
 
Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the

published version when available.

Downloaded 2024-03-13T08:42:18Z

 

Some rights reserved. For more information, please see the item record link above.
 

Title Secure Intellectual Property Management in Reconfigurable
Computing Systems

Author(s) Kepa, Krzystof

Publication
Date 2010

Publication
Information

Krzysztof Micha&#322; K&#281;pa (2010) Secure Intellectual
Property Management in Reconfigurable Computing Systems.
Thesis

Item record http://hdl.handle.net/10379/4886

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/


  

 

 
 

Secure Intellectual Property Management in 

Reconfigurable Computing Systems 

 
A Dissertation presented 

by 

 

Krzysztof Michał Kępa, M.Sc., Eng. 

 

Electrical & Electronic Engineering  

College of Engineering and Informatics 

National University of Ireland, Galway 

 

Submitted in fulfilment of the requirements for the  

Degree of 

Doctor of Philosophy in Electrical & Electronic Engineering 

 

Supervisor 

Dr. Fearghal Morgan 

 

April 2010 



  

– ii – 

  



  

– iii – 

I hereby declare that this thesis is my original work except where stated.  

 

 

 

Signature:__________________________ 

Krzysztof Kępa 

–April 2010 

  



  

– iv – 

  



  

– v – 

Acknowledgements 

I dedicate this dissertation to Maga, for reminding me that there is much more to 

life than study, and to my parents, Rena and Leszek, for their unconditional love and 

support throughout my life. Thank you! 

The work in this thesis was carried out under the superb supervision of Dr. 

Fearghal Morgan whom I thank particularly for his astute guidance and reassurance, 

as well as his endless energy, contagious enthusiasm and common sense. Ai.  

I thank to Krzysztof Kościuszkiewicz for our stimulating conversations about 

informatics, life and everything. I also thank research and staff members of Electrical 

& Electronic Engineering in NUI Galway, research and staff members of Applied 

Optics Group at School of Physics in NUI Galway and staff members of Computer 

Architecture Group at the Institute of Computer Engineering, Control and Robotics 

in Wroclaw University of Technology. 

I thank research and staff members of the Embedded Electronics Systems Group 

in the Institute for Information Processing Technology who hosted me at Karlsruhe 

Institute of Technology in Karlsruhe for two months. I also thank research and staff 

members of the Configurable Computing Laboratory in the Bradley Department of 

Electrical and Computer Engineering who hosted me at Virginia Tech in Blacksburg 

for two months. 

I thank Dr. Michael Hübner, Prof. Jürgen Becker, Prof. Stanislaw Piestrak, Prof. 

Janusz Biernat, Dr. Jacek Majewski, Prof. Chris Dainty and recently passed Dr. 

Marian Bogdan for their advices and encouragement. I also thank Prof. Christophe 

Bobda who hosted me at Dagstuhl Workshops. 

This project has been funded by the Irish Research Council for Science, 

Engineering and Technology (IRCSET) under the EMBARK Initiative. The 

equipment was provided by Xilinx under the Xilinx University Programme and Intel 

Communications Europe from Shannon, Ireland. 

Numerous friends supported me in the life ‘outside the lab’: Anka, Bart, Charlie, 

Eugenie, Fabien, Grześ, Indiana, Ksenia, Karolina, Maro, Migle, Mindaugas, Oscar, 

Rafik, Sabine, Sedao, Stefan, Sylwek, Szakuł, Tom, members of PolishSoc and 

Mountaineering Club at NUI Galway, and all my unconventional Galway flatmates. 

Thank you all. 

 

Krzysztof Kępa, Wrocław, Poland, April 2010 

  



  

– vi – 

  



  

– vii – 

Abstract 

This thesis contributes to Intellectual Property (IP) security and IP usage 

accounting in Partially Reconfigurable (PR) Xilinx Field-Programmable Gate Array 

(FPGA)-based Reconfigurable Computing (RC) systems. 

The outsourcing of RC system design to external entities results in an extended, 

multi-player design environment and implicit chains of trust between various parties. 

A consequence is an increased risk to system integrity and to design IP protection, 

e.g. design IP theft, cloning, counterfeiting and tampering. Reported research on IP 

infringement countermeasures within RC devices has not considered the security 

risks caused by including erroneous or malicious IP cores in the PR-enabled RC 

system. Also, current security measures do not support system usage accounting and 

IP license enforcement in a multi-party design flow and in deployed PR-enabled RC 

systems. This hinders massive-scale adoption of third-party IP cores in high 

assurance RC systems.  

This thesis proposes a new IP-aware method for the development of trustworthy 

PR systems and reports the implementation of a trusted Secure Reconfiguration 

Controller (SeReCon) IP core which is a Root of Trust (RoT) for RC systems. 

SeReCon provides design IP protection and maintains the integrity of the RC system 

by analysing the IP core structure prior to RC system reconfiguration and by 

mediating access to the internal Xilinx FPGA reconfiguration port. SeReCon protects 

the RC system from structural issues resulting from the inclusion of malicious IP 

cores. SeReCon supports the use of untrusted third-party IP cores in high-assurance 

RC systems. SeReCon also protects IP of third party designs and provides design IP 

license enforcement within the deployed system. The thesis proposes and describes a 

modification to the FPGA fabric to enable SeReCon security credentials to be 

generated and stored internally (within the FPGA) during the RoT certification 

process. In the SeReCon-based IP management scheme the Trusted Authority party 

participates only during certification of the RC system RoT. This policy reduces the 

risk of security credentials leakage and reduces the chain-of-trust requirements in a 

multi-player design flow. 

The thesis also describes the development and application of the FPGA Design 

Analysis Tool (FDAT), which supports rapid prototyping of FPGA CAD 

applications for FPGA system-level design, design verification and application 

porting to SeReCon. FDAT provides a set of high-level FDAT APIs which abstract 

the Xilinx FPGA fabric, the implemented design (placed and routed netlist) and the 

associated FPGA configuration bitstream. The operation of FDAT is governed by 

“recipe” scripts and a lightweight graphic front-end.  

A SeReCon-enabled RC system prototype has been implemented in a Xilinx 

Virtex-5 FPGA and targets a Software-Defined-Radio (SDR) application 

incorporating dynamically loadable IP cores. The RC system prototype includes a 

number of PR IP cores, e.g. AES cipher and decipher, in order to demonstrate the 

feasibility of the SeReCon-based IP management scheme. The SeReCon 

demonstrator application provides detailed and interactive insight into the operation 

of the RC system during SeReCon initialisation and operation, and illustrates that 

even genuine IP cores, when developed in multi-party environment, could include 

implicit communication channels and could therefore introduce security risks. 
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 Chapter 1. Introduction 

This introductory chapter first summarises the focus and elements of this thesis 

and outlines the motivations for performing this research. The chapter also includes 

an introduction to FPGA-based Reconfigurable Computing (RC) systems and the 

Partial Reconfiguration (PR) design flow. The various parties participating in a 

multi-party PR RC system design, implementation and application are described. 

Various security risks associated with a multi-party design flow are highlighted. A 

software Defined Radio (SDR) application implementation incorporating a PR RC 

element is considered in various usage scenarios to illustrate potential security risks. 

Finally, the chapter summarises the main contributions of the work. 

1.1. Thesis Summary  

This thesis contributes to Intellectual Property (IP) security and IP usage 

accounting in Partially Reconfigurable (PR) Xilinx Field-Programmable Gate Array 

(FPGA)-based Reconfigurable Computing (RC) systems. 

RC systems typically include a number of IP cores, commonly designed by 

external parties. The high design complexity of RC systems, and pressure for 

reduced design time, have stimulated strong adoption of a design reuse methodology. 

This adoption is also supported by a growing development of third-party IP cores.  

IP design outsourcing results in an extended, multi-player design environment, 

and therefore implicit chains of trust between various parties. Players include IP 

vendor, system integrator, user, trusted authority etc, typical in a software 

engineering domain. A consequence of the multi-player environment is an increased 

risk to system integrity and to design IP protection, e.g. design IP theft, cloning, 

counterfeiting and tampering [1]–[5]. Reported research on security measures within 

RC devices has not considered the security risks caused by including erroneous or 

malicious IP cores in the PR-enabled RC system, i.e. compromising system integrity 

through undiscovered IP design errors or malicious design overbuilds [2]. Current 

design IP protection methods focus on the confidentiality of the IP core 

implementation, mainly by using authentication and encryption protocols [6][7]. 

Adoption of an IP core protection and configuration model in a multi-party 

environment requires a modification of the configuration scheme for FPGA-based 

RC devices [8]. IP privacy protection and in-system license enforcement must be 

ensured to commercially available third-party IP core vendors. This may not be so 

where the system integrator has unrestricted access to, and is in full control of, all 

design modules including third-party IP cores. A new secure FPGA configuration 

model must be immune to IP core design errors and should allow design privacy 

protection, i.e. secure incorporation of third-party IP cores, without the need for 

disclosure of the IP implementation details.  
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Current IP infringement countermeasures and multi-player PR design flow do 

not support IP core usage accounting and license enforcement (e.g. time-limited, 

functionality/performance-limited or pay-per-use) in a multi-party design flow and in 

active (deployed) PR-enabled RC systems. An IP protection model should provide a 

reliable mechanism supporting IP core management according to a range of license 

restrictions. This approach hinders massive-scale adoption of third-party IP cores in 

high assurance RC systems. 

This thesis reviews security risks in RC, while focusing on FPGA-based RC 

systems using PR. State-of-the-art FPGA security measures are critically evaluated. 

The thesis proposes a new IP-aware method for the development of trustworthy PR 

systems and describes the implementation of a trusted Secure Reconfiguration 

Controller (SeReCon) IP core. SeReCon is a fixed-footprint, trusted reconfiguration 

base Root of Trust (RoT) for RC systems. SeReCon provides a trusted design 

environment, generates RC system security credentials and performs prior-to-

reconfiguration IP core security verification and RC system self-reconfiguration.  

A SeReCon prototype has been implemented in a Xilinx Virtex-5 FPGA and 

targets a Software-Defined-Radio (SDR) application incorporating dynamically 

loadable hardware radio modules (IP cores). SeReCon provides design IP protection 

and maintains the integrity of the RC system by analysing incoming FPGA 

reconfiguration requests during run-time, and by mediating all access to the internal 

Xilinx FPGA Internal Configuration Access Port (ICAP) [9]. Autonomous analysis 

of the structure of a new IP core prior to RC system reconfiguration verifies IP core 

spatial isolation and run-time protection of an already-configured PR system 

SeReCon interrupts the reconfiguration process if the IP core configuration violates 

the integrity of the RC system. This protects the RC system from structural issues 

resulting from erroneously placed (or malicious) IP cores. SeReCon enables the use 

of unverified (untrusted) third-party IP cores in high-assurance systems so long as 

they do not interfere with the active system configuration.  

The thesis also proposes the use of SeReCon for IP core licensing and usage 

accounting, e.g. total runtime, no. of activations etc, in a PR system. SeReCon 

facilitates new IP core licensing models, e.g. transaction-based and metered access, 

during the PR system life-cycle. The SeReCon-based RoT supports license 

enforcement within the FPGA design flow, including the FPGA configuration 

bitstream in the target system. The SeReCon-based RoT and IP management scheme 

requires the participation of the Trusted Authority party only during certification of 

the RC system RoT. This reduces the chain-of-trust requirements in a multi-player 

design flow. 

The thesis proposes and describes a modification to the FPGA fabric, the 

Extended ID Register (EIDR), which has been implemented in a Virtex-5 LXT 

device (ML505 Board) using the Xilinx ISE toolset. EIDR enables SeReCon security 

credentials (used for RC system identification) to be generated and stored internally 

(within the FPGA) during the system certification process. SeReCon employs 

authentication, public-key and symmetric-key cryptographic algorithms in order to 

protect the confidentiality and integrity of third party IP designs installed in the RC 
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system. Security credentials are generated using a Ring-Oscillator (RO)-based True 

Random Number Generator (TRNG), and remain within the SeReCon RoT security 

perimeter. This policy protects against un-authenticated access to the RC system 

credential storage and hence reduces the risk of leakage of security credentials. 

The thesis also describes the development and application of the FPGA Design 

Analysis Tool (FDAT), which is a Python-based, versatile, modular and open tools 

framework for low-level analysis and verification of FPGA design bitstreams. FDAT 

supports rapid prototyping of EDA tools for FPGA system-level design, design 

verification and application porting to SeReCon. FDAT can be used as a trusted and 

verifiable reference design in the development, analysis and verification of PR 

designs targeting Xilinx FPGAs. FDAT extends the Xilinx design flow
1
 by providing 

a set of high-level FDAT APIs which abstract the Xilinx FPGA fabric, the 

implemented design (placed and routed netlist) and the related FPGA configuration 

bitstream. The operation of FDAT is governed by “recipe” Python-based scripts. A 

lightweight graphic front-end allows custom visualisation of the design within the 

FPGA fabric. To the best knowledge of the authors, FDAT is the first available 

toolset to provide high-level and unrestricted access to the low-level description of 

the Xilinx FPGA fabric and the user design at the netlist- and bitstream-level. 

The prototype of the SeReCon-enabled RC system has been implemented in the 

Xilinx Virtex-5 LXT FPGA using the Xilinx EAPR design flow [10] and Xilinx 

EDA software, e.g ISE, EDK and PlanAhead tools. The RC system design files are 

included in the thesis DVD. The RC system prototype uses four IP cores, e.g. 32-bit 

Adder, 32-bit Multiplier, 128-AES Cipher and 128-bit AES Decipher in order to 

demonstrate the SeReCon-based system reconfiguration. The SeReCon element is a 

CPU-based system uses an embedded 32-bit MicroBlaze processor operating at 125 

MHz. Analysis of the SeReCon implementation resource usage confirms the 

feasibility of the SeReCon-based IP core management model in the largest FPGA-

based RC systems. 

The thesis reports the SeReCon demonstrator application which is implemented 

in Python and executed on the Intel server. The demonstrator application 

communicates with the RC system prototype (and SeReCon) using the PCIe interface 

and provides detailed insight into the operation of the RC system during the 

SeReCon (and EIDR) initialisation, IP core installation and activation. The 

demonstrator application shows that even genuine IP cores, when developed in 

multi-party environment, could include implicit communication channels and could 

introduce security risks. 

                                                 
1
 The FPGA Design Analysis Tool (FDAT) is an extension for Xilinx EDA tools, developed only for 

educational purposes. The FDAT development process did not involve reverse-engineering of Xilinx 

proporietary tools. FDAT targets only Xilinx FPGA devices. FDAT does not support and does not 

enable any interoperability of Xilinx tools and FPGA devices from other FPGA vendors.  
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1.2. FPGA-based Reconfigurable Computing (RC) 

Reconfigurable Computing (RC) is defined as: “the study of computation using 

reconfigurable devices” [11]. Thus, RC systems blur the boundary between hardware 

and software. RC systems offer the programmable flexibility of General-Purpose 

Processors (GPPs) at a fraction of the power consumption. RC systems provide high-

performance computational acceleration in hardware, similar to that provided by 

Application Specific Integrated Circuits (ASICs). RC systems offer faster time-to-

solution, cost reduction for small- to mid-volume applications, and improved fault-

tolerance with respect to production defects. Also, RC systems leverage Intellectual 

Property (IP) R&D costs, while providing benefits usually associated with expensive 

High-Performance Computing (HPC) systems. Various technologies (see Appendix 

A) are used in RC systems, depending on the required reconfiguration granularity.  

This thesis focuses on RC systems implemented using FPGA technology. RC 

hardware such as FPGAs provides a cost-attractive alternative to ASIC 

implementation for small- to mid-volume applications. The number of designs which 

use reconfigurable hardware is exploding, with applications ranging from embedded 

systems [12] to super-computers [13]. FPGA-based RC systems are extensively used 

for rapid prototyping, in-system and in-field customisation, multi-modal 

computation, and adaptive computing systems. Bobda has provided a survey of 

application domains which significantly benefit from the use of RC systems [11]. 

The list includes pattern matching, video streaming, Digital Signal Processing (DSP) 

using distributed arithmetic, adaptive controllers, adaptive cryptographic systems, 

Software Defined Radio (SDR) and HPC
2
. 

1.3. Partial Reconfiguration (PR) Design Flow 

The Run-Time Reconfiguration (RTR) paradigm enables RC systems to perform 

PR [14]. Active PR, available in some FPGAs, provides the flexibility of system 

reconfiguration during runtime. PR technology leads to an unprecedented flexibility 

and freedom in adapting to temporal changes within an RC system [15] or 

environmental adaptivity [16], [17]. PR in RC systems can occur not only at the 

software-level, but also at the configware-level [18]. Configware defines a 

virtualised hardware platform on which the software is executed.  

Figure 1- presents the block diagram of a PR-enabled RC (FPGA-based) SDR 

device which includes the proposed SeReCon element. Typically, the SDR device 

contains a number of application specific radio-modules in the transmitter cores (TX 

region) and receiver cores (RX region). The SDR device also includes a number of 

additional interfaces, e.g. communication interface (COMM IF), external memory 

                                                 
2
 See The US National Science Foundation (NSF) Center for High-Performance Reconfigurable 

Computing (CHREC, http://chrec.org/projects.html) 
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controller (MEM CTRL IF), device-specific IO controller (PERIPH IF) and the 

FPGA Internal Configuration Access Port (ICAP) for self-reconfiguration. SeReCon 

is an additional IP core, and an element in the static FPGA base system 

configuration. 

PR is offered by Atmel and Xilinx FPGA vendors
3
. PR is facilitated in Xilinx 

FPGAs using the SelectMAP interface or the Internal Configuration Access Port 

(ICAP) [9]. PR provides full access to the FPGA configuration memory during 

system runtime. Self-reconfiguration using PR enables the RC system software layer 

to modify the underlying hardware configuration during system runtime, e.g. 

insertion of new computing modules (IP cores), without restarting the system [9]. 

1.4. Security Requirements In PR-Enabled RC Systems 

A recent Department of Defense report [19] has identified several trends 

contributing to the threat of covert insertion of circuitry into computing hardware. 

Modifying hardware provides attackers with a fundamental advantage over software-

based attacks [20], [2]. Attacks at the hardware level are more difficult to detect and 

to prevent than attacks on software. Also, defending against hardware intrusion is 

more difficult, as the offender has control over all system layers, including the 

software stack. This thesis reviews security risks in RC systems, while focusing on 

FPGA-based RC systems using PR. State-of-the-art FPGA security measures are 

critically evaluated.  

PR in RC systems introduces risks to hardware system security (design integrity) 

on a scale associated to date only with the software domain. Risks exist such as 

covert insertion of circuitry into PR computing hardware (system tampering), or 

creation of implicit communication channels between IP cores. Modifying hardware 

provides attackers with a fundamental advantage over software-based attacks; attacks 

at the hardware level are more difficult to detect and prevent than attacks on 

software. Extending hardware support for security verification (intrusion detection) 

and handling is therefore required.  

In FPGA-based RC systems, no protection layer exists below the system 

hardware layer. Without protective measures, PR FPGAs could be exposed to a 

range of attacks, some requiring the addition of only a small amount of covert-

inserted hardware [20]. King [2] illustrates that an attacker can design hardware to 

support multiple attacks and demonstrates this concept using a system implemented 

in an FPGA.  

The most strict adversary model in embedded system design assumes that a 

security risk exists where a device is held by one entity (system user) and where 

secrets (design IP) within the device are controlled by another entity (IP 

                                                 
3
 Also, Altera announced it will support PR in future 28-nm FPGA devices 

(http://www.eetimes.com/news/latest/showArticle.jhtml?articleID=222600544)  

http://www.eetimes.com/news/latest/showArticle.jhtml?articleID=222600544
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vendor/system integrator). A goal in secure systems engineering is to design a system 

which an attacker (e.g. user) cannot subvert, either by malice, accident, or trickery. 

Figure 1- and Figure 1-b illustrate possible attack vectors on a PR FPGA-based SDR 

device, and the security countermeasures provided by the embedded SeReCon. 

While the methodology of IP core reuse reduces design time and associated cost, 

the intensive growth of the market for pre-designed IP modules introduces concerns 

about the protection of design IP rights and the integrity of designs incorporating 

third party IP cores. Ideally, each of the design components should be formally 

specified, tested, and verified, followed by certification by an external Trusted 

Authority (TA). In reality, IP components are typically created through in-house 

design reuse, obtained from third-party IP Vendors
4
, or generated using automated 

core generation tools, e.g. Xilinx CoreGen
5
. Current design IP protection methods 

focus on the confidentiality of the IP core implementation, mainly by using 

authentication and encryption protocols, though without considering the risks caused 

by including erroneous or malicious IP cores in the PR-enabled RC system [20], 

[21]. This approach hinders massive-scale adoption of third-party IP cores in high 

assurance RC systems. Also, design reuse in the RC system design flow results in IP 

cores of increasing complexity. As a consequence, attack methods can be generalised 

and are becoming obscure by the complexity of the RC system. 

1.5. Multi-Party Design Environment & RC System Life-

Cycle 

1.5.1. Introduction 

This section describes the typical players, the four phase life cycle and the 3-

layer stack model of a typical RC system (Figure 1-). Trust between players is 

limited. The interactions between the various parties introduce multi-level risks 

associated with the design flow and the RC system itself. IP and EDA tool vendors 

seek appropriate IP protection against unauthorised design cloning, overbuilding 

(manipulation) and reverse engineering. System integrators (design houses and 

manufacturers) seek automated methods to provide effective system security to 

protect design integrity in the field.  

 

                                                 
4
 OpenCores (http://www.opencores.org), IPcores (http://www.ipcores.com), Xilinx LogiCORE 

(http://www.xilinx.com/ipcenter/index.htm) 

5
 CoreGen is included in Xilinx ISE. 

http://www.opencores.org/
http://www.ipcores.com/
http://www.xilinx.com/ipcenter/index.htm
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Figure 1- Typical players, the four phase life cycle and the 3-layer stack model of a typical RC 

system. 

1.5.2. Players In RC System Life Cycle 

This section describes each player in a multi-party design environment (Figure 

1-). 

Trusted Authority (TA) is an authorisation and/or certification centre. The TA 

mediates communication between players in order to provide the required element of 

trust. The TA is assumed to be trustworthy by all other entities and is usually not 

involved in the system development process. The centralised role of the TA makes 

the TA an attractive target to attackers. A risk exists that the TA operation, 

trustworthy during RC system deployment, can be compromised in the future, e.g. by 

a successful attack on the TA facilities, leakage of sensitive data
6
, bankruptcy etc. 

For RC systems using the proposed SeReCon element, the TA confirms the 

                                                 
6
 Amazon's Kindle DRM crack (http://www.theregister.co.uk/2009/12/23/amazon_kindle_hacked/), 

TI-83 Plus OS Signing Key Crack (http://www.ticalc.org/archives/news/articles/14/145/145154.html) 
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authenticity of the RC system key generation process (during the initial system start-

up), and certifies the resulting key material. 

EDA Tool Vendor (TV) provides software tools to the other parties and strives 

to ensure software quality. The TV can develop a strong reputation, based on long-

term trusted activity, but cannot be trusted entirely [21]. 

IP Vendor (IPV) is an external entity which provides reusable components (IP 

cores) for the RC system. The IPV wishes to protect its own design secrets. The IPV 

is not directly involved in the RC system design process, and is only aware of the 

system requirements which the IP core must meet. The IPV guarantees compliance 

of the IP design to the functionality specification, but not the optimal design. 

Competitive market (e.g. constrained deadlines, cost etc) can drive IPV to provide 

poorly tested or otherwise sub-optimal design. Similar to EDA software an IP core 

can contain hidden malicious functionality [4]. 

The End-System User (User) is an end-customer who operates the RC system, 

possibly in hostile environments. The User requires the system to be secure, but 

could also try to gain personal profit by attempting to circumvent the implemented 

security countermeasures since the User has physical access to the RC system. Also, 

while software can be erased at the end of the system life-cycle, the hardware 

platform often remains intact. A hardware reverse-engineering (de-packaging and 

fabric analysis) or recycling process can reveal some sensitive data, e.g. permanently 

embedded encryption keys. Under certain circumstances, even volatile memory can 

retain data [22], [23]. Therefore, recovery of sensitive data (e.g. keys) or algorithms 

may be possible. 

System Integrator (SI) designs, manufactures and provides the RC system to 

the User. The SI can also issue a product upgrade in the field. A typical RC system 

consists of custom elements and multiple third-party IP cores. IP cores can be 

distributed in various formats: HDL source, netlist or FPGA device-specific (partial-) 

bitstream, depending on the level of trust between the SI and IPV. The SI is 

interested in optimising costs associated with external IP cores used in the RC 

system, e.g. royalties, license fees etc. Thus, the SI is motivated to circumvent legal 

license restrictions by e.g. IP core cloning, reverse-engineering or tampering. 

FPGA Fabric Vendor (FV) provides the FPGA fabric. Modern FVs are fabless. 

Risks involved with outsourcing Integrated Circuit (IC) fabrication are detailed in 

[19]. Usually the FV maintains the implementation details of the fabric confidential, 

and guarantees quality of service and compliance to the FPGA specification.  

The FV or its outsourced (typically off-shore) fabrication sub-contractor are 

interested in extensive fabric testing and debugging to aid silicon yield. Thus, the 

FPGA fabric includes undocumented vendor-specific debugging and test facilities, 

e.g. Xilinx Process Monitor Vehicles (PMVs) [24]. Typically, vendor-specific 

control circuits are not available to the User. This can lead to a device security 

breach when user access is left unprotected in production devices [25]. Also, the 

fabrication sub-contractor can weaken the fabric or inject additional malicious 



 Chapter 1 - Introduction 

– 9 – 

functionality into the FPGA device
7
 [19], [20]. Verification by the TA is required to 

ensure that undocumented access to the FPGA internals (e.g. configuration memory) 

is not possible. This guards against Trojan ICs [20]. In the proposed SeReCon model, 

the FPGA fabric is assumed to be trusted. 

1.5.3. Four Phase RC System Life Cycle 

This section describes each phase of the RC system life cycle in a multi-party 

design environment (Figure 1-). 

IC fabrication: delivers the FPGA fabric. The FV uses tools from the TV to 

design the chip. The major FVs (e.g. Altera, Lattice, Xilinx) are fables; fabrication of 

the FPGA devices is typically outsourced to the external foundry, e.g. TMSC
8
. Thus, 

the TA can be required in order to establish trust in the produced FPGA devices 

(device certification) [26]. 

System design: delivers the RC device. The SI develops the RC system 

prototype, hardware platform and software. The SI uses EDA tools and reuses third 

party IP cores provided by the IPV. The TA can be used as a trusted third party 

during the process, when the SI and IPV do not trust each other. 

System maturity: the main phase in the system life cycle. The device is 

installed in the field and is operated by the User. The User can extend the 

functionality of the device by ordering additional IP cores from the IPV or SI. The 

TA can also participate. 

Hardware disposal: terminates the RC system life cycle. The device is 

deactivated and its hardware is ready for reuse. This phase can be intentional, e.g. 

scheduled service termination, or can result from a tampering attack. Thus, it is vital 

that the FPGA provides a facility for instant and irreversible system sanitisation, e.g. 

one-shot encryption key erasing. Some Xilinx FPGAs already support this feature as 

a ‘KEY_CLEAR’ primitive [27]. The KEY_CLEAR element provides the facility 

supporting immediate erase of the configuration encryption circuit key register from 

the internal logic. 

1.5.4. RC System Stack Model 

Figure 1-a illustrates the stack model of a typical self-reconfigurable system and 

highlights the risks of unprotected software access to the reconfiguration interface 

(Figure 1-b). Figure 1-c illustrates the proposed SeReCon-enabled self-

reconfigurable system stack model. Figure 1-d illustrates SeReCon-based controlled 

(secure) reconfiguration. 

                                                 
7
 In 2008 US and Canadian agencies seized counterfeit Cisco gear (http://www.thestandard.com/news/ 

2008/02/29/us-canadian-agencies-seize-counterfeit-cisco-gear) 

8
 Taiwan Semiconductor Manufacturing Company Limited (TSMC, http://www.tsmc.com) 

http://www.thestandard.com/news/%202008/02/29/us-canadian-agencies-seize-counterfeit-cisco-gear
http://www.thestandard.com/news/%202008/02/29/us-canadian-agencies-seize-counterfeit-cisco-gear
http://www.tsmc.com/
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Figure 1- a. stack model of a self-reconfigurable system. b. risk of unprotected software access to 

the reconfiguration interface. c. the proposed SeReCon-enabled system stack model. including 

Root-of-Trust. d. SeReCon-based controlled reconfiguration. 

The FPGA-based RC system comprises three layers, namely hardware, 

configware and software. 

The hardware layer is the physical device which contains the FPGA fabric with 

the Internal Configuration Access Port (ICAP), peripheral ICs (memory and interface 

PHYs), power supply etc. The hardware platform remains unchanged during the RC 

system life cycle. An attacker can disassemble the device, gaining access to system 

interfaces in order to eavesdrop and manipulate RAM, communication or 

configuration data. Drimer et al. have demonstrated successful tampering with secure 

PIN entry devices [28] and protocols [29]. Thus, it is vital to limit the RC system 

security boundary only to the tamper-proof FPGA chip and to facilitate RC system 

integrity monitoring [30]. 

Configware provides virtualisation of the RC hardware platform to the system 

application software. The capacity of modern FPGAs supports the implementation of 

complex Systems-on-Chip (SoCs) within a single FPGA [31], [32]. Complex SoCs 

incorporate a number of (third-party) application-specific IP cores (Figure 1-a and 

Figure 1-a). In some SoCs, configware also provides access to the ICAP. This allows 

system self-reconfiguration (IP cores exchange) using PR. When the ICAP is used, 

the configware (and software) has unlimited access to the FPGA configuration 

memory. When bitstream encryption is used, the ICAP remains enabled [9], [33] . 

Unprotected access to ICAP can lead to covert (undetected by software) change of 

SOFTWARE

IP CORE #N
CONFIGWARE

RECONFIGURABLE 

HARDWARE

SOFTWARE

CONFIGWARE

RECONFIGURABLE 

HARDWARE

SOFTWARE

CONFIGWARE

ICAP

RECONFIGURABLE 

HARDWARE

SeReCon

SOFTWARE

IP CORE #N
CONFIGWARE

ICAP

RECONFIGURABLE 

HARDWARE

SeReCon

ICAP ICAP

IP CORE #N

Malicious 

IP core

Genuine 

IP core

Uncontrolled 

software 

access to 

FPGA config. 

memory

Root-of-Trust

Malicious 

(Trojan) IC

IP core locationa) b)

c) d)



 Chapter 1 - Introduction 

– 11 – 

the SoC configuration or the installation of a Trojan IP core [2], [5]. The proposed 

SeReCon protects access to the ICAP and analyses the IP core content prior to 

reconfiguration, interrupting the reconfiguration process if the IP core configuration 

violates the integrity of the RC system. 

The software layer contains RC system firmware and possibly the OS or 

application specific code. Firmware provides hardware and configware drivers to the 

RC application and system maintenance procedures, e.g. IP core load, unload and 

configuration routines. If the software layer has some exploitable vulnerability this 

allows the attacker to gain full control over the configware and thus the entire RC 

system. The proposed SeReCon performs PR on behalf of the software. This ensures 

that the requested PR does not overwrite the active part of the system, and that it 

limits the RC system security perimeter to the SeReCon IP core, ICAP and the FPGA 

configuration logic. 

Design outsourcing of digital circuits and systems to third-party vendors and 

open source communities (e.g. OpenCores
9
) gives rise to a network of trust 

relationships between parties and toolsets. This multi-party arrangement leads to 

increased security risks [21]. Individual IP cores are typically verified, and then 

certified as secure. Controlling the consistency of a complete design flow, from the 

system specification through IP core integration and deployment of the final product, 

becomes more challenging when reconfigurable systems and a PR flow are 

considered. PR introduces a risk of replacing a part of the design with malicious 

(Trojan-horse) functionality and thus a risk of compromising the entire system [2]. 

During self-reconfiguration, illegal connections (called covert channels) can 

potentially be set up, allowing for unwanted ad-hoc interactions between IP cores. 

This introduces the risk to IP ‘secrets’, e.g. data interception, algorithm theft, 

encryption key extraction etc. 

  

                                                 
9
 OpenCores (http://opencores.org) 

http://opencores.org/
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1.6. Illustration Of  SeReCon Within A Software Defined 

Radio (SDR) Application 

A SeReCon prototype demonstrator has been implemented in a Xilinx Virtex-5 

FPGA and targets a Software-Defined-Radio (SDR) application incorporating 

dynamically loadable hardware radio modules (IP cores). SeReCon is a trusted 

element within the SDR device, which performs secure system reconfiguration. In 

this section, a SDR application
10

 implementation incorporating a PR RC system is 

considered in various usage scenarios to illustrate potential security risks. Farrel et al. 

overview the SDR demonstrators and future trends [34]. 

Figure 1-a illustrates a typical SDR environment and SDR application. The SDR 

Data Communications Equipment (DCE) is implemented in the RC system which 

includes radio interface (radio PHY), the PR FPGA device and communication IOs 

(peripherals). The RC device also incorporates the proposed embedded Secure 

Reconfiguration Controller (SeReCon) element. SDR DCE provides a radio 

communication link between the user Data Terminal Equipment (DTE), which might 

be also part of the SDR DCE device, and the host DCE/DTE system. The FPGA 

device is configured with the proposed embedded SeReCon element and a number of 

third-party digital IP cores, e.g. transceiver processing pipelines (TX, RX) which 

communicate with radio PHY and IO peripherals. IP cores are used e.g. for the Base 

Band (BB) signal processing, signal modulation/demodulation, data control and error 

correction etc. 

The SDR User operates the SDR RC device in the field. The SDR User can 

request application-specific IP cores from the third party IP vendor. Third party IP 

cores are used, i.e. for proprietary BB signal processing etc. Third party IP cores are 

delivered to the FPGA through the unsecured channel, e.g. internet, radio link etc. 

This introduces a number of security risks for the SDR system
11

 (Figure 1-b), e.g. 

malicious IP core delivery, host or SDR device impersonation/tampering, radio 

communication interception and IP core theft, tampering, reverse engineering and 

cloning. Malicious IP cores could compromise the trustworthiness of the SDR 

system. Host device impersonation or communication tampering could mislead the 

SDR device to accept and install malicious IP cores. The SDR device impersonation, 

the communication link eavesdropping and the SDR device tampering could 

facilitate theft, tampering, reverse engineering and cloning of the genuine IP cores. 

SeReCon counteracts these risks through its execution of IP core analysis and 

verification prior to FPGA reconfiguration, end-to-end data encryption, DCE 

authentication and IP core license enforcement.  

                                                 
10

 GNU Radio (http://gnuradio.org/redmine/wiki/gnuradio) and Joint Tactical Radio System (JTRS, 

http://en.wikipedia.org/wiki/Joint_Tactical_Radio_System) are example of popular SDR applications. 

11
 Presentation describing the JTRS systems security context can be found hereSoftware-Based 

Communications Workshop (http://www.omg.org/news/meetings/workshops/SBC_2005/SBC_2005 

_Proceedings/03-1_Monahan_etal_V2.pdf). 

http://gnuradio.org/redmine/wiki/gnuradio
http://en.wikipedia.org/wiki/Joint_Tactical_Radio_System
http://www.omg.org/news/meetings/workshops/SBC_2005/SBC_2005%20_Proceedings/03-1_Monahan_etal_V2.pdf
http://www.omg.org/news/meetings/workshops/SBC_2005/SBC_2005%20_Proceedings/03-1_Monahan_etal_V2.pdf
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Figure 1- a. SDR environment and application implemented within a Partially-Reconfigurable 

(PR) FPGA-based Reconfigurable Computing (RC) device. b. potential attack vectors and the 

security assurances carried out by the proposed SeReCon element. 
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Figure 1-a illustrates a block diagram of the PR FPGA-based RC system 

incorporating the proposed SeReCon IP core, PR region for dynamically loadable 

SDR IP cores, radio and IO communication interface (Comm. IF/PHY), external non-

volatile memory (Local IP Storage) and additional peripherals (DDR/FLASH, EXT 

DEVICE). SeReCon is a fixed-footprint, trusted reconfiguration base Root of Trust 

(RoT) for RC systems, which controls all access to the FPGA configuration area, via 

the ICAP. The Base SeReCon FPGA Configuration (BaseSFC) is loaded into the 

FPGA after system power up and contains:  

 the SeReCon IP core 

 a communication interface to control RC system configuration (using the 

SeReCon element) 

 the memory interface to provide non-volatile Local IP Storage (LIPS) 

implemented using external Compact Flash which stores the RC system IP cores. 

Figure 1-b illustrates the SDR application software stack which contains: 

 the SDR application 

 a high-level SeReCon communication API  

 the Operating System (OS), e.g. Linux 

 SDR DCE device drivers which uses PR technology and the SeReCon RoT to 

exchange cryptographic IP cores in response to the type and amount of 

application data traffic. 

Figure 1-c illustrates the SeReCon IP core which contains:  

 32-bit CPU (Microblaze) with local firmware memory (BRAM) 

 Communication interface (GPIO IP core from EDK) which allows FIFO-

buffered communication with the SDR application and SDR User 

 LIPS interface (SysAce IP core from EDK) which enables persistent IP core 

storage  

 True Random Number Generator (TRNG) using LUT-based Ring Oscillators 

(RO) [35], providing random data used in SeReCon encryption 

 Hardware AES block cipher based on the open source design [36] 

 Extended ID Register (EIDR) which is an extension to FPGA fabric and 

provides secure storage of SeReCon security credentials 

 ICAP, the FPGA internal configuration port used to activate SDR IP cores. 

Figure 1-d illustrates the Extended ID Register (EIDR) which is the FPGA hard-

macro primitive embedded within a tamper-proof FPGA fabric. The EIDR provides 

state-keeping FPGA configuration and tamper-proof user secret credentials storage. 

Figure 1-e illustrates the SeReCon firmware stack stored in local memory. The 

firmware stack contains: 

 Board Support Package (BSP) which provides low-level drivers to CPU 

peripherals 

 Various libraries providing generic support for ICAP, TRNG, AES/ECC, 

Comm and Memory IP cores 
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 Analyser API which uses Embedded Routing DataBase
12

 (ERDB) for 

analysing the IP core internals during IP core installation 

 Verifier API which uses ERDB for verifying RC system state and IP core 

requirements prior to IP core activation  

 Configuration Manager which provides SeReCon API to drivers used by the 

SDR application. 

SeReCon employs authentication, public-key and symmetric-key cryptographic 

algorithms in order to protect third party IP designs and facilitate license 

enforcement of IP cores installed in the system (Figure 1-a). SeReCon maintains the 

integrity of the PR RC system by mediating all access to the internal Xilinx FPGA 

reconfiguration port. SeReCon enables the use of untrusted third-party IP cores in 

high-assurance systems and provides design IP protection and IP core license 

restrictions enforcement in the active (deployed) system. 

The proposed SeReCon system requires a modification to the FPGA fabric to 

enable SeReCon security credentials (Figure 1-d), used for RC system identification, 

to be generated internally (within the FPGA) during the system certification process. 

Security credentials are generated using a Ring-Oscillator (RO)-based True Random 

Number Generator (TRNG) [37] and remain forever within the SeReCon security 

perimeter. This policy protects against un-authenticated access to the system 

credential storage and hence reduces the risk of leakage of security credentials.  

The thesis proposes the use of SeReCon for IP core usage accounting, e.g. total 

runtime, number of activations etc, in a PR system. This facilitates new IP core 

licensing models, e.g. time-limited and pay-per-use, and provides confidentiality of 

the IP core implementation during the PR system life-cycle. The SeReCon-based 

RoT supports license enforcement within the FPGA design flow down to the FPGA 

configuration bitstream and also within the deployed system. 

Figure 1-a illustrates usage scenarios of the SeReCon-based RoT. The RoT 

incorporates novel algorithms for the generation of system security credentials and 

trusted design verification. The SI implements the RC system BaseSFC (Figure 1-a), 

loaded after power up. The BaseSFC, after RC system power up contains only the 

SeReCon IP core, communication interface and memory interface to provide non-

volatile Local IP Storage (LIPS) in external Compact Flash.  During RoT 

initialisation the RC device (with its installed SeReCon RoT) is verified by the TA. 

The TA certifies the device, the BaseSFC and internally generates the RoT public-

key (Figure 1-b). The SeReCon-based RoT and IP management scheme requires the 

TA participation only during certification of the RC system. This reduces the chain-

of-trust in a multi-player design flow. The SI uses the RoT and its public-key to 

install (in LIPS) the encrypted IP cores (Figure 1-c), obtained from the third-party 

IPV upon a request from the SI (Figure 1-a). SeReCon enables the use of untrusted 

                                                 
12

 The Embedded Routing DataBase (ERDB) contains FPGA routing data which is not documented by 

Xilinx, but available within genuine Xilinx ‘debug’ bitstreams generated by legitimate Xilinx 

bitgen tool (with ‘debug’ option turned on). ERDB is compilation of data obtained from multiple 

‘debug’ bitstreams. 
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third-party IP cores in high-assurance systems so long as they do not interfere with 

the active system configuration. SeReCon provides design IP protection and IP core 

license restriction enforcement in the active (deployed) system. IP cores installed in 

LIPS (Figure 1-d) are activated on receipt of a request from the SDR User or SDR 

application (Figure 1-). SeReCon maintains the integrity of the RC system by 

analysing incoming FPGA reconfiguration requests during run-time and by 

mediating all access to the internal Xilinx FPGA reconfiguration port. 

 

 

Figure 1- a. block diagram of the FPGA-based SDR device (PR-enabled RC system) including 

SeReCon. b. SDR application software stack. c. SeReCon IP core. d. the Extended ID Register 

element. e.  the SeReCon firmware installed in local memory. 
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Figure 1- a. SeReCon-based Root-of-Trust (RoT) usage scenarios. b. RoT initialisation. c. IP 

core installation. d. IP core activation. 
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1.7. Security Issues In FPGA-Based PR RC Systems  

 Figure 1-a illustrates the example SDR application of the PR RC system. The 

SDR DCE is an FPGA-based RC system. The SDR DCE exploits PR in order to 

update radio signal processing modules (IP cores) in the transmitter and receiver 

pipeline. The SDR DCE is connected to the SDR Data DTE using, e.g. a PCIe 

interface. The SDR DTE communicates with the host DTE, e.g. the GSM Base 

Station, using a DCE-to-DCE radio link. When the SDR DCE requires new 

functionality, the IPV issues updated IP cores which are delivered to the SDR DCE 

using a radio link or local DCE-DTE interface.  

This section describes various attack vectors on the SDR DCE device which are 

illustrated in Figure 1-b. 

Tampering and impersonation of communication peers. The attacker mimics or 

controls the legitimate SDR DTE, or the host DTE/DCE. The attacker manipulates or 

replays the reconfiguration protocol in order to control the SDR DCE IP cores and 

RC configuration. The attacker could try to roll-back the SDR DCE configuration by 

replaying previously intercepted legitimate communication with the SDR DCE. The 

attacker can also reconfigure the SDR DCE using malicious or erroneous (e.g. 

obsolete) IP cores. The countermeasure to this attack could be to provide SDR DCE 

support for authentication of communication peers, assessment of their 

trustworthiness and certainty that replayed communication will be detected as such. 

Tampering and impersonation of the SDR DCE device. The attacker physically 

tampers with the SDR DCE in order to gain access to the configware data and thus 

control the device. Also, the attacker can mimic (impersonate) the legitimate device 

in order to receive upgraded IP cores from the host DTE/DCE. This may expose the 

IP implementation, e.g. algorithm details, used encryption keys etc. This could lead 

to IPV revenue loss or compromise the system of which the SDR DCE is a part. 

Tamper proof design of the SDR DCE RoT and its authentication to the host device 

could be protected against such attacks. 

Indirect malicious IP core delivery. The attacker has no direct access to the device. 

However, the attacker could act as a third party IPV or compromise production of a 

legitimate IP core in order to install the Trojan IP core in the remote SDR DCE. This 

leads to system compromise without the need to interfere with the reconfiguration 

process and/or players. A trusted IP core validation within the SDR DCE, which 

decides whether the IP core violates the SDR DCE integrity, could protect against 

this risk. 

Communication interception and tampering. The attacker intercepts and tampers 

with a legitimate communication channel, e.g. radio link. The attacker could attempt 

to interfere with an active reconfiguration process, e.g. during the man-in-the-middle 

attack [38] by, e.g. actively altering the content of the transmitted data (e.g. 

bitstream, commands etc). Successful interception exposes the reconfiguration 

protocol and IP core implementation which can then be reverse-engineered or 

cloned. This typically leads to IPV revenue loss. Successful tampering could install a 
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Trojan IP core in the SDR DCE during a legitimate reconfiguration request 

originating from a legitimate host DTE/DCE. This attack can be protected against by 

use of authenticated encryption. 

This thesis proposes SeReCon (Figure 1-c), which provides countermeasures 

against non-invasive attacks. The thesis also proposes tamper-resistant 

implementations which provide a countermeasure to semi-invasive and invasive 

attacks. SeReCon acts as a trusted reconfiguration agent, incorporated within the 

SDR RC system.  

The SeReCon IP core provides the following security measures within the SDR 

system: 

1. Secure communication channel between communicating devices (e.g. SDR DCE 

and host DTE/DCE or SDR DTE). SeReCon protects the confidentiality and 

integrity of reconfiguration commands and IP cores while transmitted over the 

radio link or local interface 

2. IP core license restriction enforcement within the SDR DCE 

3. Authentication of the communication devices 

4. Detection of erroneous configuration data (corrupted or malicious IP cores) 

5. Provision of reconfiguration access only to authorised devices (e.g. host or SDR 

DTE) 

1.8. FDAT: FPGA Design Analysis Tool 

The thesis also describes the development and application of the FPGA Design 

Analysis Tool (FDAT) (Figure 1-), a versatile Python framework for low-level 

analysis and verification of FPGA design bitstreams, which supports rapid 

prototyping of algorithms for system-level design verification before porting to 

SeReCon. FDAT provides a set of high-level Application Programming Interfaces 

(APIs) which abstract the Xilinx FPGA fabric, the implemented design (placed and 

routed netlist) and the related FPGA configuration bitstream. A lightweight graphic 

front-end allows custom visualisation of the design within the FPGA fabric. 



 Chapter 1 - Introduction 

– 20 – 

 

Figure 1- FPGA Design Analysis Tool (FDAT) block diagram and context. 
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1.9. Structure Of  The Thesis 

This thesis is organised as follows:  

 Chapter 2 reviews and describes the RC system application domain and 

advantages offered by RC systems over general purpose processors and ASICs. 

FPGA technology and architectures are introduced and the FPGA-based RC system 

design flow and PR are described. 

 Chapter 3 begins with a motivating example on security risks within PR FPGA 

systems. The example illustrates the risk of implicit communication channels 

between IP cores in the PR RC system. The risk of side-channel attacks, the threat of 

rogue EDA software and the issue of malicious FPGA designs are also highlighted. 

The chapter reviews the state of the art in RC security. Security countermeasures 

supported by Xilinx FPGA fabric are described prior to critical examination of the 

reported work on the RC system integrity protection and countermeasures for design 

IP theft. The principle of IP licensing models is also described. This chapter proposes 

use of new IP core licensing models, e.g. the time-limited license and metered-access 

license and highlights the need for the trusted IP-aware RC system security 

countermeasures. The chapter concludes with the proposal of a Secure 

Reconfiguration Controller (SeReCon) and a summary of the SeReCon requirements. 

 Chapter 4 considers the requirements of credentials storage in a secure RoT and 

the implementation of usage accounting for RC systems. The chapter proposes and 

describes an extension to the Xilinx FPGA fabric to provide a tamper-proof hardware 

element which protects the SeReCon-based RoT credentials and usage data during 

power-up cycles. Techniques for storage of RoT security credentials and usage 

accounting data in modern FPGAs are reviewed. The suitability and limitations of 

using SRAM configuration memory are discussed. Other non-volatile memory 

schemes for credentials storage are also reported. The EIDR element prototype 

implementation in a Virtex-5 LXT device (ML505 Board) is reported. The register-

based EIDR control/status interface, which is implemented in the FPGA user-logic, 

is highlighted. This chapter also describes EIDR API functions, which are provided 

by the SeReCon EIDR driver. The associated multi-party RoT credentials generation 

process is proposed. The activities of SeReCon and various parties (e.g. SI, TA, IPV) 

during RoT initialisation are highlighted. The RoT credentials generation process 

supports public security audit of the RC device and guarantees exclusive and 

authenticated access to the sensitive part of the RC system security credentials for the 

legitimate system, e.g. SeReCon RoT. The SeReCon-based RoT is immune to 

credentials leakage as a result of a future successful attack on the TA. 

 Chapter 5 describes and demonstrates the FPGA Design Analysis Tool (FDAT), 

a host-based (off-line) bitstream analysis and low-level design verification tool 

which supports a Xilinx FPGA design assurance strategy and automated extraction 

and analysis of bitstream-level designs, within the PR design flow. FDAT is an 

extendable, Python-based system which exploits the functionality of dynamic 

languages and uses modular libraries of custom-defined analysis scripts. The chapter 
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reviews a number of existing tools which facilitate access to low-level design 

descriptions, and proposes the desired functionality of FDAT. The FDAT 

architecture and the script-based functionality which exploits the advantages of the 

Python dynamic language is described prior to presentation of the detailed 

implementation and evaluation of FDAT, a selection of FDAT recipes, and the 

FDAT algorithm execution time for analysis of Xilinx Virtex-II Pro inter-tile routing. 

The chapter proposes porting FDAT functionality to the embedded Secure 

Reconfiguration Controller (SeReCon) for on-line Xilinx Virtex-5 bitstream analysis. 

Considerations in creating an embedded routing database and IP core routing 

analysis are also highlighted. 

 Chapter 6 describes the internals (state diagram, the block diagram and 

firmware) of the SeReCon IP core. The chapter reports SeReCon RoT operation 

within the PR RC device during initialisation, IP core installation, IP activation and 

IP deactivation. A SafeLock scheme for IP core security credentials protection is 

highlighted. The process of establishing the shared encryption key between the IPV 

and SeReCon, using the Diffie-Hellman (DH) shared key agreement protocol is also 

described. The main steps in the IP core activation process are illustrated. The 

verification of IP core compliance with the current RC system state is highlighted. 

The IP core license validation and RC system reconfiguration are also described. 

 Chapter 7 reports on the implementation and application of the prototype 

SeReCon-enabled RC system using Xilinx Virtex-5 FPGA technology. The 

implementation of SeReCon internal elements, the main RC system elements and 

example PR IP cores is described. Analysis of the SeReCon FPGA resource usage 

and RC system prototype implementation issues is included. This chapter reports and 

describes the SeReCon-enabled RC system demonstrator application (including the 

PCIe communication library and host-side SeReCon API). Demonstrator application 

results are also reported. The chapter provides detailed insight into the operation of 

the prototype RC system during the SeReCon (and EIDR) initialisation, IP core 

installation and activation. The implemented RC system uses four IP cores in order 

to demonstrate the SeReCon-based PR, e.g. 32-bit Adder, 32-bit Multiplier, 128-AES 

Cipher and 128-bit AES Decipher. The VHDL model for each of these IP cores is 

included in the thesis DVD. This chapter also describes the SDR device prototype 

and illustrates how SeReCon element can be included within the SDR RC system. 

Modifications to the SeReCon implementation required to integrate SeReCon within 

the prototype SDR device are also highlighted. 

 Chapter 8 concludes the thesis and proposes future work. 
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1.10. Thesis Contributions And Novelty Claims 

This thesis makes four novel contributions. 

1. SeReCon (Secure Reconfiguration Controller) IP core. 

The thesis proposes, implements and demonstrates a trusted Secure Reconfiguration 

Controller (SeReCon) IP core. SeReCon is a fixed-footprint trusted reconfiguration 

base for RC systems, which performs hardware-level self-reconfiguration and prior-

to-reconfiguration IP core analysis (security verification). SeReCon maintains the 

integrity of the PR-enabled RC system by analysing incoming FPGA reconfiguration 

requests during run-time and by mediating all access to the internal Xilinx FPGA 

reconfiguration port. Autonomous analysis of the structure of a new IP core prior to 

RC system reconfiguration verifies IP core spatial isolation and run-time protection 

of the already-configured PR system. This protects the RC system from structural 

issues resulting from the inclusion of erroneously placed (or malicious) IP cores and 

enables the use of untrusted third-party IP cores in high-assurance systems. SeReCon 

employs authentication, public-key and symmetric-key cryptographic algorithms in 

order to protect third party IP designs and facilitate license enforcement of IP cores 

installed in the deployed PR-enabled RC system. Use of SeReCon IP core reduces 

the chain-of-trust in a multi-player design flow. 

2. Algorithm for secure generation of RC system security credentials. 

The thesis proposes, implements and demonstrates a new method for generation 

and storage of RC system security credentials. Unique security credentials are 

generated internally (within the FPGA) during the system certification process, using 

random data obtained from the TRNG. Only the non-sensitive part of the credentials 

(e.g. SeReCon public-key) is revealed to the TA during the system certification 

process. This policy protects against un-authenticated access to the system 

credentials storage (by third-parties) and hence reduces the risk of leakage of security 

credentials. The private-part of the generated credentials remains within the 

SeReCon security perimeter, stored in a dedicated Identity Register (IDR). The IDR 

is part of the SeReCon RoT, embedded in the FPGA fabric, and facilitates 

authenticated access to credentials material. This makes the RC system (and installed 

IP cores) immune to tampering by the system integrator and the post-deployment 

compromise of the TA (which has certified the system). The proposed scheme 

requires a modification to the FPGA fabric to enable authenticated FPGA 

configuration and storage of SeReCon security credentials, used for RC system 

identification. 

3. Algorithm for IP core license enforcement in deployed RC system 

The thesis proposes, implements and demonstrates a new IP core license 

enforcement scheme which provides system usage accounting and supports counted- 

and time-limited IP core licensing. The proposed scheme incorporates a number of 

monotonic counters which facilitate system usage accounting (uptime, activations 

etc). Prior to reconfiguration, SeReCon verifies whether IP core usage does not 
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exceed license limits. The proposed scheme supports new IP core licensing models, 

e.g. time-limited and pay-per-use, and enforces license restrictions down to the 

bitstream-level and within the deployed device. This requires a modification to the 

FPGA fabric to include tamper-proof monotonic counters within the IDR.  

