

Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the

published version when available.

Downloaded 2024-03-13T08:42:18Z

Some rights reserved. For more information, please see the item record link above.

Title Secure Intellectual Property Management in Reconfigurable
Computing Systems

Author(s) Kepa, Krzystof

Publication
Date 2010

Publication
Information

Krzysztof Michał Kępa (2010) Secure Intellectual
Property Management in Reconfigurable Computing Systems.
Thesis

Item record http://hdl.handle.net/10379/4886

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/

Secure Intellectual Property Management in

Reconfigurable Computing Systems

A Dissertation presented

by

Krzysztof Michał Kępa, M.Sc., Eng.

Electrical & Electronic Engineering

College of Engineering and Informatics

National University of Ireland, Galway

Submitted in fulfilment of the requirements for the

Degree of

Doctor of Philosophy in Electrical & Electronic Engineering

Supervisor

Dr. Fearghal Morgan

April 2010

– ii –

– iii –

I hereby declare that this thesis is my original work except where stated.

Signature:__________________________

Krzysztof Kępa

–April 2010

– iv –

– v –

Acknowledgements

I dedicate this dissertation to Maga, for reminding me that there is much more to

life than study, and to my parents, Rena and Leszek, for their unconditional love and

support throughout my life. Thank you!

The work in this thesis was carried out under the superb supervision of Dr.

Fearghal Morgan whom I thank particularly for his astute guidance and reassurance,

as well as his endless energy, contagious enthusiasm and common sense. Ai.

I thank to Krzysztof Kościuszkiewicz for our stimulating conversations about

informatics, life and everything. I also thank research and staff members of Electrical

& Electronic Engineering in NUI Galway, research and staff members of Applied

Optics Group at School of Physics in NUI Galway and staff members of Computer

Architecture Group at the Institute of Computer Engineering, Control and Robotics

in Wroclaw University of Technology.

I thank research and staff members of the Embedded Electronics Systems Group

in the Institute for Information Processing Technology who hosted me at Karlsruhe

Institute of Technology in Karlsruhe for two months. I also thank research and staff

members of the Configurable Computing Laboratory in the Bradley Department of

Electrical and Computer Engineering who hosted me at Virginia Tech in Blacksburg

for two months.

I thank Dr. Michael Hübner, Prof. Jürgen Becker, Prof. Stanislaw Piestrak, Prof.

Janusz Biernat, Dr. Jacek Majewski, Prof. Chris Dainty and recently passed Dr.

Marian Bogdan for their advices and encouragement. I also thank Prof. Christophe

Bobda who hosted me at Dagstuhl Workshops.

This project has been funded by the Irish Research Council for Science,

Engineering and Technology (IRCSET) under the EMBARK Initiative. The

equipment was provided by Xilinx under the Xilinx University Programme and Intel

Communications Europe from Shannon, Ireland.

Numerous friends supported me in the life ‘outside the lab’: Anka, Bart, Charlie,

Eugenie, Fabien, Grześ, Indiana, Ksenia, Karolina, Maro, Migle, Mindaugas, Oscar,

Rafik, Sabine, Sedao, Stefan, Sylwek, Szakuł, Tom, members of PolishSoc and

Mountaineering Club at NUI Galway, and all my unconventional Galway flatmates.

Thank you all.

Krzysztof Kępa, Wrocław, Poland, April 2010

– vi –

– vii –

Abstract

This thesis contributes to Intellectual Property (IP) security and IP usage

accounting in Partially Reconfigurable (PR) Xilinx Field-Programmable Gate Array

(FPGA)-based Reconfigurable Computing (RC) systems.

The outsourcing of RC system design to external entities results in an extended,

multi-player design environment and implicit chains of trust between various parties.

A consequence is an increased risk to system integrity and to design IP protection,

e.g. design IP theft, cloning, counterfeiting and tampering. Reported research on IP

infringement countermeasures within RC devices has not considered the security

risks caused by including erroneous or malicious IP cores in the PR-enabled RC

system. Also, current security measures do not support system usage accounting and

IP license enforcement in a multi-party design flow and in deployed PR-enabled RC

systems. This hinders massive-scale adoption of third-party IP cores in high

assurance RC systems.

This thesis proposes a new IP-aware method for the development of trustworthy

PR systems and reports the implementation of a trusted Secure Reconfiguration

Controller (SeReCon) IP core which is a Root of Trust (RoT) for RC systems.

SeReCon provides design IP protection and maintains the integrity of the RC system

by analysing the IP core structure prior to RC system reconfiguration and by

mediating access to the internal Xilinx FPGA reconfiguration port. SeReCon protects

the RC system from structural issues resulting from the inclusion of malicious IP

cores. SeReCon supports the use of untrusted third-party IP cores in high-assurance

RC systems. SeReCon also protects IP of third party designs and provides design IP

license enforcement within the deployed system. The thesis proposes and describes a

modification to the FPGA fabric to enable SeReCon security credentials to be

generated and stored internally (within the FPGA) during the RoT certification

process. In the SeReCon-based IP management scheme the Trusted Authority party

participates only during certification of the RC system RoT. This policy reduces the

risk of security credentials leakage and reduces the chain-of-trust requirements in a

multi-player design flow.

The thesis also describes the development and application of the FPGA Design

Analysis Tool (FDAT), which supports rapid prototyping of FPGA CAD

applications for FPGA system-level design, design verification and application

porting to SeReCon. FDAT provides a set of high-level FDAT APIs which abstract

the Xilinx FPGA fabric, the implemented design (placed and routed netlist) and the

associated FPGA configuration bitstream. The operation of FDAT is governed by

“recipe” scripts and a lightweight graphic front-end.

A SeReCon-enabled RC system prototype has been implemented in a Xilinx

Virtex-5 FPGA and targets a Software-Defined-Radio (SDR) application

incorporating dynamically loadable IP cores. The RC system prototype includes a

number of PR IP cores, e.g. AES cipher and decipher, in order to demonstrate the

feasibility of the SeReCon-based IP management scheme. The SeReCon

demonstrator application provides detailed and interactive insight into the operation

of the RC system during SeReCon initialisation and operation, and illustrates that

even genuine IP cores, when developed in multi-party environment, could include

implicit communication channels and could therefore introduce security risks.

– viii –

– ix –

Table Of Contents

Acknowledgements .. v
Abstract..... .. vii
Table Of Contents ... ix
List Of Figures .. xii
List Of Tables .. xv
Glossary...... ... xvi
Chapter 1. Introduction .. 1
1.1. Thesis Summary ... 1
1.2. FPGA-based Reconfigurable Computing (RC) .. 4
1.3. Partial Reconfiguration (PR) Design Flow .. 4
1.4. Security Requirements In PR-Enabled RC Systems ... 5
1.5. Multi-Party Design Environment & RC System Life-Cycle .. 6

1.5.1. Introduction .. 6
1.5.2. Players In RC System Life Cycle... 7
1.5.3. Four Phase RC System Life Cycle .. 9
1.5.4. RC System Stack Model .. 9

1.6. Illustration Of SeReCon Within A Software Defined Radio (SDR) Application 12
1.7. Security Issues In FPGA-Based PR RC Systems ... 18
1.8. FDAT: FPGA Design Analysis Tool .. 19
1.9. Structure Of The Thesis .. 21
1.10. Thesis Contributions And Novelty Claims ... 23

Chapter 2. Partially Reconfigurable Computing Systems Background ... 26
2.1. Introduction ... 26
2.2. RC Systems Vs ASICs And GPPs .. 26
2.3. FPGA Architecture And RC System Design Flow ... 28

2.3.1. Introduction .. 28
2.3.2. FPGA Architecture Overview .. 28
2.3.3. Xilinx FPGA Configuration Bitstream Structure .. 29
2.3.4. FPGA-Based RC System Design Flow .. 32

2.4. Xilinx Partial Reconfiguration (PR) Design Flow ... 34
2.4.1. Introduction .. 34
2.4.2. Xilinx Early Access PR Design Flow ... 34
2.4.3. Xilinx PR Bitstream Structure.. 36

Chapter 3. Reconfigurable Computing Security: Background .. 38
3.1. Introduction ... 38
3.2. Security Risks In PR FPGA Systems: A Motivating Example ... 38

3.2.1. Introduction .. 38
3.2.2. CB4CLE Design Representation .. 39
3.2.3. The Security Risk Of Implicit Communication Channel Between IP Cores 40
3.2.4. IP Core Implicit Communication Channel Over The Clock Line .. 41

3.3. State-Of-The Art In FPGA Design Security .. 44
3.3.1. Introduction .. 44
3.3.2. Side-Channel Attacks And Countermeasures ... 46
3.3.3. EDA Tools As The Security Threat ... 47
3.3.4. Malicious FPGA Designs.. 47
3.3.5. Xilinx FPGA Fabric Protection ... 48
3.3.6. Trusted Computing (TC) ... 49
3.3.7. RC System Integrity Maintenance .. 52
3.3.8. Design IP Protection ... 54

3.4. FPGA IP Core Licensing Models .. 57

– x –

3.4.1. Introduction .. 57
3.4.2. Common Software Business Models .. 57
3.4.3. Xilinx LogiCORE IP Licensing Scheme .. 58
3.4.4. Mixed Business Models For FPGA IP Core Licenses .. 59

3.5. Thesis Proposition: Trusted Design Verification And Reconfiguration ... 60
3.5.1. Introduction .. 60
3.5.2. Secure Reconfiguration Controller (SeReCon).. 62
3.5.3. Methods And Assumptions .. 63

3.6. Chapter Summary .. 63

Chapter 4. SeReCon Proposal: RoT and Usage Accounting In PR FPGAs .. 64
4.1. Introduction ... 64
4.2. Requirements Of Credentials Storage And Usage Accounting In A RoT 64
4.3. Review Of Techniques For Storage Of RoT Data .. 65
4.4. FPGA Fabric Extension For Tamper-Proof Storage Of RoT Data .. 67

4.4.1. Introduction .. 67
4.4.2. IDR Support For Tamper-Proof Storage Of RoT Credentials During Powerup.................. 69
4.4.3. Extending IDR For System And IP Core Usage Accounting ... 70
4.4.4. EIDR Prototype Implementation .. 72

4.5. Multi-Party RoT Certification Process .. 76
4.6. Chapter Summary .. 77

Chapter 5. FDAT Framework For Low-Level FPGA Design Analysis .. 78
5.1. Introduction ... 78
5.2. Review Of Low Level Design Analysis Tools ... 80

5.2.1. Introduction .. 80
5.2.2. Low-Level Design Analysis Tools ... 80
5.2.3. Proposed Functionality For Low-Level FPGA Design Analysis Toolset 81

5.3. Proposed FPGA Design Analysis Tool (FDAT) ... 82
5.3.1. Introduction .. 82
5.3.2. FPGA Fabric API (FFAPI) Module .. 83
5.3.3. Design API (DAPI) Module .. 85
5.3.4. Bitstream API (BAPI) Module .. 87
5.3.5. FDAT Function Recipes Exploiting A Script Programming Paradigm 88

5.4. FDAT Implementation And Analysis Of Virtex-II Pro Routing ... 91
5.4.1. Introduction .. 91
5.4.2. Results Of FDAT Application In The Analysis Of Virtex-II Pro Routing 92

5.5. Porting Of FDAT Functionality To The Embedded SeReCon ... 96
5.5.1. Introduction .. 96
5.5.2. Requirements For ERDB Implementation .. 96
5.5.3. Embedded Routing DataBase (ERDB) ... 97
5.5.4. ERDB-Based IP Core Routing Analysis .. 102
5.5.5. Verification Of The ERDB Correctness .. 106

5.6. Chapter Summary .. 108

Chapter 6. SeReCon Initialisation And Operation For Secure FPGA Reconfiguration 110
6.1. Introduction ... 110
6.2. SeReCon Internal State Diagram ... 111
6.3. SeReCon RoT Initialisation ... 112

6.3.1. Introduction .. 112
6.3.2. Initialisation Algorithm ... 113
6.3.3. SafeLock - EIDR Support For IP Core Privacy & Integrity Protection 114

6.4. IP Core Installation ... 116
6.4.1. Introduction .. 116
6.4.2. Shared Key Agreement Between IPV And SeReCon ... 116
6.4.3. IP Core Production And Transfer To The RC System .. 119
6.4.4. IP Core Installation In The RC System ... 121

– xi –

6.5. IP Core Activation And Deactivation .. 124
6.5.1. Introduction .. 124
6.5.2. Verification of IP Core Compatibility with Current System State 124
6.5.3. IP Core License Validation .. 126
6.5.4. RC System Reconfiguration .. 128
6.5.5. IP Core Deactivation ... 129

6.6. Chapter Summary .. 130

Chapter 7. Case Study: SeReCon Architecture Implementation And Application in SDR device .. 131
7.1. Introduction ... 131
7.2. RC System Implementation .. 132

7.2.1. Introduction .. 132
7.2.2. SeReCon-Enabled RC System Block Diagram .. 132
7.2.3. PCIe Interface IP Core ... 135
7.2.4. PCIe BAR Splitter IP Core .. 137
7.2.5. Configuration Controller IP core ... 138
7.2.6. PR Region IP Cores .. 141
7.2.7. SeReCon IP Core ... 146

7.3. RC System and SeReCon Implementation Results .. 155
7.3.1. Introduction .. 155
7.3.2. Hardware Implementation Results... 155
7.3.3. SeReCon Firmware Implementation Results .. 160
7.3.4. SeReCon-enabled RC System Prototype Implementation Issues 161

7.4. RC System Demonstrator ... 164
7.4.1. Introduction .. 164
7.4.2. RC System Communications Library ... 164
7.4.3. Host-side SeReCon API ... 165
7.4.4. Demonstrator Application Results ... 166

7.5. Proposal: SeReCon Application Within The SDR Device ... 175
7.5.1. Introduction .. 175
7.5.2. SDR Device Block Diagram .. 175
7.5.3. Proposed SeReCon Modifications For Embedding Within The Prototype SDR System . 176

7.6. Chapter Summary .. 177

Chapter 8. Conclusions And Future Work ... 178
8.1. Introduction ... 178
8.2. RC Systems And Security Risks In The Multi-Party Design Environment 178
8.3. SeReCon, A RoT For PR FPGAs .. 179
8.4. FDAT Framework For Low-Level FPGA Design Analysis ... 180
8.5. SeReCon Initialisation And Operation For Secure FPGA Reconfiguration 181
8.6. Case Study: SeReCon Architecture Implementation And Proposed Application In SDR Device . 181
8.7. Future Research Directions .. 182

References .. 184
Appendix A – List of Reconfigurable Computing architectures ... 195
Appendix B – EIDR source code (eidr.vhdl) ... 196
Appendix C – ERDB C Data Structures (erdb.h) ... 199
Appendix D – “BitPipsVerificator “ recipe report .. 201
D.1. List of XDL pips which are not found in the bitstream ... 201
D.2. List of additional bitstream pips which are not found in the reference XDL file 204

Appendix E – SeReCon debug console output during RC system demonstration 206
E.1. Default view of the SeReCon debug console .. 206
E.2. EIDR initialisation ... 208
E.3. IP cores installation .. 209
E.4. IP cores activation .. 224

– xii –

List Of Figures

1-1 Typical players, the four phase life cycle and the 3-layer stack model of a typical RC
system. ..7

1-2 a. stack model of a self-reconfigurable system. b. risk of unprotected software access to
the reconfiguration interface. c. the proposed SeReCon-enabled system stack model.
including Root-of-Trust. d. SeReCon-based controlled reconfiguration.10

1-3 a. SDR environment and application implemented within a Partially-Reconfigurable (PR)
FPGA-based Reconfigurable Computing (RC) device. b. potential attack vectors and the
security assurances carried out by the proposed SeReCon element. ..13

1-4 a. Block diagram of the FPGA-based SDR device (PR-enabled RC system) including
SeReCon. b. SDR application software stack. c. SeReCon IP core. d. the Extended ID
Register element. e. the SeReCon firmware installed in local memory.16

1-5 a. SeReCon-based Root-of-Trust (RoT) usage scenarios. b. RoT initialisation. c. IP core
installation. d. IP core activation. ...17

1-6 FPGA Design Analysis Tool (FDAT) block diagram and context. ...20

2-1 Computational efficiency gap between silicon and microprocessors, expressed in Million
Operations Per Second (MOPS) per Watt, widening as feature size reduces [39].26

2-2 Flexibility vs performance of processor classes [11]. ...27

2-3 Block diagram of an FPGA device. ..29

2-4 Tile-based frame organisation of the configuration memory in the Xilinx Virtex-5 (V5LX50T)
FPGA device. ...30

2-5 FPGA-based RC system Design Flow [49]..33

2-6 Xilinx EAPR design flow [10]. ..35

3-1 Various (equivalent) representations of the CB4CLE counter design [55]. a. VHDL source. b.
mapped netlist. c. configuration bitstream. d. FPGA Editor view of the P&R design netlist.
e. FDAT view of the CLB tiles (red) and the P&R design netlist (blue) with separate routing
tiles (yellow). ...39

3-2 Tile view of the Xilinx Virtex-5 FPGA with highlighted routing resources (turquoise) and
CLBs (red). ...41

3-3 Communication channel existing outside two IP cores. This introduces the risk of setup of
an implicit communication channel, which may introduce errors, system failure, or expose
the IP to security risks. ..42

3-4 FDAT-generated visualisation of the abundant connectivity of the CB4CLE counter design.
ab. within a Virtex 5 LXT FPGA. c.d. within a Virtex-2 Pro FPGA. The CB4CLE (blue and
yellow) utilises a single CLB. CB4CLE signals use routing resources (green) which are shared
by at least one electrical connection (a & c –without clock tiles, b & d – including clock
tiles). ...43

3-5 Block diagram of the malicious IP core in a steganographic application.44

4-1 Block diagram of the FPGA fabric including the ID Register (IDR) element.68

4-2 Block diagram of the ID Register (IDR) used for controlled generation of unique, random
and partially-anonymous security credentials. ...70

4-3 Extended ID Register block diagram. Monotonic-counters support enforcement of IP core
license, time-limited and counted usage in a multi-party PR design environment.72

4-4 VHDL description of the EIDR element. Implementation details are removed for clarity.75

4-5 Certification of the SeReCon Root-of-Trust (including SeReCon firmware binary).77

– xiii –

5-1 The available data structures and most significant FFAPI methods (the method parameters
and less important methods are omitted to aid clarity). ..84

5-2 FDAT screenshots. a. the Tile view of the Xilinx Virtex-5 device (colour highlights tiles of
the same type). b. the user-design (blue – FPGA tiles used as logic, yellow – FPGA tiles
used for routing) and unused resources (grey) within the Virtex-5 device.85

5-3 The available data structures and most significant DAPI methods (the method parameters
and less important methods are omitted to aid clarity). ..87

5-4 The available data structures and most significant BAPI methods (the method parameters
and less important methods are omitted to aid clarity). ..88

5-5 FDAT recipe structural organisation (left side) and interaction with FDAT modules, other
recipes and user interface. ...89

5-6 Layered model of FDAT recipes. ...91

5-7 “Pip2BitMapping” recipe flowchart. The recipe is used in the FDAT framework verification
test. ...94

5-8 a. the bit mapping table generated for CLB column PIPs within the Virtex-II Pro. b. bit
patterns for various PIP classes (used by FDAT to analyse partial-bitstreams and verify
design spatial isolation). ...95

5-9 The FDAT “ErdbCGenerator” recipe flowchart. ..97

5-10 The FDAT GetRoutingShapes() function flowchart. ..98

5-11 The CreateRoutingDB() function flowchart. The algorithm generates the ERDB PIPs
database (ERDB_PD), the ERDB Routing database (ERDB_RD) and the ERDB Tilegroup
database (ERDB_TG). ... 100

5-12 The GeneratePipBitData() function flowchart. This algorithm exploits the
“Pip2BitMapping” recipe in order to generate ERDB PIPs Bit database (ERDB_PB) which
describes relative locations of PIP configuration bits in the bitstream. 101

5-13 The GenerateErdbC() function flowchart. .. 102

5-14 The FDAT "GetBitPips" recipe flowchart. This recipe reports all PIPs (incuding fake arcs) in
the IP core. The recipe uses ERDB and FPGA configuration frames (obtained using the BAPI
module). ... 104

5-15 The "GetExtWires" recipe flowchart. The recipe exploits the “GetBitPips” recipe and uses
ERDB in order to detect and report IP core external routing which could be used to set
implicit communication channels. ... 105

5-16 Relation between the IP core region, the tile envelope and wire shape taps. 105

5-17 The "BitPipsVerificator" recipe flowchart which verifies accuracy of the PIP list generated
using the ERDB-based “GetBitPips” recipe. ... 107

6-1 The SeReCon internal state diagram. SeReCon RoT Initialisation ... 112

6-2 The SeReCon RoT initialisation flowchart. ... 114

6-3 The structure of the SafeLock backup file. .. 116

6-4 The IP core installation flowchart and players. a. Shared Key (SK) negotiation between the
IPV and SeReCon RoT. b. IP core preparation and transfer. c. IP core installation in the RC
system. ... 117

6-5 The IPV algorithm flowchart for Diffie-Hellman (DH) Shared Key (SK) agreement. 118

6-6 The SeReCon algorithm flowchart for DH SK agreement. ... 120

6-7 a. IP core preparation flowchart. b. the IP package. ... 121

6-8 The flowchart of the IP core installation in the RC system. ... 122

6-9 The IP core isolation region and its relation with the IP core region. .. 123

– xiv –

6-10 a. Structure of the IP core analysis report. The report defines IP core configuration and
isolation regions. b. List of external PIPs in both regions. ... 123

6-11 Main steps in the IP core activation process. .. 124

6-12 The data structure which describes the current state of the RC system PR region. 125

6-13 The IP core compatibility verification flowchart. ... 126

6-14 The IP core license checking flowchart. a. SeReCon verifies the number of remaining IP
core activations and usage lifetime prior to IP core activation. b. SeReCon updates IP
license during unsuccessful IP core activation. c. SeReCon updates IP license during IP core
deactivation. .. 127

6-15 The IP core activation flowchart. ... 128

6-16 The SeReCon-based IP core deactivation process. .. 129

7-1 a. the block diagram of the SeReCon demonstrator. b. SeReCon-enabled RC system. 132

7-2 Block diagram of the SeReCon-enabled RC system which is implemented in the Xilinx
Virtex-5 FPGA (Xilinx Virtex-5 LXT FPGA ML505 Evaluation Platform). 133

7-3 The Xilinx PlanAhead view of the SeReCon-enabled RC system top-level netlists. 134

7-4 Xilinx ISE Schematic view of the SeReCon-enabled RC system. ... 135

7-5 The VHDL description of the modified PCIe reference design which includes the additional
memory interface which is used for communication with the RC system. PCIe Endpoint-
related signals are removed for clarity. ... 136

7-6 The VHDL description of the PCIe BAR Splitter IP core interface. ... 137

7-7 The VHDL description of the SeReCon-enabled RC system Configuration Controller IP core
interface. .. 139

7-8 The VHDL description of the PR region interface. ... 141

7-9 The FPGA fabric with a size-constrained PR region and location-constrained Bus Macros (a
view from the Xilinx PlanAhead tool). ... 142

7-10 The Xilinx EDK view of the SeReCon internal organisation. ... 146

7-11 VHDL description of the SeReCon IP core interface. ... 147

7-12 View of the SeReCon serial console which uses the UART interface in order to support RC
system debugging. ... 148

7-13 The block diagram of the SeReCon PCIe interface IP core. .. 150

7-14 The FPGA Editor view of the SeReCon-enabled RC system implementation in the Xilinx
Virtex-5 FPGA and location of the PR region. a. FPGA logic occupation. b. complexity of RC
system routing. .. 156

7-15 The relative (percentage of FPGA resources) cost of the main SeReCon-enabled RC system
prototype elements. a. FPGA LUT usage. b. FPGA FF usage. .. 157

7-16 The relative (percentage of FPGA resources) cost of the SeReCon elements. a. FPGA LUT
usage. b. FPGA FF usage. ... 159

7-17 a. the SDR device hardware prototype. b. SDR System-in-Package internals. (Source: VT
CCM Lab). ... 175

7-18 SDR block diagram and the suggested location of the SeReCon element 176

– xv –

List Of Tables

2-1 Approximated resource density of current and future FPGA technologies [42].28

4-1 Resource occupation of the EIDR prototype implemented in Virtex-5 LXT.74

4-2 The EIDR API which is provided by the SeReCon EIDR driver. ...74

5-1 ERDB C source and header files produced by the “ErdbCGenerator” FDAT recipe which are
used by the SeReCon firmware. .. 102

5-2 Fragment of the "BitPipsVerificator" report which shows the difference between the list of
XDL PIPs and a list of bitstream PIPs (for the ‘INT’ FPGA tile type). .. 108

5-3 Correlation between the ERDB-based bitstream analysis and the reference XDL file, which is
reported by the FDAT "BitPipsVerificator"recipe. ... 108

6-1 The SafeLock API which is provided by the SeReCon EIDR driver. ... 115

6-2 IP core license modes and license restrictions which are supported by SeReCon. 121

7-1 Description of the PCIe interface BARs. ... 137

7-2 Description of Configuration Controller registers which are mapped into the PCIe BAR1. 140

7-3 Description of the Adder interface registers.. 143

7-4 Description of the Multiplier register interface. .. 143

7-5 Description of the AES Cipher register interface. .. 144

7-6 Description of the AES Decipher register interface. .. 145

7-7 Description of the SeReCon RC system interface signals which connect SeReCon to the
Configuration Controller IP core and RC system BMs. .. 149

7-8 Description of the TRNG IP core registers which are mapped in the MicroBlaze memory and
are available to the SeReCon firmware. .. 151

7-9 Description of the SeReCon AES IP core registers (continued in Table 7-10) which are mapped
into the MicroBlaze memory and are available to the SeReCon firmware. 152

7-10 Description of the SeReCon AES IP core registers (continuation of Table 7-9). 153

7-11 FPGA logic resources used by the prototype SeReCon-enabled RC system. 156

7-12 FPGA logic resources used by the SeReCon IP core. .. 158

7-13 FPGA memory resources used by the SeReCon firmware. .. 160

7-14 The percentage resource cost of the SeReCon implementation in modern Xilinx FPGAs. 163

7-15 Description of the RC system communication library which is used by the host-side SeReCon
API. .. 165

7-16 Description of the host-side SeReCon API which is used by the RC system demonstrator
application. .. 165

7-17 Description of the SeReCon demonstrator API which is tested using the interactive Python
command line. The API description is continued in Table 7-18 and Table 7-19. 166

7-18 Continued description of the SeReCon demonstrator API which includes support for RC
system interactive debugging. .. 167

7-19 Continued description of the SeReCon demonstrator API which includes functional tests for
activated IP cores and LEDs on the RC system board. .. 168

– xvi –

Glossary

3DES – Triple DES

AES – Advanced Encryption Standard

API – Application Programming Interface

ASIC – Application Specific IC

BAPI – Bitstream API

BaseSFC – Base SeReCon FPGA Configuration

BAR – Block Address Range

BB – Base Band

BEL – Basic Element of Logic

BIOS – Basic Input Output System

BIT – Bitstream file

BSP – Board Support Package

CAD – Computer Aided Design

CADBUS – Command, Address & Data Bus

CB4CLE – 4-bit binary counter

CBC – Cipher Block Chaining

CBT – Configuration Bit Template

CCL – Configuration Control Logic

CLB – Configurable Logic Block

CM – Configuration Memory

CMOS – Complementary Metal–Oxide–

 Semiconductor

COTS – Commercial Off-The-Shelf

CPU – Central Processing Unit

CRC – Cyclic Redundancy Check

CSR – Control Status Register

DAPI – Design API

DCE – Data Communications Equipment

DDR – Double Data Rate

DES – Data Encryption Standard

DH – Diffie-Hellman

DPA – Differential Power Analysis

DRC – Design Rules Checker

DRM – Digital Rights Management

DSP – Digital Signal Processing

DTE – Data terminal equippment

DWDDL – Double WDDL

EAPR – Early Access PR

EDA – Electronic Design Automation

EDK – Embedded Development Kit

EIDR – Extended Identity Register

EK – Endorsement Key

ERDB – Embedded Routing Database

FAE – Field Application Engineer

FAR – Frame Address Register

FASE – FPGA Architecture for

 Secure Embedded systems

FDAT – FPGA Design Analysis Tool

FDRI – Frame Data Input Register

FFAPI – FPGA Fabric API

FIFO – First In First Out

FIPS – Federal Information Processing

 Standard

Flash – non-volatile computer memory

FPGA – Field Programmable Gate Array

FRC – Free-Running Counter

FSM – Finite State Machine

FV – FPGA Fabric Vendor

GPIO – General Purpose Input Output

GPP – General-Purpose Processor

GSM – Global System for Mobile

Communications

GUI – Graphical User Interface

HAIPE – High Assurance Internet Protocol

 Encryption

HAIPIS – HAIPE Interoperability

 Specification

HMAC – Hash-based MAC

HPC – High-Performance Computing

HTML – HyperText Markup Language

IC – Integrated Circuit

ICAP – Internal Configuration Access Port

IDR – Identity Register

IDS – Intrusion Detection System

IO (I/O) – Input Output

– xvii –

IOB – IO Block

IP – Intellectual Property

IPV – IP Vendor

ISE – Integrated Synthesis Environment

IVT – Isolation Verification Tool

JTAG – Joint Test Action Group

KR – Key Register

Linux – Unix-like free and open source OS

LIPS – Local IP Storage

LTC – Life Time Counter

LUT – Look-Up Table

MAC – Message Authentication Code

MB – MicroBlaze

MFW – Multi-Frame Write

MIM – Man-in-the-Middle

MNA – Minor Address

MNC – MsgNo Counter

MOPS – Million Operations Per Second

NCD – Native Circuit Description

NIST – National Institute of Standards and

 Technology

OO – Object-Oriented

OS – Operating System

P&R – Place & Route

PCB – Printed Circuit Board

PCIe – PCI express

PHY – physical layer device

PIP – Programmable Interconnection Point

PMV – Process Monitor Vehicle

PR – Partial Reconfiguration

PRM – PR Module

PRNG – Pseudo RNG

PUF – Physicaly Unclonable Function

R&D – Research & Development

RAM – Random-Access Memory

RC – Reconfigurable Computing

RE – Regular Expression

RoT – Root of Trust

RNS – Residue Number System

RNG – Random Number Generator

RO – Ring Oscillator

RSA – Rivest, Shamir and Adleman

RTR – Run-Time Reconfiguration

SAFES – Security Architecture For Embedded

 Systems

SCC – Single Chip Crypto

SDK – Software Development Kit

SDR – Software Defined Radio

SDRAM – Synchronous Dynamic RAM

SECDED – Single-Error Correction Double-

 Error Detection

SeReCon – Secure Reconfiguration Controller

SEU – Single-Event Upset

SHA – Secure Hash Algorithm

SI – System Integrator

SIP – System-in-Package

SoC – Systems-on-Chip

SODIMM – Small Outline Dual In-line Memory

 Module

SoPC – Systems-on-Programmable-Chip

SPI – Serial Peripheral Interface

TA – Trusted Authority

TC – Trusted Computing

TCG – Trusted Computing Group

TPM – Trusted Platform Module

TV – EDA Tool Vendor

TRNG – True RNG

Ubuntu – Linux distribution

WDDL – Wave Dynamic Differential Logic

XDL – Xilinx Design Language

XDLRC – FPGA Fabric netlist file

VASSP – Virtual Application Specific

 Standard Product

VLSI – Very-Large-Scale Integration

– 1 –

 Chapter 1. Introduction

This introductory chapter first summarises the focus and elements of this thesis

and outlines the motivations for performing this research. The chapter also includes

an introduction to FPGA-based Reconfigurable Computing (RC) systems and the

Partial Reconfiguration (PR) design flow. The various parties participating in a

multi-party PR RC system design, implementation and application are described.

