NK cell proliferation. 

This is however only true for resting NK cells, as cytotoxic activity of freshly 

isolated NK cells is not affected [Krampera et al. 2006; Sotiropoulou et al. 2006]. 

Similar to T lymphocytes, NK cell proliferation, cytotoxicity and cytokine 

production is inhibited by IDO, PGE2 and TGF-β secretion by MSC [Spaggiari et al. 

2008; Sotiropoulou et al. 2006].    

By acting on antigen-presenting cells (APC), MSC can indirectly modulate the 

immune response. When dendritic cell (DC) precursors were exposed to 

differentiation factors, like granulocyte macrophage-colony stimulating factor 

(GM-CSF) and IL-4, in the presence of MSC, they failed to acquire a mature DC 

phenotype [Jiang et al. 2005; Spaggiari et al. 2009].  

MSC-mediated immunosuppression is not only triggered by acting directly on 

immune effector cells, but is also a result of acting on immune regulating cells. It 

has been shown in vitro that MSC recruit regulatory T lymphocytes [Di Ianni et al. 

2008; Prevosto et al. 2007]. MSC-induced Treg expansion has also been reported in 

vivo, e.g asthma [Nemeth et al. 2010] and diabetes [Madec et al. 2009], but it 

remains unclear if they are required for MSC activity as in vitro data suggests 

otherwise [Krampera et al. 2003].   

Other lymphocytes affected by MSCs also include T-helper cells. Duffy et al. have 

shown that MSC inhibit Th17 lymphocyte differentiation from both naïve and 

memory T lymphocyte precursors [Duffy, Pindjakova, et al. 2011]. 
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1.5 DIFFERENTIATION POTENTIAL OF CULTURE-EXPANDED 

MSC 

 

As mentioned before one of the main criteria to define MSC is their ability to 

differentiate towards the three mesenchymal lineages bone, cartilage and fat in 

vitro.  

The osteogenic differentiation is achieved by incubating cell monolayers in media 

with fetal calf serum (FCS), ascorbic acid, β-glycerophosphate and dexamethasone 

[Jaiswal et al. 1997]. This leads to an increase of alkaline phosphatase and calcium 

deposition. Chondrogenic differentiation requires a high cell density pellet, also 

called micromass culture, in the presence of TGF-β without FCS [Mackay et al. 

1998]. Histological analysis and quantification is carried out to determine the 

levels of cartilage-specific production of sulphated proteoglycan and collagen type 

II. To induce adipogenic differentiation cell monolayers are treated with media 

containing FCS, dexamethasone, insulin, isobutyl methyl xanthine and 

indomethacin [Pittenger et al. 1999]. To determine successful adipogenic 

induction, cells are stained for lipid vacuoles. Notably not all cells in MSC culture 

system undergo differentiation. In fact, it has been shown that even in clonally 

derived populations, the differentiation potential varies with cells lacking 

differentiation of at least one lineage [Pittenger et al. 1999; Morikawa, Mabuchi, 

Kubota, et al. 2009].   

In recent years it has become clear that MSC populations maintained in vitro 

contain coexisting subsets varying in their differentiation potential, regardless of 

their tissue of origin. A study from Karystinou et al. has shown that clonally-

derived hMSC vary in their differentiation potential, with only 30% capable of 

differentiating towards all three lineages [Karystinou et al. 2009]. Similar results 

have been shown for hMSCs using high capacity in vitro assays, where only 50% of 

colony-forming cells were capable of tri-lineage differentiation [Russell et al. 

2010]. 
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In addition to the classical tri-lineage differentiation capabilities of MSC, other 

reports show the ability of MSC to differentiate into other mesenchymal lineages, 

such as myocytes and tenocytes (Figure 1.3) [Wakitani, Saito, and Caplan 1995; De 

Bari et al. 2001; Hoffmann et al. 2006].  

 

Figure 1.3 Differentiation of BM derived MSCs [Frenette et al. 2013]. 

 

However, most of the published claims for MSC multipotency are based entirely on 

in vitro differentiation assays. Therefore, these assays might not necessarily 

translate into the in vivo differentiation potential of MSCs. Furthermore, most of 

the published data only show a few cells able to differentiate into certain cell 

types, highlighting the notion of heterogeneity of in vitro MSC cultures. 
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1.6 HYPOXIA 

 

Oxygen plays an important role in maintaining the stem cell niche. In fact it has 

been shown that low oxygen tensions greatly influence the biology of both 

embryonic and adult stem cells [Eliasson and Jönsson 2010; Silván et al. 2009; 

Krishnappa, Boregowda, and Phinney 2013]. Inhaled ambient air (21% oxygen) has 

partial pressure oxygen (pO2) of 160mm Hg when it enters the lung. This pO2 

progressively decreases as it travels in the blood and has dropped to 2% - 9% (14 - 

65mm Hg) when it reaches organs and tissues [Brahimi-Horn and Pouysségur 

2007]. Therefore, ambient air (normoxic) in vitro conditions (21% O2) do not reflect 

the physiological levels in the bone marrow, thereby exposing cells to a higher 

oxygen concentration than in their in vivo environment. Furthermore, due to its 

architecture of medullary sinuses and arteries, the oxygen tension in the bone 

marrow has been estimated to range from 1 – 7% [S.-C. Hung et al. 2007; Spencer 

et al. 2014]. The presence of these low oxygen tensions in stem cell niches might 

offer a selective advantage to their particular biological role [Cipolleschi, Dello 

Sbarba, and Olivotto 1993]. One of these advantages is the escape from oxidative 

stress which occurs during aerobic metabolism, where cells generate reactive 

oxygen species that can damage DNA [Fan et al. 2011]. Research has shown that 

mouse embryonic fibroblasts accumulate more mutations and senesce faster 

when cultured under 21% O2 than cells cultured under 3% O2 [Busuttil et al. 2003]. 

For several stem and progenitor populations, hypoxia is an important factor in 

stem cell biology, promoting an undifferentiated state [Mohyeldin, Garzón-Muvdi, 

and Quiñones-Hinojosa 2010; Prado-Lòpez et al. 2014]. Due to their location in the 

BM niche, MSC might also benefit from a hypoxic environment. Previous 

publications have shown that CFU-F frequency, growth and differentiation of 

mMSC were negatively affected by normoxic oxygen levels [Boregowda et al. 

2012]. As mentioned earlier, differences in MSC isolation, culture and 

experimental design have made it difficult to make broad conclusion about MSC. 

The same is also true for the role of hypoxia on the biology of MSC. MSCs from 

human BM are one of the best characterised, and the influence of hypoxia on their 
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proliferation and differentiation have been intensively investigated. Unfortunately, 

even for MSCs from the same tissue, results from different groups differ in the 

reported effects of hypoxia (Table 1.1). 

 

Table 1.1 Effects of hypoxia on mMSCs 

Parameter Hypoxia decreases Hypoxia increases 

Proliferation 
[Holzwarth et al. 2010; S.-C. 

Hung et al. 2007] 

[S.-P. Hung et al. 2012; 

Jin et al. 2010; Tsai et al. 

2010; Fehrer et al. 2007] 

Osteogenesis 

[Holzwarth et al. 2010; Fehrer 

et al. 2007; S.-C. Hung et al. 

2007] 

[S.-P. Hung et al. 2012; 

Tsai et al. 2010] 

Adipogenesis 

[Holzwarth et al. 2010; Fehrer 

et al. 2007; S.-P. Hung et al. 

2012; S.-C. Hung et al. 2007] 

[Jin et al. 2010; Tsai et al. 

2010] 

Chondrogenesis [S.-P. Hung et al. 2012] 

[Jin et al. 2010; Khan et 

al. 2010; Markway et al. 

2010; Tsai et al. 2010] 

 

 

Molecular analyses show that hypoxia activates Akt signalling and the upregulation 

of c-Met, the receptor for hepatocyte growth factor (HGF) which leads to an 

increased migratory phenotype of MSCs [Rosová et al. 2008]. It also increases the 

expression of vascular endothelial growth factor (VEGF), CXCR4, CX3CR1 and 

promotes the phosphorylation of focal adhesion kinase (FAK) [S. H. Lee et al. 2010; 

S.-C. Hung et al. 2007]. In disease models, e.g. hind limb ischemia, hypoxic or 

ischemic tissues are known to produce cyto- and chemokines which are involved in 

the recruitment of MSCs to the site of injury [Ceradini and Gurtner 2005]. One 

important factor in mediating the cells’ response to hypoxia is the hypoxia-
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inducible transcription factor-1α (HIF-1α) [Semenza and Wang 1992]. When 

oxygen drops below 5%, HIF-1a stabilizes, translocates to the nucleus, 

heterodimerizes with the HIF-1β subunit and initiates a transcriptional program 

(Figure 1.4). HIF-1a is ubiquitous expressed and also plays an important role in 

fetal development [Compernolle 2003; Stroka et al. 2001]. Recently is has been 

shown that HIF-1α contributes to the increased radio-resistance of hypoxic 

cultured mMSCs by promoting the upregulation of DNA double strand break repair 

[Sugrue, Lowndes, and Ceredig 2014].   

 

Figure 1.4 Regulation of HIF-1α [Ohh 2012]. 

 

In conclusion it can be said that oxygen tensions play an important role as a 

metabolic regulator of stem cell biology and represent an added dimension of 
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stem cell maintenance that influences the self-renewal and multi-lineage 

differentiation potential. 

 

1.7 ISOLATION OF MSC 

 

Bulk MSC have been isolated from a variety of different tissues including 

peripheral blood [Zvaifler et al. 2000], synovial membrane [De Bari et al. 2001], 

synovial fluid [Jones et al. 2004], periosteum [De Bari et al. 2006], articular 

cartilage, compact bone [Guo et al. 2006], cord blood [Erices, Conget, and Minguell 

2000], skeletal muscle [Williams et al. 1999], adipose tissue [Zuk et al. 2002], 

dental pulp [S Gronthos et al. 2000] and placenta [Fukuchi et al. 2004]. Bone 

marrow has been in the focus of MSC isolation as a rich source HSCs as well as 

MSCs.  

Cells derived from different tissues show a phenotypic heterogeneity and differ in 

their proliferation activity, but are similar in their tri-lineage differentiation 

capacity and expression of certain surface markers [Baksh, Yao, and Tuan 2007]. It 

is becoming clearer that the tissue of origin is a major factor in the variation of 

MSC biology [De Bari and Dell’accio 2008]. Within each tissue source, single-cell-

derived clonal MSC population from limited dilution assays are highly 

heterogeneous in their proliferation and differentiation capacity [Donald G 

Phinney and Prockop 2007]. This variability hinders the clinical use of MSC due to 

unknown differentiation capacity of the used MSC population. It is therefore 

necessary to develop quantitative potency assays in order to measure the potency 

of the used MSC population [De Bari and Dell’accio 2007].  

Criteria for the minimal identification of hMSC have been proposed by the 

International Society for Cell Therapy [Dominici et al. 2006]: i) adherence to plastic 

in standard culture conditions, ii) FACS analysis for the positive markers CD73, 

CD90 , CD105 and negative for CD34, CD45, HLA-DR , CD14 or CD11b, CD79a or 

CD19; iii) in vitro differentiation into osteoblasts, adipocytes and chondroblasts. 
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But even these criteria only allow a retrospective definition of hMSC and cannot 

be used to prospectively isolate hMSC. Furthermore due to differences between 

man and mouse, these criteria cannot be applied to mMSC. In fact it has been 

show that even in mice, marker expression and differentiation capacity differ 

between different mouse strains [Peister et al. 2004; Sung et al. 2008]. 

Difficulties associated with culturing mouse MSC (mMSC) as well as mouse strain 

variations in plating efficiency and the relative ease with which human cells can be 

cultured have resulted in comparatively more work being done with human than 

with mMSC [Peister et al. 2004; Anjos-Afonso, Siapati, and Bonnet 2004]. By 

culturing adherent cells from both species long-term, it became evident that their 

self-renewal and/or differentiation capacity became impaired [Kretlow et al. 2008; 

Wang et al. 2013]. Thus, the MSC-like properties of cells may not be retained after 

serial passaging in vitro. Another point to take into consideration is that findings in 

mice do not necessarily translate to man. Especially phenotypic marker expression 

not only varies between different mouse strains but also between man and 

mouse. For example, the well-known human MSC marker Stro-1 does not have an 

equivalent in mice [Baddoo et al. 2003; Simmons and Torok-Storb 1991] and 

reciprocally, the mouse marker Sca-1, does not have a human equivalent. Mouse 

MSC are also karyotypically unstable with shortened telomere length even in early 

cultures whereas human MSC are not [Miura et al. 2006; Bernardo et al. 2007; 

Wang et al. 2013].  

Thus, the MSC-like properties of cells may not be retained after serial passaging in 

vitro. In order to try and improve the isolation of mMSCs, flow cytometry has been 

employed to positively select MSC. In these experiments several combinations of 

surface markers have been used, the most frequent being Sca-1 [Anjos-Afonso and 

Bonnet 2011]. 
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1.8 THE SCA-1 MARKER 

 

Discovered almost 30 years ago as antigens expressed by foetal thymocytes 

[Aihara et al. 1986], Stem cell antigen-1 (Sca-1, Ly-6A/E) and Sca-2 are members of 

the Ly-6 family of interferon-inducible  lymphocyte activation proteins whose 

genes are located on mouse chromosome 15 [Malek, Danis, and Codias 

1989][LeClair et al. 1986]. Sca-1 is an 18kDa mouse glycosylphosphatidylinositol 

(GPI) – linked cell surface protein and encoded by the mouse strain-specific Ly-

6A/E allelic gene [van de Rijn et al. 1989]. Differing at the Ly-6 locus, Sca-1 is 

differentially expressed by lymphocytes from different mouse strains resulting in a 

20-fold higher expression in C57Bl/6 mice (Ly-6b) compared to BALB/c mice (Ly-6a) 

[Spangrude and Brooks 1993]. In the cell membrane, Sca-1 is associated with 

protein tyrosine kinases and lipid rafts suggesting it may be involved in signal 

transduction [Stefanová et al. 1991][Suzuki 2012]. In C57Bl/6 mice, Sca-1 is a well-

established marker of mouse HSCs and in conjunction with additional markers 

such as CD117 (c-kit) is routinely used for their isolation from BM [Ma et al. 2002]. 

Thus mouse HSC are frequently referred to as Lineage-negative, Sca-1-positive c-

kit-high cells, often abreviated to “LSK”. Outside the well-characterized 

haematopoietic system, Sca-1 is also expressed by a mixture of stem, progenitor 

and differentiated cell types in a variety of tissues. Sca-1 expression has been 

linked to stem/progenitor cell populations within the prostate [Burger et al. 2005], 

mammary gland [Welm et al. 2002], skeletal muscle [J. Y. Lee et al. 2000], heart 

[Matsuura et al. 2004], liver [Petersen et al. 2003] and skeletal system [B. Short 

and Wagey 2013].  This has led to the routinely use of Sca-1 in combination with 

negative selection for enrichment of stem and progenitor cells.  