4. FPGA Design Analysis Tool. 

The thesis proposes, implements and demonstrates the FPGA Design Analysis 

Tool (FDAT), an off-line design verification tool. FDAT is a versatile, modular and 

open tools framework for low-level analysis and verification of FPGA design 

bitstreams. FDAT enables the development and verification of the SeReCon 

bitstream analysis algorithms, used in the described implementation of SeReCon. 

FDAT provides a set of high-level APIs abstracting the Xilinx FPGA fabric, the 

implemented design (e.g. placed and routed netlist) and the related FPGA 

configuration bitstream. A lightweight graphic front-end allows custom visualisation 

of the design within the FPGA fabric. The operation of FDAT is governed by 

“recipe” Python-based scripts which support rapid prototyping of the algorithms for 

system-level design verification before porting to SeReCon. To the best knowledge 

of the authors, FDAT is the first available toolset to provide high-level and 

unrestricted access to the low-level description of the Xilinx FPGA fabric and the 

user design at the netlist- and bitstream-level. 
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 Chapter 2. Partially Reconfigurable Computing 

Systems Background 

2.1. Introduction 

This chapter reviews and describes the RC system application domain and 

advantages offered by RC systems over general purpose processors and ASICs. 

FPGA technology and architectures are introduced and the FPGA-based RC system 

design flow and PR are described.  

2.2. RC Systems Vs ASICs And GPPs 

Figure 2- illustrates the computational efficiency gap between silicon and 

microprocessors (General Purpose Processors, GPPs) [39]. The gap widens as feature 

size reduces. The computational gap between ASICs and GPPs is the target domain 

of RC systems. 

 

 

Figure 2- Computational efficiency gap between silicon and microprocessors, expressed in 

Million Operations Per Second (MOPS) per Watt, widening as feature size reduces [39]. 
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A general classification of computing systems in terms of performance and 

flexibility [11] is presented in Figure 2-. Microprocessor (Von Neumann) 

architectures (e.g. GPP architecture) provide the ultimate flexibility, e.g. the 

application (software) is always adapted to the hardware. GPPs are capable of 

performing any type of computation, at the cost of performance which is limited by 

sequential computation, i.e. Instruction Read, Instruction Decode, Input Data Read, 

Instruction Execute and Output Data Write. In contrast, an ASIC architecture is 

optimised for a particular application. ASICs offer very high performance at the cost 

of flexibility, since the instruction set is typically hardwired. The design space 

between ASICs and GPPs is occupied by a number of architectures (refer to 

Appendix A – List of Reconfigurable Computing architectures). Digital Signal 

Processors (DSPs) offer the flexibility of GPPs, with increased performance through 

the addition of domain-specific blocks which support signal processing kernels, e.g. 

multiply-and-accumulate.  

 

 

Figure 2- Flexibility vs performance of processor classes [11]. 
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and dedicated function-optimised hardware blocks (e.g. DSP, Multi-Gigabit 

Transceivers, embedded PowerPC processors etc). Predicted developments in silicon 

technology indicate a continuous increase in silicon device capacity [40]. Table 2- 
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Performance

F
le

x
ib

ili
ty

Microprocessors

(von Neumann)

General Purpose 

Computing Digital Signal 

Processors (DSP)

Domain Specific 

Computing Reconfigurable 

Systems

Reconfigurable 

Computing

Application

Specific Integrated 

Circuits (ASICs)

Application Specific 

Computing

RC systems 

Technology& Tools 

advancements



 Chapter 2 - Partially Reconfigurable Computing Systems Background 

– 28 – 

are connected using interconnect and switch matrix routing resources (Figure 2-), a 

significant amount of inter-tile wiring of variable length and shape, terminating at 

Programmable Interconnection Points (PIPs) [41]. PIPs, SRAM technology, and 

Xilinx FPGA block software configuration (configware) allow modification of the 

hardware functionality and interconnection even during run time PR. The RC system 

hardware structure can be modified by downloading the RC device configuration at 

compile time (static configuration) or at run-time PR. Spatial modification of the RC 

system hardware architecture can maximise application performance [11]. Advances 

in RC technology have been significant during the past two decades, and FPGA 

technology has been widely applied. 

SRAM FPGA technology advancements follow Moore’s Law. Modern SRAM 

FPGA devices from Altera and Xilinx offer capacities which outperform the 

requirements of all but the most demanding applications such as High Performance 

Computing (HPC). Several FPGA architectural trends (increasing FPGA component 

density, raw computational throughput and system functionality) suggest that FPGAs 

will become increasingly important in the future [42], [43].  

 

Technology Year LUTs DSPs Memory 

65 nm 2007 340 k 500 10 Mbit 

45 nm 2010 700 k 1000 21 Mbit 

32 nm 2013 1400 k 2000 42 Mbit 

22 nm 2016 2900 k 4300 89 Mbit 

Table 2- Approximated resource density of current and future FPGA technologies [42]. 

2.3.  FPGA Architecture And RC System Design Flow 

2.3.1. Introduction 

This section provides an overview of general FPGA architectures and design 

flow, the FPGA configuration bitstream structure and partial reconfiguration 

technology. 

2.3.2. FPGA Architecture Overview 

Figure 2- illustrates an FPGA block diagram. An FPGA is a programmable 

device consisting of a set of configurable resources (e.g. logic blocks, programmable 

interconnect network and I/O blocks) [44]–[46], configuration memory, 

configuration control logic and debug interface (JTAG). The functionality of an RC 

system design is partitioned into modules and implemented using configurable logic 
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and I/O blocks within the FPGA. Logic and I/O blocks are connected using an 

interconnect network. All configurable resources (logic blocks, interconnect network 

and IO blocks) can be programmed by the user in the field. FPGAs can be one-time 

or many-times programmable, depending of the memory technology used (Antifuse, 

SRAM, EEPROM, FLASH, etc). Some Xilinx FPGA devices (e.g. Virtex-II/4/5/6, 

Spartan-6) support bitstream encryption [44], [47], [9], [33]. Virtex-6 also supports 

authenticated configuration mode [33]. 

 

 

Figure 2- Block diagram of an FPGA device. 

2.3.3. Xilinx FPGA Configuration Bitstream Structure 

Modern Xilinx FPGA devices (e.g. Virtex-4/5/6, Spartan-6) have configuration 

memory arranged in frames within a tile structure (Figure 2-). These frames are the 

smallest addressable segments of the Xilinx FPGA configuration memory space, and 

all FPGA reconfiguration operations must therefore act upon whole configuration 

frames [9]. Figure 2- illustrates the tile-based frame organisation of the configuration 

memory in the Xilinx Virtex-5 (V5LX50T) FPGA device. 
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Figure 2- Tile-based frame organisation of the configuration memory in the Xilinx Virtex-5 

(V5LX50T) FPGA device. 

The Xilinx FPGA configuration file (bitstream) contains commands to the 

FPGA device configuration logic (Figure 2-) as well as configuration data (Figure 

2-). All Xilinx FPGA bitstream commands, such as data or control/status read and 

write, are executed by reading or writing data packets from/to the configuration 

registers respectively, in the FPGA Configuration Control Logic (CCL, Figure 2-). 

Listing 2- illustrates the Xilinx Virtex-5 bitstream internal structure decoded by the 

FPGA Design Analysis Tool (FDAT) reported in this thesis. Lines 10-54 illustrate 

bitstream packets (Type_1 and Type_2) which include commands for FPGA 

Configuration Control Logic (CCL). The CCL command sequence is mostly 

consistent with the bitstream composition described in [9]. Listing 2- contains 

additional commands in lines 18 and 43. 
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1 FDAT Bit parser demo. Parsing the '../adder_v7/download.bit' bitstream... 

2 @ 0x00000050 | 0xFFFFFFFF : DUMMY word 

3 ... 

4 @ 0x00000070 | 0x000000BB : BUS WIDTH word 

5 @ 0x00000074 | 0x11220044 : BUS WIDTH 

6 @ 0x00000078 | 0xFFFFFFFF : DUMMY word  (x2) 

7 @ 0x00000080 | 0xAA995566 : SYNC word 

8 @ 0x00000084 | 0x20000000 Type_1 : NOP 

9 @ 0x00000088 | 0x30020001 Type_1 : Write 1 word to 'WBSTAR' 0x00000000 ->  WBSTAR 

10 @ 0x00000090 | 0x30008001 Type_1 : Write 1 word to 'CMD' 0x00000000 -> CMD (NULL) 

11 @ 0x00000098 | 0x20000000 Type_1 : NOP 

12 @ 0x0000009C | 0x30008001 Type_1 : Write 1 word to 'CMD' 0x00000007 -> CMD (RCRC) 

13 @ 0x000000A4 | 0x20000000 Type_1 : NOP (x2) 

14 @ 0x000000AC | 0x30022001 Type_1 : Write 1 word to 'TIMER' 0x00000000 ->   TIMER 

15 @ 0x000000B4 | 0x30026001 Type_1 : Write 1 word to 'R0x13' 0x00000000 ->   R0x13 

16 @ 0x000000BC | 0x30012001 Type_1 : Write 1 word to 'COR0' 0x000031E5 ->    COR0 

17 @ 0x000000C4 | 0x3001C001 Type_1 : Write 1 word to 'COR1' 0x00000000 ->    COR1 

18 @ 0x000000CC | 0x30018001 Type_1 : Write 1 word to 'IDCODE' 0x02A96093 ->  IDCODE 

19 @ 0x000000D4 | 0x30008001 Type_1 : Write 1 word to 'CMD' 0x00000009 -> CMD (SWITCH) 

20 @ 0x000000DC | 0x20000000 Type_1 : NOP 

21 @ 0x000000E0 | 0x3000C001 Type_1 : Write 1 word to 'MASK' 0x00400000 ->    MASK 

22 @ 0x000000E8 | 0x3000A001 Type_1 : Write 1 word to 'CTL0' 0x00400000 ->    CTL0 

23 @ 0x000000F0 | 0x3000C001 Type_1 : Write 1 word to 'MASK' 0x00000000 ->    MASK 

24 @ 0x000000F8 | 0x30030001 Type_1 : Write 1 word to 'CTL1' 0x00000000 ->    CTL1 

25 @ 0x00000100 | 0x20000000 Type_1 : NOP 

26 ... 

27 @ 0x00000120 | 0x30002001 Type_1 : Write 1 word to ‘FAR' 0x00000000 -> FAR (t:0 h:0 r:0 c:0 m:0) 

28 @ 0x00000128 | 0x30008001 Type_1 : Write 1 word to 'CMD' 0x00000001 -> CMD (WCFG) 

29 @ 0x00000130 | 0x20000000 Type_1 : NOP 

30 @ 0x00000134 | 0x30004000 Type_1 : Write 0 words to 'FDRI' (0 frames) 

31 @ 0x00000138 | 0x5006B250 Type_2 : Write 438864 words to '   FDRI' 

32 FLUSH(0, 0, 0, 38, 31) 

33 ... 

34 @ 0x001ACA7C | 0x30000001 Type_1 : Write 1 word to 'CRC' 0xF103D69A -> CRC 

35 @ 0x001ACA84 | 0x30008001 Type_1 : Write 1 word to 'CMD' 0x0000000A -> CMD (GRESTORE) 

36 @ 0x001ACA8C | 0x20000000 Type_1 : NOP 

37 @ 0x001ACA90 | 0x30008001 Type_1 : Write 1 word to 'CMD' 0x00000003 -> CMD (DGHIGH/LFRM) 

38 @ 0x001ACA98 | 0x20000000 Type_1 : NOP 

39 ... 

40 @ 0x001ACC28 | 0x30008001 Type_1 : Write 1 word to 'CMD' 0x0000000A -> CMD (GRESTORE) 

41 @ 0x001ACC30 | 0x20000000 Type_1 : NOP 

42 ... 

43 @ 0x001ACCA8 | 0x30008001 Type_1 : Write 1 word to 'CMD' 0x00000005 -> CMD (START) 

44 @ 0x001ACCB0 | 0x20000000 Type_1 : NOP 

45 @ 0x001ACCB4 | 0x30002001 Type_1 : Write 1 word to 'FAR' 0x00EF8000 -> FAR (t:3 h:0 r:31 c:0 m:0) 

WARNING! Write non-existent address to FAR 

46 @ 0x001ACCBC | 0x3000C001 Type_1 : Write 1 word to 'MASK' 0x00400000 ->    MASK 

47 @ 0x001ACCC4 | 0x3000A001 Type_1 : Write 1 word to 'CTL0' 0x00400000 ->    CTL0 

48 @ 0x001ACCCC | 0x30000001 Type_1 : Write 1 word to 'CRC' 0x0C90449E ->     CRC 

49 @ 0x001ACCD4 | 0x30008001 Type_1 : Write 1 word to 'CMD' 0x0000000D ->CMD (DESYNCH) 

50 @ 0x001ACCDC | 0x20000000 Type_1 : NOP 

51 ... 

52 Bitstream parsed in 11.9059998989 secs. Done. 

Listing 2-. Example of Xilinx Virtex-5 bitstream internal structure decoded by FPGA Design 

Analysis Tool (FDAT).  
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Configuration bitstream data can be delivered to the FPGA device using either a 

serial or parallel interface (8, 16 or 32-bit wide). Listing 2-1 command descriptions 

are as follows: 

Lines 2-7 synchronise word-aligned FPGA configuration control logic with the 

bitstream data source.  

Lines 9 to 28 setup various FPGA control registers, e.g. line 27 sets the Frame 

Address Register (FAR) to the starting address, while line 28 resets FAR auto 

incrementer and resets the FPGA internal frame buffers.  

Line 30 sets CCL Frame Data Input Register (FDRI) as a destination register for the 

following Type_2 data packet write in line 31. The command loads 438864 words 

into the FDRI register. This configures the entire FPGA configuration memory using 

the FAR auto-incrementer facility [9].  

Line 33 delivers the CRC value. CCL compares the CRC with the internally 

calculated value.  

Lines 34-42 toggle the global set/reset lines, write the final configuration frame to 

the configuration memory and activate the new configuration.  

Line 44 sets FAR at the dummy (nonexistent) location.  

Line 48 disconnects the configuration logic.  

The command in lines 22 and 46 is not documented in publicly available 

documentation. The relevant bit in the CCL CTL0 register is marked as ‘reserved’ in 

[9]. Also, the command writing 0 to register 0x13, in line 15, is not documented. 

2.3.4. FPGA-Based RC System Design Flow 

Figure 2- illustrates the FPGA-based RC system design flow. The main stages 

are described below. 

RC System architecture design. This stage includes the analysis of the RC 

system requirements, problem decomposition and functional simulation (at gate and 

system level). Functional simulation verifies the RC system behavioural correctness. 

The output of this stage is an RC system specification which describes, in a formal 

hardware description language (HDL), the device architecture, structural blocks and 

their functions and interfaces. 

Design capture and generation of FPGA configuration bitstream. This stage 

includes synthesis of a captured HDL description to a design netlist. Synthesis can 

reveal some problems and potential errors that cannot be found using behavioural 

simulation. The main phase of the implementation stage is Place and Route (P&R). 

During P&R a synthesis-generated netlist is mapped onto the internal structure of the 

FPGA device. P&R allocates FPGA resources such as logic cells and connection 

wires. The timing analysis stage checks whether the implemented design satisfies the 

system timing constraints (such as clock frequency) specified by the architectural 

constraints. The output of this stage is the FPGA configuration data, in the form of an 



 Chapter 2 - Partially Reconfigurable Computing Systems Background 

– 33 – 

FPGA configuration file (bitstream). Details of the Xilinx FPGA design flow are 

described in [48]. 

Device hardware implementation. This stage includes the configuration of the 

RC device hardware, existing as a component on a Printed Circuit Board (PCB). 

Device software implementation and integration. This stage includes the 

development of FPGA device drivers and user/communication interfaces, running on 

a host processor system. APIs are developed for use with the RC system. During the 

integration phase the software is installed in the RC device non-volatile memory (e.g. 

Flash). The RC system functionality is verified by applying test vectors to the pins of 

the device and comparing the output obtained with results obtained from behavioural 

simulation of the design. 

 

  

Figure 2- FPGA-based RC system Design Flow [49]. 
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2.4. Xilinx Partial Reconfiguration (PR) Design Flow 

2.4.1. Introduction 

This section describes Xilinx Early Access PR (EAPR) technology
13

, its 

advantages and disadvantages, and highlights PR-related FPGA design flow steps. 

Also, Rousseau et al. report an alternative PR design flow which enables design 

certification in safety-critical applications (e.g. avionics) [50]. The alternative PR 

flow exploits standard FPGA design flow and tools, and does not require access to 

proprietary EAPR tools.  

User-programmable features of Xilinx FPGAs are controlled by configuration 

memory cells. FPGA configuration memory is programmed using a configuration 

bitstream. PR enables a programmed Xilinx Virtex device to be partially 

reconfigured using a partial bitstream, which can be loaded without interrupting the 

operation of the remaining part of the device. PR is an analogy of CPU context 

switching in software processes. PR increases the functionality of a single FPGA, 

allowing a part of the system functionality to be time-multiplexed. Thus, with PR, 

smaller FPGA devices with PR-based time-multiplexed functionality can be used in 

the RC system, or the system can incorporate more functionality within the same 

sized device. Figure 1- illustrates a PR RC system with functions such as a PCIe 

communication link, a configuration manager (SeReCon), and an interface to 

external, non-volatile memory. The base static configuration region in FPGA is the 

portion of the design that does not change during PR and includes logic controlling 

the PR process. With PR, all of these base static configuration modules can maintain 

their real-time links while other modules within the FPGA PR region are exchanged.  

2.4.2. Xilinx Early Access PR Design Flow 

The first release of Xilinx PR [51] introduced two PR flows, namely difference-

based and module-based. The difference-based PR targets applications which require 

only minor changes to the design. The applications are typically limited to cases 

which update the FPGA block configuration (BRAM/LUT content, I/O standard etc). 

Configuration changes are performed manually on the placed and routed design 

netlist using, e.g. the Xilinx FPGA Editor. The module-based PR uses a Xilinx 

Modular Design methodology [52] and supports Xilinx FPGA devices up to Virtex-II 

Pro. The EAPR design flow supports Virtex-4 and provides limited support for 

Virtex-5.  

                                                 
13

 As supported by Partial Reconfiguration Early Access Software Tools overlay for ISE 9.2i SP4 

(available from http://www.origin.xilinx.com:80/support/prealounge/protected/index.htm). This tool 

overlay provides limited support for Virtex-5 architecture referenced through this thesis. A new 

version of PR tools, with full support for Virtex-5/6 is announced as an integral part of the ISE Design 

Suite 12.1 release (http://www.xilinx.com/tools/partial-reconfiguration.htm). 

http://www.origin.xilinx.com/support/prealounge/protected/index.htm
http://www.xilinx.com/tools/partial-reconfiguration.htm
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Module-based PR flow assumes: 

 column-based PR (the PR region spans the full FPGA column) 

 all logic resources within the PR region are part of the reconfigurable module 

(this includes slices, TBUFs, block RAMs, DSP blocks, IOBs and all routing 

resources)  

 Bus Macro (BM) based communication with PR region. BMs are used as fixed 

(directional) data paths for signal connections between a reconfigurable region 

and another region or static design. 

The current release of the EAPR tools
14

 relaxes restrictions on PR designs. 

EAPR includes full support for Xilinx Virtex-4 FPGA devices and experimental 

support for Virtex-5 (including single-slice BMs). The PR region can span a group of 

rectangular sub-regions and can contain routing of the static part (this increases 

timing performance and simplifies the implementation). Xilinx PlanAhead [53] 

software supports a single project which manages the reconfigurable modules and 

runs the necessary implementation tools to generate the static and partial bitstreams. 

Full support for Virtex-5 and Virtex-6 devices is expected with the next release of 

Xilinx tools
15

. 

Figure 2- illustrates the Xilinx EAPR design flow [10]. The EAPR design flow 

requires additional steps not found in the generic FPGA design flow (Figure 2-). The 

generic FPGA design flow involves a single pass through the implementation tools 

(NGDBuild, MAP and PAR) while EAPR requires the base design and each PRM to 

be implemented separately, with a final merge step which generates the full and 

partial configuration bitstreams. EAPR design flow steps 1-4 are similar to the non-

PR design flow while EAPR design flow steps 5-7 are unique to the PR design flow. 

The full bitstream contains the base static configuration merged with one of the PR 

bitstreams (default configuration). Details of the EAPR design flow steps are 

described in [10]. 

 

 

Figure 2- Xilinx EAPR design flow [10].  

                                                 
14

 Available from http://www.origin.xilinx.com/support/prealounge/protected/index.htm. 

15
 Xilinx online announcement (http://www.xilinx.com/tools/partial-reconfiguration.htm). 
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The Xilinx EAPR design flow supports static routing in the PR region [10]. This 

introduces a risk of implicit communication setup, e.g. the attacker could prepare a 

malicious IP core which could connect to unprotected static routing resources. This 

thesis assumes that static routing does not exist within the PR region. Thus, all 

detected external PIPs are presumed to be the interface between the BaseSFC and the 

PR region. 

2.4.3. Xilinx PR Bitstream Structure 

Listing 2- illustrates the structure of a Xilinx Virtext-5 PR bitstream, decoded 

using FDAT. The main difference between the full bitstream (Listing 2-) and the PR 

bitstream is the use of data compression (which reduces the PR bitstream size). The 

full bitstream has constant size, and contains the complete set of FPGA configuration 

frames (except special frame types which are not documented and not included in 

default bitstreams). This guarantees constant configuration time after power up, 

which is independent of the bitstream payload. Many configuration frames are 

redundant, e.g. empty since the FPGA routing resources are never fully utilised. With 

PR, only a region within the FPGA is configured. The region size is not constant, 

changes depending of the application and PR module implementation. In PR 

applications, e.g. real-time video processing [54] or SDR, it is beneficial to reduce 

the reconfiguration time, which is linearly related to the amount of configuration 

frames. Thus, during PR bitstream creation, frame addresses with similar data are 

grouped and configured in a batch, using the frame buffer within the FPGA [9], the 

Multiple Frame Write (MFW) command and MFW register (lines 77-83 in Listing 

2-). The exact frame grouping algorithm for MFW writes is not published and some 

experiments suggest that the order of configuration frames is not arbitrary and, when 

violated, could lead to design congestions
16

. This raises concerns about the reliability 

of third-party tools used to create PR bitstreams. 

  

                                                 
16

 “Very interesting finding about V4 CLB configuration bits “ from the Comp.Arch.FPGA Usenet 

(http://www.fpgarelated.com/usenet/fpga/show/88244-1.php) 

http://www.fpgarelated.com/usenet/fpga/show/88244-1.php
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1 FDAT Bit parser demo 

2 Parsing the '../adder_v7/blank.bit' bitstream... 

3 @ 0x00000055 | 0xFFFFFFFF : DUMMY word 

4 ... 

5 @ 0x00000071 | 0xFFFFFFFF : DUMMY word 

6 @ 0x00000075 | 0x000000BB : BUS WIDTH word 

7 @ 0x00000079 | 0x11220044 : BUS WIDTH 

8 @ 0x0000007D | 0xFFFFFFFF : DUMMY word 

9 @ 0x00000081 | 0xFFFFFFFF : DUMMY word 

10 @ 0x00000085 | 0xAA995566 : SYNC word 

11 @ 0x00000089 | 0x20000000 Type_1 : NOP 

12 @ 0x0000008D | 0x30008001 Type_1 : Write 1 word to 'CMD' (RCRC -> CMD) 

13 @ 0x00000095 | 0x20000000 Type_1 : NOP 

14 @ 0x00000099 | 0x20000000 Type_1 : NOP 

15 @ 0x0000009D | 0x30018001 Type_1 : Write 1 word to 'IDCODE' 0x02A96093 ->  IDCODE 

16 @ 0x000000A5 | 0x30008001 Type_1 : Write 1 word to 'CMD' (WCFG -> CMD) 

17 @ 0x000000AD | 0x20000000 Type_1 : NOP 

18 @ 0x000000B1 | 0x30002001 Type_1 : Write 1 word to 'FAR' (t:0 h:0 r:1 c:2 m:0) 

19 @ 0x000000B9 | 0x20000000 Type_1 : NOP 

20 @ 0x000000BD | 0x300042B9 Type_1 : Write 697 words to 'FDRI' (17 frames) 

21 @ 0x00000BA5 | 0x30002001 Type_1 : Write 1 word to 'FAR' (t:0 h:0 r:1 c:2 m:16) 

22 @ 0x00000BAD | 0x30008001 Type_1 : Write 1 word to 'CMD' (MFW -> CMD) 

23 @ 0x00000BB5 | 0x20000000 Type_1 : NOP 

24 @ 0x00000BB9 | 0x30014002 Type_1 : Write 2 words to 'MFWR' 

25 @ 0x00000BC5 | 0x30002001 Type_1 : Write 1 word to 'FAR' (t:0 h:0 r:1 c:2 m:18) 

26 @ 0x000020BD | 0x20000000 Type_1 : NOP 

27 ... 

28 @ 0x000020C1 | 0x30002001 Type_1 : Write 1 word to 'FAR' (t:0 h:0 r:1 c:2 m:17) 

29 @ 0x000020C9 | 0x20000000 Type_1 : NOP 

30 @ 0x000020CD | 0x30004029 Type_1 : Write 41 word to 'FDRI' (1 frame) 

31 @ 0x00002175 | 0x30002001 Type_1 : Write 1 word to 'FAR' (t:0 h:0 r:1 c:2 m:17) 

32 @ 0x0000217D | 0x30008001 Type_1 : Write 1 word to 'CMD' (MFW -> CMD) 

33 @ 0x00002185 | 0x20000000 Type_1 : NOP 

34 @ 0x00002189 | 0x30014002 Type_1 : Write 2 words to 'MFWR' 

35 @ 0x00002195 | 0x30002001 Type_1 : Write 1 word to 'FAR' (t:0 h:0 r:1 c:12 m:14) 

36 @ 0x0000219D | 0x30014002 Type_1 : Write 2 words to 'MFWR' 

37 @ 0x000021A9 | 0x30008001 Type_1 : Write 1 word to 'CMD' (WCFG -> CMD) 

38 ... 

39 @ 0x00013329 | 0x30014006 Type_1 : Write 6 words to 'MFWR' 

40 @ 0x00013345 | 0x3000C001 Type_1 : Write 1 word to 'MASK' 0x00001000 ->    MASK 

41 @ 0x0001334D | 0x30030001 Type_1 : Write 1 word to 'CTL1' 0x00000000 ->    CTL1 

42 @ 0x00013355 | 0x30008001 Type_1 : Write 1 word to 'CMD' (DGHIGH/LFRM -> CMD) 

43 @ 0x0001335D | 0x20000000 Type_1 : NOP 

44 ... 

45 @ 0x000134ED | 0x20000000 Type_1 : NOP 

46 @ 0x000134F1 | 0x30002001 Type_1 : Write 1 word to 'FAR' (t:3 h:0 r:31 c:0 m:0) WARNING! Write non-

existent address to FAR (t:3, h:0, r:31, c:0, m:0) 

47 @ 0x000134F9 | 0x30000001 Type_1 : Write 1 word to 'CRC' 0x0B82C34B -> CRC  

48 @ 0x00013501 | 0x30008001 Type_1 : Write 1 word to 'CMD' (DESYNCH -> CMD) 

49 @ 0x00013509 | 0x20000000 Type_1 : NOP 

50 Bitstream parsed in 1.23400020599 secs. 

51 Done. 

Listing 2-. Example of Xilinx Virtex-5 (V5LX50T) PR bitstream structure including Multi 

Frame Write (MFW) command packets decoded by FPGA Design Analysis Tool (FDAT).  
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 Chapter 3. Reconfigurable Computing Security: 

Background 

3.1. Introduction 

This chapter begins with a motivating example on security risks within PR 

FPGA systems.The example illustrates the risk of implicit communication channels 

between IP cores in the PR RC system. The risk of side-channel attacks, the threat of 

rogue EDA software and the issue of malicious FPGA designs are also highlighted. 

The chapter reviews the state of the art in RC security. Security countermeasures 

supported by Xilinx FPGA fabric are described prior to critical examination of the 

reported work on the RC system integrity protection and countermeasures for design 

IP theft. The principle of IP licensing models is also described. This chapter 

highlights the need for the trusted IP-aware RC system security countermeasures. 

The chapter concludes with the proposal of a Secure Reconfiguration Controller 

(SeReCon) and a summary of the SeReCon requirements. 

3.2. Security Risks In PR FPGA Systems: A Motivating 

Example  

3.2.1. Introduction 

This section illustrates an example bitstream-level security problem, namely the 

risk of occurrence (and consequence) of implicit communication channel setup 

between IP blocks. The HDL to FPGA configuration bitstream translation process is 

detailed along with the various databases (design netlists) which result.  

The Xilinx CB4CLE (4-bit loadable binary counter with enable and 

asynchronous clear) component example [55] indicates that even a simple IP core, 

occupying one CLB, can potentially share routing resources (and thus potentially 

directly communicate) with a second IP core. This situation would occur if the P&R 

database of the second IP core uses a connection also used by the CB4CLE IP core. 

A risk of implicit communication between IP cores, e.g. through inadvertent inter-IP 

block connection, challenges the assurance of an FPGA-based design. Malicious 

interference using standard routing line connections or clock line connections is 

highlighted. There is therefore a need for extended tool support for low-level 

(bitstream, P&R design netlist) analysis and verification. FDAT-based low-level 
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design analysis of the CB4CLE IP core within a Virtex-5 fabric is illustrated, with 

extraction of inter-tile routing to verify design spatial isolation.  

3.2.2. CB4CLE Design Representation  

Figure 3- illustrates, for a 4-bit binary counter (CB4CLE), a range of design 

representations occurring during the FPGA design flow. 

 

 

Figure 3- Various (equivalent) representations of the CB4CLE counter design [55]. a. VHDL 

source. b. mapped netlist. c. configuration bitstream. d. FPGA Editor view of the P&R design 

netlist. e. FDAT view of the CLB tiles (red) and the P&R design netlist (blue) with separate 

routing tiles (yellow). 
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Resource Report for 'CB4CLE_V5LXT'('xc5vlx50tff1136-3' device):

Found 26 design instances (5 types):

 SLICEL (1 item)

  'cnt<3>' placed at 'SLICE_X27Y87' (tile 'CLBLL_X16Y87', R36 C42)

   'Mcount_cnt_xor<0>11' is 'A6LUT'

    configured as: '#LUT:O6=((~A3*(~A6*~A4))+(A3*(A6+~A4)))'

   'cnt_0' is 'AFF' configured as: '#FF'

   'AFFINIT' mode: 'INIT0'

   'AFFMUX' mode: 'O6'

   'AFFSR' mode: 'SRLOW'

   'Mcount_cnt_xor<1>11' is 'B6LUT'...

   'cnt_1' is 'BFF' configured as: '#FF'...

   'Mcount_cnt_xor<2>11' is 'C6LUT'...

   'cnt_2' is 'CFF' configured as: '#FF'...

   'Mcount_cnt_xor<3>11' is 'D6LUT'...

   'cnt_3' is 'DFF' configured as: '#FF'...

   'SYNC_ATTR' mode: 'ASYNC'

 BUFG (1 item)...

 ILOGIC (8 items)...

 IOB (12 items)...

 OLOGIC (4 items)...

Design used 4 LUTs and 4 FFs Parsed XDL
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The VHDL model (Figure 3-a) is synthesised to produce an RTL/technology 

netlist (Figure 3-b), mapped to the FPGA logic resources. The Place & Route (P&R) 

process annotates the netlist components with physical FPGA location data, 

connected using FPGA configurable routing resources. The P&R netlist is translated 

to the FPGA configuration bitstream file, used to configure the FPGA device (Figure 

3-c). 

The implemented design can be viewed using vendor-specific (e.g, Xilinx FPGA 

Editor, Figure 3-d) or third-party tools such as the proposed FDAT tool (Figure 3-e). 

Tools such as FPGA Editor are useful in providing a view of the FPGA fabric and 

can be used to perform a modification to the Xilinx Native Circuit Description 

(NCD) design netlist file, but do not support the analysis of the FPGA configuration 

bitstream file (BIT). Such tools may omit details of the underlying architecture, e.g. 

certain tile types, test wires etc, and do not support a broad script-driven enquiry of 

the bitstream database.  

3.2.3. The Security Risk Of Implicit Communication Channel 

Between IP Cores  

Figure 3- illustrates routing tiles within a Xilinx Virtex-5 LX50T which contain 

a significant amount of inter-tile wiring of variable length and shape, terminating at 

PIPs. The PIP configuration defines the wire connections required to enable the 

distribution of signals to distant locations [41], e.g. using multi-hop connections [56]. 

If all PIPs associated with a particular wire are located within an IP core boundary, 

implementation tools have full control over IP core routing. Therefore, all unused 

PIP connections are not accessible externally, e.g. by other IP blocks, and 

automatically remain unconnected externally. If a wire is connected to a PIP outside 

the IP core boundary, an implicit communication channel may result.  

Figure 3- illustrates the potential implicit communication channels which can 

occur due to distributed connections across the FPGA fabric, available for use during 

IP design P&R. This channel connection may not be detectable during standard 

system testing (design debugging, functional verification of design implementation) 

and thus may introduce errors, system failure, or expose the IP to security risks. A 

guarantee is required that the unused routing from IP core k remains unused in IP 

core n. IP cores could be implemented with consideration of additional constraints 

which globally enforce isolation of the IP core internal wiring [26], or use dedicated 

isolation primitives [57]. In a multi-party design flow, it is challenging for the 

System Integrator (SI) to ensure, without the use of a low-level analysis tools such as 

FDAT, that isolation constraints have been implemented within third-party IP cores. 

The automated extraction of IP core connectivity is not readily available in existing 

tools for low level analysis of placed and routed netlists, bitstreams and FPGA fabric 

netlists.  
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Figure 3- Tile view of the Xilinx Virtex-5 FPGA with highlighted routing resources (turquoise) 

and CLBs (red). 

3.2.4. IP Core Implicit Communication Channel Over The Clock 

Line  

Figure 3- illustrates an FDAT-generated visualisation of the abundant 

connectivity of the CB4CLE design within a Virtex-5 and Virtex-II Pro FPGAs. 

While the CB4CLE function utilises a single CLB tile, its IO signals use routing 

resources (30 Virtex-5 FPGA tiles, 24 Virtex-II Pro tiles for a full design) which are 

shared by at least one electrical connection within 5% of the FPGA tiles (689 out of 

13832 tiles, Figure 3-a). When global clock routing resources (four clock-tree tiles) 

are included, the counter IO signals use routing resources which are shared by at 

least one electrical connection within 21% of FPGA tiles (2915 out of 13832 tiles, 

Figure 3-b). This suggests that taking control of the FPGA “clock-spine” could 

potentially be an attractive target method for embedding malicious design elements 

(in order to set up an implicit communication channel). Two possible examples of 

attack using FPGA clock resources are as follows: 

a) malicious interference using a clock signal, e.g. dynamic control of the clock 

line load (number of active FPGA resources using FPGA clock spine, called 

“sinks”) changing clock jitter/skew, clock signal keying, clock frequency 

manipulation etc. This dynamic control of the clock source, when performed 

by an attacker in a systematic way (e.g. undisturbed, default clock operation 

Routing tiles CLB tiles
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would define a logical ‘0’, while detected interference would define a logical 

‘1’) could be used for steganographic information hiding
17

 within the 

genuine clock signal. Hidden information could be detected (recovered from 

the signal) by the malicious design at the clock sink side thus facilitating a 

unidirectional subliminal communication channel. Figure 3- illustrates the 

block diagram of the malicious IP core in a steganographic application. The 

Attacker manipulates genuine clock signal in order to hide control messages 

send to the malicious IP core. 

b) the setting up of an additional clock line between two malicious designs 

solely for malicious communication purposes.  

 

 

Figure 3- Communication channel existing outside two IP cores. This introduces the risk of 

setup of an implicit communication channel, which may introduce errors, system failure, or 

expose the IP to security risks. 

The disadvantage of the “clock-spine” based communication is that both of the 

above scenarios require additional logic on both ends of the clock-based 

communication link, one used for injecting the interference (data) at the clock 

source, the second one for detecting it at the clock sink. Thus, eavesdropping on the 

design (IP core #k, Figure 3-) requires design modification. Also, the hierarchical 

structure of the clock spine (root lines, branches, buffers etc) and the FPGA fabric 

technology (which supports low-skew and large number of clock line sinks) limits 

the robustness of this type of malicious communication. Detailed risk analysis of 

clock line attacks feasibility is beyond the scope of this thesis and further research is 

encouraged. 

                                                 
17
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Figure 3- FDAT-generated visualisation of the abundant connectivity of the CB4CLE counter 

design. ab. within a Virtex 5 LXT FPGA. c.d. within a Virtex-2 Pro FPGA. The CB4CLE (blue 

and yellow) utilises a single CLB. CB4CLE signals use routing resources (green) which are 

shared by at least one electrical connection (a & c –without clock tiles, b & d – including clock 

tiles). 

a)

CB4CLE 

LOGIC 

SLICE

CB4CLE 

ROUTING 

TILES

CB4CLE

IO TILES

FPGA TILES WITH 

SHARED ROUTING

b)

c) d)

CB4CLE 

LOGIC 

SLICE

CB4CLE

IO TILES



 Chapter 3 - Reconfigurable Computing Security: Background 

– 44 – 

 

Figure 3- Block diagram of the malicious IP core in a steganographic application. 

3.3. State-Of-The Art In FPGA Design Security 

3.3.1. Introduction  

The main objectives of the FPGA-based RC system attacker are system integrity 

compromise and/or design IP theft. System integrity compromise gives the attacker 

unauthorised control over the system elements, e.g. security countermeasures and 

configuration [58]. The attacker can covertly falsify or leak data processed by the 

system, alter system elements with Trojan substitutes or implant additional 

(malicious) functionality, e.g. for bypassing authentication (back door function) [2]. 

The risk scales to external systems when the compromised system is part of a trusted 

infrastructure and its misbehaviour cannot be detected.  

RC system integrity protection deals with issues of malicious bitstream 

eavesdropping, device tamper-resistance etc. RC security countermeasures are 

mainly applied to high-assurance systems. System integrity compromise could also 

lead to IP theft. The motivation behind design IP theft is the high design cost and 

time and market share advantages. In RC systems the design IP can be infringed in 

the following ways: 

 Reverse Engineering (RE): a low-level and laborious decoding of the 

configware, e.g. FPGA bitstream, back to the HDL description. RE reveals 

proprietary algorithm implementation, or a key embedded (‘hidden’) in the 

design. McLoughlin examines the RE problem scope and classification [59]. 

 Cloning: copying of the design (configware, netlist, HDL sources etc) with 

little or no modification. 

 Counterfeiting: producing a fake or lower-quality design imitating the 

original product
18

. 

                                                 
18

 Counterfeit / Fake Cisco WIC-1DSU-T1 V2: Guide to tell Genuine from Counterfeit (http://www. 
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 Overbuilding (license abuse): violation or bypassing of the restrictions 

limiting design IP use (and the number of legal copies). Also, blocking of 

license verification algorithms.  

A survey of security challenges facing embedded systems has been conducted by 

Ravi et al. [60]. The survey discusses the challenges involved in secure embedded 

system design, the ‘security processing gap’ in battery powered devices and the 

“assurance gap,” which relates to the gap between functional security measures (e.g. 

security services, protocols, and their constituent cryptographic algorithms) and 

actual secure implementations. Wollinger et al. [61] review the advantages of FPGAs 

for security applications, list FPGA shortcomings with proposed countermeasures 

and state a number of open questions (from a systems point of view). Valette et al. 

[62] list FPGA security features and emphasise configuration memory programming 

as the point of least security. Jurjens [63] provides an overview of the challenges in 

developing secure embedded systems and demonstrates model-based security 

engineering, while Irvine and Levitt [64] explore challenges to trusted hardware. 

Kastner and Huffmire [65] address threats and challenges in reconfigurable hardware 

security by describing attacks, solutions and areas for future research. Their work 

discusses the life cycle of reconfigurable hardware and focuses on the topics of 

trusted hardware, physical attacks, design tool subversion, design theft and system 

security. Drimer [66] reviews FPGA design security, with a focus on volatile 

(SRAM) technology, examining a wide range of attacks and defences, along with the 

current state of industry offerings. Drimer also outlines on-going research and latest 

developments in the field. 

Attacks on FPGA-based designs are classified depending of their invasiveness 

level. 

Non-invasive attacks involve monitoring and interaction using FPGA I/Os 

(glitching, power analysis etc) or configware implementation (data residue, API 

attacks), e.g. by brute-force (exhaustive) testing, side-channel analysis, probing and 

copying external data, manipulating inputs and observing outputs etc. This is the 

cheapest type of attack which typically does not require significant resources 

(advanced tools, funds, time) and does not include physical tampering of the FPGA 

chip. 

Semi-invasive attacks involve chip depackaging and direct (microscopic) 

observation of the silicon die, e.g. thermal, electromagnetic emanations, UV attacks, 

focused IOB etc. The silicon die is not tampered with. 

Invasive attacks involve chip depackaging, micro-probing and altering points inside 

the chip using, e.g. Focused Ion Beam (FIB) and Scanning Electron Microscopy 

(SEM). This type of attack allows fault injection inside the active design, e.g. by 

changing the dynamic state of CLB Flip Flops or routing PIPs. This is the most 

                                                                                                                                           

Homeland Security Announce International Initiative Against Traffickers in Counterfeit Network 

Hardware (http://www.justice.gov/opa/pr/2008/February/08_crm_150.html) 

http://www.justice.gov/opa/pr/2008/February/08_crm_150.html
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intrusive and advanced type of attack which typically requires a significant amount 

of resources and advanced tools. 

This thesis assumes a tamper-proof FPGA device. Thus only non-invasive 

attacks are investigated, e.g. side-channel eavesdropping, communication protocol 

tampering etc.  

3.3.2. Side-Channel Attacks And Countermeasures  

When active, digital circuits expose dynamic power consumption which is 

related to the processing algorithm, the fabric technology and the system internal 

state. Also the processed data istaken into account. The technology and the 

processing algorithm are constant. Thus current fluctuations result from state 

transitions within the design logic (dynamic current leakage). When sampled over 

time, the current fluctuations provide a power footprint which is specific to invariant 

algorithm steps and input data. A similar footprint can be observed for Electro-

Magnetic (EM) emanations (with additional spatial properties). 

Side-Channel Analysis (SCA) exploits power or the EM footprint of the device 

in order to predict its internal state. For a known processing algorithm SCA could 

reveal input data, e.g. encryption keys or plaintext in a cryptographic application. 

Coron and Naccache propose the definition of information leakage immunity and a 

relevant testing methodology [67]. Aigner and Oswald provide a tutorial on 

Differential Power Analysis (DPA) attacks [68][69]. 

Kocher, Jaffe and Jun examine DPA of tamper-resistant devices and propose 

countermeasures [70]. Tiri and Verbauwhede propose simulation models for side-

channel information leaks in DPA [71]. Standaert et al. provide an overview of 

power analysis attacks targeting FPGAs [72]. Peeters, Standaert and Quisquater also 

provide an improved ‘switching-distance’ leakage model of CMOS devices [73]. Tiri 

examines pitfalls of side-channel analysis and discusses possible countermeasures 

[74]. Agrawal, Archambeault and Rao examine Electro-magnetic (EM) side-channel 

attacks on CMOS devices [75] and develop a practical assessment methodology for 

such devices. 

Poon, Wilton and Yan examine a FPGA power model used by the Versatile 

Place and Route (VPR) tool [76]. Shang, Kaviani and Bathala examine dynamic 

power consumption in Xilinx Virtex-II devices [77]. Curd [78] describes the impact 

of architectural innovations on power consumption in Xilinx Virtex-5 devices. 

Chaudhuri et al. examine the viability of multi-rail routing in FPGAs and its 

robustness against side-channel attacks [79]. Tiri, Schaumot and Verbauwhede 

examine design of DPA side-channel leakage tolerant architectures [80]. Yu and 

Schaumont propose an extended Wave Dynamic Differential Logic (WDDL) 

technology, called Double WDDL (DWDDL) [81]. DWDDL implements a side-

channel-resistant logic with invariant signal pair load, regardless of signal transitions. 

Reported DWDDL implementation withstands reference DPA attack, but at a 

significant resource cost and delay. 
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3.3.3. EDA Tools As The Security Threat 

Design functionality expressed by the HDL source code is generally preserved 

by the EDA tools through to design implementation, in order to preserve the 

functional equivalence of the design description. While synthesis and P&R tools 

operate successfully over a wide range of design translations, certain corner cases 

exist where post-P&R manual editing is required. An example is the ring-oscillator 

(RO) which is a core element in Random Number Generator designs. Due to cycles 

in combinatorial logic, the RO is typically optimised out during P&R and needs to be 

manually added to design netlist (NCD) afterwards, using tools such as FPGA editor. 

Thompson [21] highlights how development tools in the software domain could 

implicitly produce overbuilt (additional functionality) and malicious binary output, 

not functionally-equivalent to the input source code. Also, Roy et al. [4] challenge 

the security of EDA tools, which could covertly inject Trojan circuits into user 

designs. Roy et al. also examine methods for Trojan circuit planting and masking 

inside the legitimate design. Thus, the source-code-only design verification (e.g. 

HDL verification) may not be sufficient. Roy et al. propose dynamic verification as a 

countermeasure. Bitstream analysis tools could be applied within the PR 

implementation flow to detect malicious elements following third-party tool 

application. The assurance that two CB4CLE IP cores (each one sharing at least one 

wire with 21% of the FPGA tiles) do not share any routing resources could be 

provided by precise allocation of 42% of a mid-sized FPGA device. This approach is 

clearly impractical. Since post P&R design simulation is not performed directly on 

the FPGA bitstream it cannot trap potential implicit communication channels 

between IP cores.  

The proposed FDAT tool can determine if an implicit communication channel 

has occurred. In this work, this FDAT functionality has been ported to the SeReCon 

element within the RC system in order to enable detection of implicit communication 

channels in installed third party IP cores.  

3.3.4. Malicious FPGA Designs 

Research on malicious configware and IP cores has been reported by Hadzic et 

al., King et al., Roy et al. and Kucera and Vetter. Hadzic et al. describe the threat of 

malicious FPGA bitstreams [1]. The paper outlines FPGA properties supporting the 

threat and demonstrates the implementation of the FPGA virus which physically 

destroys the device elements. Hadzic et al. also propose changes to the FPGA 

architecture, bitstream verification and high current detection as a countermeasure. 

King et al. report implementation of “the Illinois Malicious Processors (IMPs)” [2]. 

IMP is a general purpose processor with an architecture which supports a number of 

general security attacks. King also investigates design space, trade-offs, and 

challenges of malicious circuits. Alkabani and Koushanfar propose disguising 

hardware Trojan circuits as additional states within the IP core Finite Sate Machine 



 Chapter 3 - Reconfigurable Computing Security: Background 

– 48 – 

(FSM) [3]. Kucera and Vetter discuss the viability of the FPGA rootkit
19

 deployment 

[5]. Kucera and Vetter outline rootkit applications in embedded systems and list the 

shortcomings of existing FPGA security features and its implications in Trusted 

Computing. 

3.3.5. Xilinx FPGA Fabric Protection 

Xilinx FPGAs and EDA software employ a number of technologies in order to 

increase security of SRAM FPGAs. Lesea [6] and Trimberger [7] provide IP-centric 

and TC-oriented context for some of following features. 

 Design sources and netlist encryption: implemented in Xilinx design tools since 

early versions of Xilinx ISE, used to protect IP core netlists generated by Xilinx 

Coregen and IP core source files delivered with the Xilinx EDK software. ISE 

uses the DES encryption algorithm (up to version 9 of ISE
20

). 

 eFUSE primitive: eFUSE has been officially available since Virtex-6/Spartan-6 

series release, and is an undocumented feature of Virtex-5. EFUSE technology 

uses electromigration [82] to provide one-time programmable storage for the 

encryption key (Virtex-6 and Spartan-6 devices only) and user data (Spartan-

3AN/6, Virtex-6). 

 Bitstream encryption: available in Virtex-II/4/5/6 and Spartan-6 devices, enables 

FPGA configuration with a user-encrypted bitstream. Modern Xilinx devices use 

AES 256 encryption in Cipher Block Chaining (CBC) mode. Virtex-II Pro (now-

obsolete) uses the 3DES encryption algorithm.  

 Volatile storage: implemented in Virtex devices since Virtex-II, and also 

available in Spartan-6. This enables volatile storage of encryption keys and 

instant zeroisation upon tamper detection (using the KeyClear primitive) which 

is compliant withn Federal Information Processing Standard (FIPS) [83] 

published by the National Institute of Standards and Technology (NIST)
21

 

 Authentication: introduced in Virtex-6 devices, using SHA-256 and HMAC 

algorithms. Authentication enables prior-to-configuration bitstream 

authentication with a user-defined key. Its description in [33] suggests that the 

key is part of the encrypted bitstream and is not stored in the FPGA. 

 DeviceDNA: available in Spartan-3AN/6 and Virtex-6 devices. Device DNA is a 

vendor programmed design primitive which provides the unique serial number 

of the FPGA fabric to the user design. 

                                                 
19

 Rootkit is a software program or coordinated set of programs designed to gain control over a 

computer system or network of computing systems without being detected (http://en.wikipedia.org 

/wiki/Rootkit). 

20
 “How to decrypt Xilinx IPCORE source code” (http://newsgroups.derkeiler.com/Archive/Comp/ 

comp.arch.fpga/2009-01/msg00110.html) describes required decryption steps and provides relevant 

source codes. Warning, the thread available through the Google Groups is censored).  

21
National Institute of Standards and Technology (NIST, http://www.nist.gov) 

http://en.wikipedia.org/wiki/Rootkit
http://en.wikipedia.org/wiki/Rootkit
http://newsgroups.derkeiler.com/Archive/Comp/%20comp.arch.fpga/2009-01/msg00110.html
http://newsgroups.derkeiler.com/Archive/Comp/%20comp.arch.fpga/2009-01/msg00110.html
http://www.nist.gov/
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3.3.6. Trusted Computing (TC) 

3.3.6.1. Introduction 

This section reviews the Trusted Computing (TC) paradigm and its objectives. 

Various FPGA implementations of TC components are also highlighted. TC is an 

emerging technology which supports building trustworthy computing platforms. 

Thus TC concepts and objectives could contribute to the development of secure PR 

RC systems. Security of TC cryptographic protocols depends on the ability of the TC 

system to generate quality random data. Thus, various implementations of the 

Random Number Generators are also discussed. 

The TC paradigm addresses information security issues in general purpose 

computing. TC standards are driven by the computing and communication industries 

through the Trusted Computing Group
22

 (TCG). TC aims to enhance the security of 

the target system by using the Trusted Platform Module (TPM) [84]. The TPM is an 

integral part of the target system which provides a set of cryptographic and security 

functions. TPM typically implements tamper-resistance techniques to prevent a range 

of physical and hardware-based attacks. TPM is capable of attesting, in a trustworthy 

way, certain system properties, thus establishing a system RoT. The RoT in a secure 

system is defined as a component that must always behave in a defined manner, since 

its misbehaviour cannot be detected. The RoT contains at least the functions to 

enable a description of the system characteristics (i.e. system state) that affect the 

trustworthiness of the system, e.g. loaded OS modules, device drivers, hardware state 

etc. In TC and RC, the RoT may be based on a tamper-proof hardware element 

within the FPGA fabric. The RoT in RC systems can be partially implemented within 

user logic (configware), to provide a flexible security mechanism.  

A security policy is a description of implemented system protection policies. A 

trusted system, for example a RoT, is one where failure can break a security policy 

[25]. In the trustworthy system the security policy and RoT cannot fail. A recent 

compromise of the TPM
23

 shows that secure implementation of the trustworthy RoT 

is challenging. Skorobogatov examines data retention characteristics of modern 

SRAM chips as a function of temperature [22]. The study shows that some memory 

devices could retain 80% of data, up to one minute after power down. Skorobogatov 

also reports that retention time varies significantly between devices within the same 

family. Tuan, Strander and Trimberger report data residue analysis for 90nm SRAM 

FPGAs [23]. The report indicates the correlation between data retention time, 

                                                 
22

 Trusted Computing Group (TCG, http://www.trustedcomputinggroup.org) 

23
 During the “Hacking the Smartcard Chip” talk at the BlackHat 2010 conference (Feb 2-3, 

Arlington, VA, USA) Christopher Tarnovsky from Flylogic Engineering demonstrated a successful 

attack on the TPM hardware. The attack requires physical access to the TPM module. An estimated 

attack cost is ~200k$ and one man/day labour time of the reverse-engineering expert. Video from the 

talk can be found on the YouTube (http://www.youtube.com/results?search_query=Black+Hat+DC 

+2010%3A+ Hacking+the+Smartcard+Chip&search_type=&aq=f)  

http://www.youtube.com/results?search_query=Black+Hat+DC%20+2010%3A+%20Hacking+the+Smartcard+Chip&search_type=&aq=f
http://www.youtube.com/results?search_query=Black+Hat+DC%20+2010%3A+%20Hacking+the+Smartcard+Chip&search_type=&aq=f
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memory cell structure and memory cell content. Logic memory cells also exhibit 

lower data remanence time than routing memory cells. Data remanence could be 

exploited in order to recover sensitive data, e.g. plaintext data or encryption keys 

which are buffered in RAM prior to encryption. Thus, since Virtex-4 FPGAs 

(officially available since Virtex-5) Xilinx have introduced the KEY_CLEAR 

primitive which supports instantaneous erase of the encryption key register from the 

internal configuration control logic, e.g. when device tampering is detected. 

Trusted systems should be reliable and provide predictable behaviour, e.g. 

efficiently protect secret encryption keys, or generate truly random data etc. Secure 

implementation of the FPGA RoT requires resistance to various types of invasive 

and non-invasive attacks.  

3.3.6.2. TC objectives 

The main TC objectives are system authentication and data protection. 

System and user authentication allows peers (users and system) who are using 

TPM-enabled systems to securely authenticate themselves when communicating over 

the untrusted channel, e.g. Internet. TPM supports trusted attestation of the system 

state, by producing a unique TPM-signed checksum of the system initialisation 

process, e.g. hardware state after reset and load of BIOS, bootloader, OS, device 

drivers and applications. During authentication, checksums received from the remote 

system are validated using a known public-key of the remote TPM. Checksums are 

also compared with a database of sequences known to be secure. If a match is found 

then the remote system is assumed to be trusted, e.g. its authenticity is confirmed and 

its state is secure (tampering is not detected). The TPM-based (“something you 

have”) authentication can be extended to include PIN/password (“something you 

know”) verification. 

