

Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the

published version when available.

Downloaded 2024-03-13T07:44:11Z

Some rights reserved. For more information, please see the item record link above.

Title Scalable Authoritative OWL Reasoning for the Web

Author(s) Hogan, Aidan; Harth, Andreas; Polleres, Axel

Publication
Date 2009

Publication
Information

Aidan Hogan, Andreas Harth, Axel Polleres "Scalable
Authoritative OWL Reasoning for the Web", IJSWIS, 5(2),
2009.

Item record http://hdl.handle.net/10379/4891

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/

DERI Galway

IDA Business Park

Galway, Ireland

www.deri.ie

DERI { DIGITAL ENTERPRISE RESEARCH INSTITUTE

Scalable Authoritative OWL

Reasoning for the Web

Aidan Hogan Andreas Harth

Axel Polleres

DERI Technical Report 2009-04-21

April 21, 2009

Please Cite As:

Aidan Hogan, Andreas Harth and Axel Polleres.
Scalable Authoritative OWL Reasoning for the Web.

International Journal on Semantic Web and
Information Systems, 5(2), pages 49-90, April-June

2009.

Copyright c 2009 by the authors.

DERI { DIGITAL ENTERPRISE RESEARCH INSTITUTE

Scalable Authoritative OWL Reasoning for the Web �

Aidan Hogan Andreas Harth

Digital Enterprise Research Institute

National University of Ireland, Galway

Axel Polleres

April 21, 2009

Abstract

In this paper we discuss the challenges of performing reasoning on large scale RDF datasets from

the Web. Using ter-Horst's pD* fragment of OWL as a base, we compose a rule-based framework for

application to web data: we argue our decisions using observations of undesirable examples taken directly

from the Web. We further temper our OWL fragment through consideration of \authoritative sources"

which counter-acts an observed behaviour which we term \ontology hijacking": new ontologies published

on the Web re-de�ning the semantics of existing entities resident in other ontologies. We then present our

system for performing rule-based forward-chaining reasoning which we call SAOR: Scalable Authoritative

OWL Reasoner. Based upon observed characteristics of web data and reasoning in general, we design our

system to scale: our system is based upon a separation of terminological data from assertional data and

comprises of a lightweight in-memory index, on-disk sorts and �le-scans. We evaluate our methods on a

dataset in the order of a hundred million statements collected from real-world web sources and present

scale-up experiments on a dataset in the order of a billion statements collected from the Web.

1 Introduction

Information attainable through the Web is unique in terms of scale and diversity. The Semantic Web
movement aims to bring order to this information by providing a stack of technologies, the core of which
is the Resource Description Framework (RDF) for publishing data in a machine-readable format: there
now exists millions of RDF data-sources on the Web contributing billions of statements. The Semantic
Web technology stack includes means to supplement instance data being published in RDF with ontologies
described in RDF Schema (RDFS) [4] and the Web Ontology Language (OWL) [2, 41], allowing people to
formally specify a domain of discourse, and providing machines a more sapient understanding of the data. In
particular, the enhancement of assertional data (i.e., instance data) with terminological data (i.e., structural
data) published in ontologies allows for deductive reasoning: i.e., inferring implicit knowledge.

In particular, our work on reasoning is motivated by the requirements of the Semantic Web Search Engine
(SWSE) project: http://swse.deri.org/, within which we strive to o�er search, querying and browsing
over data taken from the Semantic Web. Reasoning over aggregated web data is useful, for example: to infer
new assertions using terminological knowledge from ontologies and therefore provide a more complete dataset;
to unite fractured knowledge (as is common on the Web in the absence of restrictive formal agreement on
identi�ers) about individuals collected from disparate sources; and to execute mappings between domain
descriptions and thereby provide translations from one conceptual model to another. The ultimate goal here
is to provide a \global knowledge-base", indexed by machines, providing querying over both the explicit

�A preliminary version of this article has been accepted at ASWC 2008 [24]. Compared to that version, we have added
signi�cant material. The added contributions in this version include (i) a better formalisation of authoritative reasoning, (ii)
improvements in the algorithms, and (iii) respectively updated experimental results with additional metrics on a larger dataset.
We thank the anonymous reviewers of this and related papers for their valuable feedback. This work has been supported by
Science Foundation Ireland project Lion (SFI/02/CE1/I131), European FP6 project inContext (IST-034718), COST Action
\Agreement Technologies" (IC0801) and an IRCSET Postgraduate Research Scholarship.

1

http://swse.deri.org/

knowledge published on the Web and the implicit knowledge inferable by machine. However, as we will
show, complete inferencing on the Web is an infeasible goal, due �rstly to the complexity of such a task and
secondly to noisy web data; we aim instead to strike a comprise between the above goals for reasoning and
what is indeed feasible for the Web.

Current systems have had limited success in exploiting ontology descriptions for reasoning over RDF web
data. While there exists a large body of work in the area of reasoning algorithms and systems that work
and scale well in con�ned environments, the distributed and loosely coordinated creation of a world-wide
knowledge-base creates new challenges for reasoning:

� the system has to perform on web scale, with implications on the completeness of the reasoning pro-
cedure, algorithms and optimisations;

� the method has to perform on collaboratively created knowledge-bases, which has implications on trust
and the privileges of data publishers.

With respect to the �rst requirement, many systems claim to inherit their scalability from the underlying
storage { usually some relational database system { with many papers having been dedicated to optimisations
on database schemata and access (c.f. [35, 44, 48, 25]). With regards the second requirement, there have been
numerous papers dedicated to the inter-operability of a small number of usually trustworthy ontologies (c.f.
[13, 31, 27]). We leave further discussion of related work to Section 6, except to state that the combination
of web scale and web tolerant reasoning has received little attention in the literature and that our approach
is novel.

Our system, which we call \Scalable Authoritative OWL Reasoner" (SAOR), is designed to accept as
input a web knowledge-base in the form of a body of statements as produced by a web crawl and to output
a knowledge-base enhanced by forward-chaining reasoning over a given fragment of OWL. In particular,
we choose forward-chaining to avoid the runtime complexity of query-rewriting associated with backward-
chaining approaches: in the web search scenario, the requirement for low query response times and resource
usage preclude the applicability of query-rewriting for many reasoning tasks.

SAOR adopts a standard rule-based approach to reasoning whereby each rule consists of (i) an `an-
tecedent': a clause which identi�es a graph pattern that, when matched by the data, allows for the rule to be
executed and (ii) a `consequent': the statement(s) that can be inferred given data that match the antecedent.
Within SAOR, we view reasoning as a once-o� rule-processing task over a given set of statements. Since
the rules are all known a-priori, and all require simultaneous execution, we can design a task-speci�c system
that o�ers much greater optimisations over more general rule engines. Firstly, we categorise the known rules
according to the composition of their antecedents (e.g., with respect to arity, proportion of terminological
and assertional patterns, etc.) and optimise each group according to the observed characteristics. Secondly,
we do not use an underlying database or native RDF store and opt for implementation using fundamental
data-structures and primitive operations; our system is built from scratch speci�cally (and only) for the pur-
pose of performing pre-runtime forward-chaining reasoning which gives us greater freedom in implementing
appropriate task-speci�c optimisations.

This paper is an extended version of [24], in which we presented an initial modus-operandi of SAOR; we
provided some evaluation of a set of rules which exhibited linear scale and concluded that using dynamic
index structures, in SAOR, for more complex rulesets, was not a viable solution for a large-scale reasoner.
In this paper, we provide extended discussion of our fragment of OWL reasoning and additional motivation
for our deliberate incompleteness in terms of computational complexity and impediments posed by web data
considerations. We also describe an implementation of SAOR which abandons dynamic index structures in
favour of batch processing techniques known to scale: namely sorts and �le-scans. We present new evaluation
of the adapted system over a dataset of 147m triples collected from 665k web sources and also provide scale-up
evaluation of our most optimised ruleset on a dataset of 1.1b statements collected from 6.5m web sources.

Speci�cally, we make the following contributions in this paper:

� We discuss and apply a selected rule-based subset of OWL reasoning, i) to be computationally e�cient,
ii) to avoid an explosion of inferred statements, iii) to be tolerant to noisy web data and iv) to protect
existing speci�cations from undesirable contributions made in independent locations. That is, our
system implements a positive fragment of OWL Full which has roots in ter Horst's pD* [43] entailment

2

rules and our system includes analysis of the authority of sources to counter-act the problem of ontology
hijacking in web data (Section 3).

� We describe a scalable, optimised method for performing rule-based forward-chaining reasoning for
our fragment of OWL. In particular, we re�ne our algorithm to capitalise on the similarities present
in di�erent rule antecedent patterns and the low volume of terminological data relative to assertional
data. We implement the system using on-disk batch processing operations known to scale: sorts and
scans (Section 4).

� We show experimentally that a forward-chaining materialisation approach is feasible on web data,
showing that, by careful materialisation through our tailored OWL ruleset, we can avoid an explosion
of inferred statements. We present evaluation with respect to computation of our most expressive
ruleset on a dataset of 147m statements collected from 665k sources and present scale-up measurements
by applying our most optimised ruleset on a dataset of 1.1b statements collected from 6.5m sources.
We also reveal that the most computationally e�cient segment of our reasoning is the most productive
with regards inferred output statements (Section 5).

We discuss related work in Section 6 and conclude with Section 7.

2 Preliminaries

Before we continue, we briey introduce some concepts prevalent throughout the paper. We use notation
and nomenclature as is popular in the literature, particularly from [22].

RDF Term Given a set of URI references U , a set of blank nodes B, and a set of literals L, the set of RDF
terms is denoted by RDFT erm = U [B [L. The set of blank nodes B is a set of existensially quanti�ed
variables. The set of literals is given as L = Lp [Lt, where Lp is the set of plain literals and Lt is the set
of typed literals. A typed literal is the pair l = (s,t), where s is the lexical form of the literal and t2 U is a
datatype URI. The sets U , B, Lp and Lt are pairwise disjoint.

RDF Triple A triple t = (s, p, o) 2 (U [B)� U � (U [B [L) is called an RDF triple. In a triple (s, p,
o), s is called subject, p predicate, and o object.

RDF Triple in Context/RDF Quadruple A pair (t, c) with a triple t = (s, p, o) and c 2 U is called a
triple in context c [16, 20]. We may also refer to (s, p, o, c) as the RDF quadruple or quad q with context c.

We use the term `RDF statement' to refer generically to triple or quadruple where di�erentiation is not
pertinent.

RDF Graph/Web Graph An RDF graph G is a set of RDF triples; that is, a subset of (U [B) � U �
(U [B [L).

We refer to a web graph W as a graph derived from a given web location (i.e., a given document). We
call the pair (W; c) a web graph W in context c, where c is the web location from which W is retrieved.
Informally, (W; c) is represented as the set of quadruples (tw; c) for all tw 2 W.

Generalised Triple A triple t = (s, p, o) 2 (U [B [L)� (U [B [L)� (U [B [L) is called a generalised
triple.

The notions of generalised quadruple, generalised statement and generalised graph follow naturally. Our
de�nition of \generalised" is even more liberal than that described in [43] wherein blank nodes are allowed
in the predicate position: we also allow literals in the subject and predicate position. Please note that we
may refer generically to a \triple", \quadruple", \graph" etc. where a distinction between the \generalised"
and \RDF" versions is not pertinent.

3

Merge The merge M(S) of a set of graphs S is the union of the set of all graphs G0 for G 2 S and G0

derived from G such that G0 contains a unique set of blank nodes for S.

Web Knowledge-base Given a set SW of RDF web graphs, our view of a web knowledge-base KB is taken
as a set of pairs (W 0, c) for each W 2 SW , where W 0 contains a unique set of blank nodes for SW and c
denotes the URL location of W.

Informally, KB is a set of quadruples retrieved from the Web wherein the set of blank nodes are unique
for a given document and triples are enhanced by means of context which tracks the web location from which
each triple is retrieved. We use the abbreviated notation W 2 KB or W 0 2 KB where we mean W 2 SW for
SW from which KB is derived or (W 0; c) 2 KB for some c.

Class We refer to a class as an RDF term which appears in either

� o of a triple t where p is rdf:type; or

� s of a triple t where p is rdf:type and o is rdfs:Class or :Class1.

Property We refer to a property as an RDF term which appears in either

� p of a triple t ; or

� s of a triple t where p is rdf:type and o is rdf:Property.

Membership Assertion We refer to a triple t as a membership assertion of the property mentioned in
predicate position p. We refer to a triple t with predicate rdf:type as a membership assertion of the class
mentioned in the object o. For a class or property v, we denote a membership assertion as m(v).

Meta-class A meta-class is a class of classes or properties; i.e., the members of a meta-class are ei-
ther classes or properties. The set of RDF(S) and OWL meta-classes is as follows: frdf:Property, rdfs:-
Class, rdfs:ContainerMembershipProperty, :AnnotationProperty, :Class, :DatatypeProperty, :Deprecated-

Class, :DeprecatedProperty, :FunctionalProperty, :InverseFunctionalProperty, :ObjectProperty, :Ontol-

ogyProperty, :Restriction, :SymmetricProperty, :TransitiveProperty g.

Meta-property A meta-property is one which has a meta-class as it's domain. Meta-properties are used
to describe classes and properties. The set of RDFS and OWL meta-properties is as follows: frdfs:domain,
rdfs:range, rdfs:subClassOf, rdfs:subPropertyOf, :allValuesFrom, :cardinality, :complementOf, :disjoint-
With, :equivalentClass, :equivalentProperty, :hasValue, :intersectionOf, :inverseOf, :maxCardinality,
:minCardinality, :oneOf, :onProperty, :someValuesFrom, :unionOfg.

Terminological Triple We de�ne a terminological triple as one of the following:

1. a membership assertion of a meta-class;

2. a membership assertion of a meta-property;

3. a triple in a non-branching, non-cyclic path tr0; :::; t
r
n where tr0 = (s0; p0; o0) for p0 2 f:intersectionOf,

:oneOf, :unionOf g; trk = (ok�1, rdf:rest, ok) for 1 � k � n, ok�1 2 B and on =rdf:nil; or a triple tfk
= (ok, rdf:first, ek) with ok for 0 � k < n as before.

We refer to triples tr1; :::; t
r
n and all triples tfk as terminological collection triples, whereby RDF collections

are used in a union, intersection or enumeration class description.

1Throughout this paper, we assume that http://www.w3.org/2002/07/owl# is the default namespace with pre�x \:", i.e. we
write e.g. just \:Class", \:disjointWith", etc. instead of using the commonly used owl: pre�x. Other pre�xes such as rdf:,
rdfs:, foaf: are used as in other common documents. Moreover, we often use the common abbreviation `a' as a convenient
shortcut for rdf:type.

4

Triple Pattern, Basic Graph Pattern A triple pattern is de�ned as a generalised triple where, in all
positions, variables from the in�nite set V are allowed; i.e.: tp = (sv, pv, ov) 2 (U [B [L [V)� (U [B [
L[V)� (U [B [L[V). A set (to be read as conjunction) of triple patterns GP is also called a basic graph
pattern.

We use { following SPARQL notation [38] { alphanumeric strings preceded by `?' to denote variables in
this paper: e.g., ?X. Following common notation, such as is used in SPARQL [38] and Turtle2, we delimit
triples in the same basic graph pattern by `.' and we may group triple patterns with the same subject or
same subject-predicate using `;' and `,' respectively. Finally, we denote by V(tp) (or V(GP), resp.) the set
of variables appearing in tp (or in GP, resp.).

Instance A triple t = (s, p, o) (or, resp., a set of triples, i.e., a graph G) is an instance of a triple pattern
tp = (sv, pv, ov) (or, resp., of a basic graph pattern GP) if there exists a mapping � : V [RDFT erm !
RDFT erm which maps every element of RDFT erm to itself, such that t = �(tp) = (�(sv), �(pv), �(ov))
(or, resp., and slightly simplifying notation, G = �(GP)).

Terminological/Assertional Pattern We refer to a terminological -triple/-graph pattern as one whose
instance can only be a terminological triple or, resp., a set thereof. We denote a terminological collection
pattern by ?x p (?e1, ..., ?en) . where p 2 f:intersectionOf, :oneOf, :unionOf g and ?ek is mapped
by the object of a terminological collection triple (ok, rdf:first, ek) for ok 2 fo0; :::; on�1g as before. An
assertional pattern is any pattern which is not terminological.

Inference Rule We de�ne an inference rule r as the pair (Ante; Con), where the antecedent Ante and the
consequent Con are basic graph patterns such that V(Con) and V(Ante) are non-empty, V(Con) � V(Ante)
and Con does not contain blank nodes3. In this paper, we will typically write inference rules as:

Ante) Con (1)

Rule Application and Closure We de�ne a rule application in terms of the immediate consequences of
a rule r or a set of rules R on a graph G (here slightly abusing the notion of the immediate consequence
operator in Logic Programming: cf. for example [30]). That is, if r is a rule of the form (1), and G is a set
of RDF triples, then:

Tr(G) = f�(Con) j 9� such that �(Ante) � Gg

and accordingly TR(G) =
S
r2R Tr(G). Also, let Gi+1 = Gi [TR(Gi) and G0 = G; we now de�ne the

exhaustive application of the TR operator on a graph G as being upto the least �xpoint (the smallest value
for n) such that Gn = TR(Gn). We call Gn the closure of G with respect to ruleset R, denoted as ClR(G).
Note that we may also use the intuitive notation ClR(KB), TR(KB) as shorthand for the more cumbersome
ClR(

S
W02KBW

0), TR(
S
W02KBW

0).

Ground Triple/Graph A ground triple or ground graph is one without existential variables.