Various security risks associated with a multi-party design flow are highlighted. A

software Defined Radio (SDR) application implementation incorporating a PR RC

element is considered in various usage scenarios to illustrate potential security risks.

Finally, the chapter summarises the main contributions of the work.

1.1. Thesis Summary

This thesis contributes to Intellectual Property (IP) security and IP usage

accounting in Partially Reconfigurable (PR) Xilinx Field-Programmable Gate Array

(FPGA)-based Reconfigurable Computing (RC) systems.

RC systems typically include a number of IP cores, commonly designed by

external parties. The high design complexity of RC systems, and pressure for

reduced design time, have stimulated strong adoption of a design reuse methodology.

This adoption is also supported by a growing development of third-party IP cores.

IP design outsourcing results in an extended, multi-player design environment,

and therefore implicit chains of trust between various parties. Players include IP

vendor, system integrator, user, trusted authority etc, typical in a software

engineering domain. A consequence of the multi-player environment is an increased

risk to system integrity and to design IP protection, e.g. design IP theft, cloning,

counterfeiting and tampering [1]–[5]. Reported research on security measures within

RC devices has not considered the security risks caused by including erroneous or

malicious IP cores in the PR-enabled RC system, i.e. compromising system integrity

through undiscovered IP design errors or malicious design overbuilds [2]. Current

design IP protection methods focus on the confidentiality of the IP core

implementation, mainly by using authentication and encryption protocols [6][7].

Adoption of an IP core protection and configuration model in a multi-party

environment requires a modification of the configuration scheme for FPGA-based

RC devices [8]. IP privacy protection and in-system license enforcement must be

ensured to commercially available third-party IP core vendors. This may not be so

where the system integrator has unrestricted access to, and is in full control of, all

design modules including third-party IP cores. A new secure FPGA configuration

model must be immune to IP core design errors and should allow design privacy

protection, i.e. secure incorporation of third-party IP cores, without the need for

disclosure of the IP implementation details.

 Chapter 1 - Introduction

– 2 –

Current IP infringement countermeasures and multi-player PR design flow do

not support IP core usage accounting and license enforcement (e.g. time-limited,

functionality/performance-limited or pay-per-use) in a multi-party design flow and in

active (deployed) PR-enabled RC systems. An IP protection model should provide a

reliable mechanism supporting IP core management according to a range of license

restrictions. This approach hinders massive-scale adoption of third-party IP cores in

high assurance RC systems.

This thesis reviews security risks in RC, while focusing on FPGA-based RC

systems using PR. State-of-the-art FPGA security measures are critically evaluated.

The thesis proposes a new IP-aware method for the development of trustworthy PR

systems and describes the implementation of a trusted Secure Reconfiguration

Controller (SeReCon) IP core. SeReCon is a fixed-footprint, trusted reconfiguration

base Root of Trust (RoT) for RC systems. SeReCon provides a trusted design

environment, generates RC system security credentials and performs prior-to-

reconfiguration IP core security verification and RC system self-reconfiguration.

A SeReCon prototype has been implemented in a Xilinx Virtex-5 FPGA and

targets a Software-Defined-Radio (SDR) application incorporating dynamically

loadable hardware radio modules (IP cores). SeReCon provides design IP protection

and maintains the integrity of the RC system by analysing incoming FPGA

reconfiguration requests during run-time, and by mediating all access to the internal

Xilinx FPGA Internal Configuration Access Port (ICAP) [9]. Autonomous analysis

of the structure of a new IP core prior to RC system reconfiguration verifies IP core

spatial isolation and run-time protection of an already-configured PR system

SeReCon interrupts the reconfiguration process if the IP core configuration violates

the integrity of the RC system. This protects the RC system from structural issues

resulting from erroneously placed (or malicious) IP cores. SeReCon enables the use

of unverified (untrusted) third-party IP cores in high-assurance systems so long as

they do not interfere with the active system configuration.

The thesis also proposes the use of SeReCon for IP core licensing and usage

accounting, e.g. total runtime, no. of activations etc, in a PR system. SeReCon

facilitates new IP core licensing models, e.g. transaction-based and metered access,

during the PR system life-cycle. The SeReCon-based RoT supports license

enforcement within the FPGA design flow, including the FPGA configuration

bitstream in the target system. The SeReCon-based RoT and IP management scheme

requires the participation of the Trusted Authority party only during certification of

the RC system RoT. This reduces the chain-of-trust requirements in a multi-player

design flow.

The thesis proposes and describes a modification to the FPGA fabric, the

Extended ID Register (EIDR), which has been implemented in a Virtex-5 LXT

device (ML505 Board) using the Xilinx ISE toolset. EIDR enables SeReCon security

credentials (used for RC system identification) to be generated and stored internally

(within the FPGA) during the system certification process. SeReCon employs

authentication, public-key and symmetric-key cryptographic algorithms in order to

protect the confidentiality and integrity of third party IP designs installed in the RC

 Chapter 1 - Introduction

– 3 –

system. Security credentials are generated using a Ring-Oscillator (RO)-based True

Random Number Generator (TRNG), and remain within the SeReCon RoT security

perimeter. This policy protects against un-authenticated access to the RC system

credential storage and hence reduces the risk of leakage of security credentials.

The thesis also describes the development and application of the FPGA Design

Analysis Tool (FDAT), which is a Python-based, versatile, modular and open tools

framework for low-level analysis and verification of FPGA design bitstreams. FDAT

supports rapid prototyping of EDA tools for FPGA system-level design, design

verification and application porting to SeReCon. FDAT can be used as a trusted and

verifiable reference design in the development, analysis and verification of PR

designs targeting Xilinx FPGAs. FDAT extends the Xilinx design flow
1
 by providing

a set of high-level FDAT APIs which abstract the Xilinx FPGA fabric, the

implemented design (placed and routed netlist) and the related FPGA configuration

bitstream. The operation of FDAT is governed by “recipe” Python-based scripts. A

lightweight graphic front-end allows custom visualisation of the design within the

FPGA fabric. To the best knowledge of the authors, FDAT is the first available

toolset to provide high-level and unrestricted access to the low-level description of

the Xilinx FPGA fabric and the user design at the netlist- and bitstream-level.

The prototype of the SeReCon-enabled RC system has been implemented in the

Xilinx Virtex-5 LXT FPGA using the Xilinx EAPR design flow [10] and Xilinx

EDA software, e.g ISE, EDK and PlanAhead tools. The RC system design files are

included in the thesis DVD. The RC system prototype uses four IP cores, e.g. 32-bit

Adder, 32-bit Multiplier, 128-AES Cipher and 128-bit AES Decipher in order to

demonstrate the SeReCon-based system reconfiguration. The SeReCon element is a

CPU-based system uses an embedded 32-bit MicroBlaze processor operating at 125

MHz. Analysis of the SeReCon implementation resource usage confirms the

feasibility of the SeReCon-based IP core management model in the largest FPGA-

based RC systems.

The thesis reports the SeReCon demonstrator application which is implemented

in Python and executed on the Intel server. The demonstrator application

communicates with the RC system prototype (and SeReCon) using the PCIe interface

and provides detailed insight into the operation of the RC system during the

SeReCon (and EIDR) initialisation, IP core installation and activation. The

demonstrator application shows that even genuine IP cores, when developed in

multi-party environment, could include implicit communication channels and could

introduce security risks.

1
 The FPGA Design Analysis Tool (FDAT) is an extension for Xilinx EDA tools, developed only for

educational purposes. The FDAT development process did not involve reverse-engineering of Xilinx

proporietary tools. FDAT targets only Xilinx FPGA devices. FDAT does not support and does not

enable any interoperability of Xilinx tools and FPGA devices from other FPGA vendors.

 Chapter 1 - Introduction

– 4 –

1.2. FPGA-based Reconfigurable Computing (RC)

Reconfigurable Computing (RC) is defined as: “the study of computation using

reconfigurable devices” [11]. Thus, RC systems blur the boundary between hardware

and software. RC systems offer the programmable flexibility of General-Purpose

Processors (GPPs) at a fraction of the power consumption. RC systems provide high-

performance computational acceleration in hardware, similar to that provided by

Application Specific Integrated Circuits (ASICs). RC systems offer faster time-to-

solution, cost reduction for small- to mid-volume applications, and improved fault-

tolerance with respect to production defects. Also, RC systems leverage Intellectual

Property (IP) R&D costs, while providing benefits usually associated with expensive

High-Performance Computing (HPC) systems. Various technologies (see Appendix

A) are used in RC systems, depending on the required reconfiguration granularity.

This thesis focuses on RC systems implemented using FPGA technology. RC

hardware such as FPGAs provides a cost-attractive alternative to ASIC

implementation for small- to mid-volume applications. The number of designs which

use reconfigurable hardware is exploding, with applications ranging from embedded

systems [12] to super-computers [13]. FPGA-based RC systems are extensively used

for rapid prototyping, in-system and in-field customisation, multi-modal

computation, and adaptive computing systems. Bobda has provided a survey of

application domains which significantly benefit from the use of RC systems [11].

The list includes pattern matching, video streaming, Digital Signal Processing (DSP)

using distributed arithmetic, adaptive controllers, adaptive cryptographic systems,

Software Defined Radio (SDR) and HPC
2
.

1.3. Partial Reconfiguration (PR) Design Flow

The Run-Time Reconfiguration (RTR) paradigm enables RC systems to perform

PR [14]. Active PR, available in some FPGAs, provides the flexibility of system

reconfiguration during runtime. PR technology leads to an unprecedented flexibility

and freedom in adapting to temporal changes within an RC system [15] or

environmental adaptivity [16], [17]. PR in RC systems can occur not only at the

software-level, but also at the configware-level [18]. Configware defines a

virtualised hardware platform on which the software is executed.

Figure 1- presents the block diagram of a PR-enabled RC (FPGA-based) SDR

device which includes the proposed SeReCon element. Typically, the SDR device

contains a number of application specific radio-modules in the transmitter cores (TX

region) and receiver cores (RX region). The SDR device also includes a number of

additional interfaces, e.g. communication interface (COMM IF), external memory

2
 See The US National Science Foundation (NSF) Center for High-Performance Reconfigurable

Computing (CHREC, http://chrec.org/projects.html)

 Chapter 1 - Introduction

– 5 –

controller (MEM CTRL IF), device-specific IO controller (PERIPH IF) and the

FPGA Internal Configuration Access Port (ICAP) for self-reconfiguration. SeReCon

is an additional IP core, and an element in the static FPGA base system

configuration.

PR is offered by Atmel and Xilinx FPGA vendors
3
. PR is facilitated in Xilinx

FPGAs using the SelectMAP interface or the Internal Configuration Access Port

(ICAP) [9]. PR provides full access to the FPGA configuration memory during

system runtime. Self-reconfiguration using PR enables the RC system software layer

to modify the underlying hardware configuration during system runtime, e.g.

insertion of new computing modules (IP cores), without restarting the system [9].

1.4. Security Requirements In PR-Enabled RC Systems

A recent Department of Defense report [19] has identified several trends

contributing to the threat of covert insertion of circuitry into computing hardware.

Modifying hardware provides attackers with a fundamental advantage over software-

based attacks [20], [2]. Attacks at the hardware level are more difficult to detect and

to prevent than attacks on software. Also, defending against hardware intrusion is

more difficult, as the offender has control over all system layers, including the

software stack. This thesis reviews security risks in RC systems, while focusing on

FPGA-based RC systems using PR. State-of-the-art FPGA security measures are

critically evaluated.

PR in RC systems introduces risks to hardware system security (design integrity)

on a scale associated to date only with the software domain. Risks exist such as

covert insertion of circuitry into PR computing hardware (system tampering), or

creation of implicit communication channels between IP cores. Modifying hardware

provides attackers with a fundamental advantage over software-based attacks; attacks

at the hardware level are more difficult to detect and prevent than attacks on

software. Extending hardware support for security verification (intrusion detection)

and handling is therefore required.

In FPGA-based RC systems, no protection layer exists below the system

hardware layer. Without protective measures, PR FPGAs could be exposed to a

range of attacks, some requiring the addition of only a small amount of covert-

inserted hardware [20]. King [2] illustrates that an attacker can design hardware to

support multiple attacks and demonstrates this concept using a system implemented

in an FPGA.

The most strict adversary model in embedded system design assumes that a

security risk exists where a device is held by one entity (system user) and where

secrets (design IP) within the device are controlled by another entity (IP

3
 Also, Altera announced it will support PR in future 28-nm FPGA devices

(http://www.eetimes.com/news/latest/showArticle.jhtml?articleID=222600544)

http://www.eetimes.com/news/latest/showArticle.jhtml?articleID=222600544

 Chapter 1 - Introduction

– 6 –

vendor/system integrator). A goal in secure systems engineering is to design a system

which an attacker (e.g. user) cannot subvert, either by malice, accident, or trickery.

Figure 1- and Figure 1-b illustrate possible attack vectors on a PR FPGA-based SDR

device, and the security countermeasures provided by the embedded SeReCon.

While the methodology of IP core reuse reduces design time and associated cost,

the intensive growth of the market for pre-designed IP modules introduces concerns

about the protection of design IP rights and the integrity of designs incorporating

third party IP cores. Ideally, each of the design components should be formally

specified, tested, and verified, followed by certification by an external Trusted

Authority (TA). In reality, IP components are typically created through in-house

design reuse, obtained from third-party IP Vendors
4
, or generated using automated

core generation tools, e.g. Xilinx CoreGen
5
. Current design IP protection methods

focus on the confidentiality of the IP core implementation, mainly by using

authentication and encryption protocols, though without considering the risks caused

by including erroneous or malicious IP cores in the PR-enabled RC system [20],

[21]. This approach hinders massive-scale adoption of third-party IP cores in high

assurance RC systems. Also, design reuse in the RC system design flow results in IP

cores of increasing complexity. As a consequence, attack methods can be generalised

and are becoming obscure by the complexity of the RC system.

1.5. Multi-Party Design Environment & RC System Life-

Cycle

1.5.1. Introduction

This section describes the typical players, the four phase life cycle and the 3-

layer stack model of a typical RC system (Figure 1-). Trust between players is

limited. The interactions between the various parties introduce multi-level risks

associated with the design flow and the RC system itself. IP and EDA tool vendors

seek appropriate IP protection against unauthorised design cloning, overbuilding

(manipulation) and reverse engineering. System integrators (design houses and

manufacturers) seek automated methods to provide effective system security to

protect design integrity in the field.

4
 OpenCores (http://www.opencores.org), IPcores (http://www.ipcores.com), Xilinx LogiCORE

(http://www.xilinx.com/ipcenter/index.htm)

5
 CoreGen is included in Xilinx ISE.

http://www.opencores.org/
http://www.ipcores.com/
http://www.xilinx.com/ipcenter/index.htm

 Chapter 1 - Introduction

– 7 –

Figure 1- Typical players, the four phase life cycle and the 3-layer stack model of a typical RC

system.

1.5.2. Players In RC System Life Cycle

This section describes each player in a multi-party design environment (Figure

1-).

Trusted Authority (TA) is an authorisation and/or certification centre. The TA

mediates communication between players in order to provide the required element of

trust. The TA is assumed to be trustworthy by all other entities and is usually not

involved in the system development process. The centralised role of the TA makes

the TA an attractive target to attackers. A risk exists that the TA operation,

trustworthy during RC system deployment, can be compromised in the future, e.g. by

a successful attack on the TA facilities, leakage of sensitive data
6
, bankruptcy etc.

For RC systems using the proposed SeReCon element, the TA confirms the

6
 Amazon's Kindle DRM crack (http://www.theregister.co.uk/2009/12/23/amazon_kindle_hacked/),

TI-83 Plus OS Signing Key Crack (http://www.ticalc.org/archives/news/articles/14/145/145154.html)

SOFTWARE

RECONFIGURABLE HARDWARE

F
P

G
A

 s
y
s
te

m
 l
a

y
e

rs

M
a
licio

u
s IP

 co
re

s

Device

impersonation

& tampering

Configuration

interception &

device tampering
Software errors

IP CORE #N
CONFIGWARE

SeReCon

End System UserIP VendorEDA SW Vendor

Trusted Authority

System Integrator

FPGA Vendor

Lifecycle phases

IC Fabrication System Design System Maturity Hardware Disposal

P
o
s
t-d

e
p
lo

y
m

e
n
t c

re
d
e
n
tia

ls
 le

a
k
a
g
e

http://www.theregister.co.uk/2009/12/23/amazon_kindle_hacked/

 Chapter 1 - Introduction

– 8 –

authenticity of the RC system key generation process (during the initial system start-

up), and certifies the resulting key material.

EDA Tool Vendor (TV) provides software tools to the other parties and strives

to ensure software quality. The TV can develop a strong reputation, based on long-

term trusted activity, but cannot be trusted entirely [21].

IP Vendor (IPV) is an external entity which provides reusable components (IP

cores) for the RC system. The IPV wishes to protect its own design secrets. The IPV

is not directly involved in the RC system design process, and is only aware of the

system requirements which the IP core must meet. The IPV guarantees compliance

of the IP design to the functionality specification, but not the optimal design.

Competitive market (e.g. constrained deadlines, cost etc) can drive IPV to provide

poorly tested or otherwise sub-optimal design. Similar to EDA software an IP core

can contain hidden malicious functionality [4].

The End-System User (User) is an end-customer who operates the RC system,

possibly in hostile environments. The User requires the system to be secure, but

could also try to gain personal profit by attempting to circumvent the implemented

security countermeasures since the User has physical access to the RC system. Also,

while software can be erased at the end of the system life-cycle, the hardware

platform often remains intact. A hardware reverse-engineering (de-packaging and

fabric analysis) or recycling process can reveal some sensitive data, e.g. permanently

embedded encryption keys. Under certain circumstances, even volatile memory can

retain data [22], [23]. Therefore, recovery of sensitive data (e.g. keys) or algorithms

may be possible.

System Integrator (SI) designs, manufactures and provides the RC system to

the User. The SI can also issue a product upgrade in the field. A typical RC system

consists of custom elements and multiple third-party IP cores. IP cores can be

distributed in various formats: HDL source, netlist or FPGA device-specific (partial-)

bitstream, depending on the level of trust between the SI and IPV. The SI is

interested in optimising costs associated with external IP cores used in the RC

system, e.g. royalties, license fees etc. Thus, the SI is motivated to circumvent legal

license restrictions by e.g. IP core cloning, reverse-engineering or tampering.

FPGA Fabric Vendor (FV) provides the FPGA fabric. Modern FVs are fabless.

Risks involved with outsourcing Integrated Circuit (IC) fabrication are detailed in

[19]. Usually the FV maintains the implementation details of the fabric confidential,

and guarantees quality of service and compliance to the FPGA specification.

The FV or its outsourced (typically off-shore) fabrication sub-contractor are

interested in extensive fabric testing and debugging to aid silicon yield. Thus, the

FPGA fabric includes undocumented vendor-specific debugging and test facilities,

e.g. Xilinx Process Monitor Vehicles (PMVs) [24]. Typically, vendor-specific

control circuits are not available to the User. This can lead to a device security

breach when user access is left unprotected in production devices [25]. Also, the

fabrication sub-contractor can weaken the fabric or inject additional malicious

 Chapter 1 - Introduction

– 9 –

functionality into the FPGA device
7
 [19], [20]. Verification by the TA is required to

ensure that undocumented access to the FPGA internals (e.g. configuration memory)

is not possible. This guards against Trojan ICs [20]. In the proposed SeReCon model,

the FPGA fabric is assumed to be trusted.

1.5.3. Four Phase RC System Life Cycle

This section describes each phase of the RC system life cycle in a multi-party

design environment (Figure 1-).

IC fabrication: delivers the FPGA fabric. The FV uses tools from the TV to

design the chip. The major FVs (e.g. Altera, Lattice, Xilinx) are fables; fabrication of

the FPGA devices is typically outsourced to the external foundry, e.g. TMSC
8
. Thus,

the TA can be required in order to establish trust in the produced FPGA devices

(device certification) [26].

System design: delivers the RC device. The SI develops the RC system

prototype, hardware platform and software. The SI uses EDA tools and reuses third

party IP cores provided by the IPV. The TA can be used as a trusted third party

during the process, when the SI and IPV do not trust each other.

System maturity: the main phase in the system life cycle. The device is

installed in the field and is operated by the User. The User can extend the

functionality of the device by ordering additional IP cores from the IPV or SI. The

TA can also participate.

Hardware disposal: terminates the RC system life cycle. The device is

deactivated and its hardware is ready for reuse. This phase can be intentional, e.g.

scheduled service termination, or can result from a tampering attack. Thus, it is vital

that the FPGA provides a facility for instant and irreversible system sanitisation, e.g.

one-shot encryption key erasing. Some Xilinx FPGAs already support this feature as

a ‘KEY_CLEAR’ primitive [27]. The KEY_CLEAR element provides the facility

supporting immediate erase of the configuration encryption circuit key register from

the internal logic.

1.5.4. RC System Stack Model

Figure 1-a illustrates the stack model of a typical self-reconfigurable system and

highlights the risks of unprotected software access to the reconfiguration interface

(Figure 1-b). Figure 1-c illustrates the proposed SeReCon-enabled self-

reconfigurable system stack model. Figure 1-d illustrates SeReCon-based controlled

(secure) reconfiguration.

7
 In 2008 US and Canadian agencies seized counterfeit Cisco gear (http://www.thestandard.com/news/

2008/02/29/us-canadian-agencies-seize-counterfeit-cisco-gear)

8
 Taiwan Semiconductor Manufacturing Company Limited (TSMC, http://www.tsmc.com)

http://www.thestandard.com/news/%202008/02/29/us-canadian-agencies-seize-counterfeit-cisco-gear
http://www.thestandard.com/news/%202008/02/29/us-canadian-agencies-seize-counterfeit-cisco-gear
http://www.tsmc.com/

 Chapter 1 - Introduction

– 10 –

Figure 1- a. stack model of a self-reconfigurable system. b. risk of unprotected software access to

the reconfiguration interface. c. the proposed SeReCon-enabled system stack model. including

Root-of-Trust. d. SeReCon-based controlled reconfiguration.

The FPGA-based RC system comprises three layers, namely hardware,

configware and software.

The hardware layer is the physical device which contains the FPGA fabric with

the Internal Configuration Access Port (ICAP), peripheral ICs (memory and interface

PHYs), power supply etc. The hardware platform remains unchanged during the RC

system life cycle. An attacker can disassemble the device, gaining access to system

interfaces in order to eavesdrop and manipulate RAM, communication or

configuration data. Drimer et al. have demonstrated successful tampering with secure

PIN entry devices [28] and protocols [29]. Thus, it is vital to limit the RC system

security boundary only to the tamper-proof FPGA chip and to facilitate RC system

integrity monitoring [30].

Configware provides virtualisation of the RC hardware platform to the system

application software. The capacity of modern FPGAs supports the implementation of

complex Systems-on-Chip (SoCs) within a single FPGA [31], [32]. Complex SoCs

incorporate a number of (third-party) application-specific IP cores (Figure 1-a and

Figure 1-a). In some SoCs, configware also provides access to the ICAP. This allows

system self-reconfiguration (IP cores exchange) using PR. When the ICAP is used,

the configware (and software) has unlimited access to the FPGA configuration

memory. When bitstream encryption is used, the ICAP remains enabled [9], [33] .

Unprotected access to ICAP can lead to covert (undetected by software) change of

SOFTWARE

IP CORE #N
CONFIGWARE

RECONFIGURABLE

HARDWARE

SOFTWARE

CONFIGWARE

RECONFIGURABLE

HARDWARE

SOFTWARE

CONFIGWARE

ICAP

RECONFIGURABLE

HARDWARE

SeReCon

SOFTWARE

IP CORE #N
CONFIGWARE

ICAP

RECONFIGURABLE

HARDWARE

SeReCon

ICAP ICAP

IP CORE #N

Malicious

IP core

Genuine

IP core

Uncontrolled

software

access to

FPGA config.

memory

Root-of-Trust

Malicious

(Trojan) IC

IP core locationa) b)

c) d)

 Chapter 1 - Introduction

– 11 –

the SoC configuration or the installation of a Trojan IP core [2], [5]. The proposed

SeReCon protects access to the ICAP and analyses the IP core content prior to

reconfiguration, interrupting the reconfiguration process if the IP core configuration

violates the integrity of the RC system.

The software layer contains RC system firmware and possibly the OS or

application specific code. Firmware provides hardware and configware drivers to the

RC application and system maintenance procedures, e.g. IP core load, unload and

configuration routines. If the software layer has some exploitable vulnerability this

allows the attacker to gain full control over the configware and thus the entire RC

system. The proposed SeReCon performs PR on behalf of the software. This ensures

that the requested PR does not overwrite the active part of the system, and that it

limits the RC system security perimeter to the SeReCon IP core, ICAP and the FPGA

configuration logic.

Design outsourcing of digital circuits and systems to third-party vendors and

open source communities (e.g. OpenCores
9
) gives rise to a network of trust

relationships between parties and toolsets. This multi-party arrangement leads to

increased security risks [21]. Individual IP cores are typically verified, and then

certified as secure. Controlling the consistency of a complete design flow, from the

system specification through IP core integration and deployment of the final product,

becomes more challenging when reconfigurable systems and a PR flow are

considered. PR introduces a risk of replacing a part of the design with malicious

(Trojan-horse) functionality and thus a risk of compromising the entire system [2].

During self-reconfiguration, illegal connections (called covert channels) can

potentially be set up, allowing for unwanted ad-hoc interactions between IP cores.

This introduces the risk to IP ‘secrets’, e.g. data interception, algorithm theft,

encryption key extraction etc.