Data protection enables encryption of the user data, e.g. single files or full hard 

drive. TPM provides symmetric-key and public-key (RSA 2048) encryption 

primitives, hash generator (SHA-1) and True Random Number Generator (TRNG) 

which support generation of unique keys and one-time-used (‘nonce’) values. 

Cryptographic keys are generated and stored inside TPM, after the user authenticates 

himself to the TPM. Thus, the original TPM is required in order to decrypt the 

‘sealed’ data and therefore TPM-based data protection provides secure ‘sealed’ 

storage for user data within the TC system. 

The TPM specification is open [84]. Security of the TPM-based cryptographic 

algorithms is based on the tamper resistant TPM implementation and confidentiality 

of the internal Endorsement Key (EK). The EK is the main TPM key used to 

recognise a genuine TPM and protect TPM internal data. The EK is a key-pair 

composed of a public and private 2048-bit RSA key which is randomly created at 

manufacture time. The EK is read only and never leaves the TPM perimeter [85]. 
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3.3.6.3. TC in FPGA-based RC systems 

Chaves proposed Secure Computing Module (SCM) for RC systems [85]. 

Chaves examines TPM functionality which is beneficial to RC systems. The TPM-

equivalent SCM implementation provides significant performance improvement 

when compared to genuine (ASIC) TPM devices. Chaves proposes the use of 

Residue Number System (RNS) in order to improve the SCM performance. 

Eisenbarth et al. examine TC viability in RC systems and propose the inclusion 

of the TPM functionality within RC systems [86]. This would enable a scalable 

trusted computing base in the RC hardware and allow a standardised TC-based 

software binding with the hardware. The proposed solution would be also TPM 

vendor independent. A TC scheme for embedded RC systems has been also reported 

by Glas et al. [87]. Glas proposes a protection model built upon trusted configuration 

attestation of the RC system state. The model assumes the use of certified and thus 

trusted modules. The growing number and complexity of available Third Party IP 

cores increases the risk of undetected malicious interaction even between certified 

cores. This TC approach does not protect the privacy of IP cores installed in the 

system, since only the system credential memory is tamper-proof. Verbauwhede and 

Schaumont review methodologies for the design of secure electronic systems and 

propose the ‘tree-of-trust’ methodology [88]. The ‘tree-of-trust’ methodology 

supports recursive secure partitioning and integration on all levels of design 

abstraction, e.g. protocols, software, hardware and circuits. Schumont and Hwang 

also propose the use of parasitic effects in Deep Sub-Micron (DSM) technology in 

order to aid the design of secure circuits [89]. The sub-threshold power leakage, 

process variability, noise, signal integrity and power density could be exploited to 

increase DSM technology resistance to side-channel attack, support PUF design, 

provide random data, or mask power consumption. 

Chaudhuri et al. propose the ‘FASE’ architecture [90]. FASE supports dynamic 

(coarse-grain) resource management using PR. FASE provides implementation 

evolution prior to PR in order to countermeasure DPA and fault-injection attacks. 

The authors do not provide any implementation results. Huffmire et al. propose the 

trusted overlay to COTS devices using 3D stacking technology [91]. Potentially this 

would increase the use of COTS in high assurance applications without the need to 

redesign the IC die.  

3.3.6.4. True Random Number Generators (TRNGs) 

Quality random bitstreams are required for Initialization Vectors (IVs), data 

block padding, challenges, nonces, and keys. This data is typically transmitted 

unencrypted and can thus be intercepted and analysed by the attacker. Thus, the 

trustworthy Random Number Generator (RNG) is a typical element in cryptographic 

applications, i.e. in TC. The Diehard [92] and NIST RNG [93] are industry-standard 

tests for assessing the quality of RNG bitstreams. Depending on the implementation, 

RNGs are categorised as Pseudo RNGs (PRNGs) or True RNGs (TRNGs). 



 Chapter 3 - Reconfigurable Computing Security: Background 

– 52 – 

Pseudo RNGs are software algorithms initialised with an externally generated 

sequence (‘seed’). PRNGs produce long sequences that appear to be random
24

. The 

initial ‘seed’ value and the internal state of the generator determine the next bit. 

Thus, PRNG always produces the same sequence when given the same ‘seed’ value. 

True RNGs (TRNGs) base their output entirely on an underlying random physical 

process. TRNG does not have internal state and the output is based only on the 

physical process and not on any previously produced bits. Often the raw bits 

generated by the physical source are biased (the probability of a '1' is not 0.5). Thus 

bias reduction could be necessary. Sunar, Martin and Stinson provide and examine a 

theoretical model of a provably secure TRNG [37]. Other implementations of 

TRNGs have been also reported by Fischer and Drutarovsky [94], Kohlbrenner and 

Gaj [95], Schellekens et al. [96], Simka et al. [97], Dichtl and Golic [98], Yoo et al. 

[99], Vasyltsov et al. [100], Wold and Tan [101], Maiti et al. [35], and Drimer [102]. 

3.3.7. RC System Integrity Maintenance 

In order to protect design integrity and design tampering of non-PR designs, 

configuration bitstream encryption is a viable option for non-PR designs which has 

been adopted by EDA tools and FPGA vendors, e.g. Altera, Xilinx etc. Use of 

bitstream encryption disables configuration readback through external configuration 

interfaces, e.g. SelectMap and JTAG [9]. Protection measures in Virtex-II Pro 

include blocking the ICAP function when bitstream encryption is used [44]. Thus, 

PR and bitstream encryption are mutually exclusive in Virtex-II devices. In modern 

FPGAs PR and bitstream encryption can coexist, but Xilinx advises against the use 

of ICAP, e.g. when design IP protection is required or in high-assurance systems 

design [47], [9], [33]. For PR designs, the existing ICAP does not fully protect 

against unrestricted FPGA configuration memory read back, e.g. due to an 

exploitable error in the user application implementation. 

McLean and Moore report the FPGA-based Single Chip Crypto (SCC) 

methodology which is developed by Xilinx and NSA [26]. The SCC lounge is 

available only to authorised users and provides design and isolation verification 

tools, security IP cores (‘monitor’) and application notes
25

. McLean and Moore 

report advantages of PR in Information Assurance applications and highlight the 

need of post-implementation design verification, e.g. validation of used FPGA 

routing and module isolation. They also propose secure BMs and support for a new 

design constraint (‘NOBOUNDARYCROSS’) in EDA tools which provide an 

isolation ‘fence’ between FPGA (PR) regions. An isolation enforcement scheme 

which uses ‘fences’ and a CRC-based tampering monitoring circuit has been 

patented by Lesea and Drimer [103]. SCC targets High Assurance Internet Protocol 

Encryption (HAIPE) and High Assurance Internet Protocol Encryption 

                                                 
24

 PRNGs were commented by J. von Neumann: „Anyone who considers arithmetical methods of 

producing random digits is, of course, in a state of sin.” 

25
 Xilinx Single-Chip Crypto (SCC) (http://www.xilinx.com/esp/aero_def/crypto.htm) 
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Interoperability Specification (HAIPIS) which is a NSA secure internet protocol 

specification [104]. HAIPIS permits enclaves equipped with compliant gateways to 

communicate securely over untrusted networks [105]. An example of SCC-compliant 

design and further references to FPGA-based secure designs are described in [106].  

Pittman and Forin examine eMIPS slot-based implementation of the security 

model for reconfigurable hardware [107]. The eMIPS is a dynamically extensible 

processor which contains reconfigurable extension slots. Pittman and Forin use two-

level verification of the extension IP core trustworthiness. In the first stage eMIPS 

checks IP core digital signature. During the second-stage eMIPS use a software 

Design Rules Checker (DRC) to verify whether the extension IP core is compatible 

with eMIPS layout, e.g. matches extension slot region and slot interfaces, and does 

not contain malicious configuration, e.g. short-circuits etc. DRC uses IP core 

bitstream to build a circuit graph which is equivalent to the IP core netlist which 

checks for the occurrence of malicious sub-graphs from the DRC database. The 

eMIPS allows the use of multiple IP cores since the DRC verifies their structure prior 

to reconfiguration. Pittman and Forin do not discuss the DRC trustworthiness. Also 

eMIPS DRC implementation is not detailed. 

Drimer proposes FPGA bitstream authentication which provides cryptographic-

level assurance of configuration data integrity and authentication of the bitstream 

source [108]. Authentication supports tamper-evident operation of FPGA systems. 

This allows the bitstream to remain open and subject to public audit and scrutiny, e.g. 

in voting machines. Bitstream authentication has been already adopted in Virtex-6. 

Hori et al. reported similar work which targets authenticated-encryption for PR 

[109]. Badrignans et al. propose a monotonic-counter extension to the authenticated 

encryption scheme in order to mitigate the risk of a replay-attack during remote 

update of the FPGA system [110]. The counter is implemented in a tamper-resistant 

FPGA area and guarantees the uniqueness of the reconfiguration transaction. This 

countermeasures replay attacks.  

Gogniat et al. propose the Security Architecture For Embedded Systems 

(SAFES) which exploits the Intrusion Detection System (IDS) [111]. IDS is a set of 

clock/circuit/bus/channel monitors used to detect and deter system tampering. When 

IDS detects abnormal behaviour (e.g. tampering) the system is reconfigured with a 

hardened version of the security primitive. Gogniat et al. do not discuss security 

countermeasures regarding tampering threads to stored (not-active) PR modules, 

which might compromise the proposed security model and affect the implementation 

results (power consumption, size, etc).  

Jones implements a portable Single Event Upset (SEU) detection and correction 

IP core targeting Xilinx Virtex-4 FPGAs [112]. The IP core supports Single-Error 

Correction Double-Error Detection (SECDED) using continuous configuration 

scrubbing, and can be used as a deterrent against malicious configuration memory 

tampering. Heiner et al. demonstrate ‘self scrubber’ which enables simultaneous PR 

and configuration scrubbing [113]. Since Virtex-5 FPGAs Xilinx have provided the 

FRAME_ECC primitive which supports SECDED. Also, Dutt and Li propose the use 
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of randomisation and 2D Error-Correcting Code (ECC) structures for FPGA design 

tampering detection [114].  

Design integrity protection schemes do not address IP-related issues, e.g. IP 

license restrictions enforcement and design IP protection in the deployed device etc. 

Also, integrity protection schemes assume unrestricted availability of the IP core 

configuration bitstream and source files. This limits the scope to unrestricted (fully-

licensed) designs, thus hindering adoption of cost-effective third party IP cores 

which are distributed at a lower cost but include license restrictions. 

3.3.8. Design IP Protection 

Challenges in modern VLSI design IP protection are examined by Yuan et al. 

[115]. The authors assume that increasing design IP reuse forces engineers to 

cooperate with others and share their expertise, data, documentation and tools which 

support design IP infringement. This forces IPVs to mark their designs using, e.g. IP 

watermarking or design fingerprinting. During watermarking, the IPV modifies the 

IP core (sources or production files) in order to include a unique signature 

(watermark) which proves IPV copyright ownership during any legal action. Ideally, 

the watermark should be easy to detect and impossible to remove. The main 

challenges listed by Youan et al. are: restrain the design overhead (e.g. watermarking 

cost) and reliable soft IP, CAD tools and algorithms protection. Also, Kean [116] and 

Bossuet et al. [117] highlight the vulnerability of volatile FPGAs to IP piracy and 

reverse engineering, and propose bitstream encryption as a countermeasure. 

Nakanishi proposes another bitstream encryption scheme [118]. Lesea provides IP-

centric context for some of Xilinx FPGA security features [6]. 

IP protection methods in FPGA designs can be classified into two main groups: 

low-cost security and high-end security. 

Low-cost methods target mainly massive scale (industrial) IP theft. This ‘time-

stopper’ approach may not prevent the efforts of motivated peers to obtain FPGA 

configuration details
26

 and to publish results [119]. “Security-by-obscurity” is 

considered an adequate hindrance only for resource- and time-limited attackers. The 

competitive price (or time to market advantage) dictates a minimal-volume 

(maximum individual cost) for which the attack pays off (i.e. is successful). Thus, 

low-cost protection schemes target high-volume markets, e.g. consumer electronics 

(infotainment devices, digital TV etc) where the device development cost (including 

security measures) is bound to remain minimal, and revenue is achieved by the 

economies of scale. 

A separate class of low-cost design protection is design watermarking. Various 

watermarking techniques are reported, e.g. by Kahng et al. [120], [121], Qu [122], 

Jain et al. [123], Ziener and Teich [124] and Ziener et al. [125]. Christiansen et al. 

[126], [127] propose decoy circuits as viable countermeasure to reverse engineering. 
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 uLogic’s “Debit” project (http://www.ulogic.org) 
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High-end protection includes methods aimed at providing security of the design 

IP against all but sophisticated attackers who have unlimited resources. IP protection 

provided by FPGA design software [128], [129] supports IP core licensing and 

Digital Rights Management (DRM), down to the design netlist-level. The software-

level protection effort is augmented by configuration bitstream encryption, being a 

de-facto industry standard provided by FPGA-specific tools. Kean also patented an 

extension to the FPGA fabric which facilitates token-based design rights 

management in the FPGA [130]. The proposed scheme supports Virtual Application 

Specific Standard Product (VASSP) model where IPV controls the number of 

activated copies through the use of device-specific (unique) cryptographic tokens. 

VASSP does not support multiple IP cores within a single device. This approach is 

limited and does not support PR. When PR is used the attacker could, under certain 

conditions, intercept the plaintext content of the IP core by accessing it, using the 

ICAP for example.  

Siripokarpirom describes a scheme for IP core evaluation before purchase [131]. 

Security of the proposed scheme relies only on closed bitstream format. Also, 

Castillo et al. propose hiding encryption keys in unencrypted bitstreams [132].  

Kuhn proposes the ‘TrustNo1’ cryptoprocessor [133] which protects 

applications against unauthorised execution and reverse engineering. Kuhn examines 

necessary hardware/software mechanisms which apply in multi-tasking systems. The 

proposed scheme includes bus data encryption and on-chip encryption key storage. A 

license revocation scheme and key management protocol are also outlined. Graf and 

Athanas report a multi-layer key management architecture which supports secure off-

chip data transfers [134], [135]. The proposed scheme uses a tamper-proof 

cryptographic iButton device to authenticate the application user. The FPGA and 

iButton authenticate themselves in order to enable application access to the data in 

the external memory. Adi et al. propose a concept for design IP locking using a 

SmartCard [136]. Also Suh, O'Donnell and Devadas examine the architecture of a 

secure single-chip processor (AEGIS) and describe the techniques used to execute 

private and authenticated software from untrusted off-chip memory [137]. A 

proposed security model for trusted systems design is to trust the on-chip 

environment while assuming that the off-chip environment is untrustworthy. Similar 

work has been reported by Lee et al. [138], Edmison [139] and Mahar et al. [140]. 

Lee et al. propose an extension of generic processor architecture. The work of 

Edmison and Mahar et al. does not require such a modification and could be applied 

within existing devices. Simpson and Schaumont examine an off-line 

hardware/software authentication scheme [141], [142] . The proposed PUF-based 

challenge-response binding scheme enables the locking of a third party design IP to a 

particular FPGA fabric. The architecture of PUFs has also been examined by Lee et 

al. [143], Suh and Devadas [144], Guajarado et al. [145] and Maiti et al. [35]. A 

work similar to Simpson and Schaumont has been reported by Alkabani et al. [146]. 

Alkabani’s scheme exploits additional states in the IP core control FSM. Also, it 

requires the TA to be involved in device fabrication. 

Zeineddini and Gaj propose a secure PR scheme [147], [148]. The scheme 

employs bitstream encryption and authentication in order to ensure its security. The 
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PR bitstream content is not verified and is assumed to be harmless to the target 

platform. Zeineddini and Gaj suggest the use of dedicated volatile (battery-backed) 

memory to store the key used during PR bitstream decryption. 

Guneysu et al. propose a scheme which exploits PR and the use of a Trusted 

Authority (TA) to provide secure transfer of the encrypted IP to the FPGA system 

[149]. The proposed scheme does not support systems which include more than one 

IP core. Also, the security of the installed IP core is not verified 

Drimer proposes a security protocol for the remote update of FPGA 

configurations [150]. The update protocol can be implemented on existing FPGAs. 

The proposed security model requires a tamper-proof package for both the FPGA 

fabric and the external non-volatile memory in order to ensure that a genuine 

configuration is loaded after power-up. 

The reported research summarised in this section mainly focuses on 

cryptographic algorithms and secure protocols, thus neglecting the problem of post-

PR IP core interaction with the system (or other IP cores). None of the above 

protection methods considers third-party IP cores as a security risk. Secure IP core 

implementation and IPV trustworthiness is taken for granted. Protection against 

design errors can only be achieved by trustworthy design verification. Even if the IP 

core source code is available, it is vital to assure that the EDA tools used to produce 

the FPGA configuration bitstream are secure. Testing can be used to show the 

presence of errors, but never to show the absence of errors [151]. Thompson [21] 

discusses this issue and concludes that “You can’t trust code that you did not totally 

create yourself. … No amount of source-level verification or scrutiny will protect you 

from using untrusted code". 

The proposed SeReCon element facilitates trusted (in-system) analysis of the 

structure of a new IP core prior to RC system reconfiguration and verifies IP core 

spatial isolation. This provides run-time protection of the already-configured PR 

system from structural issues resulting from erroneously placed (or malicious) IP 

cores. The SeReCon-based IP core validation scheme also protects confidentiality of 

the IP core bitstream during RC system implementation and in the deployed device. 

The plaintext IP core bitstream never leaves the SeReCon security boundary, the SI 

and the User access only the encrypted IP core and. Also, the SeReCon design has an 

open architecture which can be audited, e.g. through public scrutiny
27

. 

                                                 
27

 Public audits are already adopted, e.g. in the Secure Hash Standard public competition 

(http://csrc.nist.gov/groups/ST/hash/sha-3/) 
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3.4. FPGA IP Core Licensing Models 

3.4.1. Introduction 

The IP business model describes methods used in order to provide revenue from 

the IP product or IP-related service. The IP business model is associated with an IP 

license model. An IP license model is the terms and conditions (or rights and 

restrictions) that are granted to an IP user and is defined by the IP business model 

[152]. A key objective in the IP market is to ensure that the IPV is profitably 

rewarded for the provided IP. The IPV typically targets a number of applications in 

order to increase the market share. This requires a number of IP licensing models in 

order to match user expectations. Xilinx Targeted Design Platform is an example of 

such EDA software diversity [153].  

This section describes common software business models and the Xilinx 

LogiCORE IP licensing scheme adopted by the Xilinx Alliance Program which 

provides IP cores and EDA tools for Xilinx FPGA devices. Shortcomings of the 

time-based LogiCORE-based IP core business model are analysed, and support for 

transaction based and metered access business models is proposed.  

3.4.2. Common Software Business Models 

In the FPGA-based design, the IP core is a hardware implementation 

(application) of the data processing algorithm. In the SDR application illustrated in 

Figure 1- the IP core could be one of the modules in the PR region, e.g. error 

correction coder/decoder, data cipher/decipher etc. Thus the IP core is the hardware 

counterpart of the software application. Hohmann [152] describes the common 

software business models: 

Time-based access allows the licensee to use the licensed software for a defined 

period of time. The user pays for the license in order to use the software. In a rental 

time-based model, the period of time is set when the license is generated (software 

purchase). Rental time-based models are becoming increasingly popular in certain 

industries, e.g. the software test automation and the EDA industries. Hohmann 

predicts that rentals will reach all market segments. Thus all available software could 

be rented. The business motivations for rentals are compelling and rental enables 

reaching a new market.  

Transaction-based access associates a fee with each transaction. A transaction is a 

defined and measurable unit of work, e.g. activating the software. The software can 

be activated a pre-defined number of times before it becomes inoperable. This 

requires a trusted transaction counter which is typically included within the 

application. The transaction counter enforces the maximum number of licensed 

activations and disables the application when this number is reached. Transaction-

based business models can be found within enterprise software. 
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Metering access business models constrain consumption of a defined resource, e.g. 

application run-time. A consumptive model uses a pool of resources that are 

consumed, e.g. time period. The software becomes inoperable when all of the pool 

resources are consumed, e.g. the time has expired. This business model requires a 

trusted resource meter, e.g. monotonic timer included in the application. The 

monotonic timer counts the total application run time and disables the application 

when the licensed amount of time has expired. This business model could be used in 

consumer products where the user is charged for the multimedia decoder life-time, 

e.g. audio or video stream length. 

Hardware based business models associate the cost of the software with the 

hardware. The software can be provided without charge when the hardware is 

otherwise unusable, e.g. firmware. This model is based on the hardware property, 

e.g. number of CPUs, which affects the performance of the application and can be 

enforced as required to meet business needs.  

Service-based business models focus on service provided to the user, not the 

software enabling serviced access. Service-based business models are often used 

with open source licensing initiatives, e.g. RedHat provides assistance in the 

installation, configuration, and operation of RedHat Linux distribution which is open 

source software. Other services could include education programs, custom 

development, integration services etc. 

Revenue based business models charge a percentage of revenue obtained from using 

the application. The revenue based model requires potential users to identify the 

potential revenues or savings fee. This could make other business models more 

viable. 

3.4.3. Xilinx LogiCORE IP Licensing Scheme 

Xilinx LogiCORE IP license model provides free
28

 IP core evaluation and 

supports fee-based licensing. Evaluation licenses are provided with Xilinx EDA 

tools. Xilinx LogiCORE evaluation licenses support simulation-only evaluation and 

hardware evaluation
29

. 

Simulation-only evaluation license: typically included with most ISE (CORE 

Generator) IP cores. The simulation-only license allows user interaction with the 

customisation GUI and generation of IP core simulation models. IP core evaluation 

in the hardware is not supported. 

Hardware evaluation license: allows generation of the IP core implementation 

netlists and bitstreams which support time-limited IP core evaluation in the FPGA 

hardware. Evaluation bitstreams include a timer element which disables the IP core 

after a few hours of operation. The exact duration of the hardware evaluation time 

                                                 
28

 “as in beer” (http://en.wikipedia.org/wiki/Free_as_in_beer)  

29
 Xilinx LogiCORE site (http://www.xilinx.com/ipcenter/ip_license/ip_licensing_eval.htm) 
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depends on the core. The timer element is automatically inserted by the FPGA 

vendor EDA tools, e.g. Xilinx ISE. IP cores provided with the Xilinx EDK software 

include a 14 month full hardware evaluation license. The hardware evaluation license 

for Xilinx ISE IP cores can be generated using the Xilinx website
30

 or can be 

requested through a local Xilinx Field Application Engineer (FAE).  

Fee-based licenses can be obtained through the Xilinx website or requested through a 

Xilinx FAE. A fee-based licenses is available as a project-locked license, site-a 

locked license or as a full electronic license.  

Project-locked license: restricts the use of the licensed IP core within a single 

project. This could be a single bitstream including multiple instances of the licensed 

IP core and targeting multiple FPGA devices, or multiple bitstreams including 

multiple instances of the licensed IP core targeting single FPGA device. 

Site-locked license: restricts the use of the licensed IP core in an unlimited number 

of projects originating within a 5-mile radius of an address designated as the 

"Licensed Site". 

Full electronic license: enables full access to a core. This includes the simulation 

model, implementation netlist generation, place and route, and generation of a 

bitstream. Full electronic license is generated Xilinx core-specific product lounge. 

3.4.4. Mixed Business Models For FPGA IP Core Licenses 

The licensing scheme used by the Xilinx EDA tools, e.g Xilinx Design Studio 

supports the time-limited and hardware-based business models. Xilinx EDA tools use 

the FlexLM license manager in order to enforce time-limited operation of Xilinx 

Design Studio and included IP core license restrictions, e.g. simulation only, site- 

and project-locking, time-limited hardware evaluation etc. The time-limited IP core 

hardware evaluation license uses a timer element embedded in the IP core bitstream. 

Thus the FPGA device support in the license enforcement is not required. The IP 

core specific firmware, e.g IP core drivers, example applications etc, are distributed 

using a hardware base business model. Thus their use is limited only to Xilinx 

FPGAs. 

The FPGA IP core, like a software application, is a collection of ‘features’. Each 

of the features can be offered using different business and licensing models, e.g. the 

time-limited license could be used for the base set of IP core features (e.g. data 

encryption), while a transaction-fee or metered-access license would apply for 

additional, application-specific IP features, e.g. IP core resistance to side-channel 

attacks. The transaction-based and metered access business models could increase 

the use of IP cores in reconfigurable consumer devices. Both models require support 

to provide trusted measurement of the IP core activations and usage (life time).  

                                                 
30
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Couture and Kent describe current software and hardware licensing techniques 

[154]. The licensing architecture for IP core metered-usage is proposed. This requires 

IPV to posses the encryption key which is used to secure communication between the 

FPGA and the external trusted time-keeping module. The encryption keys are 

permanent and thus vulnerable to replay attack. 

3.5. Thesis Proposition: Trusted Design Verification And 

Reconfiguration 

3.5.1. Introduction 

This chapter reviews the state of the art in RC security. A motivating example on 

security risks in PR FPGA systems is provided. Risks of the side-channel attacks and 

threat of rogue EDA software also are highlighted. Security countermeasures 

supported by Xilinx FPGA fabric are described prior to critical examination of the 

reported work on the RC system integrity protection. The IP theft countermeasures 

and the principle of IP licensing models are also described. This section concludes 

with the need for a Secure Reconfiguration Controller (SeReCon) and summarises 

the requirements of SeReCon. 

The CB4CLE example indicates that even a simple IP core, occupying one CLB, 

can potentially share resources (and thus setup implicit communication channel) with 

a second IP core occupying any of almost 3000 FPGA tiles which is 21% of the mid-

size Xilinx Virtex-5 FPGA.  

In the trusted computing paradigm the Trusted Platform Module (TPM) acts as a 

RoT for the target system and provides capabilities for secure data storage, secure 

reporting of platform configuration measurements (e.g. trusted boot-up configuration 

assessment) and cryptographic key generation. Applications of TPM in RC provide 

RC system with capabilities of authenticated power-up configuration. This requires 

SI to be in possession of TPM EK (system security credentials), exposing third-party 

design IP to the SI. Eisenbarth et al. do not consider the loaded reconfigurable 

modules to be malicious, while Glas et al. checks only the destination address of the 

reconfiguration data and disable TPM element when error occurs. This leaves FPGA 

unprotected, with the IP core already loaded into configuration memory. Thus, a new 

model of TPM operation is required to eliminate system integrator from the TC 

chain-of-trust and to protect design IP upon system tampering. 

Directions of research activity in the field of RC systems security are two-fold, 

focusing on system integrity protection and design IP protection. System integrity 

protection measures aim towards seamless integration of multiple externally-

developed IP cores into a stable and trustworthy system. Design IP privacy 

protection must be ensured to commercially available third-party IP core vendors. 

This is not ensured where the system integrator is in full control of, and has 
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unrestricted access to, all design modules, including third-party IP cores. Current 

design IP protection methods focus on the confidentiality of the IP core 

implementation, mainly by using authentication and encryption protocols, though 

without considering the risks caused by including erroneous or malicious IP cores. 

This exhibits contradictory goals of system protection (integrity) and design IP 

protection (privacy). Also, no current design IP protection methods assume a system 

model which includes IP protection of untrusted third-party cores while guaranteeing 

system integrity, e.g. protecting against design errors in third-party IP. Thus, new IP-

aware methods for development of trustworthy systems are required. 

The provision of IP core transaction-based and metered access licensing models 

in addition to a protection model for PR systems could increase the use of IP cores in 

reconfigurable consumer devices. A trusted license enforcement scheme requires 

methods for reliable control of IP core utilisation in the RC system, e.g. enforcement 

of counted IP core activation and IP core run time metering. 

The SDR application, its attack vectors and IP core business models constitute 

two security problems, namely: 

The secure reconfiguration problem: “How to maintain integrity of the PR RC 

system?” 

The IP licensing problem: “How to ensure IP license enforcement in PR RC system 

such that the IPV can: a) tie the IP core to a particular RC device, b) reliably meter 

and limit IP core usage (total lifetime and activations number) in the deployed 

system”. The IPV wishes to enforce license-restricted usage of the IP core in the 

deployed PR RC system.  

This thesis proposes a novel Secure Reconfigurable Controller (SeReCon) 

element which facilitates trustworthy and IP-aware PR for FPGA-based RC systems. 

SeReCon performs trusted design verification in order to provide system integrity 

protection during PR. SeReCon also protects the IP cores against IP theft and 

enforces IP core license restriction in the deployed RC system. This supports IPVs in 

adoption of the transaction-based and metered access business models. 

SeReCon extends the TPM architecture in order to provide support for FPGA-

specific secure reconfiguration problem (e.g. IP core placement and isolation) and to 

facilitate new IP business models in the FPGA design community. The architecture 

of the SeReCon element is described. Figure 1-a illustrates the block diagram of the 

SeReCon-enabled PR RC system. SeReCon (Figure 1-cde) incorporates novel 

algorithms for building a system Root-of-Trust (Figure 1-) and a two-phase integrity-

maintaining self-reconfiguration process. 
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3.5.2. Secure Reconfiguration Controller (SeReCon) 

This section describes the proposed Secure Reconfiguration Controller 

(SeReCon) architecture.  

The proposed SeReCon IP core is an integral part of a PR system and guarantees 

the physical isolation of non-trusted PR modules and thus the integrity of the system 

configuration between reconfiguration cycles. SeReCon provides the required 

infrastructure for secure PR at a remote site, e.g. at the SI or User site. FPGA system 

integrity protection is maintained by controlled PR. SeReCon analyses IP core 

structure and detects if the intended PR might affect the system integrity and expose 

the FPGA to a malicious (unsecure) configuration. Attacks such as this could activate 

configuration memory read-back and further compromise FPGA system security 

through modification of for example the design routing or logic resources. If the IP 

core resource requirements comply with the current state of the FPGA system, 

SeReCon allows reconfiguration to take place though controlled access to the ICAP.  

In order to guarantee the integrity of IP cores, SeReCon can perform on-line 

context analysis of PR modules (physical placement, usage, confirmation that the 

active modules interact only through legitimate interfaces). This mechanism protects 

system integrity during PR at a remote site and allows non-trusted (un-verified) 

modules to be used so long as they do not interfere with those currently active on the 

FPGA. 

A novel algorithm is proposed for generating credentials in order to establish the 

secure RoT. SeReCon performs the requested system reconfiguration on behalf of 

the RC system software. SeReCon aims to protect the integrity of the RC system by 

mediating access to the ICAP and by analysing incoming reconfiguration requests 

during run-time. A two-phase self-reconfiguration (IP core installation and 

activation) process is implemented in SeReCon in order to improve performance of 

IP core activation. 

A novel algorithm is proposed within SeReCon for IP core licensing and usage 

accounting, e.g. total runtime, number of activations etc, in a PR system. SeReCon 

facilitates new IP core licensing models, e.g. transaction-based and metered access, 

during the PR system life-cycle. SeReCon ensures license restrictions enforcement 

within the target FPGA-based RC system. This supports trusted license management 

which requires participation of the Trusted Authority party only during device 

certification. This reduces the chain-of-trust requirements in a multi-player design 

flow. 
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3.5.3. Methods And Assumptions 

The following assumptions have been made in defining the SeReCon system 

model: 

a) The FPGA device is trusted (i.e. Trojan-free) and provides hardware support for 

RoT (details are described in  Chapter 4). 

b) The RC system comprises a number of integrated IP cores, configured using PR. 

c) The IP Vendor explicitly declares some of IP core resources to be used as its 

communication interfaces. 

d) IP cores are not trusted and their placement on the FPGA cannot overlap each 

other. 

e) Subliminal channel and side-channel attacks are not considered. 

3.6. Chapter Summary 

This chapter provides a motivating example on security risks within PR FPGA 

systems.The example illustrates the risk of implicit communication channels between 

IP cores in the PR RC system. The risk of side-channel attacks, the threat of rogue 

EDA software and the issue of malicious FPGA designs are also highlighted. The 

chapter reviews the state of the art in RC security. Security countermeasures 

supported by Xilinx FPGA fabric are described prior to critical examination of the 

reported work on the RC system integrity protection and countermeasures for design 

IP theft. The chapter describes the principle of IP licensing models and proposes use 

of new IP core licensing models, e.g. the time-limited license and metered-access 

license, which could increase the use of IP cores in reconfigurable consumer devices. 

The need for the trusted IP-aware RC system security countermeasures is also 

highlighted. The chapter concludes with the proposal of a Secure Reconfiguration 

Controller (SeReCon) and a summary of the SeReCon requirements. 
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 Chapter 4. SeReCon Proposal: RoT and Usage 

Accounting In PR FPGAs 

4.1. Introduction 

This chapter considers the requirements of credentials storage in a secure RoT 

and the implementation of usage accounting for RC systems. Techniques for storage 

of RoT security credentials and usage accounting data in modern FPGAs are 

reviewed. The suitability and limitations of using SRAM configuration memory are 

discussed. Other non-volatile memory schemes for credentials storage are also 

reported. The chapter proposes and describes an extension to the Xilinx FPGA fabric 

to provide a tamper-proof hardware element which protects the SeReCon-based RoT 

credentials and usage data during power-up cycles. The EIDR element prototype 

implementation in a Virtex-5 LXT device (ML505 Board) is reported. The register-

based EIDR control/status interface, which is implemented in the FPGA user-logic, 

is highlighted. This chapter also describes EIDR API functions, which are provided 

by the SeReCon EIDR driver. The associated multi-party RoT credentials generation 

process is proposed. The activities of SeReCon and various parties (e.g. SI, TA, IPV) 

during RoT initialisation are highlighted. The RoT credentials generation process 

supports public security audit of the RC device and guarantees exclusive and 

authenticated access to the sensitive part of the RC system security credentials for the 

legitimate system, e.g. SeReCon RoT. The SeReCon-based RoT is immune to 

credentials leakage as a result of a future successful attack on the TA. 

4.2. Requirements Of  Credentials Storage And Usage 

Accounting In A RoT 

The TC defines a system’s RoT as a component that must always behave in the 

expected manner, because its misbehaviour cannot be detected. The RoT contains at 

least the minimum set of functions to enable a description of the platform 

characteristics that affect the trustworthiness of the platform
31

. Trustworthy operation 

of an RC system requires the RoT security credentials to remain confidential during 

the system lifecycle and to be available only to authorised system elements (e.g. RoT 

elements). Also, the integrity of the system usage accounting data, e.g. number of 

system activations, its lifetime and uptime since last restart, must be preserved 

(unchanged) during RC system power-down cycles. 
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Figure 1- illustrates the Base SeReCon FPGA Configuration (BaseSFC), loaded 

after system power up. The BaseSFC contains only the SeReCon IP core, the 

communication interface to control RC system configuration (using the SeReCon 

element) and the memory interface to provide non-volatile Local IP Storage (LIPS) 

(in external Flash memory). LIPS is a repository used to store IP cores after 

processing by SeReCon, for use during future RC system reconfigurations. The 

BaseSFC forms the RC system RoT and is assumed to be secure. The BaseSFC 

should not contain any proprietary (closed-source) IP cores. This allows the 

BaseSFC to be freely audited, either by the independent TA or under open public 

scrutiny. During an audit the independent TA confirms the correct implementation of 

the BaseSFC design provided by the SI. 

The BaseSFC can be likened to a trusted OS boot-loader in the TC domain; the 

proposed SeReCon IP core serves reconfiguration requests (Figure 1- and Figure 1-), 

received from the RC system software layer through the communication interface 

(Comm IF), and interrupts the reconfiguration process when a potentially malicious 

configuration bitstream is detected.  

Security of the RoT is built upon secure credentials which are confidential, 

random and device-unique RC system encryption keys and Message Authentication 

Codes (MACs) [25]. Generation of Credentials are used to: 

 protect the integrity of the RoT and the installed IP cores (in both the LIPS and 

the configured FPGA) 

 allow the User or IPV parties to authenticate the BaseSFC (and the RC system 

environment) 

 guarantee secure communication between the BaseSFC and IPV, during 

installation of new IP cores. 

The BaseSFC uses symmetric-key encryption in order to protect the LIPS (Figure 

1-). Public-key encryption is used to provide a private and secure (authenticated and 

encrypted) end-to-end communication channel between the IPV and the BaseSFC.  

The TA generates and installs the credentials within the SeReCon firmware, e.g. 

as the pre-initialised BRAM content in the FPGA configuration bitstream, available 

for a RoT CPU. The SI and TA agree on the credentials structure and the 

functionality of the API which provides access to the credentials data structures. It is 

assumed that the SeReCon-based RoT is not likely to change during a product 

lifetime. If such a change is required, e.g. during a BaseSFC system upgrade, new 

unique credentials must be generated and installed in the RC system by the TA to 

establish trust in the new BaseSFC. 

4.3. Review Of  Techniques For Storage Of  RoT Data 

The BaseSFC requires security credentials to remain protected during the system 

lifecycle. Also, the RC system usage data (system state) must be preserved during 

RC system power-down cycles. 
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Security credentials and system usage data cannot be stored in volatile memory 

such as Xilinx FPGA configuration SRAM. Commercially available SRAM-based 

FPGAs, e.g. Xilinx Virtex family, exhibit the property of a stateless power up 

configuration; the internal configuration memory is cleared during the power up 

sequence and the device enters the default ‘blank’ (unconfigured) state, waiting to be 

configured with a bitstream provided from the external source [44], [47], [9], [33]. 

The stateless power up configuration strategy ensures that a newly configured device 

configuration is not affected by the previous one. This renders any system usage 

accounting infeasible as all data on system usage is lost after power down. Stateless 

configuration exposes the FPGA to a Man-in-the-Middle (MIM) attack [110] where 

the attacker alters the active configuration bitstream with an earlier version (possibly 

erroneous and exploitable) during power-up configuration. A genuine FPGA 

configuration is undistinguishable from a bogus configuration, which is introduced 

by an attacker using a malicious environment (typically requires physical access to 

the device). The non-stateless configuration is offered only in Virtex-5 and Virtex-6, 

supported by a ‘warm-boot’ facility [9], [33]. Warm-boot allows ‘rolling-back’ to a 

default fail-safe FPGA configuration in the event of an unsuccessful updated 

bitstream configuration. The warm-boot configuration state register does not offer 

any data privacy protection and does not support authenticated access control to the 

configuration state. Thus, a warm-boot cannot support system usage accounting and 

cannot be used to store and preserve confidential system state (e.g. its security 

credentials) between FPGA power-up cycles. 

A battery-backed memory configuration could be implemented to store 

SeReCon security credentials. This technique is used in Xilinx Virtex-II/4/5/6 and 

Spartan-6 devices to store bitstream decryption keys [44], [47], [9], [33], [155], 

[116]. Read/write access to this memory by the user design is not allowed in 

commercially available Virtex devices. This renders it unsuitable for use in SeReCon 

for credentials and system usage data storage, since SeReCon is a user design 

element. 

Modern FPGA devices require a TA to generate and install security credentials 

directly within the SeReCon firmware and to encrypt the BaseSFC bitstream. 

Afterwards, the TA securely programs the decryption key into the RC system. This is 

required in order to protect the BaseSFC against reverse engineering [119], e.g. 

extraction of the sensitive part of the credentials from the plaintext bitstream. Also, 

the TA should use one-time, device-unique encryption keys to avoid compromising 

multiple devices, e.g. in the event of a single encryption key being leaked. When the 

TA is in possession of encryption keys used during BaseSFC encryption, the RoT 

security could be compromised through a successful attack on the TA. The feasibility 

of such an attack is based on the fact that the TA is aware of sensitive credential 

material or the BaseSFC bitstream encryption key of many devices. 

In summary, it is vital to provide the RoT with the ability to distinguish between 

arbitrary FPGA power-up cycles, e.g. in order to protect the RC device against MIM 

attacks and provide FPGA fabric support for RC system usage accounting, required 

for counted (pay-per-use) and time-limited IP core license enforcing. 
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4.4. FPGA Fabric Extension For Tamper-Proof  Storage Of  

RoT Data 

4.4.1. Introduction  

This section proposes and describes a novel extension to the Xilinx FPGA fabric 

to provide a tamper-proof hardware element which protects the SeReCon-based RoT 

credentials and usage data during power-up cycles. This section describes the ID 

Register (IDR)-based facility for TA-controlled generation of unique, random and 

partially-anonymous security credentials, entirely within RoT (BaseSFC) security 

perimeter. FPGA fabric elements (e.g. configuration control logic and configuration 

memory) and user-design elements (random number generator and control/status 

register wrapper) which support the IDR facility also are highlighted. Figure 4- 

illustrates the FPGA fabric block diagram, including the IDR element. IDR is an 

FPGA fabric extension for tamper-proof storage of RoT credentials and RC system 

usage accounting. 

Figure 4- also illustrates the SeReCon-based RoT certification process 

flowchart, which provides a trusted BaseSFC and IP core protection for RC systems. 

This section also proposes an extension to the SeReCon IDR to provide support for 

usage accounting and for enforcement of IP core license restriction in a multi-party 

design and user environment for PR systems. The introduction of flexible IP core 

licensing schemes (e.g. time-limited or counted) supports cost-effective reuse of the 

third party IP cores. However, this requires reliable license enforcement mechanisms 

to be implemented in the RC devices. The location of the IDR within the RC system 

is illustrated in Figure 1- and Figure 1-.  

A description of each FPGA security credentials and usage accounting elements is 

included below: 

ID Register (IDR) is the proposed non-volatile FPGA fabric element, accessible 

as a hard-macro and implemented using SRAM technology with battery backup. The 

IDR supports instant memory scrubbing (“one-shot zeroisation”) upon receipt of a 

key-clear request (assertion of RST), e.g. the SysMon FPGA primitive [27] could 

trigger IDR ‘zeroisation’ when FPGA input voltage or temperature exceeds the 

threshold level (this could suggest device tampering).  

Configuration Control Logic (CCL) configures and controls the FPGA fabric 

using a configuration bitstream delivered through a dedicated (CFG_IO) interface 

(e.g. JTAG, SelectMAP etc) [156]. CCL is embedded in the FPGA fabric and 

contains a keyed Hash Message Authentication Code (HMAC) algorithm [33] 

implemented in hardware, and used for bitstream authentication. HMAC generates 

the MAC [25] of the active configuration bitstream, e.g. the BaseSFC. CCL 
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generates the configuration clock
32

 (CFG_CLK) and indicates successful FPGA 

configuration (CFG_DONE_OK). 

 

 

Figure 4- Block diagram of the FPGA fabric including the ID Register (IDR) element. 

Configuration Memory (CM) stores the active FPGA configuration (user-

design) during FPGA runtime. The simplest CM design is the BaseSFC. CM content 

is configured using the configuration frames delivered by the CCL packet processor 

[9] during power up configuration process (Figure 1-).  

True Random Number Generator (TRNG) provides a unique random 

bitstream (DATA) to the IDR. The TRNG is a SeReCon element. The TRNG 

contains a set of Ring-Oscillators configured to harvest randomness based on 

physical phenomena [37], [35].  

Control/Status Registers (CSRs) is a BaseSFC register-file used to control the 

IDR hard-macro (through register read/write access). When the genuine BaseSFC is 
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active, the CSRs provide access to the stored RoT credentials (CREDENTIALS) and 

system usage data, e.g. number of system activations (AAC), system lifetime (LTC), 

system uptime (FRC). The CSR is a SeReCon element implemented in CM. In the 

SeReCon-based RoT, the sensitive part of the RoT credentials (STORAGE_KEY, 

PRIVATE_KEY) is always kept within the RoT security perimeter. The public part 

(PUBLIC_KEY) of the RoT credentials is not restricted and can therefore be 

transferred outside the RoT for device certification (e.g. the TA signs and publishes 

the device public-key) or authentication (e.g. the IPV uses the device public-key to 

encrypt the installed IP core). 

4.4.2. IDR Support For Tamper-Proof Storage Of RoT Credentials 

During Powerup 

Figure 4- illustrates the IDR block diagram, including elements which support 

credentials storage. This section describes each IDR element.  

Key Register (KR) stores the MAC describing the active FPGA design when 

WRITE is asserted, e.g. the MAC of the BaseSFC during RoT activation. KR is 

hardwired to the HMAC module (Figure 4-). The state of KR is preserved between 

power cycles. EQUAL_EN is asserted when the MAC value of the active design 

matches the stored KR value. Assertion of EQUAL_EN indicates that the currently 

active design is authorised to access the Credentials Register. Assertion of the RST 

signal clears KR content and disables IDR.  

Credentials Register (CR) stores DATA (e.g. sensitive BaseSFC credentials) 

when WRITE is asserted. CR content (CREDENTIALS) is preserved between power 

cycles. CR content is confidential and available only to the authorised design (e.g. 

BaseSFC), when EQUAL_EN is asserted. This enables continuous operation of the 

SeReCon-based RoT, without the need to re-establish trust after a power cycle or in 

the event of non-authorised system reconfiguration. Assertion of the RST signal 

clears CR content. 

The proposed IDR method extends the authenticated configuration recently 

made available in Virtex-6 devices [33] (proposed by Drimer [108]). During the first 

time activation of SeReCon within a controlled and trusted environment (i.e. at the 

TA facility), a system-unique, random and partially-anonymous credentials value 

(DATA) is generated using a RO-based TRNG [35] technique. Since credentials are 

generated internally within the SeReCon-based RoT (Figure 4-), and locked with the 

BaseSFC MAC, the sensitive elements, i.e. private-key, storage key etc, never leave 

the boundary of the SeReCon RoT (or FPGA fabric). 

Generation of a malicious (‘Trojan’) bitstream, having an identical MAC to the 

genuine bitstream could be used in a birthday attack [157]. Thus, this work assumes 

that the MAC values generated by HMAC are ‘collision-resistant’ [157], [38], e.g. 

the generation of a Trojan bitstream with a MAC value identical to the genuine (not 

modified) design is hard (not feasible in a reasonable amount of time). The IDR 

provides authenticated access to the CR content. During an IDR write access, input 
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data is stored in the CR and the MAC is stored in the KR. When IDR data is 

requested, the current KEY input (the MAC value of the current bitstream, e.g. the 

BaseSFC) is compared with the KR content. The CR content is available to the 

FPGA design only if the KR and KEY values match, e.g. when the MAC of the 

current design (e.g. BaseRFC configuration) is equal to the genuine MAC which was 

used to store credentials. The IDR content (security credentials) is generated locally, 

within the RoT (Figure 4-), and is non-permanent. This preserves the confidential 

state of the RC system when the power is off and ensures that the private part of the 

credentials is known only to the authenticated BaseRFC (which contains the 

SeReCon RoT), even after a power cycle. Non-permanent (battery-backed) storage 

supports prompt revocation of the credentials upon detected tampering (within a 

single clock-cycle). Thus, secure and trustworthy operation of SeReCon can be 

certified by a TA and also by public audit.  

 

 

Figure 4- Block diagram of the ID Register (IDR) used for controlled generation of unique, 

random and partially-anonymous security credentials. 

4.4.3. Extending IDR For System And IP Core Usage Accounting 

This section describes the extension to the SeReCon IDR to provide support for 

enforcement of IP core license restriction in a multi-party design and user 

environment for PR systems and system usage accounting. To support time-limited 

or counted IP usage in a secure FPGA system, it is necessary to distinguish between 

particular FPGA power cycles, and further to conclude whether the IP core license 

life-time (located in the installed IP core file stored in LIPS) has expired. Otherwise 

the FPGA system is vulnerable to exploitation by an attacker using a replay-attack 

scenario [110]. This could lead to possible time-unlimited IP usage or FPGA 

configuration downgrading, e.g. use of the earlier (possibly erroneous) FPGA 

configuration. Figure 4- illustrates the block diagram of the Extended SeReCon IDR 

(EIDR). Three monotonic counters provide a mechanism for accounting device 

runtime for licensing purposes. A description of each element is included below. 
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authenticated FPGA configuration events, e.g. the number of times that the 

SeReCon-enabled RC system has been powered up and authenticated. For each 

power-up, the ACC provides a value which is always increasing (monotonic) and 

guarantees that every restart of the device is unique (Nonce value). Therefore, a 

replay-attack can be detected. The ACC value can be used to enforce a pay-per-use 

business model [152].  

The Life Time Counter (LTC) counts the total number of clock cycles (referred 

to as lifetime count) which have elapsed from the moment of SeReCon activation. 

The LTC content is preserved between system power cycles. This enables 

measurement of the IP core lifetime and enforcement of a time-limited usage policy, 

e.g. if the LTC value exceeds a predefined threshold value (embedded within the IP 

core license) SeReCon can automatically disable the IP core activity (see  Chapter 6). 

The LTC can also provide a real-time clock for the RC system. 

The MsgNo Counter (MNC) is a monotonic counter which contains the 

transaction message number (MsgNo). SeReCon asserts the UPDATE signal in order 

to increase the MNC content. MsgNo is a unique (Nonce) value included in IPV 

messages to SeReCon which are used, e.g. to establish the shared encryption key
33

. 

SeReCon accepts IPV message only when the MsgNo included in the message 

matches the value stored in EIDR MNC. Always-increasing MNC updates is used to 

ensure the ‘freshness’ of the IPV messages sent to SeReCon, e.g. SeReCon rejects 

(old) messages with MsgNo lower than the EIDR MNC.  

The Free-Running Counter (FRC) counts the number of clock cycles elapsed 

since the previous system power-up cycle. FRC is used to calculate the period of 

uninterrupted system activity and thus provides a mechanism for enforcing IP core 

license restrictions for time-limited hardware evaluation. Use of the FRC along with 

the LTC provides a distinction between system uptime and system lifetime and thus 

supports a flexible IP core licensing model. 

ACC, LTC, MNC and FRC monotonic counters are cleared when the contents of 

the CR (Figure 4-) changes, e.g. when a new SeReCon RoT identity is generated by 

the TA or reset (RST) is asserted. Counter outputs are available only to an 

authenticated SeReCon design. If the FPGA is configured with a bitstream whose 

signature (MAC) does not match the current KR value (the MAC of the authenticated 

BaseSFC), the system remains inactive and the counter contents are not made 

available to the unrecognised (and inappropriate) FPGA design. This allows FPGA 

device reuse when the EIDR functionality is not required. 

Assuming a 5-year lifetime for a device running at 100 MHz, the additional EIDR 

resources (ACC, LTC, MNC and FRC) required to support IP protection are as 

follows:  

 Two 28-bit binary counters for ACC and MNC (assuming SeReCon power-up 

configuration and application requests occur at a maximum frequency of once 

per second) 

                                                 
33

  Chapter 7 describes implementation and usage of the RC system demonstrator. 
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 Two 56-bit binary counters for LTC and FRC 

The bit-width of these monotonic counters guarantees against counter overflow 

during the system lifetime. Counter values are available through the SeReCon CSRs 

(Figure 4-). 

The state of the counters provides reliable device usage statistics. Licensing 

restrictions such as the maximum allowed number of IP core activations, the system 

usage-time limit for hardware verification purposes etc, can therefore be 

implemented.  

 

 

Figure 4- Extended ID Register block diagram. Monotonic-counters support enforcement of IP 

core license, time-limited and counted usage in a multi-party PR design environment. 

4.4.4. EIDR Prototype Implementation 

This section reports the EIDR prototype implementation. The register-based 
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highlighted. The section also describes EIDR API functions, which are provided by 

the SeReCon EIDR driver. 

An EIDR element prototype has been implemented in a Virtex-5 LXT device 

(ML505 Board) using the Xilinx ISE toolset
34

. Appendix B provides the reference 

EIDR source code in VHDL. Table 4- illustrates the EIDR resource utilisation and 

performance. Figure 4- illustrates the VHDL description of the EIDR element. Some 

details of the EIDR implementation are removed for clarity
35

. 

The EIDR element connects to the SeReCon system bus through the 

Control/Status Register (CSR) wrapper (Figure 4-) which provides a bidirectional 

register-based interface between the EIDR and the SeReCon bus. Table 4- illustrates 

The EIDR API which is provided by the SeReCon EIDR driver. The SeReCon 

firmware (Figure 1-e) uses the EIDR API in order to access the RC system security 

credentials and system usage data. Details of EIDR API usage in SeReCon are 

provided in Chapter 6.  

The idr_reset() API function resets the EIDR. This clears all data stored in the EIDR 

registers, e.g. stored MAC, SeReCon credentials and SeReCon usage counters. The 

EIDR reset can be also executed when SeReCon detects abnormal system activity, 

e.g. when the FPGA SYSMON primitive [27] signals the unusual FPGA devices 

temperature or input voltage level which could suggest potential attack. 

The idr_init() function resets and initialises the EIDR element (Figure 4-). After 

resetting the EIDR, SeReCon writes a new TRNG data value into the CR by 

asserting the WRITE signal. This also writes the MAC of the active bitstream, e.g. 

the BaseSFC, into the KR ACC, MNC, LTC and FRC registers are also cleared to 

their initial values. Typically SeReCon firmware calls idr_init() only once, during 

RC system initialisation at the TA site. 

The idr_status() function returns current status of the EIDR element, e.g. 

uninitialised, active, tampered etc. 

The get_idr_credentials() function checks the EIDR status and provides access to 

security credentials stored in the EIDR. The CR content is available through a 

pointer which is provided as a function parameter (credentials_ptr). SeReCon uses 

security credentials to protect system integrity and IP core confidentiality during IP 

core installation, activation and deactivation. 

The get_idr_counters() function checks the EIDR status and provides access to the 

EIDR counters. The ACC, LTC and FRC contents is available through a pointer 

which is provided as a function parameter (counters_ptr). EIDR counter values are 

used during IP core activation and deactivation. 

The get_idr_msg_no() function checks the EIDR status and provides access to the 

MNC counter. The MNC content is available through a pointer which is provided as 

function parameter (msg_no_ptr). SeReCon uses the monotonic (always-increasing) 
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 Xilinx ISE Version 11.2 

35
 Appendix B provides a complete source code (VHDL) for the EIDR element. 
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MNC value to enable unique identification of received commands. SeReCon accepts 

only commands with msg_no matching its current MNC value (subsequently 

incremented). This counters replay-attacks, e.g. where an attacker attempts to reuse 

(replay) old sequence of commands in order to subvert system configuration. 

The idr_update_msg_no() function asserts the UPDATE signal and increments the 

value of the MNC counter. 