Herbrand Interpretation Briey, a Herbrand interpretation of a graph G treats URI references, blank
nodes, typed literals and plain literals analogously as denoting their own syntactic form. As such, a Herbrand
interpretation represents a ground view of an RDF graph where blank nodes are treated as Skolem names
instead of existential variables; i.e., blank nodes are seen to represent the entities that they assert the
existence of, analogously to a URI reference. Henceforth, we view blank nodes as their Skolem equivalents
(this also applies to blank nodes as mentioned in the above notation) and only treat the ground case of RDF
graphs.

Let us elaborate in brief why this treatment of blank nodes as Skolem constants is su�cient for our
purposes. In our scenario, we perform forward-chaining materialisation for query-answering and not \real"

2http://www.dajobe.org/2004/01/turtle/
3Unlike some other rule systems for RDF, the most prominent of which being CONSTRUCT statements in SPARQL, we

forbid blank nodes; i.e., we forbid existential variables in rule consequents which would require the \invention" of blank nodes.

5

http://www.dajobe.org/2004/01/turtle/

entailment checks between RDF graphs. This enables us to treat all blank nodes as Skolem names [22]. It is
well known that simple entailment checking of two RDF graphs [22] { i.e., checking whether an RDF graph
G1 entails G2 { can be done using the ground \skolemised" version of G1. That is G1 j= G2 i� sk(G1) j= G2.
Likewise, given a set of inference rules R, where we denote entailment with respect to R as j=R, it is again
well known that such entailment can be reduced to simple entailment with prior computation of the inference
closure with respect to R. That is, G1 j=R G2 i� ClR(sk(G1)) j= G2, cf. [22, 18]. In this paper we focus on
the actual computation of ClR(sk(G1)) for a tailored ruleset R in between RDFS and OWL Full.

3 Pragmatic Inferencing for the Web

In this section we discuss the inference rules which we use to approximate OWL semantics and are designed
for forward-chaining reasoning over web data. We justify our selection of inferences to support in terms
of observed characteristics and examples taken from the Web. We optimise by restricting our fragment
of reasoning according to three imperatives: computational feasibility (CF) for scalability, reduced output
statements (RO) to ease the burden on consumer applications and, �nally, web tolerance (WT) for avoiding
undesirable inferences given noisy data and protecting publishers from unwanted, independent third-party
contributions. In particular, we adhere to the following high-level restrictions:

1. we are incomplete (CF, RO, WT) - Section 3.1;

2. we deliberately ignore the explosive behaviour of classical inconsistency (CF, RO, WT) - Section 3.1;

3. we follow a rule-based, �nite, forward-chaining approach to OWL inference (CF) - Section 3.2;

4. we do not invent new blank nodes (CF, RO, WT) - Section 3.2;

5. we avoid inference of extended-axiomatic triples (RO) - Section 3.2;

6. we focus on inference of non-terminological statements (CF) - Section 3.2;

7. we do not consider :sameAs statements as applying to terminological data (CF, WT) - Section 3.2;

8. we separate and store terminological data in-memory (CF) - Section 3.3;

9. we support limited reasoning for non-standard use of the RDF(S) and OWL vocabularies (CF, RO,
WT) - Section 3.3;

10. we ignore non-authoritative (third-party) terminological statements from our reasoning procedure to
counter an explosion of inferred statements caused by hijacking ontology terms (RO, WT) - Section
3.4.

3.1 Infeasibility of Complete Web Reasoning

Reasoning over RDF data is enabled by the description of RDF terms using the RDFS and OWL standards;
these standards have de�ned entailments determined by their semantics. The semantics of these standards
di�ers in that RDFS entailment is de�ned in terms of \if" conditions (intensional semantics), and has a
de�ned set of complete standard entailment rules [22]. OWL semantics uses \i�" conditions (extensional
semantics) without a complete set of standard entailment rules. RDFS entailment has been shown to be
decidable and in P for the ground case [43], whilst OWL Full entailment is known to be undecidable [26].
Thus, the OWL standard includes two restricted fragments of OWL whose entailment is known to be
decidable from work in description logics: (i) OWL DL whose worst-case entailment is in NEXPTIME (ii)
OWL Lite whose worst-case entailment is in EXPTIME [26].

Although entailment for both fragments is known to be decidable, and even aside from their complexity,
most OWL ontologies crawlable on the Web are in any case OWL Full: idealised assumptions made in OWL
DL are violated by even very commonly used ontologies. For example, the popular Friend Of A Friend

6

(FOAF) vocabulary [5] deliberately falls into OWL Full since, in the FOAF RDF vocabulary4, foaf:name
is de�ned as a sub-property of the core RDFS property rdfs:label and foaf:mbox sha1sum is de�ned as
both an :InverseFunctionalProperty and a :DatatypeProperty: both are disallowed by OWL DL (and,
of course, OWL Lite). In [3], the authors identi�ed and categorised OWL DL restrictions violated by a
sample group of 201 OWL ontologies (all of which were found to be in OWL Full); these include incorrect or
missing typing of classes and properties, complex object-properties (e.g., functional properties) declared to
be transitive, inverse-functional datatype properties, etc. In [46], a more extensive survey with nearly 1,300
ontologies was conducted: 924 were identi�ed as being in OWL Full.

Taking into account that most web ontologies are in OWL Full, and also the undecidability/computational-
infeasiblity of OWL Full, one could conclude that complete reasoning on the Web is impractical. However,
again for most web documents only categorisable as OWL Full, infringements are mainly syntactic and
are rather innocuous with no real e�ect on decidability ([46] showed that the majority of web documents
surveyed were in the base expressivity for Description Logics after patching infringements).

The main justi�cation for the infeasibility of complete reasoning on the Web is inconsistency.
Consistency cannot be expected on the Web; for instance, a past web crawl of ours revealed the following:

w3:timbl a foaf:Person; foaf:homepage <http://w3.org/> .

w3:w3c a foaf:Organization; foaf:homepage <http://w3.org/> .

foaf:homepage a :InverseFunctionalProperty .

foaf:Organization :disjointWith foaf:Person .

These triples together infer that Tim Berners-Lee is the same as the W3C and thus cause an inconsistency.5

Aside from such examples which arise from misunderstanding of the FOAF vocabulary, there might be cases
where di�erent parties deliberately make contradictive statements; resolution of such contradictions could
involve \choosing sides". In any case, the explosive nature of contradiction in classical logics suggests that
it is not desirable within our web reasoning scenario.

3.2 Rule-based Web Reasoning

As previously alluded to, there does not exist a standard entailment for OWL suitable to our web reason-
ing scenario. However, incomplete (wrt. OWL Full) rule-based inference (i.e., reasoning as performed by
logic progamming or deductive database engines) may be considered to have greater potential for scale,
following the arguments made in [12] and may be considered to be more robust with respect to preventing
explosive inferencing through inconsistencies. Several rule expressible non-standard OWL fragments; namely
OWL-DLP [15], OWL� [10] (which is a slight extension of OWL-DLP), OWLPrime [47], pD* [42, 43], and
Intensional OWL [9, Section 9.3]; have been de�ned in the literature and enable incomplete but sound RDFS
and OWL Full inferences.

In [42, 43], pD* was introduced as a combination of RDFS entailment, datatype reasoning and a distilled
version of OWL with rule-expressible intensional semantics: pD* entailment maintains the computational
complexity of RDFS entailment, which is in NP in general and P for the ground case. Such improvement
in complexity has obvious advantages in our web reasoning scenario; thus SAOR's approach to reasoning
is inspired by the pD* fragment to cover large parts of OWL by positive inference rules which can be
implemented in a forward-chaining engine.

Table 1 summarises the pD* ruleset. The rules are divided into D*-entailment rules and P-entailment
rules. D*-entailment is essentially RDFS entailment [22] combined with some datatype reasoning. P-
entailment is introduced in [43] as a set of rules which applies to a property-related subset of OWL.

Given pD*, we make some amendments so as to align the ruleset with our requirements. Table 2 provides
a full listing of our own modi�ed ruleset, which we compare against pD* in this section. Note that this table
highlights characteristics of the rules which we will discuss in Section 3.3 and Section 3.4; for the moment
we point out that rule0 is used to indicate an amendment to the respective pD* rule. Please also note that
we use the notation rulex* to refer to all rules with the pre�x rulex.

4http://xmlns.com/foaf/spec/index.rdf
5Tim (now the same entity as the W3C) is asserted to be a member of the two disjoint classes: foaf:Person and

foaf:Organization.

7

http://xmlns.com/foaf/spec/index.rdf

pD* rule where
D* -entailment rules

lg ?x ?P ?l .) ?v ?P :bl . ?l2 La

gl ?x ?P :bl .) ?x ?P ?l . ?l2 L
rdf1 ?x ?P ?y .) ?P a rdf:Property .
rdf2-D ?x ?P ?l .) :bl ?type ?t . ?l= (s; t) 2 Lt

rdfs1 ?x ?P ?l .) :bl a Literal . ?l2 Lp

rdfs2 ?P rdfs:domain ?C . ?x ?P ?y .) ?x a ?C .
rdfs3 ?P rdfs:range ?C . ?x ?P ?y .) ?y a ?C . ?y 2 U [B
rdfs4a ?x ?P ?y .) ?x a rdfs:Resource .
rdfs4b ?x ?P ?y .) ?y a rdfs:Resource . ?y2 U [B
rdfs5 ?P rdfs:subProperty ?Q . ?Q rdfs:subProperty ?R .) ?P rdfs:subProperty ?R .
rdfs6 ?P a rdf:Property .) ?P rdfs:subProperty ?P .
rdfs7 ?P rdfs:subProperty ?Q . ?x ?P ?y .) ?x ?Q ?y . ?Q2 U [B
rdfs8 ?C a rdfs:Class .) ?C rdfs:subClassOf rdfs:Resource .
rdfs9 ?C rdfs:subClassOf ?D . ?x a ?C .) ?x a ?D .
rdfs10 ?C a rdfs:Class .) ?C rdfs:subClassOf ?C .
rdfs11 ?C rdfs:subClassOf ?D . ?D rdfs:subClassOf ?E .) ?C rdfs:subClassOf ?E .
rdfs12 ?P a rdfs:ContainerMembershipProperty .) ?P rdfs:subPropertyOf rdfs:member .
rdfs13 ?D a rdfs:Datatype .) ?D rdfs:subClassOf rdfs:Literal .

P-entailment rules
rdfp1 ?P a :FunctionalProperty . ?x ?P ?y , ?z .) ?y :sameAs ?z . ?y 2 U [B
rdfp2 ?P a :InverseFunctionalProperty . ?x ?P ?z . ?y ?P ?z .) ?x :sameAs ?y .
rdfp3 ?P a :SymmetricProperty . ?x ?P ?y .) ?y ?P ?x . ?y 2 U [B
rdfp4 ?P a :TransitiveProperty . ?x ?P ?y . ?y ?P ?z .) ?x ?P ?z .
rdfp5a ?x ?P ?y .) ?x :sameAs ?x .
rdfp5b ?x ?P ?y .) ?y :sameAs ?y . ?y2 U [B
rdfp6 ?x :sameAs ?y .) ?y :sameAs ?x . ?y2 U [B
rdfp7 ?x :sameAs ?y . ?y :sameAs ?z .) ?x :sameAs ?z .
rdfp8a ?P :inverseOf ?Q . ?x ?P ?y .) ?y ?Q ?x . ?y,?Q2 U [B
rdfp8b ?P :inverseOf ?Q . ?x ?Q ?y .) ?y ?P ?x . ?y 2 U [B
rdfp9 ?C a :Class ; :sameAs ?D .) ?C rdfs:subClassOf ?D .
rdfp10 ?P a :Property ; :sameAs ?Q .) ?P rdfs:subPropertyOf ?Q .
rdfp11 ?x :sameAs ? x . ?y :sameAs ? y . ?x ?P ?y .) ? x ?P ? y . ? x 2 U [B
rdfp12a ?C :equivalentClass ?D .) ?C rdfs:subClassOf ?D .
rdfp12b ?C :equivalentClass ?D .) ?D rdfs:subClassOf ?C . ?D2 U [B
rdfp12c ?C rdfs:subClassOf ?D . ?D rdfs:subClassOf ?C .) ?C :equivalentClass ?D .
rdfp13a ?P :equivalentProperty ?Q .) ?P rdfs:subPropertyOf ?Q .
rdfp13b ?P :equivalentProperty ?Q .) ?Q rdfs:subPropertyOf ?P . ?Q2 U [B
rdfp13c ?P rdfs:subPropertyOf ?Q . ?Q rdfs:subPropertyOf ?P .) ?P :equivalentProperty ?Q .
rdfp14a ?C :hasValue ?y ; :onProperty ?P . ?x ?P ?y .) ?x a ?C .
rdfp14b ?C :hasValue ?y ; :onProperty ?P . ?x a ?C .) ?x ?P ?y . ?P2 U [B
rdfp15 ?C :someValuesFrom ?D ; :onProperty ?P . ?x ?P ?y . ?y a ?D .) ?x a ?C .
rdfp16 ?C :allValuesFrom ?D ; :onProperty ?P . ?x a ?C; ?P ?y .) ?y a ?D . ?y2 U [B

Table 1: Ter-Horst rules from [42, 43] in Turtle-style syntax

a :bl is a surrogate blank node given by an injective function on the literal ?l

pD* Rules Directly Supported From the set of pD* rules, we directly support rules rdfs2, rdfs9,
rdfp2, rdfp4, rdfp7, and rdfp17.

pD* Omissions: Extended-Axiomatic Statements We avoid pD* rules which speci�cally produce
what we term extended-axiomatic statements mandated by RDFS and OWL semantics. Firstly, we do not
infer the set of pD* axiomatic triples, which are listed in [43, Table 3] and [43, Table 6] for RDF(S) and
OWL respectively; according to pD*, these are inferred for the empty graph. Secondly, we do not materialise
membership assertions for rdfs:Resource which would hold for every URI and blank node in a graph. Thirdly,
we do not materialise reexive :sameAs membership assertions, which again hold for every URI and blank
node in a graph. We see such statements as inationary and orthogonal to our aim of reduced output.

pD* Amendments: :sameAs Inferencing From the previous set of omissions, we do not infer reexive
:sameAs statements. However, such reexive statements are required by pD* rule rdfp11. We thus fragment
the rule into rdfp110 and rdfp1100 which allows for the same inferencing without such reexive statements.

In a related issue, we wittingly do not allow :sameAs inferencing to interfere with terminological data:
for example, we do not allow :sameAs inferencing to a�ect properties in the predicate position of a triple
or classes in the object position of an rdf:type triple. In [23] we showed that :sameAs inferencing through
:InverseFunctionalProperty reasoning caused fallacious equalities to be asserted due to noisy web data.

8

SAOR rule where
R0 : only terminological patterns in antecedent

rdfc0 ?C :oneOf (?x1 ... ?xn) .) ?x1 ... ?xn a ?C . ?C 2 B

R1 : at least one terminological/only one assertional pattern in antecedent
rdfs2 ?P rdfs:domain ?C . ?x ?P ?y .) ?x a ?C .
rdfs30 ?P rdfs:range ?C . ?x ?P ?y .) ?y a ?C .
rdfs70 ?P rdfs:subPropertyOf ?Q . ?x ?P ?y .) ?x ?Q ?y .
rdfs9 ?C rdfs:subClassOf ?D . ?x a ?C .) ?x a ?D .
rdfp30 ?P a :SymmetricProperty . ?x ?P ?y .) ?y ?P ?x .
rdfp8a0 ?P :inverseOf ?Q . ?x ?P ?y .) ?y ?Q ?x .
rdfp8b0 ?P :inverseOf ?Q . ?x ?Q ?y .) ?y ?P ?x .
rdfp12a0 ?C :equivalentClass ?D . ?x a ?C .) ?x a ?D .
rdfp12b0 ?C :equivalentClass ?D . ?x a ?D .) ?x a ?C .
rdfp13a0 ?P :equivalentProperty ?Q . ?x ?P ?y .) ?y ?Q ?x .
rdfp13b0 ?P :equivalentProperty ?Q . ?x ?Q ?y .) ?y ?P ?x .
rdfp14a0 ?C :hasValue ?y ; :onProperty ?P . ?x ?P ?y .) ?x a ?C . ?C 2 B
rdfp14b0 ?C :hasValue ?y ; :onProperty ?P . ?x a ?C .) ?x ?P ?y . ?C 2 B
rdfc1 ?C :unionOf (?C1...?Ci...?Cn) . ?x a ?Ci

a .) ?x a ?C . ?C 2 B

rdfc2 ?C :minCardinality 1 ; :onProperty ?P . ?x ?P ?y .) ?x a ?C . ?C 2 B
rdfc3a ?C :intersectionOf (?C1 ... ?Cn) . ?x a ?C .) ?x a ?C1, ..., ?Cn . ?C 2 B

rdfc3b ?C :intersectionOf (?C1) . ?x a ?C1 .) ?x a ?C . b ?C 2 B

R2 : at least one terminological/multiple assertional patterns in antecedent
rdfp10 ?P a :FunctionalProperty . ?x ?P ?y , ?z .) ?y :sameAs ?z .
rdfp2 ?P a :InverseFunctionalProperty . ?x ?P ?z . ?y ?P ?z .) ?x :sameAs ?y .
rdfp4 ?P a :TransitiveProperty . ?x ?P ?y . ?y ?P ?z .) ?x ?P ?z .
rdfp150 ?C :someValuesFrom ?D ; :onProperty ?P . ?x ?P ?y . ?y a ?D .) ?x a ?C . ?C 2 B
rdfp160 ?C :allValuesFrom ?D ; :onProperty ?P . ?x a ?C ; ?P ?y .) ?y a ?D . ?C 2 B
rdfc3c ?C :intersectionOf (?C1 ... ?Cn) . ?x a ?C1, ..., ?Cn .) ?x a ?C . ?C 2 B

rdfc4a ?C :cardinality 1 ; :onProperty ?P . ?x a ?C ; ?P ?y , ?z .) ?y :sameAs ?z . ?C 2 B
rdfc4b ?C :maxCardinality 1 ; :onProperty ?P . ?x a ?C ; ?P ?y , ?z .) ?y :sameAs ?z . ?C 2 B

R3 : only assertional patterns in antecedent
rdfp60 ?x :sameAs ?y .) ?y :sameAs ?x .
rdfp7 ?x :sameAs ?y . ?y :sameas ?z .) ?x :sameAs ?z .
rdfp110 ?x :sameAs ? x ; ?P ?y .) ? x ?P ?y . c

rdfp1100 ?y :sameAs ? y . ?x ?P ?y .) ?x ?P ? y . c

Table 2: Supported rules in Turtle-style syntax. Terminological patterns are underlined whereas assertional
patterns are not; further, rules are grouped according to arity of terminological/assertional patterns in the
antecedent. The source of a terminological pattern instance must speak authoritatively for at least one
boldface variable binding for the rule to �re.

a?Ci 2 f?C1; :::; ?Cng
brdfs3b is a special case of rdfs3c with one A-Box pattern and thus falls under R1.
cOnly where ?p is not an RDFS/OWL property used in any of our rules (e.g., see PSAOR, Section 3.3)

This is the primary motivation for us also omitting rules rdfp9, rdfp10 and the reason why we place
the restriction on ?p for our rule rdfp1100; we do not want noisy equality inferences to be reected in the
terminological segment of our knowledge-base, nor to a�ect the class and property positions of membership
assertions.

pD* Omissions: Terminological Inferences From pD*, we also omit rules which infer only termino-
logical statements: namely rdf1, rdfs5, rdfs6, rdfs8, rdfs10, rdfs11, rdfs12, rdfs13, rdfp9, rdfp10,
rdfp12* and rdfp13*. As such, our use-case is query-answering over assertional data; we therefore focus
in this paper on materialising assertional data.