Likewise, for mMSC isolation, Sca-1 has been used in conjunction with other 

markers, but no systematic analysis of Sca-1 expression by cultured mMSCs has 

been reported so far. Sca-1 has already been used in combination with other 

marker to isolate mMSCs from bone marrow [Nakamura et al. 2010; Steenhuis, 

Pettway, and Ignelzi 2008] and a recent study was able to generate clonal 

subpopulations of mMSCs by combining Sca-1 and PDGFR-α staining which 
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showed tri-lineage differentiation capacity both in vitro and in vivo [Morikawa, 

Mabuchi, Kubota, et al. 2009].  

Despite the extensive research on Sca-1 in mouse, it cannot be used for the 

isolation of human stem/progenitor cells, due to the fact that Sca-1 does not have 

a human homolog. This is a result of the evolutionary loss of a 500kb region of the 

Ly6 locus which included the Sca-1 gene in humans [Holmes and Stanford 2007]. 

Due to its important role in stem cell stress responses and its wide range of 

expression in mice, this might seem illogical. It is therefore likely that at least some 

of the functions exhibited by Sca-1 in mice are assumed by a number of human Ly6 

proteins. Even though the exact human Ly6 proteins which could be a Sca-1 

homolog are not known, the analysis of Sca-1 mutant mice have led to a variety of 

stem cell concepts which are equally relevant to human health and disease. This 

includes the involvement of MSC and progenitor cells in bone homeostasis, the 

relation between degenerative diseases and exhaustion of the stem cell pool and 

tissue maintenance by stem cells. Sca-1 null-mice showed decreased cardiac 

function [Rosenblatt-Velin et al. 2012] and age-dependent osteoporosis [Bonyadi 

et al. 2003], but only minor effects on adipose function [Staszkiewicz et al. 2012]. 

Thus, the study of Sca-1 in mice is still important to understand the function of Ly6 

family proteins regarding stem cell biology. 
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1.9 HYPOTHESIS AND AIMS 

 

Beside the broad use of hMSCs in clinical trials, fundamental knowledge about the 

basic biology and work mechanisms of these cells are still lacking. While hMSCs 

can be easily isolated based on surface marker expression, the isolation of mMSCs 

proves more difficult. Furthermore, standard isolation protocols for mMSC include 

plastic adherence and in vitro expansion which leads to a heterogeneous 

population of cells. It is therefore necessary to prospectively isolate single-cells to 

address fundamental questions about their basic biology and to take advantage of 

genetically altered mouse strains. 

Therefore, the overall goals of my PhD studies were:  

(i) To characterise the phenotype and to improve culture conditions of bone chip 

derived bulk mouse MSCs in vitro (Chapter 2).  

(ii) To isolate MSCs from BM by FACS based on Sca-1 expression and investigate 

phenotypic changes during in vitro expansion (Chapter 3).  

(iii) To clonally isolate a stromal cell population on a single cell level and 

investigate their immunoregulatory capacity (Chapter 4). 
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CHAPTER 2 
 

Isolation of mMSCs from bone chips  
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2.1 INTRODUCTION 
 

A key aspect in the investigation of mMSC is the isolation method employed. 

Normally, suspensions of bone marrow cells are cultured in plastic dishes and 

subsequently, non-adherent cells discarded. Two common problems associated 

with this isolation method are firstly that in early passages there is contamination 

with adherent haematopoietic cells and secondly, both mesenchymal and 

haematopoietic cells in such cultures are heterogeneous [D G Phinney et al. 1999]. 

Microscopic examination of the adherent mesenchymal cells shows them to be 

growing from individual foci, or colonies, and these colonies have been called 

colony forming unit – fibroblast (CFU-F) [Friedenstein, Gorskaja, and Kulagina 

1976]. Difficulties associated with culturing mMSC as well as mouse strain 

variations in plating efficiency and the relative ease with which human cells can be 

cultured have resulted in comparatively more work being done with human than 

with mMSC [Peister et al. 2004; Anjos-Afonso, Siapati, and Bonnet 2004].  By 

culturing adherent cells from both species long-term, it became evident that their 

self-renewal and/or differentiation capacity became impaired [Kretlow et al. 

2008].  

It has been shown that human MSC from compact bone exhibit similar properties 

compared to those of their bone marrow counterparts [Sakaguchi et al. 2004] and 

that mouse compact bone is a richer source for MSC than mouse bone marrow [B. 

J. Short, Brouard, and Simmons 2009; Guo et al. 2006; H. Zhu et al. 2010]. It has 

also been shown that the yield as well as the lineage potential of MSC isolated 

from mouse bone marrow is dependent on donor age [Peister et al. 2004; Kretlow 

et al. 2008]. 

A common problem with all mouse MSC cultures is the contamination with 

haematopoietic cells [Meirelles and Nardi 2003; Suire et al. 2012; Krishnappa, 

Boregowda, and Phinney 2013]. Because most cells in the BM are haematopoietic 

in origin and adherent cells from the BM, including MSC support haematopoiesis, 

it is not surprising that contamination by haematopoietic cells is a feature of early 

MSC cultures [Calvi et al. 2003; Mansour et al. 2012]. It has been shown that this 
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contamination is reduced by sequential passaging [Nadri et al. 2007]. This is due to 

the fact that only cells which are best suited to the particular cell culture 

environment will dominate and proliferate. Among the important factors that 

contribute to this selection are: sensitivity to trypsin, nutrient or substrate 

limitation, growth rate, cell density and oxygen supply. The downsides of this 

approach include the i) change of phenotype, ii) bias of growth of a subpopulation 

within the heterogeneous bulk cultures and iii) senescence of MSC with extensive 

culture in vitro [Gregory, Ylostalo, and Prockop 2005; Kretlow et al. 2008; Anjos-

Afonso, Siapati, and Bonnet 2004]. Several other protocols have been developed 

over the years to circumvent these problems including: i) antibody depletion of 

HSC before MSC culture [Baddoo et al. 2003], ii) stimulation of MSC growth by 

addition of basic fibroblast growth factor (bFGF) to the culture [D G Phinney et al. 

1999; Sun et al. 2003], iii) adjusting the plating density in vitro [Sun et al. 2003; 

Meirelles and Nardi 2003; Peister et al. 2004], or iv) retroviral selection of cycling 

cells [Kitano et al. 2000; Tropel et al. 2004]. Still, all these protocols yielding either 

a heterogeneous population of cells or cannot be employed prospectively.  

Similar to human MSC the definition of mouse MSC is based on i) plastic 

adherence in standard culture conditions, ii) positive and negative expression of 

certain surface markers, iii) tri-lineage differentiation capacity into osteoblasts, 

adipocytes and chondroblasts. In contrast to human MSC, there are no definitive 

surface markers for the direct isolation of mouse MSC [Baddoo et al. 2003]. There 

is, however, a general consensus that mouse MSC positively express CD106, 

CD105, CD73, CD29, CD44, and Sca-1 [Anjos-Afonso and Bonnet 2011]. These 

positive markers together with the absence of expression of the haematopoietic 

and endothelial markers Ter119, CD45, CD11b, and CD31 are routinely used for 

the definition of mouse MSC [R&D Systems]. 

There are commercially available surface marker cocktails for the in vitro definition 

of mouse MSC, which differ in their composition of antibodies [Abcam 2011; R&D 

Systems]. While the Abcam® cocktail contains the markers CD45, Sca-1, CD44, 

CD29 and CD90 to confirm the MSC phenotype, the R&D systems™ cocktail 
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additionally contains CD11b, CD73, CD105 and CD106 but lacks CD90. This shows 

the diversity of data regarding the mMSC phenotype in vitro. 

Due to the difficulties associated with MSC isolation, characterisation and 

expansion protocols, bone chip derived MSC offered a way to easily obtain bulk 

MSC from C57Bl/6 mice. The aims of the current Chapter were therefore to show 

that currently used cell culture conditions can yield MSCs from mouse bone chips, 

purify them of hematopoietic cell contamination and characterise the MSC 

phenotype after short term in vitro expansion.  

 

2.2 MATERIALS & METHODS 
 

Animal strains and ethical approval 

C57Bl/6 mice were bred in house and used at the age of 6 to 8 weeks. 

Experimental animals were housed in a specific pathogen-free facility and fed a 

standard chow diet. All animal procedures were carried out under license from the 

Irish Department of Health and Children by procedures approved by the NUI 

Galway Animal Care Research Ethics Committee (ID: 12/JULY/02). 

Flushed and compact bone marrow 

Femurs and tibias from 6 – 8 week old C57Bl/6 mice were dissected, bones were 

cleaned of muscle and adherent tissue, and bone marrow flushed out with an 18 

gauge (G) needle and syringe containing α-MEM + GlutaMAX (Gibco). For breaking 

up cellular clumps, a 21G needle was used with gentle syringing. The resulting 

single cell suspension was called “flushed bone marrow” (fBM). Red cells lysis was 

performed on fBM using sterile H2O for 5 seconds after which the reaction was 

quenched using FACS buffer (see appendix)[Houlihan et al. 2012]. 

To isolate endosteal lining cells, bones from fBM isolation were crushed with a 

pestle and mortar and gently washed with α-MEM + GlutaMAX. After extensive 

washing, bones were further chopped with a scalpel into 1 – 2mm pieces and 
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incubated for 45 minutes in 37°C in 4ml of α-MEM + GlutaMAX containing 

2.5mg/ml Collagenase I (Sigma) and 100µg/ml DNAse I (Sigma-Aldrich).  MSC 

Growth Medium (see appendix) was added to quench collagenase enzyme activity. 

The suspension was then filtered with a 70μm cell strainer to remove bone 

fragments and debris, and centrifuged at 400g for 5 minutes. This suspension was 

called “compact bone marrow” (cBM). An overview of isolated suspensions from 

long bones can be seen in Figure 2.1. 

 

Figure 2.1 Anatomic locations of isolated bulk MSCs in long bones. Histological 

longitude section of mouse long bone. Cell suspensions were obtained from 

flushing out red BM (“fBM”), enzymatic release of endosteal lining cells (“cBM”) 

and culturing “bone chips” of crushed long bones. Figure adapted from [Anjos-

Afonso and Bonnet 2007].  

 

Bone chip derived MSC 

The bone chips left over from the isolation of cBM (see above) were washed with 

Dulbecco’s phosphate buffered saline (DPBS), put in MSC Growth Medium and 

incubated in a humidified incubator with 5% CO2 at 37°C. Cells were carefully 
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washed every 2 days with DPBS (Gibco) to remove the non-adherent fraction. 

Microscopic examination revealed that adherent cells grew out from these bone 

chips. Cells were harvested after 7 days by using 0.25% Trypsin/0.02% EDTA for 

1min, filtered through a 70μm filter mesh (Sefar) and put in a new T175 flask 

containing pre-warmed MSC Growth Medium (Passage 1). After about 7 – 10 days, 

when the primary culture was nearly 80% confluent, cells were detached with 

Trypsin/EDTA for 1 min and seeded to new T175 flasks with pre-warmed MSC 

Growth Media.  Culture medium was changed every 2 - 3 days and subsequent 

passages were performed when cells reached 60 – 80% confluence.   

Flow cytometry 

Adherent cells at the indicated passages were retrieved by treatment with 

Trypsin/EDTA and suspended in ice-cold PBS + 10% FCS at 106 cells/ml, and then 

stained for 30 min on ice with the following mAbs (see figure legends for details): 

biotinylated F4/80, MHC I (H2-Db); APC-conjugated CD29, PDGFRα (APA5), 

Galectin-3;  FITC-conjugated Sca-1 (Ly6A/E), CD45, CD49e, CD106; PE-conjugated 

CD31, CD44, CD73, CD90.2 and CD105; PE-Cy7-conjugated CD45; V450-conjugated 

CD45 and Ter119. Biotinylated antibodies were visualized with FITC-conjugated 

streptavidin (BD) following extensive washing. All mAbs, including isotype controls, 

were purchased from eBioscience except for CD90.2, CD45 and Ter119 (BD) and 

Galectin-3 (BioLegend) see appendix for details. Flow cytometric analysis was 

performed on a dual-laser BD Accuri C6 flow cytometer. Propidium Iodide (PI) 

fluorescence was measured in FL3, and a live cell gate was defined that excluded 

PI-positive cells. Additional gates were defined as positive or negative according to 

the isotype control fluorescence intensity.  

MACS Purification 

Adherent cells at passage 1 were retrieved by treatment with Trypsin/EDTA and 

suspended in ice-cold MACS buffer (see appendix), and then incubated with anti-

mouse CD45 microbeads for 20 minutes on ice. Next, cells were washed in MACS 

buffer and separated using MS columns and a MiniMACS separator according to 
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manufacturer’s instructions (Miltenyi Biotec. Inc.). The CD45- fraction was washed 

in MACS buffer and re-suspended in pre-warmed MSC growth medium. 

Differentiation assays 

To induce osteocyte differentiation, sub-confluent cells were cultured with 

Osteogenic Differentiation Medium (see appendix) for 14 days. The cells were then 

fixed with 95% methanol for 10 min and stained with Alizarin Red (Sigma-Aldrich).  

To induce adipocyte differentiation, subconfluent cells were cultured for three 

cycles of Adipogenic Induction Medium / Adipogenic Maintenance Medium (see 

appendix). Each cycle consisted of feeding the subconfluent cells with the 

induction medium for 3 days, followed by 3 days of culture in the maintenance 

medium. After 14 days, the cells were fixed with 10% neutral buffered formalin for 

30 min, and stained with Oil Red O (Sigma-Aldrich). 

For chondrogenic differentiation, cultured cells were harvested using 

Trypsin/EDTA at passage 2 – 3 and 2.5 × 105 cells transferred to a 15-ml conical 

tube and washed with MSC medium. The tube was spun at 240g for 5 min at room 

temperature, and the supernatant was aspirated. The cells were resuspended in 

1ml Incomplete Chondrogenic Medium (see appendix) into 1.5ml screw-cap 

microtubes, spun at 100g for 5 min, and the medium was aspirated. The cells were 

resuspended in 500µl of Complete Chondrogenic Medium (Incomplete 

Chondrogenic Medium supplemented with TGFβ-3 (10 ng/ml; Peprotech) and 

BMP-2 (100ng/ml; Peprotech)) and spun at 100g for 5 min at room temperature. 

The pellet was maintained with Complete or Incomplete Chondrogenic Medium 

changes every 3–4 days for 3 weeks. After 3 weeks, cell pellets were harvested, 

washed in DPBS and processed for sulphated glycosaminoglycans (S-GAG) 

measurement using dimethyl-methylene blue or stained with Safranin-O for 

sulphated proteoglycans.  