When the EIDR is tampered (e.g. when attacker depackages the FPGA fabric and 

attempts physical access to the EIDR structure) or the design is not authorised to 

access its content, e.g. if the BaseSFC MAC does not match the EIDR KR value, the 

get_idr_credentials(), get_idr_counters(), idr_update_msg_no() 

andget_idr_msg_no() and functions return an error. 

 

 FF’s LUTs IOs Estimated Fmax 

EIDR 427 549 685 222 MHz 

Table 4- Resource occupation of the EIDR prototype implemented in Virtex-5 LXT. 

 

API call Parameters Description 

idr_reset() None Resets EIDR.  

idr_init() None Initialises EIDR. 

idr_status() None Returns the IDR status. 

get_idr_credentials() credentials_ptr 
Updates the credential data structure 

using EIDR credentials.  

get_idr_counters() counters_ptr 
Updates the counter data structure using 

EIDR counter values. 

get_idr_msg_no() msg_no_ptr 
Updates the msg_no content using the 

EIDR value. 

idr_update_msg_no() None Increases the content of EIDR MNC. 

Table 4- The EIDR API which is provided by the SeReCon EIDR driver.  

 



 Chapter 4 - SeReCon Proposal: RoT and Usage Accounting In PR  

– 75 – 

 

Figure 4- VHDL description of the EIDR element. Implementation details are removed for 

clarity. 

entity id_reg_top is 

 Generic( MAC_WIDTH : integer := 256;--taken from V6CG

  CREDENTIALS_WIDTH : integer := 128;--useAES128

  ACC_WIDTH : integer := 28;

  MNC_WIDTH : integer := 28;

  LTC_WIDTH : integer := 56;

  UTC_WIDTH : integer := 56);

    Port ( clk : in  STD_LOGIC;

           rst : in  STD_LOGIC;

           wr : in  STD_LOGIC;

           done : in  STD_LOGIC;

           update : in  STD_LOGIC;

           mac : in  STD_LOGIC_VECTOR (MAC_WIDTH-1 downto 0);

           data : in  STD_LOGIC_VECTOR (CREDENTIALS_WIDTH-1 downto 0);

           credentials : out  STD_LOGIC_VECTOR (CREDENTIALS_WIDTH-1 downto 0);

           device_restarts : out  STD_LOGIC_VECTOR (ACC_WIDTH-1 downto 0);

           lifetime : out  STD_LOGIC_VECTOR (LTC_WIDTH-1 downto 0);

           msg_no : out  STD_LOGIC_VECTOR (MNC_WIDTH-1 downto 0);

           uptime : out  STD_LOGIC_VECTOR (UTC_WIDTH-1 downto 0));

end id_reg_top;

architecture Behavioral of id_reg_top is

type state_type is (FSM_IDLE, FSM_INIT, FSM_ACTIVATED); 

signal state, next_state : state_type; 

signal kr_data : STD_LOGIC_VECTOR (MAC_WIDTH-1 downto 0);

signal cr_data : STD_LOGIC_VECTOR (CREDENTIALS_WIDTH-1 downto 0);

signal device_restarts_cnt : STD_LOGIC_VECTOR (ACC_WIDTH-1 downto 0);

signal lifetime_cnt : STD_LOGIC_VECTOR (LTC_WIDTH-1 downto 0);

signal msg_no_cnt : STD_LOGIC_VECTOR (MNC_WIDTH-1 downto 0);

signal uptime_cnt : STD_LOGIC_VECTOR (UTC_WIDTH-1 downto 0);

signal equal_en,auth_cfg_ok,auth_update,device_restarts_cnt_en : STD_LOGIC;

signal auth_cfg_ok_en_i : std_logic;

function is_zero(input_vector : in STD_LOGIC_VECTOR) return std_logic is...

begin

EQUAL_EN_SIGNAL: ...

AUTH_CFG_OK_SIGNAL: ...

CREDENTIAL_ENABLE: ...

LTC_ENABLE: ...

AAC_ENABLE: ...

FRC_ENABLE: ...

AUTH_UPDATE_SIGNAL: ...

MNC_ENABLE: ...

KR : process (clk, rst) ... --KEY_REGISTER

CR : process (clk, rst) ... --CREDENTIAL_REGISTER

AAC: process (clk, rst) ... --AUTHENTICATED_CONFIGURATIONS_COUNTER

LTC: process (clk, rst) ... --LIFETIME_COUNTER

MNC: process (clk, rst) ... --MSG_NO_COUNTER

FRC: process (clk, rst, done) ... --FREE_RUNNING_COUNTER

ONE_SHOT_SYNC_PROC: process (clk) ...

ONE_SHOT_NEXT_STATE_DECODE: process (state, auth_cfg_ok) ...

ONE_SHOT_OUTPUT_DECODE: process (state) ...

end Behavioral;
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4.5. Multi-Party RoT Certification Process  

The RoT certification process securely establishes a trustworthy RoT within the 

RC system. The TA only monitors and audits correct RoT implementation and the 

process of credentials generation. The TA does not generate or install security 

credentials itself. Credentials are used to authenticate the RC system, to provide a 

secure communication channel (authenticated and encrypted) to the IPV, and to 

protect IP cores installed in LIPS. The SeReCon-based RoT certification process 

flowchart, which provides trusted BaseSFC and IP core protection for RC systems, is 

illustrated in Figure 4-. This process generates the keys used for secure IP core 

transfer between IP Vendor and SeReCon. 

 The SI develops the hardware platform, installs the SeReCon IP core and sends 

the certification request and the RC device (along with BaseSFC design source files 

and binaries) to the TA facility for trustworthy initialisation and certification.  

The TA performs the following tasks: 

 audits the RC system hardware platform (FPGA fabric and peripherals) 

 verifies the SeReCon firmware source code, the BaseSFC VHDL source code 

and the FPGA bitstream. The FPGA bitstream includes the SeReCon firmware 

binary (Figure 1-). 

 ensures regulated environmental conditions (i.e. ambient temperature, stable 

FPGA voltage and clock signal etc) during the EIDR initialisation process.  

 monitors the RC system during the first start-up in order to prevent the malicious 

initialisation process which could result in biased (not random) security 

credentials generated by the SeReCon. 

 Certifies (signs) and publishes the SeReCon public-key to involved parties, e.g. 

IPVs, SI or User. 

SeReCon generates credentials (e.g. master symmetric-key, public-private key pair, 

etc) using a TRNG and stores the credentials in the IDR. SeReCon also reports the 

public-key to the TA. Credentials authenticity is confirmed by the TA through 

signing and registering of the RoT public-key. The TA certifies and publishes the 

SeReCon public-key to all involved parties (IPVs, Users etc). IPV and other parties 

use the certified credentials to authenticate the SeReCon during its life-time. The SI 

and IPV use AES encryption in order to communicate with SeReCon using, e.g. one-

time shared keys generated using Diffie-Hellman key agreement protocol [38]. 

The SeReCon-based RoT initialisation algorithm has three important properties: 

 Initial assumptions guarantee exclusive access to the sensitive part of the 

credentials (private crypto keys, etc) only for the legitimate system, e.g. 

SeReCon RoT.  

 The base configuration bitstream does not contain any credentials and closed-

source IP cores. Thus it can be publicly analysed prior to audit by the TA in 

order to avoid vulnerabilities that might be introduced by the SI or third-party 

IP cores. 
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 The private part of the RC system security credentials is revealed only to the 

authenticated base configuration (BaseSFC). Thus the SeReCon-based RoT is 

immune to credentials leakage as a result of a future successful attack on TA. 

 

  

Figure 4- Certification of the SeReCon Root-of-Trust (including SeReCon firmware binary).  

4.6. Chapter Summary 

This chapter considers the requirements of credentials storage in a secure RoT 

and the implementation of usage accounting for RC systems. The chapter proposes 

and describes EIDR, a novel extension to the FPGA fabric, which provides non-

volatile storage of RoT credentials and RC system usage data. Techniques for storage 

of the RoT security credentials and RC system usage accounting data in modern 

FPGAs are reviewed. The suitability of SRAM-based configuration memory is 

discussed. Other non-volatile memory schemes are also reported. The EIDR element 

prototype implementation in a Virtex-5 LXT device (ML505 Board) is reported. 

Appendix B provides the reference EIDR source code in VHDL. The register-based 

EIDR control/status interface (which is implemented in the FPGA user-logic) is 

highlighted. This chapter also describes EIDR API functions, which are provided by 

the SeReCon EIDR driver. 

The activities of SeReCon and various parties (e.g. SI, TA, IPV) during RoT 

initialisation are highlighted. The RoT credentials generation process supports public 

security audit of the RC device and guarantees exclusive and authenticated access to 

the sensitive part of the RC system security credentials for the legitimate system, e.g. 

SeReCon RoT. The SeReCon-based RoT is immune to credentials leakage as a result 

of a future successful attack on the TA. 
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 Chapter 5. FDAT Framework For Low-Level FPGA 

Design Analysis 

5.1. Introduction 

This chapter describes and demonstrates the FPGA Design Analysis Tool 

(FDAT), a host-based (off-line) bitstream analysis and low-level design verification 

tool which supports a Xilinx FPGA design assurance strategy and automated 

extraction and analysis of bitstream-level designs, within the PR design flow. Figure 

1- illustrates the FDAT context block diagram. FDAT provides a number of generic 

APIs which enable automated generic access to the standardised XDL (Xilinx Design 

Language) Xilinx FPGA platform description format (common to all Xilinx FPGA 

device families). The FDAT GUI provides visualisation of design analysis results. 

FDAT is an extendable, Python-based system which exploits the functionality of 

dynamic languages and uses modular libraries of custom-defined analysis scripts. 

The PR design flow offers opportunities for new applications [11], e.g. in the 

automotive industry [158], video processing [54], [159], etc. PR can expose FPGAs 

to security risks, e.g. malicious (Trojan/backdoor) designs [26], [65], [103], [57], 

design tools subversion [21], [160], etc. Reliability and security of reconfigurable 

systems must be ensured within a multi-party environment (Figure 1-), and in critical 

applications, e.g. aerospace and defence [160], telecoms [161], [162], surveillance 

[163]–[165].  

Unlike software where computing resources (hardware) are managed by an 

operating system and software has no control over the hardware, IP cores necessarily 

have very fine grain control over the underlying hardware. If considering a PR 

methodology, companies must be confident of the quality and security of third party 

IP cores and of secure access to the FPGA reconfiguration area. The problem of 

implicit communication channels between PR RC IP design sub-modules has been 

discussed in Section 3.2. Any design error or imperfection in the design of an IP core 

could result in reduced system performance, application failure, or even a 

compromised system [2]. 

The development of an FPGA design assurance strategy at the level of the FPGA 

configuration bitstream, and related EDA tool support, offers a solution to the 

problem of implicit communication channels. Low-level design tools are 

increasingly required for RC bitstream debugging [119] (e.g detection of implicit 

communication channels) and IP core design assurance [20], [26], particularly in 

multi-party PR designs. While tools for low-level analysis of design netlists do exist 

[166] (e.g. FPGA Editor in Xilinx ISE toolset [48]), extended tool support which 

provides unrestricted, script-driven, design analysis and verification at the bitstream-

level, supporting publicly available device data, is not available. Such a toolset 
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would find application in design assurance, e.g. design security and IP protection 

[150]. There is therefore an increasing demand for automated and customisable 

bitstream analysis tools [1] [5], [26]. 

The proposed FDAT framework enables analysis of interface compatibility 

between dynamic IP modules and an already configured FPGA design. FDAT also 

enables verification of user-defined design constraints, e.g. the required spatial 

isolation between IP cores. This chapter illustrates sample applications of the FDAT 

application, including bitstream-level design analysis of the Virtex-II Pro and Virtex-

5 inter-tile routing and the verification of design spatial isolation. Results illustrate 

the FDAT tool capability for automated detection of potential external routing points 

within a design configuration bitstream. Such analysis of IP core bitstreams can be 

used to ensure that the IP core interfaces (external routing points) which are defined 

in the IP core PR bitstream are not compromised when combining with other IP 

units.  

Analysis algorithms (Python recipes) developed for FDAT can be ported into 

embedded systems, such as SeReCon, to support secure IP core run-time manage-

ment in self-reconfigurable systems. The SeReCon IP core, which is embedded 

within the FPGA design, enforces an IP core spatial isolation policy imposed by the 

requirement to protect FPGA system integrity during PR. This protects a PR system 

from structural issues resulting from erroneously placed (or malicious) IP cores. This 

chapter presents the results of porting of the FDAT-verified spatial verification 

algorithm to SeReCon the implementation of the SeReCon Embedded Routing 

Database (ERDB) and ERDB-based IP core analysis. ERDB is implemented in the 

SeReCon firmware and describes routing resources which are available in the FPGA 

device. SeReCon uses ERDB in order to detect implicit communication channels in 

IP cores which are provided by third party IPVs. 

In the software domain, vendors publish and popularise their hardware 

architecture and instruction set. In the RC domain, FPGA vendors provide 

considerable but limited information on the internal device architecture and the 

format of the FPGA configuration bitstream (e.g. bit-wise description of the 

bitstream configuration frames). This limited publication limits the ability of the 

research community and third party EDA software vendors to perform low-level 

design verification, particularly within a PR design flow, to ensure both IP protection 

and IP security, and to support the increasing demand for secure IP development. 

Tools used in the FPGA design flow are typically vendor-specific, closed-source 

applications using proprietary file formats. This limits general user access to low 

level design information and requires development of in-house analysis tools, e.g. 

PyXDL [167] or ADB [168]. Arguably, the provision of open-source tools and 

detailed specification of proprietary file formats could benefit both system designers 

and design assurance researchers [21]. 

FDAT uses the Xilinx XDL file data, which provides a text-format (ASCII) data 

description of the design configuration for Xilinx FPGAs [17], [167], [169]–[173]. 

FDAT implementation is based on Xilinx published datasheets [9], [44] [46] and 

documentation [168], [174]–[176]. The quality of analysis provided by a bitstream 
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analysis tool such as FDAT is dependent upon the accuracy and completeness of 

information provided by the FPGA vendor. 

FPGA architectural information which may not be included in the XDL report 

file (generated by the Xilinx xdl tool) introduces some uncertainty as to the 

correctness of the FDAT analysis. Steiner [174] discusses inconsistencies between 

the FPGA fabric description, FPGA Editor, XDL file content and Xilinx bxtest 

(unreleased) tools. Provision of complete information on PR-accessible FPGA device 

resources and routing data would support the development of a viable PR design 

assurance strategy and toolset such as the proposed FDAT system. 

In applications requiring design assurance, e.g. security and design IP protection, 

design analysis is required at the lowest possible level, i.e. on the P&R netlist or the 

configuration bitstream [26]. Also, in applications exploiting a PR flow, a detailed 

knowledge of FPGA resources configured by dynamically loadable modules is 

important since the module source may be unknown (untrusted).  

The structure of this chapter is as follows. Section 5.2 reviews a number of 

existing tools which facilitate access to low-level design descriptions, and proposes 

the desired functionality of a low-level FPGA Design Analysis Tool (FDAT). 

Section 5.3 describes the FDAT architecture and the script-based functionality which 

exploits advantages of the Python dynamic language. Section 5.4 presents the 

detailed implementation and evaluation of FDAT, a selection of FDAT recipes, and 

the FDAT algorithm execution time for analysis of Xilinx Virtex-II Pro inter-tile 

routing. Section 5.5 proposes porting FDAT functionality to the embedded SeReCon 

for on-line Xilinx Virtex-5 bitstream analysis (which is demonstrated in  Chapter 7). 

Considerations in creating an embedded routing database and IP core routing 

analysis are highlighted in Section 5.5.3. Section 5.6 concludes the chapter. 

5.2. Review Of  Low Level Design Analysis Tools  

5.2.1. Introduction 

This section reviews existing tools which facilitate access to low-level design 

descriptions, e.g. placed and routed FPGA netlist or configuration bitstream, and 

highlights the need for low-level extended tool support. The desired functionality of 

a low-level FPGA design analysis toolset (such as FDAT) is proposed. 

5.2.2. Low-Level Design Analysis Tools  

Current FPGA analysis tools provide only a limited facility for FPGA 

visualisation (focused on user-logic or IO).  

The Xilinx FPGA Editor [48] is a proprietary graphical application for Xilinx 

FPGA design visualisation and configuration. FPGA Editor analyses the Xilinx 
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Native Circuit Description (NCD) netlist file. The NCD file contains the design logic 

information mapped to components, such as Configurable Logic Blocks (CLBs) and 

Input-Output Blocks (IOBs). FPGA Editor does not support bitstream analysis. 

FPGA Editor offers limited, script-based, design-oriented, task automation through 

scripts and provides a visual representation of design placement and routing. The tool 

does not support analysis of the design bitstream (BIT) file and presents an abstract 

view of the FPGA fabric though does not display all of the information required to 

perform design assurance, e.g. IP core isolation verification analysis [57].  

Xilinx JBits 3.0 SDK [166] contains class files for the creation of Run Time 

Reconfigurable applications and tools for use with the Xilinx Virtex-II architecture. 

JBits is an API to the Xilinx configuration bitstream, which allows Java applications 

to dynamically read, create and modify Xilinx Virtex-II bitstreams. JBits may be 

used as a stand-alone tool or as a foundation to produce other tools. The current JBits 

release supports Xilinx technology up to Virtex-II only. The proposed FDAT 

framework provides a subset of JBits functionality (design P&R is not supported in 

the current version), though with support for modern Xilinx FPGA devices.  

Debit
36

 [119] is an open-source toolset, aimed at netlist recovery from an FPGA 

proprietary bitstream format. Debit supports Virtex II/4/5 and Spartan3 FPGAs. 

Debit decomposes the bitstream and extracts information about site configuration 

and PIPs. Debit does not support partial bitstreams or parse the FPGA fabric netlist 

and thus does not support structural analysis of the FPGA fabric architecture. 

In order to address the needs of design assurance, Xilinx has developed the 

Isolation Verification Tool (IVT) [26]. IVT operates on placed and routed designs 

and performs design analysis, including verification of design spatial isolation, in 

order to track all hypothetical interconnects that can be created [30]. IVT targets 

design assurance, though is not publicly available (provided under the Xilinx Single 

Chip Crypto program [30]). 

In summary, currently available tools either do not support automated low-level 

analysis of FPGA fabric resources or are not publicly available. Extended tools are 

required for the PR design flow to ensure both IP protection and IP security, and to 

support increasing IP development. 

5.2.3. Proposed Functionality For Low-Level FPGA Design Analysis 

Toolset  

Design assurance requires low level analysis of design files produced during the 

FPGA design flow. These files describe placed and routed designs and the FPGA 

configuration bitstream. For effective design assurance, it is vital to have access to 

information about the internal architecture of the FPGA fabric. In a general case, it is 

not feasible to obtain the complete documentation on the FPGA fabric. The XDL file 
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containing the netlist of all user-configurable resources and routing can be produced 

using the Xilinx ‘xdl’ tool.  

In summary, a tool for low level FPGA analysis would: 

a) be aware of low-level architectural details (netlist) of the target FPGA device 

b) include an open and modular architecture in order to facilitate code 

inspection and customisation 

c) provide read and modify access to the implemented (placed and routed) de-

sign netlist and output (partial) bitstream 

d) support modern FPGA devices 

e) provide a uniform API across device families and design input files (design 

and FPGA fabric netlists, bitstreams etc) 

f) provide an interface for user-defined tool customisation and task automation 

(script-based functionality) 

g) provide graphical visualisation of the design and FPGA fabric resources 

5.3. Proposed FPGA Design Analysis Tool (FDAT) 

5.3.1. Introduction 

This section describes the detailed FDAT architecture and its script-based 

functionality which exploits advantages of Python, the Object-Oriented (OO) 

dynamic language. Figure 1- illustrates the FDAT block diagram and context. FDAT 

contains API modules FFAPI, DAPI and BAPI which provide access to information 

about the FPGA fabric, design, and bitstream, and access to a number of standalone 

Python scripts which define tool functionality. The functionality of FFAPI, DAPI 

and BAPI are described in turn. 

The FDAT system aims to address the design assurance requirements listed in 

section 3.2. The main goal of FDAT is the support of low level analysis of the FPGA 

fabric architecture and design IP cores. This goal is addressed by the use of a set of 

APIs which abstract the user design, the FPGA programming bitstream 

(configuration frames and control commands), and the FPGA fabric. 

The main advantages of using dynamic (scripting) languages in application 

development are: type-less programmability, rapid prototyping, code simplicity and 

ease of understanding. FDAT functionality is separated from the underlying 

implementation (API modules). High-level analysis algorithms define FDAT 

functionality which uses data sets and API methods exposed by framework 

components. The FDAT framework functionality is defined using a number of 

Python scripts, called “recipes”. Recipes implement high-level algorithms by gluing 

together the functionality provided by the FDAT modules. The use of a scripting 
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language and a loosely-coupled architecture increases the code portability and 

improves its application-oriented customisation capabilities. 

The following subsections describe the FPGA fabric API (FFAPI), the design 

API (DAPI) and the bitstream API (BAPI). 

5.3.2. FPGA Fabric API (FFAPI) Module 

The FDAT FPGA Fabric API (FFAPI class) module provides an interface class 

to access information about resources available within the Xilinx FPGA fabric. The 

available data structures and most significant FFAPI class methods are depicted in 

Figure 5-; the method parameters and less important methods are omitted to aid 

clarity.  

The relevant information is retrieved by parsing the EDIF-like FPGA fabric 

netlist file (methods grouped as XDLRC file parser), generated by the Xilinx xdl 

tool in the device resource report mode (xdl –report <device_name>). To 

the best of the authors’ knowledge, the generated XDL netlist is the only detailed 

description of the Xilinx FPGA fabric structure provided by Xilinx in a non-

proprietary ASCII format. Xilinx Design Language (XDL) is a fully featured 

physical design language which provides read and write access to NCD files [17], 

[167] [169]–[173]. XDL format is the default netlist format used by Xilinx tools. 

XDL enables users to create tools to address their individual FPGA design needs. 

The XDL file describes designs using human-readable ASCII syntax and provides 

detailed information about, e.g. physical layout of the placed and routed design, used 

instance names, primitive site configuration, routing details, hardware macro 

modules etc. The netlist file contains detailed information on available logic 

primitives, FPGA fabric routing, etc. While the netlist file is in human-readable text 

format, it requires automated processing and filtering to extract useful information.  

The FDAT FFAPI module acts as a filter, processing an arbitrary Xilinx FPGA 

fabric netlist file. The information obtained from the FPGA fabric netlist is a superset 

of the data available in the Xilinx FPGA Editor tool. FFAPI extracts relevant data 

structures along with their context, i.e. logical location within the device hierarchy 

and physical location of the tile within the netlist file, and generates a small index 

file (generateFpgaTOC()) for the particular FPGA fabric. Logical location of the 

FPGA elements, e.g. Basic Elements of Logic (BELs), PIPs or routing wires, in the 

device hierarchy provides information such as 

a) location within the FPGA row/column tile grid 

b) parent tile for primitive site/wire/PIP 

c) site type for pin/BEL  

Maintaining records (within the index file) of the FPGA element offset within 

the file aids detection of undocumented netlist syntax. This also speeds up random 

access to the netlist information when caching of the pre-processed netlist file is not 
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be possible, e.g. when a new FPGA device technology is added or in embedded 

applications such as SeReCon.  

 

Figure 5- The available data structures and most significant FFAPI methods (the method 

parameters and less important methods are omitted to aid clarity). 

The GUI module provides graphical visualisation of data representing FPGA 

internal resources. Resources are depicted in an array-like structure of tiles (Figure 

5-a). All tiles are tagged according to their type and position. User tags can also be 

assigned to individual tiles. This allows group selection, i.e. tiles containing user 

logic resources, BRAMs, clock tree etc. Moreover, when combined with the data 

available from the Design API class (DAPI), visualisation of a user design is possible 

(Figure 5-b). The FPGA fabric view is different from that presented in the FPGA 

Editor and Debit tools due to the tile-centric organisation of the FPGA fabric data. 

The recipe writer can directly use FFAPI class methods such as getTileTypes() 

and getSiteTypes() (Figure 5-) in order to extract information related to tile and 

primitive types respectively, available within a particular FPGA device. Methods 

getTileDetails() and getSiteDetails() provide detailed description of the internal 

structure of an arbitrary tile or site, using a mix of abstract data types such as 

dictionaries, lists, tuples etc. Methods getGroupedPips() and getExternalWires() are 

reference implementations used to categorise resource descriptions by property, e.g. 

the class property of the PIP connection or wire connectivity. 

Methods available in the FFAPI class are organised into three functional groups 

based on the type of information provided, as follows: 

FPGA geometry: Methods in this group provide information about the type of 

FPGA package, the number of rows and columns and primitive types. 

FPGA tile: Methods in this group return information about the internal structure of 

the tile, namely available primitive sites, routing resources and PIPs.  
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FPGA primitive: Methods in this group provide information on the particular type 

of the site primitive, names, number and direction of the site’s I/O pins, site internal 

routing and components, e.g. BELs. This information is compliant with the view 

available in the FPGA Editor and documented by the FPGA vendor (Xilinx) [44], 

[27], [46], [9]. 

FPGA element: Methods in this group return information about the internal structure 

of the primitive element (BEL), namely the set of valid BEL configurations, and the 

number and direction of the element’s I/O pins and connections.  
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Figure 5- FDAT screenshots. a. the Tile view of the Xilinx Virtex-5 device (colour highlights tiles 

of the same type). b. the user-design (blue – FPGA tiles used as logic, yellow – FPGA tiles used 

for routing) and unused resources (grey) within the Virtex-5 device. 

5.3.3. Design API (DAPI) Module 

The FDAT Design API module provides access to the user-design netlist. Just before 

the FPGA bitstream is generated by the Xilinx bitgen application (during the final 

stage of the FPGA design implementation flow), the netlist describes the design as a 

set of FPGA family-specific primitives and interconnections. All used primitives are 

annotated with information about their placement at the dedicated physical primitive 
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site within the FPGA fabric. Also, design nets (inter-site connections) are tied to 

physical routing resources, namely pin-wires, wires and PIPs. 

The DAPI class module has been proposed to facilitate unrestricted user access 

to already placed and routed designs. In order to gain access to the ASCII version of 

the design netlist file (.xdl) the Xilinx ISE xdl tool is used in the ncd-to-xdl 

conversion mode (xdl –ncd2xdl <design.ncd>).  

The DAPI class implements an XDL syntax parser along with a number of 

interfacing and conversion methods. Figure 5- illustrates the available data structures 

and most significant DAPI methods (the method parameters and less important 

methods are omitted to aid clarity). The XDL description of the design is parsed and 

the FPGA resource usage is reported. The parser recognises design structures such as 

named instances of FPGA primitives, routing resources establishing a connection 

network and design-module definitions used in non-standard design flows, e.g. 

modular design and partial reconfiguration. Design structures are in the form of 

mixed abstract data types, e.g. dictionaries, lists and tuples. Design structures 

retrieved by DAPI (depicted in Figure 5-) are available as DAPI methods which 

operate on the following design dictionary: 

Design dictionary: provides information about design name, target FPGA device 

and logic organisation of the design IO pins and buses. Information is available 

through the method getDesignInfo().  

Instance dictionary: contains all FPGA primitives (sites) used by the design 

(indexed by instance name). Data available through getDesignInstances() describes 

the location of design sites along with configuration. 

Nets dictionary: contains all design nets (indexed by net name). Data available 

through getDesignNets() describes the design signals along with sources (inpins), 

sinks (outpins), routing PIPs usage, and element configuration. 

Module dictionary: contains all design modules used within the modular design 

flow and partial reconfiguration (indexed by module name). Data available through 

getDesingModules() describes the design modules along with internals such as IO 

ports, resources used, and routing.  

Tile dictionary: provided by getDesignTiles(), getInstanceTiles() or getNetTiles() 

contains information (indexed by tile name) on all used FPGA tiles, design instances 

or nets, respectively. The returned dictionary is cross-referenced with Instances and 

Routing dictionaries. 

Site dictionary: provided by getDesignSites() contains all FPGA sites used by 

design (indexed by site name), cross-referenced with the Instances dictionary. 

The Tiles and Sites dictionaries contain redundant design information grouped 

by physical location. This grouping is introduced in order to speed up design 

analysis, targeting location constraints (rather than logical organisation). 

To ease the process of design analysis, the DAPI class module also provides 

methods for spatial grouping of occupied resources (getDesignTiles(), 

getDesignSites() methods). This provides a different view on design resources used 
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within a relevant FPGA location, e.g. tile or site. This approach supports tile-by-tile 

analysis of the design. 

 

Figure 5- The available data structures and most significant DAPI methods (the method 

parameters and less important methods are omitted to aid clarity). 

5.3.4. Bitstream API (BAPI) Module 

The Bitstream API (BAPI) module of FDAT parses the Xilinx bitstream in order 

to decode FPGA configuration commands (see the section 2.3.3) and extract content 

of FPGA configuration frames (Figure 2-). Xilinx FPGA devices are typically 

configured by loading FPGA configuration data into the device configuration 

memory at power-up. To program configuration memory, instructions for the 

configuration control logic and data are included as packets in the bitstream (Figure 

5-). Configuration packets extended with a bitstream header form the complete 

bitstream which is delivered to the FPGA device through one of its configuration 

interfaces [9], e.g. serial configuration interface, SelectMAP, SPI, JTAG etc. 

The structural description of the configuration bitstream for a particular device is 

usually provided by the FPGA vendor. Documentation for all but obsolete devices 

(i.e. first generation of Virtex/Virtex-E devices) does not describe the internal 

structure of the FPGA configuration frames [44]. Results reported in [119], [174], 
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(getConfigurationFrames()). The packet parser emulates behavioural functionality 

and part of the internal structure of the FPGA configuration control logic [44]. All 
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configuration commands (and their parameters are available through the method 

getRegisterTransactions(). Methods decodeFarAutoincSeq() and 

getFPGAGeometry() are used for debug purposes, e.g. to reconstruct the frame 

addressing sequence used by FPGA control logic (in FAR auto-increment mode) and 

the geometry of the FPGA device, respectively.  

The BAPI class also provides methods for decoding the bitstream header 

(headerParser()) and analysing the content of the frame by checking which bits are 

asserted and their location within the frame (reportSetBits()). This functionality is 

verified in the FDAT-based FPGA routing analysis test scenario which is described 

in section 5.4. 

 

Figure 5- The available data structures and most significant BAPI methods (the method 

parameters and less important methods are omitted to aid clarity). 
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distributions (e.g. Aptitude in Debian
37

). Execution of the initialisation recipe 

element is optional. Dependency checks performed prior to recipe execution verify 

that all conditions required for correct operation are satisfied, e.g. that the required 

versions of FDAT modules, external tools, and design netlist files (.NCD or .XDL) 

are available and that active sub-recipes are initialised etc. 

 

 

Figure 5- FDAT recipe structural organisation (left side) and interaction with FDAT modules, 

other recipes and user interface. 

The FDAT recipe structure is flexible in order to exploit advantages offered by 

the dynamic scripting language, and to aid the recipe writer. Depending of the 

application domain, recipes can be implemented as single functions or groups of 

functions. Functions can be further grouped into classes and modules, spanning one 
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or more script files. This flexibility of implementation allows the recipe writer to 

apply implementation standards (coding patterns) most suitable for the target 

application domain and programming proficiency level. Moreover, recipes can be 

developed in other languages (e.g. C/C++, Java etc) and executed within the FDAT 

Python environment by using wrapper code generated by the interface compiler 

[178]. Integration of recipes (native Python scripts) within different languages (e.g. 

C/C++) is also possible. 

FDAT also provides an interactive command interface to the Python interpreter. 

This allows rapid prototyping of the verification libraries by interactive combination 

and reuse of available recipes to capture the new algorithm function. This facility 

also enables fast, customised processing of design analysis results.  

Figure 5- illustrates the layered model of FDAT recipes. FDAT recipes can be 

categorised into four groups, depending of recipe main role (e.g. low-level design 

access, design modelling, model transformation etc): 

Module-specific (low-level) recipes: extend the functionality of the basic 

FDAT modules (FFAPI, DAPI, BAPI etc) by providing an additional set of low-level 

functions to support design analysis and data conversion. 

Transformation (mid-level) recipes: used to define new abstract models of the 

FDAT system, e.g. component model for platform-based design [179], 

dataflow/actor model for communication systems etc. Transformation recipes also 

provide bidirectional conversion functions between the new and the base model of 

the system. 

Model-specific (high-level) recipes: provide an API which is specific to the 

abstract model defined by the Transformation recipe, e.g. methods for manipulating 

reconfigurable modules (modification, relocation, error checking etc) within a PR 

design flow.  

Auxiliary recipes: provide support for other recipes, e.g. the “zipshelve” recipe 

provides archiving (snapshot) and reuse of partial results of the FDAT analysis for 

debugging purposes. This type of recipe extends the general functionality of the 

FDAT framework. The auxiliary recipes do not contribute directly to the design 

analysis. 

Since Python is an interpreted language, recipes can be dynamically generated 

and applied (executed) without the need for code recompilation. Also, lower-level 

recipes can be easily imported into advanced recipes (bottom-up algorithm 

composition) in order to build powerful analysis tools. This approach exploits the 

advantages of scripting languages and is naturally convergent with their 

programming paradigms. Recipes allow the FDAT user to focus on the behavioural 

part of the analysis algorithm rather than on its implementation details. Use of 

hierarchical recipe structures supports the definition of FDAT functionality at 

different abstraction-levels in order to maintain clarity of the analysis algorithms, e.g. 

for auditing or formal verification purposes. Recipes also allow the application of a 

straightforward trial-and-error methodology for obtaining new knowledge about the 

FPGA fabric, the design and its bitstream. 
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Figure 5- Layered model of FDAT recipes. 

5.4. FDAT Implementation And Analysis Of  Virtex-II Pro 

Routing 

5.4.1. Introduction 

This section reports FDAT implementation in Python. The FDAT GUI and 

visualisation front-end has been developed using the Python TkInter graphic 

framework. This section also provides results of FDAT application in the analysis of 

Virtex-II Pro configurable routing.  

The FDAT framework has been implemented using Python. The GUI and 

visualisation front-end has been developed using the TkInter
38

 graphic framework. 

Evaluation of FDAT FFAPI and DAPI recipes has been performed on a FPGA 

netlist. The design XDL description and FPGA configuration bitstreams have been 

generated using Xilinx ISE tools operating in the standard ISE flow and targeting 

Xilinx XC2VP30 and XC5VLX50T devices. FDAT components are implemented 

and evaluated according to publicly available information about the Xilinx FPGA 

structure [48], [44], XDL design description [17], [167], [169]–[173] and bitstream 

[44], [119], [175], [177] . 

All API modules are implemented as separate classes with data structures based 

on abstract data types, e.g. sets, lists, dictionaries and tuples. Each of the API classes 

(FFAPI, DAPI, BAPI) contains a dedicated one-pass, top-down parser used for 

contextual processing of the input data file (FPGA fabric netlist, design netlist and 

bitstream, respectively). The use of automatic parser generators would simplify the 

FDAT implementation. However, this approach would require a complete formal 

grammar of the input data to be available a priori, e.g. syntax described using 

                                                 
38

 Tkinter is Python's de-facto standard GUI package (http://wiki.python.org/moin/TkInter). 
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Regular Expressions
39

 (regex) or Backus–Naur Form
40

 (BNF). While the detailed 

syntax of the configuration bitstream, e.g. the internal structure of configuration 

frames, is not published and the XDL file format described in Xilinx ISE 6.1 

documentation is incomplete, all parsers have been implemented manually. Manual 

implementation provides full control over data processing and thus enables detection 

of undocumented data structures (e.g. “_DESIGN_PROP” and “_INST_PROP” 

XDL file properties) and commands (access to reserved registers and non-default 

reserved bits in the configuration bitstream. When the parser detects an unrecognised 

data structure, an exception is raised and the file position of the unrecognised 

statement is reported to the user, along with the processing context. Manual 

implementation also enables fine control over the parser memory footprint, which 

enables its use in embedded applications such as SeReCon. 

The FDAT framework uses a two-level caching mechanism for both permanent 

and temporary data storage in order to speed up the retrieval of information from the 

FPGA fabric netlist (the netlist size can be in the range of several gigabytes). During 

the initial execution of the FFAPI module the FFAPI parser optionally produces 

persistent cache files containing parsed and compressed information about every tile 

within the FPGA fabric, along with the location index of its definition within the 

original netlist file. During design analysis, the required FPGA fabric information is 

retrieved from the persistent cache file and stored in a limited-size local memory 

cache. The advantage of this two-level cache is that the typical memory footprint of 

20-60MB, regardless of the netlist size which can vary from a few megabytes to tens 

of gigabytes. Moreover, the relevant FPGA fabric information is available 

immediately since parsing is performed only once. 

5.4.2. Results Of FDAT Application In The Analysis Of Virtex-II Pro 

Routing  

This section reports the application of FDAT in the analysis of the Xilinx 

(Virtex-II Pro) FPGA routing configuration, e.g. identification of PIP configuration 

bits in the bitstream. A selection of FDAT recipes have been implemented in order to 

verify the correct implementation of the FDAT framework, e.g. the 

“Pip2BitMapping” reference recipe identifies PIP configuration bits, the 

“ShowDesign” recipe reports and visualises user design (logic and routing) within the 

FPGA fabric. The FDAT has been also tested using a set of XDL design files. To 

evaluate the correctness of the FFAPI and BAPI modules, a “Pip2BitMapping” 

reference recipe has been developed. The recipe flowchart (Figure 5-) algorithm 

determines the bit patterns within bitstream configuration frames (using the BAPI 

                                                 
39

 Regular Expressions (regex) provide a concise and flexible means for matching strings of text, such 

as particular characters, words, or patterns of characters (http://en.wikipedia.org/wiki/Regular 

_expression). 

40
 The Backus–Naur Form (BNF) ia grammar for expressing context-free grammars (http://en. 

wikipedia.org/wiki/Backus-Naur_Form). 

http://en.wikipedia.org/wiki/Regular%20_expression
http://en.wikipedia.org/wiki/Regular%20_expression
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module), corresponding to configuration of the FPGA element (e.g. PIP, BEL etc) 

provided as an input. In this section, inter-tile routing analysis is considered, e.g. 

configuration bit patterns of PIPs which connect routing resources in more than one 

tile, in order to detect possible implicit communication channels in IP core 

bitstreams. The algorithm generates a list of relevant bit locations (packet, frame and 

internal offset) for all tileName PIPs that can be used in inter-tile routing.  

The list of inter-tile PIP’s (getExternalTilePips()) (Figure 5-) is extracted from 

the detailed structure of the tile (tileName), retrieved using the FFAPI method 

(getTileDetails()). An exhaustive search approach is applied in an iterative loop. A 

single PIP is configured (included in the design) during each iteration of the 

algorithm. The xdlFile is generated (genXdlFile()) from the template and converted 

(convXDL2NCD()) to the Xilinx NCD using the xdl tool (xdl –xdl2ncd 

<pip_name.xdl>). In order to create a partial bitstream the Xilinx bitgen tool 

is executed (genPBitFile()) with the NCD netlist file (ncdFile) provided as a 

parameter. The cfgFrames data within the partial bitstream file (pBitFile) is analysed 

using the getCfgFrames() BAPI method in order to extract relevant configuration 

frame content and the positions of the bits corresponding to the configured PIP 

(getPipBits()). The recipe iterates over the list of PIPs used in the inter-tile routing. 

On completion of each iteration, the PIP entry (pip) in the externalPips list is 

annotated with the position of the active bits. Partial results from the single iteration 

are accumulated, providing a list of possible switchbox configurations which use 

inter-tile routing. When all PIPs in the list are processed, a final text report is 

produced (report) which contains PIPs mapping (indexed by PIP name). Figure 5- 

illustrates a HTML version of the bit mapping table which is produced in order to 

enable visualisation of addressing patterns. Accumulated results for Virtex-II Pro are 

consistent with data reported by Hubner et al. [177] which are obtained using the 

JBits tool. The “Pip2BitMapping” recipe has also been used to obtain configuration 

bit patterns for Virtex-5 external PIPs. The reference dataset of PIP configuration bits 

for the Virtex-5 family is not provided. The “Pip2BitMapping” recipe is generic for 

all Xilinx FPGA families and could be used with other Xilinx devices, e.g. Virtex-

4/6 and Spartan-3/6 due to the use of the technology independent fabric abstraction 

produced by the FFAPI module (derived from the data provided by the xdl tool).  

Data obtained from the “Pip2BitMapping” recipe is used to detect active inter-

tile routing. This type of analysis is important in design assurance and within the PR 

design flow. Active inter-tile routing can lead to the setup of covert communication 

channels, e.g. violation of spatial isolation between designs [26], [57]. This is 

detailed in Section 3.2).  

It is assumed, in a similar way to that proposed by [119], that the FPGA 

configuration defined by the design bitstream is a superposition of configurations of 

all FPGA resources and that all of these configurations are independent. Thus, 

identification of configured (asserted) bits for a single configuration of the particular 

resource (PIP, BEL etc) reveals the corresponding configuration mapping.  
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Figure 5- “Pip2BitMapping” recipe flowchart. The recipe is used in the FDAT framework 

verification test. 

Figure 5-a illustrates a bit mapping table which is used by FDAT to verify 

design spatial isolation. Figure 5-b illustrates bit patterns for various PIP classes. 

Frame content is analysed using the bit mapping table in order to obtain a list of 

configured PIPs. The list is then compared with the current system state in order to 

detect illegal routing, e.g. the configured connections which are not exported by the 

system as a communication interface. Upon successful analysis of the IP core, 

reconfiguration can occur. If an illegal connection is detected, then the 

reconfiguration process terminates. 

The FDAT “Pip2BitMapping” recipe execution time is in the order of 11 hours 

for all inter-tile PIPs within the Virtex-II Pro CLB tile (around 3200 algorithm 

iterations), measured on a mid-class PC (1GB RAM, Intel Pentium Dual-Core 

2.16GHz). Over 99% of this time is spent on conversion of XDL files to NCD 

format, and partial-bitstream generation (using Xilinx bitgen tool). The 
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“Pip2BitMapping” execution time depends only of the number of PIPs within the tile 

(here less than 3200). Thus the time will vary for different tile types. 

The time devoted to bitstream parsing and XDL template generation is between 

90-120 seconds. In order to speed-up the execution time, the recipe could be modi-

fied to accommodate multiple PIPs within a single bitstream, e.g. one PIP per CLB 

tile.  

 

  

Figure 5- a. the bit mapping table generated for CLB column PIPs within the Virtex-II Pro. 

b. bit patterns for various PIP classes (used by FDAT to analyse partial-bitstreams and verify 

design spatial isolation). 

The DAPI module has been tested using a set of XDL design files, with designs 

containing forced invalid XDL syntax. In all cases, the XDL parser correctly detects 

the introduced issue (XDL syntax error) either by returning details on the specific 

design structure or by raising an exception when the syntax error is detected.  

The “ShowDesign” recipe reports and visualises areas (user-logic and routing) 

occupied by the design within the FPGA fabric (Figure 5-b). This can be used to 

assess logic utilisation ratio within the IP core. 

The “ResourceSelect” recipe allows selection and grouping of FPGA resources 

based on arbitrary logic or regular expressions. Groups can be reported and high-

lighted within the FDAT GUI. Resources can be selected by their coordinates or 

properties. Also, user defined tags can be attached to groups. This recipe supports 

logical resource partitioning. The results of various recipe executions are 

demonstrated in Figure 3-, Figure 3-, Figure 3-, Figure 5-, Figure 5- and Figure 5-. 

For example, Figure 5-a illustrates the tile view of the Xilinx Virtex-5 device (colour 

highlights tiles of the same type). Figure 5-b illustrates the tile view of the User-
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design (blue indicates FPGA tiles used as logic, yellow indicates FPGA tiles used for 

routing) and unused resources (coloured grey) within the Virtex-5 device. 

The device-independent syntax of the FPGA fabric netlists and XDL files allows 

generic support for designs targeting other Xilinx FPGA architectures (e.g. Virtex-

4/5/6, Spartan-3/6). Although FDAT provides device-independent access to the 

configuration bitstream structures, every device family (e.g. Virtex-II Pro, Virtex-5) 

requires a customised implementation of the BAPI module due to the differences in 

configuration logic. 

5.5. Porting Of  FDAT Functionality To The Embedded 

SeReCon 

5.5.1. Introduction 

This section proposes the porting of FDAT functionality to the embedded 

SeReCon for on-line bitstream analysis. FDAT enables the generation of the 

Embedded Routing Database (ERDB) which includes description of the FPGA 

fabric. Considerations in creating the ERDB are highlighted. The ERDB is a compact 

and size-optimised description of the FPGA routing which contains the description of 

the inter-tile routing shapes available in various FPGA tiles and relative locations of 

PIP configuration bits in the bitstream. The feasibility and accuracy of the ERDB-

based IP core routing verification are demonstrated. Also FDAT recipes, describing 

the design verification algorithm using an abstract FPGA model, can be ported and 

reused within the SeReCon firmware. 

5.5.2. Requirements For ERDB Implementation 

Figure 1- illustrates a block diagram of an example PCIe-connected FPGA 

reconfigurable accelerator system which incorporates the SeReCon module along 

with a communication gateway and a number of IP cores. SeReCon controls all 

access to the PR region of the FPGA and loads requested IP cores from the local 

repository via the FPGA reconfiguration port (ICAP). System level drivers use PR to 

exchange IP cores during run-time, e.g. to modify system operation in response to 

application data traffic trends. The proposed FDAT tool can generate the FPGA 

routing database containing a minimal FPGA fabric description which is embedded 

in SeReCon firmware and used by SeReCon for on-line verification of IP core 

routing. The maximum generated database size is limited since available memory 

within the FPGA package boundary also includes the SeReCon root-of-trust 

firmware. Analysis of the Virtex-II Pro bit-mapping table, produced by the 

“Pip2BitMapping” recipe, reveals regular patterns in the location of PIP 

configuration bits within bitstream configuration frames (Figure 5-). These patterns 
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can be exploited for online calculation of PIP configuration bit positions within the 

bitstream configuration frames. Online calculation allows balancing of the database 

memory footprint, at the cost of SeReCon performance. In a similar way, the 

database implementation could exploit the regularity of the FPGA fabric (2D array of 

tiles) and configuration bitstream structure (frame addressing, block types etc). 

5.5.3. Embedded Routing DataBase (ERDB)  

The C ERDB is a set of C source and header file which can be included in 

embedded RC applications, e.g. in the SeReCon firmware. SeReCon uses the ERDB 

to detect implicit communication channels in the IP core design (Figure 3- and 

Figure 3-). The Python ERDB is the FDAT zipshelve archive which is used to 

validate SeReCon-based IP core analysis. Figure 5- illustrates the FDAT 

“ErdbCGenerator” recipe flowchart which generates the ERDB C source and header 

files. The recipe uses the FFAPI module, temporary wire shape database (WS_DB) 

and PIP database (PIP_DB) in order to generate the ERDB (in C and Python). This 

section describes the algorithm used in the FDAT “ErdbCGenerator” recipe. 

 

  

Figure 5- The FDAT “ErdbCGenerator” recipe flowchart.  
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5.5.3.1. GetRoutingShapes() 

The getRoutingShapes algorithm is illustrated in Figure 5-. The function 

processes all tiles described in the FPGA fabric description file (FpgaFabricFile), 

provided by the FDAT’s FAPI module. The algorithm produces wires shape database 

(WS_DB) and PIPs database (PIP_DB) which support ERDB generation. 

For every tile a list of external PIPs is extracted (getExternalPips) and added 

(addPip) to the PIPs database (PIP_DB). The external PIP is a PIP interconnecting at 

least one shared routing resource (e.g. the wire connected multiple FPGA tiles). The 

function also generates a list of shared wires (getPipWires) and their taps 

(getWireTaps). These are converted to wire shapes (normaliseWireShape) and are 

added (addWireShape) to the output wire shape database (WS_DB). Wire taps are 

Cartesian coordinates of FPGA tiles connected by the shared wire. A wire shape is a 

set of wire taps normalised using the Manhattan distance metrics
41

 with the current 

tile (an ‘anchor tap’) set in the origin.  

 

  

Figure 5- The FDAT GetRoutingShapes() function flowchart. 
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The FPGA routing, e.g. in Xilinx Virtex-5 devices, is non-homogeneous [41]. 

The wire shape (number and relative distribution of taps) depends of the wire group, 

e.g. ‘double-wires’, ‘pent-wires’
42

 etc. The wire shape within the wire group is also 

irregular [173], [174], and depends on the wire location within the FPGA fabric, e.g. 

some wires have additional taps. Shape irregularity can be observed using e.g. the 

Xilinx FPGA Editor. Public FPGA documentation provided by Xilinx does not 

describe routing irregularities or its correlation with the wire location in the FPGA 

fabric.  

5.5.3.2. CreateRoutingDB() 

The FDAT createRoutingDB algorithm flowchart is illustrated in Figure 5-. The 

algorithm generates the ERDB PIPs database (ERDB_PD), the ERDB Routing 

database (ERDB_RD) and the ERDB Tile Groups database (ERDB_TG). The 

getTileTypePips function reads PIPs data (e.g. FPGA tile type, associated wire names 

and interconnection type) from the PIP_DB. The list of PIP tiles is compressed 

(function groupPipTiles) into the group and saved (addGroup) into ERDB_TG. The 

PIP and the list of its group indices are saved in the ERDB_PD. The algorithm 

(getWireTileTypes) reads the WS_DB file and produces (getShape) a list of 

normalised wire shapes and shape-associated tiles. Tiles which are associated with 

the wire are grouped (groupShapeTiles) and are added (addGroup) to the ERDB_TG 

using the grID index which is returned by the addGroup function. The function 

transposeShape converts the wire shape tap coordinates (relative manhattan distances 

to the anchor tap) to non-negative values. This ‘moves’ the shape origin point (0, 0) 

from the anchor tap (shape tap in the current tile) to the bottom-left shape tap. This 

reduces the number of wire shape entries in the ERDB, e.g. all wire entries which 

have different sets of tap coordinates (relative to the parent tiles) share the same 

(single) shape description (set of transposed taps). The function addShape stores the 

shape in the ERDB Wire Shape database (ERDB_WS) using the shID index which is 

returned by the addShape function. The function addRoute stores the wire shape 

entry in the ERDB (ERDB_RD). The wire shape entry includes grID, shID and the 

wire shape anchor tap.  

5.5.3.3. GeneratePipBitData() 

The GeneratePipBitData algorithm flowchart is illustrated in Figure 5-. The 

function exploits the “Pip2BitMapping” recipe in order to generate the relative 

locations of PIP configuration bits in the bitstream. The “Pip2BitMapping” recipe is 

executed (pip2BitMapping) to generate partial bitstreams (partial.bit) for all PIP tile 

groups (getGroupPips) and FPGA tile types (getTileTypeGroups) which are included 

in the ERDB_PD. For every PIP the configuration word offsets are normalised 

(normalisePipCfgWords) prior to storing PIP configuration (cfg) data in the ERDB 

                                                 
42

 This type of wires is introduced in Xilinx Virtex-5 FPGAs and connects FPGA tiles which are 

located 5 tiles away. 
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Pip Bits database (ERDB_PB). Word offset normalisation is required to reflect the 

relative vertical position of the PIP tile within the bitstream configuration frames, 

e.g. some PIPS in the CLB column appear only in certain rows or span multiple 

rows. 

 

  

Figure 5- The CreateRoutingDB() function flowchart. The algorithm generates the ERDB PIPs 

database (ERDB_PD), the ERDB Routing database (ERDB_RD) and the ERDB Tilegroup 

database (ERDB_TG). 
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Figure 5- The GeneratePipBitData() function flowchart. This algorithm exploits the 

“Pip2BitMapping” recipe in order to generate ERDB PIPs Bit database (ERDB_PB) which 

describes relative locations of PIP configuration bits in the bitstream. 

5.5.3.4. GenerateErdbC() 

The GenerateErdbC algorithm flowchart is illustrated in Figure 5-. The function 

uses Python ERDB to generate the ERDB headers and C source files (ERDB_C) 

which are included in the SeReCon firmware (Figure 1-e). The genErdb_H function 

generates the C header (erdb.h) which includes the ERDB data structures
43

 used by 

SeReCon. Table 5- illustrates the ERDB C source and header files (produced by the 

“ErdbCGenerator” FDAT recipe) which are used by the SeReCon firmware.  
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data structures. 
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Figure 5- The GenerateErdbC() function flowchart.  

 

File name Content 

erdb.h ERDB header file which defines ERDB data structures (see Appendix C).  

erdb_tg.c Provides tile group database (ERDB_TG). 

erdb_ws.c Provides wire shape database (ERDB_WS). 

erdb_pd.c 
Provides PIP database (ERDB_PD) which includes PIP bits locations. The 

wire name database, and PIP mode database are also included. 

erdb_routing.c 
Provides FPGA routing database which includes shape database of FPGA 

shared wires. 

erdb_layout.c Provides Cartesian tile type layout of the FPGA fabric. 

Table 5- ERDB C source and header files produced by the “ErdbCGenerator” FDAT recipe 

which are used by the SeReCon firmware. 

5.5.4. ERDB-Based IP Core Routing Analysis 

The ERDB provides a compact description of the routing resources in the FPGA 

device. This facilitates IP core bitstream verification within the embedded RC 

system, e.g. SeReCon. The ERDB-based IP core analysis examines the IP core 

bitstream in order to detect active external routing, e.g. wires which cross the 

boundary of the FPGA region configured by the IP core. The active external routing 

is typically documented by the IPV and describes the legitimate IP core I/O interface. 
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Undocumented external routing which could result from inaccurate or malicious use 

of EDA software, creates implicit communication channels. Risk can result from the 

use of a multi-party PR design flow and IP core implementation secrecy. The FDAT 

"GetBitPips" and “getExtWires” recipes demonstrate ERDB-based IP core external 

routing detection.  