9
 OpenCores (http://opencores.org)

http://opencores.org/

 Chapter 1 - Introduction

– 12 –

1.6. Illustration Of SeReCon Within A Software Defined

Radio (SDR) Application

A SeReCon prototype demonstrator has been implemented in a Xilinx Virtex-5

FPGA and targets a Software-Defined-Radio (SDR) application incorporating

dynamically loadable hardware radio modules (IP cores). SeReCon is a trusted

element within the SDR device, which performs secure system reconfiguration. In

this section, a SDR application
10

 implementation incorporating a PR RC system is

considered in various usage scenarios to illustrate potential security risks. Farrel et al.

overview the SDR demonstrators and future trends [34].

Figure 1-a illustrates a typical SDR environment and SDR application. The SDR

Data Communications Equipment (DCE) is implemented in the RC system which

includes radio interface (radio PHY), the PR FPGA device and communication IOs

(peripherals). The RC device also incorporates the proposed embedded Secure

Reconfiguration Controller (SeReCon) element. SDR DCE provides a radio

communication link between the user Data Terminal Equipment (DTE), which might

be also part of the SDR DCE device, and the host DCE/DTE system. The FPGA

device is configured with the proposed embedded SeReCon element and a number of

third-party digital IP cores, e.g. transceiver processing pipelines (TX, RX) which

communicate with radio PHY and IO peripherals. IP cores are used e.g. for the Base

Band (BB) signal processing, signal modulation/demodulation, data control and error

correction etc.

The SDR User operates the SDR RC device in the field. The SDR User can

request application-specific IP cores from the third party IP vendor. Third party IP

cores are used, i.e. for proprietary BB signal processing etc. Third party IP cores are

delivered to the FPGA through the unsecured channel, e.g. internet, radio link etc.

This introduces a number of security risks for the SDR system
11

 (Figure 1-b), e.g.

malicious IP core delivery, host or SDR device impersonation/tampering, radio

communication interception and IP core theft, tampering, reverse engineering and

cloning. Malicious IP cores could compromise the trustworthiness of the SDR

system. Host device impersonation or communication tampering could mislead the

SDR device to accept and install malicious IP cores. The SDR device impersonation,

the communication link eavesdropping and the SDR device tampering could

facilitate theft, tampering, reverse engineering and cloning of the genuine IP cores.

SeReCon counteracts these risks through its execution of IP core analysis and

verification prior to FPGA reconfiguration, end-to-end data encryption, DCE

authentication and IP core license enforcement.

10

 GNU Radio (http://gnuradio.org/redmine/wiki/gnuradio) and Joint Tactical Radio System (JTRS,

http://en.wikipedia.org/wiki/Joint_Tactical_Radio_System) are example of popular SDR applications.

11
 Presentation describing the JTRS systems security context can be found hereSoftware-Based

Communications Workshop (http://www.omg.org/news/meetings/workshops/SBC_2005/SBC_2005

_Proceedings/03-1_Monahan_etal_V2.pdf).

http://gnuradio.org/redmine/wiki/gnuradio
http://en.wikipedia.org/wiki/Joint_Tactical_Radio_System
http://www.omg.org/news/meetings/workshops/SBC_2005/SBC_2005%20_Proceedings/03-1_Monahan_etal_V2.pdf
http://www.omg.org/news/meetings/workshops/SBC_2005/SBC_2005%20_Proceedings/03-1_Monahan_etal_V2.pdf

 Chapter 1 - Introduction

– 13 –

Figure 1- a. SDR environment and application implemented within a Partially-Reconfigurable

(PR) FPGA-based Reconfigurable Computing (RC) device. b. potential attack vectors and the

security assurances carried out by the proposed SeReCon element.

Activated SDR

IP cores

SDR Data

Communications

Equipment (DCE)

C

T

R

L

SeReCon

Peripherals

 FPGA

 RC system

RX

TX

Radio link

INTERNET

SDR IP core

Vendor

SDR Data Terminal

Equipment (DTE)

Host Data Communications/

Termina Equipment (DCE/DTE)

ATTACKER

D
e
liv

e
rs

 m
a
lic

io
u
s
 S

D
R

 IP
 c

o
re

sTampers /

impersonates

host devices

T
am

pers / im
personates

target S
D

R
 device

In
te

rce
p
ts / ta

m
p
e
rs

co
m

m
u
n
ica

tio
n
 ch

a
n
n
e
l

SDR IP core

P
e
rf

o
rm

s
 I
P

 c
o
re

 a
n
a
ly

s
is

 a
n
d

v
e
ri
fi
c
a
ti
o
n
 p

ri
o
r

to
 r

e
c
o
n
fi
g
u
ra

ti
o
n

A
ut

he
nt

ic
at

es

ho
st

 d
ev

ic
e

P
ro

vi
d
e
s

e
n
d
-t

o
-e

n
d

d
a
ta

 e
n
cr

yp
tio

n

&
 in

te
g
ri
ty

 v
e
ri
fic

a
tio

n

Authenticates

SDR device

& enforces IP

core license

restrictions

SeReCon
(Secure Reconfiguration Controller)

RADIO PHY

In
s

ta
ll
e

d
 i
n

 t
a

m
p

e
r-

p
ro

o
f

ta
rg

e
t

S
D

R
 (

F
P

G
A

)

b)

a)

SDR User

SDR IP

core

SDR IP core

request

SDR IP core

SDR RC device
Comm

IO

 Chapter 1 - Introduction

– 14 –

Figure 1-a illustrates a block diagram of the PR FPGA-based RC system

incorporating the proposed SeReCon IP core, PR region for dynamically loadable

SDR IP cores, radio and IO communication interface (Comm. IF/PHY), external non-

volatile memory (Local IP Storage) and additional peripherals (DDR/FLASH, EXT

DEVICE). SeReCon is a fixed-footprint, trusted reconfiguration base Root of Trust

(RoT) for RC systems, which controls all access to the FPGA configuration area, via

the ICAP. The Base SeReCon FPGA Configuration (BaseSFC) is loaded into the

FPGA after system power up and contains:

 the SeReCon IP core

 a communication interface to control RC system configuration (using the

SeReCon element)

 the memory interface to provide non-volatile Local IP Storage (LIPS)

implemented using external Compact Flash which stores the RC system IP cores.

Figure 1-b illustrates the SDR application software stack which contains:

 the SDR application

 a high-level SeReCon communication API

 the Operating System (OS), e.g. Linux

 SDR DCE device drivers which uses PR technology and the SeReCon RoT to

exchange cryptographic IP cores in response to the type and amount of

application data traffic.

Figure 1-c illustrates the SeReCon IP core which contains:

 32-bit CPU (Microblaze) with local firmware memory (BRAM)

 Communication interface (GPIO IP core from EDK) which allows FIFO-

buffered communication with the SDR application and SDR User

 LIPS interface (SysAce IP core from EDK) which enables persistent IP core

storage

 True Random Number Generator (TRNG) using LUT-based Ring Oscillators

(RO) [35], providing random data used in SeReCon encryption

 Hardware AES block cipher based on the open source design [36]

 Extended ID Register (EIDR) which is an extension to FPGA fabric and

provides secure storage of SeReCon security credentials

 ICAP, the FPGA internal configuration port used to activate SDR IP cores.

Figure 1-d illustrates the Extended ID Register (EIDR) which is the FPGA hard-

macro primitive embedded within a tamper-proof FPGA fabric. The EIDR provides

state-keeping FPGA configuration and tamper-proof user secret credentials storage.

Figure 1-e illustrates the SeReCon firmware stack stored in local memory. The

firmware stack contains:

 Board Support Package (BSP) which provides low-level drivers to CPU

peripherals

 Various libraries providing generic support for ICAP, TRNG, AES/ECC,

Comm and Memory IP cores

 Chapter 1 - Introduction

– 15 –

 Analyser API which uses Embedded Routing DataBase
12

 (ERDB) for

analysing the IP core internals during IP core installation

 Verifier API which uses ERDB for verifying RC system state and IP core

requirements prior to IP core activation

 Configuration Manager which provides SeReCon API to drivers used by the

SDR application.

SeReCon employs authentication, public-key and symmetric-key cryptographic

algorithms in order to protect third party IP designs and facilitate license

enforcement of IP cores installed in the system (Figure 1-a). SeReCon maintains the

integrity of the PR RC system by mediating all access to the internal Xilinx FPGA

reconfiguration port. SeReCon enables the use of untrusted third-party IP cores in

high-assurance systems and provides design IP protection and IP core license

restrictions enforcement in the active (deployed) system.

The proposed SeReCon system requires a modification to the FPGA fabric to

enable SeReCon security credentials (Figure 1-d), used for RC system identification,

to be generated internally (within the FPGA) during the system certification process.

Security credentials are generated using a Ring-Oscillator (RO)-based True Random

Number Generator (TRNG) [37] and remain forever within the SeReCon security

perimeter. This policy protects against un-authenticated access to the system

credential storage and hence reduces the risk of leakage of security credentials.

The thesis proposes the use of SeReCon for IP core usage accounting, e.g. total

runtime, number of activations etc, in a PR system. This facilitates new IP core

licensing models, e.g. time-limited and pay-per-use, and provides confidentiality of

the IP core implementation during the PR system life-cycle. The SeReCon-based

RoT supports license enforcement within the FPGA design flow down to the FPGA

configuration bitstream and also within the deployed system.

Figure 1-a illustrates usage scenarios of the SeReCon-based RoT. The RoT

incorporates novel algorithms for the generation of system security credentials and

trusted design verification. The SI implements the RC system BaseSFC (Figure 1-a),

loaded after power up. The BaseSFC, after RC system power up contains only the

SeReCon IP core, communication interface and memory interface to provide non-

volatile Local IP Storage (LIPS) in external Compact Flash. During RoT

initialisation the RC device (with its installed SeReCon RoT) is verified by the TA.

The TA certifies the device, the BaseSFC and internally generates the RoT public-

key (Figure 1-b). The SeReCon-based RoT and IP management scheme requires the

TA participation only during certification of the RC system. This reduces the chain-

of-trust in a multi-player design flow. The SI uses the RoT and its public-key to

install (in LIPS) the encrypted IP cores (Figure 1-c), obtained from the third-party

IPV upon a request from the SI (Figure 1-a). SeReCon enables the use of untrusted

12

 The Embedded Routing DataBase (ERDB) contains FPGA routing data which is not documented by

Xilinx, but available within genuine Xilinx ‘debug’ bitstreams generated by legitimate Xilinx

bitgen tool (with ‘debug’ option turned on). ERDB is compilation of data obtained from multiple

‘debug’ bitstreams.

 Chapter 1 - Introduction

– 16 –

third-party IP cores in high-assurance systems so long as they do not interfere with

the active system configuration. SeReCon provides design IP protection and IP core

license restriction enforcement in the active (deployed) system. IP cores installed in

LIPS (Figure 1-d) are activated on receipt of a request from the SDR User or SDR

application (Figure 1-). SeReCon maintains the integrity of the RC system by

analysing incoming FPGA reconfiguration requests during run-time and by

mediating all access to the internal Xilinx FPGA reconfiguration port.

Figure 1- a. block diagram of the FPGA-based SDR device (PR-enabled RC system) including

SeReCon. b. SDR application software stack. c. SeReCon IP core. d. the Extended ID Register

element. e. the SeReCon firmware installed in local memory.

EQUAL_EN

Key Register

CREDENTIALS
Credential Register

Lifetime Counter
LIFETIME

Auth. Config.

Counter
DEVICE

RESTARTS

Extended

ID Register

Compare
RSTCLK

RSTCLK

RSTCLK

RSTCLK

MsgNo Counter
MSG_NO

Free Running

Counter

UPTIME

RSTCLK

RSTCLK

WRITE

MAC

DONE

DATA

RST

VCC

CLK

UPDATE

FPGA fabric elementSeReCon Extended ID Register

SeReCon block diagram

a)

d)

c)

e)

Comm.

interface

CPU

Memory

Cntrl IF

Local

Memory

TRNG

Config.

Port

Comm

IF

SeReCon

S
y
s
te

m
 B

U
S

Memory

interface

(e.g. PCIe,

radio etc)

(e.g.

SysAce,

Flash etc)

AES

EIDR

Board Support Package

SysAceICAP

ERDB

Verifier

Config Manager

FATFS

Mem Manager

ERDB Analyser

AES/ECC

crypto

SeReCon firmware stack

TRNG MFS

SDR Data Terminal

Equipment (DTE)
SDR Application

High-level SeReCon

Communications API

 Operating

 System
Device

Driver

FPGA IP coresCPU cores

SDR spplication software stack

Security perimeter of

SeReCon-based RoT

BUS MACRO

Static Base Configuration

Partially Reconfigurable Region

Comm. IF

Field Programmable Gate Array

Comm.

PHY

Reconfigurable

Computing

(RC) System

COMM

PHY

DDR/FLASH

MEM

EXT.

DEVICE

Local IP

Storage

Active IP core

IP cores

(dynamically loadable third-

party sub-designs)

IO

Communication

interface

(e.g. PCI-e)

Memory interface

IP core

installation/

activation

requests

Downloade

d IP core

Analised

IP core

SeReCon

Internal

Config. Port

Ext. ID

Register

SDR Data

Communications

Equipment (DCE)

Installed IP cores

MATH

MUL

MATH

ADD

AES

DEC

AES

ENC

Installed

IP core

b)

Comm EIDR

 Chapter 1 - Introduction

– 17 –

Figure 1- a. SeReCon-based Root-of-Trust (RoT) usage scenarios. b. RoT initialisation. c. IP

core installation. d. IP core activation.

ERDB

ANALYSER

SeReCon RoT

IP
 c

o
re

IN
S

T
A

L
L

A
T

IO
N

Sym.Key

CIPHER

DECIPHER

PrivKey

DECIPHER

R
o

T

IN
IT

IA
L

IS
A

T
IO

N

TA

IP core

ICAP

IP
 c

o
re

A
C

T
IV

A
T

IO
N

ERDB

VERIFIER

+ =

IP core

IP Report

IP package

Dev. Restarts,

Lifetime, Uptime

Requests

IP core

SI

FLASH

Mem

System state

Delivers

encrypted

IP core

Delivers BaseSFC

Provides certified Public Key

Requests Public Key

verification

Confirms Public Key

Storage Key

Private

Key

Public Key

Comm.

IF
Mem.

IF

(e.g. Compact

Flash card)

MAC

CREDS
EIDRDONE

CCL

DATA
TRNG

IP package

Encrypted

IP package

Installs

BaseSFC

FPGA

RC system

Transmits RoT

Public Key

a)

b)

c)

d)

F
ir
m

w
a

re
F

P
G

A
 f
a

b
ri
c

U
s
e

r-
lo

g
ic

?

OK

IPV

PubKey

CIPHER
Implements

IP core

IPV facility

Provides

certified

Public Key

Local IP

Storage

SDR User
Requests

IP core

activation

BaseSFC

 Chapter 1 - Introduction

– 18 –

1.7. Security Issues In FPGA-Based PR RC Systems

 Figure 1-a illustrates the example SDR application of the PR RC system. The

SDR DCE is an FPGA-based RC system. The SDR DCE exploits PR in order to

update radio signal processing modules (IP cores) in the transmitter and receiver

pipeline. The SDR DCE is connected to the SDR Data DTE using, e.g. a PCIe

interface. The SDR DTE communicates with the host DTE, e.g. the GSM Base

Station, using a DCE-to-DCE radio link. When the SDR DCE requires new

functionality, the IPV issues updated IP cores which are delivered to the SDR DCE

using a radio link or local DCE-DTE interface.

This section describes various attack vectors on the SDR DCE device which are

illustrated in Figure 1-b.

Tampering and impersonation of communication peers. The attacker mimics or

controls the legitimate SDR DTE, or the host DTE/DCE. The attacker manipulates or

replays the reconfiguration protocol in order to control the SDR DCE IP cores and

RC configuration. The attacker could try to roll-back the SDR DCE configuration by

replaying previously intercepted legitimate communication with the SDR DCE. The

attacker can also reconfigure the SDR DCE using malicious or erroneous (e.g.

obsolete) IP cores. The countermeasure to this attack could be to provide SDR DCE

support for authentication of communication peers, assessment of their

trustworthiness and certainty that replayed communication will be detected as such.

Tampering and impersonation of the SDR DCE device. The attacker physically

tampers with the SDR DCE in order to gain access to the configware data and thus

control the device. Also, the attacker can mimic (impersonate) the legitimate device

in order to receive upgraded IP cores from the host DTE/DCE. This may expose the

IP implementation, e.g. algorithm details, used encryption keys etc. This could lead

to IPV revenue loss or compromise the system of which the SDR DCE is a part.

Tamper proof design of the SDR DCE RoT and its authentication to the host device

could be protected against such attacks.

Indirect malicious IP core delivery. The attacker has no direct access to the device.

However, the attacker could act as a third party IPV or compromise production of a

legitimate IP core in order to install the Trojan IP core in the remote SDR DCE. This

leads to system compromise without the need to interfere with the reconfiguration

process and/or players. A trusted IP core validation within the SDR DCE, which

decides whether the IP core violates the SDR DCE integrity, could protect against

this risk.

Communication interception and tampering. The attacker intercepts and tampers

with a legitimate communication channel, e.g. radio link. The attacker could attempt

to interfere with an active reconfiguration process, e.g. during the man-in-the-middle

attack [38] by, e.g. actively altering the content of the transmitted data (e.g.

bitstream, commands etc). Successful interception exposes the reconfiguration

protocol and IP core implementation which can then be reverse-engineered or

cloned. This typically leads to IPV revenue loss. Successful tampering could install a

 Chapter 1 - Introduction

– 19 –

Trojan IP core in the SDR DCE during a legitimate reconfiguration request

originating from a legitimate host DTE/DCE. This attack can be protected against by

use of authenticated encryption.

This thesis proposes SeReCon (Figure 1-c), which provides countermeasures

against non-invasive attacks. The thesis also proposes tamper-resistant

implementations which provide a countermeasure to semi-invasive and invasive

attacks. SeReCon acts as a trusted reconfiguration agent, incorporated within the

SDR RC system.

The SeReCon IP core provides the following security measures within the SDR

system:

1. Secure communication channel between communicating devices (e.g. SDR DCE

and host DTE/DCE or SDR DTE). SeReCon protects the confidentiality and

integrity of reconfiguration commands and IP cores while transmitted over the

radio link or local interface

2. IP core license restriction enforcement within the SDR DCE

3. Authentication of the communication devices

4. Detection of erroneous configuration data (corrupted or malicious IP cores)

5. Provision of reconfiguration access only to authorised devices (e.g. host or SDR

DTE)

1.8. FDAT: FPGA Design Analysis Tool

The thesis also describes the development and application of the FPGA Design

Analysis Tool (FDAT) (Figure 1-), a versatile Python framework for low-level

analysis and verification of FPGA design bitstreams, which supports rapid

prototyping of algorithms for system-level design verification before porting to

SeReCon. FDAT provides a set of high-level Application Programming Interfaces

(APIs) which abstract the Xilinx FPGA fabric, the implemented design (placed and

routed netlist) and the related FPGA configuration bitstream. A lightweight graphic

front-end allows custom visualisation of the design within the FPGA fabric.

 Chapter 1 - Introduction

– 20 –

Figure 1- FPGA Design Analysis Tool (FDAT) block diagram and context.

ANALYSIS

RESULTS

FFAPI DAPI BAPI

XDL file

Design

NCD file
FPGA Fabric

netlist

Design BIT

file

Persistent

cache

GUIANALYSIS RECIPE

(script-based functionality)

FPGA DESIGN ANALYSIS TOOL (FDAT)

RECIPES

Resource Report for 'CB4CLE_V5LXT'('xc5vlx50tff1136-3' device):

Found 26 design instances (5 types):

 SLICEL (1 item)

 'cnt<3>' placed at 'SLICE_X27Y87' (tile 'CLBLL_X16Y87', R36 C42)

 'Mcount_cnt_xor<0>11' is 'A6LUT'

 configured as: '#LUT:O6=((~A3*(~A6*~A4))+(A3*(A6+~A4)))'

 'cnt_0' is 'AFF' configured as: '#FF'

 'AFFINIT' mode: 'INIT0'

 'AFFMUX' mode: 'O6'

 'AFFSR' mode: 'SRLOW'

 'Mcount_cnt_xor<1>11' is 'B6LUT'...

 'cnt_1' is 'BFF' configured as: '#FF'...

 'Mcount_cnt_xor<2>11' is 'C6LUT'...

 'cnt_2' is 'CFF' configured as: '#FF'...

 'Mcount_cnt_xor<3>11' is 'D6LUT'...

 'cnt_3' is 'DFF' configured as: '#FF'...

 'SYNC_ATTR' mode: 'ASYNC'

 BUFG (1 item)...

 ILOGIC (8 items)...

 IOB (12 items)...

 OLOGIC (4 items)...

Design used 4 LUTs and 4 FFs

XDL visualisation

(Virtex-II Pro design)
Parsed XDL (Virtex-5 design)

 Chapter 1 - Introduction

– 21 –

1.9. Structure Of The Thesis

This thesis is organised as follows:

 Chapter 2 reviews and describes the RC system application domain and

advantages offered by RC systems over general purpose processors and ASICs.

FPGA technology and architectures are introduced and the FPGA-based RC system

design flow and PR are described.

 Chapter 3 begins with a motivating example on security risks within PR FPGA

systems. The example illustrates the risk of implicit communication channels

between IP cores in the PR RC system. The risk of side-channel attacks, the threat of

rogue EDA software and the issue of malicious FPGA designs are also highlighted.

The chapter reviews the state of the art in RC security. Security countermeasures

supported by Xilinx FPGA fabric are described prior to critical examination of the

reported work on the RC system integrity protection and countermeasures for design

IP theft. The principle of IP licensing models is also described. This chapter proposes

use of new IP core licensing models, e.g. the time-limited license and metered-access

license and highlights the need for the trusted IP-aware RC system security

countermeasures. The chapter concludes with the proposal of a Secure

Reconfiguration Controller (SeReCon) and a summary of the SeReCon requirements.

 Chapter 4 considers the requirements of credentials storage in a secure RoT and

the implementation of usage accounting for RC systems. The chapter proposes and

describes an extension to the Xilinx FPGA fabric to provide a tamper-proof hardware

element which protects the SeReCon-based RoT credentials and usage data during

power-up cycles. Techniques for storage of RoT security credentials and usage

accounting data in modern FPGAs are reviewed. The suitability and limitations of

using SRAM configuration memory are discussed. Other non-volatile memory

schemes for credentials storage are also reported. The EIDR element prototype

implementation in a Virtex-5 LXT device (ML505 Board) is reported. The register-

based EIDR control/status interface, which is implemented in the FPGA user-logic,

is highlighted. This chapter also describes EIDR API functions, which are provided

by the SeReCon EIDR driver. The associated multi-party RoT credentials generation

process is proposed. The activities of SeReCon and various parties (e.g. SI, TA, IPV)

during RoT initialisation are highlighted. The RoT credentials generation process

supports public security audit of the RC device and guarantees exclusive and

authenticated access to the sensitive part of the RC system security credentials for the

legitimate system, e.g. SeReCon RoT. The SeReCon-based RoT is immune to

credentials leakage as a result of a future successful attack on the TA.

 Chapter 5 describes and demonstrates the FPGA Design Analysis Tool (FDAT),

a host-based (off-line) bitstream analysis and low-level design verification tool

which supports a Xilinx FPGA design assurance strategy and automated extraction

and analysis of bitstream-level designs, within the PR design flow. FDAT is an

extendable, Python-based system which exploits the functionality of dynamic

languages and uses modular libraries of custom-defined analysis scripts. The chapter

 Chapter 1 - Introduction

– 22 –

reviews a number of existing tools which facilitate access to low-level design

descriptions, and proposes the desired functionality of FDAT. The FDAT

architecture and the script-based functionality which exploits the advantages of the

Python dynamic language is described prior to presentation of the detailed

implementation and evaluation of FDAT, a selection of FDAT recipes, and the

FDAT algorithm execution time for analysis of Xilinx Virtex-II Pro inter-tile routing.

The chapter proposes porting FDAT functionality to the embedded Secure

Reconfiguration Controller (SeReCon) for on-line Xilinx Virtex-5 bitstream analysis.

Considerations in creating an embedded routing database and IP core routing

analysis are also highlighted.

 Chapter 6 describes the internals (state diagram, the block diagram and

firmware) of the SeReCon IP core. The chapter reports SeReCon RoT operation

within the PR RC device during initialisation, IP core installation, IP activation and

IP deactivation. A SafeLock scheme for IP core security credentials protection is

highlighted. The process of establishing the shared encryption key between the IPV

and SeReCon, using the Diffie-Hellman (DH) shared key agreement protocol is also

described. The main steps in the IP core activation process are illustrated. The

verification of IP core compliance with the current RC system state is highlighted.

The IP core license validation and RC system reconfiguration are also described.

 Chapter 7 reports on the implementation and application of the prototype

SeReCon-enabled RC system using Xilinx Virtex-5 FPGA technology. The

implementation of SeReCon internal elements, the main RC system elements and

example PR IP cores is described. Analysis of the SeReCon FPGA resource usage

and RC system prototype implementation issues is included. This chapter reports and

describes the SeReCon-enabled RC system demonstrator application (including the

PCIe communication library and host-side SeReCon API). Demonstrator application

results are also reported. The chapter provides detailed insight into the operation of

the prototype RC system during the SeReCon (and EIDR) initialisation, IP core

installation and activation. The implemented RC system uses four IP cores in order

to demonstrate the SeReCon-based PR, e.g. 32-bit Adder, 32-bit Multiplier, 128-AES

Cipher and 128-bit AES Decipher. The VHDL model for each of these IP cores is

included in the thesis DVD. This chapter also describes the SDR device prototype

and illustrates how SeReCon element can be included within the SDR RC system.

Modifications to the SeReCon implementation required to integrate SeReCon within

the prototype SDR device are also highlighted.

 Chapter 8 concludes the thesis and proposes future work.

 Chapter 1 - Introduction

– 23 –

1.10. Thesis Contributions And Novelty Claims

This thesis makes four novel contributions.

1. SeReCon (Secure Reconfiguration Controller) IP core.

The thesis proposes, implements and demonstrates a trusted Secure Reconfiguration

Controller (SeReCon) IP core. SeReCon is a fixed-footprint trusted reconfiguration

base for RC systems, which performs hardware-level self-reconfiguration and prior-

to-reconfiguration IP core analysis (security verification). SeReCon maintains the

integrity of the PR-enabled RC system by analysing incoming FPGA reconfiguration

requests during run-time and by mediating all access to the internal Xilinx FPGA

reconfiguration port. Autonomous analysis of the structure of a new IP core prior to

RC system reconfiguration verifies IP core spatial isolation and run-time protection

of the already-configured PR system. This protects the RC system from structural

issues resulting from the inclusion of erroneously placed (or malicious) IP cores and

enables the use of untrusted third-party IP cores in high-assurance systems. SeReCon

employs authentication, public-key and symmetric-key cryptographic algorithms in

order to protect third party IP designs and facilitate license enforcement of IP cores

installed in the deployed PR-enabled RC system. Use of SeReCon IP core reduces

the chain-of-trust in a multi-player design flow.

2. Algorithm for secure generation of RC system security credentials.

The thesis proposes, implements and demonstrates a new method for generation

and storage of RC system security credentials. Unique security credentials are

generated internally (within the FPGA) during the system certification process, using

random data obtained from the TRNG. Only the non-sensitive part of the credentials

(e.g. SeReCon public-key) is revealed to the TA during the system certification

process. This policy protects against un-authenticated access to the system

credentials storage (by third-parties) and hence reduces the risk of leakage of security

credentials. The private-part of the generated credentials remains within the

SeReCon security perimeter, stored in a dedicated Identity Register (IDR). The IDR

is part of the SeReCon RoT, embedded in the FPGA fabric, and facilitates

authenticated access to credentials material. This makes the RC system (and installed

IP cores) immune to tampering by the system integrator and the post-deployment

compromise of the TA (which has certified the system). The proposed scheme

requires a modification to the FPGA fabric to enable authenticated FPGA

configuration and storage of SeReCon security credentials, used for RC system

identification.

3. Algorithm for IP core license enforcement in deployed RC system

The thesis proposes, implements and demonstrates a new IP core license

enforcement scheme which provides system usage accounting and supports counted-

and time-limited IP core licensing. The proposed scheme incorporates a number of

monotonic counters which facilitate system usage accounting (uptime, activations

etc). Prior to reconfiguration, SeReCon verifies whether IP core usage does not

 Chapter 1 - Introduction

– 24 –

exceed license limits. The proposed scheme supports new IP core licensing models,

e.g. time-limited and pay-per-use, and enforces license restrictions down to the

bitstream-level and within the deployed device. This requires a modification to the

FPGA fabric to include tamper-proof monotonic counters within the IDR.