Statistical analysis 

All experiments were repeated at least 3 times with independently collected 

samples and all values are displayed as mean ± standard deviation (  ± SD) unless 
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stated otherwise. Statistical comparisons were analysed with the Student’s t test 

using Excel 2010 and p-value less than 0.05 was considered statistically significant. 

 

2.3 RESULTS 
 

Early bone chip cultures contain cells of hematopoietic origin 

For obtaining bone chip cultures, after flushing out the BM long bones, fragments 

were treated with Collagenase I. These pre-digested bone fragments were then 

put in culture and after 7 days out-growing cells were collected and passaged 

(Figure 2.2A). At this time they exhibited a fibroblast-like morphology typical for 

mMSC. It can also be seen that these cultures contain a high proportion of small, 

bright cells (Figure 2.2A) which are not seen in cultures at passage 3. It has been 

reported before that early passages of bulk MSC cultures contain hematopoietic 

cells [Peister et al. 2004] and that this contamination can be overcome by 

sequential passaging in hypoxia [Nadri et al. 2007]. Sequential passaging led to a 

significant reduction of  the proportion of CD45+ cells from 59% at Passage 1 to 4% 

at passage 3 (Figure 2.2B + 2.2C). In order to improve the removal of CD45+ cell 

contamination, MACS purification with anti-mouse CD45 microbeads was 

performed according to the manufacturer’s protocol. Passage 1 cells were taken 

which contained ~60% CD45+ cells. Half were MACS purified and cultured until 

passage 2. At this time, the content of CD45+ cells was 8% in MACS-purified 

cultures versus 18.2% in standard cultures (Figure 2.2D). Thus the removal of 

CD45+ contaminating cells was better when using MACS beads compared to 

standard culture, but nevertheless still persisted. Unfortunately, the high amount 

of beads needed and the relatively low efficiency of removing CD45+ cells meant 

that this method was not considered economical or efficient enough for further 

use.  
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Figure 2.2 Purification of mMSCs by sequential passaging. (A) Brightfield images 

of cultured bone chips at passage 1. (B) Flow cytometric analysis of CD45 

expression by bone chip cultures. Histograms show CD45 staining at the indicated 

passage numbers with the percent positive cells in each panel. (white, solid line = 

CD45; tinted, dashed line = isotype control). (C) Summary of CD45 distribution at 

different passages. Data are the means ± SD of at least three independent 

experiments. *p < 0.05, **p < 0.01, Student’s t test. (D) Flow cytometric analysis of 

MACS purified cells versus standard purification by sequential passaging at 

passage 2.  
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Additional haematopoietic markers were investigated for their expression in early 

bone chip cultures (Figure 2.3A). It can be seen that CD31, an endothelial marker, 

is not expressed throughout in vitro expansion. The reduction of CD45+ by 

sequential passaging also resulted in a simultaneous/parallel reduction of F4/80+ 

cells. Additional phenotypic analysis showed that CD45+ cells in these early 

passage cultures were mostly F4/80+ myeloid cells (Figure 2.3B). To determine 

other phenotypic characteristics, the size (FSC-A) and granularity (SSC-A) of these 

two cell populations were compared (Figure 2.3C). Although there was no 

difference in FSC-A, CD45- cells had a consistently higher SSC-A value than CD45+ 

cells (Figure 2.3D). 
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Figure 2.3 Characterisation of CD45 haematopoietic cells. (A) Flow cytometric 

analysis of hematopoietic marker expression during in vitro expansion. (B) Co-

expression of CD45 and F4/80 (green, CD45 only; blue, CD45 + F4/80). (C) 

Cytogram display of FSC-A versus SSC-A for different CD45 subpopulations (orange, 

CD45-; green, CD45+). CD45+ cells have lower SSC signals than CD45- cells. (D) Ratio 

of SSC-A between CD45- and CD45+ cells. Data are the means ± SD of at least three 

independent experiments.  
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Bone chip MSCs exhibit heterogenous expression levels of human MSC markers 

CD45- cells were investigated for expression of markers commonly, but not 

exclusively, used to characterize human MSC, namely CD73, CD90 and CD105 

[Dominici et al. 2006]. The general gating strategy can be seen in Figure 2.4. In 

short, cells of interest were gated based on their FSC-A/SSC-A profile and doublets 

as well as dead cells were excluded. Gates were drawn based on fluorescence 

minus one (FMO) and isotype controls. 

 

Figure 2.4 Representative gating strategy for flow cytometric analysis. Cells were 

gated based on their size and granularity (upper left dotplot) and doublets were 

excluded based on FSC-A vs FSC-H (upper right dotplot).CD45+ and non-viable (PI+) 

cells were gated out (lower left dotplot) and quadrants were drawn based on 

isotype controls (lower right dotplot).  
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Results obtained showed that there was a significant increase of CD73+ cells from 

6% at passage 1 to 47% at passage 3. At the same time CD105+ cells increased 

significantly from 20% to 42%, whereas CD90 expression decreased slightly (from 

92% to 85%) over 3 passages (Figure 2.5A). By simultaneous staining for CD73 and 

CD90, phenotypic heterogeneity was investigated further. As shown in Figure 2.5B, 

left panel, at passage 1, 88% cells were CD90+ and CD73- with the CD90- cells being 

subdivided into 60% CD73+ and 40% CD73- subsets. By passage 3 (Figure 2.5B, right 

panel) the 16% CD90- cells were CD73+ and the CD90- CD73- cells had essentially 

disappeared. Thus there is clearly phenotypic evolution of surface marker 

expression in culture on CD45- cells and these are summarised in the pie graphs of 

Figure 2.5B. Similar phenotypic analysis was carried out on fresh compact (cBM) 

and flushed bone marrow (fBM). As shown in Figure 2.5C, most of gated CD45-

/Ter119- cells were CD90- CD73- and of the CD90+ cells, most were CD73-. Taken 

together, this indicates that CD90- CD73- cells grow poorly under these in vitro 

culture conditions.  
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Figure 2.5 Expression of markers characteristic of human MSC. (A) Human MSC 

marker expression of gated CD45- cells from bone chips during in vitro passaging. 

Values represent means ± SD of at least three experiments. Significance testing 

was done between passage 1 and passage 3 for CD73 (#), CD90 and CD105 (*). (B) 

Cytogram displays of the distribution of CD73 vs CD90 over passaging is shown. 

Quadrants were placed based upon negative control samples in the lower left 

quadrant. The % positive cells in each quadrant are shown. (C) Pie chart 

representation of the distribution for CD73 vs CD90 in vitro at the passage 

numbers shown in B. (D) Pie chart representation of the distribution for CD73 vs 

CD90 by freshly-isolated compact and flushed BM. The lower right panel shows the 

colour codes used to define the four subpopulations expressing CD73 or CD90. 

Data pooled from at least three independent experiments. */# p < 0.05, Student’s 

t test. 
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Expression of mouse markers by bone chip MSCs 

Next, markers that have been tested on MSC (mouse and human), but are not 

exclusively found on them, were investigated. Galectin-3 is a marker ubiquitously 

expressed in adult tissues, but is mainly related to the epithelial and myeloid cells 

[Dumic, Dabelic, and Flögel 2006]. It has been reported that mMSC lines express 

Galectin-3 in vitro [Prado-Lòpez et al. 2014]. Results obtained indicate it is 

expressed in early passages but goes down simultaneously with CD45 expression 

and at passage 3 it is not expressed on CD45- cells (Figure 2.6A). CD49e is known to 

form non-covalent heterodimer with CD29, which then binds to fibronectin 

mediating cell migration and survival [Isaji et al. 2006]. It can be seen that CD49e is 

consistently expressed throughout passaging (Figure 2.6B). The same is true for 

CD106, also known as vascular cell adhesion molecule, which plays an important 

role in the retention of haematopoietic progenitor cells in BM [Ulyanova et al. 

2005]. 
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Figure 2.6 Phenotypic analyses of bulk MSC cultures. (A) Flow cytometric analysis 

of Galectin-3 expression by bone chip cultures in either unfractionated (upper 

panel) or in CD45- cells (lower panel). (B) CD106 (upper panel) and CD49e (lower 

panel) expression during in vitro expansion. Histograms show positive staining at 

the indicated passage numbers (white, solid line = mAB; tinted, dashed line = 

isotype control). 
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As part of the phenotypic analysis common markers expressed by mouse MSC, 

namely Sca-1, CD44 and CD29 were investigated[Baddoo et al. 2003]. It can be 

seen that Sca-1, CD44 and CD29 are consistently highly expressed throughout 

passaging (Figure 2.7A). 

Bone chip MSCs are tri-lineage 

The commonly used standard for identifying MSC is their capacity to differentiate 

into osteocytes, adipocytes and chondrocytes under the appropriate culture 

conditions [Pittenger et al. 1999]. To test whether bone chip MSC met these 

criteria, passaged cells were maintained in appropriate differentiation medium 

(see appendix) and cultured over 14 - 21 days. Adipogenic differentiation was 

characterized by the formation of lipid droplets stained by Oil Red O, osteogenic 

differentiation by Alizarin Red staining for calcium deposits and chondrogenic 

differentiation by Safranin-O staining for sulphated - glycosaminoglycans (S-GAG). 

As seen in Figure 2.7B, bone chip MSC are able to differentiate towards all three 

lineages proving their tri-lineage potential.  
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Figure 2.7 Bone chip cultures from C57Bl/6 mice contain MSCs. (A) Flow 

cytometric analysis of in vitro mouse MSC marker expression. Histograms show 

positive staining at the indicated passage numbers  (white, solid line = mAB; tinted, 

dashed line = isotype control). (B) MSCs were cultured in osteogenic, adipogenic 

and chondrogenic differentiation media followed by Alizarin Red S, Oil Red O or 

Safranin O staining. Images bar = 200μm. 
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2.4 DISCUSSION 

 

As major limiting factor in using early bulk MSC cultures is their contamination by a 

large number of haematopoietic  CD45+ cells (Figure 2.2B)[Jing et al. 2010; 

Meirelles and Nardi 2003]. This is no surprise, as MSC are thought to be part of the 

HSC niche in vivo [Charbord 2010; Frenette et al. 2013; Ehninger and Trumpp 

2011]. This is also one of the reasons for their use as feeder cells in the in vitro 

expansion of HSC [Dexter, Moore, and Sheridan 1977]. A commonly used strategy 

to overcome haematopoietic cell contamination in MSC cultures is subsequent 

passaging which reduces the number of CD45+ over a number of passages (Figure 

2.3A)[Nadri et al. 2007]. These several passages are necessary, as CD45+ cells can 

have different location/orientation/positions in the MSC monolayer which makes 

it difficult to remove them by passage 1. This is not surprising as cycling 

haematopoietic cells can migrate through the capillary walls into tissue via 

diapedesis. During this process, cells get attracted via chemokines to the tissue 

and are slowed down through rolling adhesion. Once they have tightly adhered, 

they start to transmigrate through the endothelial wall into the tissue. A similar 

process might happen in vitro, leading to different orientation of CD45+ cells in 

regards to the CD45- monolayer. Additionally it has been shown that MSC form 

distinct microenvironments for HSC in vitro. These microenvironments include HSC 

that were non-adherent, cells adherent to the surface of the MSC layer, and cells 

that had migrated beneath the MSC feeder layer [Jing et al. 2010]. 

Human MSC have been intensively studied and are already used in human trials [Lv 

et al. 2014][Syed and Evans 2013]. CD73, CD90 and CD105, among others, are 

routinely used for the definition of human MSCs [Dominici et al. 2006]. 

Unfortunately these markers are not MSC specific and as recently reviewed [Bara 

et al. 2014] expression varies on passaging (Figure 2.4A). Mouse MSC also exhibit a 

heterogeneous staining for these markers making their use in prospective isolation 

problematic [Mabuchi et al. 2013]. CD73-/CD90- cells represent a major population 

in fresh bone marrow, but only a minor (3%) in passage 1 expanded cells (Figure 

2.4B). The low percentage of these cells in early passages suggests that they do 
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not survive well in vitro. As shown by others [Anjos-Afonso and Bonnet 2011], 

CD73 is barely detected on fresh cells, but is highly expressed on cultured cells. 

The slow increase over time of CD73 expression and reports of its up-regulation in 

hypoxia [Synnestvedt et al. 2002] support the assumption of marker up-regulation 

upon culturing. CD90 (Thy-1) was originally a prototypic T-cell marker [Reif and 

Allen 1964] but later it was found to be expressed on human MSC. However its 

expression on cells from  C57Bl/6 is controversial with groups claiming its absence 

[Peister et al. 2004; Anjos-Afonso, Siapati, and Bonnet 2004] or its presence 

[Morikawa, Mabuchi, Kubota, et al. 2009; Nakamura et al. 2010] on mMSC.  

Galectin-3 is part of the animal lectin family and has been reported to be 

expressed by hMSC [Mouldy Sioud et al. 2011]. Furthermore, the 

immunosuppressive capacity of hMSC is partially mediated by Galectin-3 [Hsu, 

Chen, and Liu 2009; M Sioud et al. 2010]. Analysis showed that Galectin-3 was not 

expressed by CD45- cells, but on CD45+ cells (Figure 2.6A), which is consistent with 

reports claiming its expression on myeloid cells, in particular primary 

monocytes/macrophages [Liu et al. 1995]. On the other hand, it has been shown 

that Galectin-3 is expressed by MSC cell lines in vitro [Prado-Lòpez et al. 2014]. 

CD49e and CD106 are both expressed by bulk MSC in vitro (Figure 2.6B). CD49e 

expression has been reported for both human [Arpornmaeklong et al. 2011] and 

mouse MSC [Meirelles and Nardi 2003]. Its expression is somewhat expected, as 

CD49e associates with CD29 (integrin β1 chain) to form the fibronectin receptor 

(VLA-5) [Kinashi and Springer 1994]. CD106 (VCAM-1) is a 

glycosylphosphatidylinositol (GPI)-linked transmembrane protein which is 

expressed by mouse bone marrow stromal cells and plays a key role in lymphocyte 

migration to the BM [Koni et al. 2001]. Deletion of CD106 leads to an increased 

level of circulating haematopoietic progenitor cells due to their release from bone 

marrow [Ulyanova et al. 2005]. The antigen markers CD29, CD44 and Sca-1, among 

others, are routinely used to define the presence of mouse MSCs in vitro [Abcam 

2011; Qian, Le Blanc, and Sigvardsson 2012]. Phenotypic analysis showed that 

these markers were expressed as early as passage 1 and that there was stable 

expression until passage 3 (Figure 2.7A). Classical in vitro tri-lineage differentiation 
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assays confirm the notion that bone chip MSC cultures contain MSC (Figure 2.7B). 

It can be seen however, that despite homogenous expression of mouse MSC 

marker, not all cells differentiate towards the appropriate lineage.  