Figure 5- illustrates the "GetBitPips" recipe flowchart. This recipe reports all 

PIPs (including ‘fake’ always-on PIPs) in the IP core. The recipe uses ERDB and 

FPGA configuration frames (the cfgFrames parameter). The CfgFrames parameter is 

obtained from the IP core bitstream (bitFile) using the BAPI module 

(getCfgFrames). The tile configuration data is extracted (getTileCfg) for all tiles 

within the PR region configured by the bitstream. Non-PR bitstreams (i.e. bitstreams 

which do not participate in PR) are also supported. The getTileGroupPips uses the 

ERDB_PB in order to provide a list of external PIPs which is specific for a tile group, 

e.g. the number of external PIPs in a tile varies with tile type and also depends on 

physical location of the tile within the FPGA fabric. Tiles in the same tile group 

include the same set of PIPs. A tile can be a member of a number of tile groups. Thus 

the complete list of tile PIPs is a concatenation of PIP lists from all tile groups. For 

every PIP in the list of tile PIPs, the getPipCfg() function reads the PIP configuration 

bit templates from the ERDB_PB. The PIP Configuration Bit Template (CBT) 

includes the list of frame Minor Addresses (MNAs) [9], configuration word offsets 

(within the FPGA configuration frame) configuration word bit masks which must be 

set in order to ‘activate’ the PIP. For the ‘fake arc’ (always-on) PIPs the CBT is 

empty. If the PIP is a ‘fake arc’ (always-on PIP) or the bit pattern in the tile 

configuration frames (tileCfgFrames) match the CBT (checkPipBits), then the PIP is 

assumed active and is added (addBitPip) to the list (bitPips). The bitPips list is 

returned to the user (report).  

Figure 5- illustrates the “getExtWires” recipe flowchart. The recipe exploits the 

“GetBitPips” recipe and uses the ERDB to detect and report IP core (bitFile) external 

routing which could be used to setup implicit communication channels. The 

“GetBitPips” recipe provides a list of IP core PIPs (including ‘fake arcs’). The 

calcCfgRegion function uses IP core configuration frames (cfgFrames) to calculate 

the IP core perimeter (region) and its location within the FPGA device
44

. For every 

PIP tile, an envelope is calculated (calcShapeEnvelope). Figure 5- illustrates the 

relation between the IP core region, the tile envelope and wire shape taps. The 

envelope is the manhattan distance between the tile and region corners. Also, the 

wire shape, e.g. the number and distribution of taps, depends on the physical tile 

location within the FPGA fabric. Tiles which use the same wire shape form a tile 

group (similar to the PIPs tile group). The getTileShapeGroup function provides the 

wire shape index to the checkWireShape function in order to obtain wire shape taps 

from the ERDB_WS. The checkWireShape function uses the tile envelope in order to 

verify whether any of PIP wire shape extends outside the IP core region. If any of the 

wire shape taps (manhattan distances calculated from the current tile (anchor tap) 

exceeds the tile envelope the wire is added to the list of IP core external wires 

                                                 
44

 For clarity, this thesis assumes rectangular region shape. 
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(addExtWire). The process is repeated for all PIPs. The complete extWires list is 

returned to the user (report). The user compares the extWires list with IP core 

interfaces documented by the IPV. The existence of additional external wires which 

are not documented in the IP core interface specification provided by the IPV could 

suggest the presence of an implicit communication chanel and therefore a possible 

security threat. 

 

 

Figure 5- The FDAT "GetBitPips" recipe flowchart. This recipe reports all PIPs (incuding fake 

arcs) in the IP core. The recipe uses ERDB and FPGA configuration frames (obtained using the 

BAPI module). 
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Figure 5- The "GetExtWires" recipe flowchart. The recipe exploits the “GetBitPips” recipe and 

uses ERDB in order to detect and report IP core external routing which could be used to set 

implicit communication channels. 

 

 

Figure 5- Relation between the IP core region, the tile envelope and wire shape taps. 
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5.5.5. Verification Of The ERDB Correctness  

The correctness of the ERDB-based IP core analysis depends on the FPGA 

fabric model and the accuracy of the Configuration Bit Template (CBT)-to-PIP 

mapping. The FPGA fabric model is provided by the FDAT FFAPI module which 

uses the FPGA description generated by the Xilinx XDL tool. The CBT mapping is 

obtained using the FDAT Pip2BitMapping recipe. The recipe implementation 

assumes: 

 configuration superposition, e.g. the CBT of a single PIP does not depend on 

other PIPs 

 location invariant CBT; the PIP CBT is the same for corresponding PIPs in all 

tiles of the same type 

Figure 5- illustrates the "BitPipsVerificator" recipe flowchart which verifies the 

accuracy of the ERDB-based “GetBitPips” recipe. The list of bitstream PIPs 

(bitPips) is compared with the reference PIP list (xdlPips) which is obtained 

(getXdlPips) from the reference XDL file (xdlFile). Both lists are split 

(getXdlTilePips, getBitTilePips) into sub lists (xdlTPips vs. bitTPips) in order to 

support tile-based comparison. If xdlTPips and bitTPips are not equal, e.g. when 

some reference PIPs are not detected or the bitstream contains ‘extra’ PIPs which do 

not exist in the reference set, then lists of missing PIPs (missingTPips) and extra PIPs 

(extraTPips) are included (updateMissingPips, updateExtraPips) in the global lists 

(missingPips, extraPips) and are reported to the user (reportDiffs).  

Appendix D provides the detailed report of results obtained after 

"BitPipsVerificator" recipe execution
45

. Table 5- illustrates fragment of the 

"BitPipsVerificator" report which shows the difference between the list of XDL PIPs 

and a list of bitstream PIPs (for the ‘INT’ FPGA tile type). The report includes a list 

of XDL PIPs which are not found in the bitstream and a list of bitstream PIPs which 

do not appear in the reference design. The difference between the XDL reference PIP 

set and the bitstream PIP set is limited to certain routing resources only, e.g. carry-

chain routing (*_COUT* wires) in CLB tiles, clock-related routing (*CLK* wires) in 

various, mostly clock-related, tiles and global routing (LV* and LH* wires) in the 

routing (INT) tiles. Also, the visible correlation between the set of missing and extra 

PIPs in the bitstream, e.g. PIPs missing in some tiles appear as extra PIPs in other 

ones, suggests that the EDA tools have modified the design netlist prior to bitstream 

generation.  

Table 5- illustrates the correlation between the ERDB-based bitstream analysis 

and the reference XDL file, which is reported by the FDAT "BitPipsVerificator" 

recipe. Results highlight >99% accuracy of the ERDB-based IP core analysis and 

minor (<0.22%) difference in the number of detected PIPs. The bitstream file 

                                                 

45
 The report provides analysis results for the Virtex-5 LX50T FGA design (the 

prototype of a SeReCon-enabled RC system). 
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contains 2621 (0.65%) extra PIPs which do not appear in the reference XDL design. 

Also, 837 (0.21%) of XDL PIPs are missing in the bitstream file. Further analysis of 

this problem is required and suggested as a future work. 

 

 

Figure 5- The "BitPipsVerificator" recipe flowchart which verifies accuracy of the PIP list 

generated using the ERDB-based “GetBitPips” recipe.  
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XDL PIPs missing in the bitstream (BIT) file Extra bitstream PIPs not included in the XDL file 

... 

INT tile type (6 pips): 

LH0 =- LH18 (131 tiles): 

LV0 =- LH0 (23 tiles): 

LV0 =- LH18 (44 tiles): 

LV0 =- LV18 (242 tiles): 

LV18 =- LH0 (66 tiles): 

LV18 =- LH18 (38 tiles): 

... 

... 

INT tile type (6 pips): 

LH0 =- LV0 (57 tiles): 

LH0 =- LV18 (55 tiles): 

LH18 =- LH0 (151 tile): 

LH18 =- LV0 (117 tiles): 

LH18 =- LV18 (78 tiles): 

LV18 =- LV0 (240 tiles): 

... 

Table 5- Fragment of the "BitPipsVerificator" report which shows the difference between the list 

of XDL PIPs and a list of bitstream PIPs (for the ‘INT’ FPGA tile type). 

 

Source Total PIPs Extra PIPs 

.XDL 405869 837 

.BIT 404990 2621 

Table 5- Correlation between the ERDB-based bitstream analysis and the reference XDL file, 

which is reported by the FDAT "BitPipsVerificator"recipe.  

5.6. Chapter Summary 

This chapter discusses the risks in a multi-party PR design flow, and investigates 

the issue of implicit communication channels which could be created during PR 

using third party IP cores. The need for low (bitstream) level design analysis is 

highlighted and the FPGA Design Analysis Tool (FDAT) is proposed and applied as 

a solution. 

To the best knowledge of the authors, FDAT is the first available toolset to 

provide high-level and unrestricted access to the low-level description of the Xilinx 

FPGA fabric and the user design at the netlist- and bitstream-level. The GUI front-

end extends FDAT functionality by providing customised visualisations of the design 

and FPGA resources. Use of a Python programming language provides clean and 

self-documenting code (algorithm syntax), unrestricted tool customisation and 

defines higher-level abstractions for design analysis.  

FDAT enables the generation of the ERDB embedded database containing a 

minimal description of the FPGA fabric and bitstream for use by the SeReCon IP 

core to perform on-line verification of IP core routing. The FDAT framework offers 

a generic and unified support for analysis of designs targeting all Xilinx 

architectures. The FDAT framework has been tested using Virtex-II Pro and Virtex-5 

LXT designs and device descriptions.  
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FDAT has been developed around the concept of component and recipe 

separation. Components provide the necessary data and data (design/device/ 

bitstream) abstract models, while recipes describe policies (algorithms) defining data 

model usage. This separation enables the reuse of high-level (model-specific) recipes 

which can be ported to other systems, e.g. the SeReCon IP core. Also, the 

hierarchical recipe structure supports a range of high-level analysis flows and offers 

virtually unlimited functionality extensions, thus supporting domain-specific design 

analysis. 

The chapter proposes porting FDAT functionality to SeReCon for on-line 

bitstream analysis. Considerations in creating an ERDB (including FPGA fabric 

description) are highlighted. The feasibility and accuracy of the ERDB-based IP core 

routing verification is demonstrated. 

The proposed FDAT framework offers increased productivity in low-level 

design analysis by seamlessly extending the FPGA design flow. Similar tools could 

be developed for other FPGA fabrics, i.e. Altera, Actel etc.  



  

– 110 – 

 Chapter 6. SeReCon Initialisation And Operation For 

Secure FPGA Reconfiguration  

6.1. Introduction 

This thesis proposes the IP-aware SeReCon element which provides RC system 

integrity protection during PR. SeReCon is included in the RC system design and 

comprises both hardware element (IP core) and firmware. This chapter describes the 

internals (state diagram, the block diagram and firmware) of the SeReCon IP core. 

The SeReCon firmware stack is highlighted. This chapter also describes the 

operation of SeReCon RoT within the PR RC device during RoT initialisation, IP 

core installation, IP activation and IP deactivation. 

The SeReCon RoT initialisation process occurs at the trusted TA site and 

includes EIDR credentials initialisation, RC system security credentials generation 

and publication. SeReCon exploits the EIDR element to provide design IP protection 

and executes in-system design analysis of new IP cores to maintain the integrity of 

the RC system. 

SeReCon implements a two-phase RC system reconfiguration process which 

includes the IP core installation and IP core activation (RC system reconfiguration). 

IP core installation is performed online, once for every new IP core. A SafeLock 

scheme for IP core security credentials protection is highlighted. The process of 

establishing the shared encryption key between the IPV and SeReCon, using the 

Diffie-Hellman (DH) shared key agreement protocol is also described. During the IP 

core activation process, SeReCon performs verification of the IP core compliance 

with the current RC system state in order to protect the integrity of the BaseSFC and 

to countermeasure the risk of implicit communication channel setup. 

The IP core activation process is initiated by the RC system software. The main 

steps in the IP core activation process are illustrated. The verification of IP core 

compliance with the current RC system state is highlighted. The IP core license 

validation and RC system reconfiguration are also described. License validation prior 

to RC system PR enforces both transaction-based and metered-usage IP business 

models. The IP core deactivation process removes the remains of previously 

activated IP cores which could interact with the current system configuration, thus 

leading to RC system integrity issues. IP core deactivation ensures that the unused IP 

core configuration is removed from the FPGA configuration memory. 
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6.2. SeReCon Internal State Diagram 

Figure 1-c illustrates the block diagram of the SeReCon IP core. SeReCon is a 

CPU-based embedded system which is almost entirely (except for the EIDR element) 

implemented in FPGA user logic to reduce the cost of modification to the FPGA 

fabric which is required in order to support the proposed RoT. The SeReCon element 

has an open source architecture which supports public code auditing. SeReCon 

hardware (Figure 1-c) includes a MicroBlaze CPU
46

 with local memory containing 

SeReCon firmware, general purpose IO registers which are used for communication 

(CommIF), a non-volatile (LIPS) memory interface (MemoryCtrlIF), hardware RNG 

(TRNG), symmetric-key encryption module (AES) [36], internal configuration port 

(ConfigPort) and trusted security credentials register (EIDR).  

Figure 1-e illustrates the SeReCon firmware stack which is installed in the CPU 

local memory (Figure 1-c). The firmware stack provides low-level drivers for 

SeReCon hardware elements, e.g. Board Support Package, ICAP, TRNG, EIDR, 

AES/ECC, Communication and Memory IP cores (MFS, SysAce, FATFS). Low-level 

drivers are used by the ERDB-based routing analyser (ERDB Analyser) and the 

ERDB Verifier for IP core verification prior to RC system reconfiguration. The 

Configuration Manager provides an abstract SeReCon API to the SDR application.  

Figure 1- illustrates the SeReCon-based RoT and its usage scenario. The 

BaseSFC after power up contains only the SeReCon IP core, communication 

interface and LIPS interface. During RoT initialisation (Figure 1-b), the TA verifies 

the RoT implementation, certifies the device and the BaseSFC, and internally 

generates the RoT public-key. The SI uses the RoT and its public-key to install 

encrypted IP cores (Figure 1-c), obtained from the third-party IPV upon receipt of a 

request from the SI (Figure 1-a). The SDR User activates IP cores installed in the 

LIPS (Figure 1-d) by sending activation requests to the RoT (Figure 1-a) which 

validate the IP core resource requirements with the RC system current configuration. 

The integrity of the system is maintained by SeReCon through spatial isolation 

between components, constraining the IP core configuration data to predefined areas 

of the FPGA. IP core analysis is employed prior to reconfiguration in order to 

enforce this policy. 

A two-phase self-reconfiguration process is implemented in SeReCon in order to 

improve the performance of the IP core activation (Figure 1-). During phase 1 the IP 

core is installed in the system. SeReCon performs analysis of its structure and 

generates a resource report which becomes an integral part of the installed IP core. 

This approach speeds up the subsequent reconfiguration process. In phase 2, when IP 

core activation is requested, SeReCon performs a controlled reconfiguration 

                                                 
46

 Open source CPU is an ultimate goal. The prototype implemenetation of SeReCon uses Xilinx 

MicroBlaze CPU as it is well integrated with the Xilinx EDA software. Since June 2008 MicroBlaze 

source code is not available (http://www.xilinx.com/support/documentation/customer_notices/xcn 

08003.pdf). Number of open source CPU designs is available from OpenCores (http://opencores.org), 

e.g. OpenRisc (or1k, http://opencores.org/ project,or1k).  

http://www.xilinx.com/support/documentation/customer_notices/xcn%2008003.pdf
http://www.xilinx.com/support/documentation/customer_notices/xcn%2008003.pdf
http://opencores.org/
http://opencores.org/%20project,or1k
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following verification of the available resources and interfaces for the required IP 

core and the current system configuration. Only IP cores verified by SeReCon can be 

downloaded and configured in the RC system. The two-phase reconfiguration 

algorithm supports IP core spatial isolation [26] and allows dynamic instantiation of 

physical isolation primitives [57]. The interface between SeReCon, IP cores and the 

rest of the system must be well defined so that activation of an IP core which 

eavesdrops on current IP cores can be prevented. 

Figure 6- illustrates the SeReCon internal state diagram. After power up 

(POWER UP), SeReCon checks EIDR status (SERECON INITIALISATION); when 

EIDR is not activated (e.g. during the first power up), SeReCon waits for the TA 

initialisation command. If the EIDR is already activated, e.g. during a subsequent 

power up, SeReCon waits for commands from the SDR application (IDLE). Upon 

receipt of an IP core installation request, SeReCon installs the new IP core in the RC 

system (IP CORE INSTALLATION). The IP core activation request reconfigures the 

RC system using a previously installed IP core (IP CORE ACTIVATION), while a 

deactivation request removes the currently active IP core (IP CORE 

DEACTIVATION).  

 

 

Figure 6- The SeReCon internal state diagram. SeReCon RoT Initialisation 

6.3. SeReCon-based RoT Initialisation 

6.3.1. Introduction 

This section details the SeReCon RoT initialisation process which occurs at the 
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6.3.2. Initialisation Algorithm 

Figure 6- illustrates the SeReCon RoT initialisation flowchart. The initialisation 

process includes EIDR credentials initialisation, RC system security credentials 

generation and publication. The initialisation is successful if all steps complete 

without errors. 

EIDR credentials initialisation. During EIDR credentials initialisation, 

SeReCon clears (resetEIDR) the Credential and Key registers (Figure 4-), and resets 

the EIDR counters (AAC, LTC, FRC, MNC). The TRNG element (genTrngData) 

generates a configuration bitstream containing random data which is used as the new 

EIDR credentials (rndCredentials) and is stored in the EIDR the Credentials Register 

(writeEidr). The BaseSFC signature (MAC) is also stored in the EIDR Key Register 

(Figure 4-). This provides access to the EIDR content (credentials and counters) only 

to authenticated design, e.g. BaseSFC which includes the SeReCon RoT.  

EIDR credentials protect the unique RC system security credentials which are 

generated within the SeReCon RoT and are stored in the unprotected LIPS
47

. RC 

system security credentials include the private key and public key pair which is used 

in the SeReCon messages signing (using public-key cryptography) in order to 

facilitate RC system authentication to the IPV and to secure IP core transfer over the 

untrusted network (Figure 1-). SeReCon supports Elliptic Curve Cryptography
48

 

(ECC) which uses the algebraic structure of elliptic curves over finite fields. Blake et 

al. [180] provide a thorough review of ECC mathematical foundations.  

RC system security credentials generation. SeReCon uses the random TRNG 

bitstream (rndKey) in order to initialise (initPrivKey) the secret ECC private key 

(PrivKey) prior to its encryption (encPrivKey). SeReCon uses the secret privKey and 

standard (NIST-recommended), ECC parameters [181] in order to calculate 

(calcPubKey) the ECC public key (PubKey).  

RC system security credentials publication. During credentials publication, 

pubKey and privKey are stored in the LIPS (storeLipsFile). The content of the 

privKey file is encrypted using a symmetric-key cipher, (e.g. AES in CBC mode
49

), 

with EIDR credentials serving as the symmetric-key and the initialisation vector 

(IV). Thus, RC system credentials are available only to the SeReCon RoT. The 

authenticity of an unencrypted pubKey file is certified by the TA (Figure 1-b) which 

makes it available to parties involved in RC system development (Figure 1-), e.g. SI, 

IPV’s, user etc.  

 

                                                 
47

 This approach reduces the size of the EIDR Credentials Register. 

48
 The U.S. National Security Agency has endorsed ECC technology by including it in its Suite B set 

of recommended algorithms, and allows their use for protection of information classified up to top 

secret. (http://www.nsa.gov/ia/programs/suiteb_cryptography/index.shtml) 

49
 Cipher-Block-Chaining mode (http://en.wikipedia.org/wiki/CBC_mode_of_operation) 

http://www.nsa.gov/ia/programs/suiteb_cryptography/index.shtml
http://en.wikipedia.org/wiki/CBC_mode_of_operation
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Figure 6- The SeReCon RoT initialisation flowchart. 

6.3.3. SafeLock - EIDR Support For IP Core Privacy & Integrity 

Protection 

IP cores installed in the RC system are encrypted. SeReCon uses random, core-

unique security credentials (encryption key and IV) for every installed IP core. IP 

core security credentials are organised in a dynamic list structure which is referred to 

as the SafeLock. The SafeLock data is kept in the SeReCon local memory (Figure 

1-a), entirely inside the RoT. The backup copy of the SafeLock data is encrypted 

using EIDR credentials and stored in the LIPS. During RC system power up, the 

SafeLock data is restored from the backup copy located in LIPS. SeReCon rewrites 

the SafeLock backup copy during SafeLock update, e.g. when a new IP core is 

installed and its credentials are added to SafeLock.  

Table 6- illustrates the SafeLock API which is provided by the SeReCon EIDR 

driver. The SeReCon firmware uses SafeLock in order to access IP cores installed in 
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The safelock_atomic_backup() call creates an encrypted backup copy of SafeLock 

data using EIDR credentials. The backup copy is stored in LIPS. This call uses EIDR 

MNC and random data from TRNG in order to prevent file tampering. SeReCon 

includes the updated (idr_update_msg_no) EIDR MNC value (msgNo) and random 

TRNG data (nonce) in the SafeLock file prior to file encryption and storing in the 

LIPS. During SafeLock data recovery the msgNo and nonce from the backup file are 

compared with the original values. Any mismatch indicates tampering. 

The safelock_get_new_credentials() call generates new SafeLock credentials for the 

IP core file and the license file, e.g. during IP core installation. This call updates the 

credentials_ptr contents using the SafeLock entry specified by the msg_no value. 

This is an atomic operation. 

The safelock_get_credentials() call updates the credentials_ptr contents using the 

SafeLock entry for msg_no value. 

The safelock_update_license_credentials() call generates new license credentials for 

the SafeLock entry specified by the msg_no value. This call uses the 

safelock_atomic_backup() call. 

 

API call Parameters Description 

safelock_reset() None Resets SafeLock data. This also rewrites the 

SafeLock backup file. 

safelock_get_new_

credentials() 

credentials_ptr Generates new SafeLock credentials for the IP 

core file and license file. Updates the 

credentials_ptr content using the SafeLock 

entry specified by the msg_no value. This is 

an atomic operation (increases EIDR MNC). 

safelock_get_ 

credentials() 

msg_no 

credentials_ptr 

Updates the credentials_ptr contents using the 

SafeLock entry for msg_no value. 

safelock_update_ 

license_ 

credentials() 

msgNo Generates new license credentials for the 

SafeLock entry specified by the msg_no 

value. 

safelock_atomic_ 

backup() 

atomic_ptr Creates encrypted backup copy of SafeLock 

data. This is an atomic operation (increases 

EIDR MNC). 

Table 6- The SafeLock API which is provided by the SeReCon EIDR driver.  

 

Figure 6- illustrates the structure of the SafeLock backup file. The file includes 

the list of security credentials (encryption key and IV) which are used to access 

installed IP cores. The ipCredentialsCnt field provides the size of the list. Other 

fields (Magicfield, msgNo and nonce) are used in order to detect file tampering.  
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Figure 6- The structure of the SafeLock backup file. 

6.4. IP Core Installation 

6.4.1. Introduction 

This section describes the process of IP core installation within the SeReCon-

enabled RC system. IP core installation is performed online, once for every new IP 

core. 

Figure 1-a and c illustrate the SeReCon-based RoT activity during the IP core 

installation. The SI uses SeReCon RoT and RC system security credentials in order 

to install IP cores which are obtained from the third-party IPV upon receipt of a 

request from SI. SeReCon facilitates an ECC-based Diffie-Hellman (DH) key 

exchange protocol [157] and Elliptic Curve Digital Signature Algorithm (ECDSA) 

[182] in order to establish the authenticated secret Shared Key (SK). SeReCon 

encrypts subsequent communication with IPV, e.g. IP core transfer which is 

encrypted using the AES symmetric-key cipher [38]. 

Figure 6- illustrates The IP core installation flowchart and players. This includes 

the DH Shared Key (SK) agreement between the IPV and SeReCon, the IP core 

preparation, and the transfer and installation of the IP into the RC system. The DH 

SK agreement [157] requires a single message exchange between the IPV and 

SeReCon. This exchange results in a secret SK which is used to encrypt the IP core 

and its license. The IPV message and SeReCon reply do not require encryption. 

Thus, communication can occur over an unprotected network, e.g. Internet. 

6.4.2. Shared Key Agreement Between IPV And SeReCon 

This section describes the process of establishing the shared encryption key 

between the IPV and SeReCon, using the DH shared key agreement protocol (Figure 

6-a). The SK is used in order to protect the IP core PR bitstream and the IP core 

license during transfer of IP over the unsecured network and non-trusted parties 

(Figure 1-). The SI initiates the SK agreement by sending the specification of the 
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requested IP core to the IPV. The specification describes the requested core 

functionality, target region for IP placement within the FPGA fabric and the location 

of required interfaces, e.g. BM location within the IP core region.  

 

 

Figure 6- The IP core installation flowchart and players. a. Shared Key (SK) negotiation 

between the IPV and SeReCon RoT. b. IP core preparation and transfer. c. IP core installation 

in the RC system. 
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provides the RC system security credentials (SeReCon pubKey) and msgNo which is 

the current value of the EIDR MNC. The IPV uses the TA certificate in order to 

validate the pubKey authenticity. This can also be performed on-line (see Figure 6-). 

If the SeReCon pubKey is genuine, then the IPV generates a random bitstream 

(getRndData) which is required in order to generate (sign) the IPV message (the 

ECDSA signature of the msgNo
50

). The use of the rndData ensures the IPV message 

uniqueness. The IPV message is bounded-to-msgNo and verifiable using the IPV 

credentials (public key). The IPV uses the SI in order to deliver the message to 

SeReCon (sendMsg) and waits for a reply from SeReCon (receiveSeReConReply). 

The SI also delivers the IPV credentials (public key). 

The SeReCon reply is the ECDSA signature of the current EIDR state (msgNo2) 

signed using the RC system credentials (SeReCon privKey). The IPV uses the 

SeReCon pubKey in order to verify the signature authenticity. If the signature is 

valid and the msgNo2 is equal to msgNo + 1, then the DH SK is calculated 

(calcSharedkey) using the signature and rndData. The msgNo2 authentication 

ensures the reply message has been generated by the genuine RC system since only 

the SeReCon firmware has access to the privKey which is required during the sign 

operation. 

 

 

Figure 6- The IPV algorithm flowchart for Diffie-Hellman (DH) Shared Key (SK) agreement.  

                                                 
50

 Details of the ECDSA and DH key agreement are omitted for clarity. Wikipedia provides good 

examples of the ECDSA (http://en.wikipedia.org/wiki/ECDSA) and DH key agreement (http://en. 

wikipedia.org/wiki/Diffie–Hellman_key_exchange). 
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Message authentication protects the communication between the IPV and 

SeReCon against (communication) message tampering. Unique message marking 

(using msgNo) is a countermeasure to replay attacks, e.g. this makes the IP core 

readable only for an RC system with valid security credentials and matching EIDR 

state (‘synchronised’ MNC value). If the SI would reuse an old SeReCon reply with 

the previous msgNo2, the IPV SK would differ from the one calculated by SeReCon 

(due to the use of different rndData). 

6.4.2.2. SeReCon-side DH Shared Key Generation 

Figure 6- illustrates the SeReCon algorithm flowchart for DH SK agreement. 

SeReCon reads and verifies the IPV message prior to calculating the SK. The SK is 

encrypted using the EIDR credentials and stored in the LIPS. SeReCon generates and 

signs the reply message prior to saving it in the LIPS. The SI returns the reply 

message to the IPV. 

SeReCon calculates the SK on receipt of a request from the SI 

(receiveSkRequest). SeReCon reads the IPV message file (readIpvMsgFile), verifies 

the IPV signature and compares the current value of the EIDR MNC (msgNo) with 

the value included in the message (IpvMsgNo). Signature verification is not required 

but could be used to enforce the RC system to accept IP cores only from a closed 

IPV list. This could facilitate vendor-locking in commercial applications.  

If msgNo and IpvMsgNo match, then SeReCon calculates the SK 

(calcSharedKey) using the IPV signature and a random data bitstream (rndData) 

which is generated by the TRNG (getRndData). The calculated SK is encrypted 

using the EIDR credentials (encSK) and stored in the LIPS (saveSkFile). SeReCon 

updates the EIDR MNC (updateMsgNo) and generates a reply message which is the 

ECDSA signature of the msgNo, signed (sign) using rndData and the RC system 

security credentials (privKey) prior to storage in the LIPS (saveReply). 

The message unique marking (using msgNo) protects against a replay attack, e.g. 

if the SI would reuse an old IPV message then the msgNo will not match the current 

SeReCon state (EIDR MNC value) and a reply message is not generated. 

6.4.3. IP Core Production And Transfer To The RC System 

Figure 6-a illustrates the IP core preparation flowchart. The IPV implements the 

IP core (implementIpcore) according to the SI specification (spec) and generates the 

PR bitstream with IP core placement constrained to the SI-defined FPGA region. IP 

core interfaces (IO), e.g. Bus Macros, are also defined in spec. The IP core license 

(genLicense) is merged (merge) with the IP core PR bitstream into IP package (IP 

core license + PR bitstream), and is encrypted (encIpPackage) using the calculated 

SK, prior to sending the IP to the SI (sendIpPackage). The SI receives the IP 

package, e.g. over the Internet, and forwards it the RC system, using an RC system 

communication interface (Figure 1-a), or stores the IP package directly in the LIPS 

(Figure 6-, Figure 1-a). 
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Figure 6- The SeReCon algorithm flowchart for DH SK agreement.  

Table 6- illustrates the IP core license modes and license restrictions which are 

supported by SeReCon. The IPV limits IP core usage, e.g. the number of activations 

and/or total lifetime depending on the agreement with the SI, as follows: 

Unlimited IP usage license: unconstrained IP core usage. The IP core can be 

activated an unlimited number of times and will operate for an unlimited amount of 

time.  

Limited life-time license: allows a predefined number of IP core activations. IP 

remaining lifetime decreases with time when the IP core is active in the RC system. 

The number of IP core activations is not limited. This supports a metered IP usage 

business model. 

Activation-limited license: allows only a predefined number of IP core activations 

to be performed. The remaining number of activations allowed decreases each time a 

PR using the IP core takes place. The IP core becomes inoperable when the 

remaining number of activations (activation counter) reaches zero. This supports a 

transaction-based IP usage business model. 
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Combined license: enforces both a time-limited and an activation counted licensing 

schemes. The IP core is disabled when the remaining lifetime is zero or when the 

remaining number of activations reach zero.  

Expired license: indicates an already disabled IP core. The IP core can be installed 

in the RC system but cannot be activated. This ‘dummy’ IP core installation can be 

used during RC system integration in order to verify RC system implementation and 

ensure correct communication with SeReCon. 

 

 

Figure 6- a. IP core preparation flowchart.  b. the IP package.  
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Table 6- IP core license modes and license restrictions which are supported by SeReCon.  
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Figure 6- illustrates the IP core installation flowchart in the RC system. 
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decode the IP package), and to extract the IP core license and the PR bitstream 

(decIpPackage). The PR bitstream is analysed using the ERDB Analyser 

(callErdbAnalyser) which returns the IP core configuration region and a list of IP 

core external PIPs (extPips). SeReCon uses region and extPips in order to generate 

the IP core analysis report (genCoreReport). Also, new SafeLock credentials 

(safeLockGetNewCredentials) are generated in order to encrypt the IP core analysis 

report, license and PR bitstream prior to saving in the LIPS (saveReport, saveLicense 

and saveIpCore). 

 

Figure 6- The flowchart of the IP core installation in the RC system. 

The main goal of ERDB-based IP core analysis is to check if the external routing 

(external PIPs) match the system interface and the current system state. The ERDB 

Analyser also calculates the IP core isolation region which is an expanded 

configuration region that covers the external wires used by ‘fake’ PIPs. 

Figure 6- illustrates the IP core isolation region and its relation with the IP core 

configuration region. The isolation region contains additional unused tiles in order to 

include all external always-on PIPs (‘fake arcs’). Use of the isolation region instead 

of the configuration region simplifies IP core analysis, e.g. the ERDB Analyser is 

not required to determine which always-on PIPS are used by the IP core.  

Figure 6- illustrates the structure of the IP core analysis report. The report 

defines the IP core configuration and isolation regions and provides lists of external 

PIPs in both regions. The PIP entry includes PIP tile location (x, y) and indexes in 

the ERDB. 
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Figure 6- The IP core isolation region and its relation with the IP core region.  

 

 

  

Figure 6- a. Structure of the IP core analysis report. The report defines IP core configuration 

and isolation regions. b. List of external PIPs in both regions. 
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6.5.  IP Core Activation And Deactivation 

6.5.1. Introduction 

The IP core activation process is initiated by the RC system software, e.g. an 

SDR application which requests new functionality to be loaded in the RC system. 

Figure 6- illustrates the main steps in the IP core activation process. During the IP 

core activation, SeReCon checks the IP core license, the IP core usage restrictions 

(e.g. limited lifetime or limited activations) and verifies the IP core compatibility 

with the current state of the RC system (e.g. loaded modules) prior to 

reconfiguration. If any of these checks fail, then SeReCon aborts the activation 

process. 

This section describes the IP core activation and deactivation in the RC system. 

The verification of IP core compliance with the current RC system state is 

highlighted. The IP core license validation and RC system reconfiguration are also 

described. 

 

 

Figure 6- Main steps in the IP core activation process.  
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Figure 6- illustrates the data structure which describes the current state of the RC 

system PR region. The data structure includes the details of the PR configuration and 
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detect external PIPs in the empty PR region within the BaseSFC (Figure 1-a). The 

perimeter of the PR region is predefined by the SI during system design and is 

hardcoded into the SeReCon data structure which describes the RC system state. IP 

core usage statistics (e.g. activation time and deactivation time) of the currently 

active IP cores are also included in order to enforce IP core deactivation when the 

remaining lifetime is zero. 

During IP core activation, SeReCon updates the data structure with active IP 

core details
51

, e.g IP core name, msgNo and IP core activation/deactivation time 

(LTC start, LTC max). SeReCon uses the data structure which describes active IP 

core details in order to supports IP core license restrictions enforcement, e.g. IP core 

deactivation when all of its lifetime ‘credit’ is consumed. 

 

 

Figure 6- The data structure which describes the current state of the RC system PR region.  

Figure 6- illustrates the IP core compatibility verification flowchart. SeReCon 

compares the current PR region state (see Figure 6-) with the IP core resource 

requirements which are obtained from the IP core analysis report (see Figure 6-). The 

comparison includes verification of the IP core configuration and isolation region 

perimeters (cmpCfgRegion, cmpIsolationRegion). This enables detection of BaseSFC 

configuration overwrites. Also, lists of IP core external PIPs (in both configuration 

and isolation regions) are compared with a list of allowed (interface) PIPs. This 

enables detection of possible implicit communication channels between the activated 

IP core and the current RC system configuration, e.g. BaseSFC and active cores. If 

any of IP core regions extends outside the PR region perimeter or additional external 

PIPs are detected, then the verification process fails and SeReCon interrupts the IP 

core activation.  

                                                 
51

 This thesis assumes only one IP core within the RC system PR region. Research on dynamic 

isolation of multiple IP cores is encouraged and recomended as a future work. 
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Figure 6- The IP core compatibility verification flowchart.  

6.5.3. IP Core License Validation 

Figure 6- illustrates the IP core license checking flowchart. SeReCon verifies the 

number of remaining IP core activations (checkActivationsLimit) and the remaining 

lifetime (checkLifetime) prior to IP core activation (Figure 6-a). If the IP core license 
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Table 6-) then SeReCon decreases the number of the remaining activations 

(updRemainingActivations) and calculates the IP core deactivation time 

(calcDeactivationTime). The IP core name, the activation and deactivation times are 

written to the RC system state (updateSysState, see Figure 6-). 

SeReCon also updates the IP core license if the IP core activation has been 

unsuccessful (updRemainigActivations), e.g. the number of activations is restored 

when the IP core footprint is not compatible with the current RC system state (Figure 

6-b). 
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lifetime. Thus, SeReCon updates the IP core licenseKey (safelockUpdCreds) and re-

encrypts the license file (saveLicenseFile) with a new licenseKey. 

 

 

Figure 6- The IP core license checking flowchart. a. SeReCon verifies the number of remaining 

IP core activations and usage lifetime prior to IP core activation. b. SeReCon updates IP license 

during unsuccessful IP core activation. c. SeReCon updates IP license during IP core 

deactivation. 
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6.5.4. RC System Reconfiguration 

Figure 6- illustrates the IP core activation flowchart. IP core activation requires 

msgNo which has been used during the IP core installation. SeReCon uses msgNo 

SafeLock credentials (getSafeLockCreds) and licenseKey (see Figure 6-) in order to 

decrypt the IP core license file (decIpLicense) prior to license verification 

(verifyLicense(ACTIVATE)). The IP core analysis report is also decoded 

(decIpReport) and validated with the current RC system state 

(verifyCoreCompatibility). IP core compatibility verification ensures that the 

requested PR does not overwrite the BaseSFC or active IP cores. SeReCon also 

checks if the IP core communication interface matches the RC system interface (IO) 

in order to eliminate the risk of implicit communication channels. The IP core 

activation process is interrupted and the IP core license update is ‘rolled-back’ 

(Figure 6-b) when the IP core contains additional external PIPs which are not listed 

in the RC system resources (see Figure 6-). 

If the IP core does not contain additional external PIPs SeReCon decodes the IP 

core bitstream (decIpCore) and disables the IP core interface (disableBM) prior to 

reconfiguring the RC system (loadIcap) using the FPGA reconfiguration port and the 

IP core PR bitstream. SeReCon enables the IP core interface (enableBM) after 

successful reconfiguration. 

 

 

Figure 6- The IP core activation flowchart.  
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6.5.5. IP Core Deactivation 

In the RC system, different IP cores can occupy the same PR region over the 

lifetime of a system. Multiple IP cores can also share a single PR region
52

. Thus, the 

IP core PR bitstream typically configures only a fraction of the PR region. The 

remains of previously activated IP cores, which are scattered around the PR region, 

could interact with the current system configuration, leading to RC system integrity 

issues. SeReCon avoids this by using IP core deactivation which ensures that the IP 

core configuration is removed, when unused, from the FPGA configuration memory. 

This also supports metered IP core usage, e.g. during the IP core deactivation 

SeReCon updates the remaining IP core lifetime. 

Figure 6- illustrates the SeReCon-based IP core deactivation process. The RC 

application, e.g. SDR system, sends an IP core deactivation request to SeReCon. 

SeReCon uses the IP core SafeLock credentials in order to access the IP core license 

file prior to updating the remaining IP core lifetime (Figure 6-c). SeReCon also uses 

the PR region description (Figure 6-) in order to obtain the location of the 

deactivated IP core (configuration region) which is then reconfigured using default 

(empty) FPGA configuration frames. 

 

   

Figure 6- The SeReCon-based IP core deactivation process. 
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 SeReCon prototype supports only single IP core in the PR region. Extending SeReCon upport for 
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6.6. Chapter Summary 

This chapter describes the operation of SeReCon RoT within the PR RC device 

during initialisation, IP core installation, IP activation and IP deactivation. SeReCon 

is included in the RC system design and comprises both hardware element (IP core) 

and firmware. The internal state diagram and the block diagram of the SeReCon IP 

core are also described and the SeReCon firmware stack is highlighted. 

This chapter describes the SeReCon RoT operations during the RoT 

initialisation process which occurs at the trusted TA site in order to minimise the risk 

of malicious device tampering and support independent scrutiny, e.g. through public 

audit. The SeReCon initialisation process includes EIDR credentials initialisation, 

RC system security credentials generation and publication. SeReCon exploits the 

EIDR element to provide design IP protection and executes in-system design analysis 

of new IP cores to maintain the integrity of the RC system. 

The processes of IP core installation is performed online, once for every new IP 

core. A SafeLock scheme for IP core security credentials protection is highlighted. 

The process of establishing the shared encryption key between the IPV and 

SeReCon, using the Diffie-Hellman (DH) shared key agreement protocol is also 

described. 

The IP core activation process is initiated by the RC system software. The main 

steps in the IP core activation process are illustrated. During the IP core activation 

process, SeReCon performs verification of the IP core compliance with the current 

RC system state in order to protect the integrity of the BaseSFC and to 

countermeasure the risk of implicit communication channel setup. IP core license 

validation and RC system reconfiguration are also described. License validation prior 

to RC system PR enforces both transaction based and metered usage IP business 

models. The IP core deactivation process removes the remains of previously 

activated IP cores which could interact with the current system configuration, thus 

leading to RC system integrity issues. IP core deactivation ensures that the unused IP 

core configuration is removed from the FPGA configuration memory.  
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 Chapter 7. Case Study: SeReCon Architecture 

Implementation And Application in SDR 

device 

7.1. Introduction 

This chapter reports on the implementation and application of the prototype 

SeReCon-enabled RC system using Xilinx Virtex-5 FPGA technology. The 

implementation of SeReCon internal elements, the main RC system elements and 

example PR IP cores is described. Analysis of the SeReCon FPGA resource usage 

and RC system prototype implementation issues is included. The SeReCon IP core is 

a CPU-based system which is implemented using the Xilinx EDK software. 

SeReCon uses an embedded 32-bit MicroBlaze processor which is operating at 125 

MHz. 

Figure 7-a illustrates the block diagram of the SeReCon demonstrator. The 

demonstrator application is implemented in Python and executed within the Python 

interpreter which is a standard part of Ubuntu Linux distribution, installed on the 

Intel host server. The demonstrator application uses the RC system communication 

library and SeReCon API. The Intel server includes a Xilinx ML505 FPGA 

evaluation board which contains the prototype of SeReCon-enabled RC system 

(Figure 7-b). The RC system is connected to the host using the PCIe interface and 

standard Linux PCIe Device Driver. This chapter reports and describes the SeReCon-

enabled RC system prototype, including implementation results, and SeReCon 

demonstrator application (Figure 7-). The communication library of the RC system 

demonstrator and host-side SeReCon API are highlighted. Demonstrator application 

results are also reported. 

The chapter provides detailed insight into the operation of the prototype RC 

system during the SeReCon (and EIDR) initialisation, IP core installation and 

activation (see  Chapter 6). The implemented RC system uses four IP cores in order 

to demonstrate the SeReCon-based PR, e.g. 32-bit Adder, 32-bit Multiplier, 128-AES 

Cipher and 128-bit AES Decipher. The VHDL model for each of these IP cores is 

included in the thesis DVD. 

This chapter describes the SDR device prototype and illustrates how the 

SeReCon element can be included within the SDR RC system. Modifications to the 

SeReCon implementation, required to integrate SeReCon within the prototype SDR 

device, are also highlighted. 
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Figure 7- a. the block diagram of the SeReCon demonstrator. b. SeReCon-enabled RC system.  

7.2. RC System Implementation 

7.2.1. Introduction 

The prototype of the SeReCon-enabled RC system has been implemented in the 

Xilinx Virtex-5 LXT FPGA
53

 using the Xilinx EAPR design flow [10] and Xilinx 

EDA software
54

, e.g ISE, EDK and PlanAhead tools.  

This section illustrates the block diagram of the implemented SeReCon-enabled 

RC system. The functionality of the RC system elements, e.g. PCIe interface, PCIe 

BAR Splitter and Configuration Controller are highlighted. SeReCon internals and 

example PR region IP cores are also described. 

7.2.2. SeReCon-Enabled RC System Block Diagram 

Figure 7- illustrates the block diagram of the SeReCon-enabled RC system 

(Figure 1-) which is implemented in the Xilinx Virtex-5 FPGA. For clarity, the block 

diagram includes only simplified IP core interfaces. The RC system includes 

SeReCon, PCIe interface and a number of interfacing modules, e.g. PCIe BAR 

Splitter, Config Controller and Bus Macros. The RC system also includes the PR 

region which is reconfigured with a number of IP cores
55

 (e.g. AES cipher/decipher 

                                                 
53

 Xilinx ML505 board includes Virtex XC5VLX50TFFG1136 FPGA device. 

54
 Xilinx ISE v9.2.04i_PR11, Xilinx EDK v9.2.02i and Xilinx PlanAhead v10.1.8.  

55
 The RC system prototype is implemented using the Xilinx EAPR design flow and tools. EAPR 

tools require that all PR IP cores must be included during the RC system development.  
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and simple math adder/multiplier IP cores which are described in Section 7.2.6) in 

order to demonstrate SeReCon functionality.  

External devices, e.g. LEDs, the PCIe edge-connector, the DDR2 SDRAM 

memory, the SysAce chip and the RS232 voltage converter, are included on the 

ML505 board. Xilinx IP cores are available from the Xilinx EDA software
56

, e.g. 

Xilinx ISE (PCIe reference design), Xilinx EDK (SeReCon elements) or the Xilinx 

EAPR lounge website (PR Bus Macros).  

 

  

Figure 7- Block diagram of the SeReCon-enabled RC system which is implemented in the Xilinx 

Virtex-5 FPGA (Xilinx Virtex-5 LXT FPGA ML505 Evaluation Platform).  

                                                 
56

 Xilinx IP core design files, e.g. HDL sources and netlists, are proprietary and are not included in 

this thesis. Also, valid license or access to the EAPR Lounge is typically required. 
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Figure 7- illustrates the Xilinx PlanAhead view of the SeReCon-enabled RC 

system top-level netlists. 

Figure 7- illustrates the Xilinx ISE Schematic top-level view for the SeReCon-

enable the RC system which includes all interfaces between the RC system elements.  

 

 

Figure 7- The Xilinx PlanAhead view of the SeReCon-enabled RC system top-level netlists. 
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Figure 7- Xilinx ISE Schematic view of the SeReCon-enabled RC system. 

7.2.3. PCIe Interface IP Core 

The demonstrator application (Figure 7-) communicates with the PR region and 

the SeReCon system using the PCIe endpoint (Figure 7-). The PCIe interface is 

implemented using the modified PCIe reference design which is generated using the 

Xilinx CORE Generator
57

. 

The PCIe reference design used in the implementation example includes a small 

block of (BRAM) memory. This BRAM element is substituted with the IP core 

external interface which is connected to the RC system (PCIe BAR Splitter). This 

enables support for (and demonstration of) data transfer (reading and writing) over 

the PCIe link. Communication to/from the SeReCon-enabled RC system is 

performed through writing/reading registers which are mapped into the PCIe Block 

Address Ranges (BARs
58

). Figure 7- illustrates the VHDL description of the 

                                                 
57

 The CORE Generator tool is part of the Xilinx ISE software. 

58
 PCIe BARs are host memory regions reserved for a PCIe device (here RC systems). 
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modified PCIe reference design which includes the additional memory interface 

which is used for communication with the RC system. The PCIe endpoint-related 

signals are removed for clarity. The PCIe reference design signal data dictionary is 

extended with following signals: 

 mem_rd_data[31:0]: 32-bit PCIe input port which is read from memory upon 

receipt of a read data request from the PCIe root complex (PCIe master 

device). 

 mem_rd_addr[10:0]: bits [10:9] select the active BAR while bits [8:0] 

provide the 9-bit address of the memory location which is to be read.  

 mem_rd_be[3:0]: byte enable flag. Asserted bits indicate the valid bytes in 

the mem_rd_data word. 

 mem_wr_data[31:0]: 32-bit PCIe output port which is written to memory 

upon receipt of the write data request from the PCIe root complex (PCIe 

master device). 

 mem_wr_addr[10:0]: bits [10:9] select the active BAR while bits [8:0] 

provide the 9-bit address of the memory location which is to be written.  

 mem_wr_be[3:0]: byte enable flag. Asserted bits indicate the valid bytes in 

the mem_wr_data word. 

 mem_wr_en: enables write to the memory cell (when asserted). 

 mem_wr_busy: assertion indicates that the target memory is busy. The PCIe 

root complex waits until the signal is deasserted by the memory
59

. 

Table 7- describes the PCIe interface BARs which are used by the SeReCon-

enabled RC system. The PCIe reference design supports four BARs, but only two are 

used. Requests addressing BAR1 reach the RC system Configuration Controller IP 

core (Config Ctrl) which connects SeReCon with the RC system, while BAR2 

supports communication with the PR region. 

 

  

Figure 7- The VHDL description of the modified PCIe reference design which includes the 

additional memory interface which is used for communication with the RC system. PCIe 

Endpoint-related signals are removed for clarity. 

                                                 
59

 Experiments with the PCIe reference design shown (reboot-requiring) stalls of the server when the 

mem_wr_busy is left asserted. 

COMPONENT pci_exp_64b_app

PORT  (

--PCIe endpoint signals removed for clarity

mem_rd_data : in std_logic_vector(31 downto 0);

mem_rd_addr : out std_logic_vector(10 downto 0);

mem_rd_be : out std_logic_vector(3 downto 0);

mem_wr_data : out std_logic_vector(31 downto 0);

mem_wr_addr : out std_logic_vector(10 downto 0);

mem_wr_be : out std_logic_vector(7 downto 0);

mem_wr_en : out std_logic;          

mem_wr_busy : in std_logic

);

END COMPONENT;
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Block Address Range (BAR) Used addresses Description 

BAR0 N/A Used internally by PCIe reference design. 

BAR1 TBD 
Provides R/W access to the SeReCon 

configuration controller. 

BAR2 TBD 
Provides R/W access to the PR region in the 

RC sytem. 

BAR3 - Not used. 

Table 7- Description of the PCIe interface BARs. 

7.2.4. PCIe BAR Splitter IP Core 

The PCIe BAR Splitter IP core separates PCIe requests depending on the 

destination BAR (2 MSBs in the mem_rd_addr or mem_wr_addr). Figure 7- 

illustrates the VHDL description of the PCIe BAR Splitter IP core interface
60

. The 

PCIe BAR Splitter connects the PCIe interface with the Config Ctrl IP core and PR 

region (Figure 7- and Figure 7-). The description of Config Ctrl interface signals 

(bar_1_*) and PR region interface signals (bar_2_*) is the same as in the PCIe 

reference design.  

 

  

Figure 7- The VHDL description of the PCIe BAR Splitter IP core interface. 

                                                 
60

 The VHDL source code of the PCIe BAR Splitter IP core (bar_splitter.vhd) is included in the 

attached DVD. 

COMPONENT bar_splitter

PORT(

--  PCIe interface

rd_addr_i : IN std_logic_vector(10 downto 0);

rd_be_i : IN std_logic_vector(3 downto 0);

wr_addr_i : IN std_logic_vector(10 downto 0);

wr_be_i : IN std_logic_vector(7 downto 0);

wr_data_i : IN std_logic_vector(31 downto 0);

wr_en_i : IN std_logic;

rd_data_o : OUT std_logic_vector(31 downto 0);

wr_busy_o : OUT std_logic;

--  Cntrl interface

bar_1_rd_data_i : IN std_logic_vector(31 downto 0);

bar_1_wr_busy_i : IN std_logic;

bar_1_rd_addr_o : OUT std_logic_vector(8 downto 0);

bar_1_rd_be_o : OUT std_logic_vector(3 downto 0);

bar_1_wr_addr_o : OUT std_logic_vector(8 downto 0);

bar_1_wr_be_o : OUT std_logic_vector(7 downto 0);

bar_1_wr_data_o : OUT std_logic_vector(31 downto 0);

bar_1_wr_en_o : OUT std_logic;

--  PR region interface

bar_2_rd_data_i : IN std_logic_vector(31 downto 0);

bar_2_wr_busy_i : IN std_logic;          

bar_2_rd_addr_o : OUT std_logic_vector(8 downto 0);

bar_2_rd_be_o : OUT std_logic_vector(3 downto 0);

bar_2_wr_addr_o : OUT std_logic_vector(8 downto 0);

bar_2_wr_be_o : OUT std_logic_vector(7 downto 0);

bar_2_wr_data_o : OUT std_logic_vector(31 downto 0);

bar_2_wr_en_o : OUT std_logic

);

END COMPONENT;
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7.2.5. Configuration Controller IP core 

The Configuration Controller (Config Ctrl) IP core provides the SeReCon 

wrapper interface which is compatible with the PCIe interface. This IP core controls 

SeReCon, the FPGA PR region and the FPGA development system LEDs which are 

located on the ML505 board. The IP core contains two asynchronous FIFO buffers
61

 

(DIN, DOUT) which are used for data transfers between SeReCon and the 

demonstrator application. 

Figure 7- illustrates the VHDL description of the SeReCon-enabled RC system 

Config Ctrl IP core interface. 

The SeReCon interface provides a communication link between the Config Ctrl IP 

core and SeReCon IP core (system_i.xmp). Communication with SeReCon occurs 

through a number of Config Ctrl IP core registers which are mapped into the PCIe 

BAR memory space (all signals are active high unless stated otherwise), as follows: 

 mb_bm_en: SeReCon asserts this signal in order to enable the bus macros 

between the PR region and the PCIe interface (Figure 7-, Figure 7-) 

 mb_dcm_locked: assertion indicates that the FPGA Digital Clock Managers 

(DCMs) used by SeReCon have been successfully initialised (locked). This 

signal is used during FPGA power up 

 mb_rst_n: active low SeReCon reset signal which supports SeReCon reset 

using PCIe 

 mb_clk: 125MHz clock signal generated by SeReCon. This signal is required 

by the DDR2 IP core 

 mb_dout_pin[31:0]: FIFO-buffered SeReCon data register (DOUT) output 

port 

 mb_dout_wr_pin: asserted by SeReCon to write data from the SeReCon data 

output register into the Configuration Controller FIFO 

 mb_din_pin[31:0]: FIFO-buffered SeReCon data register input port 

 mb_din_rd_pin: asserted by SeReCon to read data from the Configuration 

Controller FIFO into the SeReCon data input register 

 mb_stat[31:0]: unbuffered SeReCon status register 

 mb_ctrl[31:0]: unbuffered SeReCon control register 

The Cntrl interface provides a communication link between the Config Ctrl IP core 

and the PCIe interface. The Cntrl interface signals are connected to the PCIe BAR 

Splitter IP core (Figure 7-). 

LED interface signals are connected to 8 LEDs mounted on the ML505 board. 

LEDs are controlled through the register which is mapped into the PCIe BAR 

memory space. 

                                                 
61

 The VHDL source code of the Configuration Controller IP core (config_manager.vhd) is included 

in the attached DVD. The code does not include DIN and DOUT FIFO netlists which are generated 

using the Xilinx ISE CORE generator. 
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PR region interface signals control the FPGA PR region, as follows: 

 prm_bm_en: enables and disables PR region Bus Macros  

 prm_id: 4-bit ID of the IP core loaded into the PR region 

The rst_btn signal is connected to the push button on the ML505 board. This 

facilitates manual SeReCon reset. 

Table 7- describes the contents of the Config Ctrl IP core registers which are 

mapped into the PCIe (BAR1) address space. 

 

 

Figure 7- The VHDL description of the SeReCon-enabled RC system Configuration Controller 

IP core interface. 