4. FPGA Design Analysis Tool.

The thesis proposes, implements and demonstrates the FPGA Design Analysis

Tool (FDAT), an off-line design verification tool. FDAT is a versatile, modular and

open tools framework for low-level analysis and verification of FPGA design

bitstreams. FDAT enables the development and verification of the SeReCon

bitstream analysis algorithms, used in the described implementation of SeReCon.

FDAT provides a set of high-level APIs abstracting the Xilinx FPGA fabric, the

implemented design (e.g. placed and routed netlist) and the related FPGA

configuration bitstream. A lightweight graphic front-end allows custom visualisation

of the design within the FPGA fabric. The operation of FDAT is governed by

“recipe” Python-based scripts which support rapid prototyping of the algorithms for

system-level design verification before porting to SeReCon. To the best knowledge

of the authors, FDAT is the first available toolset to provide high-level and

unrestricted access to the low-level description of the Xilinx FPGA fabric and the

user design at the netlist- and bitstream-level.

 Chapter 1 - Introduction

– 25 –

Related publications

Journal Papers

1. K. Kępa, F. Morgan, K. Kościuszkiewicz, L. Braun, M. Huebner, and J. Becker,

”Design Assurance Strategy and Toolset for Partially Reconfigurable FPGA

Systems,” ACM Transactions on Reconfigurable Technology and Systems

(TRETS), accepted for publication, 2010.

2. K. Kępa, F. Morgan, K. Kościuszkiewicz, and T. R. Surmacz, “SeReCon: a

secure reconfiguration controller for self-reconfigurable systems,” Int. J. Critical

Computer-Based Systems, vol. 1, no. 1-3, pp.86–103, 2010.

Peer Reviewed Conference Papers

1. K. Kępa, F. Morgan, K. Kościuszkiewicz, “IP protection in partially

reconfigurable FPGAs,” in Proc. of IEEE International Conference on Field

Programmable Logic and Applications (FPL’09), 2009, pp. 403 - 409.

2. K. Kępa, F. Morgan, K. Kościuszkiewicz, L. Braun, M. Hübner, and J. Becker,

"FPGA Analysis Tool: High-level flows for low-level design analysis in

reconfigurable computing," in J. Becker et al. (Eds.): ARC 2009, LNCS, vol.

5453/2009, pp. 62-73, March 2009.

3. K. Kępa, F. Morgan, K. Kościuszkiewicz, "Intellectual Property Protection in

Self-Reconfigurable Embedded Systems," in Digest of Technical Papers

International Conference on Consumer Electronics (ICCE), 2009, pp.1-2.

4. K. Kępa, F. Morgan, K. Kościuszkiewicz, and T. R. Surmacz, "SeReCon: A

trusted environment for SoPC design," in Proc. of 3rd International Conference

on Dependability of Computer Systems DepCoS-RELCOMEX, 2008, pp.332-338.

5. K. Kępa, F. Morgan, K. Kościuszkiewicz, and T. R. Surmacz, "SeReCon: a

Secure Dynamic Partial Reconfiguration Controller," in Proc. of IEEE Computer

Society Annual Symposium on VLSI (ISVLSI '08), 2008, pp.292-297.

– 26 –

 Chapter 2. Partially Reconfigurable Computing

Systems Background

2.1. Introduction

This chapter reviews and describes the RC system application domain and

advantages offered by RC systems over general purpose processors and ASICs.

FPGA technology and architectures are introduced and the FPGA-based RC system

design flow and PR are described.

2.2. RC Systems Vs ASICs And GPPs

Figure 2- illustrates the computational efficiency gap between silicon and

microprocessors (General Purpose Processors, GPPs) [39]. The gap widens as feature

size reduces. The computational gap between ASICs and GPPs is the target domain

of RC systems.

Figure 2- Computational efficiency gap between silicon and microprocessors, expressed in

Million Operations Per Second (MOPS) per Watt, widening as feature size reduces [39].

2

intrinisic computational

efficiency of silicon

Microprocessors (GPPs)

1 0.5 0.25 0.13 0.07

feature size, mm

1986 1990 1994 1998 2002 2006

c
o

m
p

u
ta

ti
o

n
a

l
e

ff
ic

ie
n

c
y
,
M

O
P

S
/W

10
6

10
5

10
4

10
3

10
2

10

1

Digital Signal Processors

Structured ASICs

Reconfigurable Computing (RC) niche

year

 Chapter 2 - Partially Reconfigurable Computing Systems Background

– 27 –

A general classification of computing systems in terms of performance and

flexibility [11] is presented in Figure 2-. Microprocessor (Von Neumann)

architectures (e.g. GPP architecture) provide the ultimate flexibility, e.g. the

application (software) is always adapted to the hardware. GPPs are capable of

performing any type of computation, at the cost of performance which is limited by

sequential computation, i.e. Instruction Read, Instruction Decode, Input Data Read,

Instruction Execute and Output Data Write. In contrast, an ASIC architecture is

optimised for a particular application. ASICs offer very high performance at the cost

of flexibility, since the instruction set is typically hardwired. The design space

between ASICs and GPPs is occupied by a number of architectures (refer to

Appendix A – List of Reconfigurable Computing architectures). Digital Signal

Processors (DSPs) offer the flexibility of GPPs, with increased performance through

the addition of domain-specific blocks which support signal processing kernels, e.g.

multiply-and-accumulate.

Figure 2- Flexibility vs performance of processor classes [11].

RC systems aim to deliver both the flexibility of GPPs and the performance of

ASICs within the same device. For example, Xilinx FPGA devices (Figure 2-) offer a

vast amount of Configurable Logic Blocks (CLBs), RAM memory blocks (BRAM),

and dedicated function-optimised hardware blocks (e.g. DSP, Multi-Gigabit

Transceivers, embedded PowerPC processors etc). Predicted developments in silicon

technology indicate a continuous increase in silicon device capacity [40]. Table 2-

illustrates approximate (node-scaled) resource density of current and future FPGA

technologies, along with the expected advancements in RC technology. FPGA blocks

Performance

F
le

x
ib

ili
ty

Microprocessors

(von Neumann)

General Purpose

Computing Digital Signal

Processors (DSP)

Domain Specific

Computing Reconfigurable

Systems

Reconfigurable

Computing

Application

Specific Integrated

Circuits (ASICs)

Application Specific

Computing

RC systems

Technology& Tools

advancements

 Chapter 2 - Partially Reconfigurable Computing Systems Background

– 28 –

are connected using interconnect and switch matrix routing resources (Figure 2-), a

significant amount of inter-tile wiring of variable length and shape, terminating at

Programmable Interconnection Points (PIPs) [41]. PIPs, SRAM technology, and

Xilinx FPGA block software configuration (configware) allow modification of the

hardware functionality and interconnection even during run time PR. The RC system

hardware structure can be modified by downloading the RC device configuration at

compile time (static configuration) or at run-time PR. Spatial modification of the RC

system hardware architecture can maximise application performance [11]. Advances

in RC technology have been significant during the past two decades, and FPGA

technology has been widely applied.

SRAM FPGA technology advancements follow Moore’s Law. Modern SRAM

FPGA devices from Altera and Xilinx offer capacities which outperform the

requirements of all but the most demanding applications such as High Performance

Computing (HPC). Several FPGA architectural trends (increasing FPGA component

density, raw computational throughput and system functionality) suggest that FPGAs

will become increasingly important in the future [42], [43].

Technology Year LUTs DSPs Memory

65 nm 2007 340 k 500 10 Mbit

45 nm 2010 700 k 1000 21 Mbit

32 nm 2013 1400 k 2000 42 Mbit

22 nm 2016 2900 k 4300 89 Mbit

Table 2- Approximated resource density of current and future FPGA technologies [42].

2.3. FPGA Architecture And RC System Design Flow

2.3.1. Introduction

This section provides an overview of general FPGA architectures and design

flow, the FPGA configuration bitstream structure and partial reconfiguration

technology.

2.3.2. FPGA Architecture Overview

Figure 2- illustrates an FPGA block diagram. An FPGA is a programmable

device consisting of a set of configurable resources (e.g. logic blocks, programmable

interconnect network and I/O blocks) [44]–[46], configuration memory,

configuration control logic and debug interface (JTAG). The functionality of an RC

system design is partitioned into modules and implemented using configurable logic

 Chapter 2 - Partially Reconfigurable Computing Systems Background

– 29 –

and I/O blocks within the FPGA. Logic and I/O blocks are connected using an

interconnect network. All configurable resources (logic blocks, interconnect network

and IO blocks) can be programmed by the user in the field. FPGAs can be one-time

or many-times programmable, depending of the memory technology used (Antifuse,

SRAM, EEPROM, FLASH, etc). Some Xilinx FPGA devices (e.g. Virtex-II/4/5/6,

Spartan-6) support bitstream encryption [44], [47], [9], [33]. Virtex-6 also supports

authenticated configuration mode [33].

Figure 2- Block diagram of an FPGA device.

2.3.3. Xilinx FPGA Configuration Bitstream Structure

Modern Xilinx FPGA devices (e.g. Virtex-4/5/6, Spartan-6) have configuration

memory arranged in frames within a tile structure (Figure 2-). These frames are the

smallest addressable segments of the Xilinx FPGA configuration memory space, and

all FPGA reconfiguration operations must therefore act upon whole configuration

frames [9]. Figure 2- illustrates the tile-based frame organisation of the configuration

memory in the Xilinx Virtex-5 (V5LX50T) FPGA device.

IO

JTAG

HMAC

 CONFIGURATION

CONTROL LOGIC

AES

FIELD PROGRAMMABLE GATE ARRAY

CONFIGURABLE RESOURCES

Configuration bitstream

C
o

n
fi
g

u
ra

ti
o

n
 f
ra

m
e

 r
o

w
s

CONFIGURATION MEMORY

Configuration frame columns

Configuration frames

Debug data

Ctrl cmdsIO
 s

ig
n

a
ls

C
fg

 s
ig

n
a

ls

 Chapter 2 - Partially Reconfigurable Computing Systems Background

– 30 –

Figure 2- Tile-based frame organisation of the configuration memory in the Xilinx Virtex-5

(V5LX50T) FPGA device.

The Xilinx FPGA configuration file (bitstream) contains commands to the

FPGA device configuration logic (Figure 2-) as well as configuration data (Figure

2-). All Xilinx FPGA bitstream commands, such as data or control/status read and

write, are executed by reading or writing data packets from/to the configuration

registers respectively, in the FPGA Configuration Control Logic (CCL, Figure 2-).

Listing 2- illustrates the Xilinx Virtex-5 bitstream internal structure decoded by the

FPGA Design Analysis Tool (FDAT) reported in this thesis. Lines 10-54 illustrate

bitstream packets (Type_1 and Type_2) which include commands for FPGA

Configuration Control Logic (CCL). The CCL command sequence is mostly

consistent with the bitstream composition described in [9]. Listing 2- contains

additional commands in lines 18 and 43.

C
o

n
fi
g

u
ra

ti
o

n
 f
ra

m
e

 r
o

w
s

Configuration frame columns

F
P

G
A

 t
o

p
 h

a
lf

F
P

G
A

 b
o

tt
o

m
 h

a
lf

0 3818

C
L

B
 L

IO B
R

A
M

D
S

P

C
L

K

C
L

B
 M

M
G

T

T
o

p
 r

o
w

2

T
o

p
 r

o
w

1

T
o

p
 r

o
w

0

B
o

t
ro

w

0

B
o

t
ro

w

1

B
o

t
ro

w

2

...

Minor frame

address

0 N1

Column M

 Chapter 2 - Partially Reconfigurable Computing Systems Background

– 31 –

1 FDAT Bit parser demo. Parsing the '../adder_v7/download.bit' bitstream...

2 @ 0x00000050 | 0xFFFFFFFF : DUMMY word

3 ...

4 @ 0x00000070 | 0x000000BB : BUS WIDTH word

5 @ 0x00000074 | 0x11220044 : BUS WIDTH

6 @ 0x00000078 | 0xFFFFFFFF : DUMMY word (x2)

7 @ 0x00000080 | 0xAA995566 : SYNC word

8 @ 0x00000084 | 0x20000000 Type_1 : NOP

9 @ 0x00000088 | 0x30020001 Type_1 : Write 1 word to 'WBSTAR' 0x00000000 -> WBSTAR

10 @ 0x00000090 | 0x30008001 Type_1 : Write 1 word to 'CMD' 0x00000000 -> CMD (NULL)

11 @ 0x00000098 | 0x20000000 Type_1 : NOP

12 @ 0x0000009C | 0x30008001 Type_1 : Write 1 word to 'CMD' 0x00000007 -> CMD (RCRC)

13 @ 0x000000A4 | 0x20000000 Type_1 : NOP (x2)

14 @ 0x000000AC | 0x30022001 Type_1 : Write 1 word to 'TIMER' 0x00000000 -> TIMER

15 @ 0x000000B4 | 0x30026001 Type_1 : Write 1 word to 'R0x13' 0x00000000 -> R0x13

16 @ 0x000000BC | 0x30012001 Type_1 : Write 1 word to 'COR0' 0x000031E5 -> COR0

17 @ 0x000000C4 | 0x3001C001 Type_1 : Write 1 word to 'COR1' 0x00000000 -> COR1

18 @ 0x000000CC | 0x30018001 Type_1 : Write 1 word to 'IDCODE' 0x02A96093 -> IDCODE

19 @ 0x000000D4 | 0x30008001 Type_1 : Write 1 word to 'CMD' 0x00000009 -> CMD (SWITCH)

20 @ 0x000000DC | 0x20000000 Type_1 : NOP

21 @ 0x000000E0 | 0x3000C001 Type_1 : Write 1 word to 'MASK' 0x00400000 -> MASK

22 @ 0x000000E8 | 0x3000A001 Type_1 : Write 1 word to 'CTL0' 0x00400000 -> CTL0

23 @ 0x000000F0 | 0x3000C001 Type_1 : Write 1 word to 'MASK' 0x00000000 -> MASK

24 @ 0x000000F8 | 0x30030001 Type_1 : Write 1 word to 'CTL1' 0x00000000 -> CTL1

25 @ 0x00000100 | 0x20000000 Type_1 : NOP

26 ...

27 @ 0x00000120 | 0x30002001 Type_1 : Write 1 word to ‘FAR' 0x00000000 -> FAR (t:0 h:0 r:0 c:0 m:0)

28 @ 0x00000128 | 0x30008001 Type_1 : Write 1 word to 'CMD' 0x00000001 -> CMD (WCFG)

29 @ 0x00000130 | 0x20000000 Type_1 : NOP

30 @ 0x00000134 | 0x30004000 Type_1 : Write 0 words to 'FDRI' (0 frames)

31 @ 0x00000138 | 0x5006B250 Type_2 : Write 438864 words to ' FDRI'

32 FLUSH(0, 0, 0, 38, 31)

33 ...

34 @ 0x001ACA7C | 0x30000001 Type_1 : Write 1 word to 'CRC' 0xF103D69A -> CRC

35 @ 0x001ACA84 | 0x30008001 Type_1 : Write 1 word to 'CMD' 0x0000000A -> CMD (GRESTORE)

36 @ 0x001ACA8C | 0x20000000 Type_1 : NOP

37 @ 0x001ACA90 | 0x30008001 Type_1 : Write 1 word to 'CMD' 0x00000003 -> CMD (DGHIGH/LFRM)

38 @ 0x001ACA98 | 0x20000000 Type_1 : NOP

39 ...

40 @ 0x001ACC28 | 0x30008001 Type_1 : Write 1 word to 'CMD' 0x0000000A -> CMD (GRESTORE)

41 @ 0x001ACC30 | 0x20000000 Type_1 : NOP

42 ...

43 @ 0x001ACCA8 | 0x30008001 Type_1 : Write 1 word to 'CMD' 0x00000005 -> CMD (START)

44 @ 0x001ACCB0 | 0x20000000 Type_1 : NOP

45 @ 0x001ACCB4 | 0x30002001 Type_1 : Write 1 word to 'FAR' 0x00EF8000 -> FAR (t:3 h:0 r:31 c:0 m:0)

WARNING! Write non-existent address to FAR

46 @ 0x001ACCBC | 0x3000C001 Type_1 : Write 1 word to 'MASK' 0x00400000 -> MASK

47 @ 0x001ACCC4 | 0x3000A001 Type_1 : Write 1 word to 'CTL0' 0x00400000 -> CTL0

48 @ 0x001ACCCC | 0x30000001 Type_1 : Write 1 word to 'CRC' 0x0C90449E -> CRC

49 @ 0x001ACCD4 | 0x30008001 Type_1 : Write 1 word to 'CMD' 0x0000000D ->CMD (DESYNCH)

50 @ 0x001ACCDC | 0x20000000 Type_1 : NOP

51 ...

52 Bitstream parsed in 11.9059998989 secs. Done.

Listing 2-. Example of Xilinx Virtex-5 bitstream internal structure decoded by FPGA Design

Analysis Tool (FDAT).

 Chapter 2 - Partially Reconfigurable Computing Systems Background

– 32 –

Configuration bitstream data can be delivered to the FPGA device using either a

serial or parallel interface (8, 16 or 32-bit wide). Listing 2-1 command descriptions

are as follows:

Lines 2-7 synchronise word-aligned FPGA configuration control logic with the

bitstream data source.

Lines 9 to 28 setup various FPGA control registers, e.g. line 27 sets the Frame

Address Register (FAR) to the starting address, while line 28 resets FAR auto

incrementer and resets the FPGA internal frame buffers.

Line 30 sets CCL Frame Data Input Register (FDRI) as a destination register for the

following Type_2 data packet write in line 31. The command loads 438864 words

into the FDRI register. This configures the entire FPGA configuration memory using

the FAR auto-incrementer facility [9].

Line 33 delivers the CRC value. CCL compares the CRC with the internally

calculated value.

Lines 34-42 toggle the global set/reset lines, write the final configuration frame to

the configuration memory and activate the new configuration.

Line 44 sets FAR at the dummy (nonexistent) location.

Line 48 disconnects the configuration logic.

The command in lines 22 and 46 is not documented in publicly available

documentation. The relevant bit in the CCL CTL0 register is marked as ‘reserved’ in

[9]. Also, the command writing 0 to register 0x13, in line 15, is not documented.

2.3.4. FPGA-Based RC System Design Flow

Figure 2- illustrates the FPGA-based RC system design flow. The main stages

are described below.

RC System architecture design. This stage includes the analysis of the RC

system requirements, problem decomposition and functional simulation (at gate and

system level). Functional simulation verifies the RC system behavioural correctness.

The output of this stage is an RC system specification which describes, in a formal

hardware description language (HDL), the device architecture, structural blocks and

their functions and interfaces.

Design capture and generation of FPGA configuration bitstream. This stage

includes synthesis of a captured HDL description to a design netlist. Synthesis can

reveal some problems and potential errors that cannot be found using behavioural

simulation. The main phase of the implementation stage is Place and Route (P&R).

During P&R a synthesis-generated netlist is mapped onto the internal structure of the

FPGA device. P&R allocates FPGA resources such as logic cells and connection

wires. The timing analysis stage checks whether the implemented design satisfies the

system timing constraints (such as clock frequency) specified by the architectural

constraints. The output of this stage is the FPGA configuration data, in the form of an

 Chapter 2 - Partially Reconfigurable Computing Systems Background

– 33 –

FPGA configuration file (bitstream). Details of the Xilinx FPGA design flow are

described in [48].

Device hardware implementation. This stage includes the configuration of the

RC device hardware, existing as a component on a Printed Circuit Board (PCB).

Device software implementation and integration. This stage includes the

development of FPGA device drivers and user/communication interfaces, running on

a host processor system. APIs are developed for use with the RC system. During the

integration phase the software is installed in the RC device non-volatile memory (e.g.

Flash). The RC system functionality is verified by applying test vectors to the pins of

the device and comparing the output obtained with results obtained from behavioural

simulation of the design.

Figure 2- FPGA-based RC system Design Flow [49].

ARCHITECTURE

SPECIFICATION

RTL

SPECIFICATION

IP

SELECTION

IP

INTEGRATION

RTL

DESIGN

FUNCTIONAL

SIMULATION

GATE

SIMULATION

SYSTEM

SIMULATION

SYNTHESIS PLACE & ROUTE
TIMING

ANALYSIS

BITSTREAM

FILE

PCB

SCHEMATIC
PCB LAYOUT

HARDWARE

ASSEMBLY

PROTOTYPE

HARDWARE

SOFTWARE

SPECIFICATION

SOFTWARE

CODING

SOFTWARE

INTEGRATION

RC system

architecture design

FPGA design (configware)

implementation

Device hardware

development

Device software implementation

and integration

Im
p

le
m

e
n

ta
ti
o

n
 s

ta
g

e
s

 Chapter 2 - Partially Reconfigurable Computing Systems Background

– 34 –

2.4. Xilinx Partial Reconfiguration (PR) Design Flow

2.4.1. Introduction

This section describes Xilinx Early Access PR (EAPR) technology
13

, its

advantages and disadvantages, and highlights PR-related FPGA design flow steps.

Also, Rousseau et al. report an alternative PR design flow which enables design

certification in safety-critical applications (e.g. avionics) [50]. The alternative PR

flow exploits standard FPGA design flow and tools, and does not require access to

proprietary EAPR tools.

User-programmable features of Xilinx FPGAs are controlled by configuration

memory cells. FPGA configuration memory is programmed using a configuration

bitstream. PR enables a programmed Xilinx Virtex device to be partially

reconfigured using a partial bitstream, which can be loaded without interrupting the

operation of the remaining part of the device. PR is an analogy of CPU context

switching in software processes. PR increases the functionality of a single FPGA,

allowing a part of the system functionality to be time-multiplexed. Thus, with PR,

smaller FPGA devices with PR-based time-multiplexed functionality can be used in

the RC system, or the system can incorporate more functionality within the same

sized device. Figure 1- illustrates a PR RC system with functions such as a PCIe

communication link, a configuration manager (SeReCon), and an interface to

external, non-volatile memory. The base static configuration region in FPGA is the

portion of the design that does not change during PR and includes logic controlling

the PR process. With PR, all of these base static configuration modules can maintain

their real-time links while other modules within the FPGA PR region are exchanged.

2.4.2. Xilinx Early Access PR Design Flow

The first release of Xilinx PR [51] introduced two PR flows, namely difference-

based and module-based. The difference-based PR targets applications which require

only minor changes to the design. The applications are typically limited to cases

which update the FPGA block configuration (BRAM/LUT content, I/O standard etc).

Configuration changes are performed manually on the placed and routed design

netlist using, e.g. the Xilinx FPGA Editor. The module-based PR uses a Xilinx

Modular Design methodology [52] and supports Xilinx FPGA devices up to Virtex-II

Pro. The EAPR design flow supports Virtex-4 and provides limited support for

Virtex-5.

13

 As supported by Partial Reconfiguration Early Access Software Tools overlay for ISE 9.2i SP4

(available from http://www.origin.xilinx.com:80/support/prealounge/protected/index.htm). This tool

overlay provides limited support for Virtex-5 architecture referenced through this thesis. A new

version of PR tools, with full support for Virtex-5/6 is announced as an integral part of the ISE Design

Suite 12.1 release (http://www.xilinx.com/tools/partial-reconfiguration.htm).

http://www.origin.xilinx.com/support/prealounge/protected/index.htm
http://www.xilinx.com/tools/partial-reconfiguration.htm

 Chapter 2 - Partially Reconfigurable Computing Systems Background

– 35 –

Module-based PR flow assumes:

 column-based PR (the PR region spans the full FPGA column)

 all logic resources within the PR region are part of the reconfigurable module

(this includes slices, TBUFs, block RAMs, DSP blocks, IOBs and all routing

resources)

 Bus Macro (BM) based communication with PR region. BMs are used as fixed

(directional) data paths for signal connections between a reconfigurable region

and another region or static design.

The current release of the EAPR tools
14

 relaxes restrictions on PR designs.

EAPR includes full support for Xilinx Virtex-4 FPGA devices and experimental

support for Virtex-5 (including single-slice BMs). The PR region can span a group of

rectangular sub-regions and can contain routing of the static part (this increases

timing performance and simplifies the implementation). Xilinx PlanAhead [53]

software supports a single project which manages the reconfigurable modules and

runs the necessary implementation tools to generate the static and partial bitstreams.

Full support for Virtex-5 and Virtex-6 devices is expected with the next release of

Xilinx tools
15

.

Figure 2- illustrates the Xilinx EAPR design flow [10]. The EAPR design flow

requires additional steps not found in the generic FPGA design flow (Figure 2-). The

generic FPGA design flow involves a single pass through the implementation tools

(NGDBuild, MAP and PAR) while EAPR requires the base design and each PRM to

be implemented separately, with a final merge step which generates the full and

partial configuration bitstreams. EAPR design flow steps 1-4 are similar to the non-

PR design flow while EAPR design flow steps 5-7 are unique to the PR design flow.

The full bitstream contains the base static configuration merged with one of the PR

bitstreams (default configuration). Details of the EAPR design flow steps are

described in [10].

Figure 2- Xilinx EAPR design flow [10].

14

 Available from http://www.origin.xilinx.com/support/prealounge/protected/index.htm.

15
 Xilinx online announcement (http://www.xilinx.com/tools/partial-reconfiguration.htm).

HDL design
Constrain region,

timing, IOs

Implement non-

PR design

Timing/Placement

Analysis

Steps generic to PR

and non-PR design

implementation

Implement base

(static) design

Implement PR

modules

Merge base & PR

modules
Base bitstream

(+ default PR module)

Partial

bitstream(s)

Partial

bitstream(s)

Partial

bitstream(s)

Steps specific to PR

design implementation

http://www.origin.xilinx.com/support/prealounge/protected/index.htm
http://www.xilinx.com/tools/partial-reconfiguration.htm

 Chapter 2 - Partially Reconfigurable Computing Systems Background

– 36 –

The Xilinx EAPR design flow supports static routing in the PR region [10]. This

introduces a risk of implicit communication setup, e.g. the attacker could prepare a

malicious IP core which could connect to unprotected static routing resources. This

thesis assumes that static routing does not exist within the PR region. Thus, all

detected external PIPs are presumed to be the interface between the BaseSFC and the

PR region.

2.4.3. Xilinx PR Bitstream Structure

Listing 2- illustrates the structure of a Xilinx Virtext-5 PR bitstream, decoded

using FDAT. The main difference between the full bitstream (Listing 2-) and the PR

bitstream is the use of data compression (which reduces the PR bitstream size). The

full bitstream has constant size, and contains the complete set of FPGA configuration

frames (except special frame types which are not documented and not included in

default bitstreams). This guarantees constant configuration time after power up,

which is independent of the bitstream payload. Many configuration frames are

redundant, e.g. empty since the FPGA routing resources are never fully utilised. With

PR, only a region within the FPGA is configured. The region size is not constant,

changes depending of the application and PR module implementation. In PR

applications, e.g. real-time video processing [54] or SDR, it is beneficial to reduce

the reconfiguration time, which is linearly related to the amount of configuration

frames. Thus, during PR bitstream creation, frame addresses with similar data are

grouped and configured in a batch, using the frame buffer within the FPGA [9], the

Multiple Frame Write (MFW) command and MFW register (lines 77-83 in Listing

2-). The exact frame grouping algorithm for MFW writes is not published and some

experiments suggest that the order of configuration frames is not arbitrary and, when

violated, could lead to design congestions
16

. This raises concerns about the reliability

of third-party tools used to create PR bitstreams.

16

 “Very interesting finding about V4 CLB configuration bits “ from the Comp.Arch.FPGA Usenet

(http://www.fpgarelated.com/usenet/fpga/show/88244-1.php)

http://www.fpgarelated.com/usenet/fpga/show/88244-1.php

 Chapter 2 - Partially Reconfigurable Computing Systems Background

– 37 –

1 FDAT Bit parser demo

2 Parsing the '../adder_v7/blank.bit' bitstream...

3 @ 0x00000055 | 0xFFFFFFFF : DUMMY word

4 ...