We have already motivated omission of inference through :sameAs rules rdfp9 and rdfp10. Rules
rdf1, rdfs8, rdfs12 and rdfs13 infer memberships of, or subclass/subproperty relations to, RDF(S) classes
and properties; we are not interested in these primarily syntactic statements which are not directly used

9

in our inference rules. Rules rdfs6 and rdfs10 infer reexive memberships of rdfs:subPropertyOf and
rdfs:subClassOf meta-properties which are used in our inference rules; clearly however, these reexive state-
ments will not lead to unique assertional inferences through related rules rdfs70 or rdfs9 respectively. Rules
rdfs5 and rdfs11 infer transitive memberships again of rdfs:subPropertyOf and rdfs:subClassOf; again
however, exhaustive application of rules rdfs70 or rdfs9 respectively ensures that all possible assertional
inferences are materialised without the need for the transitive rules. Rules rdfp12c and rdfp13c infer addi-
tional :equivalentClass/:equivalentProperty statements from rdfs:subClassOf/rdfs:subPropertyOf state-
ments where assertional inferences can instead be conducted through two applications each of rules rdfs9
and rdfs70 respectively.

pD* Amendments: Direct Assertional Inferences The observant reader may have noticed that we
did not dismiss inferencing for rules rdfp12a,rdfp12b/rdfp13a,rdfp13b which translate :equivalent-

Class/:equivalentProperty to rdfs:subClassOf/rdfs:subPropertyOf. In pD*, these rules are required to
support indirect assertional inferences through rules rdfs9 and rdfs7 respectively; we instead support asser-
tional inferences directly from the :equivalentProperty/:equivalentClass statements using symmetric rules
rdfp12a0,rdfp12b0/rdfp13a0,rdfp13b0.

pD* Omissions: Existential Variables in Consequent We avoid rules with existential variables in
the consequent; such rules would require adaptation of the Tr operator so as to \invent" new blank nodes for
each rule application, with undesireable e�ects for forward-chaining reasoning regarding termination. For
example, like pD*, we only support inferences in one direction for :someValuesFrom and avoid a rule such as:

?C :someValuesFrom ?D ; :onProperty ?P . ?x a ?C) ?x ?P :b . :b a ?D .

Exhaustive application of the rule to, for example, the following data (more generally where ?D is a subclass
of ?C):

ex:Person rdfs:subClassOf [:someValuesFrom ex:Person ; :onProperty ex:mother .]

:Tim a ex:Person .

would infer in�nite triples of the type:

:Tim ex:mother :b0 .

:b0 a ex:Person ; ex:mother :b1 .

:b1 a ex:Person ; ex:mother :b2 .

...

In fact, this rule is listed in [43] as rdf-svx which forms an extension of pD* entailment called pD*sv.
This rule is omitted from pD* and from SAOR due to obvious side-e�ects on termination and complexity.

Unlike pD*, we also avoid inventing so called \surrogate" blank nodes for the purposes of representing
a literal in intermediary inferencing steps (Rules lg, gl, rdf2-D, rdfs1 in RDFS/D* entailment). Thus, we
also do not support datatype reasoning (Rule rdf2-D) which involves the creation of surrogate blank nodes.
Although surrogate blank nodes are created according to a direct mapping from a �nite set of literals (and
thus, do not prevent termination), we view \surrogate statements" as inationary.

pD* Amendments: Relaxing Literal Restrictions Since we do not support surrogate blank nodes
as representing literals, we instead relax restrictions placed on pD* rules. In pD*, blank nodes are allowed
in the predicate position of triples; however, the restriction on literals in the subject and predicate position
still applies: literals are restricted from travelling to the subject or predicate position of a consequent (see
where column, Table 1). Thus, surrogate blank nodes are required in pD* to represent literals in positions
where they would otherwise not be allowed.

We take a di�erent approach whereby we allow literals directly in the subject and predicate position
for intermediate inferences. Following from this, we remove pD* literal restrictions on rules rdfs3, rdfs7,
rdfp1, rdfp3, rdfp6, rdfp8*, rdfp14b, rdfp16 for intermediate inferences and omit any inferred non-RDF
statements from being written to the �nal output.

10

Additions to pD* In addition to pD*, we also include some \class based entailment" from OWL, which
we call C-entailment. We name such rules using the rdfc* stem, following the convention from P-entailment.
We provide limited support for enumerated classes (rdfc0), union class descriptions (rdfc1), intersection
class descriptions (rdfc3*)6, as well as limited cardinality constraints (rdfc2, rdfc4*).

pD* Amendments: Enforcing OWL Abstract Syntax Restrictions Finally, unlike pD*, we enforce
blank nodes as mandated by the OWL Abstract Syntax [37], wherein certain abstract syntax constructs (most
importantly in our case: unionOf(description1...descriptionn), intersectionOf(description1...descriptionn),
oneOf(iID1...iIDn), restriction(ID allValuesFrom(range)), restriction(ID someValuesFrom(required)), restric-
tion(ID value(value)), restriction(ID maxCardinality(max)), restriction(ID minCardinality(min)), restric-
tion(ID cardinality(card)) and SEQ item1...itemn) are strictly mapped to RDF triples with blank nodes
enforced for certain positions: such mapping is necessitated by the idiosyncrasies of representing OWL in
RDF. Although the use of URIs in such circumstances is allowed by RDF, we enforce the use of blank nodes
for terminological patterns in our ruleset; to justify, let us look at the following problematic example of OWL
triples taken from two sources:

Example 3.1 :
FROM SOURCE <ex:>

ex:Person :onProperty ex:parent ; :someValuesFrom ex:Person .

FROM SOURCE <ex2:>

ex:Person :allValuesFrom ex2:Human . 3

According to the abstract syntax mapping, neither of the restrictions should be identi�ed by a URI (if
blank nodes were used instead of ex:Person as mandated by the abstract syntax, such a problem could not
occur as each web-graph is given a unique set of blank nodes). If we consider the RDF-merge of the two
graphs, we will be unable to distinguish which restriction the :onProperty value should be applied to. As
above, allowing URIs in these positions would enable \syntactic interference" between data sources. Thus,
in our ruleset, we always enforce blank-nodes as mandated by the OWL abstract syntax; this speci�cally
applies to pD* rules rdfp14*, rdfp15 and rdfp16 and to all of our C-entailment rules rdfc*. We denote
the restrictions in the where column of Table 2. Indeed, in our treatment of terminological collection
statements, we enforced blank nodes in the subject position of rdf:first/rdf:rest membership assertions,
as well as blank nodes in the object position of non-terminating rdf:rest statements; these are analogously
part of the OWL abstract syntax restrictions.

3.3 Separation of T-Box from A-Box

Aside from the di�erences already introduced, our primary divergence from the pD* fragment and traditional
rule-based approaches is that we separate terminological data from assertional data according to their use
of the RDF(S) and OWL vocabulary; these are commonly known as the \T-Box" and \A-Box" respectively
(loosely borrowing Description Logics terminology). In particular, we require a separation of T-Box data
as part of a core optimisation of our approach; we wish to perform a once-o� load of T-Box data from our
input knowledge-base into main memory.

Let PSAOR and CSAOR be, resp., the exact set of RDF(S)/OWL meta-properties and -classes used in our
inference rules; viz. PSAOR = f rdfs:domain, rdfs:range, rdfs:subClassOf, rdfs:subPropertyOf, :all-

ValuesFrom, :cardinality, :equivalentClass, :equivalentProperty, :hasValue, :intersectionOf, :inver-

seOf, :maxCardinality, :minCardinality, :oneOf, :onProperty, :sameAs, :someValuesFrom, :unionOf g &
CSAOR = f :FunctionalProperty, :InverseFunctionalProperty, :SymmetricProperty, :TransitiveProperty

g; our T-Box is a set of terminological triples restricted to only include membership assertions for PSAOR and
CSAOR and the set of terminological collection statements. Table 2 identi�es T-Box patterns by underlining.

6In [43], rules using RDF collection constructs were not included (such as our rules rdfc0,rdfc1,rdfc3*) as they have variable
antecedent-body length and, thus, can a�ect complexity considerations. It was informally stated that :intersectionOf and
:unionOf could be supported under pD* through reduction into subclass relations; however no rules were explicitly de�ned
and our rule rdfc3b could not be supported in this fashion. We support such rules here since we are not so concerned for the
moment with theoretical worst-case complexity, but are more concerned with the practicalities of web reasoning.

11

Statements from the input knowledge-base that match these patterns are all of the T-Box statements we
consider in our reasoning process: inferred statements or statements that do not match one of these patterns
are not considered being part of the T-Box, but are treated purely as assertional. We now de�ne our T-Box:

De�nition 1 (T-Box) Let TG be the union of all graph pattern instances from a graph G for a terminological
(underlined) graph pattern in Table 2; i.e., TG is itself a graph. We call TG the T-Box of G.

Also, let PdomP
SAOR = f rdfs:domain, rdfs:range, rdfs:subPropertyOf, :equivalentProperty, :inverse-

Of g and PranP
SAOR = f rdfs:subPropertyOf, :equivalentProperty, :inverseOf, :onProperty g, We call � a

property in T-Box T if there exists a triple t2 T where

� s = � and p2 PdomP
SAOR

� p2 PranP
SAOR and o = �

� s = �, p=rdf:type and o2 CSAOR

Similarly, let PdomC
SAOR = f rdfs:subClassOf, :allValuesFrom, :cardinality, :equivalentClass, :has-

Value, :intersectionOf, :maxCardinality, :minCardinality, :oneOf, :onProperty, :someValuesFrom, :un-

ionOf g, PranC
SAOR = f rdf:first, rdfs:domain, rdfs:range, rdfs:subClassOf, :allValuesFrom, :equivalent-

Class, :someValuesFrom g. We call � a class in T-Box T if there exists a triple t2 T where

� p2 PdomC
SAOR and s = �

� p2 PranC
SAOR and o = �

We de�ne the signature of a T-Box T to be the set of all properties and classes in T as above, which we
denote by sig(T).

For our knowledge-base KB, we de�ne our T-Box T as the set of all pairs (TW0 ; c) where (W 0; c) 2 KB
and TW0 6= ;. Again, we may use the intuitive notation TW0 2 T. We de�ne our A-Box A as containing all
of the statements in KB, including T and the set of class and property membership assertions possibly using
identi�ers in PSAOR [CSAOR; i.e., unlike description logics, our A is synonymous with our KB. We use the
term A-Box to distinguish data that are stored on-disk (which includes T-Box data also stored in memory).

We now de�ne our notion of a T -split inference rule, whereby part of the antecedent is a basic graph
pattern strictly instantiated by a static T-Box T .

De�nition 2 (T -split inference rule) We de�ne a T -split inference rule as a triple (AnteT ;AnteG ; Con),
where AnteT is a basic graph pattern matched by a static T-Box T and AnteG is matched by data in the
graph G, Con does not contain blank nodes, V(Con) 6= ;, V(Con) � V(AnteT) [V(AnteG); also, if both
AnteT and AnteG are non-empty, then V(AnteT) \ V(AnteG) 6= ;

We generally write (AnteT ;AnteG ; Con) as AnteTAnteG) Con where Table 2 follows this conven-
tion. We call AnteT the terminological or T-Box antecedent pattern and AnteG the assertional or A-Box
antecedent pattern.

We now de�ne three disjoint sets of T -split rules which consist of only a T-Box graph pattern, both a
T-Box and A-Box graph pattern and only an A-Box graph pattern:

De�nition 3 (Rule-sets RT ;RT G ;RG) We de�ne RT as the set of T -split rules for which AnteT 6= ;
and AnteG = ;. We de�ne RT G as the set of T -split rules for which AnteT 6= ; and AnteG 6= ;. We de�ne
RG as the set of T -split rules for which AnteT = ; and AnteG 6= ;.

In Table 2, we categorise the T -split rules into four rulesets: R0 � RT ; R1 � RT G where jAnteG j = 1;
R2 � RT G where jAnteG j > 1 and R0 � RG . We now introduce the notion of a T -split inference rule
application for a graph G w.r.t. a T-Box T :

De�nition 4 (T -split inference rule application) We de�ne a T -split rule application to be Tr(T ;G)
for r = (AnteT ;AnteG ; Con) as follows:

Tr(T ;G) = f�(Con) j 9� such that �(AnteT) � T and �(AnteG) � Gg

12

Again, TR(T ;G) =
S
r2R Tr(T ;G); also, given T as static, the exhaustive application of the TR(T ;G)

up to the least �xpoint is called the T -split closure of G, denoted as ClR(T ;G). Again we use abbreviations
such as TR(T;KB) and ClR(T;KB), where KB should be interpreted as

S
W02KBW

0 and T as
S
TW02T TW0 .

Please note that since we enforce blank nodes in all positions mandated by the OWL abstract syntax for
our rules, each instance of a given graph patternAnteT can only contain triples from one web graphW 0 where
TW0 2 T. Let VB(GP) be the set of all variables in a graph pattern GP which we restrict to only be instantiated
by a blank node according to the abstract syntax. For all AnteT in our rules where jAnteT j > 1 let Ante�T be
any proper non-empty subset of AnteT ; we can then say that VB(Ante

�
T)\VB(AnteT nAnte

�
T) 6= ;. In other

words, since for every rule either (i) AnteT = ;; or (ii) AnteT consists of a single triple pattern; or otherwise
(iii) no sub-pattern of AnteT contains a unique set of blank-node enforced variables; then a given instance of
AnteT can only contain triples from one web-graph with unique blank nodes as is enforced by our knowledge-
base. For our ruleset, we can then say that TR(T;KB) = TR(

S
TW02T TW0 ;KB) =

S
TW02T TR(TW0 ;KB). In

other words, one web-graph cannot re-use structural statements in another web-graph to instantiate a T-Box
pattern in our rule; this has bearing on our notion of authoritative reasoning which will be highlighted at
the end of Section 3.4.

Further, a separate static T-Box within which inferences are not reected has implications upon the
completeness of reasoning w.r.t. the presented ruleset. Although, as presented in Section 3.2, we do not
infer terminological statements and thus can support most inferences directly from our static T-Box, SAOR
still does not fully support meta-modelling [33]: by separating the T-Box segment of the knowledge-base,
we do not support all possible entailments from the simultaneous description of both a class (or property)
and an indvidual. In other words, we do not fully support inferencing for meta-classes or meta-properties
de�ned outside of the RDF(S)/OWL speci�cation.

However, we do provide limited reasoning support for meta-modelling in the spirit of \punning" by
conceptually separating the individual-, class- or property-meanings of a resource (c.f. [14]). More precisely,
during reasoning we not only store the T-Box data in memory, but also store the data on-disk in the A-
Box. Thus, we perform punning in one direction: viewing class and property descriptions which form our
T-Box also as individuals. Interestingly, although we do not support terminological reasoning directly, we
can through our limited punning perform reasoning for terminological data based on the RDFS descriptions
provided for the RDFS and OWL speci�cations. For example, we would infer the following by storing the
three input statements in both the T-Box and the A-Box:

rdfs:subClassOf rdfs:domain rdfs:Class; rdfs:range rdfs:Class .

ex:Class1 rdfs:subClassOf ex:Class2 .)

ex:Class1 a rdfs:Class . ex:Class2 a rdfs:Class .

However, again our support for meta-modelling is limited; SAOR does not fully support so-called \non-
standard usage" of RDF(S) and OWL: the use of properties and classes which make up the RDF(S) and
OWL vocabularies in locations where they have not been intended, cf. [6, 34]. We adapt and re�ne the
de�nition of non-standard vocabulary use for our purposes according to the parts of the RDF(S) and OWL
vocabularies relevant for our inference ruleset:

De�nition 5 (Non-Standard Vocabulary Usage) An RDF triple t has non-standard vocabulary usage
if one of the following conditions holds:

1. a property in PSAOR appears in a position di�erent from the predicate position.