  

COMPONENT config_manager

PORT(

--  Cntrl interface

pcie_clk          : in std_logic;

pcie_rst_n        : in std_logic;

pcie_rd_addr    : in std_logic_vector(8 downto 0);

pcie_rd_be      : in std_logic_vector(3 downto 0);

pcie_rd_data    : out std_logic_vector(31 downto 0);

pcie_wr_addr    : in std_logic_vector(8 downto 0);

pcie_wr_be      : in std_logic_vector(7 downto 0);    

pcie_wr_data    : in std_logic_vector(31 downto 0);

pcie_wr_en      : in std_logic;

pcie_wr_busy    : out std_logic;

-- SeReCon interface

mb_bm_en : in std_logic;

mb_dcm_locked : in std_logic;

mb_rst_n : out std_logic;

mb_clk : in std_logic;

mb_dout_wr_pin : in std_logic;

mb_dout_pin : in std_logic_vector(31 downto 0);

mb_din_pin : out std_logic_vector(31 downto 0);

mb_din_rd_pin : in std_logic;

mb_ctrl : out std_logic_vector(31 downto 0);

mb_stat : in std_logic_vector(31 downto 0);

--  LED interface

user_led   : out std_logic_vector(7 downto 0);

-- PR region interface

prm_bm_en : OUT std_logic;

prm_id   : in std_logic_vector(3 downto 0);

-- Other interfaces

rst_btn : in std_logic

);

END COMPONENT;
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Register 

number 
NAME 

Access 

mode 
Description 

0 LED R/W Bits [8:0] control LEDs on the ML505 board. 

1 STATUS R Bits [31:0] indicate current SeReCon status. 

2 CONTROL R/W 

This register controls SeReCon, internal FIFOs and PR 

region BMs.  

Bits description: 

0 – resets SeReCon IP core, 

1 – resets internal DIN FIFO and write counter, 

2 – resets internal DOUT FIFO and read counter, 

3 – indicates DIN FIFO is full, 

4 – indicates DIN FIFO is empty, 

5 – indicates DOUT FIFO is full, 

6 – indicates DOUT FIFO is empty, 

7 – indicates SeReCon BM enable status, 

11:8 – Provide the 4-bit ID of the IP core in the PR region, 

12 – enables RC system BM’s. 

3 DIN R 
Contains 32-bit word which is send to SeReCon (written to 

DIN FIFO). 

4 DOUT R 
Contains 32-bit word which is received from SeReCon (read 

from DOUT FIFO). 

5 RD_CNT R/W 

Dummy write to this register reads SeReCon data word 

(from DOUT FIFO) to DOUT register. Register read returns 

number of 32-bit words read from DOUT FIFO. 

6 WR_CNT R/W 

Dummy write to this register sends DIN register content to 

SeReCon (writes data word to DIN FIFO). Register read 

returns number of 32-bit words written to DIN FIFO. 

Table 7- Description of Configuration Controller registers which are mapped into the PCIe 

BAR1. 
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7.2.6. PR Region IP Cores 

7.2.6.1. Introduction 

The PR region is the part of the RC system which is reconfigured in run time 

using the IP cores (Figure 1-, Figure 1-, Figure 1-). The implemented RC system uses 

four IP cores in order to demonstrate the SeReCon-based PR, e.g. 32-bit Adder, 32-

bit Multiplier, 128-AES Cipher and 128-bit AES Decipher. The VHDL model for 

each of these IP cores is included in the thesis DVD. Each core is described briefly in 

this section. 

Figure 7- illustrates the VHDL description of the PR region interface which is 

available through the PCIe interface (BAR2). Most signals are already described in 

the PCIe interface section. Additional signals are: 

 Clk:the input clock signal (100MHz) provided by the PCIe interface 

 rst_n: active low reset signal provided by the PCIe interface 

 id[3:0]: 4-bit IP core ID. The IP core ID is used by the demonstrator in order 

to identify the activated IP core 

 

  

Figure 7- The VHDL description of the PR region interface. 

Figure 7- illustrates the FPGA fabric with a size-constrained PR region and 

location-constrained BMs (a view from the Xilinx PlanAhead tool). The 

implemented RC system includes cryptographic and math IP cores, e.g. AES 

cipher/decipher, simple adder and multiplier. 

The Xilinx EAPR design flow does not support multiple IP cores within a single 

PR region
62

. EAPR also requires BMs between the PR IP cores and the static part of 

the RC system, e.g. BaseSFC. Thus, all IP cores must be implemented using the 

                                                 
62

 Thus, this thesis does not addres the issue of implicit communication channels between multiple IP 

cores in the PR region. 

COMPONENT prm_wrapper

PORT(

clk : IN std_logic;

rst_n : IN std_logic;

rd_addr_i : IN std_logic_vector(8 downto 0);

rd_be_i : IN std_logic_vector(3 downto 0);

rd_data_o : OUT std_logic_vector(31 downto 0);

wr_addr_i : IN std_logic_vector(8 downto 0);

wr_be_i : IN std_logic_vector(7 downto 0);

wr_data_i : IN std_logic_vector(31 downto 0);

wr_en_i : IN std_logic;          

wr_busy_o : OUT std_logic;

id : OUT std_logic_vector(3 downto 0)

);

END COMPONENT;
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default ‘wrapper’ IP core which provides the interface compatible with the SeReCon-

enabled RC system.  

 

 

Figure 7- The FPGA fabric with a size-constrained PR region and location-constrained Bus 

Macros (a view from the Xilinx PlanAhead tool). 

PR region

Bus Macros
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7.2.6.2. Adder PR IP Core (adder.vhd) 

This IP core adds content of two 32-bit registers (A and B) and stores the result 

in the third register (C). Table 7- describes IP core registers which are available 

through the PR region memory-mapped interface. The Adder IP core uses four 

memory-mapped registers in the PCIe BAR2. 

 

Register 

number 
NAME 

Access 

mode 
Description 

0 REG_A R/W Contains 32-bit argument A. 

1 REG_B R/W Contains 32-bit argument B. 

2 REG_C R Contains 32-bit sum of A and B. 

3 REG_CTRL R Bits [3:0] contain IP core ID = “0001”. 

Table 7- Description of the Adder interface registers.  

 

7.2.6.3. Multiplier PR IP Core (multiplier.vhd) 

The multiplier IP core multiplies the contents of two 32-bit registers (A and B) 

and stores the lower-half of the 64-bit result in register (C). Table 7- describes the IP 

core registers which are available through the PR region memory-mapped interface. 

The Multiplier IP core uses four memory-mapped registers in the PCIe BAR2. 

 

Register 

number 
NAME 

Access 

mode 
Description 

0 REG_A R/W Contains 32-bit multiplier A. 

1 REG_B R/W Contains 32-bit multiplicand B. 

2 REG_C R Contains lower 32-bits of product of A and B. 

3 REG_CTRL R Bits [3:0] contain IP core ID = “1101”. 

Table 7- Description of the Multiplier register interface.  
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7.2.6.4. AES Cipher PR IP Core (aes_enc_wrapper.vhd) 

The AES Cipher IP core uses the open-source design of the 128-bit AES block 

cipher [36] which is available through OpenCores
63

.The IP core encrypts the 

contents of a 128-bit TEXT_IN register using the key which is stored in the 128-bit 

KEY register. The ciphertext is stored in the 128-bit TEXT_OUT register.  

Table 7- describes IP core registers which are available through the PR region 

memory-mapped interface. The AES Cipher IP core uses 13 memory-mapped 

registers in the PCIe BAR2. 

 

Register 

number 
NAME 

Access 

mode 
Description 

0 KEY_3 R/W Contains [127:96] bits of the AES KEY register. 

1 KEY_2 R/W Contains [95:64] bits of the AES KEY register. 

2 KEY_1 R/W Contains [63:32] bits of the AES KEY register. 

3 KEY_0 R/W Contains [31:0] bits of the AES KEY register. 

4 TXT_IN_3 R/W Contains [127:96] bits of the AES TEXT_IN register. 

5 TXT_IN_2 R/W Contains [95:64] bits of the AES TEXT_IN register. 

6 TXT_IN_1 R/W Contains [63:32] bits of the AES TEXT_IN register. 

7 TXT_IN_0 R/W Contains [31:0] bits of the AES TEXT_IN register. 

8 TXT_OUT_3 R Contains [127:96] bits of the AES TEXT_OUT register. 

9 TXT_OUT_2 R Contains [95:64] bits of the AES TEXT_OUT register. 

10 TXT_OUT_1 R Contains [63:32] bits of the AES TEXT_OUT register. 

11 TXT_OUT_0 R Contains [31:0] bits of the AES TEXT_OUT register. 

12-15 - - Unused. 

16 
STAT/CTL R/W Bit 0 provides the IP core status (when asserted the IP core is 

busy). Write to this register initiates encryption process (. 

Table 7- Description of the AES Cipher register interface.  

 

 

 

                                                 
63

 OpenCores (http://www.opencores.org) 

http://www.opencores.org/
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7.2.6.5. AES Decipher PR IP Core (aes_dec_wrapper.vhd) 

The AES decipher IP core uses the open-source design of the AES block 

decipher [36] which is available through the OpenCores. The IP core decrypts the 

contents of a 128-bit TEXT_IN register using the key which is stored in the 128-bit 

KEY register. The plaintext is stored in the 128-bit TEXT_OUT register.  

Table 7- describes the AES Decipher IP core registers which are available 

through the PR region memory-mapped interface. The AES Decipher IP core uses 13 

memory-mapped registers in the PCIe BAR2. 

 

Register 

number 
NAME 

Access 

mode 
Description 

0 KEY_3 R/W Contains [127:96] bits of the AES KEY register. 

1 KEY_2 R/W Contains [95:64] bits of the AES KEY register. 

2 KEY_1 R/W Contains [63:32] bits of the AES KEY register. 

3 KEY_0 R/W Contains [31:0] bits of the AES KEY register. 

4 TXT_IN_3 R/W Contains [127:96] bits of the AES TEXT_IN register. 

5 TXT_IN_2 R/W Contains [95:64] bits of the AES TEXT_IN register. 

6 TXT_IN_1 R/W Contains [63:32] bits of the AES TEXT_IN register. 

7 TXT_IN_0 R/W Contains [31:0] bits of the AES TEXT_IN register. 

8 TXT_OUT_3 R Contains [127:96] bits of the AES TEXT_OUT register. 

9 TXT_OUT_2 R Contains [95:64] bits of the AES TEXT_OUT register. 

10 TXT_OUT_1 R Contains [63:32] bits of the AES TEXT_OUT register. 

11 TXT_OUT_0 R Contains [31:0] bits of the AES TEXT_OUT register. 

12-15 - - Unused. 

16 

STAT/CTL R/W Bits [1:0] provides the IP core status (assertion of either bit 

indicates that the IP core is busy). A write to this register 

initiates the decryption process. 

17 KEY_LD W A write to this register initiates the key calculation process. 

Table 7- Description of the AES Decipher register interface.  

 

 

 



 Chapter 7 - Case Study: SeReCon Architecture Implementation 

– 146 – 

7.2.7. SeReCon IP Core 

The SeReCon IP core is a CPU-based system which is implemented using the 

Xilinx EDK software. SeReCon uses an embedded 32-bit MicroBlaze processor 

which is operating at 125 MHz. 

Figure 7- illustrates the Xilinx EDK view of the SeReCon internal organisation. 

SeReCon includes the MicroBlaze CPU (MICROBLAZE_0) along with a number of 

IP cores which are connected using the Processor Local Bus (PLB) interface and the 

Local Memory Block (LMB) interface. Only the AES (AES_0), TRNG 

(VT_TRNG_PUF_0) and the PCIe interface IP cores (PCIE_INTERFACE_0) have 

been implemented and described in this thesis. The remaining IP cores are generated 

using the Xilinx EDK software. 

 

 

Figure 7- The Xilinx EDK view of the SeReCon internal organisation. 

Figure 7- illustrates the VHDL description of the SeReCon IP core interface. 

SeReCon includes the RC system interface, SysAce interface, UART interface and 

DDR2_SDRAM interface as follows: 

The RC system interface connects SeReCon to the Configuration Controller IP core 

and to the RC system BMs. Table 7- describes the SeReCon RC system interface 

signals. 
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SysAce interface signals drive the ML505 SysAce CompactFlash controller which is 

used as the SeReCon LIPS. Xilinx EDK documentation provides the SysAce signals 

description.  

The UART interface provides a serial console interface
64

 used for SeReCon 

debugging. Figure 7- illustrates the view of the SeReCon serial console which uses 

the UART interface in order to support RC system debugging. 

The DDR2_SDRAM interface drives the external 256MB DDR2 memory card 

mounted in the ML505 SODIMM slot. The RC system prototype uses this memory 

in order to store the SeReCon firmware
65

. 

 

 

Figure 7- VHDL description of the SeReCon IP core interface. 
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 115200 kbps, 8-bit, no parity. 

65
 The DDR2 SDRAM memory is used to simplify the prototyping process. The thesis assumes that 

the SeReCon firmware is located in the FPGA internal (BRAM) memory resources. 

COMPONENT system

PORT(

--RC system interface

pcie_interface_0_mb_din_pin : IN std_logic_vector(31 downto 0);

pcie_interface_0_mb_ctrl_pin : IN std_logic_vector(31 downto 0);

pcie_interface_0_mb_dout_wr_pin : OUT std_logic;

pcie_interface_0_mb_din_rd_pin : OUT std_logic;

pcie_interface_0_mb_dout_pin : OUT std_logic_vector(31 downto 0);

pcie_interface_0_mb_stat_pin : OUT std_logic_vector(31 downto 0);

BM_enable_pin : OUT std_logic_vector(0 to 0);

sys_clk : OUT std_logic;

sys_clk_pin : IN std_logic;

sys_rst_pin : IN std_logic;

Dcm_all_locked_pin : OUT std_logic;

--SysAce interface

SysACE_CompactFlash_SysACE_CLK_pin : IN std_logic;

SysACE_CompactFlash_SysACE_MPIRQ_pin : IN std_logic;

SysACE_CompactFlash_SysACE_MPD_pin : INOUT std_logic_vector(15 downto 0);

SysACE_CompactFlash_SysACE_MPA_pin : OUT std_logic_vector(6 downto 0);

SysACE_CompactFlash_SysACE_CEN_pin : OUT std_logic;

SysACE_CompactFlash_SysACE_OEN_pin : OUT std_logic;

SysACE_CompactFlash_SysACE_WEN_pin : OUT std_logic;

--UART interface

RS232_Uart_1_TX_pin : OUT std_logic;

RS232_Uart_1_RX_pin : IN std_logic;

--DDR2_SDRAM interface

DDR2_SDRAM_DDR2_DQS : INOUT std_logic_vector(7 downto 0);

DDR2_SDRAM_DDR2_DQS_n : INOUT std_logic_vector(7 downto 0);

DDR2_SDRAM_DDR2_DQ : INOUT std_logic_vector(63 downto 0);      

DDR2_SDRAM_DDR2_ODT_pin : OUT std_logic_vector(1 downto 0);

DDR2_SDRAM_DDR2_Addr_pin : OUT std_logic_vector(12 downto 0);

DDR2_SDRAM_DDR2_BankAddr_pin : OUT std_logic_vector(1 downto 0);

DDR2_SDRAM_DDR2_CAS_n_pin : OUT std_logic;

DDR2_SDRAM_DDR2_CE_pin : OUT std_logic_vector(1 downto 0);

DDR2_SDRAM_DDR2_CS_n_pin : OUT std_logic_vector(1 downto 0);

DDR2_SDRAM_DDR2_RAS_n_pin : OUT std_logic;

DDR2_SDRAM_DDR2_WE_n_pin : OUT std_logic;

DDR2_SDRAM_DDR2_Clk_pin : OUT std_logic_vector(1 downto 0);

DDR2_SDRAM_DDR2_Clk_n_pin : OUT std_logic_vector(1 downto 0);

DDR2_SDRAM_DDR2_DM_pin : OUT std_logic_vector(7 downto 0)

);

END COMPONENT;
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Figure 7- View of the SeReCon serial console which uses the UART interface in order to support 

RC system debugging. 

  



 Chapter 7 - Case Study: SeReCon Architecture Implementation 

– 149 – 

Signal name Description 

pcie_interface_0_mb_din_pin[31:0] SeReCon data input port which is connected to DIN FIFO 

inside the Configuration Controller IP core. 

pcie_interface_0_mb_dout_pin[31:0] SeReCon data output port which is connected to DOUT 

FIFO inside the Configuration Controller IP core. 

pcie_interface_0_mb_ctlr_pin[31:0] SeReCon control port which is connected to the CTRL 

register inside the Configuration Controller IP core. 

pcie_interface_0_mb_stat_pin[31:0] SeReCon status port which is connected to STAT register 

inside the Configuration Controller IP core. 

pcie_interface_0_mb_din_rd_pin DIN FIFO read signal. SeReCon asserts this signal prior to 

reading the data word from pcie_interface_0_mb_din_pin. 

pcie_interface_0_mb_dout_wr_pin DOUT FIFO write signal. SeReCon asserts this signal after 

writing the data word to pcie_interface_0_mb_dout_pin. 

sys_clk_pin The main RC system clock signal (100MHz). SeReCon uses 

this signal as a reference input clock signal. 

sys_clk SeReCon internal clock signal (125MHz) which is used to 

drive SeReCon interface of DI and DOUT FIFOs inside the 

Configuration Controller IP core. 

sys_rst_pin Assertion of this signal disables SeReCon. The RC system 

toggles this signal in order to restart SeReCon firmware (the 

EIDR content is not affected) 

dcm_all_locked_pin Assertion of this signal indicates that SeReCon internal 

Digital Clock Managers (DCMs) are operating correctly.  

bm_enable_pin Assertion of this signal indicates that SeReCon enabled RC 

system bus macros, e.g. after successful IP core activation. 

In the RC system prototype this signal is used only for 

information, e.g. RC system bus macros are enabled using 

separate bit in the Configuration Cntrl IP core.  

Table 7- Description of the SeReCon RC system interface signals which connect SeReCon to the 

Configuration Controller IP core and RC system BMs. 
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7.2.7.1. SeReCon PCIe Interface IP Core 

Figure 7- illustrates the block diagram of the SeReCon PCIe interface IP core
66

. 

The SeReCon IP core is connected to the RC system through the modified Interface 

(IPIF) core wrapper which is generated using Xilinx EDK. The modification includes 

the extension of the IP core IO interface in order to connect the IPIF registers to the 

Configuration Controller IP core. This supports SeReCon access to the RC system 

through the IPIF registers which are mapped into the Microblaze memory. 

 

 

Figure 7- The block diagram of the SeReCon PCIe interface IP core.  

                                                 
66

 VHDL model source code for the SeReCon PCIe interface IP core is included in the thesis DVD. 

MicroBlaze PLB

RC system

mb_ctrl[31:0]

mb_din[31:0]

mb_dout[31:0]

mb_stat[31:0]

mb_din_rd

mb_dout_wr
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7.2.7.2. SeReCon TRNG IP Core 

The TRNG IP core implements a compact (TRNG + PUF) Ring-Oscillator (RO) 

based design which was first proposed by Maiti et al. [35]. The design provides 

scalability and portability. The SeReCon TRNG IP core uses 8 RO ‘macrocells’
67

. 

The macrocell contains single RO which is implemented using FPGA device specific 

primitives. Macrocells are implemented in the Virtex-5 FPGA as hard macros 

(similar to BMs). This prevents the Xilinx EDA software from automatic RO 

removal during the TRNG netlist implementation and supports macrocell location 

constraining in the PlanAhead during PR design flow. 

The TRNG IP core is connected to the Microblaze using the Xilinx IPIF core 

wrapper. Table 7- describes TRNG IP core registers which are mapped in the 

MicroBlaze memory and are available to the SeReCon firmware. Current version of 

the SeReCon firmware does not use the PUF functionality. 

 

Register 

number 
NAME 

Access 

mode 
Description 

0 TRNG_DATA R 
Contains a 32-bit random word generated by the IP core in the 

TRNG mode.  

1 PUF_CNT R 

Not used. Contains 32-bit PUF counter value. The registered 

value is a number of RO oscillations during a period of time 

which is defined by the TIMER register value. 

2 RO_ENABLE R/W 

Bits[7:0] enable TRNG ROs. In the TRNG mode all RO’s are 

enabled. In the PUF mode a single RO is enabled only. RO’s 

are activated only during the SeReCon requests. 

3 TIMER R/W 

Not used. Contains 32-bit PUF timer value. This is ten number 

of system clock cycles for which the IP core counts RO 

oscillations. The counted value is read from the PUF_CNT 

register. Write to this register starts counting. 

4 CTRL R/W 

Bit 0 – IP core mode (‘1’–TRNG, ‘0’–PUF), 

bit 1 – is a TRNG busy flag, 

bit 2 – is a PUF busy flag, 

bit 3 – is asserted when the content of the TRNG_DATA is 

updated with new data, 

bits [31:4] are unused. 

Table 7- Description of the TRNG IP core registers which are mapped in the MicroBlaze 

memory and are available to the SeReCon firmware. 

                                                 
67

 The increase in the number of included Ring-Oscillators (ROs) up to 32 requires only simple 

modification of the TRNG VDHL code and does not change TRNG API. If more than 32 RO’s are 

required, e.g. for generating high-quality random data, an additional RO_ENABLE register must be 

added to the core. 
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7.2.7.3. SeReCon AES IP Core 

The SeReCon AES IP core uses the CBC operation mode in order to support the 

encryption of arbitrary-length data, e.g. IP core bitstreams. In the CBC mode, each 

block of plaintext is XORed with the previous ciphertext block before being 

encrypted
68

. The first block of the plaintext is XORed with the initialisation vector 

(IV). The SeReCon AES IP core uses the same AES block cipher (and decipher) as 

the RC system PR IP cores (the AES cipher/decipher PR IP core). The SeReCon 

AES IP core is connected to the Microblaze using the Xilinx IPIF core wrapper. 

Table 7- and Table 7- describe the SeReCon AES IP core registers which are mapped 

into the MicroBlaze memory and are available to the SeReCon firmware. 

 

Register 

number 
NAME 

Access 

mode 
Description 

0 ENC_KEY_3 R/W Contains [127:96] bits of the AES cipher KEY register. 

1 ENC_KEY_2 R/W Contains [95:64] bits of the AES cipher KEY register. 

2 ENC_KEY_1 R/W Contains [63:32] bits of the AES cipher KEY register. 

3 ENC_KEY_0 R/W Contains [31:0] bits of the AES cipher KEY register. 

4 ENC_TXT_IN_3 R/W 
Contains [127:96] bits of the AES cipher TEXT_IN 

register. 

5 ENC_TXT_IN_2 R/W 
Contains [95:64] bits of the AES cipher TEXT_IN 

register. 

6 ENC_TXT_IN_1 R/W 
Contains [63:32] bits of the AES cipher TEXT_IN 

register. 

7 ENC_TXT_IN_0 R/W 
Contains [31:0] bits of the AES cipher TEXT_IN 

register. 

8 ENC_TXT_OUT_3 R 
Contains [127:96] bits of the AES cipher TEXT_OUT 

register. 

9 ENC_TXT_OUT_2 R 
Contains [95:64] bits of the AES cipher TEXT_OUT 

register. 

10 ENC_TXT_OUT_1 R 
Contains [63:32] bits of the AES cipher TEXT_OUT 

register. 

11 ENC_TXT_OUT_0 R 
Contains [31:0] bits of the AES cipher TEXT_OUT 

register. 

Table 7- Description of the SeReCon AES IP core registers (continued in Table 7-) which are 

mapped into the MicroBlaze memory and are available to the SeReCon firmware.  

                                                 
68

 Wikipedia, Block cipher modes of operation (http://en.wikipedia.org/wiki/Cipher_block_chaining) 

http://en.wikipedia.org/wiki/Cipher_block_chaining
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Register 

number 
NAME 

Access 

mode 
Description 

12 DEC_KEY_3 R/W 
Contains [127:96] bits of the AES decipher KEY 

register. 

13 DEC_KEY_2 R/W Contains [95:64] bits of the AES decipher KEY register. 

14 DEC_KEY_1 R/W Contains [63:32] bits of the AES decipher KEY register. 

15 DEC_KEY_0 R/W Contains [31:0] bits of the AES decipher KEY register. 

16 DEC_TXT_IN_3 R/W 
Contains [127:96] bits of the AES decipher TEXT_IN 

register. 

17 DEC_TXT_IN_2 R/W 
Contains [95:64] bits of the AES decipher TEXT_IN 

register. 

18 DEC_TXT_IN_1 R/W 
Contains [63:32] bits of the AES decipher TEXT_IN 

register. 

19 DEC_TXT_IN_0 R/W 
Contains [31:0] bits of the AES decipher TEXT_IN 

register. 

20 DEC_TXT_OUT_3 R 
Contains [127:96] bits of the AES decipher TEXT_OUT 

register. 

21 DEC_TXT_OUT_2 R 
Contains [95:64] bits of the AES decipher TEXT_OUT 

register. 

22 DEC_TXT_OUT_1 R 
Contains [63:32] bits of the AES decipher TEXT_OUT 

register. 

23 DEC_TXT_OUT_0 R 
Contains [31:0] bits of the AES decipher TEXT_OUT 

register. 

24 STAT/CTL R/W 

Bit 0 – provides the AES cipher busy flag, 

bit 1 – starts AES encryption, 

bit [3:2] – provide the AES decipher busy flags, 

bit 4 – starts AES decryption, 

bit 5 – starts decryption key calculation 

bits [31:6] are unused. 

Table 7- Description of the SeReCon AES IP core registers (continuation of Table 7-). 
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7.2.7.4. SeReCon Firmware 

Figure 1-e illustrates the SeReCon firmware installed in the FPGA local memory 

(BRAM). The SeReCon-enabled RC system prototype uses the DDR2 SDRAM 

memory in order to simplify SeReCon debugging. The SeReCon firmware is divided 

into modules
69

, as follows: 

The Board Support Package (BSP) module provides the standard drivers for 

Xilinx EDK IP cores and software libraries which are required by the MicroBlaze 

CPU. The BSP module is automatically generated by Xilinx EDK. 

The AES/ECC module is a SeReCon crypto library which provides 128-bit AES 

encryption in the CBC mode (using the SeReCon AES IP core) and the generic 

implementation of the Elliptic Curve Digital Signature Algorithm (ECDSA) and 

ECC-based Diffie-Hellman SK agreement routines which are using (NIST standard) 

P192 elliptic curve.  

The ERDB module implements the ERDB-based IP core analyser and verifier, used 

prior to IP core installation and activation. 

The ICAP module uses modified MicroBlaze drivers in order to support FPGA self-

reconfiguration using PR bitstreams stored in the LIPS. The ICAP module also 

provides user (read/write) access to FPGA configuration registers and individual 

FPGA configuration frames. 

The EIDR module emulates the EIDR in software. The emulation is mostly 

transparent to the SeReCon software, e.g. SeReCon has additional debug routines 

which are used to update the EIDR content, e.g. increment the EIDR counters. The 

EIDR module also implements the SafeLock functionality (using the EIDR element 

and the AES module). 

The MFS module supports the volatile Memory File System (MFS), implemented in 

the DDR2 memory in order to support SeReCon debugging. The MFS module 

extends the MFS library which is available from Xilinx EDK.  

The Comm module provides high-level drivers and a communication library for the 

SeReCon PCIe interface IP core. The communication library supports file-based data 

transfer between the demonstrator application and SeReCon LIPS. 

The Config Manager module includes the SeReCon main program routine which 

services the RC system requests in an infinite loop. This module also includes a 

number of debug routines which are available through the SeReCon UART interface. 

The SysAce module and the FATFS module provide file-based access to the 

SeReCon LIPS which is implemented in the ML505 CF card.  
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 The C source code of the SeReCon firmware is included in the attached DVD. The Xilinx 

proprietary code is removed. 
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The TRNG module provides drivers for the SeReCon TRNG IP core. This module 

is mainly used by the AES/ECC module. 

The Memory Manager module uses the AES/ECC module, MFS module and 

FATFS module in order to support transparent
70

 data (e.g. IP core file) encryption 

prior to storage in the SeReCon LIPS. Transparent decryption during file reading is 

also supported. 

7.3. RC System and SeReCon Implementation Results 

7.3.1. Introduction  

Figure 7- illustrates the FPGA Editor view of the SeReCon-enabled RC system 

implementation on the Xilinx Virtex-5 FPGA. The figure illustrates the location of 

the PR region, FPGA logic occupation (a) and complexity of RC system routing (b). 

The location of RC system modules (e.g. PCIe interface, SeReCon etc) is not 

constrained in order to speed-up implementation time. 

This section highlights quantitative results of the prototype SeReCon-enabled 

RC system implementation and the SeReCon resource cost analysis (including 

firmware). Implementation issues and proposed solutions are also highlighted. 

7.3.2. Hardware Implementation Results 

Table 7- illustrates the FPGA logic resources (LUTs, FFs and BRAMs) which 

are used by the prototype SeReCon-enabled RC system. Figure 7- illustrates the 

relative (percentage of the FPGA) resource costs of each of the main SeReCon-

enabled RC system prototype elements, e.g. FPGA LUTs (a) and FPGA FF’s (b). 

Results show that the SeReCon resource cost is 36% of the size of the mid-size 

Xilinx Virtex-5 device (used in the ML505 board). 

Table 7- illustrates the FPGA logic resources used by the SeReCon IP core. 

Figure 7- illustrates the relative (percentage of the FPGA) resource costs of each of 

the SeReCon elements, e.g. FPGA LUTs (Figure 7-a) and FPGA FF’s (Figure 7-b). 

Results show a significant amount of resources consumed by the DDR2 SDRAM 

memory controller (up to 38% of SeReCon size). The RC system prototype uses this 

memory in order to store the SeReCon firmware. The SeReCon security model and 

SeReCon-enabled RC system RoT assume that the SeReCon firmware is stored 

within the FPGA local memory, e.g. BRAM. 
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 The current SeReCon implementation uses intermediate, dynamically allocated buffers? in the 

DDR2 SDRAM memory.  
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a)    b)    

Figure 7- The FPGA Editor view of the SeReCon-enabled RC system implementation in the 

Xilinx Virtex-5 FPGA and location of the PR region. a. FPGA logic occupation.  b. complexity of 

RC system routing. 

 

RC system module name FFs (max 28800) LUTs (max 28800) BRAMs (36kbits per block)  

SeReCon 10480 10492 32
71

 

PR region 3840 3840 8 

PCIe endpoint 3059 2486 6 

PCIe endpoint wrapper 199 240 0 

Config controller 162 247 2 

PCIe BAR splitter 0 59 0 

Table 7- FPGA logic resources used by the prototype SeReCon-enabled RC system. 

                                                 
71

 The RC system prototype uses the DDR2 SDRAM memory in order to store the SeReCon 

firmware. Thus, the required number of SeReCon RAM blocks does not include SeReCon firmware 

cost.  

PR region PR region
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a) 

 

 

b) 

 

 

Figure 7- The relative (percentage of FPGA resources) cost of the main SeReCon-enabled RC 

system prototype elements.  a. FPGA LUT usage. b. FPGA FF usage. 
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SeReCon module name FFs (max 28800) LUTs (max 28800) 36k BRAMs 

AES 1789 2294 0 

BM CTRL (GPIO) 73 42 0 

DDR2 IF 3708 2244 0 

ICAP 418 1152 0 

INT CTRL 157 113 0 

LMB 6 14 0 

MB_PLB 170 594 0 

MDM_DEBUG 123 108 0 

MICROBLAZE 1848 1966 3 

PCIE IF 204 170 0 

RS232 144 65 0 

SYS_RESET 67 41 0 

SYSACE IF 265 95 0 

SYSMON 178 127 0 

TIMER 361 308 0 

TRNG 360 273 0 

Table 7- FPGA logic resources used by the SeReCon IP core. 
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a) 

 

 

b) 

 

 

Figure 7- The relative (percentage of FPGA resources) cost of the SeReCon elements. a. FPGA 

LUT usage. b. FPGA FF usage. 
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7.3.3. SeReCon Firmware Implementation Results 

Table 7- illustrates the FPGA memory resources used by the SeReCon firmware 

modules. Some modules, e.g. the ECC module and the ERDB module, include 

multiple files which represent the internal module hierarchy. 

The total size of the SeReCon firmware is dominated by the ERDB module 

(95%). The ERDB module mainly contains the description of the FPGA routing 

(erdb_routing.o, 42.3%) and PIP configuration bits (erdb_pd.o, 47.6%). Further 

investigation of compact FPGA fabric representations, e.g. erdb_routing and 

erdb_pd organisation could optimise ERDB footprint.  

 

SeReCon module Module files Module size in bytes 

aes aes_soft.o 25980  

ecc bignum.o 15424  

 
ecdsa.o 6068  

 
ecdsa_demo.o 20104  

 
ellipticcurve.o 8188 ECC size = 49784 (1.3%) 

erdb bit_data_parser.o 7972 (0.2%)  

 
bit_header-parser.o 1832 (<0.1%)  

 
cfg_analyser.o 16060 (0.4%)  

 
erdb_demo.o 9452 (0.3%)  

 
erdb_layout.o 19824 (0.5%)  

 
erdb_pd.o 1764372 (47.6%)  

 
erdb_routing.o 1565036 (42.2%)  

 
erdb_tg.o 235764 (6.4%)  

 
erdb_ws.o 32392 (0.9%)  

 
far_seq_v5ls50t.o 54097 (1.46%) ERDB size = 3706801 (95%) 

debug debug.o 
 

4124 (0.1%) 

icap icap_demo 
 

9092 (0.2%) 

debug menu.o 
 

2748 (0.1%) 

eidr idr.o 
 

12708 (0.3%) 

mfs mfs_demo.o 
 

7296 (0.2%) 

comm. (pcie) pcie_demo.o 
 

43484 (1.1%) 

erdb 

analyser/verifier 
serecon.o 

 
25632 (0.7%) 

main SeReCon@Intel.o 
 

3984 (0.1%) 

sysace/fatfs sysace_demo.o 
 

7752 (0.2%) 

trng trng.o 
 

1032 (<0.1%) 

SeReCon firmware serecon.elf Summarised size = 3900417 (100%) 

Table 7- FPGA memory resources used by the SeReCon firmware. 
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7.3.4. SeReCon-enabled RC System Prototype Implementation 

Issues 

The following implementation issue have been observed during prototyping of 

the SeReCon-enable RC system, and require address during a future implementation: 

  The unreliable Xilinx EAPR design flow support for Xilinx Virtex-5 

FPGAs results in a random implementation error. Listing 7- illustrates the 

EAPR critical exceptions which have occurred during the SeReCon-enabled 

RC system implementation. Exceptions appear to be related to the always-on 

‘fake’ PIPs and appear randomly, e.g. re-implementation of an unchanged 

design results in errors occurring in a different phase (e.g. Xilinx ISE P&R 

Phase 10) or even successful completion of implementation with no errors. 

The Xilinx EAPR design flow support for Xilinx Virtex-5 devices is 

unreliable, e.g a successful implementation currently requires a number of 

time consuming iterations, and is not advised. 

 SeReCon resource cost: Table 7- illustrates the relative (percentage of 

FPGA resources) cost of the SeReCon implementation in a range of modern 

Xilinx FPGAs, e.g. the largest Virtex-6 FPGA device, and also the mid-sized 

and the largest Virtex-5 FPGA. The SeReCon size introduces a reasonable 

(2%-5%) overhead only in the largest FPGAs. The SeReCon firmware size 

exceeds the amount of memory which is available in most of the currently 

available Xilinx devices, except for the Virtex-6 device. The SeReCon-

enabled RC system prototype uses the DDR2 SDRAM memory for SeReCon 

firmware storage. This indicates the need for firmware optimisation, e.g. 

investigation of the optimal ERDB structure is suggested as future work. 

Generalisation of FPGA routing types and the use of device-specific data 

field sizes (e.g. bit fields, instead of generic ‘int’) could also be considered in 

order to reduce SeReCon firmware footprint.  

Further work could also investigate the use of external RAM encryption, 

which was proposed by Edmison [139], or software authentication as a 

complementary approach to use of scarce FPGA internal memory (BRAM) 

resources for the SeReCon firmware storage.  

 Incomplete SeReCon AES implementation. Prototype SeReCon 

implementation does not support authentication-encryption (e.g. AES in 

EAX
72

 mode); only the CBC mode is supported. A solution could be to 

include an additional authentication field in the IP core entry in SafeLock. 

Also, the AES IP core which is included in the SeReCon element does not 

pass test routines provided with the IP core source code
73

. Thus, the IP core 

                                                 
72

 EAX mode is a mode of operation for cryptographic block ciphers (http://en.wikipedia.org/wiki/ 

EAX_mode) 

73
 This could be caused by experimental-only EAPR support for Virtex-5 FPGAs. The exact reason 

requires further investigation. Interestingly, the same AES IP core operates correctly when used as the 

PR IP core. 

http://en.wikipedia.org/wiki/%20EAX_mode
http://en.wikipedia.org/wiki/%20EAX_mode


 Chapter 7 - Case Study: SeReCon Architecture Implementation 

– 162 – 

remains unused and the software-only implementation of the AES cipher and 

decipher is included in the SeReCon firmware (as a workaround). 

Additionally, the software implementation of AES slows down SeReCon-

based PR. 

 The software ECC implementation is slow. The SeReCon ECC uses the 

P192 elliptic curve [181] which offers only 96 secure bits (half of the key 

width). Thus the hardware accelerator for large number ECC operations 

would improve SeReCon performance during the DH shared key agreement 

with the IPV and would support longer ECC keys.  

 The TRNG IP core uses only 8 ROs. The small RO number affects the 

TRNG quality, e.g. the output data stream is biased and the TRNG fails the 

standard tests for data randomness. The TRNG extension up to 32 ROs is a 

straightforward addition of RO macro cells and does not require a change to 

the TRNG API. The TRNG macrocell architecture could also be optimised 

towards the architecture of Virtex-5 (or Virtex-6) CLB. 

 The ERDB Analyser does not support the detection of IP core internal 

design errors, e.g. short circuits between signals. Future work could improve 

the ERDB Analyser robustness by including this functionality. Also, the 

ERDB Analyser reports only the shape of external wires (without its unique 

name in the FPGA tile). The distinction between two FPGA tile wires, both 

having the same shape, is not possible. Thus the ERDB Verifier (Figure 1-e) 

could raise a false alarm in situation when two IP cores are isolated and but 

use routing (wires) of the same shape. This affects only the ERDB 

implemented in SeReCon. The FDAT (offline) version of ERDB contains an 

additional namespace database which eliminates this risk. The ERDB Verifier 

also uses a single static and a predefined reconfigurable region in order to 

support the EAPR design flow. In future work, an extension of the IP core 

verification is suggested in order to incorporate a model of multiple cores 

within the reconfigurable region. 

 The Microblaze architecture is closed-source. Thus, public audit of the 

SeReCon element is not possible. Also, use of formal verification methods 

could significantly improve the robustness of SeReCon. Thus, open-source 

CPUs, e.g. OpenRISC
74

 or Leon
75

, is suggested for future SeReCon 

implementations. Also, the SeReCon architecture and firmware is not 

hardened against power analysis attacks which could expose the SeReCon 

security credentials, e.g. the EIDR contents or the SafeLock encryption keys. 

Thus, future work could also support SeReCon firmware and architecture 

modification in order to include DPA-preventing hardware primitives (e.g. 

WDDL logic) and algorithms (branch balancing etc). 

 The EIDR is emulated in SeReCon firmware. Thus, the EIDR is assumed 

to be active after power-up and no check of BaseSFC configuration bitstream 

                                                 
74

 OpenCores, OpenRISC processor (http://opencores.org/project,or1k) 

75
 Aeroflex Gaisler, Leon processor (http://www.gaisler.com/cms/index.php?option=com_content& 

task=section&id=4&Itemid=33) 

http://opencores.org/project,or1k
http://www.gaisler.com/cms/index.php?option=com_content&%20task=section&id=4&Itemid=33
http://www.gaisler.com/cms/index.php?option=com_content&%20task=section&id=4&Itemid=33
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can be made. Also, an activity of the internal EIDR counters (AAC, LTC, 

FRC and MSG_NO) is emulated through the ‘backup-modify-restore’ 

operation on the EIDR contents. Future work could implement the EIDR 

using an external FPGA board which is connected to the RC system 

configuration interface in order to detect BaseSFC tampering. 

 The PCIe interface uses a generic (slow) PCIe reference design which 

supports only single-word PCIe transactions. Future work could focus on 

more robust PCIe interface implementation which would support multi-word 

(burst) read/write PCIe transactions.  

 SeReCon does not currently deactivate expired IP cores, e.g. when the IP 

core is active and its lifetime has expired. SeReCon includes the Timer IP 

core which could be used to generate periodic interrupts to MicroBlaze which 

are used to request a poll and check of the IP core license.  

 

1 Starting Router 

2 Phase 1: 16593 unrouted;       REAL time: 52 secs  

3 Phase 2: 15126 unrouted;       REAL time: 54 secs  

4 Phase 3: 5927 unrouted;       REAL time: 1 mins 4 secs  

5 Phase 4: 5927 unrouted; (140864)      REAL time: 1 mins 5 secs  

6 Phase 5: 6069 unrouted; (111829)      REAL time: 1 mins 30 secs  

7 Phase 6: 6072 unrouted; (111817)      REAL time: 1 mins 31 secs  

8 Phase 7: 0 unrouted; (117091)      REAL time: 3 mins 5 secs  

9  

10 Updating file: top_routed.ncd with current fully routed design. 

11 Pin<BRID:102377> to be detached from RUGNODE:FAKE_RFNODE not found 

12 Pin<BRID:111380> to be detached from RUGNODE:FAKE_RFNODE not found 

13 EXCEPTION:Rf:Rf_DeviceMgr.c:221:1.7 - GetDevice called with bad index 

14 Pin<BRID:111380> to be detached from RUGNODE:FAKE_RFNODE not found 

15 EXCEPTION:Rf:Rf_DeviceMgr.c:221:1.7 - GetDevice called with bad index 

16 Pin<BRID:114121> to be detached from RUGNODE:FAKE_RFNODE not found 

17 Pin<BRID:114172> to be detached from RUGNODE:FAKE_RFNODE not found 

18 EXCEPTION:Rf:Rf_DeviceMgr.c:221:1.7 - GetDevice called with bad index 

Listing 7- EAPR critical exceptions which occur during the SeReCon-enabled RC system 

implementation.  

 

SeReCon size 

FPGA device 
10480 FFs 10492 LUTs 24712 BRAM Kbits 

Mid-size FPGA (ML505) 

(XC5VLX50T) 
36% 36% 1144 % (2160) 

Largest Virtex-5 FPGA 

(XC5VLX330T) 
5% 5% 212% (11664) 

Largest Virtex-6 FPGA 

(XC6VLX760) 
1% 2% 95% (25920) 

Table 7- The percentage resource cost of the SeReCon implementation in modern Xilinx 

FPGAs.  
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7.4. RC System Demonstrator 

7.4.1. Introduction  

This section reports and describes the SeReCon-enabled RC system 

demonstrator application (Figure 7-). The communication library of the RC system 

demonstrator and host-side SeReCon API are highlighted. Demonstrator application 

results are also reported. 

The demonstrator application uses the interactive Python command line in order 

to provide a live experience of the RC system behaviour. This supports non-standard 

ad-hoc system tests and interactive RC system application development.  

The RC system communication library uses the internally developed PCIe device 

driver which provides Python API for communication with the RC system and 

SeReCon. The RC system communication library supports read and write of the RC 

system registers, BM control and identification of the active PR module. 

The SeReCon API supports SeReCon control, status monitoring and bidirectional 

data transfer between SeReCon and demonstrator application. 

The demonstrator application shows that SeReCon detects additional external 

PIPs in IP cores which are created using the genuine Xilinx EAPR design flow. This 

confirms that even genuine IP cores, when developed in a multi-party environment, 

could include implicit communication channels and could introduce security risks. 

7.4.2. RC System Communications Library 

The demonstrator application communicates with the SeReCon-enabled RC 

system through the single-lane (x1) PCIe interface. Table 7- describes the RC system 

communication library which is used by the host-side SeReCon API. The RC system 

communication library is implemented in Python and uses the unpublished driver 

(C++/Python) for the Xilinx PCIe reference design
76

. The RC system communication 

library supports read and write of RC system registers which are mapped to PCIe 

BARs. RC system BM control and identification (ID read) of the active PR module is 

also supported. 

 

 

 

 

                                                 
76

 The Python/C++ driver for the PCIe reference design was implemented by Krzysztof 

Kościuszkiewicz. 
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Function Parameters Description 

reg 
number, 

value, BAR 

Sets the number register in BAR to value (if value is not none). 

Returns current content of the register. 

bm mode 
Enables and disables RC system BMs. Returns the current state of 

the BM enable register. 

moduleid – Returns 4-bit PR IP core ID. 

leds value 

Uses value [7:0] in order to control the ML505 board LEDs. 

Returns current status of the Configuration Controller LED 

register 

Table 7- Description of the RC system communication library which is used by the host-side 

SeReCon API. 

7.4.3. Host-side SeReCon API 

Table 7- describes the host-side SeReCon API which is implemented in Python 

and used by the SeReCon-enabled RC system demonstrator application. The API 

supports SeReCon control (CTRL register), status monitoring (STAT register) and 

bidirectional data transfer (DIN and DOUT FIFOs). 

 

Function Parameters Description 

mbRdCnt – Returns MB_READ counter. 

mbWrCnt – Returns MB_WRITE counter. 

mbDout – Returns MB_DOUT value. 

mbDin value Sets MB_DIN to value. Returns current content. 

mbWrite – 
Writes MB_DIN data to MB FIFO (asserts 

pcie_interface_0_mb_dout_wr_pin signal). 

mbRead – 
Reads MB FIFO data to MB_DOUT (asserts 

pcie_interface_0_mb_din_rd_pin signal). 

mbSend word 
Writes the 32-bit word to the Configuration Controller DIN FIFO. 

Waits if the FIFO is full and timeouts after 100 failed retries. 

mbReceive – 
Returns the 32-bit word which is read from the Configuration 

Controller DOUT FIFO. Raises an exception if the FIFO is empty. 

mbStat – Returns the SeReCon status word. 

mbRst mode 
Asserts/deasserts the SeReCon reset line and returns the current state 

of the reset line. 

mbCmd cmd Sets SeReCon command word. Returns current command. 

mbIsFull fifo Returns true if fifo (DIN/DOUT) FIFO is full. 

mbIsEmpty fifo Returns true if fifo (DIN/DOUT) FIFO is empty. 

Table 7- Description of the host-side SeReCon API which is used by the RC system 

demonstrator application. 
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7.4.4. Demonstrator Application Results 

The demonstrator application uses the interactive Python command line in order 

to provide a live experience of the RC system behaviour. This supports non-standard 

ad-hoc system tests and interactive RC system application development. 

Table 7- describes the SeReCon demonstrator API which is tested using the 

interactive Python command line. Table 7- describes SeReCon demonstrator API 

support for RC system  interactive debugging. Table 7- describes SeReCon 

demonstrator API support for testing activated IP cores and LEDs on the RC system 

board. 

 

Function Parameters Description 

initEidr – SeReCon initialises the EIDR register. 

getMsgNo – Return the current EIDR MNC value (msgNo). 

instIpCore 
name, vendor, 

msgNo, dest 

Demonstrate SeReCon-based IP core (name) 

installation in the RC system dest (LIPS or MFS). 

actIpCore 
name, msgNo, 

dest 

Demonstrate SeReCon-based IP core (name) 

activation in the RC system dest (LIPS or MFS). 

deactIpCore 
name, msgNo, 

dest 

Demonstrate SeReCon-based IP core (name) 

deactivation. 

genIpvSKey 
vendor, msgNo, 

source 

Demonstrate ECDSA-based SeReCon DH shared-

key calculation. 

removeFile file, fs Remove file from fs file system (CF or MFS). 

getFileNames fs 
Return dictionary of files and their sizes in the fs file 

system (CF or MFS). 

sendFile file, dest 
Send file to SeReCon which stores it in dest (LIPS or 

MFS). 

receiveFile file, source 
Receive file from SeReCon which reads it from 

source (LIPS or MFS). 

Table 7- Description of the SeReCon demonstrator API which is tested using the interactive 

Python command line. The API description is continued in Table 7- and Table 7-. 
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Function Parameters Description 

restoreFs 
source, 

target 

Restore the SeReCon target files, e.g. CF (LIPS) or MFS, 

using the host source directory content. 

resetMfs - Reset MFS. 

getMfsStats – Return the number of MFS blocks (free and used). 

checkFile 
file, 

source 
Check file in dest (LIPS or MFS). Returns file status 

getFpgaFrame 

block, 

bottom, 

row, 

major, 

minor 

Return FPGA configuration frame (41 32-bit words) which 

is addressed by the block type, FPGA half (bottom), clock 

row, major and minor frame number. 

setFpgaReg 
reg, 

values 

Write a list of 32-bit words (values) into the FPGA 

configuration register (reg). 

getFpgaReg reg 
Return the current content of the FPGA configuration 

register (reg). 

tamperEidr - 
Mimic malicious EIDR tampering . This resets the EIDR 

content. 

backupEidr target 

This is the prototype-only debug support function which 

uses target (LIPS or MFS) in order to store a backup copy 

of the EDIR content. 

restoreEidr source 

This is the prototype-only debug support function which 

restores the EDIR content from the source backup copy (in 

the LIPS or MFS). 

initPr – 
Initialise RC system PR region using default (blank) 

configuration. 

allowRiskyIp

Core 
- 

SeReCon overrides the results of the ERDB-based 

verification prior to PR. This allows activation of insecure 

IP cores. 

getEidrCnts – 
Return current values of EIDR counters (AAC, LTC and 

FRC). 

getSysState – 

Return RC system PR region data, e.g. region coordinates, 

total number and list of region external PIPs. 

Configuration and isolation regions are supported. 

resetSysAce – 
Enforce SysAce-based FPGA reconfiguration using the 

default (.ACE) configuration file. 

resetIcap - Reset ICAP. 

loadPrFile 
file, 

source 

This is the prototype-only debug support function which 

uses ICAP in order to reconfigure FPGA using the PR 

bitstream loaded from source. 

Table 7- Continued description of the SeReCon demonstrator API which includes support for 

RC system interactive debugging. 
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Function Parameters Description 

leds val 
Use val bits [7:0] to control (on/off) 8 LEDs on the ML505 

board. 

test arg1, arg2 

Test and demonstrate simple math IP cores, e.g. adder and 

multiplier which are loaded in PR region. Arg1 and arg2 

are parameters used by the core. 

testAesEnc key, txtIn 

Test and demonstrate the AES Cipher IP core which is 

loaded in PR region. Key and txtIn are parameters used by 

the core. 

testAesDec key, txtIn 

Test and demonstrate the AES decipher IP core which is 

loaded in PR region. Key and txtIn are parameters used by 

the core. 

Table 7- Continued description of the SeReCon demonstrator API which includes functional 

tests for activated IP cores and LEDs on the RC system board. 

Listing 7- illustrates the SeReCon-enabled RC system demonstrator application 

algorithm which includes SeReCon initialisation and credentials exchange (lines 1-

10), installation of IP cores in the SeReCon-enabled RC system (lines 13-36) and 

their activation (lines 38-40). Appendix E illustrates the complete output of the 

SeReCon debug console during SeReCon-enabled RC system demonstration.  

SeReCon initialisation and credentials exchange. The demonstrator 

application initialises SeReCon EIDR (line 5) and receives the SeReCon public key 

(line 7). The IPV security credentials are generated (line 8) prior to sending the IPV 

public key to SeReCon (line 10). 

IP cores installation in the RC system. For every IP core in the list (line 2) the 

demonstrator requests the current EIDR MNC value (line 15) and creates the IPV 

message (line 17) which is sent to SeReCon (line19) in order to generate a shared 

key using the DH key agreement protocol (line 21). The IPV reads the SeReCon 

reply (line 25) and locally generates the DH shared key (line 27) using the updated 

value of the EIDR MNC value (line 23). The IPV uses the shared key in order to 

prepare the IP package (line 29), e.g. the encrypted IP core PR bitstream and its 

license, which is sent to SeReCon (lines 31-33). The demonstrator also commands 

SeReCon to install the IP core (line 35). 

Listing 7-, Listing 7-, Listing 7-, Listing 7- and Listing 7- illustrate fragments of the 

SeReCon debug console output which are related to IP core analysis (during RC 

system demonstration). SeReCon analyses adder (Listing 7-), blank (Listing 7-), 

multiplier (Listing 7-), AES encoder (Listing 7-) and AES decoder IP cores (Listing 

7-). 

IP cores activation in the RC system. The demonstrator application uses the IP 

core name and the EIDR MNC value (from the IP core installation) in order to 

activate the IP cores (line 40).  
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Listing 7- The demonstrator application routine.  

 

Listing 7-, Listing 7-, Listing 7-, Listing 7- and Listing 7- illustrate fragments of the 

SeReCon debug console output which are related to verification of IP core 

compatibility with current SeReCon-enabled RC system state (during IP core 

activation). SeReCon attempts to activate adder (Listing 7-), blank (Listing 7-), 

multiplier (Listing 7-), AES encoder (Listing 7-) and AES decoder IP core (Listing 

7-). Lines 8 and 10 in Listing 7-, Listing 7-, Listing 7- and Listing 7- show that 

SeReCon detects additional external PIPs during verification of IP core compatibility 

with the RC system current state
77

. Those PIPs could be used to setup implicit 

communication channel so SeReCon writes an activation report file
78

 (line 15), 

cancels the IP core activation (line 19) and rolls back the IP core license (line 20).  

                                                 
77

 The blank IP core in Listing 7-.b passed the test because it is used as the default (reference) layout 

of the ‘empty’ PR region. 

78
 The report includes list of additional PIPs in IP core configuration region and isolation region. Its 

structure is compatible with ERDB Analiser report file and can be read using FDAT tool. 