5 @ 0x00000071 | 0xFFFFFFFF : DUMMY word

6 @ 0x00000075 | 0x000000BB : BUS WIDTH word

7 @ 0x00000079 | 0x11220044 : BUS WIDTH

8 @ 0x0000007D | 0xFFFFFFFF : DUMMY word

9 @ 0x00000081 | 0xFFFFFFFF : DUMMY word

10 @ 0x00000085 | 0xAA995566 : SYNC word

11 @ 0x00000089 | 0x20000000 Type_1 : NOP

12 @ 0x0000008D | 0x30008001 Type_1 : Write 1 word to 'CMD' (RCRC -> CMD)

13 @ 0x00000095 | 0x20000000 Type_1 : NOP

14 @ 0x00000099 | 0x20000000 Type_1 : NOP

15 @ 0x0000009D | 0x30018001 Type_1 : Write 1 word to 'IDCODE' 0x02A96093 -> IDCODE

16 @ 0x000000A5 | 0x30008001 Type_1 : Write 1 word to 'CMD' (WCFG -> CMD)

17 @ 0x000000AD | 0x20000000 Type_1 : NOP

18 @ 0x000000B1 | 0x30002001 Type_1 : Write 1 word to 'FAR' (t:0 h:0 r:1 c:2 m:0)

19 @ 0x000000B9 | 0x20000000 Type_1 : NOP

20 @ 0x000000BD | 0x300042B9 Type_1 : Write 697 words to 'FDRI' (17 frames)

21 @ 0x00000BA5 | 0x30002001 Type_1 : Write 1 word to 'FAR' (t:0 h:0 r:1 c:2 m:16)

22 @ 0x00000BAD | 0x30008001 Type_1 : Write 1 word to 'CMD' (MFW -> CMD)

23 @ 0x00000BB5 | 0x20000000 Type_1 : NOP

24 @ 0x00000BB9 | 0x30014002 Type_1 : Write 2 words to 'MFWR'

25 @ 0x00000BC5 | 0x30002001 Type_1 : Write 1 word to 'FAR' (t:0 h:0 r:1 c:2 m:18)

26 @ 0x000020BD | 0x20000000 Type_1 : NOP

27 ...

28 @ 0x000020C1 | 0x30002001 Type_1 : Write 1 word to 'FAR' (t:0 h:0 r:1 c:2 m:17)

29 @ 0x000020C9 | 0x20000000 Type_1 : NOP

30 @ 0x000020CD | 0x30004029 Type_1 : Write 41 word to 'FDRI' (1 frame)

31 @ 0x00002175 | 0x30002001 Type_1 : Write 1 word to 'FAR' (t:0 h:0 r:1 c:2 m:17)

32 @ 0x0000217D | 0x30008001 Type_1 : Write 1 word to 'CMD' (MFW -> CMD)

33 @ 0x00002185 | 0x20000000 Type_1 : NOP

34 @ 0x00002189 | 0x30014002 Type_1 : Write 2 words to 'MFWR'

35 @ 0x00002195 | 0x30002001 Type_1 : Write 1 word to 'FAR' (t:0 h:0 r:1 c:12 m:14)

36 @ 0x0000219D | 0x30014002 Type_1 : Write 2 words to 'MFWR'

37 @ 0x000021A9 | 0x30008001 Type_1 : Write 1 word to 'CMD' (WCFG -> CMD)

38 ...

39 @ 0x00013329 | 0x30014006 Type_1 : Write 6 words to 'MFWR'

40 @ 0x00013345 | 0x3000C001 Type_1 : Write 1 word to 'MASK' 0x00001000 -> MASK

41 @ 0x0001334D | 0x30030001 Type_1 : Write 1 word to 'CTL1' 0x00000000 -> CTL1

42 @ 0x00013355 | 0x30008001 Type_1 : Write 1 word to 'CMD' (DGHIGH/LFRM -> CMD)

43 @ 0x0001335D | 0x20000000 Type_1 : NOP

44 ...

45 @ 0x000134ED | 0x20000000 Type_1 : NOP

46 @ 0x000134F1 | 0x30002001 Type_1 : Write 1 word to 'FAR' (t:3 h:0 r:31 c:0 m:0) WARNING! Write non-

existent address to FAR (t:3, h:0, r:31, c:0, m:0)

47 @ 0x000134F9 | 0x30000001 Type_1 : Write 1 word to 'CRC' 0x0B82C34B -> CRC

48 @ 0x00013501 | 0x30008001 Type_1 : Write 1 word to 'CMD' (DESYNCH -> CMD)

49 @ 0x00013509 | 0x20000000 Type_1 : NOP

50 Bitstream parsed in 1.23400020599 secs.

51 Done.

Listing 2-. Example of Xilinx Virtex-5 (V5LX50T) PR bitstream structure including Multi

Frame Write (MFW) command packets decoded by FPGA Design Analysis Tool (FDAT).

– 38 –

 Chapter 3. Reconfigurable Computing Security:

Background

3.1. Introduction

This chapter begins with a motivating example on security risks within PR

FPGA systems.The example illustrates the risk of implicit communication channels

between IP cores in the PR RC system. The risk of side-channel attacks, the threat of

rogue EDA software and the issue of malicious FPGA designs are also highlighted.

The chapter reviews the state of the art in RC security. Security countermeasures

supported by Xilinx FPGA fabric are described prior to critical examination of the

reported work on the RC system integrity protection and countermeasures for design

IP theft. The principle of IP licensing models is also described. This chapter

highlights the need for the trusted IP-aware RC system security countermeasures.

The chapter concludes with the proposal of a Secure Reconfiguration Controller

(SeReCon) and a summary of the SeReCon requirements.

3.2. Security Risks In PR FPGA Systems: A Motivating

Example

3.2.1. Introduction

This section illustrates an example bitstream-level security problem, namely the

risk of occurrence (and consequence) of implicit communication channel setup

between IP blocks. The HDL to FPGA configuration bitstream translation process is

detailed along with the various databases (design netlists) which result.

The Xilinx CB4CLE (4-bit loadable binary counter with enable and

asynchronous clear) component example [55] indicates that even a simple IP core,

occupying one CLB, can potentially share routing resources (and thus potentially

directly communicate) with a second IP core. This situation would occur if the P&R

database of the second IP core uses a connection also used by the CB4CLE IP core.

A risk of implicit communication between IP cores, e.g. through inadvertent inter-IP

block connection, challenges the assurance of an FPGA-based design. Malicious

interference using standard routing line connections or clock line connections is

highlighted. There is therefore a need for extended tool support for low-level

(bitstream, P&R design netlist) analysis and verification. FDAT-based low-level

 Chapter 3 - Reconfigurable Computing Security: Background

– 39 –

design analysis of the CB4CLE IP core within a Virtex-5 fabric is illustrated, with

extraction of inter-tile routing to verify design spatial isolation.

3.2.2. CB4CLE Design Representation

Figure 3- illustrates, for a 4-bit binary counter (CB4CLE), a range of design

representations occurring during the FPGA design flow.

Figure 3- Various (equivalent) representations of the CB4CLE counter design [55]. a. VHDL

source. b. mapped netlist. c. configuration bitstream. d. FPGA Editor view of the P&R design

netlist. e. FDAT view of the CLB tiles (red) and the P&R design netlist (blue) with separate

routing tiles (yellow).

VHDL Code

FPGA Editor View

D(3:0) Q(3:0)

ce

clk

ld

rst

CB4CLE

Mapped RTL

FPGA tile view

a) b)

d)

1100101000111001010001

1100100101111001001011

0011011010100110110101

0101010010101010100101

1010110011010101100110

0000100010000001000100

FPGA configuration bitstreamc)

EQUIVALENT?

.XDL file

e)

Resource Report for 'CB4CLE_V5LXT'('xc5vlx50tff1136-3' device):

Found 26 design instances (5 types):

 SLICEL (1 item)

 'cnt<3>' placed at 'SLICE_X27Y87' (tile 'CLBLL_X16Y87', R36 C42)

 'Mcount_cnt_xor<0>11' is 'A6LUT'

 configured as: '#LUT:O6=((~A3*(~A6*~A4))+(A3*(A6+~A4)))'

 'cnt_0' is 'AFF' configured as: '#FF'

 'AFFINIT' mode: 'INIT0'

 'AFFMUX' mode: 'O6'

 'AFFSR' mode: 'SRLOW'

 'Mcount_cnt_xor<1>11' is 'B6LUT'...

 'cnt_1' is 'BFF' configured as: '#FF'...

 'Mcount_cnt_xor<2>11' is 'C6LUT'...

 'cnt_2' is 'CFF' configured as: '#FF'...

 'Mcount_cnt_xor<3>11' is 'D6LUT'...

 'cnt_3' is 'DFF' configured as: '#FF'...

 'SYNC_ATTR' mode: 'ASYNC'

 BUFG (1 item)...

 ILOGIC (8 items)...

 IOB (12 items)...

 OLOGIC (4 items)...

Design used 4 LUTs and 4 FFs Parsed XDL

 Chapter 3 - Reconfigurable Computing Security: Background

– 40 –

The VHDL model (Figure 3-a) is synthesised to produce an RTL/technology

netlist (Figure 3-b), mapped to the FPGA logic resources. The Place & Route (P&R)

process annotates the netlist components with physical FPGA location data,

connected using FPGA configurable routing resources. The P&R netlist is translated

to the FPGA configuration bitstream file, used to configure the FPGA device (Figure

3-c).

The implemented design can be viewed using vendor-specific (e.g, Xilinx FPGA

Editor, Figure 3-d) or third-party tools such as the proposed FDAT tool (Figure 3-e).

Tools such as FPGA Editor are useful in providing a view of the FPGA fabric and

can be used to perform a modification to the Xilinx Native Circuit Description

(NCD) design netlist file, but do not support the analysis of the FPGA configuration

bitstream file (BIT). Such tools may omit details of the underlying architecture, e.g.

certain tile types, test wires etc, and do not support a broad script-driven enquiry of

the bitstream database.

3.2.3. The Security Risk Of Implicit Communication Channel

Between IP Cores

Figure 3- illustrates routing tiles within a Xilinx Virtex-5 LX50T which contain

a significant amount of inter-tile wiring of variable length and shape, terminating at

PIPs. The PIP configuration defines the wire connections required to enable the

distribution of signals to distant locations [41], e.g. using multi-hop connections [56].

If all PIPs associated with a particular wire are located within an IP core boundary,

implementation tools have full control over IP core routing. Therefore, all unused

PIP connections are not accessible externally, e.g. by other IP blocks, and

automatically remain unconnected externally. If a wire is connected to a PIP outside

the IP core boundary, an implicit communication channel may result.

Figure 3- illustrates the potential implicit communication channels which can

occur due to distributed connections across the FPGA fabric, available for use during

IP design P&R. This channel connection may not be detectable during standard

system testing (design debugging, functional verification of design implementation)

and thus may introduce errors, system failure, or expose the IP to security risks. A

guarantee is required that the unused routing from IP core k remains unused in IP

core n. IP cores could be implemented with consideration of additional constraints

which globally enforce isolation of the IP core internal wiring [26], or use dedicated

isolation primitives [57]. In a multi-party design flow, it is challenging for the

System Integrator (SI) to ensure, without the use of a low-level analysis tools such as

FDAT, that isolation constraints have been implemented within third-party IP cores.

The automated extraction of IP core connectivity is not readily available in existing

tools for low level analysis of placed and routed netlists, bitstreams and FPGA fabric

netlists.

 Chapter 3 - Reconfigurable Computing Security: Background

– 41 –

Figure 3- Tile view of the Xilinx Virtex-5 FPGA with highlighted routing resources (turquoise)

and CLBs (red).

3.2.4. IP Core Implicit Communication Channel Over The Clock

Line

Figure 3- illustrates an FDAT-generated visualisation of the abundant

connectivity of the CB4CLE design within a Virtex-5 and Virtex-II Pro FPGAs.

While the CB4CLE function utilises a single CLB tile, its IO signals use routing

resources (30 Virtex-5 FPGA tiles, 24 Virtex-II Pro tiles for a full design) which are

shared by at least one electrical connection within 5% of the FPGA tiles (689 out of

13832 tiles, Figure 3-a). When global clock routing resources (four clock-tree tiles)

are included, the counter IO signals use routing resources which are shared by at

least one electrical connection within 21% of FPGA tiles (2915 out of 13832 tiles,

Figure 3-b). This suggests that taking control of the FPGA “clock-spine” could

potentially be an attractive target method for embedding malicious design elements

(in order to set up an implicit communication channel). Two possible examples of

attack using FPGA clock resources are as follows:

a) malicious interference using a clock signal, e.g. dynamic control of the clock

line load (number of active FPGA resources using FPGA clock spine, called

“sinks”) changing clock jitter/skew, clock signal keying, clock frequency

manipulation etc. This dynamic control of the clock source, when performed

by an attacker in a systematic way (e.g. undisturbed, default clock operation

Routing tiles CLB tiles

 Chapter 3 - Reconfigurable Computing Security: Background

– 42 –

would define a logical ‘0’, while detected interference would define a logical

‘1’) could be used for steganographic information hiding
17

 within the

genuine clock signal. Hidden information could be detected (recovered from

the signal) by the malicious design at the clock sink side thus facilitating a

unidirectional subliminal communication channel. Figure 3- illustrates the

block diagram of the malicious IP core in a steganographic application. The

Attacker manipulates genuine clock signal in order to hide control messages

send to the malicious IP core.

b) the setting up of an additional clock line between two malicious designs

solely for malicious communication purposes.

Figure 3- Communication channel existing outside two IP cores. This introduces the risk of

setup of an implicit communication channel, which may introduce errors, system failure, or

expose the IP to security risks.

The disadvantage of the “clock-spine” based communication is that both of the

above scenarios require additional logic on both ends of the clock-based

communication link, one used for injecting the interference (data) at the clock

source, the second one for detecting it at the clock sink. Thus, eavesdropping on the

design (IP core #k, Figure 3-) requires design modification. Also, the hierarchical

structure of the clock spine (root lines, branches, buffers etc) and the FPGA fabric

technology (which supports low-skew and large number of clock line sinks) limits

the robustness of this type of malicious communication. Detailed risk analysis of

clock line attacks feasibility is beyond the scope of this thesis and further research is

encouraged.

17

 Steganography (http://en.wikipedia.org/wiki/Steganography)

IP core #nIP core #k Unused area

Tiles with PIPs

Hardwired routing

IMPLICIT COMMUNICATION CHANNEL

Communication channel existing outside the IP cores

FPGA device

http://en.wikipedia.org/wiki/Steganography

 Chapter 3 - Reconfigurable Computing Security: Background

– 43 –

Figure 3- FDAT-generated visualisation of the abundant connectivity of the CB4CLE counter

design. ab. within a Virtex 5 LXT FPGA. c.d. within a Virtex-2 Pro FPGA. The CB4CLE (blue

and yellow) utilises a single CLB. CB4CLE signals use routing resources (green) which are

shared by at least one electrical connection (a & c –without clock tiles, b & d – including clock

tiles).

a)

CB4CLE

LOGIC

SLICE

CB4CLE

ROUTING

TILES

CB4CLE

IO TILES

FPGA TILES WITH

SHARED ROUTING

b)

c) d)

CB4CLE

LOGIC

SLICE

CB4CLE

IO TILES

 Chapter 3 - Reconfigurable Computing Security: Background

– 44 –

Figure 3- Block diagram of the malicious IP core in a steganographic application.

3.3. State-Of-The Art In FPGA Design Security

3.3.1. Introduction

The main objectives of the FPGA-based RC system attacker are system integrity

compromise and/or design IP theft. System integrity compromise gives the attacker

unauthorised control over the system elements, e.g. security countermeasures and

configuration [58]. The attacker can covertly falsify or leak data processed by the

system, alter system elements with Trojan substitutes or implant additional

(malicious) functionality, e.g. for bypassing authentication (back door function) [2].

The risk scales to external systems when the compromised system is part of a trusted

infrastructure and its misbehaviour cannot be detected.

RC system integrity protection deals with issues of malicious bitstream

eavesdropping, device tamper-resistance etc. RC security countermeasures are

mainly applied to high-assurance systems. System integrity compromise could also

lead to IP theft. The motivation behind design IP theft is the high design cost and

time and market share advantages. In RC systems the design IP can be infringed in

the following ways:

 Reverse Engineering (RE): a low-level and laborious decoding of the

configware, e.g. FPGA bitstream, back to the HDL description. RE reveals

proprietary algorithm implementation, or a key embedded (‘hidden’) in the

design. McLoughlin examines the RE problem scope and classification [59].

 Cloning: copying of the design (configware, netlist, HDL sources etc) with

little or no modification.

 Counterfeiting: producing a fake or lower-quality design imitating the

original product
18

.

18

 Counterfeit / Fake Cisco WIC-1DSU-T1 V2: Guide to tell Genuine from Counterfeit (http://www.

andovercg.com/services/cisco-counterfeit-wic-1dsu-t1-v2.shtml), Departments of Justice and

Clock source

Clock sink

Manipulation

detector

Attacker

Clock signal Encoded clock signal

message

message

Malicious design (IP core)

 Chapter 3 - Reconfigurable Computing Security: Background

– 45 –

 Overbuilding (license abuse): violation or bypassing of the restrictions

limiting design IP use (and the number of legal copies). Also, blocking of

license verification algorithms.

A survey of security challenges facing embedded systems has been conducted by

Ravi et al. [60]. The survey discusses the challenges involved in secure embedded

system design, the ‘security processing gap’ in battery powered devices and the

“assurance gap,” which relates to the gap between functional security measures (e.g.

security services, protocols, and their constituent cryptographic algorithms) and

actual secure implementations. Wollinger et al. [61] review the advantages of FPGAs

for security applications, list FPGA shortcomings with proposed countermeasures

and state a number of open questions (from a systems point of view). Valette et al.

[62] list FPGA security features and emphasise configuration memory programming

as the point of least security. Jurjens [63] provides an overview of the challenges in

developing secure embedded systems and demonstrates model-based security

engineering, while Irvine and Levitt [64] explore challenges to trusted hardware.

Kastner and Huffmire [65] address threats and challenges in reconfigurable hardware

security by describing attacks, solutions and areas for future research. Their work

discusses the life cycle of reconfigurable hardware and focuses on the topics of

trusted hardware, physical attacks, design tool subversion, design theft and system

security. Drimer [66] reviews FPGA design security, with a focus on volatile

(SRAM) technology, examining a wide range of attacks and defences, along with the

current state of industry offerings. Drimer also outlines on-going research and latest

developments in the field.

Attacks on FPGA-based designs are classified depending of their invasiveness

level.

Non-invasive attacks involve monitoring and interaction using FPGA I/Os

(glitching, power analysis etc) or configware implementation (data residue, API

attacks), e.g. by brute-force (exhaustive) testing, side-channel analysis, probing and

copying external data, manipulating inputs and observing outputs etc. This is the

cheapest type of attack which typically does not require significant resources

(advanced tools, funds, time) and does not include physical tampering of the FPGA

chip.

Semi-invasive attacks involve chip depackaging and direct (microscopic)

observation of the silicon die, e.g. thermal, electromagnetic emanations, UV attacks,

focused IOB etc. The silicon die is not tampered with.

Invasive attacks involve chip depackaging, micro-probing and altering points inside

the chip using, e.g. Focused Ion Beam (FIB) and Scanning Electron Microscopy

(SEM). This type of attack allows fault injection inside the active design, e.g. by

changing the dynamic state of CLB Flip Flops or routing PIPs. This is the most

Homeland Security Announce International Initiative Against Traffickers in Counterfeit Network

Hardware (http://www.justice.gov/opa/pr/2008/February/08_crm_150.html)

http://www.justice.gov/opa/pr/2008/February/08_crm_150.html

 Chapter 3 - Reconfigurable Computing Security: Background

– 46 –

intrusive and advanced type of attack which typically requires a significant amount

of resources and advanced tools.

This thesis assumes a tamper-proof FPGA device. Thus only non-invasive

attacks are investigated, e.g. side-channel eavesdropping, communication protocol

tampering etc.

3.3.2. Side-Channel Attacks And Countermeasures

When active, digital circuits expose dynamic power consumption which is

related to the processing algorithm, the fabric technology and the system internal

state. Also the processed data istaken into account. The technology and the

processing algorithm are constant. Thus current fluctuations result from state

transitions within the design logic (dynamic current leakage). When sampled over

time, the current fluctuations provide a power footprint which is specific to invariant

algorithm steps and input data. A similar footprint can be observed for Electro-

Magnetic (EM) emanations (with additional spatial properties).

Side-Channel Analysis (SCA) exploits power or the EM footprint of the device

in order to predict its internal state. For a known processing algorithm SCA could

reveal input data, e.g. encryption keys or plaintext in a cryptographic application.

Coron and Naccache propose the definition of information leakage immunity and a

relevant testing methodology [67]. Aigner and Oswald provide a tutorial on

Differential Power Analysis (DPA) attacks [68][69].

Kocher, Jaffe and Jun examine DPA of tamper-resistant devices and propose

countermeasures [70]. Tiri and Verbauwhede propose simulation models for side-

channel information leaks in DPA [71]. Standaert et al. provide an overview of

power analysis attacks targeting FPGAs [72]. Peeters, Standaert and Quisquater also

provide an improved ‘switching-distance’ leakage model of CMOS devices [73]. Tiri

examines pitfalls of side-channel analysis and discusses possible countermeasures

[74]. Agrawal, Archambeault and Rao examine Electro-magnetic (EM) side-channel

attacks on CMOS devices [75] and develop a practical assessment methodology for

such devices.

Poon, Wilton and Yan examine a FPGA power model used by the Versatile

Place and Route (VPR) tool [76]. Shang, Kaviani and Bathala examine dynamic

power consumption in Xilinx Virtex-II devices [77]. Curd [78] describes the impact

of architectural innovations on power consumption in Xilinx Virtex-5 devices.

Chaudhuri et al. examine the viability of multi-rail routing in FPGAs and its

robustness against side-channel attacks [79]. Tiri, Schaumot and Verbauwhede

examine design of DPA side-channel leakage tolerant architectures [80]. Yu and

Schaumont propose an extended Wave Dynamic Differential Logic (WDDL)

technology, called Double WDDL (DWDDL) [81]. DWDDL implements a side-

channel-resistant logic with invariant signal pair load, regardless of signal transitions.

Reported DWDDL implementation withstands reference DPA attack, but at a

significant resource cost and delay.

 Chapter 3 - Reconfigurable Computing Security: Background

– 47 –

3.3.3. EDA Tools As The Security Threat

Design functionality expressed by the HDL source code is generally preserved

by the EDA tools through to design implementation, in order to preserve the

functional equivalence of the design description. While synthesis and P&R tools

operate successfully over a wide range of design translations, certain corner cases

exist where post-P&R manual editing is required. An example is the ring-oscillator

(RO) which is a core element in Random Number Generator designs. Due to cycles

in combinatorial logic, the RO is typically optimised out during P&R and needs to be

manually added to design netlist (NCD) afterwards, using tools such as FPGA editor.

Thompson [21] highlights how development tools in the software domain could

implicitly produce overbuilt (additional functionality) and malicious binary output,

not functionally-equivalent to the input source code. Also, Roy et al. [4] challenge

the security of EDA tools, which could covertly inject Trojan circuits into user

designs. Roy et al. also examine methods for Trojan circuit planting and masking

inside the legitimate design. Thus, the source-code-only design verification (e.g.

HDL verification) may not be sufficient. Roy et al. propose dynamic verification as a

countermeasure. Bitstream analysis tools could be applied within the PR

implementation flow to detect malicious elements following third-party tool

application. The assurance that two CB4CLE IP cores (each one sharing at least one

wire with 21% of the FPGA tiles) do not share any routing resources could be

provided by precise allocation of 42% of a mid-sized FPGA device. This approach is

clearly impractical. Since post P&R design simulation is not performed directly on

the FPGA bitstream it cannot trap potential implicit communication channels

between IP cores.

The proposed FDAT tool can determine if an implicit communication channel

has occurred. In this work, this FDAT functionality has been ported to the SeReCon

element within the RC system in order to enable detection of implicit communication

channels in installed third party IP cores.

3.3.4. Malicious FPGA Designs

Research on malicious configware and IP cores has been reported by Hadzic et

al., King et al., Roy et al. and Kucera and Vetter. Hadzic et al. describe the threat of

malicious FPGA bitstreams [1]. The paper outlines FPGA properties supporting the

threat and demonstrates the implementation of the FPGA virus which physically

destroys the device elements. Hadzic et al. also propose changes to the FPGA

architecture, bitstream verification and high current detection as a countermeasure.

King et al. report implementation of “the Illinois Malicious Processors (IMPs)” [2].

IMP is a general purpose processor with an architecture which supports a number of

general security attacks. King also investigates design space, trade-offs, and

challenges of malicious circuits. Alkabani and Koushanfar propose disguising

hardware Trojan circuits as additional states within the IP core Finite Sate Machine

 Chapter 3 - Reconfigurable Computing Security: Background

– 48 –

(FSM) [3]. Kucera and Vetter discuss the viability of the FPGA rootkit
19

 deployment

[5]. Kucera and Vetter outline rootkit applications in embedded systems and list the

shortcomings of existing FPGA security features and its implications in Trusted

Computing.

3.3.5. Xilinx FPGA Fabric Protection

Xilinx FPGAs and EDA software employ a number of technologies in order to

increase security of SRAM FPGAs. Lesea [6] and Trimberger [7] provide IP-centric

and TC-oriented context for some of following features.

 Design sources and netlist encryption: implemented in Xilinx design tools since

early versions of Xilinx ISE, used to protect IP core netlists generated by Xilinx

Coregen and IP core source files delivered with the Xilinx EDK software. ISE

uses the DES encryption algorithm (up to version 9 of ISE
20

).

 eFUSE primitive: eFUSE has been officially available since Virtex-6/Spartan-6

series release, and is an undocumented feature of Virtex-5. EFUSE technology

uses electromigration [82] to provide one-time programmable storage for the

encryption key (Virtex-6 and Spartan-6 devices only) and user data (Spartan-

3AN/6, Virtex-6).

 Bitstream encryption: available in Virtex-II/4/5/6 and Spartan-6 devices, enables

FPGA configuration with a user-encrypted bitstream. Modern Xilinx devices use

AES 256 encryption in Cipher Block Chaining (CBC) mode. Virtex-II Pro (now-

obsolete) uses the 3DES encryption algorithm.

 Volatile storage: implemented in Virtex devices since Virtex-II, and also

available in Spartan-6. This enables volatile storage of encryption keys and

instant zeroisation upon tamper detection (using the KeyClear primitive) which

is compliant withn Federal Information Processing Standard (FIPS) [83]

published by the National Institute of Standards and Technology (NIST)
21

 Authentication: introduced in Virtex-6 devices, using SHA-256 and HMAC

algorithms. Authentication enables prior-to-configuration bitstream

authentication with a user-defined key. Its description in [33] suggests that the

key is part of the encrypted bitstream and is not stored in the FPGA.

 DeviceDNA: available in Spartan-3AN/6 and Virtex-6 devices. Device DNA is a

vendor programmed design primitive which provides the unique serial number

of the FPGA fabric to the user design.

19

 Rootkit is a software program or coordinated set of programs designed to gain control over a

computer system or network of computing systems without being detected (http://en.wikipedia.org

/wiki/Rootkit).

20
 “How to decrypt Xilinx IPCORE source code” (http://newsgroups.derkeiler.com/Archive/Comp/

comp.arch.fpga/2009-01/msg00110.html) describes required decryption steps and provides relevant

source codes. Warning, the thread available through the Google Groups is censored).

21
National Institute of Standards and Technology (NIST, http://www.nist.gov)

http://en.wikipedia.org/wiki/Rootkit
http://en.wikipedia.org/wiki/Rootkit
http://newsgroups.derkeiler.com/Archive/Comp/%20comp.arch.fpga/2009-01/msg00110.html
http://newsgroups.derkeiler.com/Archive/Comp/%20comp.arch.fpga/2009-01/msg00110.html
http://www.nist.gov/

 Chapter 3 - Reconfigurable Computing Security: Background

– 49 –

3.3.6. Trusted Computing (TC)

3.3.6.1. Introduction

This section reviews the Trusted Computing (TC) paradigm and its objectives.

Various FPGA implementations of TC components are also highlighted. TC is an

emerging technology which supports building trustworthy computing platforms.

Thus TC concepts and objectives could contribute to the development of secure PR

RC systems. Security of TC cryptographic protocols depends on the ability of the TC

system to generate quality random data. Thus, various implementations of the

Random Number Generators are also discussed.

The TC paradigm addresses information security issues in general purpose

computing. TC standards are driven by the computing and communication industries

through the Trusted Computing Group
22

 (TCG). TC aims to enhance the security of

the target system by using the Trusted Platform Module (TPM) [84]. The TPM is an

integral part of the target system which provides a set of cryptographic and security

functions. TPM typically implements tamper-resistance techniques to prevent a range

of physical and hardware-based attacks. TPM is capable of attesting, in a trustworthy

way, certain system properties, thus establishing a system RoT. The RoT in a secure

system is defined as a component that must always behave in a defined manner, since

its misbehaviour cannot be detected. The RoT contains at least the functions to

enable a description of the system characteristics (i.e. system state) that affect the

trustworthiness of the system, e.g. loaded OS modules, device drivers, hardware state

etc. In TC and RC, the RoT may be based on a tamper-proof hardware element

within the FPGA fabric. The RoT in RC systems can be partially implemented within

user logic (configware), to provide a flexible security mechanism.