2. a class in CSAOR appears in a position di�erent from the object position of an rdf:type triple.

Continuing, we now introduce the following example wherein the �rst input statement is a case of non-
standard usage with rdfs:subClassOf2 PSAOR in the object position:7

ex:subClassOf rdfs:subPropertyOf rdfs:subClassOf .

ex:Class1 ex:subClassOf ex:Class2 .)

ex:Class1 rdfs:subClassOf ex:Class2 .

7A similar example from the Web can be found at http://thesauri.cs.vu.nl/wordnet/rdfs/wordnet2b.owl.

13

http://thesauri.cs.vu.nl/wordnet/rdfs/wordnet2b.owl

We can see that SAOR provides inference through rdfs:subPropertyOf as per usual; however, the inferred
triple will not be reected in the T-Box, thus we are incomplete and will not translate members of ex:Class1
into ex:Class2. As such, non-standard usage may result in T-Box statements being produced which, ac-
cording to our limited form of punning, will not be reected in the T-Box and will lead to incomplete
inference.

Indeed, there may be good reason for not fully supporting non-standard usage of the ontology vocabulary:
non-standard use could have unpredictable results even under our simple rule-based entailment if we were
to fully support meta-modelling. One may consider a �nite combination of only four non-standard triples
that, upon naive reasoning, would explode all web resources R by inferring jRj3 triples, namely:

rdfs:subClassOf rdfs:subPropertyOf rdfs:Resource.

rdfs:subClassOf rdfs:subPropertyOf rdfs:subPropertyOf.

rdf:type rdfs:subPropertyOf rdfs:subClassOf.

rdfs:subClassOf rdf:type :SymmetricProperty.

The exhaustive application of standard RDFS inference rules plus inference rules for property symmetry
together with the inference for class membership in rdfs:Resource for all collected resources in typical
rulesets such as pD* lead to inference of any possible triple (r1 r2 r3) for arbitrary r1; r2; r3 2 R.

Thus, although by maintaining a separate static T-Box we are incomplete w.r.t non-standard usage, we
show that complete support of such usage of the RDFS/OWL vocabularies is undesirable for the Web.8

3.4 Authoritative Reasoning against Ontology Hijacking

During initial evaluation of a system which implements reasoning upon the above ruleset, we encountered
a behaviour which we term \ontology hijacking", symptomised by a perplexing explosion of materialised
statements. For example, we noticed that for a single foaf:Person membership assertion, SAOR inferred
in the order of hundreds of materialised statements as opposed to the expected six. Such an explosion of
statements is orthogonal to the aim of reduced materialised statements we have outlined for SAOR; thus,
SAOR is designed to annul the diagnosed problem of ontology hijacking through anaylsis of the authority of
web sources for T-Box data. Before formally de�ning ontology hijacking and our proposed solution, let us
give some preliminary de�nitions:

De�nition 6 (Authoritative Source) A web-graphW from source (context) c speaks authoritatively about
an RDF term n i�:

1. n 2 B; or

2. n 2 U and c coincides with, or is redirected to by, the namespace9 of n.

Firstly, all graphs are authoritative for blank nodes de�ned in that graph (remember that according to
the de�nition of our knowledge-base, all blank nodes are unique to a given graph). Secondly, we support
namespace redirects so as to conform to best practices as currently adopted by web ontology publishers.10

For example, as taken from the Web:

� Source http://usefulinc.com/ns/doap is authoritative for all classes and properties which are within
the http://usefulinc.com/ns/doap namespace; e.g., http://usefulinc.com/ns/doap#Project.

� Source http://xmlns.com/foaf/spec/ is authoritative for all classes and properties which are within
the http://xmlns.com/foaf/0.1/ namespace; e.g., http://xmlns.com/foaf/0.1/knows; since the property
http://xmlns.com/foaf/0.1/knows redirects to http://xmlns.com/foaf/spec/.

8In any case, as we will see in Section 3.4, our application of authoritative analysis would not allow such arbitrary third-party
re-de�nition of core RDF(S)/OWL constructs.

9Here, slightly abusing XML terminology, by \namespace" of a URI we mean the pre�x of the URI obtained from stripping
o� the �nal NCname.

10See Appendix A&B of http://www.w3.org/TR/swbp-vocab-pub/

14

http://www.w3.org/TR/swbp-vocab-pub/

We consider the authority of sources speaking about classes and properties in our T-Box to counter-
act ontology hijacking; ontology hijacking is the assertion of a set of non-authoritative T-Box statements
such that could satisfy the T-Box antecedent pattern of a rule in RTG (i.e., those rules with at least one
terminological and at least one assertional triple pattern in the antecedent). Such third-party sources can
then cause arbitrary inferences on membership assertions of classes or properties (contained in the A-Box)
for which they speak non-authoritatively. We can say that only rules in RTG are relevant to ontology
hijacking since: (i) inferencing on RG, which does not contain any T-Box patterns, cannot be a�ected by
non-authoritative T-Box statements; and (ii) the RT ruleset does not contain any A-Box antecedent patterns
and therefore, cannot directly hijack assertional data (i.e., in our scenario, the :oneOf construct can be viewed
as directly asserting memberships, and is unable, according to our limited support, to directly rede�ne sets
of individuals). We now de�ne ontology hijacking:

De�nition 7 (Ontology Hijacking) Let TW be the T-Box extracted from a web-graph W and let csig(W)
be the set of classes and properties for which W speaks authoritatively; then if ClRT G (TW ;G) 6= G for any G

not mentioning any element of csig(W), we say that web-graph W is performing ontology hijacking.

In other words, ontology hijacking is the contribution of statements about classes and/or properties in a
non-authoritative source such that reasoning on those classes and/or properties is a�ected. One particular
method of ontology hijacking is de�ning new super-classes or properties of third-party classes or properties.

As a concrete example, if one were to publish today a description of a property in an ontology (in a
location non-authoritative for foaf: but authoritative for my:), my:name, within which the following was
stated: foaf:name rdfs:subPropertyOf my:name ., that person would be hijacking the foaf:name property
and e�ecting the translation of all foaf:name statements in the web knowledge-base into my:name statements
as well.

However, if the statement were instead my:name rdfs:subPropertyOf foaf:name ., this would not con-
stitute a case of ontology hijacking but would be a valid example of translating from a local authoritative
property into an external non-authoritative property.

Ontology hijacking is problematic in that it vastly increases the amount of statements that are materi-
alised and can potentially harm inferencing on data contributed by other parties. With respect to materiali-
sation, the former issue becomes prominent: members of classes/properties from popular/core ontologies get
translated into a plethora of conceptual models described in obscure ontologies; we quantify the problem in
Section 5. However, taking precautions against harmful ontology hijacking is growing more and more impor-
tant as the Semantic Web features more and more attention; motivation for spamming and other malicious
activity propagates amongst certain parties with ontology hijacking being a prospective avenue. With this
in mind, we assign sole responsibility for classes and properties and reasoning upon their members to those
who maintain the authoritative speci�cation.

Related to the idea of ontology hijacking is the idea of \non-conservative extension" described in the
Description Logics literature: cf. [13, 31, 27]. However, the notion of a \conservative extension" was de�ned
with a slightly di�erent objective in mind: according to the notion of deductively conservative extensions,
a graph Ga is only considered malicious towards Gb if it causes additional inferences with respect to the
intersection of the signature of the original Gb with the newly inferred statements. Returning to the former
my:name example from above, de�ning a super-property of foaf:name would still constitute a conservative
extension: the closure without the non-authoritative foaf:name rdfs:subPropertyOf my:name . statement is
the same as the closure with the statement after all of the my:name membership assertions are removed. How-
ever, further stating that my:name a :InverseFunctionalProperty. would not satisfy a model conservative
extension since members of my:name might then cause equalities in other remote ontologies as side-e�ects,
independent from the newly de�ned signature. Summarising, we can state that every non-conservative ex-
tension (with respect to our notion of deductive closure) constitutes a case of ontology hijacking, but not vice
versa; non-conservative extension can be considered \harmful" hijacking whereas the remainder of ontology
hijacking cases can be considered \inationary".

To negate ontology hijacking, we only allow inferences through authoritative rule applications, which we
now de�ne:

15

De�nition 8 (Authoritative Rule Application) Again let csig(W) be the set of classes and properties
for whichW speaks authoritatively and let TW be the T-Box ofW. We de�ne an authoritative rule application
for a graph G w.r.t. the T-Box TW to be a T -split rule application Tr(TW ;G) where additionally, if both
AnteT and AnteG are non-empty (r 2 RT G), then for the mapping � of Tr(TW ;G) there must exist a

variable v 2 (V(AnteT)\ V(AnteG)) such that �(v) 2 csig(W). We denote an authoritative rule application
by T

br(TW ;G).

In other words, an authoritative rule application will only occur if the rule consists of only assertional
patterns (RG); or the rules consists of only terminological patterns (RT); or if in application of the rule,
the terminological pattern instance is from a web-graph authoritative for at least one class or property in
the assertional pattern instance. The T

bR operator follows naturally as before for a set of authoritative rules
bR, as does the notion of authoritative closure which we denote by Cl

bR(TW ;G). We may also refer to, e.g.,
T
bR(T;KB) and Cl

bR(T;KB) as before for a T -split rule application.
Table 2 identi�es the authoritative restrictions we place on our rules wherein the underlined T-Box pattern

is matched by a set of triples from a web-graph W i� W speaks authoritatively for at least one element
matching a boldface variable in Table 2; i.e., again, for each rule, at least one of the classes or properties
matched by the A-Box pattern of the antecedent must be authoritatively spoken for by an instance of the
T-Box pattern. These restrictions only apply to R1 and R2 (which are both a subset of RT G). Please
note that, for example in rule rdfp14b0 where there are no boldface variables, the variables enforced to be
instantied by blank nodes will always be authoritatively spoken for: a web-graph is always authoritative for
its blank nodes.

We now make the following proposition relating to the prevention of ontology-hijacking through author-
itative rule application:

Proposition 1 Given a T-Box TW extracted from a web-graph W and any graph G not mentioning any
element of csig(W), then Cl[RT G

(TW ;G) = G.

Proof: Informally, our proposition is that the authoritative closure of a graph G w.r.t. some T-Box TW will
not contain any inferences which constitute ontology hijacking, de�ned in terms of ruleset RT G . Firstly,
from De�nition 3, for each rule r 2 RT G , AnteT 6= ; and AnteG 6= ;. Therefore, from De�nitions 4 &
8, for an authoritative rule application to occur for any such r, there must exist (i) a mapping � such
that �(AnteT ;) � TW and �(AnteG) � G; and (ii) a variable v 2 (V(AnteT) \ V(AnteG)) such that

�(v) 2 csig(W). However, since G does not mention any element of csig(W), then there is no such mapping

� where �(v) 2 csig(W) for v 2 V(AnteG), and �(AnteG) � G. Hence, for r 2 RT G , no such application
T
br(TW ;G) will occur; it then follows that T[RT G (TW ;G) = ; and Cl[RT G

(TW ;G) = G. 2

The above proposition and proof holds for a given web-graph W; however, given a set of web-graphs
where an instance of AnteT can consist of triples from more that one graph, it is possible for ontology
hijacking to occur whereby some triples in the instance come from a non-authoritative graph and some from
an authoritative graph. To illustrate we refer to Example 3.1, wherein (and without enforcing abstract
syntax blank nodes) the second source could cause ontology hijacking by interfering with the authoritative
de�nition of the class restriction in the �rst source as follows:

Example 3.2 :

RULE (adapted so that ?C need not be a blank node)

?C :allValuesFrom ?D ; :onProperty ?P . ?x a ?C ; ?P ?y .) ?y a ?D .

FROM SOURCE <ex:>

ex:Person :onProperty ex:parent .

FROM SOURCE <ex2:>

ex:Person :allValuesFrom ex2:Human .

ASSERTIONAL

:Jim a ex:Person ; ex:parent :Jill .

)

:Jill a ex2:Human . 3

16

Here, the above inference is authoritative according to our de�nition since the instance of AnteT (speci�cally
the �rst statement from source <ex:>) speaks authoritatively for a class/property in the assertional data;
however, the statement from source <ex2:> is causing inferences on assertional data not containing a class
or property for which source <ex2:> is authoritative .

As previously discussed, for our ruleset, we enforce the OWL abstract syntax and thus we enforce that
�(AnteT) � TW0 where TW0 2 T. However, where this condition does not hold (i.e., an instance of AnteT
can comprise of data from more than one graph), then an authoritative rule application should only occur if
each web-graph contributing to an instance of AnteT speaks authoritatively for at least one class/property
in the AnteG instance.

4 Reasoning Algorithm

In the following we �rst present observations on web data that inuenced the design of the SAOR algorithm,
then give an overview of the algorithm, and next discuss details of how we handle T-Box information, perform
statement-wise reasoning, and deal with equality for individuals.

4.1 Characteristics of Web Data

Our algorithm is intended to operate over a web knowledge-base as retrieved by means of a web crawl;
therefore, the design of our algorithm is motivated by observations on our web dataset:

1. Reasoning accesses a large slice of data in the index: we found that approximately 61% of statements
in the 147m dataset and 90% in the 1.1b dataset produced inferred statements through authoritative
reasoning.

2. Relative to assertional data, the volume of terminological data on the Web is small: <0.9% of the
statements in the 1.1b dataset and <1.7% of statements in the 147m dataset were classi�able as SAOR
T-Box statements11.

3. The T-Box is the most frequently accessed segment of the knowledge-base for reasoning: although
relatively small, all but the rules in R3 require access to T-Box information.

Following from the �rst observation, we employ a �le-scan batch-processing approach so as to enable
sequential access over the data and avoid disk-lookups and dynamic data structures which would not perform
well given high disk latency; also we avoid probing the same statements repeatedly for di�erent rules at the
low cost of scanning a given percentage of statements not useful for reasoning.

Following from the second and third observations, we optimise by placing T-Box data in a separate data
structure accessible by the reasoning engine.

Currently, we hold all T-Box data in-memory, but the algorithm can be generalised to provide for a
caching on-disk structure or a distributed in-memory structure as needs require.12

To be able to scale, we try to minimise the amount of main memory needed, given that main memory is
relatively expensive and that disk-based algorithms are thus more economical [29]. Given high disk latency,
we avoid using random-access on-disk data structures. In our previous work, a disk-based updateable random-
access data structure (a B+-Tree) proved to be the bottleneck for reasoning due to a high volume of inserts,
leading to frequent index reorganisations and hence inadequate performance. As a result, our algorithms are
now build upon two disk-based primitives known to scale: �le scanning and sorting.

4.2 Algorithm Overview

The SAOR algorithm performs a �xpoint computation by iteratively applying the rules in Table 2. Figure
1 outlines the architecture. The reasoning process can be roughly divided into the following steps:

11Includes some RDF collection fragments which may not be part of a class description
12We expect that a caching on-disk index would work well considering the distribution of membership assertions for classes

and properties in web data; there would be a high hit-rate for the cache.

17

Create
T-BoxKB T

Run R1
Rules

Initial
Output

Consolidate
(R3 Rules)

R3
Index

R2
Index

Cl (,)

Run R2/R3
Rules Processing

step

Data
structure

Data flow

Update R2/
R3 Indices

Section 4.3

Section 4.4

Section 4.5

Section 4.6

^

Run R0
Rules

Figure 1: High-level architecture

1. Separate T from KB, build in-memory representation T, and apply ruleset R0 (Section 4.3).

2. Perform reasoning over KB in a statement-wise manner (Section 4.4):

� Execute rules with only a single A-Box triple pattern in the antecedent (R1): join A-Box pattern
with in-memory T-Box; recursively execute steps over inferred statements; write inferred RDF
statements to output �le.

� Write on-disk �les for computation of rules with multiple A-Box triple patterns in the antecedent
(R2); when a statement matches one of the A-Box triple patterns for these rules and the necessary
T-Box join exists, the statement is written to the on-disk �le for later rule computation.

� Write on-disk equality �le for rules which involve equality reasoning (R3); :sameAs statements
found during the scan are written to an on-disk �le for later computation.

3. Execute ruleset R2 [R3: on-disk �les containing partial A-Box antecedent matches for rules in R2
and R3 are sequentially analysed producing further inferred statements. Newly inferred statements are
again subject to step 2 above; fresh statements can still be written to on-disk �les and so the process
is iterative until no new statements are found (Section 4.5).

4. Finally, consolidate source data along with inferred statements according to :sameAs computation (R3)
and write to �nal output (Section 4.6).

In the following sections, we discuss the individual components and processes in the architecture as
highlighted, whereafter, in Section 4.7 we show how these elements are combined to achieve closure.

18

4.3 Handling Terminological Data

In the following, we describe how to separate the T-Box data and how to create the data structures for
representing the T-Box.

T-Box data from RDFS and OWL speci�cations can be acquired either from conventional crawling
techniques, or by accessing the locations pointed to by the dereferenced URIs of classes and properties in the
data. We assume for brevity that all of the pertinent terminological data have already been collected and
exist in the input data. If T-Box data are sourced separately via di�erent means we can build an in-memory
representation directly, without requiring the �rst scan of all input data.

We apply the following algorithm to create the T-Box in-memory representation, which we will analyse
in the following sections:

1. FULL SCAN 1: separate T-Box information as described in De�nition 1.

2. TBOX SCAN 1 & 2: reduce irrelevant RDF collection statements.

3. TBOX SCAN 3: perform authoritative analysis of the T-Box data and load in-memory representation.

4.3.1 Separating and Reducing T-Box Data

Firstly, we wish to separate all possible T-Box statements from the main bulk of data. PSAOR and CSAOR
are stored in memory and then the data dump is scanned. Quadruples with property 2 PSAOR[frdf:first,
rdf:rest g or rdf:type statements with object 2 CSAOR (which, where applicable, abide by the OWL abstract
syntax) are bu�ered to a T-Box data �le.