Different mesenchymal progenitors share the same markers which might explain 

the heterogeneous differentiation capabilities in vitro [Muraglia, Cancedda, and 

Quarto 2000; Karystinou et al. 2009; Russell et al. 2010]. It has also been reported 

that MSC undergo phenotypic changes in vitro which results in a loss or gain of 

MSC marker expression [Jones et al. 2002; Bara et al. 2014]. The experiments 

presented in this Chapter were designed to see if culturing bone “chips” provide 

an easy way of isolating MSC relatively free of CD45 cell contamination without 

resorting to cell sorting. Although the culture system was simple and reliable, 

unfortunately, contamination by CD45+ cells was still problematic. Heterogeneity 

withing the CD45-negative gated fraction was also noted. This highlights the need 

for a prospective isolation approach to target specific mesenchymal cell types.  
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3.1 INTRODUCTION 

 

As seen in chapter 2, there was a change in phenotype and surface marker 

expression in bulk cultures from bone chips during in vitro expansion. Due to the 

heterogeneous nature of bulk cultures, I wished to investigate if these changes 

were due to a bias of growth or a change in surface marker expression of certain 

cell subpopulations. It has been shown that in vitro conditions can alter the 

differentiation potential as well as cell surface marker expression [Kretlow et al. 

2008; Qian, Le Blanc, and Sigvardsson 2012]. Nevertheless, the characterisation of 

in vitro expanded mMSCs using monoclonal antibodies is well accepted [Abcam 

2011; R&D Systems]. However, it has been noted that cell populations tend to 

become more homogenous in terms of appearance with subsequent in vitro 

expansion [Bara et al. 2014]. 

Sca-1 was chosen as separation marker because of its wide use in stem cell 

isolation in mice and results from the previous chapter which showed a high Sca-1 

expression during passaging (Figure 2.7A). It has been shown that Sca-1 expression 

is interferon-inducible and that Sca-1 is up-regulated in vivo after being 

immunologically challenged [Malek, Danis, and Codias 1989; Zhang et al. 2008].  

As shown earlier, MACS purification was not able to completely remove CD45+ 

cells (Figure 2.2D). Additionally reports have shown that flow cytometry (FCM) 

mediated cell sorting yields a higher purity than MACS [Li et al. 2013]. Another 

advantage of FCM is the simultaneous use of more than one fluorescent labelled 

antibody and therefore the pinpointing of distinct subpopulations. Similar to 

standard flow cytometry, FCM mediated cell sorting is using a single stream of 

liquid which is exposed to a laser beam. Single cells pass sequentially through the 

beam, and the fluorescent light from the labelled cells gives rise to electronic 

signals. By applying high frequency vibration, the stream is then broken into a 

series of uniform sized drops, each containing a single cell, at a fixed distance 

downstream of the laser. The signals from the fluorescence measurement are 

translated into electrostatic charges which are applied through the sheath fluid to 
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single drops. The individual charged drops then pass between two charged 

deflection plates and are deflected to appropriate containers [Bonner et al. 1972]. 

Additionally, the role of hypoxia during in vitro expansion was investigated. 

Traditionally, MSC are grown in vitro in “normoxic” conditions (21% oxygen). This 

level of oxygen does not reflect the physiological level in the bone marrow, 

thereby exposing cells in vitro to a higher oxygen concentration than in their native 

niche environment. Due to its architecture of medullary sinuses and arteries, the 

oxygen tension in the bone marrow has been estimated to range from 1 – 7% [S.-

C. Hung et al. 2007; Spencer et al. 2014]. For several stem and progenitor 

populations, hypoxia is an important factor in stem cell biology, promoting an 

undifferentiated state [Mohyeldin, Garzón-Muvdi, and Quiñones-Hinojosa 2010; 

Prado-Lopez et al. 2010; Cipolleschi, Dello Sbarba, and Olivotto 1993]. Previous 

publications have shown that CFU-F frequency, growth and differentiation of 

mMSC were negatively affected by normoxic oxygen levels [Boregowda et al. 

2012]. Moreover, oxygen leads to accumulation of mutation and senescence in 

vitro [Busuttil et al. 2003]. Expansion of mMSC in low-oxygen limits the 

accumulation of chromosomal aberrations, a common problem in mMSC cultures 

[Fan et al. 2011]. Due to contradicting/varying data in the literature (Table 1.1), 

the effect of hypoxic in vitro conditions on BM-derived MSCs remains uncertain.  

 

3.2 MATERIALS & METHODS 

 

Isolating primary chondrocytes 

Femurs from 6 – 8 week old C57Bl/6 mice were dissected and articular cartilage 

was gently scraped from the femoral head and the condyles with a scalpel. Care 

was taken to not remove any subchondral bone. Cartilage chips were incubated in 

2mg/ml Protease for 90 minutes at 37°C. Digestion was quenched using MSC 

Growth Medium (see appendix) and cartilage chips were centrifuged at 400g for 5 

minutes. Medium was discarded and chips were washed with DPBS. After two 
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steps of washing, cartilage chips were put 2,5mg/ml Collagenase D and incubated 

at 37°C for 12 hours. Next cells were put in MSC Growth Medium and expanded in 

37°C with 5% oxygen. Culture medium was changed every 2 - 3 days and 

subsequent passages were performed when cells reached 60 – 80% confluence.  

Sorting 

Flushed and compact BM was isolated as mentioned earlier (see chapter 2). 

Isolated cells were re-suspended in ice-cold FACS Buffer (see appendix) and 

stained for 30 min at 4°C with the following anti-mouse mAbs (see appendix for 

details): V450 conjugated CD45 and Ter119; FITC conjugated Sca-1. The labelled 

cells were washed twice, filtered through 40μm filter, re-suspended in SORT buffer 

(see appendix) and sorted using a BD Biosciences FACSAriaII® sorter fitted with a 

70µm nozzle for fBM and an 85µm nozzle for cBM. Where appropriate, the purity 

of sorted cell subsets was determined by post-sorting analysis. The different 

subsets were gated based on their FMO and isotype controls. The fluorochrome 

channels for V450 and FITC were used, with Sytox blue for dead cell exclusion.  

Cells were sort purified with purities greater than 95% for each population and 

seeded on plastic or gelatine-coated plates at densities of 5 cells/mm2.  

Table 3.1 Excitation lasers and fluorochrome filters 

Filter Fluorochrome 

Blue laser, 488nm  

530/30nm FITC 

585/30nm PE 

Red laser, 633nm  

660/20nm APC 

Violet laser, 405nm  

450/40nm V450, Sytox Blue 
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Gelatine coating 

10mm cell culture dishes were coated with 0.1% gelatine and incubated for 2 

hours at room temperature. Gelatine was removed and the vessels were 

incubated for 1 hour at 37°C. Gelatine coated vessels were used right away or 

stored in DPBS for a maximum of 2 weeks at 4°C.  

qRT-PCR 

Total cellular RNA was extracted from Sca-1-defined subpopulations or articular 

chondrocytes using TRIzol reagent (Invitrogen) according to manufacturer’s 

instructions. Reverse transcription reactions were performed with total RNA at a 

concentration of at least 20ng/μl using the High Capacity cDNA Reverse Transcript 

Kit (Applied Biosystems) according to manufacturer’s instructions. Real- time PCR 

(Lightcycler 480II; Roche) was performed with 2µl of the single-stranded cDNA 

sample with SYBR Green PCR master mix (Applied Biosystems). The PCR 

parameters and sequences of primers used are shown in Table 3.1. Each 

amplification reaction was checked to confirm the absence of nonspecific PCR 

product by melting curve analysis. The relative gene expression levels were 

calculated and presented using the 2-ΔΔCt method [Livak and Schmittgen 2001]. 

Beta-2 microglobulin (2m) was used as a reference gene to normalize specific 

gene expression in each sample. Primers sequences from [Prado-Lòpez et al. 

2014].  

CFU-F assay 

Sorted cells obtained from fresh fBM and cBM were plated into 10mm plates at 

different densities of 0.4 - 4 cells/mm2 and incubated for 10 days in a humidified 

incubator at 37°C, supplied with 5% CO2 and either 21%, 5% or 2% O2. 

Subsequently, colonies were fixed with ice-cold 100% methanol, stained with 0.5% 

crystal violet (see appendix) and excessive crystal violet stain removed with H2O. 

The numbers of colonies displaying fifty or more cells with spindled MSC 

morphology were scored using the Kodak Imager Station 4000MM. Colonies with 



63 
 

an area below 1mm2 were scored as “small” and colonies with an area above 

1mm2 were scored as “large”.  

 

Statistical Analysis 

All experiments were repeated at least 3 times with independently collected 

samples and all values are displayed as mean ± standard deviation (  ± SD) unless 

stated otherwise. Statistical comparisons were analysed with the Student’s t-test 

and p-value less than 0.05 was considered statistically significant. 
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Table 3.2 PCR parameters and primer sequences. (A) PCR parameters for the 

Roche LC 480II. (B) Primer sequences 

A 

 

B 

Target gene Forward primer Reverse primer 

2m 5’- ATGGGAAGCCGAACATACTG -
3’ 

5’- CAGTCTCAGTGGGGGTGAAT -3’ 

NANOG 5’- CACCCACCCATGCTAGTCTT -3’ 5’- ACCCTCAAACTCCTGGTCCT -3’ 

TERT 5’- TCATGGGTGGTATGGGAGAT -
3’ 

5’- AGGCTCCATGGTTAGGTGTG -3’ 

BMP2 5’- CCCCAAGACACAGTTCCCTA-3’ 5’- GAGACCGCAGTCCGTCTAAG -3’ 

Myf5 5’-AGGAAAAGAAGCCCTGAAGC-3’ 5’- GCAAAAAGAACAGGCAGAGG -3’ 

Col2α1 5’-GCCAAGACCTGAAACTCTGC-3’ 5’- GCCATAGCTGAAGTGGAAGC -3’ 

Sox5 5’- CCAGGTAGATGCTGCTGACA -
3’ 

5’- GAGCCAACATGTGCTGAAGA -3’ 

Sox6 5’- CTACCCTCAGCCAAGACAGC -3’ 5’- TATGGATTCCCAAAGCAAGC -3’ 

Sox9 5’- AGCTCACCAGACCCTGAGAA -3’ 5’- TCCCAGCAATCGTTACCTTC -3’ 

ACAN  5’- CGTGTGGAAATAGCTCTGTAGT 
-3’ 

5’- AACCTTCGCTCCAATGACTC -3’ 

Runx2 5’- CCCAGCCACCTTTACCTACA -3’ 5’- TATGGAGTGCTGCTGGTCTG -3’ 

Col10α1 5’- GAGGAAGCCAGGAAAGCTG -3’ 5’- GTACCGTTCAGCATAAAACATCC 
-3’ 
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3.3 RESULTS 

 

Expression of mouse MSC markers 

Despite the heterogeneous expression of human MSC markers (CD73 and CD105), 

common mouse MSC markers, namely Sca-1, CD44 and CD29 [Baddoo et al. 2003], 

were highly and homogenously expressed by bulk cultures (Figure 2.6). I focussed 

particularly on the expression of so-called Stem cell antigen-1 (Sca-1). The Sca-1 

distribution on gated CD45-/Ter119- in freshly harvested bone marrow 

preparations was determined by flow cytometry. As shown in Figure 3.1A, 4.6% of 

cells processed from cBM and on gated CD45-/Ter119- cells were Sca-1+. Figure 

3.1B summarises a series of 4 experiments where Sca-1 expression by cells isolated 

from fBM and cBM was compared. As shown, cells isolated from cBM are 

significantly enriched for Sca-1+ cells. Next, the evolution of Sca-1, CD44 and CD29 

expression on CD45- cells during culture was investigated (Figure 3.1C). Sca-1 

expression increased from 4% in fresh cBM to 90% at Passage 3. CD44 expression 

increased from 45% in fresh cBM to 97% at passage 3. CD29 expression was 

consistently elevated at around 95% (Figure 3.1C). Thus, after 3 passages, cells are 

fairly homogeneous for Sca-1, CD44 and CD29 (Figure 3.1C) yet are distinctly 

heterogeneous for CD73 and CD105 (Figure 2.4A). It also became evident that Sca-

1- sorted cells are a mix of phenotypic heterogeneous cells as seen in brightfield 

images of passage 1 cultures which showed fibroblastic-like cells as well as small, 

bright cells (Figure 3.1D). Sca-1+ sorted cells on the other hand seem to be more 

homogenous even in early passages. 
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Figure 3.1 Evolution of mouse MSC markers expression. (A) The left cytogram 

display is of Sca-1 versus CD45-/Ter119- expression by cells in freshly harvested 

cBM preparations. The right panel shows the FSC versus Sca-1 cytogram of cells 

gated in the left panel. (B) Histograms show a comparison of Sca-1 distribution in 

fBM versus cBM. (C) Evolution of Sca-1, CD44 and CD29 expression on cBM derived 

CD45- cells in vitro. (D) Brightfield images of passage 1 cultures form sorted cells. 

Data are the means ± SD of at least three independent experiments. ***p < 0.001, 

Student’s t test. 
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Phenotypic evolution in Sca-1 sorted subpopulations 

Given the increase of both CD44 and Sca-1 expression by cultured cells, further 

investigation of this phenotypic evolution was done by flow cytometry. For this 

purpose CD45-/Ter119- cells were further separated into Sca-1- and Sca-1+ cells. 

Sca-1+ cells initially showed a quite broad staining distribution for Sca-1 in both 

fBM (Figure 3.2, upper panels) and cBM (Figure 3.2, middle panels). After culturing 

for 2 passages, the expression of Sca-1 became more uniform in both sorted 

subpopulations (Figure 3.2, lower panels). Sca-1- cells on the other hand were 

initially clearly negative for Sca-1, but after 2 passages the expression was 

heterogeneous (Figure 3.2, lower left panel), including about 10% of Sca-1- cells. 

The simplest interpretation of these results is that many Sca-1- sorted cells became 

Sca-1+ upon culture. For both flushed and compact BM, CD44 expression was 

initially negative on Sca-1+ sorted cells but weakly expressed by Sca-1- sorted cells 

(Figure 3.2, middle column). Upon culture there was an increase in CD44 

expression by both sorted subpopulations. CD29 was expressed on both Sca-1+ and 

Sca-1- sorted cells, with a broader staining on the freshly-isolated Sca-1+ cells 

(Figure 3.2, upper right panels). After culturing, CD29 was uniformly highly 

expressed by both sorted subpopulations (Figure 3.2, lower panels).  
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Figure 3.2 In vitro cultures up-regulate mouse MSC marker. Phenotypic evolution 

of mouse MSC markers Sca-1 (left column), CD44 (middle column) and CD29 (right 

column) in Sca-1 sorted subpopulations in the BM preparations indicated on the 

left. Cultured cBM (lower panels) has been expanded in vitro for 2 passages. 