A security policy is a description of implemented system protection policies. A

trusted system, for example a RoT, is one where failure can break a security policy

[25]. In the trustworthy system the security policy and RoT cannot fail. A recent

compromise of the TPM
23

 shows that secure implementation of the trustworthy RoT

is challenging. Skorobogatov examines data retention characteristics of modern

SRAM chips as a function of temperature [22]. The study shows that some memory

devices could retain 80% of data, up to one minute after power down. Skorobogatov

also reports that retention time varies significantly between devices within the same

family. Tuan, Strander and Trimberger report data residue analysis for 90nm SRAM

FPGAs [23]. The report indicates the correlation between data retention time,

22

 Trusted Computing Group (TCG, http://www.trustedcomputinggroup.org)

23
 During the “Hacking the Smartcard Chip” talk at the BlackHat 2010 conference (Feb 2-3,

Arlington, VA, USA) Christopher Tarnovsky from Flylogic Engineering demonstrated a successful

attack on the TPM hardware. The attack requires physical access to the TPM module. An estimated

attack cost is ~200k$ and one man/day labour time of the reverse-engineering expert. Video from the

talk can be found on the YouTube (http://www.youtube.com/results?search_query=Black+Hat+DC

+2010%3A+ Hacking+the+Smartcard+Chip&search_type=&aq=f)

http://www.youtube.com/results?search_query=Black+Hat+DC%20+2010%3A+%20Hacking+the+Smartcard+Chip&search_type=&aq=f
http://www.youtube.com/results?search_query=Black+Hat+DC%20+2010%3A+%20Hacking+the+Smartcard+Chip&search_type=&aq=f

 Chapter 3 - Reconfigurable Computing Security: Background

– 50 –

memory cell structure and memory cell content. Logic memory cells also exhibit

lower data remanence time than routing memory cells. Data remanence could be

exploited in order to recover sensitive data, e.g. plaintext data or encryption keys

which are buffered in RAM prior to encryption. Thus, since Virtex-4 FPGAs

(officially available since Virtex-5) Xilinx have introduced the KEY_CLEAR

primitive which supports instantaneous erase of the encryption key register from the

internal configuration control logic, e.g. when device tampering is detected.

Trusted systems should be reliable and provide predictable behaviour, e.g.

efficiently protect secret encryption keys, or generate truly random data etc. Secure

implementation of the FPGA RoT requires resistance to various types of invasive

and non-invasive attacks.

3.3.6.2. TC objectives

The main TC objectives are system authentication and data protection.

System and user authentication allows peers (users and system) who are using

TPM-enabled systems to securely authenticate themselves when communicating over

the untrusted channel, e.g. Internet. TPM supports trusted attestation of the system

state, by producing a unique TPM-signed checksum of the system initialisation

process, e.g. hardware state after reset and load of BIOS, bootloader, OS, device

drivers and applications. During authentication, checksums received from the remote

system are validated using a known public-key of the remote TPM. Checksums are

also compared with a database of sequences known to be secure. If a match is found

then the remote system is assumed to be trusted, e.g. its authenticity is confirmed and

its state is secure (tampering is not detected). The TPM-based (“something you

have”) authentication can be extended to include PIN/password (“something you

know”) verification.

Data protection enables encryption of the user data, e.g. single files or full hard

drive. TPM provides symmetric-key and public-key (RSA 2048) encryption

primitives, hash generator (SHA-1) and True Random Number Generator (TRNG)

which support generation of unique keys and one-time-used (‘nonce’) values.

Cryptographic keys are generated and stored inside TPM, after the user authenticates

himself to the TPM. Thus, the original TPM is required in order to decrypt the

‘sealed’ data and therefore TPM-based data protection provides secure ‘sealed’

storage for user data within the TC system.

The TPM specification is open [84]. Security of the TPM-based cryptographic

algorithms is based on the tamper resistant TPM implementation and confidentiality

of the internal Endorsement Key (EK). The EK is the main TPM key used to

recognise a genuine TPM and protect TPM internal data. The EK is a key-pair

composed of a public and private 2048-bit RSA key which is randomly created at

manufacture time. The EK is read only and never leaves the TPM perimeter [85].

 Chapter 3 - Reconfigurable Computing Security: Background

– 51 –

3.3.6.3. TC in FPGA-based RC systems

Chaves proposed Secure Computing Module (SCM) for RC systems [85].

Chaves examines TPM functionality which is beneficial to RC systems. The TPM-

equivalent SCM implementation provides significant performance improvement

when compared to genuine (ASIC) TPM devices. Chaves proposes the use of

Residue Number System (RNS) in order to improve the SCM performance.

Eisenbarth et al. examine TC viability in RC systems and propose the inclusion

of the TPM functionality within RC systems [86]. This would enable a scalable

trusted computing base in the RC hardware and allow a standardised TC-based

software binding with the hardware. The proposed solution would be also TPM

vendor independent. A TC scheme for embedded RC systems has been also reported

by Glas et al. [87]. Glas proposes a protection model built upon trusted configuration

attestation of the RC system state. The model assumes the use of certified and thus

trusted modules. The growing number and complexity of available Third Party IP

cores increases the risk of undetected malicious interaction even between certified

cores. This TC approach does not protect the privacy of IP cores installed in the

system, since only the system credential memory is tamper-proof. Verbauwhede and

Schaumont review methodologies for the design of secure electronic systems and

propose the ‘tree-of-trust’ methodology [88]. The ‘tree-of-trust’ methodology

supports recursive secure partitioning and integration on all levels of design

abstraction, e.g. protocols, software, hardware and circuits. Schumont and Hwang

also propose the use of parasitic effects in Deep Sub-Micron (DSM) technology in

order to aid the design of secure circuits [89]. The sub-threshold power leakage,

process variability, noise, signal integrity and power density could be exploited to

increase DSM technology resistance to side-channel attack, support PUF design,

provide random data, or mask power consumption.

Chaudhuri et al. propose the ‘FASE’ architecture [90]. FASE supports dynamic

(coarse-grain) resource management using PR. FASE provides implementation

evolution prior to PR in order to countermeasure DPA and fault-injection attacks.

The authors do not provide any implementation results. Huffmire et al. propose the

trusted overlay to COTS devices using 3D stacking technology [91]. Potentially this

would increase the use of COTS in high assurance applications without the need to

redesign the IC die.

3.3.6.4. True Random Number Generators (TRNGs)

Quality random bitstreams are required for Initialization Vectors (IVs), data

block padding, challenges, nonces, and keys. This data is typically transmitted

unencrypted and can thus be intercepted and analysed by the attacker. Thus, the

trustworthy Random Number Generator (RNG) is a typical element in cryptographic

applications, i.e. in TC. The Diehard [92] and NIST RNG [93] are industry-standard

tests for assessing the quality of RNG bitstreams. Depending on the implementation,

RNGs are categorised as Pseudo RNGs (PRNGs) or True RNGs (TRNGs).

 Chapter 3 - Reconfigurable Computing Security: Background

– 52 –

Pseudo RNGs are software algorithms initialised with an externally generated

sequence (‘seed’). PRNGs produce long sequences that appear to be random
24

. The

initial ‘seed’ value and the internal state of the generator determine the next bit.

Thus, PRNG always produces the same sequence when given the same ‘seed’ value.

True RNGs (TRNGs) base their output entirely on an underlying random physical

process. TRNG does not have internal state and the output is based only on the

physical process and not on any previously produced bits. Often the raw bits

generated by the physical source are biased (the probability of a '1' is not 0.5). Thus

bias reduction could be necessary. Sunar, Martin and Stinson provide and examine a

theoretical model of a provably secure TRNG [37]. Other implementations of

TRNGs have been also reported by Fischer and Drutarovsky [94], Kohlbrenner and

Gaj [95], Schellekens et al. [96], Simka et al. [97], Dichtl and Golic [98], Yoo et al.

[99], Vasyltsov et al. [100], Wold and Tan [101], Maiti et al. [35], and Drimer [102].

3.3.7. RC System Integrity Maintenance

In order to protect design integrity and design tampering of non-PR designs,

configuration bitstream encryption is a viable option for non-PR designs which has

been adopted by EDA tools and FPGA vendors, e.g. Altera, Xilinx etc. Use of

bitstream encryption disables configuration readback through external configuration

interfaces, e.g. SelectMap and JTAG [9]. Protection measures in Virtex-II Pro

include blocking the ICAP function when bitstream encryption is used [44]. Thus,

PR and bitstream encryption are mutually exclusive in Virtex-II devices. In modern

FPGAs PR and bitstream encryption can coexist, but Xilinx advises against the use

of ICAP, e.g. when design IP protection is required or in high-assurance systems

design [47], [9], [33]. For PR designs, the existing ICAP does not fully protect

against unrestricted FPGA configuration memory read back, e.g. due to an

exploitable error in the user application implementation.

McLean and Moore report the FPGA-based Single Chip Crypto (SCC)

methodology which is developed by Xilinx and NSA [26]. The SCC lounge is

available only to authorised users and provides design and isolation verification

tools, security IP cores (‘monitor’) and application notes
25

. McLean and Moore

report advantages of PR in Information Assurance applications and highlight the

need of post-implementation design verification, e.g. validation of used FPGA

routing and module isolation. They also propose secure BMs and support for a new

design constraint (‘NOBOUNDARYCROSS’) in EDA tools which provide an

isolation ‘fence’ between FPGA (PR) regions. An isolation enforcement scheme

which uses ‘fences’ and a CRC-based tampering monitoring circuit has been

patented by Lesea and Drimer [103]. SCC targets High Assurance Internet Protocol

Encryption (HAIPE) and High Assurance Internet Protocol Encryption

24

 PRNGs were commented by J. von Neumann: „Anyone who considers arithmetical methods of

producing random digits is, of course, in a state of sin.”

25
 Xilinx Single-Chip Crypto (SCC) (http://www.xilinx.com/esp/aero_def/crypto.htm)

 Chapter 3 - Reconfigurable Computing Security: Background

– 53 –

Interoperability Specification (HAIPIS) which is a NSA secure internet protocol

specification [104]. HAIPIS permits enclaves equipped with compliant gateways to

communicate securely over untrusted networks [105]. An example of SCC-compliant

design and further references to FPGA-based secure designs are described in [106].

Pittman and Forin examine eMIPS slot-based implementation of the security

model for reconfigurable hardware [107]. The eMIPS is a dynamically extensible

processor which contains reconfigurable extension slots. Pittman and Forin use two-

level verification of the extension IP core trustworthiness. In the first stage eMIPS

checks IP core digital signature. During the second-stage eMIPS use a software

Design Rules Checker (DRC) to verify whether the extension IP core is compatible

with eMIPS layout, e.g. matches extension slot region and slot interfaces, and does

not contain malicious configuration, e.g. short-circuits etc. DRC uses IP core

bitstream to build a circuit graph which is equivalent to the IP core netlist which

checks for the occurrence of malicious sub-graphs from the DRC database. The

eMIPS allows the use of multiple IP cores since the DRC verifies their structure prior

to reconfiguration. Pittman and Forin do not discuss the DRC trustworthiness. Also

eMIPS DRC implementation is not detailed.

Drimer proposes FPGA bitstream authentication which provides cryptographic-

level assurance of configuration data integrity and authentication of the bitstream

source [108]. Authentication supports tamper-evident operation of FPGA systems.

This allows the bitstream to remain open and subject to public audit and scrutiny, e.g.

in voting machines. Bitstream authentication has been already adopted in Virtex-6.

Hori et al. reported similar work which targets authenticated-encryption for PR

[109]. Badrignans et al. propose a monotonic-counter extension to the authenticated

encryption scheme in order to mitigate the risk of a replay-attack during remote

update of the FPGA system [110]. The counter is implemented in a tamper-resistant

FPGA area and guarantees the uniqueness of the reconfiguration transaction. This

countermeasures replay attacks.

Gogniat et al. propose the Security Architecture For Embedded Systems

(SAFES) which exploits the Intrusion Detection System (IDS) [111]. IDS is a set of

clock/circuit/bus/channel monitors used to detect and deter system tampering. When

IDS detects abnormal behaviour (e.g. tampering) the system is reconfigured with a

hardened version of the security primitive. Gogniat et al. do not discuss security

countermeasures regarding tampering threads to stored (not-active) PR modules,

which might compromise the proposed security model and affect the implementation

results (power consumption, size, etc).

Jones implements a portable Single Event Upset (SEU) detection and correction

IP core targeting Xilinx Virtex-4 FPGAs [112]. The IP core supports Single-Error

Correction Double-Error Detection (SECDED) using continuous configuration

scrubbing, and can be used as a deterrent against malicious configuration memory

tampering. Heiner et al. demonstrate ‘self scrubber’ which enables simultaneous PR

and configuration scrubbing [113]. Since Virtex-5 FPGAs Xilinx have provided the

FRAME_ECC primitive which supports SECDED. Also, Dutt and Li propose the use

 Chapter 3 - Reconfigurable Computing Security: Background

– 54 –

of randomisation and 2D Error-Correcting Code (ECC) structures for FPGA design

tampering detection [114].

Design integrity protection schemes do not address IP-related issues, e.g. IP

license restrictions enforcement and design IP protection in the deployed device etc.

Also, integrity protection schemes assume unrestricted availability of the IP core

configuration bitstream and source files. This limits the scope to unrestricted (fully-

licensed) designs, thus hindering adoption of cost-effective third party IP cores

which are distributed at a lower cost but include license restrictions.

3.3.8. Design IP Protection

Challenges in modern VLSI design IP protection are examined by Yuan et al.

[115]. The authors assume that increasing design IP reuse forces engineers to

cooperate with others and share their expertise, data, documentation and tools which

support design IP infringement. This forces IPVs to mark their designs using, e.g. IP

watermarking or design fingerprinting. During watermarking, the IPV modifies the

IP core (sources or production files) in order to include a unique signature

(watermark) which proves IPV copyright ownership during any legal action. Ideally,

the watermark should be easy to detect and impossible to remove. The main

challenges listed by Youan et al. are: restrain the design overhead (e.g. watermarking

cost) and reliable soft IP, CAD tools and algorithms protection. Also, Kean [116] and

Bossuet et al. [117] highlight the vulnerability of volatile FPGAs to IP piracy and

reverse engineering, and propose bitstream encryption as a countermeasure.

Nakanishi proposes another bitstream encryption scheme [118]. Lesea provides IP-

centric context for some of Xilinx FPGA security features [6].

IP protection methods in FPGA designs can be classified into two main groups:

low-cost security and high-end security.

Low-cost methods target mainly massive scale (industrial) IP theft. This ‘time-

stopper’ approach may not prevent the efforts of motivated peers to obtain FPGA

configuration details
26

 and to publish results [119]. “Security-by-obscurity” is

considered an adequate hindrance only for resource- and time-limited attackers. The

competitive price (or time to market advantage) dictates a minimal-volume

(maximum individual cost) for which the attack pays off (i.e. is successful). Thus,

low-cost protection schemes target high-volume markets, e.g. consumer electronics

(infotainment devices, digital TV etc) where the device development cost (including

security measures) is bound to remain minimal, and revenue is achieved by the

economies of scale.

A separate class of low-cost design protection is design watermarking. Various

watermarking techniques are reported, e.g. by Kahng et al. [120], [121], Qu [122],

Jain et al. [123], Ziener and Teich [124] and Ziener et al. [125]. Christiansen et al.

[126], [127] propose decoy circuits as viable countermeasure to reverse engineering.

26

 uLogic’s “Debit” project (http://www.ulogic.org)

 Chapter 3 - Reconfigurable Computing Security: Background

– 55 –

High-end protection includes methods aimed at providing security of the design

IP against all but sophisticated attackers who have unlimited resources. IP protection

provided by FPGA design software [128], [129] supports IP core licensing and

Digital Rights Management (DRM), down to the design netlist-level. The software-

level protection effort is augmented by configuration bitstream encryption, being a

de-facto industry standard provided by FPGA-specific tools. Kean also patented an

extension to the FPGA fabric which facilitates token-based design rights

management in the FPGA [130]. The proposed scheme supports Virtual Application

Specific Standard Product (VASSP) model where IPV controls the number of

activated copies through the use of device-specific (unique) cryptographic tokens.

VASSP does not support multiple IP cores within a single device. This approach is

limited and does not support PR. When PR is used the attacker could, under certain

conditions, intercept the plaintext content of the IP core by accessing it, using the

ICAP for example.

Siripokarpirom describes a scheme for IP core evaluation before purchase [131].

Security of the proposed scheme relies only on closed bitstream format. Also,

Castillo et al. propose hiding encryption keys in unencrypted bitstreams [132].

Kuhn proposes the ‘TrustNo1’ cryptoprocessor [133] which protects

applications against unauthorised execution and reverse engineering. Kuhn examines

necessary hardware/software mechanisms which apply in multi-tasking systems. The

proposed scheme includes bus data encryption and on-chip encryption key storage. A

license revocation scheme and key management protocol are also outlined. Graf and

Athanas report a multi-layer key management architecture which supports secure off-

chip data transfers [134], [135]. The proposed scheme uses a tamper-proof

cryptographic iButton device to authenticate the application user. The FPGA and

iButton authenticate themselves in order to enable application access to the data in

the external memory. Adi et al. propose a concept for design IP locking using a

SmartCard [136]. Also Suh, O'Donnell and Devadas examine the architecture of a

secure single-chip processor (AEGIS) and describe the techniques used to execute

private and authenticated software from untrusted off-chip memory [137]. A

proposed security model for trusted systems design is to trust the on-chip

environment while assuming that the off-chip environment is untrustworthy. Similar

work has been reported by Lee et al. [138], Edmison [139] and Mahar et al. [140].

Lee et al. propose an extension of generic processor architecture. The work of

Edmison and Mahar et al. does not require such a modification and could be applied

within existing devices. Simpson and Schaumont examine an off-line

hardware/software authentication scheme [141], [142] . The proposed PUF-based

challenge-response binding scheme enables the locking of a third party design IP to a

particular FPGA fabric. The architecture of PUFs has also been examined by Lee et

al. [143], Suh and Devadas [144], Guajarado et al. [145] and Maiti et al. [35]. A

work similar to Simpson and Schaumont has been reported by Alkabani et al. [146].

Alkabani’s scheme exploits additional states in the IP core control FSM. Also, it

requires the TA to be involved in device fabrication.

Zeineddini and Gaj propose a secure PR scheme [147], [148]. The scheme

employs bitstream encryption and authentication in order to ensure its security. The

 Chapter 3 - Reconfigurable Computing Security: Background

– 56 –

PR bitstream content is not verified and is assumed to be harmless to the target

platform. Zeineddini and Gaj suggest the use of dedicated volatile (battery-backed)

memory to store the key used during PR bitstream decryption.

Guneysu et al. propose a scheme which exploits PR and the use of a Trusted

Authority (TA) to provide secure transfer of the encrypted IP to the FPGA system

[149]. The proposed scheme does not support systems which include more than one

IP core. Also, the security of the installed IP core is not verified

Drimer proposes a security protocol for the remote update of FPGA

configurations [150]. The update protocol can be implemented on existing FPGAs.

The proposed security model requires a tamper-proof package for both the FPGA

fabric and the external non-volatile memory in order to ensure that a genuine

configuration is loaded after power-up.

The reported research summarised in this section mainly focuses on

cryptographic algorithms and secure protocols, thus neglecting the problem of post-

PR IP core interaction with the system (or other IP cores). None of the above

protection methods considers third-party IP cores as a security risk. Secure IP core

implementation and IPV trustworthiness is taken for granted. Protection against

design errors can only be achieved by trustworthy design verification. Even if the IP

core source code is available, it is vital to assure that the EDA tools used to produce

the FPGA configuration bitstream are secure. Testing can be used to show the

presence of errors, but never to show the absence of errors [151]. Thompson [21]

discusses this issue and concludes that “You can’t trust code that you did not totally

create yourself. … No amount of source-level verification or scrutiny will protect you

from using untrusted code".

The proposed SeReCon element facilitates trusted (in-system) analysis of the

structure of a new IP core prior to RC system reconfiguration and verifies IP core

spatial isolation. This provides run-time protection of the already-configured PR

system from structural issues resulting from erroneously placed (or malicious) IP

cores. The SeReCon-based IP core validation scheme also protects confidentiality of

the IP core bitstream during RC system implementation and in the deployed device.

The plaintext IP core bitstream never leaves the SeReCon security boundary, the SI

and the User access only the encrypted IP core and. Also, the SeReCon design has an

open architecture which can be audited, e.g. through public scrutiny
27

.

27

 Public audits are already adopted, e.g. in the Secure Hash Standard public competition

(http://csrc.nist.gov/groups/ST/hash/sha-3/)

 Chapter 3 - Reconfigurable Computing Security: Background

– 57 –

3.4. FPGA IP Core Licensing Models

3.4.1. Introduction

The IP business model describes methods used in order to provide revenue from

the IP product or IP-related service. The IP business model is associated with an IP

license model. An IP license model is the terms and conditions (or rights and

restrictions) that are granted to an IP user and is defined by the IP business model

[152]. A key objective in the IP market is to ensure that the IPV is profitably

rewarded for the provided IP. The IPV typically targets a number of applications in

order to increase the market share. This requires a number of IP licensing models in

order to match user expectations. Xilinx Targeted Design Platform is an example of

such EDA software diversity [153].

This section describes common software business models and the Xilinx

LogiCORE IP licensing scheme adopted by the Xilinx Alliance Program which

provides IP cores and EDA tools for Xilinx FPGA devices. Shortcomings of the

time-based LogiCORE-based IP core business model are analysed, and support for

transaction based and metered access business models is proposed.

3.4.2. Common Software Business Models

In the FPGA-based design, the IP core is a hardware implementation

(application) of the data processing algorithm. In the SDR application illustrated in

Figure 1- the IP core could be one of the modules in the PR region, e.g. error

correction coder/decoder, data cipher/decipher etc. Thus the IP core is the hardware

counterpart of the software application. Hohmann [152] describes the common

software business models:

Time-based access allows the licensee to use the licensed software for a defined

period of time. The user pays for the license in order to use the software. In a rental

time-based model, the period of time is set when the license is generated (software

purchase). Rental time-based models are becoming increasingly popular in certain

industries, e.g. the software test automation and the EDA industries. Hohmann

predicts that rentals will reach all market segments. Thus all available software could

be rented. The business motivations for rentals are compelling and rental enables

reaching a new market.

Transaction-based access associates a fee with each transaction. A transaction is a

defined and measurable unit of work, e.g. activating the software. The software can

be activated a pre-defined number of times before it becomes inoperable. This

requires a trusted transaction counter which is typically included within the

application. The transaction counter enforces the maximum number of licensed

activations and disables the application when this number is reached. Transaction-

based business models can be found within enterprise software.

 Chapter 3 - Reconfigurable Computing Security: Background

– 58 –

Metering access business models constrain consumption of a defined resource, e.g.

application run-time. A consumptive model uses a pool of resources that are

consumed, e.g. time period. The software becomes inoperable when all of the pool

resources are consumed, e.g. the time has expired. This business model requires a

trusted resource meter, e.g. monotonic timer included in the application. The

monotonic timer counts the total application run time and disables the application

when the licensed amount of time has expired. This business model could be used in

consumer products where the user is charged for the multimedia decoder life-time,

e.g. audio or video stream length.

Hardware based business models associate the cost of the software with the

hardware. The software can be provided without charge when the hardware is

otherwise unusable, e.g. firmware. This model is based on the hardware property,

e.g. number of CPUs, which affects the performance of the application and can be

enforced as required to meet business needs.

Service-based business models focus on service provided to the user, not the

software enabling serviced access. Service-based business models are often used

with open source licensing initiatives, e.g. RedHat provides assistance in the

installation, configuration, and operation of RedHat Linux distribution which is open

source software. Other services could include education programs, custom

development, integration services etc.

Revenue based business models charge a percentage of revenue obtained from using

the application. The revenue based model requires potential users to identify the

potential revenues or savings fee. This could make other business models more

viable.

3.4.3. Xilinx LogiCORE IP Licensing Scheme

Xilinx LogiCORE IP license model provides free
28

 IP core evaluation and

supports fee-based licensing. Evaluation licenses are provided with Xilinx EDA

tools. Xilinx LogiCORE evaluation licenses support simulation-only evaluation and

hardware evaluation
29

.

Simulation-only evaluation license: typically included with most ISE (CORE

Generator) IP cores. The simulation-only license allows user interaction with the

customisation GUI and generation of IP core simulation models. IP core evaluation

in the hardware is not supported.

Hardware evaluation license: allows generation of the IP core implementation

netlists and bitstreams which support time-limited IP core evaluation in the FPGA

hardware. Evaluation bitstreams include a timer element which disables the IP core

after a few hours of operation. The exact duration of the hardware evaluation time

28

 “as in beer” (http://en.wikipedia.org/wiki/Free_as_in_beer)

29
 Xilinx LogiCORE site (http://www.xilinx.com/ipcenter/ip_license/ip_licensing_eval.htm)

 Chapter 3 - Reconfigurable Computing Security: Background

– 59 –

depends on the core. The timer element is automatically inserted by the FPGA

vendor EDA tools, e.g. Xilinx ISE. IP cores provided with the Xilinx EDK software

include a 14 month full hardware evaluation license. The hardware evaluation license

for Xilinx ISE IP cores can be generated using the Xilinx website
30

 or can be

requested through a local Xilinx Field Application Engineer (FAE).

Fee-based licenses can be obtained through the Xilinx website or requested through a

Xilinx FAE. A fee-based licenses is available as a project-locked license, site-a

locked license or as a full electronic license.

Project-locked license: restricts the use of the licensed IP core within a single

project. This could be a single bitstream including multiple instances of the licensed

IP core and targeting multiple FPGA devices, or multiple bitstreams including

multiple instances of the licensed IP core targeting single FPGA device.

Site-locked license: restricts the use of the licensed IP core in an unlimited number

of projects originating within a 5-mile radius of an address designated as the

"Licensed Site".

Full electronic license: enables full access to a core. This includes the simulation

model, implementation netlist generation, place and route, and generation of a

bitstream. Full electronic license is generated Xilinx core-specific product lounge.

3.4.4. Mixed Business Models For FPGA IP Core Licenses

The licensing scheme used by the Xilinx EDA tools, e.g Xilinx Design Studio

supports the time-limited and hardware-based business models. Xilinx EDA tools use

the FlexLM license manager in order to enforce time-limited operation of Xilinx

Design Studio and included IP core license restrictions, e.g. simulation only, site-

and project-locking, time-limited hardware evaluation etc. The time-limited IP core

hardware evaluation license uses a timer element embedded in the IP core bitstream.

Thus the FPGA device support in the license enforcement is not required. The IP

core specific firmware, e.g IP core drivers, example applications etc, are distributed

using a hardware base business model. Thus their use is limited only to Xilinx

FPGAs.

The FPGA IP core, like a software application, is a collection of ‘features’. Each

of the features can be offered using different business and licensing models, e.g. the

time-limited license could be used for the base set of IP core features (e.g. data

encryption), while a transaction-fee or metered-access license would apply for

additional, application-specific IP features, e.g. IP core resistance to side-channel

attacks. The transaction-based and metered access business models could increase

the use of IP cores in reconfigurable consumer devices. Both models require support

to provide trusted measurement of the IP core activations and usage (life time).

30

 Xilinx Product Download and Licensing site (www.xilinx.com/getproduct)

 Chapter 3 - Reconfigurable Computing Security: Background

– 60 –

Couture and Kent describe current software and hardware licensing techniques

[154]. The licensing architecture for IP core metered-usage is proposed. This requires

IPV to posses the encryption key which is used to secure communication between the

FPGA and the external trusted time-keeping module. The encryption keys are

permanent and thus vulnerable to replay attack.

3.5. Thesis Proposition: Trusted Design Verification And

Reconfiguration

3.5.1. Introduction

This chapter reviews the state of the art in RC security. A motivating example on

security risks in PR FPGA systems is provided. Risks of the side-channel attacks and

threat of rogue EDA software also are highlighted. Security countermeasures

supported by Xilinx FPGA fabric are described prior to critical examination of the

reported work on the RC system integrity protection. The IP theft countermeasures

and the principle of IP licensing models are also described. This section concludes

with the need for a Secure Reconfiguration Controller (SeReCon) and summarises

the requirements of SeReCon.

The CB4CLE example indicates that even a simple IP core, occupying one CLB,

can potentially share resources (and thus setup implicit communication channel) with

a second IP core occupying any of almost 3000 FPGA tiles which is 21% of the mid-

size Xilinx Virtex-5 FPGA.

In the trusted computing paradigm the Trusted Platform Module (TPM) acts as a

RoT for the target system and provides capabilities for secure data storage, secure

reporting of platform configuration measurements (e.g. trusted boot-up configuration

assessment) and cryptographic key generation. Applications of TPM in RC provide

RC system with capabilities of authenticated power-up configuration. This requires

SI to be in possession of TPM EK (system security credentials), exposing third-party

design IP to the SI. Eisenbarth et al. do not consider the loaded reconfigurable

modules to be malicious, while Glas et al. checks only the destination address of the

reconfiguration data and disable TPM element when error occurs. This leaves FPGA

unprotected, with the IP core already loaded into configuration memory. Thus, a new

model of TPM operation is required to eliminate system integrator from the TC

chain-of-trust and to protect design IP upon system tampering.