However, the T-Box data �le still contains a large amount of RDF collection statements (property 2
f rdf:first, rdf:rest g) which are not related to reasoning. SAOR is only interested in such statements
wherein they form part of a :unionOf, :intersectionOf or :oneOf class description. Later when the T-Box is
being loaded, these collection fragments are reconstructed in-memory and irrelevant collection fragments are
discarded; to reduce the amount of memory required we can quickly discard irrelevant collection statements
through two T-Box scans:

� scan the T-Box data and store contexts of statements where the property 2 f :unionOf, :intersectionOf,
:oneOf g.

� scan the T-Box data again and remove statements for which both hold:

{ property 2 f rdf:first, rdf:rest g

{ the context does not appear in those stored from the previous scan.

These scans quickly remove irrelevant collection fragments where a :unionOf, :intersectionOf, :oneOf
statement does not appear in the same source as the fragment (i.e., collections which cannot contribute to
the T-Box pattern of one of our rules).

4.3.2 Authoritative Analysis

We next apply authoritative analysis to the T-Box and load the results into our in-memory representation;
in other words, we build an authoritative T-Box which pre-computes authority of T-Box data. We denote
our authoritative T-Box by bT, whereby Cl

bR(T;KB) = ClR(bT;KB); for each rule, bT only contains T-Box
pattern instances for AnteT which can lead to an authoritative rule application.

Each statement read is initially matched without authoritative analysis against the patterns enumerated
in Table 3. If a pattern is initially matched, the positions required to be authoritative, as identi�ed in
boldface, are checked. If one such authoritative check is sati�ed, the pattern is loaded into the T-Box.
Indeed the same statement may be matched by more than one T-Box pattern for di�erent rules with di�erent
authoritative restrictions; for example the statement foaf:name :equivalentProperty my:name . retrieved
from my: namespace matches the T-Box pattern of rules rdfp13a0 & rdfp13b0, but only conforms to the
authoritative restriction for rule rdfp13b0. Therefore, we only store the statement in such a fashion as to

19

apply to rule rdfp13b0; that is, the authoritative T-Box stores T-Box pattern instances separately for each
rule, according to the authoritative restrictions for that rule.

Checking the authority of a source for a given namespace URI, as presented in De�nition 6, may require
a HTTP connection to the namespace URI so as to determine whether a redirect exists to the authoritative
document (HTTP Response Code 303). Results of accessing URIs are cached once in-memory so as to avoid
establishing repetitive connections. If the pattern is authoritatively matched, the statement is reected in
the in-memory T-Box. Alternatively, where available, a crawler can provide a set of redirect pairs which
can be loaded into the system to avoid duplicating HTTP lookups; we presume for generality that such
information is not provided.

R0

rdfc0 ?C :oneOf (?x1 ... ?xn) . (?x1 ... ?xn)
rdfc0
! ?C

R1

rdfs2 ?P rdfs:domain ?C . ?P
rdfs2
! ?C

rdfs30 ?P rdfs:range ?C . ?P
rdfs30

! ?C

rdfs70 ?P rdfs:subPropertyOf ?Q . ?P
rdfs70

! ?Q

rdfs9 ?C rdfs:subClassOf ?D . ?C
rdfs9
! ?D

rdfp30 ?P a :SymmetricProperty . ?P
rdfp30

! TRUE

rdfp8a0 ?P :inverseOf ?Q . ?P
rdfp8a0

! ?Q

rdfp8b0 ?P :inverseOf ?Q . ?Q
rdfp8b0

! ?P

rdfp12a0 ?C :equivalentClass ?D . ?C
rdfp12a0

! ?D

rdfp12b0 ?C :equivalentClass ?D . ?D
rdfp12b0

! ?C

rdfp13a0 ?P :equivalentProperty ?Q . ?P
rdfp13a0

! ?Q

rdfs13b0 ?P :equivalentProperty ?Q . ?Q
rdfs13b0

! ?P

rdfp14a0 ?C :hasValue ?y ; :onProperty ?P . ?P
rdfp14a0

! f ?C, ?y g

rdfp14b0 ?C :hasValue ?y ; :onProperty ?P . ?C
rdfp14b0

! f ?P, ?y g

rdfc1 ?C :unionOf (?C1...?Ci...?Cn) . ?Ci

rdfc1
! ?C

rdfc2 ?C :minCardinality 1 ; :onProperty ?P . ?P
rdfc2
! ?C

rdfc3a ?C :intersectionOf (?C1 ... ?Cn) . ?C
rdfc3a
! f ?C1, ..., ?Cn g

rdfc3b ?C :intersectionOf (?C1) . ?C1

rdfc3b
! ?C

R2

rdfp10 ?P a :FunctionalProperty . ?P
rdfp10

! TRUE

rdfp2 ?P a :InverseFunctionalProperty . ?P
rdfp2
! TRUE

rdfp4 ?P a :TransitiveProperty . ?P
rdfp4
! TRUE

rdfp150 ?C :someValuesFrom ?D ; :onProperty ?P . ?P
rdfp150

$?D
rdfp150

! ?C

rdfp160 ?C :allValuesFrom ?D ; :onProperty ?P . ?P
rdfp160

$?C
rdfp160

! ?D

rdfc3c ?C :intersectionOf (?C1 ... ?Cn) . f ?C1, ..., ?Cn g
rdfc3c
! ?C

rdfc4a ?C :cardinality 1 ; :onProperty ?P . ?C
rdfc4a
$?P

rdfc4b ?C :maxCardinality 1 ; :onProperty ?P . ?C
rdfc4b
$?P

Table 3: T-Box statements and how they are used to wire the concepts contained in the in-memory T-Box.

4.3.3 In-Memory T-Box

Before we proceed, we quickly discuss the storage of :oneOf constructs in the T-Box for rule rdfc0. Individuals
(?x1 ... ?xn) are stored with pointers to the one-of class ?C. Before input data are read, these individuals
are asserted to be of the rdf:type of their encompassing one-of class.

Besides the one-of support, for the in-memory T-Box we employ two separate hashtables, one for classes
and another for properties, with RDF terms as key and a Java representation of the class or property as value.
The representative Java objects contain labelled links to related objects as de�ned in Table 3. The property
and class objects are designed to contain all of the information required for reasoning on a membership
assertion of that property or class: that is, classes/properties satisfying the A-Box antecedent pattern of
a rule are linked to the classes/properties appearing in the consequent of that rule, with the link labelled
according to that rule. During reasoning, the class/property identi�er used in the membership assertion is

20

sent to the corresponding hashtable and the returned internal object used for reasoning on that assertion.
The objects contain the following:

� Property objects contain the property URI and references to objects representing domain classes
(rdfs2), range classes (rdfs30), super properties (rdfs70), inverse properties (rdfs8*) and equivalent
properties (rdfp13*). References are kept to restrictions where the property in question is the object
of an :onProperty statement (rdfp14a, rdfp160, rdfc2, rdfc4*). Where applicable, if the property
is part of a some-values-from restriction, a pointer is kept to the some-values-from class (rdfp150).
Boolean values are stored to indicate whether the property is functional (rdfp10), inverse-functional
(rdfp2), symmetric (rdfp30) and/or transitive (rdfp4).

� Class objects contain the class URI and references to objects representing super classes (rdfs9), equiva-
lent classes (rdfp12*) and classes for which this class is a component of a union (rdfc1) or intersection
(rdfc3b/c). On top of these core elements, di�erent references are maintained for di�erent types of
class description:

{ intersection classes store references to their constituent class objects (rdfc3a)

{ restriction classes store a reference to the property the restriction applies to (rdfp14b0, rdfp150,
rdfc2, rdfc4*) and also, if applicable to the type of restriction:

� the values which the restriction property must have (rdfp14b0)

� the class for which this class is a some-values-from restriction value (rdfp150)

Figure 2 provides a UML-like representation of our T-Box, including multiplicities of the various links present
between classes, properties and individuals labelled according to Table 3 for each rule.

Class Property

RDFTerm n

RDFTerm n

bool isFunct (rdfp1')
bool isInvFunct (rdfp2)
bool isSym (rdfp3')
bool isTrans (rdfp4)

rdfc4*,rdfp16'

rdfs2,rdfs3'

rdfs9,rdfp12*,
rdfc1,rdfc3a,rdfc3c

0…* 0...1

0…* 0…*

rdfp14a',rdfc2
0…10…*

rdfp15'
0…* 0…*

rdfp14b'
0…10…*

0…* 0…*

rdfs7',rdfp13*,
rdfp8a',rdfp8b'

0…* 0…*

rdfc3b

0…* 0...1

Class
Hashtable

RDFTerm n
......

... ...

1

1

Property
Hashtable

RDFTerm n
......

... ...

1

1

Individual
Hashtable

RDFTerm n
......

... ... 1

1

Individual
RDFTerm n

rdfc0
0…*

0…*

rdfp14b'
0…1

0…*

rdfp14a'

0…1

0…*

Figure 2: In-memory T-Box structure

The algorithm must also performs in-memory joining of collection segments according to rdf:first and
rdf:rest statements found during the scan for the purposes of building union, intersection and enumeration
class descriptions. Again, any remaining collections not relevant to the T-Box segment of the knowledge-base
(i.e., not terminological collection statements) are discarded at the end of loading the input data; we also
discard cyclic and branching lists as well as any lists not found to end with the rdf:nil construct.

We have now loaded the �nal T-Box for reasoning into memory; this T-Box will remain �xed throughout
the whole reasoning process.

21

4.4 Initial Input Scan

Having loaded the terminological data, SAOR is now prepared for reasoning by statement-wise scan of the
assertional data.

Function 1:ReasonStatement(s)
Input: statement s

Global: T, index, output
foreach rule r 2 R1 do

�re rule r w.r.t s and T;
foreach inferred statement: i do

if i is unique then
if i is valid RDF then

write to output;

ReasonStatement (i) ;

foreach rule r 2 R2 [R3 do
if s relevant for r w.r.t. T then

write s to indexr ;

We provide the high-level ow for reasoning over an input
statement in Function 1. The reasoning scan process can be de-
scribed as recursive depth-�rst reasoning whereby each unique
statement produced is again input immediately for reasoning.
Statements produced thus far for the original input statement
are kept in a set to provide uniqueness testing and avoid cycles;
a uniquing function is also maintained for a common subject
group in the data, ensuring that statements are only produced
once for that statement group. Once all of the statements pro-
duced by a rule have been themselves recursively analysed, the
reasoner moves on to analysing the proceeding rule and loops
until no unique statements are inferred. The reasoner then
processes the next input statement.

There are three disjoint categories of statements which require di�erent handling: namely (i) rdf:type

statements, (ii) :sameAs statements, (iii) all other statements. We assume disjointness between the statement
categories: we do not allow any external extension of the core rdf:type/:sameAs semantics (non-standard use
/ non-authoritative extension). Further, the assertions about rdf:type in the RDFS speci�cation de�ne the
rdfs:domain and rdfs:range of rdf:type as being rdfs:Resource and rdfs:Class; since we are not interested
in inferring membership of such RDFS classes we do not subject rdf:type statements to property-based
entailments. The only assertions about :sameAs from the OWL speci�cation de�ne domain and range as
:Thing which we ignore by the same justi�cation.

The rdf:type statements are subject to class-based entailment reasoning and require joins with class
descriptions in the T-Box. The :sameAs statements are handled by ruleset R3, which we discuss in Section
4.6. All other statements are subject to property-based entailments and thus requires joins with T-Box
property descriptions.

Ruleset R2 [R3 cannot be computed solely on a statement-wise basis. Instead, for each rule, we assign
an on-disk �le (blocked and compressed to save disk space). Each �le contains statements which may
contribute to satisfying the antecedent of its pertinent rule. During the scan, if an A-Box statement satis�es
the necessary T-Box join for a rule, it is written to the index for that rule. For example, when the statement

ex:me foaf:isPrimaryTopicOf ex:myHomepage .

is processed, the property object for foaf:isPrimaryTopicOf is retrieved from the T-Box property hashtable.

The object states that this property is of type :InverseFunctionalProperty (
rdfp2
! TRUE). The rule cannot

yet be �red as this statement alone does not satisfy the A-Box segment of the antecedent of rdfp2 and the
method is privy to only one A-Box statement at a time. When, later, the statement:

ex:me2 foaf:isPrimaryTopicOf ex:myHomepage .

is found, it also is written to the same �le { the �le now contains su�cient data to (although it cannot yet)
�re the rule and infer:

ex:me :sameAs ex:me2 .

During the initial scan and inferencing, all �les for ruleset R2 [R3 are �lled with pertinent statements
analogously to the example above. After the initial input statements have been exhausted, these �les are
analysed to infer, for example, the :sameAs statement above.

4.5 On-Disk A-Box Join Analysis

In this section, we discuss handling of the on-disk �les containing A-Box statements for ruleset R2[R3. We
�rstly give a general overview of the execution for each rule using an on-disk �le and then look at the execution
of each rule.

22

R2
rdfp10 ?x ?P ?y , ?z . SPOC
rdfp2 ?x ?P ?z . ?y ?P ?z . OPSC
rdfp4 ?x ?P ?y . ?y ?P ?z . SPOC & OPSC
rdfp150 ?x ?P ?y . ?y a ?D . SPOC / OPSC
rdfp160 ?x a ?C ; ?P ?y . SPOC
rdfc3c ?x a ?C1, ..., ?Cn . SPOC
rdfc4a ?x a ?C ; ?P ?y , ?z . SPOC
rdfc4b ?x a ?C ; ?P ?y , ?z . SPOC

R3
rdfp7 ?x :sameAs ?y . ?y :sameas ?z . SPOC & OPSC
rdfp110 ?x :sameAs ? x ; ?P ?y . SPOC
rdfp1100 ?y :sameAs ? y . ?x ?P ?y . SPOC / OPSC

Table 4: Table enumerating the A-Box joins to be computed
using the on-disk �les with key join position in boldface font and
sorting order required for statements to compute join.

Table 4 presents the joins to be exe-
cuted via the on-disk �les for each rule:
the key join variables, used for comput-
ing the join, are shown in boldface. In
this table we refer to SPOC and OPSC
sorting order : these can be intuitively
interpreted as quads sorted according to
subject, predicate, object, context (nat-
ural sorting order) and object, predicate,
subject, context (inverse sorting order)
respectively. For the internal index �les,
we use context to encode the sorting or-
der of a statement and the iteration in
which it was added; only joins with at
least one new statement from the last it-
eration will infer novel output.

Again, an on-disk �le is dedicated for each rule/join required. The joins to be computed are a simple \star
shaped" join pattern or \one-hop" join pattern (which we reduce to a simple star shaped join computation
by inverting one one or more patterns to inverse order). The statements in each �le are initially sorted
according to the key join variable. Thus, common bindings for the key join variable are grouped together
and joins can be executed by means of sequential scan for common key join variable binding groups.

We now continue with a more detailed description of the process for each rule beginning with the more
straightforward rules.

4.5.1 Functional Property Reasoning - Rule rdfp10

From the initial input scan, we have a �le containing only statements with functional properties in the
predicate position (as described in Section 4.4). As can be seen from Table 4, the key join variable is in
the subject position for all A-Box statements in the pattern. Thus, we can sort the �le according to SPOC
(natural) order. The result is a �le where all statements are grouped according to a common subject, then
predicate, then object. We can now scan this �le, storing objects with a common subject-predicate. We can
then �re the rule stating equivalence between these objects.

4.5.2 Inverse Functional Reasoning - Rule rdfp2

Reasoning on statements containing inverse functional properties is conducted analogously to functional
property reasoning. However, the key join variable is now in the object position for all A-Box statements
in the pattern. Thus, we instead sort the �le according to OPSC (inverse) order and scan the �le inferring
equivalence between the subjects for a common object-predicate group.

4.5.3 Intersection Class Reasoning - Rule rdfc3c

The key join variable for rule rdfc3c is in the subject position for all A-Box triple patterns. Thus we can
sort the �le for the rule (�lled with memberships assertions for classes which are part of some intersection)
according to SPOC order. We can scan common subject-predicate (in any case, the predicates all have value
rdf:type) groups storing the objects (all types for the subject resource which are part of an intersection).

The containing intersection for each type can then be retrieved (through
rdfc3c
!) and the intersection checked

to see if all of it's constituent types have been satis�ed. If so, membership of the intersection is inferred.

4.5.4 All-Values-From Reasoning - Rule rdfp160

Again, the key join variable for rule rdfp160 is in the subject position for all A-Box triple patterns and
again we can sort the �le according to SPOC order. For a common subject group, we store rdf:type values

23

and also all predicate/object edges for the given subject. For every member of an all-values-from restriction
class (as is given by all of the rdf:type statements in the �le according to the join with the T-Box on the
?C position), we wish to infer that objects of the :onProperty value (as is given by all the non-rdf:type

statements according to the T-Box join with ?P { where ?P is linked from ?C with
rdfp160

!) are of the all-
values-from class. Therefore, for each restriction membership assertion, the objects of the corresponding
:onProperty-value membership-assertions are inferred to be members of the all-values-from object class (?D).