1  ipv_name = "ipv_demo"

2  ip_cores = ["add", "blank", "mul", "enc", "dec"]

3  msg_nums = {}

4  print"\n\n\n ### INITIALISE SeReCon"

5  rcSystem.initidr()

6  print"\n\n\n ### RECEIVE Serecon pubkey"

7  rcSystem.receivefile('serecon.pub', 'cf')

8  create_ipv_key(ipv_name)

9  print"\n\n\n ### SEND IPV pubkey"

10 rcSystem.sendfile('ipv_demo.ipv', 'mfs')

11

12

13 for ip_name in ip_cores:

14   print"\n\n\n ### GET msgNo"

15   msg_no=dead.getmsgno()

16   print"\n\n\n ### CREATE IPV msg (%d)"%msg_no

17   create_ipv_msg(ipv_name, msg_no)

18   print"\n\n\n ### SEND IPV message"

19   rcSystem.sendfile(ipv_name+'.m%02x'%msg_no,'mfs')

20   print"\n\n\n ### SeReCon generates shared key"

21   rcSystem.generateipvskey(ipv_name, msg_no, "mfs")

22   print"\n\n\n ### GET msgNo"

23   msg_no=dead.getmsgno()

24   print"\n\n\n ### RECEIVE SeReCon reply"

25   rcSystem.receivefile(ipv_name+'.r%02x'%msg_no, 'mfs')

26   print"\n\n\n ### CALCULATE shared key"

27   calc_shared_key(ipv_name, msg_no)

28   print"\n\n\n ### CREATE IP package '%s' "%ip_name

29   create_ip_package(ip_name,ipv_name,msg_no,ip_name,0xffffffff,0xffffffffffffffff)

30   print"\n\n\n ### SEND encrypted IP core"

31   rcSystem.sendfile(ip_name+".e%02x"%msg_no, "mfs")

32   print"\n\n\n ### SEND encrypted license"

33   rcSystem.sendfile(ip_name+".c%02x"%msg_no, "mfs")

34   print"\n\n\n ### INSTALL IP core '%s' "%ip_name

35   rcSystem.installipcore(ip_name, ipv_name, msg_no, "mfs")

36   msg_nums[ip_name] = msg_no

37

38 for ip_name in ip_cores:

39   print"\n\n\n ### ACTIVATE IP core '%s' "%ip_name

40   rcSystem.activateipcore(ip_name,  msg_nums[ip_name], "mfs")

SeReCon initialisation 

and credentials exchange

IP cores installation 

in the RC system

IP cores activation 

in the RC system
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All affected IP cores (adder, multiplier AES cipher and AES decipher) are created 

using the genuine Xilinx EAPR design flow which ensures that the static part of the 

design (e.g. BaseSFC) does not share routing with PR IP cores, except explicitly 

defined BMs. This non-sharing policy cannot be ensured in a multi-party PR design 

flow where IP cores are delivered through third-party IPVs with no knowledge of the 

static design, e.g. third party IP core which is delivered as an update to the already-

deployed SeReCon-enabled RC system. This example shows that even genuine IP 

cores, when developed in a multi-party environment, could include implicit 

communication channels and could introduce security risks. 

 

1 ERDB_analyser v.1.0 (release Jan 29 2010, 18:40:42) 

2 - read header 

3     Header data: 

4         - HeaderLength    : 86 

5         - BitstreamLength : 145732 

6         - DesignName      : prm_adder_partial.ncd 

7         - PartName        : 5vlx50tff1136 

8         - Date            : 2009/10/27 

9         - Time            : 19: 7:46 

10 - parse bitstream...OK 

11       Region (x,y): (10,0) to (42,43) 

12 - detect external pips...OK 

13       Found 2699 external pips (2254 real, 445 fake). 

14 - analyse isolation boundary...OK 

15       Region (x,y): (10,0) to (42,45) 

16 - detect io pips...OK 

17       Found 2468 io pips (2154 real, 314 fake). 

18 Analysis finished successfully. 

Listing 7- Fragment of the SeReCon debug console output which is related to Adder IP core 

analysis. 

1 ERDB_analyser v.1.0 (release Jan 29 2010, 18:40:42)                              

2 - read header                                                                   

3     Header data:                                                                     

4        - HeaderLength    : 85                                                        

5        - BitstreamLength : 126420                                                    

6        - DesignName      : pblock_prm_blank.ncd                                      

7        - PartName        : 5vlx50tff1136                                             

8        - Date            : 2009/10/27                                                

9        - Time            : 19:36:42                                                  

10 - parse bitstream...OK                                                          

11       Region (x,y): (10,0) to (42,43)                                            

12  - detect external pips...OK                                                     

13       Found 2684 external pips (2239 real, 445 fake).                            

14  - analyse isolation boundary...OK                                               

15       Region (x,y): (10,0) to (42,45)                                            

16  - detect io pips...OK                                                           

17       Found 2453 io pips (2139 real, 314 fake).                                  

18 Analysis finished successfully. 

Listing 7- Fragment of the SeReCon debug console output which is related to blank design 

analysis. 
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1 ERDB_analyser v.1.0 (release Jan 29 2010, 18:40:42)                              

2 - read header                                                                   

3     Header data:                                                                     

4        - HeaderLength    : 91                                                        

5        - BitstreamLength : 150968                                                    

6        - DesignName      : prm_multiplier_partial.ncd                                

7        - PartName        : 5vlx50tff1136                                             

8        - Date            : 2009/10/27                                                

9        - Time            : 19:14: 0                                                  

10 - parse bitstream...OK                                                          

11       Region (x,y): (10,0) to (42,43)                                            

12  - detect external pips...OK                                                     

13       Found 2709 external pips (2264 real, 445 fake).                            

14  - analyse isolation boundary...OK                                               

15       Region (x,y): (10,0) to (42,45)                                            

16  - detect io pips...OK                                                           

17       Found 2478 io pips (2164 real, 314 fake).                                  

18 Analysis finished successfully. 

Listing 7- Fragment of the SeReCon debug console output which is related to Multiplier IP core 

analysis. 

 

 

 

1 ERDB_analyser v.1.0 (release Jan 29 2010, 18:40:42)                              

2 - read header                                                                   

3     Header data:                                                                     

4        - HeaderLength    : 88                                                        

5        - BitstreamLength : 165696                                                    

6        - DesignName      : prm_encoder_partial.ncd                                   

7        - PartName        : 5vlx50tff1136                                             

8        - Date            : 2009/10/27                                                

9        - Time            : 19:20:24                                                  

10 - parse bitstream...OK                                                          

11       Region (x,y): (10,0) to (42,43)                                            

12  - detect external pips...OK                                                     

13       Found 3330 external pips (2885 real, 445 fake).                            

14  - analyse isolation boundary...OK                                               

15       Region (x,y): (10,0) to (42,45)                                            

16  - detect io pips...OK                                                           

17       Found 3064 io pips (2750 real, 314 fake).                                  

18 Analysis finished successfully. 

Listing 7- Fragment of the SeReCon debug console output which is related to AES Encoder IP 

core analysis. 
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19 ERDB_analyser v.1.0 (release Jan 29 2010, 18:40:42)                              

20 - read header                                                                   

21     Header data:                                                                     

22        - HeaderLength    : 88                                                        

23        - BitstreamLength : 168576                                                    

24        - DesignName      : prm_decoder_partial.ncd                                   

25        - PartName        : 5vlx50tff1136                                             

26        - Date            : 2009/10/27                                                

27        - Time            : 19:27: 4                                                  

28 - parse bitstream...OK                                                          

29       Region (x,y): (10,0) to (42,43)                                            

30  - detect external pips...OK                                                     

31       Found 3869 external pips (3424 real, 445 fake).                            

32  - analyse isolation boundary...OK                                               

33       Region (x,y): (10,0) to (42,45)                                            

34  - detect io pips...OK                                                           

35       Found 3594 io pips (3280 real, 314 fake).                                  

36 Analysis finished successfully. 

Listing 7- Fragment of the SeReCon debug console output which is related to AES Decoder IP 

core analysis. 

 

 

 

1 ERDB_verifier v.1.0 (release Jan 29 2010, 18:40:42)                              

2 - get IP core report 'add.d01'...OK                                             

3 - make diff with system state...OK                                              

4     Verification report:                                                             

5         - IP core configuration region: (10,0 - 42,43)...OK                             

6         - IP core isolation region    : (10,0 - 42,45) ...OK                            

7         - external pips found         :      2699  (2254 real, 445 fake)                

8         - unmatched ext pips          :        15  (15 real, 0 fake)                    

9         - io pips found               :      2468  (2154 real, 314 fake)                

10         - unmatched io pips           :        15  (15 real, 0 fake) 

11                     

12         !!!WARNING!!! 

13         Potentially dangerous IP core!!! 

14  

15 - write report file 'add.t01'...OK                                              

16 Verification finished without errors.                                            

17 IP core 'add' violates security requirements for reconfigurable region.           

18  - check security bypass flag...OFF                                              

19 IP core activation cancelled due to security risk.                               

20  - roll back license update...OK                                                 

21 Waiting for ACK...OK                                                             

22 Waiting for NULL...OK                                                            

23 PCIe command finished. 

Listing 7- Fragments of the SeReCon debug console output which is related to verification of 

Adder IP core compatibility with the current RC system state (during IP core activation). 



 Chapter 7 - Case Study: SeReCon Architecture Implementation 

– 173 – 

 

 

1 ERDB_verifier v.1.0 (release Jan 29 2010, 18:40:42)                              

2 - get IP core report 'blank.d03'...OK                                           

3 - make diff with system state...OK                                              

4     Verification report:                                                             

5         - IP core configuration region: (10,0 - 42,43)...OK                             

6         - IP core isolation region    : (10,0 - 42,45) ...OK                            

7         - external pips found         :      2684  (2239 real, 445 fake)                

8         - unmatched ext pips          :         0  (0 real, 0 fake)                     

9         - io pips found               :      2453  (2139 real, 314 fake)                

10         - unmatched io pips           :         0  (0 real, 0 fake)                     

11 Verification finished without errors. 

12 IP core 'blank' is safe.                                                         

13  - get IP core from "blank.i03" file...OK                                        

14  - check bitstream header...OK                                                   

15  - disable BM interface...OK                                                     

16  - load IP core to ICAP...OK                                                     

17  - update system state...OK                                                      

18 IP core 'blank.i03' (msg 03) activated.                                          

19 - enable BM interface...OK                                                      

20 Waiting for ACK...OK                                                             

21 Waiting for NULL...OK                                                            

22 PCIe command finished. 

Listing 7- Fragments of the SeReCon debug console output which is related to verification of 

blank design compatibility with the current RC system state (during IP core activation). 

 

1 ERDB_verifier v.1.0 (release Jan 29 2010, 18:40:42)                              

2 - get IP core report 'mul.d05'...OK                                             

3 - make diff with system state...OK                                              

4     Verification report:                                                             

5         - IP core configuration region: (10,0 - 42,43)...OK                             

6         - IP core isolation region    : (10,0 - 42,45) ...OK                            

7         - external pips found         :      2709  (2264 real, 445 fake)                

8         - unmatched ext pips          :        25  (25 real, 0 fake)                    

9         - io pips found               :      2478  (2164 real, 314 fake)                

10         - unmatched io pips           :        25  (25 real, 0 fake)   

11                     

12         !!!WARNING!!! 

13         Potentially dangerous IP core!!! 

14  

15 - write report file 'mul.t05'...OK                                              

16 Verification finished without errors. 

17 IP core 'mul' violates security requirements for reconfigurable region.           

18  - check security bypass flag...OFF                                              

19 IP core activation cancelled due to security risk.                               

20  - roll back license update...OK                                                 

21 Waiting for ACK...OK                                                             

22 Waiting for NULL...OK                                                            

23 PCIe command finished. 

Listing 7- Fragments of the SeReCon debug console output which is related to verification of 

Multiplier IP core compatibility with the current RC system state (during IP core activation). 
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1 ERDB_verifier v.1.0 (release Jan 29 2010, 18:40:42)                              

2 - get IP core report 'enc.d07'...OK                                             

3 - make diff with system state...OK                                              

4     Verification report:                                                             

5         - IP core configuration region: (10,0 - 42,43)...OK                             

6         - IP core isolation region    : (10,0 - 42,45) ...OK                            

7         - external pips found         :      3330  (2885 real, 445 fake)                

8         - unmatched ext pips          :       646  (646 real, 0 fake)                   

9         - io pips found               :      3064  (2750 real, 314 fake)                

10         - unmatched io pips           :       611  (611 real, 0 fake)                   

11                     

12         !!!WARNING!!! 

13         Potentially dangerous IP core!!! 

14  

15 - write report file 'enc.t07'...OK                                              

16 Verification finished without errors. 

17 IP core 'enc' violates security requirements for reconfigurable region.           

18  - check security bypass flag...OFF                                              

19 IP core activation cancelled due to security risk.                               

20  - roll back license update...OK                                                 

21 Waiting for ACK...OK                                                             

22 Waiting for NULL...OK                                                            

23 PCIe command finished. 

Listing 7- Fragments of the SeReCon debug console output which is related to verification of 

AES encoder IP core compatibility with the current RC system state (during IP core activation). 

 

1 ERDB_verifier v.1.0 (release Jan 29 2010, 18:40:42)                              

2 - get IP core report 'dec.d09'...OK                                             

3 - make diff with system state...OK                                              

4     Verification report:                                                             

5         - IP core configuration region: (10,0 - 42,43)...OK                             

6         - IP core isolation region    : (10,0 - 42,45) ...OK                            

7         - external pips found         :      3869  (3424 real, 445 fake)                

8         - unmatched ext pips          :      1185  (1185 real, 0 fake)                  

9         - io pips found               :      3594  (3280 real, 314 fake)                

10         - unmatched io pips           :      1141  (1141 real, 0 fake)                  

11                     

12         !!!WARNING!!! 

13         Potentially dangerous IP core!!! 

14  

15 - write report file 'dec.t09'...OK                                              

16 Verification finished without errors. 

17 IP core 'dec' violates security requirements for reconfigurable region.           

18  - check security bypass flag...OFF                                              

19 IP core activation cancelled due to security risk.                               

20  - roll back license update...OK                                                 

21 Waiting for ACK...OK                                                             

22 Waiting for NULL...OK                                                            

23 PCIe command finished.  

Listing 7- Fragments of the SeReCon debug console output which is related to verification of 

AES decoder IP core compatibility with the current RC system state (during IP core activation). 
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7.5. Proposal: SeReCon Application Within The SDR Device 

7.5.1. Introduction 

This section describes the SDR device prototype and proposes how SeReCon 

element can be included within the SDR RC system. Modifications to the SeReCon 

implementation required to integrate SeReCon within the prototype SDR device are 

also described. 

7.5.2. SDR Device Block Diagram 

Figure 7-a illustrates the SDR device prototype
79

. The SDR device includes a 

radio interface, communication interface and the RC System-in-Package (SIP). 

Figure 7-b highlights System-in-Package (SiP) internals, e.g. embedded FPGA 

fabrics. Figure 7- illustrates the SiP block diagram. The SIP includes a number of 

FPGAs which are used for digital RF signal processing and the SDR application 

which is implemented in the Linux-based embedded control system running on an 

ARM CPU. The SIP block diagram also includes the suggested location of the 

SeReCon element which could manage secure FPGA reconfiguration within the SDR 

system and could provide SDR IP core protection. Proposed integration with the 

CADBUS interface and FPGA ICAPs is also highlighted. 

 

 

Figure 7- a. the SDR device hardware prototype. b. SDR System-in-Package internals. (Source: 

VT CCM Lab).  

                                                 
79

 SDR device prototype and block diagram included with the permission of Configurable Computing 

Lab, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA. 
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Figure 7- SDR block diagram and the suggested location of the SeReCon element . 

7.5.3. Proposed SeReCon Modifications For Embedding Within The 

Prototype SDR System 

Integrating SeReCon within the prototype SDR device would require only minor 

changes in the SeReCon hardware and SDR prototype. Modifications include an 

updated SeReCon communication/control interface and extension of the SeReCon 

interface in order to enable and control multiple ICAPs in remote FPGAs (see Figure 

7-). Also, a SeReCon firmware update and small configuration update of SIP FPGAs 

are also required in order to support ICAP-based reconfiguration using SeReCon 

which is implemented in the remote FPGA (see Figure 7-). The required 

modifications are outlined below. 

SeReCon communication/control interface. The SDR application uses a 

simple Control-Address-Data (CADBUS) bus-based communication interface which 

provides register-based access to the SDR IP cores implemented in the SIP FPGAs 

(Figure 7-). The SeReCon element also uses a register-based control interface 

(SeReCon PCIe interface IP core) in order to communicate with the RC system 

Configuration Cntrl IP core (Figure 7-). Thus, an additional wrapper IP core is 

required in order to provide an interface bridge between the CADBUS and SeReCon. 

Extension of the SeReCon interface. The SeReCon prototype uses a single 

ICAP element which is connected internally. In the SDR application, SeReCon is 

ARM 

CPU

ADC
FPGA #3

A

D

C

 

I

F

CADBUS IF

ALTERA

FPGA

FPGA #4

SDR  System-in-a-Package (SiP)

DAC FPGA #1

D

A

C

 

I

F

CADBUS IF

FPGA #2

CADBUS IF

CADBUS IF

VRegs

RAMFLASH

RECEIVER

TRANSMITTER CONTROLLER

Ethernet

Board Support Package

MontaVista LINUX

C, C++, Python

SDR Application

SOFTWARE STACKSeReCon

DEBUG

UART

IC
A

P
 

W
ra

p
p

e
r

01

ICAP 2ICAP 1

0 1addr

RD

WR

STAT

CNTL

DTA OUT

DTA IN

Registers

SeReCon security perimeter

1 0

ICAP 3

0 1



 Chapter 7 - Case Study: SeReCon Architecture Implementation 

– 177 – 

required to control multiple ICAPs in external FPGAs. Thus, SeReCon should 

provide an external ICAP interface with multiple enable signals which could select 

the active (FPGA) ICAP, e.g. using the GPIO IP core which is available from Xilinx 

EDK. Multiple ICAP support also requires changes to the SeReCon firmware which 

must be updated in order to facilitate multiple FPGA configurations, e.g. through the 

implementation of the RC system state context switching. Static configuration update 

of the SIP FPGAs is also required in order to provide exclusive SeReCon access to 

ICAP.  

7.6. Chapter Summary 

This chapter reports on the implementation and application of the prototype 

SeReCon-enabled RC system using Xilinx Virtex-5 FPGA technology. The 

implementation of SeReCon internal elements, the main RC system elements and 

example PR IP cores is described. Analysis of the SeReCon FPGA resource usage 

and RC system prototype implementation issues is included. 

The implemented RC system uses four IP cores in order to demonstrate the 

SeReCon-based PR, e.g. 32-bit Adder, 32-bit Multiplier, 128-AES Cipher and 128-

bit AES Decipher. The VHDL model for each of these IP cores is included in the 

thesis DVD. 

The SeReCon IP core is a CPU-based system which is implemented using the 

Xilinx EDK software. SeReCon uses an embedded 32-bit MicroBlaze processor 

which is operating at 125 MHz. 

The chapter also reports the SeReCon demonstrator which includes the 

demonstrator application, implemented in Python and executed on the Intel server. 

The RC system communication library of the SeReCon demonstrator and the host-

side SeReCon API are highlighted. The Intel server includes a Xilinx Virtex-5 FPGA 

evaluation board which contains the prototype of SeReCon-enabled RC system (and 

SeReCon IP core), connected to the host server using the PCIe interface. This chapter 

reports and describes the SeReCon-enabled RC system prototype, including 

implementation results. The demonstrator application results confirm the feasibility 

of the SeReCon-based secure reconfiguration in the largest Xilinx Virtex-6 FPGAs 

(e.g. XC6VLX760). The chapter provides detailed insight into the operation of the 

prototype RC system during the SeReCon (and EIDR) initialisation, IP core 

installation and activation.  

The demonstrator application shows that even genuine IP cores, when developed 

in multi-party environment, could include implicit communication channels and 

could introduce security risks. 

This chapter also describes the SDR device prototype and proposes how the 

SeReCon element can be included within the SDR RC system. Modifications to the 

SeReCon implementation required to integrate SeReCon within the prototype SDR 

device are also highlighted. 
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 Chapter 8.  Conclusions And Future Work 

8.1. Introduction 

This thesis contributes to IP security and IP usage accounting in PR Xilinx 

FPGA-based RC systems. This chapter concludes the thesis and proposes future 

work. 

8.2. RC Systems And Security Risks In The Multi-Party 

Design Environment 

This thesis reviews and describes the RC system application domain and 

advantages offered by RC systems over general purpose processors and ASICs. 

FPGA technology and architectures are introduced and the FPGA-based RC system 

design flow and PR are described. 

This thesis investigates secure IP management in RC systems and describes 

FPGA-based RC systems in context of SDR application. The SDR application 

exploits the PR technology in order to update RC system configuration using 

hardware components (IP cores) which are obtained from third party IP vendors 

within the multi-player design environment. 

A consequence of the multi-player environment is an increased risk to system 

integrity and to design IP protection, e.g. design IP theft, cloning, counterfeiting and 

tampering. Also, current IP infringement countermeasures do not support IP core 

usage accounting and license enforcement in a multi-party design flow and in active 

(deployed) PR-enabled RC systems. This approach hinders massive-scale adoption 

of third-party IP cores in high assurance RC systems. 

The provision of IP core transaction-based and metered access licensing models 

in addition to a protection model for PR systems could increase the use of IP cores in 

reconfigurable consumer devices. A trusted license enforcement scheme requires 

methods for reliable control of IP core utilisation in the RC system, e.g. enforcement 

of counted IP core activation and IP core run time metering. 

This thesis reviews the state of the art in RC security. A motivating example on 

security risks in PR FPGA systems is provided. Risks of the malicious IP core 

designs and threat of rogue EDA software also are highlighted. Security 

countermeasures supported by Xilinx FPGA fabric are described prior to critical 

examination of the reported work on the RC system integrity protection. The IP theft 

countermeasures and the principle of IP licensing models are also described. 

Directions of research activity in the field of RC systems security are two-fold, 
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focusing on system integrity protection and design IP protection. System integrity 

protection measures aim towards seamless integration of multiple externally-

developed IP cores into a stable and trustworthy system. Design IP privacy 

protection must be ensured to commercially available third-party IP core vendors. 

This is not ensured where the system integrator is in full control of, and has 

unrestricted access to, all design modules, including third-party IP cores. Current 

design IP protection methods focus on the confidentiality of the IP core 

implementation, mainly by using authentication and encryption protocols, though 

without considering the risks caused by including erroneous or malicious IP cores. 

This exhibits contradictory goals of system protection (integrity) and design IP 

protection (privacy). Also, none assume a system model which includes IP protection 

of untrusted third-party cores while guaranteeing system integrity, e.g. protecting 

against design errors in third-party IP. Thus, new IP-aware methods for development 

of trustworthy systems are required. 

8.3. SeReCon, A RoT For PR FPGAs 

The thesis proposes SeReCon, a RoT for PR FPGAs with RC system usage 

accounting. The requirements of credentials storage in a secure RoT and the 

implementation of usage accounting for RC systems are reviewed. The thesis 

proposes and describes the EIDR element, which is a novel extension to the FPGA 

fabric. EIDR provides non-volatile storage of RoT credentials and RC system usage 

data. Techniques for storage of the RoT security credentials and RC system usage 

accounting data in modern FPGAs are also reviewed. The suitability of SRAM-based 

configuration memory is discussed. The EIDR element prototype implementation in 

a Virtex-5 LXT device (ML505 Board) and the register-based EIDR control/status 

interface (which is implemented in the FPGA user-logic) are reported prior to 

description of EIDR API functions, which are provided by the SeReCon EIDR 

driver. 

The thesis proposes secure multi-party RoT credentials generation process and 

highlights activity of SeReCon and various parties (e.g. SI, TA, IPV) during RoT 

initialisation. The proposed RoT initialisation process supports public audit of the 

RC device security (device, source and implementation files review) and guarantees 

exclusive and authenticated access to the sensitive part of the RC system security 

credentials only for the legitimate system, e.g. SeReCon RoT. The SeReCon-based 

RoT is immune to credentials leakage as a result of a future successful attack on the 

TA. 
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8.4. FDAT Framework For Low-Level FPGA Design 

Analysis 

The thesis proposes FPGA Design Analysis Tool (FDAT) framework for low-

level FPGA design analysis. Risks in a multi-party PR design flow are discussed. 

The thesis investigates the issue of implicit communication channels which could be 

created during PR using third party IP cores. The need for low (bitstream) level 

design analysis is highlighted and FDAT is proposed and applied as a solution. 

FDAT is the first available toolset to provide high-level and unrestricted access 

to the low-level description of the Xilinx FPGA fabric and the user design at the 

netlist- and bitstream-level. The GUI front-end extends FDAT functionality by 

providing customised visualisations of the design and FPGA resources. Use of a 

Python programming language provides clean and self-documenting code (algorithm 

syntax), unrestricted tool customisation and defines higher-level abstractions for 

design analysis.  

FDAT has been developed around the concept of component and recipe 

separation. Components provide the necessary data and abstract models (design, 

device or bitstream), while recipes describe policies (algorithms) defining data model 

usage. This separation enables the reuse of high-level (model-specific) recipes which 

can be ported to other systems, e.g. SeReCon. Also, the hierarchical recipe structure 

supports a range of high-level analysis flows and offers virtually unlimited 

functionality extensions, thus supporting domain-specific design analysis. 

FDAT enables the generation of the ERDB embedded database containing a 

minimal description of the FPGA fabric and bitstream for use by the SeReCon IP 

core to perform on-line verification of IP core routing. The FDAT framework offers 

a generic and unified support for analysis of designs targeting all Xilinx 

architectures. The FDAT framework has been tested using Virtex-II Pro and Virtex-5 

LXT designs and device descriptions. 

The thesis reports porting FDAT functionality to SeReCon for on-line Virtex-5 

bitstream analysis. Considerations in creating an ERDB (including FPGA fabric 

description) are highlighted. The feasibility and accuracy of the ERDB-based IP core 

routing verification is demonstrated. 
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8.5. SeReCon Initialisation And Operation For Secure FPGA 

Reconfiguration 

The thesis proposes the SeReCon initialisation which provides secure FPGA 

reconfiguration and usage accounting, e.g. SeReCon-based IP core installation, 

activation and deactivation. The internal state diagram and the block diagram of the 

SeReCon IP core are also described and the SeReCon firmware stack is highlighted. 

The thesis describes the SeReCon RoT operations during the RoT initialisation 

process which occurs at the trusted TA site in order to minimise the risk of malicious 

device tampering and support independent scrutiny, e.g. through public audit. The 

SeReCon initialisation process includes EIDR credentials initialisation, RC system 

security credentials generation and publication. SeReCon exploits the EIDR element 

in order to provide design IP protection and executes in-system design analysis of 

new IP cores to maintain the integrity of the RC system. 

IP core installation is performed online, once for every new IP core. A SafeLock 

scheme for IP core security credentials protection is highlighted. The process of 

establishing the shared encryption key between the IPV and SeReCon, using the 

Diffie-Hellmann (DH) shared key agreement protocol is also described. 

During the IP core activation process, SeReCon performs verification of the IP 

core compliance with the current RC system state in order to protect the integrity of 

the BaseSFC and to countermeasure the risk of implicit communication channel 

setup. IP core license validation and RC system reconfiguration are also described. 

License validation prior to RC system PR enforces both transaction based and 

metered usage IP business models. The IP core deactivation process removes the 

remains of previously activated IP cores which could interact with the current system 

configuration, thus leading to RC system integrity issues. IP core deactivation 

ensures that the unused IP core configuration is removed from the FPGA 

configuration memory. 

8.6. Case Study: SeReCon Architecture Implementation And 

Proposed Application In SDR Device 

The thesis reports the SeReCon case study which demonstrates SeReCon 

architecture implementation, and proposes the potential SeReCon application in the 

SDR device. The prototype of the SeReCon-enabled RC system is implemented 

using the Xilinx Virtex-5 FPGA. The implementation of SeReCon internal elements, 

the main RC system elements and example PR IP cores is described. The 

implemented RC system uses four IP cores in order to demonstrate the SeReCon-

based PR, e.g. 32-bit Adder, 32-bit Multiplier, 128-AES Cipher and 128-bit AES 

Decipher. The SeReCon IP core is a CPU-based system which is implemented using 
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the Xilinx EDK software. SeReCon uses an embedded 32-bit MicroBlaze processor 

which is operating at 125 MHz. Analysis of the SeReCon FPGA resource usage is 

included. The RC system prototype implementation issues and suggested future work 

also are highlighted. The VHDL sources for each of implemented (non-proprietary) 

IP cores are included in the thesis DVD. 

The thesis also reports the SeReCon demonstrator which includes demonstrator 

application, the RC system communication library and SeReCon API. The SeReCon 

demonstrator is implemented in Python and executed on the Intel server. 

Demonstrator application results confirm feasibility of the SeReCon-based secure 

reconfiguration in largest Xilinx Virtex-6 FPGAs (e.g. XC6VLX760). The thesis 

provides detailed insight into the operation of the prototype RC system during the 

SeReCon (and EIDR) initialisation, IP core installation and activation.  

The demonstrator application shows that even genuine IP cores, when developed 

in multi-party environment, could include implicit communication channels and 

could introduce security risks. 

This thesis also describes the SDR device prototype and proposes how the 

SeReCon element can be included within the SDR RC system. Modifications to the 

SeReCon implementation required to integrate SeReCon within the prototype SDR 

device are also highlighted. 

8.7. Future Research Directions 

Future work could investigate risks of implicit communication channel 

exploiting design clock signals as the communication medium. The motivating 

example included in this thesis suggests that further research is required in this area, 

and that further research on RC systems security could focus on SeReCon 

optimisation and FDAT functional extension. 

Future work could optimise the performance and robustness of the SeReCon IP core. 

The following work packages are suggested: 

 ERDB structure optimisation, e.g. generalisation of FPGA routing types and the 

use of device-specific data field sizes (e.g. bit fields) could be considered in 

order to reduce SeReCon firmware footprint. 

The ERDB Analyser does not support the detection of IP core internal design 

errors, e.g. short circuits between signals. Future work could improve the ERDB 

Analyser robustness by including this functionality. 

The ERDB Verifier uses a single static and a predefined reconfigurable region in 

order to support the EAPR design flow. In future work an extension of the IP 

core verification is suggested in order to incorporate a model of multiple cores 

within the reconfigurable region. 
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 External memory encryption. Further work could investigate the use of external 

RAM encryption as a complementary approach to the use of scarce FPGA 

internal memory (BRAM) resources for the SeReCon firmware storage. 

  The prototype SeReCon implementation does not support data authentication, 

e.g. authenticated-encryption. Only the Cipher Block Chaining encryption-mode 

is supported. A solution could be to include an additional authentication field in 

the IP core entry in the SafeLock data structures. Practical analysis of trade-offs 

between the encryption methods used and RC system reconfiguration time could 

also be investigated. 

 The TRNG macrocell architecture could be optimised towards the architecture 

of Virtex-5 (or Virtex-6) CLB. 

 The software ECC implementation could be updated in order to include the 

hardware accelerator for large number ECC operations. This would improve 

SeReCon performance during the DH shared key calculation. SeReCon could 

also support longer ECC keys. 

 The EIDR could be implemented using an external FPGA board which is 

connected to the RC system configuration interface (e.g JTAG) in order to detect 

BaseSFC tampering. 

 A more robust PCIe interface could be implemented in order to support multi-

word (burst) read/write PCIe transactions. 

 A new, open-source CPU architecture is suggested for future SeReCon 

implementations. Also, the SeReCon architecture and firmware is not hardened 

against power analysis attacks which could expose the SeReCon security 

credentials, e.g. the EIDR contents or the SafeLock encryption keys. Thus, 

future work could also support SeReCon firmware and architecture modification 

in order to include DPA-preventing hardware primitives (e.g. WDDL logic) and 

algorithms (branch balancing etc). 

Future work could also focus on the FDAT framework extension. The following 

work packages are suggested: 

 The proposed FDAT framework offers increased productivity in low-level 

design analysis by seamlessly extending the Xilinx FPGA design flow. Similar 

tools could be developed for other FPGA fabrics, i.e. Altera, Actel etc. 

 Future FDAT releases could provide support for industry standard open design 

netlist formats (e.g. EDIF) and standard XML-based IP core descriptions (e.g. 

IP-XACT). 

 Additional FDAT modules could also be developed in order to support FDAT 

communication and debug of RC systems, e.g.  FDAT JTAG module etc. Also, 

research on FDAT modules supporting RC system PR and debugging, e.g. by 

providing write access to design XDL netlist or implementing various phases of 

the FPGA design flow (design placers & routers, JBITS-like functionality etc) 

could increase RC systems design productivity. 
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Appendix A – List of  Reconfigurable Computing 
architectures 

 
This appendix lists various technologies which are used in RC systems. 

 

 3P plus 1 Technology 

 Achronix Semiconductor Corp 

 Ambric 

 AsceniumCorp 

 Aspex 

 ChipWrights 

 Clearspeed 

 Coherent Logix 

 Connex 

 Context Corporation 

 Cradle 

 Element CXI 

 IP Flex 

 IceraSemiconductor Ltd 

 IkoaCorporation 

 IntellasysCorporation 

 M2000 

 MathStar 

 Mesh Semiconductor  

 Morphotech 

 PACT 

 PicochipDesigns 

 Pluarity 

 Rapport 

 Raytheon Monarch 

 ReCore 

 Sandbridge 

 Silicon Hive 

 Spiral Gateway 

 Stream Processors 

 Stretch 

 Systemonic 

 Tabula 

 Tilera 

 Videantis 

 VivaceSemiconductor 

 XMOS Semiconductor 

 Xelerated 

 

Source: B. Nelson, “Productivity Issues in FPGA Application Development”, 

Keynote at 5th International Workshop on Applied Reconfigurable Computing, 

Karlsruhe, Germany, March 2009. 
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Appendix B – EIDR source code (eidr.vhdl)  

This appendix provides the reference EIDR source code in VHDL. 

 

---------------------------------------------------------------------------------- 

-- Company:  BIRC Group, NUI Galway, Ireland 

-- Author:  Krzysztof Kepa 

-- Copyright: Krzysztof Kepa (2009). All rights reserved. 

-- Copying, using and modification without author's written permission PROHIBITED. 

--  

-- Create Date: 14:53:05 11/18/2009  

-- Design Name: IDR 

-- Module Name: EIDR reference design - Behavioral  

-- Project Name: Secure Reconfiguration Controller (SeReCon) 

-- Target Devices: Virtex-5 LXT 

-- Tool versions: 9.2.04i_PR11 

-- Description: This file contains the reference implementation of the Extended ID 

--   Register (EIDR). 

-- Revision:  

-- Revision 1.00 - Reference implementation 

---------------------------------------------------------------------------------- 

 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.STD_LOGIC_ARITH.ALL; 

use IEEE.STD_LOGIC_UNSIGNED.ALL; 

 

entity id_reg_top is  

  Generic( MAC_WIDTH : integer := 256;--taken from V6CG 

    CREDENTIALS_WIDTH : integer := 128;--useAES128 

    ACC_WIDTH : integer := 28; 

    MNC_WIDTH : integer := 28; 

    LTC_WIDTH : integer := 56; 

    UTC_WIDTH : integer := 56); 

    Port ( clk : in  STD_LOGIC; 

           rst : in  STD_LOGIC; 

           wr : in  STD_LOGIC; 

           done : in  STD_LOGIC; 

     update : in  STD_LOGIC; 

           mac : in  STD_LOGIC_VECTOR (MAC_WIDTH-1 downto 0); 

           data : in  STD_LOGIC_VECTOR (CREDENTIALS_WIDTH-1 downto 0); 

           credentials : out  STD_LOGIC_VECTOR (CREDENTIALS_WIDTH-1 downto 0); 

           device_restarts : out  STD_LOGIC_VECTOR (ACC_WIDTH-1 downto 0); 

           lifetime : out  STD_LOGIC_VECTOR (LTC_WIDTH-1 downto 0); 

     msg_no : out  STD_LOGIC_VECTOR (MNC_WIDTH-1 downto 0); 

           uptime : out  STD_LOGIC_VECTOR (UTC_WIDTH-1 downto 0)); 

end id_reg_top; 

 

architecture Behavioral of id_reg_top is 

 

 signal kr_data : STD_LOGIC_VECTOR (MAC_WIDTH-1 downto 0); 

 signal cr_data : STD_LOGIC_VECTOR (CREDENTIALS_WIDTH-1 downto 0); 

 signal device_restarts_cnt : STD_LOGIC_VECTOR (ACC_WIDTH-1 downto 0); 

 signal lifetime_cnt : STD_LOGIC_VECTOR (LTC_WIDTH-1 downto 0); 

 signal msg_no_cnt : STD_LOGIC_VECTOR (MNC_WIDTH-1 downto 0); 

 signal uptime_cnt : STD_LOGIC_VECTOR (UTC_WIDTH-1 downto 0); 

 signal equal_en : STD_LOGIC; 

 signal auth_cfg_ok : STD_LOGIC; 

 signal auth_update : STD_LOGIC; 

 signal device_restarts_cnt_en : STD_LOGIC; 

 

 type state_type is (FSM_IDLE, FSM_INIT, FSM_ACTIVATED);  

   signal state, next_state : state_type;  

   signal auth_cfg_ok_en_i : std_logic; 

 

 function is_zero(input_vector : in STD_LOGIC_VECTOR) return std_logic is 
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  variable result : STD_LOGIC := '1'; 

 begin 

  for i in input_vector'low to input_vector'high loop 

   if '0' /= input_vector(i) then 

    result := '0'; 

   end if; 

  end loop; 

  return result; 

 end is_zero; 

 

begin 

 

EQUAL_EN_SIGNAL: 

 equal_en <= '1' when (mac = kr_data and '0'=is_zero(kr_data)) else '0'; 

  

AUTH_CFG_OK_SIGNAL: 

 auth_cfg_ok <= '1' when done='1' and equal_en = '1' else '0'; 

  

CREDENTIAL_ENABLE: 

 credentials <= cr_data when auth_cfg_ok='1' else (others=>'0'); 

 

LTC_ENABLE: 

 lifetime <= lifetime_cnt when auth_cfg_ok='1' else (others=>'0'); 

 

AAC_ENABLE: 

 device_restarts <= device_restarts_cnt when auth_cfg_ok='1' else 

(others=>'0'); 

  

FRC_ENABLE: 

 uptime <= uptime_cnt; 

  

AUTH_UPDATE_SIGNAL: 

 auth_update <= auth_cfg_ok and update; 

 

MNC_ENABLE: 

 msg_no <= msg_no_cnt when auth_cfg_ok='1' else (others=>'0'); 

 

KR : process (clk, rst) --KEY_REGISTER 

 begin 

  if rst='1' then    

   kr_data <= (others => '0'); 

  elsif (clk'event and clk='1') then  

   if wr = '1' then  

    kr_data <= mac; 

   end if;  

  end if; 

 end process; 

  

CR : process (clk, rst) --CREDENTIAL_REGISTER 

 begin 

  if rst='1' then    

   cr_data <= (others => '0'); 

  elsif (clk'event and clk='1') then  

   if wr = '1' then  

    cr_data <= data; 

   end if;  

  end if; 

 end process; 

 

AAC: process (clk, rst) --AUTHENTICATED_CONFIGURATIONS_COUNTER 

 begin 

  if rst='1' then  

   device_restarts_cnt <= (others => '0'); 

  elsif clk='1' and clk'event then 

   if device_restarts_cnt_en = '1' then 

    device_restarts_cnt <= device_restarts_cnt + 1; 

   end if; 

  end if; 

 end process; 

 

LTC: process (clk, rst) --LIFETIME_COUNTER 
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 begin 

  if rst='1' then  

   lifetime_cnt <= (others => '0'); 

  elsif clk='1' and clk'event then 

   if auth_cfg_ok='1' then 

    lifetime_cnt <= lifetime_cnt + 1; 

   end if; 

  end if; 

 end process; 

 

MNC: process (clk, rst) --MSG_NO_COUNTER 

 begin 

  if rst='1' then  

   msg_no_cnt <= (others => '0'); 

  elsif clk='1' and clk'event then 

   if auth_update='1' then 

    msg_no_cnt <= msg_no_cnt + 1; 

   end if; 

  end if; 

 end process; 

 

FRC: process (clk, rst, done) --FREE_RUNNING_COUNTER 

 begin 

  if (rst='1' or done='0') then  

   uptime_cnt <= (others => '0'); 

  elsif clk='1' and clk'event then 

   uptime_cnt <= uptime_cnt + 1; 

  end if; 

 end process; 

 

ONE_SHOT_SYNC_PROC: process (clk) 

   begin 

      if (clk'event and clk = '1') then 

         if (rst = '1') then 

            state <= FSM_IDLE; 

            device_restarts_cnt_en <= '0'; 

         else 

            state <= next_state; 

            device_restarts_cnt_en <= auth_cfg_ok_en_i; 

         end if;         

      end if; 

   end process; 

 

ONE_SHOT_NEXT_STATE_DECODE: process (state, auth_cfg_ok) 

   begin 

      next_state <= state; 

      case (state) is 

         when FSM_IDLE => 

            if auth_cfg_ok = '1' then 

               next_state <=  FSM_INIT; 

            end if; 

         when others => 

            next_state <= FSM_ACTIVATED; 

      end case;       

   end process; 

 

ONE_SHOT_OUTPUT_DECODE: process (state) 

   begin 

      if state = FSM_INIT then 

         auth_cfg_ok_en_i <= '1'; 

      else 

         auth_cfg_ok_en_i <= '0'; 

      end if; 

   end process; 

 

end Behavioral;
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Appendix C – ERDB C Data Structures (erdb.h) 

This appendix  provides the ERDB header file (erdb.h) which defines ERDB 

data structures. 

 

1 /* 

2 ** Author:   Krzysztof Kepa 

3 * Company:  BIRC Group, NUI Galway, Ireland 

4 *   Copyright: Krzysztof Kepa (2010). All rights reserved. Copying, using and 

5 * implementation without author's written permision PROHIBITED. 

6 **/ 

7  

8 #ifndef __ERDB_H__ 

9 #define __ERDB_H__ 

10   

11     typedef struct { 

12         unsigned char x; 

13         unsigned char y; 

14         unsigned char x_next; 

15         unsigned char y_next; 

16         unsigned char x_offset; 

17         unsigned char y_offset; 

18         unsigned char x_times; 

19         unsigned char y_times; 

20     } tilegroup_entry_t; 

21  

22     typedef struct { 

23         unsigned int len; 

24         tilegroup_entry_t* tilegroup_entry; 

25     } tilegroup_t; 

26  

27     typedef struct { 

28         int x; 

29         int y; 

30     } shape_tap_t; 

31  

32     typedef struct { 

33         unsigned int len; 

34         shape_tap_t* tap; 

35     } shape_t; 

36  

37     typedef struct { 

38        unsigned char mna; //cfg mna 

39        unsigned char word;//cfg word offset (or number in some cases!) 

40        unsigned int  word_mask;//actual word mask 

41     } cfg_data_t; 

42  

43     typedef struct { 

44        unsigned int wire1_index; //offset in WIRE_NAME_DB 

45        unsigned char dir_index;  //offset in PIP_DIR_DB 

46        unsigned int wire2_index; //offset in WIRE_NAME_DB 

47        cfg_data_t*   cfg_words; 

48        unsigned char cfg_words_cnt; 
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49     } pip_entry_t; 

50  

51     typedef struct { 

52        unsigned int pips_cnt;//number of pips in the tilegroup 

53        pip_entry_t* pips;//pip entries 

54        tilegroup_t* tilegroup;//related tilegroup 

55     } tile_type_entry_t; 

56  

57     typedef struct { 

58            unsigned int tilegroups_cnt;//number of tiletype grups 

59            unsigned char tiletype_index;// offset in TILE_TYPE_DB 

60            tile_type_entry_t* tilegroups;//related tiletype group entry 

61     } tile_type_t; 

62      

63     typedef struct { 

64        shape_tap_t  tap; 

65        shape_t*     shape; 

66        tilegroup_t* tilegroup; 

67     } wire_entry_t;     

68  

69     typedef struct { 

70         unsigned int wire_index;//wire name 

71         unsigned int tilegroup_cnt; 

72         wire_entry_t* tilegroups;        

73     } wire_tg_entry_t; 

74      

75     typedef struct { 

76            unsigned int wire_cnt;//number of wires in tile type 

77            unsigned char tiletype_index; //offset in TILE_TYPE_DB 

78            wire_tg_entry_t* wires;//related wire entry 

79     } wire_tile_type_t; 

80  

81 extern const unsigned int WS_DB_LEN; 

82 extern const unsigned int TG_DB_LEN; 

83 extern const unsigned int PIP_DIR_DB_LEN; 

84 extern const unsigned int WIRE_NAME_DB_LEN; 

85 extern const unsigned int WIRE_MODE_DB_LEN; 

86 extern const unsigned int TILE_TYPE_DB_LEN; 

87 extern const unsigned int PD_DB_LEN; 

88 extern const unsigned int ROUTING_DB_LEN; 

89  

90 extern shape_t          WS_DB[];         

91 extern tilegroup_t      TG_DB[];         

92 extern unsigned char*   PIP_DIR_DB[];    

93 extern unsigned char*   WIRE_NAME_DB[];  

94 extern unsigned char*   WIRE_MODE_DB[]; 

95 extern unsigned char*   TILE_TYPE_DB[];  

96 extern tile_type_t      PD_DB[];         

97 extern wire_tile_type_t ROUTING_DB[];    

98 extern unsigned char*   LAYOUT_DB[];    

99  

100 #endif // __ERDB_H__ 
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Appendix D – “BitPipsVerificator “ recipe report  

This appendix provides the detailed report of results obtained after 

"BitPipsVerificator" recipe execution, e.g  the list of XDL pips which are not found 

in the bitstream and the list of additional bitstream pips which are not found in the 

reference XDL file. 

D.1. List of  XDL pips which are not found in the bitstream 

1 Found 15 tile types with missing pips: 

2    CLBLL tile type (2 pips): 

3       LL_COUT -> M_COUT_N (24 tiles): 

4       L_COUT -> L_COUT_N (18 tiles): 

5  

6    CLBLM tile type (2 pips): 

7       M_COUT -> M_COUT_N (27 tiles): 

8  

9    CLK_BUFGMUX tile type (11 pips): 

10       CLK_BUFGMUX_CKINT1_12 -> CLK_BUFGMUX_PREMUX0_CLK12 (1 tile): 

11       CLK_BUFGMUX_MUXED_IN_CLKB_P10 -> CLK_BUFGMUX_PREMUX0_CLK5 (1 tile): 

12       CLK_BUFGMUX_MUXED_IN_CLKB_P12 -> CLK_BUFGMUX_PREMUX0_CLK6 (1 tile): 

13       CLK_BUFGMUX_MUXED_IN_CLKB_P14 -> CLK_BUFGMUX_PREMUX0_CLK7 (1 tile): 

14       CLK_BUFGMUX_MUXED_IN_CLKB_P16 -> CLK_BUFGMUX_PREMUX0_CLK8 (1 tile): 

15       CLK_BUFGMUX_MUXED_IN_CLKB_P18 -> CLK_BUFGMUX_PREMUX0_CLK9 (1 tile): 

16       CLK_BUFGMUX_MUXED_IN_CLKB_P2 -> CLK_BUFGMUX_PREMUX0_CLK1 (1 tile): 

17       CLK_BUFGMUX_MUXED_IN_CLKB_P20 -> CLK_BUFGMUX_PREMUX0_CLK10 (1 tile): 

18       CLK_BUFGMUX_MUXED_IN_CLKB_P30 -> CLK_BUFGMUX_PREMUX0_CLK15 (1 tile): 

19       CLK_BUFGMUX_MUXED_IN_CLKB_P6 -> CLK_BUFGMUX_PREMUX0_CLK3 (1 tile): 

20       CLK_BUFGMUX_MUXED_IN_CLKB_P8 -> CLK_BUFGMUX_PREMUX0_CLK4 (1 tile): 

21  

22    CLK_CMT_BOT tile type (12 pips): 

23  

24       CLK_CMT_CMT_CLK_00 -> CLK_IOB_MUXED_CLKOUT18 (1 tile): 

25       CLK_CMT_CMT_CLK_01 -> CLK_IOB_MUXED_CLKOUT14 (1 tile): 

26       CLK_CMT_CMT_CLK_12 -> CLK_IOB_MUXED_CLKOUT6 (1 tile): 

27       CLK_CMT_CMT_CLK_13 -> CLK_IOB_MUXED_CLKOUT8 (1 tile): 

28       CLK_CMT_CMT_CLK_18 -> CLK_IOB_MUXED_CLKOUT10 (1 tile): 

29       CLK_CMT_CMT_CLK_18 -> CLK_IOB_MUXED_CLKOUT12 (1 tile): 

30       CLK_CMT_CMT_CLK_22 -> CLK_IOB_MUXED_CLKOUT16 (1 tile): 

31       CLK_CMT_CMT_CLK_25 -> CLK_IOB_MUXED_CLKOUT20 (1 tile): 

32       CLK_IOB_MUXED_CLKIN10 -> CLK_IOB_MUXED_CLKOUT10 (1 tile): 

33       CLK_IOB_MUXED_CLKIN20 -> CLK_IOB_MUXED_CLKOUT20 (1 tile): 

34       CLK_IOB_MUXED_CLKIN6 -> CLK_IOB_MUXED_CLKOUT6 (1 tile): 

35       CLK_IOB_MUXED_CLKIN8 -> CLK_IOB_MUXED_CLKOUT8 (2 tiles): 

36  

37    CLK_HROW tile type (19 pips): 

38       CLK_HROW_CLK_METAL9_4 -> CLK_HROW_CLK_H_METAL9_4 (1 tile): 

39       CLK_HROW_CLK_METAL9_5 -> CLK_HROW_CLK_H_METAL9_5 (1 tile): 

40       CLK_HROW_GCLK_BUF1 -> CLK_HROW_HCLKL_P0 (1 tile): 

41       CLK_HROW_GCLK_BUF10 -> CLK_HROW_HCLKL_P4 (1 tile): 

42       CLK_HROW_GCLK_BUF10 -> CLK_HROW_HCLKR_P4 (1 tile): 
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43       CLK_HROW_GCLK_BUF12 -> CLK_HROW_HCLKL_P3 (1 tile): 

44       CLK_HROW_GCLK_BUF12 -> CLK_HROW_HCLKL_P4 (1 tile): 

45       CLK_HROW_GCLK_BUF12 -> CLK_HROW_HCLKR_P2 (2 tiles): 

46       CLK_HROW_GCLK_BUF3 -> CLK_HROW_HCLKR_P3 (2 tiles): 

47       CLK_HROW_GCLK_BUF4 -> CLK_HROW_HCLKL_P1 (1 tile): 

48       CLK_HROW_GCLK_BUF4 -> CLK_HROW_HCLKR_P1 (2 tiles): 

49       CLK_HROW_GCLK_BUF5 -> CLK_HROW_HCLKL_P6 (1 tile): 

50       CLK_HROW_GCLK_BUF7 -> CLK_HROW_HCLKL_P2 (1 tile): 

51       CLK_HROW_GCLK_BUF7 -> CLK_HROW_HCLKL_P3 (1 tile): 

52       CLK_HROW_GCLK_BUF8 -> CLK_HROW_HCLKL_P5 (2 tiles): 

53       CLK_HROW_GCLK_BUF9 -> CLK_HROW_HCLKL_P0 (1 tile): 

54       CLK_HROW_GCLK_BUF9 -> CLK_HROW_HCLKL_P1 (1 tile): 

55       CLK_HROW_GCLK_BUF9 -> CLK_HROW_HCLKR_P0 (2 tiles): 

56       CLK_HROW_MGT_CLK_P2 -> CLK_HROW_MGT_CLKV2 (1 tile): 

57  

58    CLK_IOB_B tile type (6 pips): 

59       CLK_IOB_B_CLK_BUF12 -> CLK_IOB_MUXED_CLKOUT2 (1 tile): 

60       CLK_IOB_CLK_BUF2 -> CLK_IOB_MUXED_CLKOUT30 (1 tile): 

61       CLK_IOB_CLK_BUF4 -> CLK_IOB_IOB_CLKP4 (1 tile): 

62       CLK_IOB_CLK_BUF5 -> CLK_IOB_IOB_CLKP5 (1 tile): 

63       CLK_IOB_MUXED_CLKIN18 -> CLK_IOB_MUXED_CLKOUT18 (1 tile): 

64       CLK_IOB_MUXED_CLKIN20 -> CLK_IOB_MUXED_CLKOUT20 (1 tile): 

65  

66    CMT_BOT tile type (5 pips): 

67       CMT_BUFG0 -> CMT_DCM_0_CLKFB (1 tile): 

68       CMT_BUFG0 -> CMT_PLL_CLKIN1 (1 tile): 

69       CMT_BUFG4 -> CMT_DCM_0_CLKIN (1 tile): 

70       CMT_BUFG4 -> CMT_DCM_1_CLKIN (1 tile): 

71       CMT_GIOB5 -> CMT_DCM_1_CLKFB (1 tile): 

72  

73    CMT_TOP tile type (2 pips): 

74       CMT_BUFG6_TOP -> CMT_DCM_1_CLKFB (1 tile): 

75       CMT_GIOB4 -> CMT_DCM_1_CLKIN (1 tile): 

76  

77    GT3 tile type (4 pips): 

78       GT3_CLK_B_0_10 -> GT3_RXUSRCLK0 (1 tile): 

79       GT3_CLK_B_0_11 -> GT3_TXUSRCLK0 (1 tile): 

80       GT3_CLK_B_1_8 -> GT3_TXUSRCLK1 (1 tile): 

81       GT3_CLK_B_1_9 -> GT3_RXUSRCLK1 (1 tile): 

82  

83    HCLK_IOI tile type (11 pips): 

84       HCLK_IOI_BUFIO_OUT0 -> HCLK_IOI_IOCLKP0 (2 tiles): 

85       HCLK_IOI_BUFIO_OUT1 -> HCLK_IOI_IOCLKP1 (3 tiles): 

86       HCLK_IOI_BUFIO_OUT2 -> HCLK_IOI_IOCLKP2 (2 tiles): 

87       HCLK_IOI_BUFIO_OUT3 -> HCLK_IOI_IOCLKP3 (1 tile): 

88       HCLK_IOI_G_HCLK_P0 -> HCLK_IOI_LEAF_GCLK_P0 (4 tiles): 

89       HCLK_IOI_G_HCLK_P1 -> HCLK_IOI_LEAF_GCLK_P1 (2 tiles): 

90       HCLK_IOI_G_HCLK_P2 -> HCLK_IOI_LEAF_GCLK_P2 (2 tiles): 

91       HCLK_IOI_G_HCLK_P3 -> HCLK_IOI_LEAF_GCLK_P3 (2 tiles): 

92       HCLK_IOI_G_HCLK_P5 -> HCLK_IOI_LEAF_GCLK_P5 (2 tiles): 

93       HCLK_IOI_LEAF_GCLK_P2 -> HCLK_IOI_REFCLK (1 tile): 

94       HCLK_IOI_LEAF_GCLK_P5 -> HCLK_IOI_REFCLK (2 tiles): 

95  

96    HCLK_IOI_BOTCEN tile type (1 pips): 

97       HCLK_IOI_G_HCLK_P0 -> HCLK_IOI_LEAF_GCLK_P0 (1 tile): 

98  
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99    HCLK_IOI_CMT tile type (1 pips): 