Directions of research activity in the field of RC systems security are two-fold,

focusing on system integrity protection and design IP protection. System integrity

protection measures aim towards seamless integration of multiple externally-

developed IP cores into a stable and trustworthy system. Design IP privacy

protection must be ensured to commercially available third-party IP core vendors.

This is not ensured where the system integrator is in full control of, and has

 Chapter 3 - Reconfigurable Computing Security: Background

– 61 –

unrestricted access to, all design modules, including third-party IP cores. Current

design IP protection methods focus on the confidentiality of the IP core

implementation, mainly by using authentication and encryption protocols, though

without considering the risks caused by including erroneous or malicious IP cores.

This exhibits contradictory goals of system protection (integrity) and design IP

protection (privacy). Also, no current design IP protection methods assume a system

model which includes IP protection of untrusted third-party cores while guaranteeing

system integrity, e.g. protecting against design errors in third-party IP. Thus, new IP-

aware methods for development of trustworthy systems are required.

The provision of IP core transaction-based and metered access licensing models

in addition to a protection model for PR systems could increase the use of IP cores in

reconfigurable consumer devices. A trusted license enforcement scheme requires

methods for reliable control of IP core utilisation in the RC system, e.g. enforcement

of counted IP core activation and IP core run time metering.

The SDR application, its attack vectors and IP core business models constitute

two security problems, namely:

The secure reconfiguration problem: “How to maintain integrity of the PR RC

system?”

The IP licensing problem: “How to ensure IP license enforcement in PR RC system

such that the IPV can: a) tie the IP core to a particular RC device, b) reliably meter

and limit IP core usage (total lifetime and activations number) in the deployed

system”. The IPV wishes to enforce license-restricted usage of the IP core in the

deployed PR RC system.

This thesis proposes a novel Secure Reconfigurable Controller (SeReCon)

element which facilitates trustworthy and IP-aware PR for FPGA-based RC systems.

SeReCon performs trusted design verification in order to provide system integrity

protection during PR. SeReCon also protects the IP cores against IP theft and

enforces IP core license restriction in the deployed RC system. This supports IPVs in

adoption of the transaction-based and metered access business models.

SeReCon extends the TPM architecture in order to provide support for FPGA-

specific secure reconfiguration problem (e.g. IP core placement and isolation) and to

facilitate new IP business models in the FPGA design community. The architecture

of the SeReCon element is described. Figure 1-a illustrates the block diagram of the

SeReCon-enabled PR RC system. SeReCon (Figure 1-cde) incorporates novel

algorithms for building a system Root-of-Trust (Figure 1-) and a two-phase integrity-

maintaining self-reconfiguration process.

 Chapter 3 - Reconfigurable Computing Security: Background

– 62 –

3.5.2. Secure Reconfiguration Controller (SeReCon)

This section describes the proposed Secure Reconfiguration Controller

(SeReCon) architecture.

The proposed SeReCon IP core is an integral part of a PR system and guarantees

the physical isolation of non-trusted PR modules and thus the integrity of the system

configuration between reconfiguration cycles. SeReCon provides the required

infrastructure for secure PR at a remote site, e.g. at the SI or User site. FPGA system

integrity protection is maintained by controlled PR. SeReCon analyses IP core

structure and detects if the intended PR might affect the system integrity and expose

the FPGA to a malicious (unsecure) configuration. Attacks such as this could activate

configuration memory read-back and further compromise FPGA system security

through modification of for example the design routing or logic resources. If the IP

core resource requirements comply with the current state of the FPGA system,

SeReCon allows reconfiguration to take place though controlled access to the ICAP.

In order to guarantee the integrity of IP cores, SeReCon can perform on-line

context analysis of PR modules (physical placement, usage, confirmation that the

active modules interact only through legitimate interfaces). This mechanism protects

system integrity during PR at a remote site and allows non-trusted (un-verified)

modules to be used so long as they do not interfere with those currently active on the

FPGA.

A novel algorithm is proposed for generating credentials in order to establish the

secure RoT. SeReCon performs the requested system reconfiguration on behalf of

the RC system software. SeReCon aims to protect the integrity of the RC system by

mediating access to the ICAP and by analysing incoming reconfiguration requests

during run-time. A two-phase self-reconfiguration (IP core installation and

activation) process is implemented in SeReCon in order to improve performance of

IP core activation.

A novel algorithm is proposed within SeReCon for IP core licensing and usage

accounting, e.g. total runtime, number of activations etc, in a PR system. SeReCon

facilitates new IP core licensing models, e.g. transaction-based and metered access,

during the PR system life-cycle. SeReCon ensures license restrictions enforcement

within the target FPGA-based RC system. This supports trusted license management

which requires participation of the Trusted Authority party only during device

certification. This reduces the chain-of-trust requirements in a multi-player design

flow.

 Chapter 3 - Reconfigurable Computing Security: Background

– 63 –

3.5.3. Methods And Assumptions

The following assumptions have been made in defining the SeReCon system

model:

a) The FPGA device is trusted (i.e. Trojan-free) and provides hardware support for

RoT (details are described in Chapter 4).

b) The RC system comprises a number of integrated IP cores, configured using PR.

c) The IP Vendor explicitly declares some of IP core resources to be used as its

communication interfaces.

d) IP cores are not trusted and their placement on the FPGA cannot overlap each

other.

e) Subliminal channel and side-channel attacks are not considered.

3.6. Chapter Summary

This chapter provides a motivating example on security risks within PR FPGA

systems.The example illustrates the risk of implicit communication channels between

IP cores in the PR RC system. The risk of side-channel attacks, the threat of rogue

EDA software and the issue of malicious FPGA designs are also highlighted. The

chapter reviews the state of the art in RC security. Security countermeasures

supported by Xilinx FPGA fabric are described prior to critical examination of the

reported work on the RC system integrity protection and countermeasures for design

IP theft. The chapter describes the principle of IP licensing models and proposes use

of new IP core licensing models, e.g. the time-limited license and metered-access

license, which could increase the use of IP cores in reconfigurable consumer devices.

The need for the trusted IP-aware RC system security countermeasures is also

highlighted. The chapter concludes with the proposal of a Secure Reconfiguration

Controller (SeReCon) and a summary of the SeReCon requirements.

– 64 –

 Chapter 4. SeReCon Proposal: RoT and Usage

Accounting In PR FPGAs

4.1. Introduction

This chapter considers the requirements of credentials storage in a secure RoT

and the implementation of usage accounting for RC systems. Techniques for storage

of RoT security credentials and usage accounting data in modern FPGAs are

reviewed. The suitability and limitations of using SRAM configuration memory are

discussed. Other non-volatile memory schemes for credentials storage are also

reported. The chapter proposes and describes an extension to the Xilinx FPGA fabric

to provide a tamper-proof hardware element which protects the SeReCon-based RoT

credentials and usage data during power-up cycles. The EIDR element prototype

implementation in a Virtex-5 LXT device (ML505 Board) is reported. The register-

based EIDR control/status interface, which is implemented in the FPGA user-logic,

is highlighted. This chapter also describes EIDR API functions, which are provided

by the SeReCon EIDR driver. The associated multi-party RoT credentials generation

process is proposed. The activities of SeReCon and various parties (e.g. SI, TA, IPV)

during RoT initialisation are highlighted. The RoT credentials generation process

supports public security audit of the RC device and guarantees exclusive and

authenticated access to the sensitive part of the RC system security credentials for the

legitimate system, e.g. SeReCon RoT. The SeReCon-based RoT is immune to

credentials leakage as a result of a future successful attack on the TA.

4.2. Requirements Of Credentials Storage And Usage

Accounting In A RoT

The TC defines a system’s RoT as a component that must always behave in the

expected manner, because its misbehaviour cannot be detected. The RoT contains at

least the minimum set of functions to enable a description of the platform

characteristics that affect the trustworthiness of the platform
31

. Trustworthy operation

of an RC system requires the RoT security credentials to remain confidential during

the system lifecycle and to be available only to authorised system elements (e.g. RoT

elements). Also, the integrity of the system usage accounting data, e.g. number of

system activations, its lifetime and uptime since last restart, must be preserved

(unchanged) during RC system power-down cycles.

31

 http://www.trustedcomputinggroup.org/developers/glossary

 Chapter 4 - SeReCon Proposal: RoT and Usage Accounting In PR

– 65 –

Figure 1- illustrates the Base SeReCon FPGA Configuration (BaseSFC), loaded

after system power up. The BaseSFC contains only the SeReCon IP core, the

communication interface to control RC system configuration (using the SeReCon

element) and the memory interface to provide non-volatile Local IP Storage (LIPS)

(in external Flash memory). LIPS is a repository used to store IP cores after

processing by SeReCon, for use during future RC system reconfigurations. The

BaseSFC forms the RC system RoT and is assumed to be secure. The BaseSFC

should not contain any proprietary (closed-source) IP cores. This allows the

BaseSFC to be freely audited, either by the independent TA or under open public

scrutiny. During an audit the independent TA confirms the correct implementation of

the BaseSFC design provided by the SI.

The BaseSFC can be likened to a trusted OS boot-loader in the TC domain; the

proposed SeReCon IP core serves reconfiguration requests (Figure 1- and Figure 1-),

received from the RC system software layer through the communication interface

(Comm IF), and interrupts the reconfiguration process when a potentially malicious

configuration bitstream is detected.

Security of the RoT is built upon secure credentials which are confidential,

random and device-unique RC system encryption keys and Message Authentication

Codes (MACs) [25]. Generation of Credentials are used to:

 protect the integrity of the RoT and the installed IP cores (in both the LIPS and

the configured FPGA)

 allow the User or IPV parties to authenticate the BaseSFC (and the RC system

environment)

 guarantee secure communication between the BaseSFC and IPV, during

installation of new IP cores.

The BaseSFC uses symmetric-key encryption in order to protect the LIPS (Figure

1-). Public-key encryption is used to provide a private and secure (authenticated and

encrypted) end-to-end communication channel between the IPV and the BaseSFC.

The TA generates and installs the credentials within the SeReCon firmware, e.g.

as the pre-initialised BRAM content in the FPGA configuration bitstream, available

for a RoT CPU. The SI and TA agree on the credentials structure and the

functionality of the API which provides access to the credentials data structures. It is

assumed that the SeReCon-based RoT is not likely to change during a product

lifetime. If such a change is required, e.g. during a BaseSFC system upgrade, new

unique credentials must be generated and installed in the RC system by the TA to

establish trust in the new BaseSFC.

4.3. Review Of Techniques For Storage Of RoT Data

The BaseSFC requires security credentials to remain protected during the system

lifecycle. Also, the RC system usage data (system state) must be preserved during

RC system power-down cycles.

 Chapter 4 - SeReCon Proposal: RoT and Usage Accounting In PR

– 66 –

Security credentials and system usage data cannot be stored in volatile memory

such as Xilinx FPGA configuration SRAM. Commercially available SRAM-based

FPGAs, e.g. Xilinx Virtex family, exhibit the property of a stateless power up

configuration; the internal configuration memory is cleared during the power up

sequence and the device enters the default ‘blank’ (unconfigured) state, waiting to be

configured with a bitstream provided from the external source [44], [47], [9], [33].

The stateless power up configuration strategy ensures that a newly configured device

configuration is not affected by the previous one. This renders any system usage

accounting infeasible as all data on system usage is lost after power down. Stateless

configuration exposes the FPGA to a Man-in-the-Middle (MIM) attack [110] where

the attacker alters the active configuration bitstream with an earlier version (possibly

erroneous and exploitable) during power-up configuration. A genuine FPGA

configuration is undistinguishable from a bogus configuration, which is introduced

by an attacker using a malicious environment (typically requires physical access to

the device). The non-stateless configuration is offered only in Virtex-5 and Virtex-6,

supported by a ‘warm-boot’ facility [9], [33]. Warm-boot allows ‘rolling-back’ to a

default fail-safe FPGA configuration in the event of an unsuccessful updated

bitstream configuration. The warm-boot configuration state register does not offer

any data privacy protection and does not support authenticated access control to the

configuration state. Thus, a warm-boot cannot support system usage accounting and

cannot be used to store and preserve confidential system state (e.g. its security

credentials) between FPGA power-up cycles.

A battery-backed memory configuration could be implemented to store

SeReCon security credentials. This technique is used in Xilinx Virtex-II/4/5/6 and

Spartan-6 devices to store bitstream decryption keys [44], [47], [9], [33], [155],

[116]. Read/write access to this memory by the user design is not allowed in

commercially available Virtex devices. This renders it unsuitable for use in SeReCon

for credentials and system usage data storage, since SeReCon is a user design

element.

Modern FPGA devices require a TA to generate and install security credentials

directly within the SeReCon firmware and to encrypt the BaseSFC bitstream.

Afterwards, the TA securely programs the decryption key into the RC system. This is

required in order to protect the BaseSFC against reverse engineering [119], e.g.

extraction of the sensitive part of the credentials from the plaintext bitstream. Also,

the TA should use one-time, device-unique encryption keys to avoid compromising

multiple devices, e.g. in the event of a single encryption key being leaked. When the

TA is in possession of encryption keys used during BaseSFC encryption, the RoT

security could be compromised through a successful attack on the TA. The feasibility

of such an attack is based on the fact that the TA is aware of sensitive credential

material or the BaseSFC bitstream encryption key of many devices.

In summary, it is vital to provide the RoT with the ability to distinguish between

arbitrary FPGA power-up cycles, e.g. in order to protect the RC device against MIM

attacks and provide FPGA fabric support for RC system usage accounting, required

for counted (pay-per-use) and time-limited IP core license enforcing.

 Chapter 4 - SeReCon Proposal: RoT and Usage Accounting In PR

– 67 –

4.4. FPGA Fabric Extension For Tamper-Proof Storage Of

RoT Data

4.4.1. Introduction

This section proposes and describes a novel extension to the Xilinx FPGA fabric

to provide a tamper-proof hardware element which protects the SeReCon-based RoT

credentials and usage data during power-up cycles. This section describes the ID

Register (IDR)-based facility for TA-controlled generation of unique, random and

partially-anonymous security credentials, entirely within RoT (BaseSFC) security

perimeter. FPGA fabric elements (e.g. configuration control logic and configuration

memory) and user-design elements (random number generator and control/status

register wrapper) which support the IDR facility also are highlighted. Figure 4-

illustrates the FPGA fabric block diagram, including the IDR element. IDR is an

FPGA fabric extension for tamper-proof storage of RoT credentials and RC system

usage accounting.

Figure 4- also illustrates the SeReCon-based RoT certification process

flowchart, which provides a trusted BaseSFC and IP core protection for RC systems.

This section also proposes an extension to the SeReCon IDR to provide support for

usage accounting and for enforcement of IP core license restriction in a multi-party

design and user environment for PR systems. The introduction of flexible IP core

licensing schemes (e.g. time-limited or counted) supports cost-effective reuse of the

third party IP cores. However, this requires reliable license enforcement mechanisms

to be implemented in the RC devices. The location of the IDR within the RC system

is illustrated in Figure 1- and Figure 1-.

A description of each FPGA security credentials and usage accounting elements is

included below:

ID Register (IDR) is the proposed non-volatile FPGA fabric element, accessible

as a hard-macro and implemented using SRAM technology with battery backup. The

IDR supports instant memory scrubbing (“one-shot zeroisation”) upon receipt of a

key-clear request (assertion of RST), e.g. the SysMon FPGA primitive [27] could

trigger IDR ‘zeroisation’ when FPGA input voltage or temperature exceeds the

threshold level (this could suggest device tampering).

Configuration Control Logic (CCL) configures and controls the FPGA fabric

using a configuration bitstream delivered through a dedicated (CFG_IO) interface

(e.g. JTAG, SelectMAP etc) [156]. CCL is embedded in the FPGA fabric and

contains a keyed Hash Message Authentication Code (HMAC) algorithm [33]

implemented in hardware, and used for bitstream authentication. HMAC generates

the MAC [25] of the active configuration bitstream, e.g. the BaseSFC. CCL

 Chapter 4 - SeReCon Proposal: RoT and Usage Accounting In PR

– 68 –

generates the configuration clock
32

 (CFG_CLK) and indicates successful FPGA

configuration (CFG_DONE_OK).

Figure 4- Block diagram of the FPGA fabric including the ID Register (IDR) element.

Configuration Memory (CM) stores the active FPGA configuration (user-

design) during FPGA runtime. The simplest CM design is the BaseSFC. CM content

is configured using the configuration frames delivered by the CCL packet processor

[9] during power up configuration process (Figure 1-).

True Random Number Generator (TRNG) provides a unique random

bitstream (DATA) to the IDR. The TRNG is a SeReCon element. The TRNG

contains a set of Ring-Oscillators configured to harvest randomness based on

physical phenomena [37], [35].

Control/Status Registers (CSRs) is a BaseSFC register-file used to control the

IDR hard-macro (through register read/write access). When the genuine BaseSFC is

32

 Available description of the Xilinx FPGA Configuration Control Logic (CCL) is not complete.

Xilinx FPGA User Guides and Xilinx patents cover only general overview and partial implementation.

FPGA

CFG

IO

SeReCon

WRITE

MAC

DATA

CLK

MNC

LTC

FRC

DEVICE RESTARTS

DONE

RST

HMAC

 CONFIGURATION

CONTROL LOGIC

CONFIGURATION MEMORY

TRNG

CTRL/

STATUS

REG

Signs &

Publishes

STORAGE KEY

PRIVATE KEY

PUBLIC KEY

C
R

E
D

E
N

T
IA

L
S

ID REGISTER

Trusted

Authority

RoT security perimeter

IO

Device Public-Key

Certified by TA

Plain-text BaseSFC

BITSTREAM

MAC

C
F

G
_

D
O

N
E

_
O

K

INIT_IDR

RST_IDR

RANDOM_DATA

VCC

C
F

G
_

C
L

K

Battery

backup

IP core Vendor

UPDATE

UPD_MSG_NO

LIFETIME
ACC

UPTIME

CREDENTIALS
MSG_NO

CREDENTIALS

 Chapter 4 - SeReCon Proposal: RoT and Usage Accounting In PR

– 69 –

active, the CSRs provide access to the stored RoT credentials (CREDENTIALS) and

system usage data, e.g. number of system activations (AAC), system lifetime (LTC),

system uptime (FRC). The CSR is a SeReCon element implemented in CM. In the

SeReCon-based RoT, the sensitive part of the RoT credentials (STORAGE_KEY,

PRIVATE_KEY) is always kept within the RoT security perimeter. The public part

(PUBLIC_KEY) of the RoT credentials is not restricted and can therefore be

transferred outside the RoT for device certification (e.g. the TA signs and publishes

the device public-key) or authentication (e.g. the IPV uses the device public-key to

encrypt the installed IP core).

4.4.2. IDR Support For Tamper-Proof Storage Of RoT Credentials

During Powerup

Figure 4- illustrates the IDR block diagram, including elements which support

credentials storage. This section describes each IDR element.

Key Register (KR) stores the MAC describing the active FPGA design when

WRITE is asserted, e.g. the MAC of the BaseSFC during RoT activation. KR is

hardwired to the HMAC module (Figure 4-). The state of KR is preserved between

power cycles. EQUAL_EN is asserted when the MAC value of the active design

matches the stored KR value. Assertion of EQUAL_EN indicates that the currently

active design is authorised to access the Credentials Register. Assertion of the RST

signal clears KR content and disables IDR.

Credentials Register (CR) stores DATA (e.g. sensitive BaseSFC credentials)

when WRITE is asserted. CR content (CREDENTIALS) is preserved between power

cycles. CR content is confidential and available only to the authorised design (e.g.

BaseSFC), when EQUAL_EN is asserted. This enables continuous operation of the

SeReCon-based RoT, without the need to re-establish trust after a power cycle or in

the event of non-authorised system reconfiguration. Assertion of the RST signal

clears CR content.

The proposed IDR method extends the authenticated configuration recently

made available in Virtex-6 devices [33] (proposed by Drimer [108]). During the first

time activation of SeReCon within a controlled and trusted environment (i.e. at the

TA facility), a system-unique, random and partially-anonymous credentials value

(DATA) is generated using a RO-based TRNG [35] technique. Since credentials are

generated internally within the SeReCon-based RoT (Figure 4-), and locked with the

BaseSFC MAC, the sensitive elements, i.e. private-key, storage key etc, never leave

the boundary of the SeReCon RoT (or FPGA fabric).

Generation of a malicious (‘Trojan’) bitstream, having an identical MAC to the

genuine bitstream could be used in a birthday attack [157]. Thus, this work assumes

that the MAC values generated by HMAC are ‘collision-resistant’ [157], [38], e.g.

the generation of a Trojan bitstream with a MAC value identical to the genuine (not

modified) design is hard (not feasible in a reasonable amount of time). The IDR

provides authenticated access to the CR content. During an IDR write access, input

 Chapter 4 - SeReCon Proposal: RoT and Usage Accounting In PR

– 70 –

data is stored in the CR and the MAC is stored in the KR. When IDR data is

requested, the current KEY input (the MAC value of the current bitstream, e.g. the

BaseSFC) is compared with the KR content. The CR content is available to the

FPGA design only if the KR and KEY values match, e.g. when the MAC of the

current design (e.g. BaseRFC configuration) is equal to the genuine MAC which was

used to store credentials. The IDR content (security credentials) is generated locally,

within the RoT (Figure 4-), and is non-permanent. This preserves the confidential

state of the RC system when the power is off and ensures that the private part of the

credentials is known only to the authenticated BaseRFC (which contains the

SeReCon RoT), even after a power cycle. Non-permanent (battery-backed) storage

supports prompt revocation of the credentials upon detected tampering (within a

single clock-cycle). Thus, secure and trustworthy operation of SeReCon can be

certified by a TA and also by public audit.

Figure 4- Block diagram of the ID Register (IDR) used for controlled generation of unique,

random and partially-anonymous security credentials.

4.4.3. Extending IDR For System And IP Core Usage Accounting

This section describes the extension to the SeReCon IDR to provide support for

enforcement of IP core license restriction in a multi-party design and user

environment for PR systems and system usage accounting. To support time-limited

or counted IP usage in a secure FPGA system, it is necessary to distinguish between

particular FPGA power cycles, and further to conclude whether the IP core license

life-time (located in the installed IP core file stored in LIPS) has expired. Otherwise

the FPGA system is vulnerable to exploitation by an attacker using a replay-attack

scenario [110]. This could lead to possible time-unlimited IP usage or FPGA

configuration downgrading, e.g. use of the earlier (possibly erroneous) FPGA

configuration. Figure 4- illustrates the block diagram of the Extended SeReCon IDR

(EIDR). Three monotonic counters provide a mechanism for accounting device

runtime for licensing purposes. A description of each element is included below.

The Authenticated-Configuration Counter (ACC) counts the number of

E
Q

U
A

L
_

E
N

WRITE

MAC

Key Register

DATA
CREDENTIALS

Credential Register

RST

ID Register

RST

VCC

Compare

CLK

RSTCLK

CLK

 Chapter 4 - SeReCon Proposal: RoT and Usage Accounting In PR

– 71 –

authenticated FPGA configuration events, e.g. the number of times that the

SeReCon-enabled RC system has been powered up and authenticated. For each

power-up, the ACC provides a value which is always increasing (monotonic) and

guarantees that every restart of the device is unique (Nonce value). Therefore, a

replay-attack can be detected. The ACC value can be used to enforce a pay-per-use

business model [152].

The Life Time Counter (LTC) counts the total number of clock cycles (referred

to as lifetime count) which have elapsed from the moment of SeReCon activation.

The LTC content is preserved between system power cycles. This enables

measurement of the IP core lifetime and enforcement of a time-limited usage policy,

e.g. if the LTC value exceeds a predefined threshold value (embedded within the IP

core license) SeReCon can automatically disable the IP core activity (see Chapter 6).

The LTC can also provide a real-time clock for the RC system.

The MsgNo Counter (MNC) is a monotonic counter which contains the

transaction message number (MsgNo). SeReCon asserts the UPDATE signal in order

to increase the MNC content. MsgNo is a unique (Nonce) value included in IPV

messages to SeReCon which are used, e.g. to establish the shared encryption key
33

.

SeReCon accepts IPV message only when the MsgNo included in the message

matches the value stored in EIDR MNC. Always-increasing MNC updates is used to

ensure the ‘freshness’ of the IPV messages sent to SeReCon, e.g. SeReCon rejects

(old) messages with MsgNo lower than the EIDR MNC.

The Free-Running Counter (FRC) counts the number of clock cycles elapsed

since the previous system power-up cycle. FRC is used to calculate the period of

uninterrupted system activity and thus provides a mechanism for enforcing IP core

license restrictions for time-limited hardware evaluation. Use of the FRC along with

the LTC provides a distinction between system uptime and system lifetime and thus

supports a flexible IP core licensing model.

ACC, LTC, MNC and FRC monotonic counters are cleared when the contents of

the CR (Figure 4-) changes, e.g. when a new SeReCon RoT identity is generated by

the TA or reset (RST) is asserted. Counter outputs are available only to an

authenticated SeReCon design. If the FPGA is configured with a bitstream whose

signature (MAC) does not match the current KR value (the MAC of the authenticated

BaseSFC), the system remains inactive and the counter contents are not made

available to the unrecognised (and inappropriate) FPGA design. This allows FPGA

device reuse when the EIDR functionality is not required.

Assuming a 5-year lifetime for a device running at 100 MHz, the additional EIDR

resources (ACC, LTC, MNC and FRC) required to support IP protection are as

follows:

 Two 28-bit binary counters for ACC and MNC (assuming SeReCon power-up

configuration and application requests occur at a maximum frequency of once

per second)

33

 Chapter 7 describes implementation and usage of the RC system demonstrator.

 Chapter 4 - SeReCon Proposal: RoT and Usage Accounting In PR

– 72 –

 Two 56-bit binary counters for LTC and FRC

The bit-width of these monotonic counters guarantees against counter overflow

during the system lifetime. Counter values are available through the SeReCon CSRs

(Figure 4-).

The state of the counters provides reliable device usage statistics. Licensing

restrictions such as the maximum allowed number of IP core activations, the system

usage-time limit for hardware verification purposes etc, can therefore be

implemented.

Figure 4- Extended ID Register block diagram. Monotonic-counters support enforcement of IP

core license, time-limited and counted usage in a multi-party PR design environment.

4.4.4. EIDR Prototype Implementation

This section reports the EIDR prototype implementation. The register-based

EIDR control/status SeReCon interface implemented in the FPGA user-logic is

EQUAL_EN

WRITE

MAC

Key Register

DONE

DATA
CREDENTIALS

Credential Register

Lifetime Counter
LIFETIME

Auth. Config.

Counter
DEVICE

RESTARTS

Extended

ID Register

RST

VCC

Compare

RSTCLK

RSTCLK

RSTCLK

RSTCLK

CLK

MsgNo Counter
MSG_NO

Free Running

Counter

UPTIME

RSTCLK

RSTCLK

UPDATE

 Chapter 4 - SeReCon Proposal: RoT and Usage Accounting In PR

– 73 –

highlighted. The section also describes EIDR API functions, which are provided by

the SeReCon EIDR driver.

An EIDR element prototype has been implemented in a Virtex-5 LXT device

(ML505 Board) using the Xilinx ISE toolset
34

. Appendix B provides the reference

EIDR source code in VHDL. Table 4- illustrates the EIDR resource utilisation and

performance. Figure 4- illustrates the VHDL description of the EIDR element. Some

details of the EIDR implementation are removed for clarity
35

.

The EIDR element connects to the SeReCon system bus through the

Control/Status Register (CSR) wrapper (Figure 4-) which provides a bidirectional

register-based interface between the EIDR and the SeReCon bus. Table 4- illustrates

The EIDR API which is provided by the SeReCon EIDR driver. The SeReCon

firmware (Figure 1-e) uses the EIDR API in order to access the RC system security

credentials and system usage data. Details of EIDR API usage in SeReCon are

provided in Chapter 6.

The idr_reset() API function resets the EIDR. This clears all data stored in the EIDR

registers, e.g. stored MAC, SeReCon credentials and SeReCon usage counters. The

EIDR reset can be also executed when SeReCon detects abnormal system activity,

e.g. when the FPGA SYSMON primitive [27] signals the unusual FPGA devices

temperature or input voltage level which could suggest potential attack.

The idr_init() function resets and initialises the EIDR element (Figure 4-). After

resetting the EIDR, SeReCon writes a new TRNG data value into the CR by

asserting the WRITE signal. This also writes the MAC of the active bitstream, e.g.

the BaseSFC, into the KR ACC, MNC, LTC and FRC registers are also cleared to

their initial values. Typically SeReCon firmware calls idr_init() only once, during

RC system initialisation at the TA site.