White, solid line = mAB; tinted, dashed line = isotype control. 
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CFU-F frequencies among Sca-1 sorted subpopulations   

When sorting and expanding Sca-1 subpopulations, it became evident that these 

cells differ in their ability to form initial colonies. To measure these differences, 

CFU-F frequencies among Sca-1 sorted subpopulations of flushed versus compact 

BM was analysed. As shown in Figure 3.3A, compared with unsorted (“bulk”) CD45-

/Ter119- cells, the CFU-F frequency was always higher among Sca-1+ versus Sca-1- 

sorted cells in both BM preparations. Subpopulations isolated from compact BM 

always had a higher CFU-F frequency compared with their flushed BM 

counterparts (Figure 3.3A). Recently, hypoxia has been used to improve in vitro 

growth of MSC [Prado-Lòpez et al. 2014]. Therefore, cells were cultured in 

normoxic (21% oxygen) and hypoxic (5% oxygen) conditions and CFU-F frequencies 

were compared. For fBM, hypoxia improved CFU-F frequencies in bulk and Sca-1- 

sorted subpopulations (Figure 3.3B). Given that the overall CFU-F frequencies were 

higher among cBM, two hypoxic concentrations (2% and 5% oxygen) were 

compared on cells from cBM. As shown in Figure 3.3C there was a progressive 

increase in CFU-F correlated with the degree of hypoxia for the bulk and Sca-1- 

cells, but a difference between 2% and 5% oxygen was not seen for Sca-1+ cells. To 

further improve the CFU-F frequencies, plastic dishes were coated with 0.1% 

gelatine (see appendix) and used for expansion of sorted subpopulations in 2% 

oxygen. As seen in Figure 3.3C gelatine had no effect on the CFU-F frequencies of 

Sca-1+ cells but benefits the Sca-1- CFU-F frequencies.     

 

 



70 
 

 

Figure 3.3 CFU-F frequencies among Sca-1 sorted subpopulations. (A) CFU-F 

frequencies among Sca-1 sorted subpopulations of fBM versus cBM. (B) CFU-F 

frequencies in subpopulations from fBM cultured in 21% O2 (Normoxia) or 5% O2 

(Hypoxia). (C) CFU-F frequencies in subpopulations from cBM cultured in 21%, 5% 

or 2% O2 with or without 0.1% gelatine. Data are the means ± SD of at least three 

independent experiments. *p < 0.05, Student’s t test. 



71 
 

Increased colony size in Sca-1+ cells 

When counting CFU-F, it became evident that there were size differences between 

colonies of Sca-1- and Sca-1+ sorted cells. Whereas “bulk” CD45-/Ter119- cells 

showed heterogeneity in CFU-F colony size, there was a dramatic difference 

between Sca-1- (small colonies) and Sca-1+ (large colonies)(Figure 3.4A). To 

quantify this difference in colony size, individual colonies were measured using the 

Kodak Imager 4000 software (Carestream). Colonies were marked using the 

manually ROI setting and the area was measured in mm2 (Figure 3.4B). Raw data of 

the size distribution of >100 colonies from 4 independent experiments are 

visualized in histograms (Figure 3.4C). It can be seen that the size of Sca-1- colonies 

are concentrated on the left of the histogram, while Sca-1+ colonies cover a wide 

area of different sizes. Therefore, to simplify the analysis colonies were grouped in 

“small” (< 1mm2) and “large” (> 1mm2) colonies.  
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Figure 3.4 Increased colony sizes in Sca-1+ sorted cells. (A) Shown are images of 

colonies from the indicated sorted populations of sorted cBM. “Bulk” refers to 

unsorted cells. (B) Manually selected ROI gates for area measurement. (C) Raw 

colony size for the different sorted subpopulation in 21%, 5% or 2% oxygen. Data 

are pooled of >100 colonies from at least three independent experiments. 
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The “bulk” CD45-/Ter119- population consists of ~ 50% colonies which are smaller 

than 1mm2, as well as ~ 50% large colonies which an area above 1mm2 (Figure 

3.5A). This pattern of size distribution is true for normoxic (21% O2) and hypoxic 

(2% and 5% O2) oxygen conditions. The majority of colonies in the Sca-1- 

population are small in size (~76% of total colonies) with only a few large colonies. 

This is almost completely reversed in Sca-1+ cells, with a minority of small colonies 

(less than 10%) and over 90% large colonies. In both populations it can be seen 

that oxygen conditions have no significant effects on numbers of small or large 

colonies. While scoring the size of colonies it became clear that oxygen conditions 

did not affect the number of colonies but rather their size. As can be seen in Figure 

3.5B, the mean colony size of Sca-1+ cells is significantly increased with the degree 

of hypoxia. Sca-1- cells on the other hand seem to be little or not affected by 

oxygen levels. Bulk cells are a mixture of Sca-1- and Sca-1+ cells and don’t seem to 

be affected by oxygen levels. 
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Figure 3.5 Hypoxia increases colony sizes of Sca-1+ sorted cells. (A) Ratio of large 

versus small colonies in 21%, 5% or 2% O2. (B) Summarises the colony size for the 

different sorted subpopulation in 21%, 5% or 2% O2. The numbers of colonies 

displaying fifty or more cells with spindled MSC morphology were scored using the 

Kodak Imager Station 4000MM. Colonies with an area below 1mm2 were scored as 

“small” and colonies with an area above 1mm2 were scored as “large”. Data are 

the means ± SEM of >100 colonies from at least three independent experiments. 

*p < 0.05, **p < 0.01, Student’s t test. 
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As seen in Figure 3.6A, freshly isolated Sca-1+ cells are significantly larger than 

their Sca-1- counterparts and also have a wider size distribution as shown by FSC-A 

histograms. During in vitro expansion, these differences lose significance and the 

size of Sca-1+ sorted cells is more evenly distributed (Figure 3.6B). Morphologically, 

Sca-1+ and Sca-1- sorted cells showed differences in phenotype, with Sca-1- cells 

exhibiting a small, cobblestone-like phenotype versus a large, fibroblast-like 

phenotype for Sca-1+ cells (Figure 3.6C). 
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Figure 3.6 Size and colony appearance of Sca-1 sorted subpopulations. (A) Size 

differences in freshly isolated Sca-1 subpopulations (white, solid line = Sca-1+; 

tinted, dashed line = Sca-1- ). (B) Size differences in cultured Sca-1 subpopulations. 

(C) Brightfield images of Sca-1- and Sca-1+ expanded colonies after 10d of culture. 

First column = 4x magnification (bar = 200μm) and second column 10x 

magnification (bar = 100μm). Data are the means ± SD of at least three 

independent experiments. *p  < 0.05, Student’s t test.  
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Sorted subpopulations differ in their differentiation potency 

To see if these differences in CFU-F frequencies and colony sizes affect the 

potential of tri-lineage differentiation, the differentiation capacity of Sca-1+ and 

Sca-1- sorted cells to the osteo-, adipo- and chondrocyte lineages was investigated. 

After two rounds of culture expansion, cells were transferred to the corresponding 

differentiation conditions. After 14 days, cells were analysed for osteo- and 

adipocyte differentiation; chondrocyte differentiation was measured after 21 days. 

As shown in Figure 3.7A, both Sca-1+ and Sca-1- sorted cells differentiated along 

the osteo- and adipocyte linages, however Sca-1- cells showed increased 

differentiation to chondrocytes as demonstrated by Safranin-O staining for 

proteoglycans (Figure 3.7A, lower panel). Quantification for sulphated 

glycosaminoglycans (S-GAG) confirmed the difference in chondrocyte 

differentiation was significant with a ~3-fold greater S-GAG content in Sca-1- cells 

(Figure 3.7B). This result suggested that cultured Sca-1- cells had a superior 

chondrocyte differentiation capacity.  
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Figure 3.7 Subpopulations differ in their tri-lineage differentiation potential. (A) 

MSCs were cultured in osteogenic (upper A), adipogenic (middle A) and 

chondrogenic (lower A) differentiation media followed by Alizarin Red S (upper A), 

Oil Red O (middle A) or Safranin O staining (lower A). Osteogenic and adipogenic 

images bar = 100μm; and chondrogenic images bar = 200μm. (B) Chondrogenic 

pellet cultures from the indicated subpopulations assayed for S-GAG content. 
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To address whether freshly-sorted cells were likewise chondrocyte “primed”, the 

expression of transcripts characteristic of stem cell (NANOG, TERT), osteo- (BMP2), 

myogenic/adipo- (Myf5) and chondrocytes (Col2a1) in both subpopulations were 

analysed by qRT-PCR with 2m as internal reference gene. In freshly-isolated BM 

cells, expression of transcripts for NANOG, TERT, BMP2 and Myf5 were 

considerably higher (300-fold) among Sca-1+ sorted cells (Figure 3.8A). In contrast, 

expression of Col2a1, a chondrocyte specific gene, was considerably higher (50-

fold) among Sca-1- sorted cells. Upon culture in hypoxia, the differences in 

transcript levels became less distinct for NANOG, TERT, BMP2 and Myf5 and the 

difference in Col2a1 expression became higher (100-fold) (Figure 3.8B). To 

investigate further the chondrogenic capacity of Sca-1- sorted cells, analysis for 

transcripts of genes specific for chondrocyte differentiation was carried out. In 

general, freshly isolated Sca-1- cells showed a higher expression of transcripts for 

chondrocyte differentiation (Figure 3.8C). The chondrogenic genes for Col2a1, 

ACAN, Sox9, Col10a1 and Sox6 were at least 5-fold higher in Sca-1- compared to 

Sca-1+ cells. The differences in Runx2 and Sox5 expression levels were less 

distinctive. To compare levels of chondrocyte-specific genes in sorted cells with 

mature chondrocytes, primary chondrocytes were isolated from the knees of 

C57Bl/6 mice and were cultured in 5% hypoxia. Then their level of transcripts were 

analysed and compared with Sca-1- sorted cells. Primary articular chondrocytes 

(AC) showed a higher expression for all chondrogenic transcripts compared to Sca-

1- sorted cells, except Col10a. (Figure 3.8D). Expression of Sox5, Sox6 and ACAN 

were ~4-fold higher in ACs compared to Sca-1- sorted cells. ACs also had ~8-fold 

higher levels of transcripts for Sox9, Col2a and Runx2, and 11-fold less expression 

of transcripts for Col10a. 
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Figure 3.8 Sca-1- cells display a more chondrogenic transcriptomic profile. (A) 

Fold change of relative expression of stem and lineage specific gene transcripts in 

freshly isolated and (B) cultured Sca-1 sorted subpopulations. Fold change is 

shown of displayed population against Sca-1+ or Sca-1- sorted cells. (C) Fold change 

of relative expression of transcripts associated with chondrogenesis in freshly 

isolated Sca-1- sorted cells compared against Sca-1+ sorted cells and (D) cultured 

articular chondrocytes compared with Sca-1- cells.  
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3.4 DISCUSION 

 

Analysis showed that expression of both CD44 and Sca-1 antigens increased upon 

culturing. This is somewhat expected given that expression of both antigens can be 

regulated upon cell signalling [Haegel and Ceredig 1991][Malek, Danis, and Codias 

1989] and CD44 has been known for a long time to be an activation marker on 

mouse and human T-cells [Haegel and Ceredig 1991]. CD44 is used frequently as a 

marker to define mouse MSC [Abcam 2011][Qian, Le Blanc, and Sigvardsson 2012]. 

Recent research has however shown the CD44 might not be a useful marker for 

the isolation of MSC as i) MSC could be isolated from sorted CD44- cells and ii) 

CD44 was acquired in vitro [Qian, Le Blanc, and Sigvardsson 2012]. Herein it was 

shown that gated CD45-/Sca-1+ fresh flushed and compact BM cells were also 

CD44- and again CD44 was acquired in vitro. Additional experiments focused on 

Sca-1 expression showing that Sca-1 was acquired by sorted Sca-1- cells (Figure 

3.2) [Steenhuis, Pettway, and Ignelzi 2008][Anjos-Afonso, Siapati, and Bonnet 

2004]. Given that the possible contamination of sorted Sca-1- cells by Sca-1+ was at 

most 2%, and given that both subpopulations grew at a similar rate, the most likely 

interpretation is that Sca-1 was acquired by cultured Sca-1- cells rather than 

outgrowth of Sca-1+ contaminants.  

Two major isolation methods are used today to isolate mMSC from bone marrow. 

The traditional method consists of flushing out the red bone marrow (fBM) and 

the use of mechanical sheer force to obtain single cell suspensions. This may leave 

behind potential stem/progenitor cells residing at the endosteum. By collagenase 

digestion of bone fragments, endosteum residing cells (cBM) can be harvested and 

purified using FCM. A general conclusion from these experiments was that the 

CFU-F frequency was considerably higher among compact BM cells (Figure 3.3). 

There is general agreement that in the BM, MSC and the HSC their support can be 

found at different anatomical locations that differ also in oxygen availability 

(reviewed in [Mohyeldin, Garzón-Muvdi, and Quiñones-Hinojosa 2010]). Many 

such MSC/HSC “niches” are found close to cortical bone in a relatively hypoxic 

environment and therefore, for maximum recovery of CFU-F, crushing bones 
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followed by collagenase digestion is clearly advantageous. Surprisingly, when 

gated CD45-/Ter119- BM cells from either flushed or compact BM were sorted 

based upon Sca-1 expression, CFU-F colony size varied significantly between 

subpopulations (Figure 3.4B). Although differences in CFU-F colony size have been 

previously reported [Siclari et al. 2013], this is the first study indicating differences 

in colony size among freshly isolated, sorted mMSC subpopulations. Additionally, 

hypoxia had an effect both on CFU-F frequency (Figure 3.3) and average colony 

size (Figure 3.4) which proved significant for the colony size of Sca-1+ sorted cells 

(Figure 3.4). This might mean that the majority of Sca-1+ cells are located close to 

the endosteum where oxygen levels are physiologically hypoxic [Mohyeldin, 

Garzón-Muvdi, and Quiñones-Hinojosa 2010]. In summary, hypoxia improved CFU-

F frequency among Sca-1- sorted cells but had little effect on colony size. In 

contrast, hypoxia did not improve CFU-F frequency among Sca-1+ sorted cells but 

did improve colony size. “Bulk” MSCs which comprise a mixture of both Sca-1- and 

Sca-1+ cells showed an improvement in both CFU-F frequencies and colony size in 

hypoxia compared to normoxia. The poor chondrogenic differentiation capacity of 

bulk mMSC might also be a result of the low CFU-F frequency of the more 

chondrogenic Sca-1- population.   

Taken together, the smaller size of colonies, the lower CFU-F frequency and lack of 

a significant response of Sca-1- sorted cells to hypoxia might suggest they reside in 

a different anatomical location and represent less differentiated cells. In analogy 

with haematopoiesis, differences in mean colony size could indicate different 

stem/progenitor subpopulations [Magli, Iscove, and Odartchenko 1982]. Thus, 

slowly-proliferating stem cells would form smaller colonies appearing later in 

culture than rapidly-proliferating progenitors forming early larger colonies. 