4.5.5 Some-Values-From Reasoning - Rule rdfp150

For some-values-from reasoning, the key join variable is in the subject position for rdf:type statements (all
membership assertions of a some-values-from object class) but in the object position for the :onProperty

value membership assertions. Thus, we order class membership assertions in the �le according to natural
SPOC order and property membership assertions according to inverse OPSC order. In doing so, we can scan
common ?y binding groups in the �le, storing rdf:type values and also all predicate/subject edges. For every
member of a some-values-from object class (as is given by all of the rdf:type statements in the �le according
to the join with the T-Box on the ?D position), we infer that subjects of the :onProperty-value statements
(as is given by all the non-rdf:type statements according to the T-Box join with ?P) are members of the
restriction class (?C).

4.5.6 Transitive Reasoning (Non-Symmetric) - Rule rdfp4

Transitive reasoning is perhaps the most challenging to compute: the output of rule rdfp4 can again recur-
sively act as input to the rule. For closure, recursive application of the rule must be conducted in order to
traverse arbitrarily long transitive paths in the data.

Firstly, we will examine sorting order. The key join variable is in the subject position for one pattern
and in the object position for the second pattern. However, both patterns are identical: a statement which
matches one pattern will obviously match the second. Thus, every statement in the transitive reasoning �le
is duplicated with one version sorted in natural SPOC order, and another in inverse OPSC.

Take, for example, the following triples where ex:comesBefore is asserted in the T-Box as being of type
:TransitiveProperty:

INPUT:

ex:a ex:comesBefore ex:b .

ex:b ex:comesBefore ex:c .

ex:c ex:comesBefore ex:d .

In order to compute the join, we must write the statements in both orders, using the context to mark
which triples are in inverse order, and sort them accordingly (for this internal index, we temporarily relax
the requirement that context is a URI).

SORTED FILE - ITERATION 1:13

ex:a ex:comesBefore ex:b :spoc1 .

ex:b ex:comesBefore ex:a :opsc1 .

ex:b ex:comesBefore ex:c :spoc1 .

ex:c ex:comesBefore ex:b :opsc1 .

ex:c ex:comesBefore ex:d :spoc1 .

ex:d ex:comesBefore ex:c :opsc1 .

The data, as above, can then be scanned and for each common join-binding/predicate group (e.g., ex:b
ex:comesBefore), the subjects of statements in inverse order (e.g., ex:a) can be linked to the object of
naturally ordered statements (e.g., ex:c) by the transitive property. However, such a scan will only compute
a single one-hop join. From above, we only produce:

OUTPUT - ITERATION 1 / INPUT - ITERATION 2

ex:a ex:comesBefore ex:c .

ex:b ex:comesBefore ex:d .

13In N-Quads format: c.f. http://sw.deri.org/2008/07/n-quads/

24

http://sw.deri.org/2008/07/n-quads/

We still not have not computed the valid statement ex:a ex:comesBefore ex:d . which requires a two
hop join. Thus we must iteratively feedback the results from one scan as input for the next scan. The
output from the �rst iteration, as above, is also reordered and sorted as before and merge-sorted into the
main SORTED FILE .

SORTED FILE - ITERATION 2:

ex:a ex:comesBefore ex:b :spoc1 .

ex:a ex:comesBefore ex:c :spoc2 .

ex:b ex:comesBefore ex:a :opsc1 .

ex:b ex:comesBefore ex:c :spoc1 .

ex:b ex:comesBefore ex:d :spoc2 .

ex:c ex:comesBefore ex:a :opsc2 .

ex:c ex:comesBefore ex:b :opsc1 .

ex:c ex:comesBefore ex:d :spoc1 .

ex:d ex:comesBefore ex:b :opsc2 .

ex:d ex:comesBefore ex:c :opsc1 .

The observant reader may already have noticed from above that we also mark the context with the
iteration for which the statement was added. In every iteration, we only compute inferences which involve
the delta from the last iteration; thus the process is comparable to semi-na��ve evaluation. Only joins
containing at least one newly added statement are used to infer new statements for output. Thus, from
above, we avoid repeat inferences from ITERATION 1 and instead infer:

OUTPUT - ITERATION 2:

ex:a ex:comesBefore ex:d .

A �xpoint is reached when no new statements are inferred. Thus we would require another iteration for
the above example to ensure that no new statements are inferable. The number of iterations required is in
O(log n) according to the longest unclosed transitive path in the input data. Since the algorithm requires
scanning of not only the delta, but also the entire data, performance using on-disk �le scans alone would be
sub-optimal. For example, if one considers that most of the statements constitute paths of, say �8 vertices,
one path containing 128 vertices would require four more scans after the bulk of the paths have been closed.

With this in mind, we accelerate transitive closure by means of an in-memory transitivity index. For each
transitive property found, we store sets of linked lists which represent the graph extracted for that property.
From the example INPUT from above, we would store.

ex:comesBefore -- ex:a -> ex:b -> ex:c -> ex:d

From this in-memory linked list, we would then collapse all paths of length �2 (all paths of length 1 are
input statements) and infer closure at once:

OUTPUT - ITERATION 1 / INPUT - ITERATION 2

ex:a ex:comesBefore ex:c .

ex:a ex:comesBefore ex:d .

ex:b ex:comesBefore ex:d .

Obviously, for scalability requirements, we do not expect the entire transitive body of statements to �t in-
memory. Thus, before each iteration we calculate the in-memory capacity and only store a pre-determined
number of properties and vertices. Once the in-memory transitive index is full, we infer the appropriate
statements and continue by �le-scan. The in-memory index is only used to store the delta for a given
iteration (everything for the �rst iteration). Thus, we avoid excess iterations to compute closure of a small
percentage of statements which form a long chain and greatly accelerate the �xpoint calculation.

4.5.7 Transitive Reasoning (Symmetric) - Rules rdfp30/rdfp4

We use a separate on-disk �le for membership assertions of properties which are both transitive and symmet-
ric. A graph of symmetric properties is direction-less, thus the notion of direction as evident above though
use of inverted ordered statements is unnecessary. Instead, all statements and their inverses (computed from
symmetric rule rdfp30) are written in natural SPOC order and direct paths are inferred between all objects
in a common subject/predicate group. The in-memory index is again similar to above; however, we instead
use a direction-less doubly-linked list.

25

4.6 Equality Reasoning

Thus far, we have not considered :sameAs entailment, which is supported in SAOR through rules in R3.
Prior to executing rules rdfp110 & rdfp1100, we must �rst perform symmetric transitive closure on the list
of all :sameAs statements (rules rdfp60 & rdfp7). Thus, we use an on-disk �le analogous to that described
in Section 4.5.7.

However, for rules rdfp60 & rdfp7, we do not wish to experience an explosion of inferencing through long
equivalence chains (lists of equivalent individuals where there exists a :sameAs path from each individual to
every other individual). The closure of a symmetric transitive chain of n vertices results in n(n � 1) edges
or statements (ignoring reexive statements). For example, in [23] we found a chain of 85,803 equivalent
individuals inferable from a web dataset.14 Na��vely applying symmetric transitive reasoning as discussed in
Section 4.5.7 would result in a closure of 7.362b :sameAs statements for this chain alone.

Similarly, :sameAs entailment, as according to rules rdfp110 & rdfp1100, duplicates data for all equiv-
alent individuals which could result in a massive amount of duplicate data (particularly when considering
uniqueness on a quad level: i.e., including duplicate triples from di�erent sources). For example, if each of
the 85,803 equivalent individuals had attached an average of 8 unique statements, then this could equate to
8*85,803*85,803 = 59b inferred statements.

Obviously, we must avoid the above scenarios, so we break from complete inference with respect to the
rules in R3. Instead, for each set of equivalent individuals, we chose a pivot identi�er to use in rewriting
the data. The pivot identi�er is used to keep a consistent identi�er for the set of equivalent individuals:
the alphabetically highest pivot is chosen for convenience of computation. For alternative choices of pivot
identi�ers on web data see [23]. We use the pivot identi�er to consolidate data by rewriting all occurrences
of equivalent identi�ers to the pivot identi�er (e�ectively merging the equivalent set into one individual).

Thus, we do not derive the entire closure of :sameAs statements as indicated in rules rdfp60 & rdfp7
but instead only derive an equivalence list which points from equivalent identi�ers to their pivots. As
highlighted, use of a pivot identi�er is necessary to reduce the amount of output statements, e�ectively
compressing equivalent resource descriptions: we hint here that a fully expanded view of the descriptions
could instead be supported through backward-chaining over the semi-materialised data.

To achieve the pivot compressed inferences we use an on-disk �le containing :sameAs statements. Take
for example the following statements:

INPUT

ex:a :sameAs ex:b .

ex:b :sameAs ex:c .

ex:c :sameAs ex:d .

We only wish to infer the following output for the pivot identi�er ex:a:
OUTPUT PIVOT EQUIVALENCES

ex:b :sameAs ex:a .

ex:c :sameAs ex:a .

ex:d :sameAs ex:a .

The process is the same as that for symmetric transitive reasoning as described before: however, we
only close transitive paths to nodes with the highest alphabetical order. So, for example, if we have already
materialised a path from ex:d to ex:a we ignore inferring a path from ex:d to ex:b as ex:b > ex:a.

To execute rules rdfp110 & rdfp1100 and perform \consolidation" (rewriting of equivalent identi�ers to
their pivotal form), we perform a zig-zag join: we sequentially scan the :sameAs inference output as above
and an appropriately sorted �le of data, rewriting the latter data according to the :sameAs statements. For
example, take the following statements to be consolidated:

UNCONSOLIDATED DATA

ex:a foaf:mbox <mail@example.org> .

...

ex:b foaf:mbox <mail@example.org> .

ex:b foaf:name "Joe Bloggs" .

...

14This is from incorrect use of the FOAF ontology by prominent exporters. We refer the interested reader to [23]

26

ex:d :sameAs ex:b .

...

ex:e foaf:knows ex:d .

The above statements are scanned sequentially with the closed :sameAs pivot output from above. For
example, when the statement ex:b foaf:mbox <mailto:mail@example.org> . is �rst read from the uncon-
solidated data, the :sameAs index is scanned until ex:b :sameAs ex:a . is found (if ex:b is not found in
the:sameAs �le, the scan is paused when an element above the sorting order of ex:b is found). Then, ex:b is
rewritten to ex:a.

PARTIALLY CONSOLIDATED DATA

ex:a foaf:mbox <mail@example.org> .

...

ex:a foaf:mbox <mail@example.org> .

ex:a foaf:name "Joe Bloggs" .

...

ex:a :sameAs ex:b .

...

ex:e foaf:knows ex:d .

We have now executed rule rdfp110 and have the data partially consolidated as shown. However, the
observant reader will notice that we have not consolidated the object of the last two statements. We must sort
the data again according to inverse OPSC order and again sequentially scan both the partially consolidated
data and the :sameAs pivot equivalences, this time rewriting ex:b and ex:d in the object position to ex:a

and producing the �nal consolidated data. This equates to executing rule rdfp1100.
For the purposes of the on-disk �les for computing rules requiring A-Box joins, we must consolidate the

key join variable bindings according to the :sameAs statements found during reasoning. For example consider
the following statements in the functional reasoning �le:

ex:a ex:mother ex:m1 .

ex:b ex:mother ex:m2 .

Evidently, rewriting the key join position according to our example pivot �le will lead to inference of:

ex:m1 :sameAs ex:m2 .

which we would otherwise miss. Thus, whenever the index of :sameAs statements is changed, for the
purposes of closure it is necessary to attempt to rewrite all join index �les according to the new :sameAs

statements. Since we are, for the moment, only concerned with consolidating on the join position we need
only apply one consolidation scan.

The �nal step in the SAOR reasoning process is to �nalise consolidation of the initial input data and the
newly inferred output statements produced by all rules from scanning and on-disk �le analysis. Although
we have provided exhaustive application of all inferencing rules, and we have the complete set of :sameAs
statements, elements in the input and output �les may not be in their equivalent pivotal form. Therefore,
in order to ensure proper consolidation of all of the data according to the �nal set of :sameAs statements, we
must �rstly sort both input and inferred sets of data in SPOC order, consolidate subjects according to the
pivot �le as above; sort according to OPSC order and consolidate objects.

However, one may notice that :sameAs statements in the data become consolidated into reexive state-
ments: i.e., from the above example ex:a :sameAs ex:a. Thus, for the �nal output, we remove any :sameAs

statements in the data and instead merge the statements contained in our �nal pivot :sameAs equivalence in-
dex, and their inverses, with the consolidated data. These statements retain the list of all possible identi�ers
for a consolidated entity in the �nal output.

4.7 Achieving Closure

We conclude this section by summarising the approach, detailing the overall �xpoint calculations (as such,
putting the jigsaw together) and detailing how closure is achieved using the individual components. Along
these lines, in Algorithm 2, we provide a summary of the steps seen so far and, in particular, show the
�xpoint calculations involved for exhaustive application of ruleset R2 [R3; we compute one main �xpoint
over all of the operations required, within which we also compute two local �xpoints.

27

Algorithm 2: SAOR reasoning algorithm
Input: KB
Output: Cl

cR
(T;KB)

for scan KB (Section 4.3.1) do
obtain candidate statements for T;

reduce T, derive bT (Sect. 4.3.2) ;

load bT in-memory (Sect. 4.3.3) ;
run R0 rules ;
for inferred statement i do
if i is valid RDF then
write to output;

ReasonStatement (i) (Funct. 1) ;

for s 2 KB (Sect. 4.4) do
ReasonStatement (s) (Funct. 1) ;

// output contains R0 [R1 inferences for initial input
// index contains initial statements relevant for R2
// sameas contains initial statements relevant for R3
repeat
repeat
for rule r 2 frdfp10,rdfp2,rdfc4*g (Sect. 4.5) do
if newr is set then
rewrite indexr w.r.t. sameas/ unset newr;

if index r has changed or was rewritten then
run r on indexr;
write to sameas;

if sameas has changed then
run rules rdfp60 and rdfp7 on sameas (Sect. 4.6) ;
write sameas/ set all new;

until �xpoint reached (no changes in previous iteration)
;
if newrdfp4 is set then
rewrite indexrdfp4 w.r.t. sameas/ unset newrdfp4;

repeat
run rule rdfp4 on indexrdfp4 (Sect. 4.5.6 and 4.5.7) ;
for inferred statement i do
write to indexrdfp4 ;
if i is RDF then
write to output;

ReasonStatement (i) (Funct. 1) ;

until �xpoint reached (no changes in previous iteration)
;
for rule r 2 frdfp150,rdfp160,rdfc3cg (Sect. 4.5) do
if newr is set then
rewrite indexr w.r.t. sameas/ unset newr;

if indexr has changed or was rewritten then
run r on indexr;
for inferred statement i do
if i is RDF then
write to output;

ReasonStatement (i) (Funct. 1) ;

until �xpoint reached (no changes in previous iteration) ;
// output contains all inferences in non-pivotal form
for subject and object (Sect. 4.6) do
for scan KB and output do
rewrite according to sameas;
write to Cl

cR
(T;KB);

write sameas and sameas� to Cl
cR
(T;KB);

Firstly, since all rules in R2 are dependant on
:sameAs equality, we perform :sameAs inferences �rst.
Thus, we begin closure on R2 [R3 with a local equal-
ity �xpoint which (i) executes all rules which pro-
duce :sameAs inferences (rdfp10,rdfp2,rdfc4*); (ii)
performs symmetric-transitive closure using pivots on
all :sameAs inferences; (iii) rewrites rdfp10, rdfp2 and
rdfc4* indexes according to :sameAs pivot equivalences
and (iv) repeats until no new :sameAs statements are
produced.

Next, we have a local transitive �xpoint for recur-
sively computing transitive property reasoning: (i) the
transitive index is rewritten according to the equiva-
lences found through the above local �xpoint; (ii) a
transitive closure iteration is run, output inferences
are recursively fed back as input; (iii) ruleset R1 is
also recursively applied over output from previous step
whereby the output from ruleset R1 may also write
new statements to any R2 index. The local �xpoint
is reached when no new transitive inferences are com-
puted.

Finally, we conclude the main �xpoint by running
the remaining rules: rdfp150, rdfp160 and rdfc3c. For
each rule, we rewrite the corresponding index according
to the equivalences found from the �rst local �xpoint,
run the inferencing over the index and send output for
reasoning through ruleset R1. Statements inferred di-
rectly from the rule index, or through subsequent ap-
plication of ruleset R1, may write new statements for
R2 indexes. This concludes one iteration of the main
�xpoint, which is run until no new statements are in-
ferred.

For each rulesetR0�3, we now justify our algorithm
in terms of our de�nition of closure with respect to our
static T-Box. Firstly, closure is achieved immediately
upon ruleset R0, which requires only T-Box knowledge,
from our static T-Box. Secondly, with respect to the
given T-Box, every input statement is subject to rea-
soning according to rulesetR1, as is every statement in-
ferred from ruleset R0, those recursively inferred from
ruleset R1 itself, and those recursively inferred from
on-disk analysis for ruleset R1[R2. Next, every input
statement is subject to reasoning according to ruleset
R2 with respect to our T-Box; these again include all
inferences from R0, all statements inferred through R1
alone, and all inferences from recursive application of ruleset R1 [R2.

Therefore, we can see that our algorithm applies exhaustive application of ruleset R0 [R1 [R2 with
respect to our T-Box, leaving only consideration of equality reasoning in ruleset R3. Indeed, our algorithm
is not complete with respect to ruleset R3 since we choose pivot identi�ers for representing equivalent
individuals as justi�ed in Section 4.6. However, we still provide a form of \pivotal closure" whereby backward-
chaining support of rules rdfp110 and rdfp1100 over the output of our algorithm would provide a view of
closure as de�ned; i.e., our output contains all of the possible inferences according to our notion of closure,
but with equivalent individuals compressed in pivotal form.