100       HCLK_IOI_G_HCLK_P0 -> HCLK_IOI_LEAF_GCLK_P0 (1 tile): 

101  

102    HCLK_IOI_TOPCEN tile type (1 pips): 

103       HCLK_IOI_G_HCLK_P0 -> HCLK_IOI_LEAF_GCLK_P0 (1 tile): 

104  

105    INT tile type (6 pips): 

106       LH0 =- LH18 (131 tiles): 

107       LV0 =- LH0 (23 tiles): 

108       LV0 =- LH18 (44 tiles): 

109       LV0 =- LV18 (242 tiles): 

110       LV18 =- LH0 (66 tiles): 

111       LV18 =- LH18 (38 tiles): 

112  

113    IOI tile type (12 pips): 

114       IOI_IOCLKP0 -> IOI_ICLKP_0 (9 tiles): 

115       IOI_IOCLKP0 -> IOI_ICLKP_1 (7 tiles): 

116       IOI_IOCLKP1 -> IOI_ICLKP_0 (13 tiles): 

117       IOI_IOCLKP1 -> IOI_ICLKP_1 (11 tile): 

118       IOI_IOCLKP2 -> IOI_ICLKP_0 (9 tiles): 

119       IOI_IOCLKP2 -> IOI_ICLKP_1 (7 tiles): 

120       IOI_IOCLKP3 -> IOI_ICLKP_0 (3 tiles): 

121       IOI_IOCLKP3 -> IOI_ICLKP_1 (5 tiles): 

122       IOI_LEAF_GCLK_P2 -> IOI_OCLKP_0 (15 tiles): 

123       IOI_LEAF_GCLK_P2 -> IOI_OCLKP_1 (12 tiles): 

124       IOI_LEAF_GCLK_P3 -> IOI_ICLKP_0 (7 tiles): 

125       IOI_LEAF_GCLK_P3 -> IOI_ICLKP_1 (9 tiles): 

126 Found 837 missing pips (95 tiles of 15 types) 

127  
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D.2. List of  additional bitstream pips which are not found 

in the reference XDL file 

1 Found  11 tile types with extra pips : 

2  

3  

4    CLBLL tile type (2 pips): 

5       LL_COUT -> M_COUT_N (21 tile): 

6       L_COUT -> L_COUT_N (18 tiles): 

7  

8  

9    CLBLM tile type (2 pips): 

10       L_COUT -> L_COUT_N (25 tiles): 

11       M_COUT -> M_COUT_N (27 tiles): 

12  

13    CLK_CMT_BOT tile type (8 pips): 

14       CLK_CMT_CMT_CLK_00 -> CLK_IOB_MUXED_CLKOUT14 (1 tile): 

15       CLK_CMT_CMT_CLK_01 -> CLK_IOB_MUXED_CLKOUT10 (1 tile): 

16       CLK_CMT_CMT_CLK_12 -> CLK_IOB_MUXED_CLKOUT2 (2 tiles): 

17       CLK_CMT_CMT_CLK_13 -> CLK_IOB_MUXED_CLKOUT4 (2 tiles): 

18       CLK_CMT_CMT_CLK_18 -> CLK_IOB_MUXED_CLKOUT8 (1 tile): 

19       CLK_IOB_MUXED_CLKIN12 -> CLK_IOB_MUXED_CLKOUT12 (1 tile): 

20       CLK_IOB_MUXED_CLKIN2 -> CLK_IOB_MUXED_CLKOUT2 (1 tile): 

21       CLK_IOB_MUXED_CLKIN4 -> CLK_IOB_MUXED_CLKOUT4 (1 tile): 

22  

23    CLK_HROW tile type (4 pips): 

24       CLK_HROW_GCLK_BUF28 -> CLK_HROW_HCLKL_P3 (1 tile): 

25       CLK_HROW_GCLK_BUF29 -> CLK_HROW_HCLKL_P3 (1 tile): 

26       CLK_HROW_GCLK_BUF29 -> CLK_HROW_HCLKL_P6 (1 tile): 

27       CLK_HROW_GCLK_BUF29 -> CLK_HROW_HCLKR_P6 (1 tile): 

28  

29    CLK_IOB_B tile type (3 pips): 

30       CLK_IOB_CLK_BUF2 -> CLK_IOB_MUXED_CLKOUT26 (1 tile): 

31       CLK_IOB_MUXED_CLKIN2 -> CLK_IOB_MUXED_CLKOUT2 (1 tile): 

32       CLK_IOB_MUXED_CLKIN4 -> CLK_IOB_MUXED_CLKOUT4 (1 tile): 

33  

34    GT3 tile type (1 pips): 

35       GT3_CLKPN -> GT3_CLKOUT_NORTH_N (1 tile): 

36  

37    HCLK_IOI tile type (6 pips): 

38       HCLK_IOI_G_HCLK_P3 -> HCLK_IOI_LEAF_GCLK_P3 (1 tile): 

39       HCLK_IOI_G_HCLK_P4 -> HCLK_IOI_LEAF_GCLK_P4 (1 tile): 

40       HCLK_IOI_I2CLK_P9 -> HCLK_IOI_BUFR_I0 (1 tile): 

41       HCLK_IOI_LEAF_GCLK_P5 -> HCLK_IOI_REFCLK (1 tile): 

42       HCLK_IOI_LEAF_GCLK_P9 -> HCLK_IOI_REFCLK (1 tile): 

43       HCLK_IOI_MGT_CLK_P2 -> HCLK_IOI_BUFR_I0 (2 tiles): 

44  

45    HCLK_IOI_BOTCEN tile type (1 pips): 

46       HCLK_IOI_LEAF_GCLK_P0 -> HCLK_IOI_REFCLK (1 tile): 

47  

48    HCLK_IOI_CMT tile type (1 pips): 

49       HCLK_IOI_G_HCLK_P4 -> HCLK_IOI_LEAF_GCLK_P4 (1 tile): 

50  
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51    INT tile type (6 pips): 

52       LH0 =- LV0 (57 tiles): 

53       LH0 =- LV18 (55 tiles): 

54       LH18 =- LH0 (151 tile): 

55       LH18 =- LV0 (117 tiles): 

56       LH18 =- LV18 (78 tiles): 

57       LV18 =- LV0 (240 tiles): 

58  

59    IOI tile type (44 pips): 

60       IOI_IMUX_B11 -> IOI_ICLKP_0 (67 tiles): 

61       IOI_IMUX_B11 -> IOI_ICLKP_1 (67 tiles): 

62       IOI_IMUX_B5 -> IOI_ICLKP_0 (67 tiles): 

63       IOI_IMUX_B5 -> IOI_ICLKP_1 (67 tiles): 

64       IOI_IOCLKP0 -> IOI_OCLKP_0 (67 tiles): 

65       IOI_IOCLKP0 -> IOI_OCLKP_1 (67 tiles): 

66       IOI_IOCLKP1 -> IOI_OCLKP_0 (3 tiles): 

67       IOI_IOCLKP1 -> IOI_OCLKP_1 (5 tiles): 

68       IOI_IOCLKP2 -> IOI_ICLKP_0 (16 tiles): 

69       IOI_IOCLKP2 -> IOI_ICLKP_1 (17 tiles): 

70       IOI_IOCLKP3 -> IOI_ICLKP_0 (67 tiles): 

71       IOI_IOCLKP3 -> IOI_ICLKP_1 (67 tiles): 

72       IOI_LEAF_GCLK_P1 -> IOI_ICLKP_0 (16 tiles): 

73       IOI_LEAF_GCLK_P1 -> IOI_ICLKP_1 (17 tiles): 

74       IOI_LEAF_GCLK_P2 -> IOI_ICLKP_0 (16 tiles): 

75       IOI_LEAF_GCLK_P2 -> IOI_ICLKP_1 (17 tiles): 

76       IOI_LEAF_GCLK_P2 -> IOI_OCLKP_0 (50 tiles): 

77       IOI_LEAF_GCLK_P2 -> IOI_OCLKP_1 (50 tiles): 

78       IOI_LEAF_GCLK_P3 -> IOI_ICLKP_0 (16 tiles): 

79       IOI_LEAF_GCLK_P3 -> IOI_ICLKP_1 (17 tiles): 

80       IOI_LEAF_GCLK_P4 -> IOI_ICLKP_0 (16 tiles): 

81       IOI_LEAF_GCLK_P4 -> IOI_ICLKP_1 (17 tiles): 

82       IOI_LEAF_GCLK_P4 -> IOI_OCLKDIV0 (67 tiles): 

83       IOI_LEAF_GCLK_P4 -> IOI_OCLKDIV1 (67 tiles): 

84       IOI_LEAF_GCLK_P4 -> IOI_OCLKP_0 (46 tiles): 

85       IOI_LEAF_GCLK_P4 -> IOI_OCLKP_1 (44 tiles): 

86       IOI_LEAF_GCLK_P5 -> IOI_ICLKP_0 (67 tiles): 

87       IOI_LEAF_GCLK_P5 -> IOI_ICLKP_1 (67 tiles): 

88       IOI_LEAF_GCLK_P5 -> IOI_OCLKP_0 (1 tile): 

89       IOI_LEAF_GCLK_P5 -> IOI_OCLKP_1 (1 tile): 

90       IOI_LEAF_GCLK_P6 -> IOI_ICLKP_0 (67 tiles): 

91       IOI_LEAF_GCLK_P6 -> IOI_ICLKP_1 (67 tiles): 

92       IOI_LEAF_GCLK_P6 -> IOI_OCLKDIV0 (67 tiles): 

93       IOI_LEAF_GCLK_P6 -> IOI_OCLKDIV1 (67 tiles): 

94       IOI_LEAF_GCLK_P6 -> IOI_OCLKP_0 (67 tiles): 

95       IOI_LEAF_GCLK_P6 -> IOI_OCLKP_1 (67 tiles): 

96       IOI_LEAF_GCLK_P7 -> IOI_ICLKP_0 (67 tiles): 

97       IOI_LEAF_GCLK_P7 -> IOI_ICLKP_1 (67 tiles): 

98       IOI_LEAF_GCLK_P7 -> IOI_OCLKP_0 (3 tiles): 

99       IOI_LEAF_GCLK_P7 -> IOI_OCLKP_1 (5 tiles): 

100       IOI_RCLK_FORIO_P2 -> IOI_OCLKP_0 (46 tiles): 

101       IOI_RCLK_FORIO_P2 -> IOI_OCLKP_1 (44 tiles): 

102       IOI_RCLK_FORIO_P3 -> IOI_OCLKP_0 (1 tile): 

103       IOI_RCLK_FORIO_P3 -> IOI_OCLKP_1 (1 tile): 

104  

105 Found 2621 extra pips (78 tiles of 11 types) 
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Appendix E – SeReCon debug console output during 
RC system demonstration 

This appendix illustrates the complete output of the SeReCon debug console 

during SeReCon-enabled RC system demonstration. 

The SeReCon debug output report is divided into four sections. Section E.1 

illustrates the default view of the SeReCon debug console. SeReCon debug messages 

which are generated during EIDR initialisation are reported in Section E.2. Section 

E.3 illustrates installation of demonstrator IP cores, e.g. Adder (‘add’), blank design 

(‘blank’), Multiplier (‘mul’), AES encoder (‘enc’) and AES decoder (‘dec’). 

Activation of demonstrator IP cores is highlighted in Section 0. 

E.1. Default view of  the SeReCon debug console 

This section illustrates the default view of the SeReCon debug console. 

1 Initializing SysAce...OK                                                     

2  MFS: Initialising MFS ... DONE                                                  

3  MFS: 131072 KB MFS occupied @ 0x98000000                                        

4  MFS: Used 1 block(s) out of 252288                                              

5  MFS: Current dirname is "/"                                                     

6 Initializing ICAP...OK                                                           

7 Restore IDR                                                                      

8 Reading 68 bytes from "serecon.idr" (CF) to RAM (@ 0x901B8FB4)...OK              

9 68 bytes read.                                                                   

10 Restore system state.                                                            

11  - load system state data (serecon.sys)...ERROR (get file size)                  

12                                                                                  

13 ==============================                                                   

14 ==     NUI SeReCon Demo     ==                                                   

15 ==   Jan 28 2010 22:41:34   ==                                                   

16 ==============================                                                   

17                                                                                  

18  [1]  Receive commands from PCIe                                                 

19  [2]  MFS reset                                                                  

20  [3]  MFS file remove                                                            

21  [4]  MFS stats                                                                  

22  [5]  MFS file copy                                                              

23  [6]  MFS file rename                                                            

24  [7]  MFS list dir                                                               

25  [8]  MFS cat file                                                               

26  [9]  MFS cat file HEX                                                           

27  [10]  CF list directory                                                         

28  [11]  CF remove file                                                            

29  [12]  CF remove dir                                                             

30  [13]  CF create dir                                                             

31  [14]  CF change dir                                                             

32  [15]  CF cat file content                                                       

33  [16]  Read FPGA registers                                                       



Appendix E –  SeReCon debug console output during RC system demonstration 

– 207 – 

34  [17]  Initialise IDR                                                            

35  [18]  Display IDR content                                                       

36  [19]  IDR content backup  to CF                                                 

37  [20]  IDR content restore from CF                                               

38  [21]  IDR content backup to MFS                                                 

39  [22]  IDR content restore from MFS                                              

40  [23]  Read IPV_demo.ipv                                                         

41  [24]  Read IPV_demo.m00                                                         

42  [25]  Generate shared key for IPV_demo                                          

43  [26]  Restore pubkey in CF                                                      

44  [27]  Demo install IP core                                                      

45  [28]  Demo activate IP core                                                     

46  [29]  Generate default system state                                             

47  [30]  Allow non-safe IP cores                                                   

48  [31]  Display system state                                                      

49  [32]  Reset safelock                                                            

50                                                                                  

51 Choice? (1-32)1              

52 Listening to PCIe interface...(press ESC key to break)                           
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E.2. EIDR initialisation  

This section illustrates SeReCon debug messages which are generated during 

EIDR initialisation. 

 

1 Init IDR.                                                                        

2 Generating new data...OK                                                         

3                                                                                  

4 Generating ECC-P192 key-pair...                                                  

5   - initialise curve...OK                                                        

6   - initialise generating point...OK                                             

7   - Collect random data...OK                                                     

8   - calculate public key...OK                                                    

9   - encrypt private key...OK                                                     

10   - store encrypted private key to "serecon.prv"...OK                            

11   - store public key to "serecon.pub"...Writing 276 bytes (from 0x901BEAC8) to K 

12 OK                                                                               

13 Done.                                                                            

14 Waiting for ACK...OK                                                             

15 Waiting for NULL...OK                                                            

16 PCIe command finished.                                                           

17                                                                                  

18 Waiting for PCIe command...(press ESC key to break)                              

19                                                                                  

20 PCIe: file download.                                                             

21 Reading 'serecon.pub' file from CF card to RAM...OK                              

22 Uploading file from RAM...OK                                                     

23 Send file 'serecon.pub' (276 bytes).                                             

24 File transfer completed.                                                         

25 Waiting for ACK...OK                                                             

26 Waiting for NULL...OK                                                            

27 PCIe command finished.                                                           

28                                                                                  

29 Waiting for PCIe command...(press ESC key to break)                              

30                                                                                  

31 PCIe: file upload.                                                               

32 Downloading file 'ipv_demo.ipv'to RAM...OK                                       

33 Received file 'ipv_demo.ipv' (252 bytes).                                        

34 Writing 252 bytes (from 0x901BE578) to MFS("ipv_demo.ipv")...OK                  

35 OK                                                                               

36 File transfer completed.                                                         

37 Waiting for ACK...OK                                                             

38 Waiting for NULL...OK                                                            

39 PCIe command finished.                                                           

40                                                                                  

41 Waiting for PCIe command...(press ESC key to break)                              
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E.3. IP cores installation 

This section provides SeReCon debug messages illustrating installation of 

demonstrator IP cores, e.g. Adder (‘add’), blank design (‘blank’), Multiplier (‘mul’), 

AES encoder (‘enc’) and AES decoder (‘dec’). 

E.3.1. The “add” IP core installation 

This section illustrates installation of the Adder  IP core (‘add’). 

 

1 PCIe: get idr msg_no.                                                            

2 Sending msg_no...DONE                                                            

3 Waiting for ACK...OK                                                             

4 Waiting for NULL...OK                                                            

5 PCIe command finished.                                                           

6                                                                                  

7 Waiting for PCIe command...(press ESC key to break)                              

8                                                                                  

9 PCIe: file upload.                                                               

10 Downloading file 'ipv_demo.m00'to RAM...OK                                       

11 Received file 'ipv_demo.m00' (108 bytes).                                        

12 Writing 108 bytes (from 0x901BE578) to MFS("ipv_demo.m00")...OK                  

13 OK                                                                               

14 File transfer completed.                                                         

15 Waiting for ACK...OK                                                             

16 Waiting for NULL...OK                                                            

17 PCIe command finished.                                                           

18                                                                                  

19 Waiting for PCIe command...(press ESC key to break)                              

20                                                                                  

21 Generate session key for ipv_demo IPV                                            

22  - get IDR msg_no...OK (0x00)                                                    

23  - read IPV public key file "ipv_demo.ipv"...OK                                  

24  - read IPV message file "ipv_demo.m00"...OK                                     

25  - compare msg_no...OK                                                           

26  - get random data...OK                                                          

27  - get IDR credentials...OK                                                      

28  - get access to private key "serecon.prv"...OK                                  

29  - calculate shared key...OK                                                     

30    Shared_key: 0x5F4FCB40C11DDEEA8351230556DF7D44F298E1A6C2B11369                

31  - sign reply msg...OK                                                           

32  - save reply msg to "ipv_demo.r01"...OK                                         

33  - save shared key to "ipv_demo.s01"...OK                                        

34 Done.                                                                            

35 Waiting for ACK...OK                                                             

36 Waiting for NULL...OK                                                            

37 PCIe command finished.                                                           

38                                                                                  

39 Waiting for PCIe command...(press ESC key to break)                              

40                                                                                  

41 PCIe: get idr msg_no.                                                            
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42 Sending msg_no...DONE                                                            

43 Waiting for ACK...OK                                                             

44 Waiting for NULL...OK                                                            

45 PCIe command finished.                                                           

46                                                                                  

47 Waiting for PCIe command...(press ESC key to break)                              

48                                                                                  

49 PCIe: file download.                                                             

50 Reading file 'ipv_demo.r01' from MFS to RAM...OK                                 

51 Uploading file from RAM...OK                                                     

52 Send file 'ipv_demo.r01' (80 bytes).                                             

53 File transfer completed.                                                         

54 Waiting for ACK...OK                                                             

55 Waiting for NULL...OK                                                            

56 PCIe command finished.                                                           

57                                                                                  

58 Waiting for PCIe command...(press ESC key to break)                              

59                                                                                  

60 PCIe: file upload.                                                               

61 Downloading file 'add.e01'to RAM...OK                                            

62 Received file 'add.e01' (145824 bytes).                                          

63 Writing 145824 bytes (from 0x901BFB08) to MFS("add.e01")...OK                    

64 OK                                                                               

65 File transfer completed.                                                         

66 Waiting for ACK...OK                                                             

67 Waiting for NULL...OK                                                            

68 PCIe command finished.                                                           

69                                                                                  

70 Waiting for PCIe command...(press ESC key to break)                              

71                                                                                  

72 PCIe: file upload.                                                               

73 Downloading file 'add.c01'to RAM...OK                                            

74 Received file 'add.c01' (32 bytes).                                              

75 Writing 32 bytes (from 0x901BE578) to MFS("add.c01")...OK                        

76 OK                                                                               

77 File transfer completed.                                                         

78 Waiting for ACK...OK                                                             

79 Waiting for NULL...OK                                                            

80 PCIe command finished.                                                           

81                                                                                  

82 Waiting for PCIe command...(press ESC key to break)                              

83                                                                                  

84 PCIe: Install IP core.                                                           

85                                                                                  

86 Install 'add' core (provided by 'ipv_demo'):                                     

87  - get IDR credentials...OK                                                      

88  - get IPV shared key from "ipv_demo.s01" file...OK                              

89  - get IP core license from "add.c01"...OK                                       

90  - get safelock entry for msg 01...OK                                            

91  - install IP core license in "add.l01"...OK                                     

92  - get IP core from "add.e01"...OK                                               

93  - call ERDB analyser                                                            

94                                                                                  

95 ERDB_analyser v.1.0 (release Jan 29 2010, 18:40:42)                              

96                                                                                  

97  - read header                                                                   
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98                                                                                  

99 Header data:                                                                     

100    - HeaderLength    : 86                                                        

101    - BitstreamLength : 145732                                                    

102    - DesignName      : prm_adder_partial.ncd                                     

103    - PartName        : 5vlx50tff1136                                             

104    - Date            : 2009/10/27                                                

105    - Time            : 19: 7:46                                                  

106                                                                                  

107  - parse bitstream...OK                                                          

108       Region (x,y): (10,0) to (42,43)                                            

109  - detect external pips...OK                                                     

110       Found 2699 external pips (2254 real, 445 fake).                            

111  - analyse isolation boundary...OK                                               

112       Region (x,y): (10,0) to (42,45)                                            

113  - detect io pips...OK                                                           

114       Found 2468 io pips (2154 real, 314 fake).                                  

115 Analysis finished successfully.                                                  

116  - update safelock credentials...OK                                              

117  - create installed IP file "add.i01"...OK                                       

118  - create IP analysis report file "add.d01"...OK                                 

119 Installed IP core 'add'.                                                         

120                                                                                  

121 Waiting for ACK...OK                                                             

122 Waiting for NULL...OK                                                            

123 PCIe command finished.                                                           

124                                                                                  

125 Waiting for PCIe command...(press ESC key to break)                              
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E.3.2. The “blank” IP core installation 

This section illustrates installation of the blank design IP core (‘blank’). 

 

1 PCIe: get idr msg_no.                                                            

2 Sending msg_no...DONE                                                            

3 Waiting for ACK...OK                                                             

4 Waiting for NULL...OK                                                            

5 PCIe command finished.                                                           

6                                                                                  

7 Waiting for PCIe command...(press ESC key to break)                              

8                                                                                  

9 PCIe: file upload.                                                               

10 Downloading file 'ipv_demo.m02'to RAM...OK                                       

11 Received file 'ipv_demo.m02' (108 bytes).                                        

12 Writing 108 bytes (from 0x901BE578) to MFS("ipv_demo.m02")...OK                  

13 OK                                                                               

14 File transfer completed.                                                         

15 Waiting for ACK...OK                                                             

16 Waiting for NULL...OK                                                            

17 PCIe command finished.                                                           

18                                                                                  

19 Waiting for PCIe command...(press ESC key to break)                              

20                                                                                  

21                                                                                  

22                                                                                  

23 Generate session key for ipv_demo IPV                                            

24  - get IDR msg_no...OK (0x02)                                                    

25  - read IPV public key file "ipv_demo.ipv"...OK                                  

26  - read IPV message file "ipv_demo.m02"...OK                                     

27  - compare msg_no...OK                                                           

28  - get random data...OK                                                          

29  - get IDR credentials...OK                                                      

30  - get access to private key "serecon.prv"...OK                                  

31  - calculate shared key...OK                                                     

32    Shared_key: 0x35C3495E63F3C4AFC11DAE993600D96B31A468C950F5C28E                

33  - sign reply msg...OK                                                           

34  - save reply msg to "ipv_demo.r03"...OK                                         

35  - save shared key to "ipv_demo.s03"...OK                                        

36 Done.                                                                            

37 Waiting for ACK...OK                                                             

38 Waiting for NULL...OK                                                            

39 PCIe command finished.                                                           

40                                                                                  

41 Waiting for PCIe command...(press ESC key to break)                              

42                                                                                  

43 PCIe: get idr msg_no.                                                            

44 Sending msg_no...DONE                                                            

45 Waiting for ACK...OK                                                             

46 Waiting for NULL...OK                                                            

47 PCIe command finished.                                                           

48                                                                                  

49 Waiting for PCIe command...(press ESC key to break)                              

50                                                                                  
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51 PCIe: file download.                                                             

52 Reading file 'ipv_demo.r03' from MFS to RAM...OK                                 

53 Uploading file from RAM...OK                                                     

54 Send file 'ipv_demo.r03' (80 bytes).                                             

55 File transfer completed.                                                         

56 Waiting for ACK...OK                                                             

57 Waiting for NULL...OK                                                            

58 PCIe command finished.                                                           

59                                                                                  

60 Waiting for PCIe command...(press ESC key to break)                              

61                                                                                  

62 PCIe: file upload.                                                               

63 Downloading file 'blank.e03'to RAM...OK                                          

64 Received file 'blank.e03' (126512 bytes).                                        

65 Writing 126512 bytes (from 0x901BFB08) to MFS("blank.e03")...OK                  

66 OK                                                                               

67 File transfer completed.                                                         

68 Waiting for ACK...OK                                                             

69 Waiting for NULL...OK                                                            

70 PCIe command finished.                                                           

71                                                                                  

72 Waiting for PCIe command...(press ESC key to break)                              

73                                                                                  

74 PCIe: file upload.                                                               

75 Downloading file 'blank.c03'to RAM...OK                                          

76 Received file 'blank.c03' (32 bytes).                                            

77 Writing 32 bytes (from 0x9023F3D0) to MFS("blank.c03")...OK                      

78 OK                                                                               

79 File transfer completed.                                                         

80 Waiting for ACK...OK                                                             

81 Waiting for NULL...OK                                                            

82 PCIe command finished.                                                           

83                                                                                  

84 Waiting for PCIe command...(press ESC key to break)                              

85                                                                                  

86 PCIe: Install IP core.                                                           

87                                                                                  

88                                                                                  

89 Install 'blank' core (provided by 'ipv_demo'):                                   

90  - get IDR credentials...OK                                                      

91  - get IPV shared key from "ipv_demo.s03" file...OK                              

92  - get IP core license from "blank.c03"...OK                                     

93  - get safelock entry for msg 03...OK                                            

94  - install IP core license in "blank.l03"...OK                                   

95  - get IP core from "blank.e03"...OK                                             

96  - call ERDB analyser                                                            

97                                                                                  

98 ERDB_analyser v.1.0 (release Jan 29 2010, 18:40:42)                              

99                                                                                  

100  - read header                                                                   

101                                                                                  

102 Header data:                                                                     

103    - HeaderLength    : 85                                                        

104    - BitstreamLength : 126420                                                    

105    - DesignName      : pblock_prm_blank.ncd                                      

106    - PartName        : 5vlx50tff1136                                             
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107    - Date            : 2009/10/27                                                

108    - Time            : 19:36:42                                                  

109                                                                                  

110  - parse bitstream...OK                                                          

111       Region (x,y): (10,0) to (42,43)                                            

112  - detect external pips...OK                                                     

113       Found 2684 external pips (2239 real, 445 fake).                            

114  - analyse isolation boundary...OK                                               

115       Region (x,y): (10,0) to (42,45)                                            

116  - detect io pips...OK                                                           

117       Found 2453 io pips (2139 real, 314 fake).                                  

118 Analysis finished successfully.                                                  

119  - update safelock credentials...OK                                              

120  - create installed IP file "blank.i03"...OK                                     

121  - create IP analysis report file "blank.d03"...OK                               

122 Installed IP core 'blank'.                                                       

123                                                                                  

124 Waiting for ACK...OK                                                             

125 Waiting for NULL...OK                                                            

126 PCIe command finished.                                                           

127                                                                                  

128 Waiting for PCIe command...(press ESC key to break)                              
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E.3.3. The “mul” IP core installation  

This section illustrates installation of the Multiplier IP core (‘mul’). 

 

1 PCIe: get idr msg_no.                                                            

2 Sending msg_no...DONE                                                            

3 Waiting for ACK...OK                                                             

4 Waiting for NULL...OK                                                            

5 PCIe command finished.                                                           

6                                                                                  

7 Waiting for PCIe command...(press ESC key to break)                              

8                                                                                  

9 PCIe: file upload.                                                               

10 Downloading file 'ipv_demo.m04'to RAM...OK                                       

11 Received file 'ipv_demo.m04' (108 bytes).                                        

12 Writing 108 bytes (from 0x902152E0) to MFS("ipv_demo.m04")...OK                  

13 OK                                                                               

14 File transfer completed.                                                         

15 Waiting for ACK...OK                                                             

16 Waiting for NULL...OK                                                            

17 PCIe command finished.                                                           

18                                                                                  

19 Waiting for PCIe command...(press ESC key to break)                              

20                                                                                  

21                                                                                  

22                                                                                  

23 Generate session key for ipv_demo IPV                                            

24  - get IDR msg_no...OK (0x04)                                                    

25  - read IPV public key file "ipv_demo.ipv"...OK                                  

26  - read IPV message file "ipv_demo.m04"...OK                                     

27  - compare msg_no...OK                                                           

28  - get random data...OK                                                          

29  - get IDR credentials...OK                                                      

30  - get access to private key "serecon.prv"...OK                                  

31  - calculate shared key...OK                                                     

32    Shared_key: 0xDB5DBA0AED57E124B5D9730676471F4DD8D0115FA7E3E542                

33  - sign reply msg...OK                                                           

34  - save reply msg to "ipv_demo.r05"...OK                                         

35  - save shared key to "ipv_demo.s05"...OK                                        

36 Done.                                                                            

37 Waiting for ACK...OK                                                             

38 Waiting for NULL...OK                                                            

39 PCIe command finished.                                                           

40                                                                                  

41 Waiting for PCIe command...(press ESC key to break)                              

42                                                                                  

43 PCIe: get idr msg_no.                                                            

44 Sending msg_no...DONE                                                            

45 Waiting for ACK...OK                                                             

46 Waiting for NULL...OK                                                            

47 PCIe command finished.                                                           

48                                                                                  

49 Waiting for PCIe command...(press ESC key to break)                              

50                                                                                  
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51 PCIe: file download.                                                             

52 Reading file 'ipv_demo.r05' from MFS to RAM...OK                                 

53 Uploading file from RAM...OK                                                     

54 Send file 'ipv_demo.r05' (80 bytes).                                             

55 File transfer completed.                                                         

56 Waiting for ACK...OK                                                             

57 Waiting for NULL...OK                                                            

58 PCIe command finished.                                                           

59                                                                                  

60 Waiting for PCIe command...(press ESC key to break)                              

61                                                                                  

62 PCIe: file upload.                                                               

63 Downloading file 'mul.e05'to RAM...OK                                            

64 Received file 'mul.e05' (151072 bytes).                                          

65 Writing 151072 bytes (from 0x90293A60) to MFS("mul.e05")...OK                    

66 OK                                                                               

67 File transfer completed.                                                         

68 Waiting for ACK...OK                                                             

69 Waiting for NULL...OK                                                            

70 PCIe command finished.                                                           

71                                                                                  

72 Waiting for PCIe command...(press ESC key to break)                              

73                                                                                  

74 PCIe: file upload.                                                               

75 Downloading file 'mul.c05'to RAM...OK                                            

76 Received file 'mul.c05' (32 bytes).                                              

77 Writing 32 bytes (from 0x9023F3D0) to MFS("mul.c05")...OK                        

78 OK                                                                               

79 File transfer completed.                                                         

80 Waiting for ACK...OK                                                             

81 Waiting for NULL...OK                                                            

82 PCIe command finished.                                                           

83                                                                                  

84 Waiting for PCIe command...(press ESC key to break)                              

85                                                                                  

86 PCIe: Install IP core.                                                           

87                                                                                  

88                                                                                  

89 Install 'mul' core (provided by 'ipv_demo'):                                     

90  - get IDR credentials...OK                                                      

91  - get IPV shared key from "ipv_demo.s05" file...OK                              

92  - get IP core license from "mul.c05"...OK                                       

93  - get safelock entry for msg 05...OK                                            

94  - install IP core license in "mul.l05"...OK                                     

95  - get IP core from "mul.e05"...OK                                               

96  - call ERDB analyser                                                            

97                                                                                  

98 ERDB_analyser v.1.0 (release Jan 29 2010, 18:40:42)                              

99                                                                                  

100  - read header                                                                   

101                                                                                  

102 Header data:                                                                     

103    - HeaderLength    : 91                                                        

104    - BitstreamLength : 150968                                                    

105    - DesignName      : prm_multiplier_partial.ncd                                

106    - PartName        : 5vlx50tff1136                                             
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107    - Date            : 2009/10/27                                                

108    - Time            : 19:14: 0                                                  

109                                                                                  

110  - parse bitstream...OK                                                          

111       Region (x,y): (10,0) to (42,43)                                            

112  - detect external pips...OK                                                     

113       Found 2709 external pips (2264 real, 445 fake).                            

114  - analyse isolation boundary...OK                                               

115       Region (x,y): (10,0) to (42,45)                                            

116  - detect io pips...OK                                                           

117       Found 2478 io pips (2164 real, 314 fake).                                  

118 Analysis finished successfully.                                                  

119  - update safelock credentials...OK                                              

120  - create installed IP file "mul.i05"...OK                                       

121  - create IP analysis report file "mul.d05"...OK                                 

122 Installed IP core 'mul'.                                                         

123                                                                                  

124 Waiting for ACK...OK                                                             

125 Waiting for NULL...OK                                                            

126 PCIe command finished.                                                           

127                                                                                  

128 Waiting for PCIe command...(press ESC key to break)                              
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E.3.4. The “enc” IP core installation  

This section illustrates installation of the AES Encoder IP core (‘enc’). 

 

1 PCIe: get idr msg_no.                                                            

2 Sending msg_no...DONE                                                            

3 Waiting for ACK...OK                                                             

4 Waiting for NULL...OK                                                            

5 PCIe command finished.                                                           

6                                                                                  

7 Waiting for PCIe command...(press ESC key to break)                              

8                                                                                  

9 PCIe: file upload.                                                               

10 Downloading file 'ipv_demo.m06'to RAM...OK                                       

11 Received file 'ipv_demo.m06' (108 bytes).                                        

12 Writing 108 bytes (from 0x901E40E0) to MFS("ipv_demo.m06")...OK                  

13 OK                                                                               

14 File transfer completed.                                                         

15 Waiting for ACK...OK                                                             

16 Waiting for NULL...OK                                                            

17 PCIe command finished.                                                           

18                                                                                  

19 Waiting for PCIe command...(press ESC key to break)                              

20                                                                                  

21                                                                                  

22                                                                                  

23 Generate session key for ipv_demo IPV                                            

24  - get IDR msg_no...OK (0x06)                                                    

25  - read IPV public key file "ipv_demo.ipv"...OK                                  

26  - read IPV message file "ipv_demo.m06"...OK                                     

27  - compare msg_no...OK                                                           

28  - get random data...OK                                                          

29  - get IDR credentials...OK                                                      

30  - get access to private key "serecon.prv"...OK                                  

31  - calculate shared key...OK                                                     

32    Shared_key: 0x4FC8376B29BBAE05E1C1695725B6DDB348B4A83E7019FC90                

33  - sign reply msg...OK                                                           

34  - save reply msg to "ipv_demo.r07"...OK                                         

35  - save shared key to "ipv_demo.s07"...OK                                        

36 Done.                                                                            

37 Waiting for ACK...OK                                                             

38 Waiting for NULL...OK                                                            

39 PCIe command finished.                                                           

40                                                                                  

41 Waiting for PCIe command...(press ESC key to break)                              

42                                                                                  

43 PCIe: get idr msg_no.                                                            

44 Sending msg_no...DONE                                                            

45 Waiting for ACK...OK                                                             

46 Waiting for NULL...OK                                                            

47 PCIe command finished.                                                           

48                                                                                  

49 Waiting for PCIe command...(press ESC key to break)                              

50                                                                                  
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51 PCIe: file download.                                                             

52 Reading file 'ipv_demo.r07' from MFS to RAM...OK                                 

53 Uploading file from RAM...OK                                                     

54 Send file 'ipv_demo.r07' (80 bytes).                                             

55 File transfer completed.                                                         

56 Waiting for ACK...OK                                                             

57 Waiting for NULL...OK                                                            

58 PCIe command finished.                                                           

59                                                                                  

60 Waiting for PCIe command...(press ESC key to break)                              

61                                                                                  

62 PCIe: file upload.                                                               

63 Downloading file 'enc.e07'to RAM...OK                                            

64 Received file 'enc.e07' (165792 bytes).                                          

65 Writing 165792 bytes (from 0x902D6708) to MFS("enc.e07")...OK                    

66 OK                                                                               

67 File transfer completed.                                                         

68 Waiting for ACK...OK                                                             

69 Waiting for NULL...OK                                                            

70 PCIe command finished.                                                           

71                                                                                  

72 Waiting for PCIe command...(press ESC key to break)                              

73                                                                                  

74 PCIe: file upload.                                                               

75 Downloading file 'enc.c07'to RAM...OK                                            

76 Received file 'enc.c07' (32 bytes).                                              

77 Writing 32 bytes (from 0x90276E70) to MFS("enc.c07")...OK                        

78 OK                                                                               

79 File transfer completed.                                                         

80 Waiting for ACK...OK                                                             

81 Waiting for NULL...OK                                                            

82 PCIe command finished.                                                           

83                                                                                  

84 Waiting for PCIe command...(press ESC key to break)                              

85                                                                                  

86 PCIe: Install IP core.                                                           

87                                                                                  

88                                                                                  

89 Install 'enc' core (provided by 'ipv_demo'):                                     

90  - get IDR credentials...OK                                                      

91  - get IPV shared key from "ipv_demo.s07" file...OK                              

92  - get IP core license from "enc.c07"...OK                                       

93  - get safelock entry for msg 07...OK                                            

94  - install IP core license in "enc.l07"...OK                                     

95  - get IP core from "enc.e07"...OK                                               

96  - call ERDB analyser                                                            

97                                                                                  

98 ERDB_analyser v.1.0 (release Jan 29 2010, 18:40:42)                              

99                                                                                  

100  - read header                                                                   

101                                                                                  

102 Header data:                                                                     

103    - HeaderLength    : 88                                                        

104    - BitstreamLength : 165696                                                    

105    - DesignName      : prm_encoder_partial.ncd                                   

106    - PartName        : 5vlx50tff1136                                             
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107    - Date            : 2009/10/27                                                

108    - Time            : 19:20:24                                                  

109                                                                                  

110  - parse bitstream...OK                                                          

111       Region (x,y): (10,0) to (42,43)                                            

112  - detect external pips...OK                                                     

113       Found 3330 external pips (2885 real, 445 fake).                            

114  - analyse isolation boundary...OK                                               

115       Region (x,y): (10,0) to (42,45)                                            

116  - detect io pips...OK                                                           

117       Found 3064 io pips (2750 real, 314 fake).                                  

118 Analysis finished successfully.                                                  

119  - update safelock credentials...OK                                              

120  - create installed IP file "enc.i07"...OK                                       

121  - create IP analysis report file "enc.d07"...OK                                 

122 Installed IP core 'enc'.                                                         

123                                                                                  

124 Waiting for ACK...OK                                                             

125 Waiting for NULL...OK                                                            

126 PCIe command finished.                                                           

127                                                                                  

128 Waiting for PCIe command...(press ESC key to break)                              

  



Appendix E –  SeReCon debug console output during RC system demonstration 

– 221 – 

E.3.5. The “dec” IP core installation  

This section illustrates installation of the AES Decoder IP core (‘dec’). 

 

1 PCIe: get idr msg_no.                                                            

2 Sending msg_no...DONE                                                            

3 Waiting for ACK...OK                                                             

4 Waiting for NULL...OK                                                            

5 PCIe command finished.                                                           

6                                                                                  

7 Waiting for PCIe command...(press ESC key to break)                              

8                                                                                  

9 PCIe: file upload.                                                               

10 Downloading file 'ipv_demo.m08'to RAM...OK                                       

11 Received file 'ipv_demo.m08' (108 bytes).                                        

12 Writing 108 bytes (from 0x90203108) to MFS("ipv_demo.m08")...OK                  

13 OK                                                                               

14 File transfer completed.                                                         

15 Waiting for ACK...OK                                                             

16 Waiting for NULL...OK                                                            

17 PCIe command finished.                                                           

18                                                                                  

19 Waiting for PCIe command...(press ESC key to break)                              

20                                                                                  

21                                                                                  

22                                                                                  

23 Generate session key for ipv_demo IPV                                            

24  - get IDR msg_no...OK (0x08)                                                    

25  - read IPV public key file "ipv_demo.ipv"...OK                                  

26  - read IPV message file "ipv_demo.m08"...OK                                     

27  - compare msg_no...OK                                                           

28  - get random data...OK                                                          

29  - get IDR credentials...OK                                                      

30  - get access to private key "serecon.prv"...OK                                  

31  - calculate shared key...OK                                                     

32    Shared_key: 0x70337D681E6EAA099C7D0E5015935178103DE12F6CDE3BE0                

33  - sign reply msg...OK                                                           

34  - save reply msg to "ipv_demo.r09"...OK                                         

35  - save shared key to "ipv_demo.s09"...OK                                        

36 Done.                                                                            

37 Waiting for ACK...OK                                                             

38 Waiting for NULL...OK                                                            

39 PCIe command finished.                                                           

40                                                                                  

41 Waiting for PCIe command...(press ESC key to break)                              

42                                                                                  

43 PCIe: get idr msg_no.                                                            

44 Sending msg_no...DONE                                                            

45 Waiting for ACK...OK                                                             

46 Waiting for NULL...OK                                                            

47 PCIe command finished.                                                           

48                                                                                  

49 Waiting for PCIe command...(press ESC key to break)                              

50                                                                                  



Appendix E –  SeReCon debug console output during RC system demonstration 

– 222 – 

51 PCIe: file download.                                                             

52 Reading file 'ipv_demo.r09' from MFS to RAM...OK                                 

53 Uploading file from RAM...OK                                                     

54 Send file 'ipv_demo.r09' (80 bytes).                                             

55 File transfer completed.                                                         

56 Waiting for ACK...OK                                                             

57 Waiting for NULL...OK                                                            

58 PCIe command finished.                                                           

59                                                                                  

60 Waiting for PCIe command...(press ESC key to break)                              

61                                                                                  

62 PCIe: file upload.                                                               

63 Downloading file 'dec.e09'to RAM...OK                                            

64 Received file 'dec.e09' (168672 bytes).                                          

65 Writing 168672 bytes (from 0x90325010) to MFS("dec.e09")...OK                    

66 OK                                                                               

67 File transfer completed.                                                         

68 Waiting for ACK...OK                                                             

69 Waiting for NULL...OK                                                            

70 PCIe command finished.                                                           

71                                                                                  

72 Waiting for PCIe command...(press ESC key to break)                              

73                                                                                  

74 PCIe: file upload.                                                               

75 Downloading file 'dec.c09'to RAM...OK                                            

76 Received file 'dec.c09' (32 bytes).                                              

77 Writing 32 bytes (from 0x901E6358) to MFS("dec.c09")...OK                        

78 OK                                                                               

79 File transfer completed.                                                         

80 Waiting for ACK...OK                                                             

81 Waiting for NULL...OK                                                            

82 PCIe command finished.                                                           

83                                                                                  

84 Waiting for PCIe command...(press ESC key to break)                              

85                                                                                  

86 PCIe: Install IP core.                                                           

87                                                                                  

88                                                                                  

89 Install 'dec' core (provided by 'ipv_demo'):                                     

90  - get IDR credentials...OK                                                      

91  - get IPV shared key from "ipv_demo.s09" file...OK                              

92  - get IP core license from "dec.c09"...OK                                       

93  - get safelock entry for msg 09...OK                                            

94  - install IP core license in "dec.l09"...OK                                     

95  - get IP core from "dec.e09"...OK                                               

96  - call ERDB analyser                                                            

97                                                                                  

98 ERDB_analyser v.1.0 (release Jan 29 2010, 18:40:42)                              

99                                                                                  

100  - read header                                                                   

101                                                                                  

102 Header data:                                                                     

103    - HeaderLength    : 88                                                        

104    - BitstreamLength : 168576                                                    

105    - DesignName      : prm_decoder_partial.ncd                                   

106    - PartName        : 5vlx50tff1136                                             
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107    - Date            : 2009/10/27                                                

108    - Time            : 19:27: 4                                                  

109                                                                                  

110  - parse bitstream...OK                                                          

111       Region (x,y): (10,0) to (42,43)                                            

112  - detect external pips...OK                                                     

113       Found 3869 external pips (3424 real, 445 fake).                            

114  - analyse isolation boundary...OK                                               

115       Region (x,y): (10,0) to (42,45)                                            

116  - detect io pips...OK                                                           

117       Found 3594 io pips (3280 real, 314 fake).                                  

118 Analysis finished successfully.                                                  

119  - update safelock credentials...OK                                              

120  - create installed IP file "dec.i09"...OK                                       

121  - create IP analysis report file "dec.d09"...OK                                 

122 Installed IP core 'dec'.                                                         

123                                                                                  

124 Waiting for ACK...OK                                                             

125 Waiting for NULL...OK                                                            

126 PCIe command finished.                                                           

127                                                                                  

128 Waiting for PCIe command...(press ESC key to break)                              
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E.4. IP cores activation 

This section provides SeReCon debug messages illustrating activation of 

demonstrator IP cores, e.g. Adder (‘add’), blank design (‘blank’), Multiplier (‘mul’), 

AES encoder (‘enc’) and AES decoder (‘dec’). 

E.4.1. The “add” IP core activation 

This section illustrates installation of the Adder  IP core (‘add’). 

 

1 PCIe: Activate IP core.                                                          

2                                                                                  

3                                                                                  

4 Activate 'add' core (msg 01):                                                    

5  - get safelock credentials...OK                                                 

6  - check IP core license file...OK                                               

7  - update safelock credentials...OK                                              

8  - call ERDB verifier...                                                         

9                                                                                  

10 ERDB_verifier v.1.0 (release Jan 29 2010, 18:40:42)                              

11                                                                                  

12  - get IP core report 'add.d01'...OK                                             

13  - make diff with system state...OK                                              

14                                                                                  

15                                                                                  

16 Verification report:                                                             

17                                                                                  

18  - IP core configuration region: (10,0 - 42,43)...OK                             

19  - IP core isolation region    : (10,0 - 42,45) ...OK                            

20  - external pips found         :      2699  (2254 real, 445 fake)                

21  - unmatched ext pips          :        15  (15 real, 0 fake)                    

22  - io pips found               :      2468  (2154 real, 314 fake)                

23  - unmatched io pips           :        15  (15 real, 0 fake)                    

24                                                                                  

25                                                                                  

26         !!!WARNING!!!                                                            

27                                                                                  

28          Potentially dangerous IP core!!!                                        

29                                                                                  

30  - write report file 'add.t01'...OK                                              

31 Verification finished without errors.                                            

32 IP core 'add' violates seurity requirements for reconfigurable region.           

33  - check security bypass flag...OFF                                              

34 IP core activation cancelled due to security risk.                               

35  - roll back license update...OK                                                 

36 Waiting for ACK...OK                                                             

37 Waiting for NULL...OK                                                            

38 PCIe command finished.                                                           

39                                                                                  

40 Waiting for PCIe command...(press ESC key to break)   
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E.4.2. The “blank” IP core activation 

This section illustrates activation of the blank design IP core (‘blank’). 

 

1 PCIe: Activate IP core.                                                          

2                                                                                  

3                                                                                  

4 Activate 'blank' core (msg 03):                                                  

5  - get safelock credentials...OK                                                 

6  - check IP core license file...OK                                               

7  - update safelock credentials...OK                                              

8  - call ERDB verifier...                                                         

9                                                                                  

10 ERDB_verifier v.1.0 (release Jan 29 2010, 18:40:42)                              

11                                                                                  

12  - get IP core report 'blank.d03'...OK                                           

13  - make diff with system state...OK                                              

14                                                                                  

15                                                                                  

16 Verification report:                                                             

17                                                                                  

18  - IP core configuration region: (10,0 - 42,43)...OK                             

19  - IP core isolation region    : (10,0 - 42,45) ...OK                            

20  - external pips found         :      2684  (2239 real, 445 fake)                

21  - unmatched ext pips          :         0  (0 real, 0 fake)                     

22  - io pips found               :      2453  (2139 real, 314 fake)                

23  - unmatched io pips           :         0  (0 real, 0 fake)                     

24 Verification finished without errors.                                            

25 IP core 'blank' is safe.                                                         

26  - get IP core from "blank.i03" file...OK                                        

27  - check bitstream header...OK                                                   

28  - disable BM interface...OK                                                     

29  - load IP core to ICAP...OK                                                     

30  - update system state...OK                                                      

31                                                                                  

32 IP core 'blank.i03' (msg 03) activated.                                          

33                                                                                  

34  - enable BM interface...OK                                                      

35 Waiting for ACK...OK                                                             

36 Waiting for NULL...OK                                                            

37 PCIe command finished.                                                           

38                                                                                  

39 Waiting for PCIe command...(press ESC key to break)                              
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E.4.3. The “mul” IP core activation 

This section illustrates activasion of the Multiplier IP core (‘mul’). 

 

1 PCIe: Activate IP core.                                                          

2                                                                                  

3                                                                                  

4 Activate 'mul' core (msg 05):                                                    

5  - get safelock credentials...OK                                                 

6  - check IP core license file...OK                                               

7  - update safelock credentials...OK                                              

8  - call ERDB verifier...                                                         

9                                                                                  

10 ERDB_verifier v.1.0 (release Jan 29 2010, 18:40:42)                              

11                                                                                  

12  - get IP core report 'mul.d05'...OK                                             

13  - make diff with system state...OK                                              

14                                                                                  

15                                                                                  

16 Verification report:                                                             

17                                                                                  

18  - IP core configuration region: (10,0 - 42,43)...OK                             

19  - IP core isolation region    : (10,0 - 42,45) ...OK                            

20  - external pips found         :      2709  (2264 real, 445 fake)                

21  - unmatched ext pips          :        25  (25 real, 0 fake)                    

22  - io pips found               :      2478  (2164 real, 314 fake)                

23  - unmatched io pips           :        25  (25 real, 0 fake)                    

24                                                                                  

25                                                                                  

26         !!!WARNING!!!                                                            

27                                                                                  

28          Potentially dangerous IP core!!!                                        

29                                                                                  

30  - write report file 'mul.t05'...OK                                              

31 Verification finished without errors.                                            

32 IP core 'mul' violates seurity requirements for reconfigurable region.           

33  - check security bypass flag...OFF                                              

34 IP core activation cancelled due to security risk.                               

35  - roll back license update...OK                                                 

36 Waiting for ACK...OK                                                             

37 Waiting for NULL...OK                                                            

38 PCIe command finished.                                                           

39                                                                                  

40 Waiting for PCIe command...(press ESC key to break)                              
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E.4.4. The “enc” IP core activation 

This section illustrates activation of the AES Encoder IP core (‘enc’). 

 

1 PCIe: Activate IP core.                                                          

2                                                                                  

3                                                                                  

4 Activate 'enc' core (msg 07):                                                    

5  - get safelock credentials...OK                                                 

6  - check IP core license file...OK                                               

7  - update safelock credentials...OK                                              

8  - call ERDB verifier...                                                         

9                                                                                  

10 ERDB_verifier v.1.0 (release Jan 29 2010, 18:40:42)                              

11                                                                                  

12  - get IP core report 'enc.d07'...OK                                             

13  - make diff with system state...OK                                              

14                                                                                  

15                                                                                  

16 Verification report:                                                             

17                                                                                  

18  - IP core configuration region: (10,0 - 42,43)...OK                             

19  - IP core isolation region    : (10,0 - 42,45) ...OK                            

20  - external pips found         :      3330  (2885 real, 445 fake)                

21  - unmatched ext pips          :       646  (646 real, 0 fake)                   

22  - io pips found               :      3064  (2750 real, 314 fake)                

23  - unmatched io pips           :       611  (611 real, 0 fake)                   

24                                                                                  

25                                                                                  

26         !!!WARNING!!!                                                            

27                                                                                  

28          Potentially dangerous IP core!!!                                        

29                                                                                  

30  - write report file 'enc.t07'...OK                                              

31 Verification finished without errors.                                            

32 IP core 'enc' violates seurity requirements for reconfigurable region.           

33  - check security bypass flag...OFF                                              

34 IP core activation cancelled due to security risk.                               

35  - roll back license update...OK                                                 

36 Waiting for ACK...OK                                                             

37 Waiting for NULL...OK                                                            

38 PCIe command finished.                                                           

39                                                                                  

40 Waiting for PCIe command...(press ESC key to break)                              
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E.4.5. The “dec” IP core activation  

This section illustrates activation of the AES Decoder IP core (‘dec’). 

 

1 PCIe: Activate IP core.                                                          

2                                                                                  

3                                                                                  

4 Activate 'dec' core (msg 09):                                                    

5  - get safelock credentials...OK                                                 

6  - check IP core license file...OK                                               

7  - update safelock credentials...OK                                              

8  - call ERDB verifier...                                                         

9                                                                                  

10 ERDB_verifier v.1.0 (release Jan 29 2010, 18:40:42)                              

11                                                                                  

12  - get IP core report 'dec.d09'...OK                                             

13  - make diff with system state...OK                                              

14                                                                                  

15                                                                                  

16 Verification report:                                                             

17                                                                                  

18  - IP core configuration region: (10,0 - 42,43)...OK                             

19  - IP core isolation region    : (10,0 - 42,45) ...OK                            

20  - external pips found         :      3869  (3424 real, 445 fake)                

21  - unmatched ext pips          :      1185  (1185 real, 0 fake)                  

22  - io pips found               :      3594  (3280 real, 314 fake)                

23  - unmatched io pips           :      1141  (1141 real, 0 fake)                  

24                                                                                  

25                                                                                  

26         !!!WARNING!!!                                                            

27                                                                                  

28          Potentially dangerous IP core!!!                                        

29                                                                                  

30  - write report file 'dec.t09'...OK                                              

31 Verification finished without errors.                                            

32 IP core 'dec' violates seurity requirements for reconfigurable region.           

33  - check security bypass flag...OFF                                              

34 IP core activation cancelled due to security risk.                               

35  - roll back license update...OK                                                 

36 Waiting for ACK...OK                                                             

37 Waiting for NULL...OK                                                            

38 PCIe command finished.                                                           

39                                                                                  

40 Waiting for PCIe command...(press ESC key to break)                              

41                                                                                  

42 Received break signal.                                                           

43 Exiting.  

 