However, our transcriptomic analysis of freshly isolated Sca-1+ and Sca-1- cells did 

not confirm this hypothesis, with higher levels of NANOG and TERT expression 

among Sca-1+ sorted cells (Figure 3.8A + B). However, it has to be mentioned that 

transcript levels do not always correlate with protein levels. Both Sca-1+ and Sca-1- 

sorted cells have the capability to give rise to osteoblasts, chondrocytes and 

adipocytes.  In addition, and confirming results from differentiation assays, the 
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Sca-1- sorted subpopulation appeared to have more chondrogenesis related 

transcripts (Figure 3.8C). Prior to exposure to chondrogenic stimuli they expressed 

relatively elevated levels of a collection of transcripts characteristically expressed 

by chondrocytes at different stages of differentiation. 

The in vitro differentiation of the Sca-1- sorted subpopulation to chondrocytes was 

superior to that of Sca-1+ sorted cells as measured by GAG accumulation. It has 

been shown that Sca-1-/- mice developed age-related osteoporosis due to reduced 

numbers of osteoprogenitors and osteoblasts.  Furthermore they displayed a 

weakened bone structure and bone material caused by the reduced number of 

MSC, which also resulted in impaired adipogenesis in vitro [Bonyadi et al. 2003]. 

Although Sox5 and Runx2 were quite well expressed by Sca-1+ cells, the partner 

Sox genes Sox6 and Sox9 (Sox trio)[Ikeda et al. 2004] were poorly expressed and 

could indicate that their poor chondrogenic potential was due to limited Sox6 and 

Sox9 expression [Han and Lefebvre 2008; Lunj et al. 2005]. Interestingly, Sca-1- 

cells have a higher expression of Col10a compared to primary articular 

chondrocytes (Figure 3.8D). Col10a is a late chondrogenesis marker for 

hypertrophic chondrocytes [Shen 2005] which could indicate that Sca-1- cells 

represent a less-differentiated population of committed chondrocytes. In addition, 

the high expression of Col10a could also be an interim stage towards a more 

osteogenic development [Pelttari et al. 2006].  
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Prospective isolation of clonal 

populations of mMSC  
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4.1 INTRODUCTION 
 

As mentioned before the isolation of mMSCs from the C57Bl/6 mouse strain is 

more difficult compared to other mouse strains. However, to take advantage of 

the broad genetically modified C57Bl/6 strains available, it is necessary to have a 

reliable isolation method and culture conditions for BM-derived mMSCs from this 

particular mouse strain.  

One major obstacle that hinders the true identity of mouse MSC is the lack of 

specific markers for distinguishing them in vivo [Bianco 2011; Jones and 

McGonagle 2008]. Even though there are surface markers for the identification of 

mMSC in vitro, due to the removal from their in vivo environment and exposure to 

artificial culture conditions, their expression could be altered, thus excluding them 

for prospective isolation [Jones et al. 2002]. As seen in chapter 3, there was a clear 

change in surface marker expression of in vitro expanded cells. Additionally, 

certain cell culture conditions may maintain the typical MSC tri-lineage 

differentiation potency but they may not preserve the naive MSC phenotype [Jo et 

al. 2007; Morikawa, Mabuchi, Niibe, et al. 2009]. 

As shown in chapter 3, hypoxia had a positive effect on the CFU-F frequency of 

Sca-1+ cells. To further enhance culture conditions for single cell isolation, the 

effect of gelatine coating and cell free extracellular matrix (ECM) coating was 

investigated. It has been shown that ECM coating improved MSC proliferation and 

maintained their differentiation capacity [X. Chen et al. 2007]. Furthermore ECM is 

an important factor in the maintenance of stem cells in vivo and plays a role in 

their fate regulation [Trappmann et al. 2012; Vidane et al. 2013].  

Intense investigation for the isolation of MSC focus on the use of monoclonal 

antibodies to prospectively enrich MSC based on their surface phenotype. Jones et 

al. isolated CD45lowCD271+ cells from human trabecular bone which were capable 

of tri-lineage differentiation [Jones et al. 2010].  Another study has shown that the 

use of CD146 could distinguish between perivascular versus endosteal localization 

of BM-derived hMSC [Tormin et al. 2011]. Other markers for the isolation of a 
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homogenous BM stromal cell population include STRO-1 and VCAM-1 [Stan 

Gronthos et al. 2003]. Unfortunately, due to the differences between man and 

mouse, these markers cannot be used for the prospective isolation of mMSCs. 

Several marker combinations have been used to isolate mouse MSCs, e.g. Stage 

specific embryonic antigens (SSEA)-1 and 4 have been used to single-cell sort 

mMSCs [Anjos-Afonso and Bonnet 2007; Gang et al. 2007]. However, single-cell 

sorting was done with in vitro expanded cultures and not directly from mouse BM. 

Méndez-Ferrer et al. used a transgenic mouse reporter line expressing GFP under 

the control of promoter of the nestin gene to prospectively isolate mMSC 

[Mendez-Ferrer et al. 2010].  PDGFRα in combination with CD51 expression has 

been shown to overlap with nestin+ cells and are capable of supporting HSC 

growth [Pinho et al. 2013]. Sca-1 has already been used in combination with other 

marker to isolate mMSC from bone marrow [Nakamura et al. 2010; Steenhuis, 

Pettway, and Ignelzi 2008] and a recent study was able to generate clonal 

subpopulations of mMSC by combining Sca-1 and PDGFRα staining which showed 

tri-lineage differentiation capacity both in vitro and in vivo [Morikawa, Mabuchi, 

Kubota, et al. 2009]. However, not all isolated clones were able of tri-lineage 

differentiation.   

Therefore the isolation and expansion of single cells and their immunomodulatory 

capacities were under investigation.  

 

4.2 MATERIALS & METHODS 

 

MS-5 cell lines 

MS-5 MSC line was provided by Prof. Antonius Rolink (Department of Biomedicine, 

University of Basel). This adherent cell line was isolated from γ-irradiated mouse 

bone marrow [Itoh et al. 1989]. Cell lines were cultured in Cell Line Growth 

Medium (Appendix II) in humidified incubators at 37°C containing either 21%, 5% 

or 2% oxygen. Culture medium was changed every 3-4 days and subsequent 
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passages were performed when cells reached 60 – 80% confluence.   Attached 

cells were washed with sterile Dulbecco’s phosphate buffered saline (DPBS) and 

cells were split using trypsin/EDTA for 2 minutes at 37°C. Trypsin/EDTA was 

neutralized with Cell Line Growth Medium and cells were centrifuged at 400g for 5 

minutes. Cells were then plated in new T75 flasks. 

Extracellular matrix (ECM) 

96-well flat bottom plates were coated with 0.1% gelatine as described before 

(Chapter 3). 7500 MS-5 cells were seeded per well and cultured in Cell Line Growth 

Medium. Once they were confluent media was removed and replaced with Cell 

Line Growth Medium containing 10μg/ml Mitomycin C. Cells were incubated for 3 

hours at 37°C and then washed 3 times with DPBS. Cell Line Growth Medium was 

added and cells were placed in a humidified incubator at 37°C for 5 days. Media 

was removed and cells were washed 2 times with DPBS. ECM Lysis Buffer 

(Appendix III) was added and cells were incubated at 4°C for 12 hours on a plate 

rocker. ECM Lysis Buffer was then removed and plates were washed very gently 5 

times with DPBS. ECM plates were stored in DPBS at 4°C for a maximum of 4 

weeks. 

Immunofluorescence Staining 

ECM plates were fixed in 10% formalin for 15 minutes at room temperature and 

washed with DPBS. Plates were then incubated with DPBS containing 4% FBS for 

30 minutes following staining with biotinylated antibody to collagen I for 1 hour. 

After washing with DPBS, Streptavidin-FITC and DAPI were added for 30 minutes at 

4°C. After washing with DPBS, images were captured using an IX71 Olympus 

fluorescent microscope with Olympus Cell P software.  

Single-cell sorting 

Single-cell sorting was carried out using a BD FACS Aria II machine. The general 

protocol for sample preparation is identical to sorting Sca-1 subpopulations 

(Chapter 3). Cells were sorted in 0.1% gelatine coated 96-well flat bottom plates 

containing 200μl MSC Growth Medium. 
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Colony counting 

96-well plates containing single sorted cells were cultured for 7 days in a 

humidified incubator at 37°C with 2% oxygen. Counting was done using a regular 

light microscope and colonies displaying fifty or more cells with spindled MSC 

morphology were scored.  

MLR assay 

Cultured cells from single-cell sorts were added in graded numbers of 1:50, 1:100 

and 1:200 MSC/splenocytes ration into 96-well round bottom plates and allowed 

to adhere for 24h prior to addition of splenocytes. Splenocytes were extracted 

from C57Bl/6 mice by processing the spleen between two pieces of nylon gauge 

with 150μm pore diameter (Sefar). Red cell lysis was performed with ACK lysis 

buffer (see appendix) and cells were re-suspended in T-cell medium (see 

appendix). Cells were labelled with CellTrace CFSE cell proliferation kit (Invitrogen) 

according to manufacturer’s instructions and stimulated with 0.5μg/ml purified 

anti-mouse CD3 and CD28 antibodies (eBioscience). 105 splenocytes of labelled 

splenocytes were added to each well and cultured for 3 days in T-cell medium (see 

appendix). After staining with anti-mouse CD4-PE and CD8-APC (BD), flow 

cytometry analysis was carried out as mentioned before. Difference in percentage 

of CFSE staining intensity between stimulated and MSC co-cultured splenocytes 

was used to calculate inhibition of T-cell proliferation. 

 

4.3 RESULTS 

 

Improving in vitro cell culture conditions 

Based on the results from the previous chapter, the effects of oxygen supply and 

gelatine coating on CFU-F frequencies for single cell sorted cells was investigated. 

MS-5 cells were used for a proof of concept, due to their rapid growth and very 

robust response to in vitro conditions [Sugrue, Lowndes, and Ceredig 2014]. MS-5 

cells were sorted at frequencies from 30cells/well to 1cell/well and expanded for 7 
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days in corresponding oxygen conditions. It can be seen that hypoxia always 

improved the numbers of colonies compared to normoxia and that gelatine 

coating had a beneficial effect especially at higher sorted cell numbers (Figure 4.1).  

 

Figure 4.1 Number of colonies from MS-5 sorted cells. MS-5 cells were sorted and 

outgrown colonies were counted after 7 days in vitro culture. 

 

To further improve CFU-F frequencies, 96-well plates were coated with 

extracellular matrix (ECM) produced by MS-5 cells. To enhance production of ECM 

and to control the unrestricted growth of MS-5 cells, cultures were treated with 

Mitomycin C, a DNA crosslinker, to inhibit cell division but not viability and 

production of ECM proteins. Due to reports that indicate that Mitomycin C toxicity 

is dependent on the cell line, the effect of Mitomycin C on proliferation was tested 

[Rauth, Mohindra, and Tannock 1983]. As seen in Figure 4.2A, Mitomycin C 

successfully inhibits the proliferation of MS-5 cells at concentrations ranging from 

100μg/ml to 10μg/ml. As shown in Figure 4.2B, Mitomycin C inhibits proliferation 

of MS-5 cells, but not the production of ECM. To confirm matrix production ECM 

plates were stained with DAPI and collagen I. Figure 4.2C shows stained ECM 

plates. Despite osmotic shock induce lysis of MS-5 cells and intensive washing, 

DAPI staining shows irregular shape of cell nuclei, so-called nuclear ghosts. 

However, collagen I staining show stable expression after ECM lysis buffer 
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treatment. Storage in DPBS at 4°C for up to 4 weeks had no effect on ECM 

phenotype (Figure 4.2D). Even though there was no proliferation of potentially 

leftover of lysed MS-5 cells after 10 days in culture, the phenotypic appearance of 

the ECM and the presence of nuclear ghosts made it impossible to reliable count 

CFU-F frequencies from sorted cells (Figure 4.2C). Therefore, it was not possible to 

use ECM-coated plates for cloning experiments. 
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Figure 4.2 ECM production by MS-5 cells. (A) MS-5 cells were treated with 

Mitomycin C at various concentrations and stained with Crystal violet. (B) Crystal 

violet staining of Mitomycin C treated (10μg/ml) and non-treated cells and ECM 

appearance after lysis. (C) Immunohistochemistry of ECM with collagen I (green) 

and DAPI (blue). (D) Collagen I (green) staining of ECM after 2 - 4 weeks storage at 

4°C. Magnification 200x. 
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PDGFRα+/CD90+ subpopulation shows an increased CFU-F frequency 

Based on the results from chapter 3, Sca-1+ cells were clearly enriched for 

transcripts of stem cell genes NANOG and TERT, and showed increased CFU-F 

frequencies and proliferation. PDGFRα in conjunction with Sca-1 has been used to 

purify mouse MSC from cBM on a single cell level with a 1/22.5 CFU-F frequency 

[Morikawa, Mabuchi, Kubota, et al. 2009]. To further increase the CFU-F frequency 

of freshly single-cell sorted mouse BM, cells were additionally stained with CD90, a 

marker used for the characterisation of human MSCs and consistently expressed 

by freshly-isolated mMSC (Figure 2.5). The CD45-/Ter119-/Sca-1+ population was 

subdivided into four distinct subpopulations of PDGFRα/CD90 expressing cells 

(Lower right panel, Figure 4.3).  

 

Figure 4.3 Representative gating strategy for single-cell sorting (A) Gating 

strategy for the single cell isolation of PDGFRα+/CD90+ cells. Cells were initially 

gated on FSC and SSC signals followed by CD45-/Ter119- cells and doublet 

exclusion (upper cytograms). Gated Sca-1+ cells among CD45-/Ter119- cells (lower 

left panel) are then subdivided into the four CD90/PDGFR subpopulations (lower 

right panel) where percentages in each quadrant are indicated. 
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As shown in Figure 4.4A, the overall PDGFRα staining of CD45-/Ter119-/Sca-1+ cells 

is lower in fBM compared to cBM. It also became evident that fBM had a 

significant lower expression of Sca-1+/PDGFRα+/CD90+ cells (Figure 4.5B) than cBM 

in total bone marrow (Figure 4.4B). The other subpopulations showed no 

significant differences in total bone marrow distribution.  

 

Figure 4.4 Distribution of PDGFRα and CD90 in fresh BM. (A) Cytogram display of 

the distribution of PDGFRα vs CD90 in fBM (left cytogram) and cBM (right 

cytogram). The % positive cells in each quadrant are shown. (B) Percentage 

positive subpopulations in total bone marrow of fresh fBM and cBM. Data are the 

means ± SD of at least three independent experiments. ***p < 0.001, Student’s t 

test. 
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Taking a closer look within the two Sca-1 subpopulations of cBM, it can be seen 

that there is a significant higher proportion of PDGFRα+/CD90+ cells in Sca-1+ cells 

(Figure 4.5A). This difference is about 50 times higher in Sca-1+ than Sca-1- sorted 

subpopulations and there is an overall higher expression of PDGFRα and CD90 in 

Sca-1+ sorted cells (Figure 4.5B).  