28

Firstly, for rules rdfp60 and rdfp7, all statements where p = :sameAs from the original input or as
produced by R0 [R1 [R2 undergo on-disk symmetric-transitive closure in pivotal form. Since both rules
only produce more :sameAs statements, and according to the standard usage restriction of our closure, they
are not applicable to reasoning under R0[R1[R2. Secondly, we loosely apply rules rdfp110 and rdfp1100

such as to provide closure with respect to joins in ruleset R2; i.e., all possible joins are computed with
respect to the given :sameAs statements. Equivalence is clearly not important to R0 since we strictly do
not allow :sameAs statements to a�ect our T-Box; R1 inferences do not require joins and, although the
statements produced will not be in pivotal form, they will be output and rewritten later; inferences from
R2 will be produced as discussed, also possibly in non-pivotal form. In the �nal consolidation step, we then
rewrite all statements to their pivotal form and provide incoming and outgoing :sameAs relations between
pivot identi�ers and their non-pivot equivalent identi�ers. This constitutes our output, which we call pivotal
authoritative closure.

5 Evaluation and Discussion

We now provide evaluation of the SAOR methodology �rstly with quantitative analysis of the importance
of authoritative reasoning, and secondly we provide performance measurements and discussion along with
insights into the fecundity of each rule w.r.t. reasoning over web data. All experiments are run on one
machine with a single Opteron 2.2 GHz CPU and 4 GB of main memory. We provide evaluation on two
datasets: we provide complete evaluation for a dataset of 147m statements collected from 665k sources and
scale-up experiments running scan-reasoning (rules in R0 [R1) on a dataset of 1.1b statements collected
from 6.5m sources; both datasets are from web-crawls using MultiCrawler [21].

We create a unique set of blank nodes for each graphW 0 2M(Sw) using a function on c and the original
blank node label which ensures a one-to-one mapping from the original blank node labels and uniqueness of
the blank nodes for a given context c.

To show the e�ects of ontology hijacking we constructed two T-Boxes with and without authoritative
analysis for each dataset. We then ran reasoning on single membership assertions for the top �ve classes
and properties found natively in each dataset. Table 5 summarises the results. Taking foaf:Person as
an example, with an authoritative T-Box, six statements are output for every input rdf:type foaf:Person

statement in both datasets. With the non-authoritative T-Box, 388 and 4,631 statements are output for
every such input statement for the smaller and larger datasets respectively. Considering that there are
3.25m and 63.33m such statements in the respective datasets, overall output for rdf:type foaf:Person input
statements alone approach 1.26b and 293b statements for non-authoritative reasoning respectively. With
authoritative reasoning we only produce 19.5m and 379.6m statements, a respective saving of 65x and 772x
on output statement size.15

It should be noted that reasoning on a membership assertion of the top level class (:Thing/rdfs:Resource)
is very large for both the 147m (234 inferences) and the 1.1b dataset (4251 inferences). For example, in both
datasets, there are many :unionOf class descriptions with :Thing as a member;16 for the 1.1b dataset, many
inferences on the top level classes stem from, for example, the OWL W3C Test Repository17. Of course we
do not see such documents as being malicious in any way, but clearly they would cause inationary inferences
when na��vely considered as part of web knowledge-base.

Next, we present some metrics regarding the �rst step of reasoning: the separation and in-memory
construction of the T-Box. For the 1.1b dataset, the initial scan of all data found 9,683,009 T-Box statements
(0.9%). Reducing the T-Box by removing collection statements as described in Section 4.3.1 dropped a
further 1,091,698 (11% of total) collection statements leaving 733,734 such statements in the T-Box (67%
collection statements dropped) and 8,591,311 (89%) total. Table 6 shows, for membership assertions of each
class and property in CSAOR and PSAOR, the result of applying authoritative analysis. Of the 33,157 unique
namespaces probed, 769 (2.3%) had a redirect, 4068 (12.3%) connected but had no redirect and 28,320

15For example, the document retrievable from http://pike.kw.nl/files/documents/pietzwart/RDF/PietZwart200602.owl

de�nes super-classes/-properties for all of the FOAF vocabulary.
16Fifty-�ve such :unionOf class descriptions can be found in http://lsdis.cs.uga.edu/~oldham/ontology/wsag/wsag.owl;

34 are in http://colab.cim3.net/file/work/SICoP/ontac/reference/ProtegeOntologies/COSMO-Versions/TopLevel06.owl.
17http://www.w3.org/2002/03owlt/

29

http://pike.kw.nl/files/documents/pietzwart/RDF/PietZwart200602.owl
http://lsdis.cs.uga.edu/~oldham/ontology/wsag/wsag.owl
http://colab.cim3.net/file/work/SICoP/ontac/reference/ProtegeOntologies/COSMO-Versions/TopLevel06.owl
http://www.w3.org/2002/03owlt/

147m Dataset

C jClR1(bT; fm(C)g)j jClR1(T; fm(C)g)j n njClR1(bT; fm(C)g)j njClR1(T; fm(C)g)j
rss:item 0 356 3,558,055 0 1,266,667,580
foaf:Person 6 388 3,252,404 19,514,424 1,261,932,752
rdf:Seq 2 243 1,934,852 3,869,704 470,169,036
foaf:Document 1 354 1,750,365 1,750,365 619,629,210
wordnet:Person 0 236 1,475,378 0 348,189,208
TOTAL 9 1,577 11,971,054 25,134,493 3,966,587,786

P jClR1(fbT;m(P)g)j jClR1(T; fm(P)g)j n njClR1(fbT;m(P)g)j njClR1(T; fm(P)g)j
dc:title* 0 14 5,503,170 0 77,044,380
dc:date* 0 377 5,172,458 0 1,950,016,666
foaf:name* 3 418 4,631,614 13,894,842 1,936,014,652
foaf:nick* 0 390 4,416,760 0 1,722,536,400
rss:link* 1 377 4,073,739 4,073,739 1,535,799,603
TOTAL 4 1,576 23,797,741 17,968,581 7,221,411,701

1.1b Dataset

C jClR1(bT; fm(C)g)j jClR1(T; fm(C)g)j n njClR1(bT; fm(C)g)j njClR1(T; fm(C)g)j
foaf:Person 6 4,631 63,271,689 379,630,134 293,011,191,759
foaf:Document 1 4,523 6,092,322 6,092,322 27,555,572,406
rss:item 0 4,528 5,745,216 0 26,014,338,048
oboInOwl:DbXref 0 0 2,911,976 0 0
rdf:Seq 2 4,285 2,781,994 5,563,988 11,920,844,290
TOTAL 9 17,967 80,803,197 391,286,444 358,501,946,503

P jClR1(bT; fm(P)g)j jClR1(T; fm(P)g)j n njClR1(bT; fm(P)g)j njClR1(T; fm(P)g)j
rdfs:seeAlso 2 8,647 113,760,738 227,521,476 983,689,101,486
foaf:knows 14 9,269 77,335,237 1,082,693,318 716,820,311,753
dc:title* 0 4,621 71,321,437 0 329,576,360,377
foaf:nick* 0 4,635 65,855,264 0 305,239,148,640
foaf:weblog 7 9,286 55,079,875 385,559,125 511,471,719,250
TOTAL 23 36,458 383,352,551 1,695,773,919 2,846,796,641,506

Table 5: Comparison of authoritative and non-authoritative reasoning for the number of unique inferred
RDF statements produced (w.r.t. ruleset R1) over the �ve most frequently occurring classes and properties
in both input datasets. `*' indicates a datatype property where the object of m(P) is a literal. The amount
of statements produced for authoritative reasoning for a single membership assertion of the class or property

is denoted by
���ClR1(bT; fm(C)g)

��� and
���ClR1(bT; fm(P)g)

��� respectively. Non-authoritative counts are given

by jClR1(T; fm(C)g)j and jClR1(T; fm(P)g)j. n is the number of membership assertions for the class C or
property P in the given dataset.

Property AuthSub AuthObj AuthBoth AuthNone Total Drop

rdfs:subClassOf 25,076 583,399 1,595,850 1,762,414 3,966,739 2,345,813
:onProperty 1,041,873 - 97,921 - 1,139,843 -
:someValuesFrom 681,968 - 217,478 - 899,446 -
rdf:first 273,805 - 392,707 - 666,512 -
rdf:rest 249,541 - 416,946 - 666,487 -
:equivalentClass 574 189,912 162,886 3,198 356,570 3,198
:intersectionOf - - 216,035 - 216,035 -
rdfs:domain 5,693 7,788 66,338 79,748 159,567 87,536
rdfs:range 32,338 4,340 37,529 75,338 149,545 79,678
:hasValue 9,903 0 82,853 0 92,756 -
:allValuesFrom 51,988 - 22,145 - 74,133 -
rdfs:subPropertyOf 3,365 147 22,481 26,742 52,734 26,888
:maxCardinality 26,963 - - - 26,963 -
:inverseOf 75 52 6,397 18,363 24,887 18,363
:cardinality 20,006 - - - 20,006 -
:unionOf - - 21,671 - 21,671 -
:minCardinality 15,187 - - - 15,187 -
:oneOf - - 6,171 - 6,171 -
:equivalentProperty 105 24 187 696 1,012 696

Class
:FunctionalProperty 9,616 - - 18,111 27,727 18,111
:InverseFunctionalProperty 872 - - 3,080 3,952 3,080
:TransitiveProperty 807 - - 1,994 2,801 1,994
:SymmetricProperty 265 - - 351 616 351

OVERALL 2,450,020 785,661 3,365,595 1,990,035 8,591,311 2,585,708

Table 6: Authoritative analysis of T-Box statements in 1.1b dataset for each primitive where dropped
statements are highlighted in bold

30

(85.4%) did not connect at all. In total, 14,227,116 authority checks were performed. Of these, 6,690,704
(47%) were negative and 7,536,412 (53%) were positive. Of the positive, 4,236,393 (56%) were blank-nodes,
2,327,945 (31%) were a direct match between namespace and source and 972,074 (13%) had a redirect from
the namespace to the source. In total, 2,585,708 (30%) statements were dropped as they could not contribute
to a valid authoritative inference. The entire process of separating, analysing and loading the T-Box into
memory took 6.47 hours: the most costly operation here is the large amount of HTTP lookups required
for authoritative analysis, with many connections unsuccessful after our �ve second timeout. The process
required �3.5G of Java heap-space and �10M of stack space.

For the 147m dataset, 2,649,532 (1.7%) T-Box statements were separated from the data, which was
reduced to 1,609,958 (61%) after reducing the amount of irrelevant collection statements; a further 536,564
(33%) statements were dropped as they could not contribute to a valid authoritative inference leaving
1,073,394 T-Box statements (41% of original). Loading the T-Box into memory took approximately 1.04
hours.

We proceed by evaluating the application of reasoning over all rules on the 147m dataset with respect to
throughtput of statements written and read.

 0

 2e+007

 4e+007

 6e+007

 8e+007

 1e+008

 1.2e+008

 1.4e+008

 1.6e+008

 0 200 400 600 800 1000 1200 1400 1600 1800

st
at

em
en

ts

minutes elapsed

read
written

Figure 3: Performance of applying entire ruleset on
the 147m statements dataset (without �nal consolida-
tion step)

 0

 500000

 1e+006

 1.5e+006

 2e+006

 2.5e+006

 3e+006

 3.5e+006

 0 200 400 600 800 1000 1200 1400 1600 1800

st
at

em
en

ts

minutes elapsed

(a)

(b) (c)

(d)

(e)

(f)(g) (h)
written

Figure 4: Performance of inferencing over R2 and R3
on-disk indexes for the 147m statements dataset (with-
out �nal consolidation)

Figure 3 shows performance for reaching an
overall �xpoint for application of all rules. Clearly,
the performance plateaus after 79 mins. At this
point the input statements have been exhausted,
with rules in R0 and R1 having been applied to
the input data and statements written to the on-
disk �les for R2 and R3. SAOR now switches
over to calculating a �xpoint over the on-disk com-
puted R2 and R3 rules, the results of which be-
come the new input for R1 and further recursive
input to the R2 and R3 �les.

Figure 4 shows performance speci�cally for
achieving closure on the on-disk R2 and R3
rules. There are three pronounced steps in the
output of statements. The �rst one shown at
(a) is due to inferencing of :sameAs statements
from rule rdfp2 (:InverseFunctionalProperty
- 2.1m inferences). Also part of the �rst
step are :sameAs inferences from rules rdfp10

(:FunctionalProperty - 31k inferences) and rules
rdfc4* (:cardinality/:maxCardinality - 449 in-
ferences). For the �rst plateau shown at (b), the
:sameAs equality �le is closed for the �rst time
and a local �xpoint is being calculated to derive
the initial :sameAs statements for future rules; also
during the plateau at (b), the second iteration for
the :sameAs �xpoint (which, for the �rst time, con-
solidates the key join variables in �les for rules
rdfp2, rdfp10, rdfc4a, rdfc4b according to all
:sameAs statements produced thus far) produces
1,018 new such statements, with subsequent it-
erations producing 145, 2, and 0 new statements
respectively.

The second pronounced step at (c) is at-
tributable to 265k transitive inferences, followed
by 1.7k symmetric-transitive inferences. The pro-
ceeding slope at (d) is caused by inferences on
rdfc3c (:intersectionOf - 265 inferences) and rdfp150 (:someValuesFrom - 36k inferences), with rule rdfp160

31

(:allValuesFrom - 678k inferences) producing the �nal signi�cant step at (e). The �rst complete iteration of
the overall �xpoint calculation is now complete.

Since the �rst local :sameAs �xpoint, 22k mostly rdf:type statements have been written back to the cardi-
nality rule �les, 4 statements to the :InverseFunctionalProperty �le and 14 to the :FunctionalProperty �le.
Thus, the :sameAs �xpoint is re-executed at (f), with no new statements found. The �nal, minor, staggered
step at (g) occurs after the second :sameAs �xpoint when, most notably, rule rdfp4 (:TransitiveProperty)
produces 24k inferences, rule rdfc3c (:intersectionOf) produces 6.7k inferences, and rule rdfp160 (:all-
ValuesFrom) produces 7.3k new statements.

The �nal, extended plateau at (h) is caused by rules which produce/consume rdf:type statements. In
particular, the �xpoint encounters :allValuesFrom inferencing producing a minor contribution of statements
(� 2) which lead to an update and re-execution of :allValuesFrom inferencing and :intersectionOf reason-
ing. In particular, :allValuesFrom required 66 recursive iterations to reach a �xpoint. We identi�ed the
problematic data as follows:

@prefix veml: <http://www.icsi.berkeley.edu/~snarayan/VEML.owl#>

@prefix verl: <http://www.icsi.berkeley.edu/~snarayan/VERL.owl#>

@prefix data: <http://www.icsi.berkeley.edu/~snarayan/meeting01.owl#>

...

FROM veml: (T-BOX)
veml:sceneEvents rdfs:range veml:EventList .

veml:EventList rdfs:subClassOf :r1 ; rdfs:subClassOf :r2 .

:r1 :allValuesFrom verl:Event ; :onProperty rdf:first .

:r2 :allValuesFrom veml:EventList ; :onProperty rdf:rest .

FROM data: (A-BOX)
data:scene veml:sceneEvents (data:1 , ..., data:65) .

EXAMPLE COLLECTION SNIPPET
:cN rdf:first data:N ; rdf:rest :cN+1 .

From the above data, each iteration of :allValuesFrom reasoning and subsequent subclass reasoning
produced:

INPUT TO ALL-VALUES-FROM, ITERATION 0
FROM INPUT
(:c1... :c65) rdf:first (data:1 ... data:65) .

FROM RANGE
:c1 a veml:EventList .

OUTPUT ALL-VALUES-FROM, ITERATION N
:dataN a verl:Event .

:cN+1 a veml:EventList .

FROM SUBCLASS ON ABOVE
ADDED TO ALL-VALUES-FROM, ITERATION N+1
:cN+1 rdf:type :r1 ; rdf:type :r2 .

In particular, a small contribution of input statements requires a merge-sort and re-scan of the �le in
question. This could indeed be solved by implementing binary-search lookup functionality over the sorted
�les for small input from a previous round; however, this would break with our initial aim of performing
reasoning using only the primitives of �le-scanning and multi-way merge-sort.

Finally in the reasoning process, we must perform consolidation of the input data and the output inferred
statements according to the :sameAs index produced in the previous step. The �rst step involves sorting the
input and inferred data according to natural SPOC order; the process took 6.4 hours and rewrote 35.4m
statements into pivotal form. The second step involves subsequent sorting of the data according to inverse
OPSC order; the process took 8.2 hours and rewrote 8.5m statements. The expense of these steps is primarily
attributable to applying multi-way merge-sorting over all data in both sorting orders.

32

Although the degradation of performance related to the on-disk �xpoint computation of rulesetR2[R3 is
signi�cant, if one is prepared to trade completeness (as we de�ne it) for computational e�ciency, the �xpoint
calculation can be restrained to only perform a small, known amount of iterations (e.g., inferencing of the
majority of statements in Figure 4 takes place over approx. 3 hours). Only minute amounts of inferred state-
ments are produced in latter iterations of the �xpoint.

 0

 2e+008

 4e+008

 6e+008

 8e+008

 1e+009

 1.2e+009

 1.4e+009

 1.6e+009

 1.8e+009

 2e+009

 0 100 200 300 400 500 600

st
at

em
en

ts

minutes elapsed

read
written

Figure 5: Performance of applying ruleset R0 [R1 on
the 1.1b dataset

Further still, most inferences are produced af-
ter the initial scan which takes approx. 79 min-
utes. Thus, even after application of only R0 and
R1 rules, the majority of inferencing has been
conducted. This simpler more practical reasoning
subset exhibits linear scale, as is visible for the
�rst stage of Figure 3 prior to the on-disk compu-
tations. Along these lines, we present in Figure
5 the performance of applying rules R0 and R1
to the 1.1b statement dataset, in one scan, with
respect to the T-Box derived from that dataset
as described above. In particular, we refer to the
linear trend present; upon inspection, one can see
that minor slow-down in the rate of statements
read is attributable to an increased throughput
in terms of output statements (disk write opera-
tions).