 

Figure 4.5 Distribution of PDGFRα and CD90 in Sca-1- versus Sca-1+ cells. (A) 

Cytogram display of the distribution of PDGFRα vs CD90 in Sca-1- (left cytogram) 

and Sca-1+ cells (right cytogram). The % positive cells in each quadrant are shown. 

(B) Percentage positive in each quadrant for Sca-1- and Sca-1+ cells. Data are the 

means ± SD of at least three independent experiments. *p < 0.05, **p < 0.01, ***p 

< 0.001, Student’s t test. 
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When expanded in vitro, PDGFRα+/CD90+ from cBM showed a spindle-shaped, 

fibroblastic morphology typical for MSCs (Figure 4.6A), whereas the two PDGFRα- 

cell populations  generated cobble-stone like morphologies. Interestingly, under 

these growth conditions PDGFRα+/CD90- cells failed to grow as adherent cells. 

Compared with unfractionated Sca-1+ cells, where the CFU-F frequency in fBM and 

cBM was 1/513 and 1/251 respectively (Figure 4.6B), in four experiments the 

mean frequencies among single-cell sorted PDGFRα+/CD90+ /Sca-1+ from cBM was 

1/4. This is amongst the highest frequencies of CFU-F so far reported for C57Bl/6 

mice. Following their initial isolation and identification, individual clones were 

expanded for several days and passaged at 10, 14 and 18 days. During this time, 

not all clones continued growing and by 18 days, only ~40% of initially-plated 

clones were growing (Figure 4.6C). 
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Figure 4.6 CFU-F frequencies and colony survival of PDGFRα+/CD90+ cells. (A) 

Brightfield images of expanded cells of the indicated subpopulation after 10d of 

culturing. (B) CFU-F frequencies of Sca-1+ cells in fBM (left), cBM (middle) and 

PDGFR+ CD90+ Sca-1+ cBM (right) cells. (C) Survival curve for PDGFRα+/CD90+ 

colonies during in vitro expansion. 
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Clone expansion 

Clones were expanded in MSC Growth Media, but many of them stopped 

proliferating (Figure 4.7A). Surviving colonies from fBM as well as cBM showed 

typical fibroblastic-like phenotype (Figure 4.7B and C). Surviving colonies were 

exposed to media for osteo- and adipogenic differentiation, but unfortunately, 

none of the cells survived after 14 or 21 days of in vitro differentiation. 

Interestingly though, after 7 days in vitro differentiation, lipid vacuoles could be 

seen in osteo- and adipogenic differentiating cultures (Figure 4.8A and B). 
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Figure 4.7 PDGFRα+/CD90+ derived colonies exhibit a fibroblast-like phenotype. 

(A) Non-surviving colonies from cBM in MSC Growth Media. (B) Surviving colonies 

with fibroblastic-like phenotype from fBM and (C) cBM. Image bar = 200μm. 
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Figure 4.8 Differentiation capacities of PDGFRα+/CD90+ cells. (A) Expanded 

PDGFRα+/CD90+ cells after 7 days in adipogenic and (B) osteogenic differentiation 

media. First column = 4x magnification (image bar = 200μm) and second column 

10x magnification (image bar = 100μm). 

  

Imunnomodulatory properties 

Surviving clones were then tested for their ability to inhibit the proliferation of 

CD3/CD28-stimulated T-cells. All of twelve clones tested showed potent inhibitory 

activity on T-cell proliferation at a 1:100 MSC : T-cell ratio. A result from a 

representative clone is shown in Figure 4.9A. Additional staining with CD4 and CD8 
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mAb revealed a simultaneous degree of inhibition of proliferation in both T 

lymphocyte subsets mediated by PDGFRα+/CD90+ cells (Figure 4.9B). 

 

Figure 4.9 PDGFRα+/CD90+ cells inhibit splenocyte proliferation. (A) 

Representative histogram of CFSE staining among gated T cells of CD3/CD28 

stimulated splenocytes with and without addition of cloned PDGFRα+/CD90+ cells 

(white, solid line = stimulated splenocytes; tinted, dashed line = unstimulated 

splenocytes). (B) Percentage immunosuppression among different subsets of T 

lymphocytes.  
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4.4 DISCUSSION 
 

Most isolation protocols and in vitro culture systems for mouse MSCs utilize 

uncoated plastic vessels. While these offer an easy method for the expansion of 

most cell types, it might not be the best way for the maintenance of ex vivo stem 

cells. Due to the fine regulation of MSCs in their native niche, in vitro systems 

might therefore benefit from a more in vivo-like coating to expand these cells. As 

shown in Figure 4.1, expansion of MSCs on gelatine coated plates coupled with 

hypoxic oxygen condition yielded a number of colonies. Reports have shown that 

ECM and the stiffness of the matrix interact with collagen fibres and thereby 

affecting the stem cell-fate of hMSC [Trappmann et al. 2012]. Even though the 

generation of matrix was successful (Figure 4.2B) the presence of so-called nuclear 

ghosts made it unfeasible for the expansion of single-cell derived colonies. It is 

therefore necessary to improve the ECM protocol before it can be used in future 

experiments. It has been shown by Sugrue et al. that MS-5 is a very robust cell line, 

especially when cultured in hypoxia [Sugrue, Lowndes, and Ceredig 2014]. The 

solution could be the use of another MSC cell line which is easier to lyse but still 

produce ECM. Also the lysis itself could be enhanced by adding DNAse to the lysis 

buffer and therefore reducing the appearance of nuclear ghosts. Additionally UV-

light could be used to lyse the ECM producing cells, unfortunately that could also 

affect the functional properties of ECM proteins. Finally, using an immortalized cell 

line engineered to undergo apoptosis triggered by a chemical inducer, could result 

in a more intact and active ECM [Bourgine et al. 2013]. 

In the seminal paper of Morikawa et al., compact BM-derived cells were sorted 

using a combination of CD45-, Ter119-, Sca-1+ and PDGFRα+ (PαS markers) and a 

CFU-F frequency of 1/22.5 obtained [Morikawa, Mabuchi, Kubota, et al. 2009]. 

From such cultures, individual colonies were isolated and some had in vitro tri-

lineage differentiation potential even following re-isolation from in vivo. Similar to 

results from Morikawa et al., PDGFRα expression is increased in cBM (Figure 4.4). 

In this thesis, CD90 expression as a selection marker in addition to PDGFRα was 

used to directly sort single cells from BM. As shown in Figure 4.6, this combination 
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of markers allows the isolation of CFU-F with a frequency of 1/4 among 

PDGFRα+/CD90+ cells. This represents a higher frequency than previously reported 

by Morikawa et al, most likely due to the omission of the CD90- subpopulation of 

Sca-1+/PDGFRα+ cells, which failed to grow in vitro (Figure 4.6). In addition to the 

increase in CFU-F frequencies, morphological differences between subpopulations 

of sorted cells were also evident. Even though the CFU-F frequencies were one of 

the highest reported so far, the failure of these cells to thrive in vitro hinders 

future studies. The full implication of these differences in cell morphology requires 

additional investigation beyond the scope of this thesis. 

The standard methods for in vitro differentiation assays require a certain cell 

number and density to drive the cells to a particular lineage, especially 

chondrogenic density pellet cultures [Pittenger et al. 1999; Peister et al. 2004; 

Russell et al. 2010]. It is therefore necessary to expand these cells beforehand in 

order to have sufficient numbers for the in vitro assays. Most in vitro culture and 

expansion protocols, including this one, are based on a basic medium 

supplemented with 10–20% of Foetal Bovine Serum, which might not be the most 

suitable way to maintain the undifferentiated state of MSCs. This has been 

supported by studies which show that the differentiation capacity of cultured 

MSCs is gradually reduced upon cell passaging [Kretlow et al. 2008]. It also became 

clear that cells undergo phenotypic changes with passaging resulting in a change of 

surface marker expression (Chapter 3). In fact, it has been shown that MSCs 

expanded under conditions that maintain MSC differentiation capacity might not 

preserve the naïve MSC phenotype [J. Zhu et al. 2007].  

Another explanation might be the lying in the niche concept mentioned earlier 

(Chapter 1). In this concept, supporting cells keep the naïve stem cell phenotype 

through a soluble and cell-contact signalling network like the bone marrow 

environment. This highlights the notion that the in vivo and in vitro plasticity of 

MSCs greatly depends on the microenvironment [Barry and Murphy 2004]. By 

clonally isolating these cells, the niche is disrupted and cells might undergo 

phenotypic changes in response to missing signals. This is further supported by the 

fact, that bulk cultures from cBM are fully capable of tri-lineage differentiation 
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(Chapter 2). In order to minimise these effects the use of ECM to mimic niche 

signals might be beneficial in not only improving CFU-F frequencies but also in 

stem cell maintenance.  

The maintenance of MSCs in vitro and in vivo is regulated by a combination of 

intrinsic and extrinsic mechanisms. Intrinsic mechanisms include specific 

transcription factors expressed by the cells. A change in these transcription factors 

due to prolonged expansion ex vivo can lead to a cell crisis resulting in impaired 

proliferation and differentiation. Extrinsic mechanisms are signals provided by the 

local microenvironment (niche). These signals include growth factors, the 

extracellular matrix (ECM) and contact with other cells. Interactions with the niche 

are dynamic, as stem cells are able to remodel the niche in response to the signals 

they receive from it. In connective tissue, like fibroblasts in the dermis and 

chondrocytes in cartilage, cells tend to be completely surrounded by the ECM and 

adhere via cell surface receptors like integrin [Hynes 2002]. This close connection 

allows the cell to sense mechanical forces from the ECM and respond via a process 

known as mechanotransduction [Puklin-Faucher and Sheetz 2009]. This process 

can result in changes in cell shape and size and responses such as differentiation 

and proliferation. 
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5.1 WHAT HAVE WE LEARNED 
 

One aim of this project was to establish viable cell culture conditions and to show 

MSC-like properties for bulk MSC cultures derived from C57Bl/6 bone chips. The 

rationale for this was to address the possibility that by culturing bone chips, 

contamination by haematopoietic cells would be minimised. Even though the 

extraction of mMSCs from bone chips has been described before [H. Zhu et al. 

2010], phenotypic characterisation was only carried out after the third passage in 

vitro and could therefore not detect early changes in surface marker expression. 

As shown in Figure 2.2, haematopoietic cell contamination was present in early 

passages, but was reduced by sequential passaging and absent in passage 3 in vitro 

cultures. This highlights the fact that even bulk cultures from bone chips, which 

were several times washed and pre-treated with collagenase, still contain 

significant numbers of haematopoietic cells and need to be expanded in vitro for 

at least 3 passages in order for this contamination to be diluted out. The surface 

phenotype of these cells characterised by monoclonal antibody staining showed 

homogenous expression of markers commonly used for in vitro expanded mMSCs 

(Figure 2.7), but a heterogeneous expression for other markers (Figure 2.6).  In 

vitro assays for tri-lineage differentiation potency showed stable differentiation 

towards all three lineages, confirming the fact that bone chip-derived cells exhibit 

MSC-like features. 

Following observations in chapter 2, namely that Sca-1 was a marker consistently 

expressed by bone chip cells, bone marrow cells were sorted based on Sca-1 

expression and the surface marker expression changes during in vitro expansion 

were further investigated. Surface marker expression changed significantly for 

commonly used mouse MSC markers, which questions their usefulness in the 

validation of the mMSC phenotype in vitro (Figure 3.2). Additional analysis focused 

on the effect of hypoxia on CFU-F frequencies and colony size. Hypoxia improved 

CFU-F frequency among Sca-1- cells but had little effect on colony size. In contrast, 

hypoxia did not improve CFU-F frequency among Sca-1+ cell but did improve 

colony size. “Bulk” MSC which comprise a mixture of both Sca-1- and Sca-1+ cells 
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showed an improvement in both CFU-F frequencies and colony size in hypoxia 

compared to normoxia (Figures 3.3 and 3.5). In general it became clear that 

hypoxia had beneficial effects on both parameters compared to normoxia and 

differed in the extent depending on the Sca-1 subpopulation.  

Differentiation assays confirm tri-lineage differentiation capacity for both 

subpopulations, but also revealed a higher degree of chondrogenic differentiation 

in Sca-1- cells (Figure 3.7). Furthermore, transcriptomic analysis of the different 

subpopulations revealed more chondrogenic gene transcripts in Sca-1- cells (Figure 

3.8). 

To overcome the limitations based on non-clonal isolated cell populations, cells 

were clonally isolated using a novel and unique marker combination (Figure 4.3). 

Isolated clones showed one of the highest CFU-F frequencies reported for mMSCs 

so far (Figure 4.6). Unfortunately in vitro conditions for expansion and 

differentiation proved insufficient and need to be improved for further analysis of 

this BM subpopulation (Figure 4.7 and 4.8). Nevertheless, surviving individual 

clones suppressed T-cell proliferation, thereby revealing immunosuppressive 

properties.  

 

5.2 OBSTACLES 
 

An important factor that has emerged over the years in stem cell research is the 

role of oxygen levels during in vitro culturing. Not only is it necessary to culture 

MSC in vitro to obtain sufficient numbers for in vivo assays, but also for confirming 

MSC phenotype using in vitro differentiation assays. Despite several studies on the 

role of hypoxia on differentiation, it remains controversial if it is beneficial, as 

different groups obtain very different results for the influence of hypoxia on 

differentiation of BM-derived mMSCs (Table 1.1). One reason might be the lack of 

standardization in isolation and culture protocols which may lead to a selective 

expansion of subsets of cells [Park et al. 2012].  
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In this thesis stable differentiation of bulk MSC cultures and Sca-1 sorted cells 

could be achieved by using hypoxic conditions (Figure 2.6 and 3.7). It has to be 

noted though, that even Sca-1 sorted subsets are still a heterogeneous 

populations of cells. Another aspect to take into consideration is that these assays 

do not necessarily correlate with in vivo differentiation potential of MSCs. In fact it 

has been shown that induced pluripotent stem cells (iPSCs) could successfully 

differentiate to form bone and cartilage in vivo, but that they failed to do so using 

in vitro assays [Phillips et al. 2014].  

Even though early questions were raised about the homogeneity of cultured cells 

and how many of these cultured stromal cells are in fact true stem cells, bulk 

isolated MSCs are still the most used today. The International Society for Cellular 

Therapy (ISCT) tried to define minimal criteria for the identification of cultured 

hMSCs in an effort to make results from different research groups more 

comparable [Dominici et al. 2006]. These criteria include plastic adherence, flow 

cytometric analysis and differentiation assays (see Chapter 1 for details). Although 

these criteria marked an important step in standardizing cell preparations among 

different research groups, it did little to help dissect the complex nature of bulk 

cell preparations. Also, due to money restrictions and personal experience many 

researcher use their own panel of cell surface markers. Furthermore, these 

markers are only valid for hMSCs and no standardized marker arrays are available 

for mMSCs.  

Therefore multipotency must be evaluated using clonal assays rather than bulk 

population. Non-clonal assays cannot prove that the different lineages arose from 

the same progenitor. Unfortunately, most of the publications so far involving MSC 

are based on in vitro assays using non-clonal bulk MSC cultures. 

Another point to take into consideration is the fact that even single cell-derived 

colonies from in vitro cultures can differ significantly in their differentiation 

potential. DiGirolamo et al. observed that clonally derived MSCs from a single 

mother colony could be expanded in separate cultures and subjected to identical 

osteogenic conditions [DiGirolamo et al. 1999]. However, some of these daughter 
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cells efficiently differentiated into osteoblasts whereas others did not, 

demonstrating that even when derived from a single cell, the differentiation 

potential might be affected by in vitro conditions. In fact it has been shown that 

based on the location of the cells within a single colony, single-cell derived clones 

from different locations within that colony result in distinctive in vitro 

differentiation potential [Gregory, Ylostalo, and Prockop 2005]. This shows that 

even single cells-derived colonies form their own microenvironment and 

preconditioning daughter cells within.  

 

The C57Bl/6 strain is the most widely used inbred strain in the world, and the first 

which genome has been fully sequenced [Consortium 2002]. This has led to their 

wide use in all research areas and they are commonly used for generating 

transgenic mice. Unfortunately, as reported by others, the C57Bl/6 mouse strain is 

one of the hardest for obtaining MSCs from BM [Pittenger et al. 1999]. Therefore, 

due to its wide use and the large amount of transgenic models available, it will be 

necessary to improve isolation protocols to fully understand the basic biology 

before attempting the transition into the clinical setting.  

The standard method for verifying MSC phenotype is flow cytometric analysis of 

cell surface markers and differentiation assays to confirm tri-lineage 

differentiation capacity of in vitro cultures. Both these methods might be 

significantly biased based on the culturing process the cells have to undergo in 

order to obtain sufficient numbers for in vitro assays [Nadri et al. 2007]. When 

validating the phenotype of bulk MSC cultures it became clear that the reported 

surface markers differ significantly between freshly isolated and in vitro expanded 

cells. As shown in Figure 3.2, expression of markers characteristic of mMSC 

changed during in vitro expansion. This is even more worrying/alarming as these 

markers are well accepted in the literature and are advertised by companies as in 

vitro mMSC marker [Abcam 2011; R&D Systems]. A possible explanation lies in the 

fact that these mMSC cell surface markers are targeting adhesion receptors which 

might be naturally expressed and up-regulated by adherent cells. For example, 

Qian et al. have shown that freshly isolated BM-derived mMSCs do not express 



109 
 

CD44, but gain expression during adherent in vitro expansion [Qian, Le Blanc, and 

Sigvardsson 2012]. This was confirmed herein. Another study has shown that 

human MSCs and skin fibroblasts express the same markers in vitro, e.g CD44 and 

CD29 [Whitney et al. 2009]. It is therefore necessary to establish cell surface 

markers which are not affected by adherent in vitro conditions. Also, even with 

homogenous expressed markers, bulk cultures are still heterogeneous. This is 

further supported by in vitro differentiation assays, where only subsets of cells 

undergo differentiation. In Figure 2.7 it can be seen that in osteo- and adipogenic 

in vitro differentiation assays, not all cells undergo differentiation.  

For the definition of MSCs, it is generally accepted that there have to undergo tri-

lineage differentiation. Unfortunately, the differentiation of mMSCs is more 

difficult than it is for hMSCs. This is particularly the case for chondrogenic 

differentiation capacity which seems to be less in C57Bl/6 mice compared to other 

mouse strains [Peister et al. 2004].  Due to this, not all researchers include all three 

lineages in their differentiation assays and frequently only focus on osteo- and 

adipogenic differentiation assays [Ooi et al. 2013; Siclari et al. 2013]. One reason 

for this is that the ideal conditions for the efficient differentiation of chondrocytes 

from mMSC have yet to be found. 

Another problem is the naturally low abundance of stem cell-like cells in murine 

bone marrow. Even though a high CFU-F frequency was achieved using the Sca-

1+/PDGFRα+/CD90+ marker combination, cells needed to be passaged and 

expanded in vitro, to generate sufficient numbers for further analysis. 

Unfortunately, due to insufficient in vitro conditions these strategies can affect the 

differentiation and clonogenic potential as well as senescence of MSCs [Kretlow et 

al. 2008; Gruber et al. 2012].  

Based on the results from Chapter 3, in vitro culture condition may alter the 

phenotype of cells isolated by FCM. Clonally isolated Sca-1+/PDGFRα+/CD90+ cells 

became senescent with further passaging which restricted the number of clones 

analysed. Especially the differentiation media seemed to negatively affect the cells 

and their proliferation. Based on the assumption that these cells are homogenous, 
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the lack of supporting cells (i.e. the niche) might have a negative impact on 

maintaining the true state of these cells. It is therefore necessary for future 

research to optimise culture conditions for clonally isolated cells. This could be 

done by the use of ECM, which could mimic certain niche features.  

Due to the difficulties in the translation of MSCs into the clinical setting, some 

researchers suggest overhauling the classical approach of market approval and 

regulation of stem cell products by health professionals and scientists, to a more 

consumer choice based model [Salter, Zhou, and Datta 2014]. On the other hand, 

scientists believe that based on the 60 years of research it took to establish HSC 

therapy, more fundamental research needs to be done to fully understand the 

risks and benefits of MSCs, before the application of new MSC products [Prockop, 

Prockop, and Bertoncello 2014]. I too believe that more systematic and thoroughly 

based research needs to be done, not only to fully understand the working 

mechanisms of MSCs, but also to avoid false hopes in patients.  

MSCs are a very versatile subset of cells able of tri-lineage differentiation, 

immunomodulation and homing to different anatomic regions. This inherent 

“plasticity” of MSCs might be the key to most of the beneficial effects of MSCs in 

animal disease models and human clinical trials. Therefore, it might be more 

effective to identify subsets of epitopes or a combination of known surface 

markers that can distinguish functional differences between population rather 

than identifying “the one” MSC. 

 

5.3 FUTURE DIRECTIONS 
 

In this thesis it was shown that hypoxia influences the CFU-F frequencies and 

proliferation of isolated MSCs (Chapter 3). However, the differences between 

normoxic and hypoxic conditions ranged over a wide spectrum (21% vs 5% vs 2%) 

and were not consistent during expansion. Reasons for this include the fact that 

the incubators were shared with other researchers, and therefore a lot of opening 

and closing of incubator doors which changed the oxygen conditions for a short 
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time. Furthermore, passaging and feeding the cells was done in a standard cell 

culture hood and therefore in normoxic conditions. These small changes in oxygen 

conditions might be important, as a recent study has shown that oxygen 

concentrations in the mouse BM might only differ by a small percentage [Spencer 

et al. 2014]. Using two-photon phosphorescence lifetime microscopy, Spencer et 

al. have shown that despite its high vascularity, the oxygen concentrations in the 

BM is less than 4.2% O2. Furthermore, dependent on the location within the BM 

niche, oxygen concentrations showed subtle differences which could not be 

mimicked by our in vitro conditions. It might therefore be necessary to establish 

more accurate control of oxygen concentrations in cell cultures in order to mimic 

the native niche of mouse MSCs. 

Additionally, the BM niche is a dynamic environment not only influenced by 

hypoxia, but also by other environmental factors including matrix proteins and 

cytokines (Chapter 1). It has been shown that MSCs express and produce HSC 

maintenance factor transcripts like CXCL12 and SCF [Mendez-Ferrer et al. 2010; 

Greenbaum et al. 2013]. It might therefore be necessary to supplement MSC cell 

culture medium with certain factors to mimic niche feedback mechanisms. This is 

especially important for clonally isolated cells, as they do not have any supporting 

microenvironment like bulk isolated MSCs. The same is true for the use of ECM, 

which could mimic certain niche features and therefore help to maintain the 

native phenotype of isolated MSCs. By culturing MS-5 cells and following gentle 

lysis by osmotic shock, I was able to generate ECM which is rich in collagen (Figure 

4.2). However, functional analysis of matrix proteins and refinement of the ECM 

lysis protocol is necessary to obtain a homogenous cell product for the use in MSC 

in vitro protocols. 
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APPENDIX I: Media 
 

GROWTH MEDIA 

 

 

MSC Growth Medium  

α-MEM with GlutaMAX 

FBS (10%)  

Equine serum (10%) 

Penicillin/Streptomycin (100 

units/μg/ml) 

 

T-cell Medium 

High Glucose DMEM 

FBS (10%) 

L-Glutamine (1%) 

HEPES (1%) 

Non-essential amino acids (1%) 

2-mercaptoethanol (0.1%) 

Penicillin/Streptomycin (100 

units/μg/ml) 

Cell Line Growth Medium 

High Glucose DMEM   

FBS (10 %)  

Penicillin/Streptomycin (100 

units/μg/ml) 

 

 

 

DIFFERENTIATION MEDIA 

 

 

Osteogenic Differentiation Medium   

α-MEM with GlutaMAX 

Dexamethasone (100nM)    

Ascorbic acid-2-phosphate (50µM)    

β-glycerophosphate (20mM)   

L-thyroxine (50ng/ml)   

FBS (10%)  

Equine serum (10%) 

Adipogenic Induction Medium 

High glucose DMEM 

Dexamethasone (1µM)  

Insulin (10µg/ml) 

Indomethacin (200µM) 

3-Isobutyl-1-Methyl-Xanthine (500µM) 

FBS (10%) 

Penicillin/Streptomycin (100 
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 Penicillin/Streptomycin (100 

units/μg/ml)   

 

units/μg/ml) 

 

 

Adipogenic Maintenance Medium 

High glucose DMEM  

Insulin (10µg/ml) 

FBS (10%) 

Penicillin/Streptomycin (100 

units/μg/ml) 

 

 

Chondrogenic Differentiation Medium 

High Glucose DMEM 

Dexamethasone (100nM)  

Ascorbic acid-2-phosphate (50µg/ml)    

L-Proline (40µg/ml) 

Bovine insulin (6.25g/ml) 

Transferrin(6.25g/ml) 

Selenous acid(6.25g/ml) 

Linoleic acid (5.33g/ml) 

Bovine Serum Albumin  (1.25mg/ml) 

Sodium pyruvate (1mM) 

Penicillin/Streptomycin (100 

units/μg/ml) 
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APPENDIX II: Buffers 
 

FACS Buffer 

PBS 

FBS (2%) 

Sodium azide (0.5mg/ml) 

 

MACS Buffer 

PBS 

Bovine Serum Albumin (0.5%) 

EDTA (0.2mM) 

 

SORT Buffer 

Ca2+/Mg2+-free PBS  

FBS (1%) 

HEPES (25mM) 

EDTA (2mM) 

 

ECM Lysis Buffer 

Tris (10mM) 

EDTA (1mM) 

pH 7.4 
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APPENDIX III: Reagents 
 

Reagent Supplier Catalogue number 

0.25% trypsin/EDTA Sigma-Aldrich T4049 

10% neutral buffered 

formalin 

Sigma-Aldrich HT501128 

2-mercaptoethanol Sigma-Aldrich M3148 

α-MEM Gibco-Invitrogen 32561 

Anti-mouse CD45 

microbeads 

Miltenyi Biotec Inc. 130-052-301 

Bovine serum albumin Sigma-Aldrich A2153 

High Capacity cDNA reverse 

transcription kit with RNase 

inhibitor® 

Applied Biosystems 4374966 

 

CellTrace CFSE cell 

proliferation kit® 

Molecular Probes-Invitrogen C34554 

Chloroform Sigma-Aldrich 496189 

Collagenase I Sigma-Aldrich C9891 

Collagenase D Roche 11088858001 

Dimethyl sulfoxide(DMSO) Sigma-Aldrich D2650 

Disodium EDTA Sigma-Aldrich E5134 

DMEM Sigma-Aldrich D6429 

DNase I  Sigma-Aldrich DN25 

Dulbecco’s PBS Gibco-Invitrogen 14190 

Ethanol Sigma-Aldrich E7023 

Fast green Sigma-Aldrich F7252 

Glycerol Sigma-Aldrich G5516 

HEPES Sigma-Aldrich H0887 

Hyclone equine serum Sigma-Aldrich H1270 

Hyclone fetal bovine serum 

(FBS) 

Fisher Scientific Ireland SV30143.03 
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Indomethacin Sigma-Aldrich I7378 

Isopropanol Sigma-Aldrich I9516 

Methanol Sigma-Aldrich 34860 

Non-essential amino-acids Sigma-Aldrich M7145 

Penicillin/streptomycin Gibco-Invitrogen 15140-122 

Phosphate buffered saline 

tablets 

Sigma-Aldrich P4417 

Protease Sigma-Aldrich P5147 

RNA Later® solution Applied Biosystems AM7020 

RNA zap Applied Biosystems AM9780 

Sodium azide Sigma-Aldrich A2152 

SYBR green I master Roche 04707516001 

Sytox® Blue Invitrogen S10349 

Trizol® Invitrogen 15596018 
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APPENDIX IV: Antibodies 
 

Antibody 

preparation 

Species/Isotype Clone Supplier 

Biotin-conjugated    

Collagen I Rabbit polyclonal Antibodies-online 

F4/80 Rat IgG2a,κ BM8 eBioscience 

APC-conjugated    

CD29 Armenian Hamster IgG HMb1-1 eBioscience 

PDGFRα  Rat IgG2a,κ APA5 eBioscience 

Galectin-3 Rat IgG2a,κ M3/38 BioLegend 

FITC-conjugated    

Sca-1 (Ly6A/E) Rat IgG2a,κ D7 eBioscience 

CD45 Rat IgG2b,κ 30-F11 eBioscience 

CD49e Armenian Hamster IgG HMa5-1 eBioscience 

CD106 (VCAM-1) Rat IgG2a,κ 429 eBioscience 

PE-conjugated    

CD31 Rat IgG2a,κ 390 eBioscience 

CD44 Rat IgG2b,κ IM7 eBioscience 

CD73 Rat IgG1 TY/11.8 eBioscience 

CD90.2 Rat IgG2a,κ 53-2.1 BD Biosciences 

CD105 Rat IgG2a,κ MJ7/18 eBioscience 

PE-Cy7-conjugated    

CD45 Rat IgG2b,κ 30-F11 BD Biosciences 

V450-conjugated    

CD45 Rat IgG2b,κ 30-F11 BD Biosciences 

Ter119 Rat IgG2b,κ TER-119 BD Biosciences 

Purified     

CD3 Armenian Hamster IgG 145-2C11 eBioscience 

CD28 Syrian Hamster IgG 37.51 eBioscience 
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