Finally, Table 7 lists the number of times each rule was �red for reasoning on the 1.1b dataset, reasoning
using only R0 [R1 on the 147m dataset and also of applying all rules to the 147m dataset. Again, from
both Figure 3 and Table 7 we can deduce that the bulk of current web reasoning is covered by those rules
(R0 [R1) which exhibit linear scale.

6 Related Work

OWL reasoning, speci�cally query answering over OWL Full, is not tackled by typical DL Reasoners; such
as FaCT++ [45], RACER [19] or Pellet [40]; which focus on complex reasoning tasks such as subsumption
checking and provable completeness of reasoning. Likewise, KAON2 [32], which reports better results on
query answering, is limited to OWL-DL expressivity due to completeness requirements. Despite being able
to deal with complex ontologies in a complete manner, these systems are not tailored for the particular
challenges of processing large amounts of RDF data and particularly large A-Boxes.

Systems such as TRIPLE [39], JESS18, or Jena19 support rule representable RDFS or OWL fragments as
we do, but only work in-memory whereas our framework is focused on conducting scalable reasoning using
persistent storage.

The OWLIM [28] family of systems allows reasoning over a version of pD* using the TRREE: Triple
Reasoning and Rule Entailment Engine. Besides the in-memory version SwiftOWLIM, which uses TRREE,
there is also a version o�ering query-processing over a persistent image of the repository, BigOWLIM, which
comes closest technically to our approach. In evaluation on 2 x Dual-Core 2GHz machines with 16GB
of RAM, BigOWLIM is claimed to index over 1 bn triples from the LUBM benchmark [17] in just under
70 hours [1]; however, this �gure includes indexing of the data for query-answering, and is not directly
comparable with our results, and in any case, our reasoning approach strictly focuses on sensible reasoning
for web data.

Some existing systems already implement a separation of T-Box and A-Box for scalable reasoning, where
in particular, assertional data are stored in some RDBMS; e.g. DLDB [35], Minerva [48] and OntoDB [25].
Similar to our approach of reasoning over web data, [36] demonstrates reasoning over 166m triples using
the DLDB system. Also like us, (and as we had previously introduced in [23]) they internally choose pivot
identi�ers to represent equivalent sets of individuals. However, they use the notion of perspectives to support

18http://herzberg.ca.sandia.gov/
19http://jena.sourceforge.net/

33

http://herzberg.ca.sandia.gov/
http://jena.sourceforge.net/

Rule 1.1b - R0� 1 147M - R0� 1 147M - R0� 3

R0
rdfc0 35,157 6,084 6,084

R1
rdfs2 591,304,476 30,203,111 30,462,570
rdfs30 596,661,696 31,789,905 32,048,477
rdfs70 156,744,587 27,723,256 27,882,492
rdfs9 1,164,619,890 64,869,593 65,455,001
rdfp30 562,426 483,204 483,204
rdfp8a0 231,661,554 9,404,319 9,556,544
rdfp8b0 231,658,162 9,404,111 9,556,336
rdfp12a0 8,153,304 23,869 38,060
rdfp12b0 57,116 17,769 25,362
rdfp13a0 5,667,464 11,478 11,478
rdfp13b0 6,642 4,350 4,350
rdfp14a0 98,601 39,422 39,902
rdfp14b0 104,780 43,886 44,390
rdfc1 15,198,615 1,492,395 1,595,293
rdfc2 584,913 337,141 337,279
rdfc3a 115,416 3,075 17,224
rdfc3b 54 8 8

R2
rdfp10 - - 31,174
rdfp2 - - 2,097,007
rdfp4 - - 291,048
rdfp150 - - 42,098
rdfp160 - - 685,738
rdfc3c - - 6,976
rdfc4a - - 211
rdfc4b - - 246

Table 7: Count of number of statements inferred for applying the given ruleset on the given dataset.

inferencing based on T-Box data; in their experiment they manually selected nine T-Box perspectives, unlike
our approach that deals with arbitrary T-Box data from the Web. Their evaluation was performed on a
workstation with dual 64-bit CPUs and 10GB main memory on which they loaded 760k documents / 166m
triples (14% larger than our 147m statement dataset) in about 350 hrs; however, unlike our evaluation, the
total time taken includes indexing for query-answering.

In a similar approach to our authoritative analysis, [8] introduced restrictions for accepting sub-class
and equivalent-class statements from third-party sources; they follow similar arguments to that made in
this paper. However, their notion of what we call authoritativeness is based on hostnames and does not
consider redirects; we argue that in both cases, e.g., use of PURL services20 is not properly supported: (i)
all documents using the same service (and having the same namespace hostname) would be `authoritative'
for each other, (ii) the document cannot be served directly by the namespace location, but only through a
redirect. Indeed, further work presented in [7] introduced the notion of an authoritative description which
is very similar to ours. In any case, we provide much more extensive treatment of the issue, supporting a
much more varied range of RDF(S)/OWL constructs.

One promising alternative to authoritative reasoning for the Web is the notion of \context-dependant"
or \quarantined reasoning" introduced in [11], whereby inference results are only considered valid within the
given context of a document. As opposed to our approach whereby we construct one authoritative model for

20http://purl.org/

34

http://purl.org/

all web data, their approach uses a unique model for each document, based on implicit and explicit imports
of the document; thus, they would infer statements within the local context which we would consider to
be non-authoritative. However, they would miss inferences which can only be conducted by considering a
merge of documents, such as transitive closure or equality inferences based on inverse-functional properties
over multiple documents. Their evaluation was completed on three machines with quad-core 2.33GHz and
8GB main memory; they claimed to be able to load, on average, 40 documents per second.

7 Conclusion and Future Work

We have presented SAOR: a system for performing reasoning over web data based on primitives known to
scale: �le-scan and sorting. We maintain a separate optimised T-Box index for our reasoning procedure. To
keep the resulting knowledge-base manageable, both in size and quality, we made the following modi�cations
to traditional reasoning procedures:

� only consider a positive fragment of OWL reasoning;

� analyse the authority of sources to counter ontology hijacking;

� use pivot identi�ers instead of full materialisation of equality.

We show in our evaluation that na��ve inferencing over web data leads to an explosion of materialised
statements and show how to prevent this explosion through analysis of the authority of data sources. We
also present metrics relating to the most productive rules with regards inferencing on the Web.

Although SAOR is currently not optimised for reaching full closure, we show that our system is suitable
for optimised computation of the approximate closure of a web knowledge-base w.r.t. the most commonly
used RDF(S) and OWL constructs. In our evaluation, we showed that the bulk of inferencing on web data
can be completed with two scans of an unsorted web-crawl.

Future work includes investigating possible distribution methods: indeed, by limiting our tool-box to �le
scans and sorts, our system can be implemented on multiple machines, as-is, according to known distribution
methods for our foundational operations.

References

[1] Bigowlim: System doc., Oct. 2006. http://www.ontotext.com/owlim/big/BigOWLIMSysDoc.pdf.

[2] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness, P. F. Patel-Schneider, and
L. A. Stein. OWL Web Ontology Language Reference. W3C Recommendation, Feb. 2004. http:

//www.w3.org/TR/owl-ref/.

[3] S. Bechhofer and R. Volz. Patching syntax in owl ontologies. In International Semantic Web Conference,
volume 3298 of Lecture Notes in Computer Science, pages 668{682. Springer, November 2004.

[4] D. Brickley and R. Guha. Rdf vocabulary description language 1.0: Rdf schema. W3C Recommendation,
Feb. 2004. http://www.w3.org/TR/rdf-schema/.

[5] D. Brickley and L. Miller. FOAF Vocabulary Speci�cation 0.91, Nov. 2007. http://xmlns.com/foaf/
spec/.

[6] J. d. Bruijn and S. Heymans. Logical foundations of (e)RDF(S): Complexity and reasoning. In 6th
International Semantic Web Conference, number 4825 in LNCS, pages 86{99, Busan, Korea, Nov 2007.

[7] G. Cheng, W. Ge, H. Wu, and Y. Qu. Searching semantic web objects based on class hierarchies. In
Proceedings of Linked Data on the Web Workshop, 2008.

[8] G. Cheng and Y. Qu. Term dependence on the semantic web. In International Semantic Web Conference,
pages 665{680, oct 2008.

35

http://www.ontotext.com/owlim/big/BigOWLIMSysDoc.pdf
http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/rdf-schema/
http://xmlns.com/foaf/spec/
http://xmlns.com/foaf/spec/

[9] J. de Bruijn. Semantic Web Language Layering with Ontologies, Rules, and Meta-Modeling. PhD thesis,
University of Innsbruck, 2008.

[10] J. de Bruijn, A. Polleres, R. Lara, and D. Fensel. OWL�. Final draft d20.1v0.2, WSML, 2005.

[11] R. Delbru, A. Polleres, G. Tummarello, and S. Decker. Context dependent reasoning for semantic
documents in Sindice. In Proceedings of the 4th International Workshop on Scalable Semantic Web
Knowledge Base Systems (SSWS 2008), October 2008.

[12] D. Fensel and F. van Harmelen. Unifying reasoning and search to web scale. IEEE Internet Computing,
11(2):96, 94{95, 2007.

[13] S. Ghilardi, C. Lutz, and F. Wolter. Did i damage my ontology? a case for conservative extensions
in description logics. In Proceedings of the Tenth International Conference on Principles of Knowledge
Representation and Reasoning, pages 187{197, June 2006.

[14] B. C. Grau, I. Horrocks, B. Parsia, P. Patel-Schneider, and U. Sattler. Next steps for OWL. In OWL:
Experiences and Directions Workshop, Nov. 2006.

[15] B. Grosof, I. Horrocks, R. Volz, and S. Decker. Description logic programs: Combining logic programs
with description logic. In 13th International Conference on World Wide Web, 2004.

[16] R. V. Guha, R. McCool, and R. Fikes. Contexts for the semantic web. In Third International Semantic
Web Conference, pages 32{46, November 2004.

[17] Y. Guo, Z. Pan, and J. Hein. Lubm: A benchmark for owl knowledge base systems. Journal of Web
Semantics, 3(2-3):158{182, 2005.

[18] C. Guti�errez, C. Hurtado, and A. O. Mendelzon. Foundations of Semantic Web Databases. In 23rd
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, Paris, June 2004.

[19] V. Haarslev and R. M�oller. Racer: A core inference engine for the semantic web. In International
Workshop on Evaluation of Ontology-based Tools, 2003.

[20] A. Harth and S. Decker. Optimized index structures for querying rdf from the web. In 3rd Latin
American Web Congress, pages 71{80. IEEE Press, 2005.

[21] A. Harth, J. Umbrich, and S. Decker. Multicrawler: A pipelined architecture for crawling and indexing
semantic web data. In 5th International Semantic Web Conference, pages 258{271, 2006.

[22] P. Hayes. RDF Semantics. W3C Recommendation, Feb. 2004. http://www.w3.org/TR/rdf-mt/.

[23] A. Hogan, A. Harth, and S. Decker. Performing object consolidation on the semantic web data graph.
In 1st I3 Workshop: Identity, Identi�ers, Identi�cation Workshop, 2007.

[24] A. Hogan, A. Harth, and A. Polleres. SAOR: Authoritative Reasoning for the Web. In Proceedings of
the 3rd Asian Semantic Web Conference (ASWC 2008), Bankok, Thailand, Dec. 2008.

[25] D. Hondjack, G. Pierra, and L. Bellatreche. Ontodb: An ontology-based database for data intensive
applications. In Proceedings of the 12th International Conference on Database Systems for Advanced
Applications, pages 497{508, April 2007.

[26] I. Horrocks and P. F. Patel-Schneider. Reducing owl entailment to description logic satis�ability. Journal
of Web Semamtics, 1(4):345{357, 2004.

[27] E. Jim�enez-Ruiz, B. C. Grau, U. Sattler, T. Schneider, and R. B. Llavori. Safe and economic re-use
of ontologies: A logic-based methodology and tool support. In Proceedings of the 21st International
Workshop on Description Logics (DL2008), May 2008.

[28] A. Kiryakov, D. Ognyanov, and D. Manov. Owlim - a pragmatic semantic repository for owl. In Web
Information Systems Engineering Workshops, LNCS, pages 182{192, New York, USA, Nov 2005.

36

http://www.w3.org/TR/rdf-mt/

[29] D. Kunkle and G. Cooperman. Solving rubik's cube: disk is the new ram. Communications of the ACM,
51(4):31{33, 2008.

[30] J. W. Lloyd. Foundations of Logic Programming (2nd edition). Springer-Verlag, 1987.

[31] C. Lutz, D. Walther, and F. Wolter. Conservative extensions in expressive description logics. In IJCAI
2007, Proceedings of the 20th International Joint Conference on Arti�cial Intelligence, pages 453{458,
January 2007.

[32] B. Motik. Reasoning in Description Logics using Resolution and Deductive Databases. PhD thesis,
Forschungszentrum Informatik, Karlsruhe, Germany, 2006.

[33] B. Motik. On the properties of metamodeling in owl. Journal of Logic and Computation, 17(4):617{637,
2007.

[34] S. Mu~noz, J. P�erez, and C. Guti�errez. Minimal deductive systems for RDF. In ESWC, pages 53{67,
2007.

[35] Z. Pan and J. Hein. Dldb: Extending relational databases to support semantic web queries. In PSSS1 -
Practical and Scalable Semantic Systems, Proceedings of the First International Workshop on Practical
and Scalable Semantic Systems, October 2003.

[36] Z. Pan, A. Qasem, S. Kanitkar, F. Prabhakar, and J. Hein. Hawkeye: A practical large scale demon-
stration of semantic web integration. In OTM Workshops (2), volume 4806 of Lecture Notes in Computer
Science, pages 1115{1124. Springer, November 2007.

[37] P. F. Patel-Schneider and I. Horrocks. Owl web ontology language semantics and abstract syntax section
4. mapping to rdf graphs. W3C Recommendation, Feb. 2004. http://www.w3.org/TR/owl-semantics/
mapping.html.

[38] E. Prud'hommeaux and A. Seaborne. SPARQL Query Language for RDF. W3C Recommendation,
Jan. 2008. http://www.w3.org/TR/rdf-sparql-query/.

[39] M. Sintek and S. Decker. Triple - a query, inference, and transformation language for the semantic web.
In 1st International Semantic Web Conference, pages 364{378, 2002.

[40] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz. Pellet: A practical OWL-DL reasoner.
Journal of Web Semantics, 5(2):51{53, 2007.

[41] M. K. Smith, C. Welty, and D. L. McGuinness. OWL Web Ontology Language Guide. W3C Recom-
mendation, Feb. 2004. http://www.w3.org/TR/owl-guide/.

[42] H. J. ter Horst. Combining rdf and part of owl with rules: Semantics, decidability, complexity. In 4th
International Semantic Web Conference, pages 668{684, 2005.

[43] H. J. ter Horst. Completeness, decidability and complexity of entailment for rdf schema ans a semantic
extension involving the owl vocabulary. Journal of Web Semantics, 3:79{115, 2005.

[44] Y. Theoharis, V. Christophides, and G. Karvounarakis. Benchmarking database representations of rdf/s
stores. In Proceedings of the Fourth International Semantic Web Conference, pages 685{701, November
2005.

[45] D. Tsarkov and I. Horrocks. Fact++ description logic reasoner: System description. In International
Joint Conf. on Automated Reasoning, pages 292{297, 2006.

[46] T. D. Wang, B. Parsia, and J. A. Hendler. A survey of the web ontology landscape. In Proceedings of
the 5th International Semantic Web Conference (ISWC 2006), pages 682{694, Athens, GA, USA, Nov.
2006.

37

http://www.w3.org/TR/owl-semantics/mapping.html
http://www.w3.org/TR/owl-semantics/mapping.html
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/owl-guide/

[47] Z. Wu, G. Eadon, S. Das, E. I. Chong, V. Kolovski, M. Annamalai, and J. Srinivasan. Implementing an
Inference Engine for RDFS/OWL Constructs and User-De�ned Rules in Oracle. In 24th International
Conference on Data Engineering. IEEE, 2008. To appear.

[48] J. Zhou, L. Ma, Q. Liu, L. Zhang, Y. Yu, and Y. Pan. Minerva: A scalable owl ontology storage and
inference system. In Proceedings of The First Asian Semantic Web Conference (ASWC), pages 429{443,
September 2006.

38

	Introduction
	Preliminaries
	Pragmatic Inferencing for the Web
	Infeasibility of Complete Web Reasoning
	Rule-based Web Reasoning
	Separation of T-Box from A-Box
	Authoritative Reasoning against Ontology Hijacking

	Reasoning Algorithm
	Characteristics of Web Data
	Algorithm Overview
	Handling Terminological Data
	Separating and Reducing T-Box Data
	Authoritative Analysis
	In-Memory T-Box

	Initial Input Scan
	On-Disk A-Box Join Analysis
	Functional Property Reasoning - Rule rdfp1'
	Inverse Functional Reasoning - Rule rdfp2
	Intersection Class Reasoning - Rule rdfc3c
	All-Values-From Reasoning - Rule rdfp16'
	Some-Values-From Reasoning - Rule rdfp15'
	Transitive Reasoning (Non-Symmetric) - Rule rdfp4
	Transitive Reasoning (Symmetric) - Rules rdfp3'/rdfp4

	Equality Reasoning
	Achieving Closure

	Evaluation and Discussion
	Related Work
	Conclusion and Future Work