The idr_status() function returns current status of the EIDR element, e.g.

uninitialised, active, tampered etc.

The get_idr_credentials() function checks the EIDR status and provides access to

security credentials stored in the EIDR. The CR content is available through a

pointer which is provided as a function parameter (credentials_ptr). SeReCon uses

security credentials to protect system integrity and IP core confidentiality during IP

core installation, activation and deactivation.

The get_idr_counters() function checks the EIDR status and provides access to the

EIDR counters. The ACC, LTC and FRC contents is available through a pointer

which is provided as a function parameter (counters_ptr). EIDR counter values are

used during IP core activation and deactivation.

The get_idr_msg_no() function checks the EIDR status and provides access to the

MNC counter. The MNC content is available through a pointer which is provided as

function parameter (msg_no_ptr). SeReCon uses the monotonic (always-increasing)

34

 Xilinx ISE Version 11.2

35
 Appendix B provides a complete source code (VHDL) for the EIDR element.

 Chapter 4 - SeReCon Proposal: RoT and Usage Accounting In PR

– 74 –

MNC value to enable unique identification of received commands. SeReCon accepts

only commands with msg_no matching its current MNC value (subsequently

incremented). This counters replay-attacks, e.g. where an attacker attempts to reuse

(replay) old sequence of commands in order to subvert system configuration.

The idr_update_msg_no() function asserts the UPDATE signal and increments the

value of the MNC counter.

When the EIDR is tampered (e.g. when attacker depackages the FPGA fabric and

attempts physical access to the EIDR structure) or the design is not authorised to

access its content, e.g. if the BaseSFC MAC does not match the EIDR KR value, the

get_idr_credentials(), get_idr_counters(), idr_update_msg_no()

andget_idr_msg_no() and functions return an error.

 FF’s LUTs IOs Estimated Fmax

EIDR 427 549 685 222 MHz

Table 4- Resource occupation of the EIDR prototype implemented in Virtex-5 LXT.

API call Parameters Description

idr_reset() None Resets EIDR.

idr_init() None Initialises EIDR.

idr_status() None Returns the IDR status.

get_idr_credentials() credentials_ptr
Updates the credential data structure

using EIDR credentials.

get_idr_counters() counters_ptr
Updates the counter data structure using

EIDR counter values.

get_idr_msg_no() msg_no_ptr
Updates the msg_no content using the

EIDR value.

idr_update_msg_no() None Increases the content of EIDR MNC.

Table 4- The EIDR API which is provided by the SeReCon EIDR driver.

 Chapter 4 - SeReCon Proposal: RoT and Usage Accounting In PR

– 75 –

Figure 4- VHDL description of the EIDR element. Implementation details are removed for

clarity.

entity id_reg_top is

 Generic(MAC_WIDTH : integer := 256;--taken from V6CG

 CREDENTIALS_WIDTH : integer := 128;--useAES128

 ACC_WIDTH : integer := 28;

 MNC_WIDTH : integer := 28;

 LTC_WIDTH : integer := 56;

 UTC_WIDTH : integer := 56);

 Port (clk : in STD_LOGIC;

 rst : in STD_LOGIC;

 wr : in STD_LOGIC;

 done : in STD_LOGIC;

 update : in STD_LOGIC;

 mac : in STD_LOGIC_VECTOR (MAC_WIDTH-1 downto 0);

 data : in STD_LOGIC_VECTOR (CREDENTIALS_WIDTH-1 downto 0);

 credentials : out STD_LOGIC_VECTOR (CREDENTIALS_WIDTH-1 downto 0);

 device_restarts : out STD_LOGIC_VECTOR (ACC_WIDTH-1 downto 0);

 lifetime : out STD_LOGIC_VECTOR (LTC_WIDTH-1 downto 0);

 msg_no : out STD_LOGIC_VECTOR (MNC_WIDTH-1 downto 0);

 uptime : out STD_LOGIC_VECTOR (UTC_WIDTH-1 downto 0));

end id_reg_top;

architecture Behavioral of id_reg_top is

type state_type is (FSM_IDLE, FSM_INIT, FSM_ACTIVATED);

signal state, next_state : state_type;

signal kr_data : STD_LOGIC_VECTOR (MAC_WIDTH-1 downto 0);

signal cr_data : STD_LOGIC_VECTOR (CREDENTIALS_WIDTH-1 downto 0);

signal device_restarts_cnt : STD_LOGIC_VECTOR (ACC_WIDTH-1 downto 0);

signal lifetime_cnt : STD_LOGIC_VECTOR (LTC_WIDTH-1 downto 0);

signal msg_no_cnt : STD_LOGIC_VECTOR (MNC_WIDTH-1 downto 0);

signal uptime_cnt : STD_LOGIC_VECTOR (UTC_WIDTH-1 downto 0);

signal equal_en,auth_cfg_ok,auth_update,device_restarts_cnt_en : STD_LOGIC;

signal auth_cfg_ok_en_i : std_logic;

function is_zero(input_vector : in STD_LOGIC_VECTOR) return std_logic is...

begin

EQUAL_EN_SIGNAL: ...

AUTH_CFG_OK_SIGNAL: ...

CREDENTIAL_ENABLE: ...

LTC_ENABLE: ...

AAC_ENABLE: ...

FRC_ENABLE: ...

AUTH_UPDATE_SIGNAL: ...

MNC_ENABLE: ...

KR : process (clk, rst) ... --KEY_REGISTER

CR : process (clk, rst) ... --CREDENTIAL_REGISTER

AAC: process (clk, rst) ... --AUTHENTICATED_CONFIGURATIONS_COUNTER

LTC: process (clk, rst) ... --LIFETIME_COUNTER

MNC: process (clk, rst) ... --MSG_NO_COUNTER

FRC: process (clk, rst, done) ... --FREE_RUNNING_COUNTER

ONE_SHOT_SYNC_PROC: process (clk) ...

ONE_SHOT_NEXT_STATE_DECODE: process (state, auth_cfg_ok) ...

ONE_SHOT_OUTPUT_DECODE: process (state) ...

end Behavioral;

 Chapter 4 - SeReCon Proposal: RoT and Usage Accounting In PR

– 76 –

4.5. Multi-Party RoT Certification Process

The RoT certification process securely establishes a trustworthy RoT within the

RC system. The TA only monitors and audits correct RoT implementation and the

process of credentials generation. The TA does not generate or install security

credentials itself. Credentials are used to authenticate the RC system, to provide a

secure communication channel (authenticated and encrypted) to the IPV, and to

protect IP cores installed in LIPS. The SeReCon-based RoT certification process

flowchart, which provides trusted BaseSFC and IP core protection for RC systems, is

illustrated in Figure 4-. This process generates the keys used for secure IP core

transfer between IP Vendor and SeReCon.

 The SI develops the hardware platform, installs the SeReCon IP core and sends

the certification request and the RC device (along with BaseSFC design source files

and binaries) to the TA facility for trustworthy initialisation and certification.

The TA performs the following tasks:

 audits the RC system hardware platform (FPGA fabric and peripherals)

 verifies the SeReCon firmware source code, the BaseSFC VHDL source code

and the FPGA bitstream. The FPGA bitstream includes the SeReCon firmware

binary (Figure 1-).

 ensures regulated environmental conditions (i.e. ambient temperature, stable

FPGA voltage and clock signal etc) during the EIDR initialisation process.

 monitors the RC system during the first start-up in order to prevent the malicious

initialisation process which could result in biased (not random) security

credentials generated by the SeReCon.

 Certifies (signs) and publishes the SeReCon public-key to involved parties, e.g.

IPVs, SI or User.

SeReCon generates credentials (e.g. master symmetric-key, public-private key pair,

etc) using a TRNG and stores the credentials in the IDR. SeReCon also reports the

public-key to the TA. Credentials authenticity is confirmed by the TA through

signing and registering of the RoT public-key. The TA certifies and publishes the

SeReCon public-key to all involved parties (IPVs, Users etc). IPV and other parties

use the certified credentials to authenticate the SeReCon during its life-time. The SI

and IPV use AES encryption in order to communicate with SeReCon using, e.g. one-

time shared keys generated using Diffie-Hellman key agreement protocol [38].

The SeReCon-based RoT initialisation algorithm has three important properties:

 Initial assumptions guarantee exclusive access to the sensitive part of the

credentials (private crypto keys, etc) only for the legitimate system, e.g.

SeReCon RoT.

 The base configuration bitstream does not contain any credentials and closed-

source IP cores. Thus it can be publicly analysed prior to audit by the TA in

order to avoid vulnerabilities that might be introduced by the SI or third-party

IP cores.

 Chapter 4 - SeReCon Proposal: RoT and Usage Accounting In PR

– 77 –

 The private part of the RC system security credentials is revealed only to the

authenticated base configuration (BaseSFC). Thus the SeReCon-based RoT is

immune to credentials leakage as a result of a future successful attack on TA.

Figure 4- Certification of the SeReCon Root-of-Trust (including SeReCon firmware binary).

4.6. Chapter Summary

This chapter considers the requirements of credentials storage in a secure RoT

and the implementation of usage accounting for RC systems. The chapter proposes

and describes EIDR, a novel extension to the FPGA fabric, which provides non-

volatile storage of RoT credentials and RC system usage data. Techniques for storage

of the RoT security credentials and RC system usage accounting data in modern

FPGAs are reviewed. The suitability of SRAM-based configuration memory is

discussed. Other non-volatile memory schemes are also reported. The EIDR element

prototype implementation in a Virtex-5 LXT device (ML505 Board) is reported.

Appendix B provides the reference EIDR source code in VHDL. The register-based

EIDR control/status interface (which is implemented in the FPGA user-logic) is

highlighted. This chapter also describes EIDR API functions, which are provided by

the SeReCon EIDR driver.

The activities of SeReCon and various parties (e.g. SI, TA, IPV) during RoT

initialisation are highlighted. The RoT credentials generation process supports public

security audit of the RC device and guarantees exclusive and authenticated access to

the sensitive part of the RC system security credentials for the legitimate system, e.g.

SeReCon RoT. The SeReCon-based RoT is immune to credentials leakage as a result

of a future successful attack on the TA.

TASI
Develops

hardware

platform

SeReCon RoT

Certification request

TA audits the RC device, source code of

SeReCon firmware, BaseSFC VHDL

source code and FPGA bitstream

(including SeReCon firmware binary, and

ensures generic environmental conditions

(i.e. ambient temperature, stable FPGA

voltage and clock signal etc) during the

process.

Monitors SeReCon & FPGA device

environment (i.e. ambient temperature,

stable FPGA voltage and clock signal

etc) during the process.

Certifies

SeReCon-

enabled device

Installs SeReCon

IP core

FPGA

fabric

delivery

Returns Certified

SeReCon Public-Key

SeReCon generates credentials (e.g.

master symmetric-key, public-private key

pair, etc) using a TRNG, stores the

credentials in the IDR and reports public-

key to TA

TA certifies and publishes the SeReCon

public-key to involved parties (IPVs,

Users etc).

– 78 –

 Chapter 5. FDAT Framework For Low-Level FPGA

Design Analysis

5.1. Introduction

This chapter describes and demonstrates the FPGA Design Analysis Tool

(FDAT), a host-based (off-line) bitstream analysis and low-level design verification

tool which supports a Xilinx FPGA design assurance strategy and automated

extraction and analysis of bitstream-level designs, within the PR design flow. Figure

1- illustrates the FDAT context block diagram. FDAT provides a number of generic

APIs which enable automated generic access to the standardised XDL (Xilinx Design

Language) Xilinx FPGA platform description format (common to all Xilinx FPGA

device families). The FDAT GUI provides visualisation of design analysis results.

FDAT is an extendable, Python-based system which exploits the functionality of

dynamic languages and uses modular libraries of custom-defined analysis scripts.

The PR design flow offers opportunities for new applications [11], e.g. in the

automotive industry [158], video processing [54], [159], etc. PR can expose FPGAs

to security risks, e.g. malicious (Trojan/backdoor) designs [26], [65], [103], [57],

design tools subversion [21], [160], etc. Reliability and security of reconfigurable

systems must be ensured within a multi-party environment (Figure 1-), and in critical

applications, e.g. aerospace and defence [160], telecoms [161], [162], surveillance

[163]–[165].

Unlike software where computing resources (hardware) are managed by an

operating system and software has no control over the hardware, IP cores necessarily

have very fine grain control over the underlying hardware. If considering a PR

methodology, companies must be confident of the quality and security of third party

IP cores and of secure access to the FPGA reconfiguration area. The problem of

implicit communication channels between PR RC IP design sub-modules has been

discussed in Section 3.2. Any design error or imperfection in the design of an IP core

could result in reduced system performance, application failure, or even a

compromised system [2].

The development of an FPGA design assurance strategy at the level of the FPGA

configuration bitstream, and related EDA tool support, offers a solution to the

problem of implicit communication channels. Low-level design tools are

increasingly required for RC bitstream debugging [119] (e.g detection of implicit

communication channels) and IP core design assurance [20], [26], particularly in

multi-party PR designs. While tools for low-level analysis of design netlists do exist

[166] (e.g. FPGA Editor in Xilinx ISE toolset [48]), extended tool support which

provides unrestricted, script-driven, design analysis and verification at the bitstream-

level, supporting publicly available device data, is not available. Such a toolset

 Chapter 5 - FDAT Framework For Low-Level FPGA Design Analysis

– 79 –

would find application in design assurance, e.g. design security and IP protection

[150]. There is therefore an increasing demand for automated and customisable

bitstream analysis tools [1] [5], [26].

The proposed FDAT framework enables analysis of interface compatibility

between dynamic IP modules and an already configured FPGA design. FDAT also

enables verification of user-defined design constraints, e.g. the required spatial

isolation between IP cores. This chapter illustrates sample applications of the FDAT

application, including bitstream-level design analysis of the Virtex-II Pro and Virtex-

5 inter-tile routing and the verification of design spatial isolation. Results illustrate

the FDAT tool capability for automated detection of potential external routing points

within a design configuration bitstream. Such analysis of IP core bitstreams can be

used to ensure that the IP core interfaces (external routing points) which are defined

in the IP core PR bitstream are not compromised when combining with other IP

units.

Analysis algorithms (Python recipes) developed for FDAT can be ported into

embedded systems, such as SeReCon, to support secure IP core run-time manage-

ment in self-reconfigurable systems. The SeReCon IP core, which is embedded

within the FPGA design, enforces an IP core spatial isolation policy imposed by the

requirement to protect FPGA system integrity during PR. This protects a PR system

from structural issues resulting from erroneously placed (or malicious) IP cores. This

chapter presents the results of porting of the FDAT-verified spatial verification

algorithm to SeReCon the implementation of the SeReCon Embedded Routing

Database (ERDB) and ERDB-based IP core analysis. ERDB is implemented in the

SeReCon firmware and describes routing resources which are available in the FPGA

device. SeReCon uses ERDB in order to detect implicit communication channels in

IP cores which are provided by third party IPVs.

In the software domain, vendors publish and popularise their hardware

architecture and instruction set. In the RC domain, FPGA vendors provide

considerable but limited information on the internal device architecture and the

format of the FPGA configuration bitstream (e.g. bit-wise description of the

bitstream configuration frames). This limited publication limits the ability of the

research community and third party EDA software vendors to perform low-level

design verification, particularly within a PR design flow, to ensure both IP protection

and IP security, and to support the increasing demand for secure IP development.

Tools used in the FPGA design flow are typically vendor-specific, closed-source

applications using proprietary file formats. This limits general user access to low

level design information and requires development of in-house analysis tools, e.g.

PyXDL [167] or ADB [168]. Arguably, the provision of open-source tools and

detailed specification of proprietary file formats could benefit both system designers

and design assurance researchers [21].

FDAT uses the Xilinx XDL file data, which provides a text-format (ASCII) data

description of the design configuration for Xilinx FPGAs [17], [167], [169]–[173].

FDAT implementation is based on Xilinx published datasheets [9], [44] [46] and

documentation [168], [174]–[176]. The quality of analysis provided by a bitstream

 Chapter 5 - FDAT Framework For Low-Level FPGA Design Analysis

– 80 –

analysis tool such as FDAT is dependent upon the accuracy and completeness of

information provided by the FPGA vendor.

FPGA architectural information which may not be included in the XDL report

file (generated by the Xilinx xdl tool) introduces some uncertainty as to the

correctness of the FDAT analysis. Steiner [174] discusses inconsistencies between

the FPGA fabric description, FPGA Editor, XDL file content and Xilinx bxtest

(unreleased) tools. Provision of complete information on PR-accessible FPGA device

resources and routing data would support the development of a viable PR design

assurance strategy and toolset such as the proposed FDAT system.

In applications requiring design assurance, e.g. security and design IP protection,

design analysis is required at the lowest possible level, i.e. on the P&R netlist or the

configuration bitstream [26]. Also, in applications exploiting a PR flow, a detailed

knowledge of FPGA resources configured by dynamically loadable modules is

important since the module source may be unknown (untrusted).

The structure of this chapter is as follows. Section 5.2 reviews a number of

existing tools which facilitate access to low-level design descriptions, and proposes

the desired functionality of a low-level FPGA Design Analysis Tool (FDAT).

Section 5.3 describes the FDAT architecture and the script-based functionality which

exploits advantages of the Python dynamic language. Section 5.4 presents the

detailed implementation and evaluation of FDAT, a selection of FDAT recipes, and

the FDAT algorithm execution time for analysis of Xilinx Virtex-II Pro inter-tile

routing. Section 5.5 proposes porting FDAT functionality to the embedded SeReCon

for on-line Xilinx Virtex-5 bitstream analysis (which is demonstrated in Chapter 7).

Considerations in creating an embedded routing database and IP core routing

analysis are highlighted in Section 5.5.3. Section 5.6 concludes the chapter.

5.2. Review Of Low Level Design Analysis Tools

5.2.1. Introduction

This section reviews existing tools which facilitate access to low-level design

descriptions, e.g. placed and routed FPGA netlist or configuration bitstream, and

highlights the need for low-level extended tool support. The desired functionality of

a low-level FPGA design analysis toolset (such as FDAT) is proposed.

5.2.2. Low-Level Design Analysis Tools

Current FPGA analysis tools provide only a limited facility for FPGA

visualisation (focused on user-logic or IO).

The Xilinx FPGA Editor [48] is a proprietary graphical application for Xilinx

FPGA design visualisation and configuration. FPGA Editor analyses the Xilinx

 Chapter 5 - FDAT Framework For Low-Level FPGA Design Analysis

– 81 –

Native Circuit Description (NCD) netlist file. The NCD file contains the design logic

information mapped to components, such as Configurable Logic Blocks (CLBs) and

Input-Output Blocks (IOBs). FPGA Editor does not support bitstream analysis.

FPGA Editor offers limited, script-based, design-oriented, task automation through

scripts and provides a visual representation of design placement and routing. The tool

does not support analysis of the design bitstream (BIT) file and presents an abstract

view of the FPGA fabric though does not display all of the information required to

perform design assurance, e.g. IP core isolation verification analysis [57].

Xilinx JBits 3.0 SDK [166] contains class files for the creation of Run Time

Reconfigurable applications and tools for use with the Xilinx Virtex-II architecture.

JBits is an API to the Xilinx configuration bitstream, which allows Java applications

to dynamically read, create and modify Xilinx Virtex-II bitstreams. JBits may be

used as a stand-alone tool or as a foundation to produce other tools. The current JBits

release supports Xilinx technology up to Virtex-II only. The proposed FDAT

framework provides a subset of JBits functionality (design P&R is not supported in

the current version), though with support for modern Xilinx FPGA devices.

Debit
36

 [119] is an open-source toolset, aimed at netlist recovery from an FPGA

proprietary bitstream format. Debit supports Virtex II/4/5 and Spartan3 FPGAs.

Debit decomposes the bitstream and extracts information about site configuration

and PIPs. Debit does not support partial bitstreams or parse the FPGA fabric netlist

and thus does not support structural analysis of the FPGA fabric architecture.

In order to address the needs of design assurance, Xilinx has developed the

Isolation Verification Tool (IVT) [26]. IVT operates on placed and routed designs

and performs design analysis, including verification of design spatial isolation, in

order to track all hypothetical interconnects that can be created [30]. IVT targets

design assurance, though is not publicly available (provided under the Xilinx Single

Chip Crypto program [30]).

In summary, currently available tools either do not support automated low-level

analysis of FPGA fabric resources or are not publicly available. Extended tools are

required for the PR design flow to ensure both IP protection and IP security, and to

support increasing IP development.

5.2.3. Proposed Functionality For Low-Level FPGA Design Analysis

Toolset

Design assurance requires low level analysis of design files produced during the

FPGA design flow. These files describe placed and routed designs and the FPGA

configuration bitstream. For effective design assurance, it is vital to have access to

information about the internal architecture of the FPGA fabric. In a general case, it is

not feasible to obtain the complete documentation on the FPGA fabric. The XDL file

36

 Available on the uLogic site (http://www.ulogic.org)

http://www.ulogic.org/

 Chapter 5 - FDAT Framework For Low-Level FPGA Design Analysis

– 82 –

containing the netlist of all user-configurable resources and routing can be produced

using the Xilinx ‘xdl’ tool.

In summary, a tool for low level FPGA analysis would:

a) be aware of low-level architectural details (netlist) of the target FPGA device

b) include an open and modular architecture in order to facilitate code

inspection and customisation

c) provide read and modify access to the implemented (placed and routed) de-

sign netlist and output (partial) bitstream

d) support modern FPGA devices

e) provide a uniform API across device families and design input files (design

and FPGA fabric netlists, bitstreams etc)

f) provide an interface for user-defined tool customisation and task automation

(script-based functionality)

g) provide graphical visualisation of the design and FPGA fabric resources

5.3. Proposed FPGA Design Analysis Tool (FDAT)

5.3.1. Introduction

This section describes the detailed FDAT architecture and its script-based

functionality which exploits advantages of Python, the Object-Oriented (OO)

dynamic language. Figure 1- illustrates the FDAT block diagram and context. FDAT

contains API modules FFAPI, DAPI and BAPI which provide access to information

about the FPGA fabric, design, and bitstream, and access to a number of standalone

Python scripts which define tool functionality. The functionality of FFAPI, DAPI

and BAPI are described in turn.

The FDAT system aims to address the design assurance requirements listed in

section 3.2. The main goal of FDAT is the support of low level analysis of the FPGA

fabric architecture and design IP cores. This goal is addressed by the use of a set of

APIs which abstract the user design, the FPGA programming bitstream

(configuration frames and control commands), and the FPGA fabric.

The main advantages of using dynamic (scripting) languages in application

development are: type-less programmability, rapid prototyping, code simplicity and

ease of understanding. FDAT functionality is separated from the underlying

implementation (API modules). High-level analysis algorithms define FDAT

functionality which uses data sets and API methods exposed by framework

components. The FDAT framework functionality is defined using a number of

Python scripts, called “recipes”. Recipes implement high-level algorithms by gluing

together the functionality provided by the FDAT modules. The use of a scripting

 Chapter 5 - FDAT Framework For Low-Level FPGA Design Analysis

– 83 –

language and a loosely-coupled architecture increases the code portability and

improves its application-oriented customisation capabilities.

The following subsections describe the FPGA fabric API (FFAPI), the design

API (DAPI) and the bitstream API (BAPI).

5.3.2. FPGA Fabric API (FFAPI) Module

The FDAT FPGA Fabric API (FFAPI class) module provides an interface class

to access information about resources available within the Xilinx FPGA fabric. The

available data structures and most significant FFAPI class methods are depicted in

Figure 5-; the method parameters and less important methods are omitted to aid

clarity.

The relevant information is retrieved by parsing the EDIF-like FPGA fabric

netlist file (methods grouped as XDLRC file parser), generated by the Xilinx xdl

tool in the device resource report mode (xdl –report <device_name>). To

the best of the authors’ knowledge, the generated XDL netlist is the only detailed

description of the Xilinx FPGA fabric structure provided by Xilinx in a non-

proprietary ASCII format. Xilinx Design Language (XDL) is a fully featured

physical design language which provides read and write access to NCD files [17],

[167] [169]–[173]. XDL format is the default netlist format used by Xilinx tools.

XDL enables users to create tools to address their individual FPGA design needs.

The XDL file describes designs using human-readable ASCII syntax and provides

detailed information about, e.g. physical layout of the placed and routed design, used

instance names, primitive site configuration, routing details, hardware macro

modules etc. The netlist file contains detailed information on available logic

primitives, FPGA fabric routing, etc. While the netlist file is in human-readable text

format, it requires automated processing and filtering to extract useful information.

The FDAT FFAPI module acts as a filter, processing an arbitrary Xilinx FPGA

fabric netlist file. The information obtained from the FPGA fabric netlist is a superset

of the data available in the Xilinx FPGA Editor tool. FFAPI extracts relevant data

structures along with their context, i.e. logical location within the device hierarchy

and physical location of the tile within the netlist file, and generates a small index

file (generateFpgaTOC()) for the particular FPGA fabric. Logical location of the

FPGA elements, e.g. Basic Elements of Logic (BELs), PIPs or routing wires, in the

device hierarchy provides information such as

a) location within the FPGA row/column tile grid

b) parent tile for primitive site/wire/PIP

c) site type for pin/BEL

Maintaining records (within the index file) of the FPGA element offset within

the file aids detection of undocumented netlist syntax. This also speeds up random

access to the netlist information when caching of the pre-processed netlist file is not

 Chapter 5 - FDAT Framework For Low-Level FPGA Design Analysis

– 84 –

be possible, e.g. when a new FPGA device technology is added or in embedded

applications such as SeReCon.

Figure 5- The available data structures and most significant FFAPI methods (the method

parameters and less important methods are omitted to aid clarity).

The GUI module provides graphical visualisation of data representing FPGA

internal resources. Resources are depicted in an array-like structure of tiles (Figure

5-a). All tiles are tagged according to their type and position. User tags can also be

assigned to individual tiles. This allows group selection, i.e. tiles containing user

logic resources, BRAMs, clock tree etc. Moreover, when combined with the data

available from the Design API class (DAPI), visualisation of a user design is possible

(Figure 5-b). The FPGA fabric view is different from that presented in the FPGA

Editor and Debit tools due to the tile-centric organisation of the FPGA fabric data.

The recipe writer can directly use FFAPI class methods such as getTileTypes()

and getSiteTypes() (Figure 5-) in order to extract information related to tile and

primitive types respectively, available within a particular FPGA device. Methods

getTileDetails() and getSiteDetails() provide detailed description of the internal

structure of an arbitrary tile or site, using a mix of abstract data types such as

dictionaries, lists, tuples etc. Methods getGroupedPips() and getExternalWires() are

reference implementations used to categorise resource descriptions by property, e.g.

the class property of the PIP connection or wire connectivity.

Methods available in the FFAPI class are organised into three functional groups

based on the type of information provided, as follows:

FPGA geometry: Methods in this group provide information about the type of

FPGA package, the number of rows and columns and primitive types.

FPGA tile: Methods in this group return information about the internal structure of

the tile, namely available primitive sites, routing resources and PIPs.

-XDLRC file parser()

+demos()

+getTileTypes()

+getTileDetails()

+getSiteTypes()

+getSites()

+getSiteDetails()

+getPips()

+getGroupedPips()

+getWires()

+getExternalWires()

+generateHTMLPipMap()

+generateFpgaTOC()

+geometry dictionary

+tiles dictionary

+primitives dictionary

FFAPI class

+pips dictionary

+wires dictionary

+sites dictionary

Tile

+device family

+rows

+columns

+version

Geometry

+elements dictionary

+pins dictionary

Primitive

+configuration

+connections dictionary

+pins dictionary

Element

1

1

1

1

1

1

n

n n

 Chapter 5 - FDAT Framework For Low-Level FPGA Design Analysis

– 85 –

FPGA primitive: Methods in this group provide information on the particular type

of the site primitive, names, number and direction of the site’s I/O pins, site internal

routing and components, e.g. BELs. This information is compliant with the view

available in the FPGA Editor and documented by the FPGA vendor (Xilinx) [44],

[27], [46], [9].

FPGA element: Methods in this group return information about the internal structure

of the primitive element (BEL), namely the set of valid BEL configurations, and the

number and direction of the element’s I/O pins and connections.

F
P

G
A

 t
o

p
 h

a
lf

C
lk

 r
o

w
 T

3

F
P

G
A

 b
o

tt
o

m
 h

a
lf

IO

C
L

B

B
R

A
M

D
S

P

C
L

K
/I
O

M
G

T

+
 P

C
Ie

B
R

A
M IO

C
o

lu
m

n
s

C
lk

 r
o

w
 T

2
C

lk
 r

o
w

 T
1

C
lk

 r
o

w
 B

1
C

lk
 r

o
w

 B
2

C
lk

 r
o

w
 B

3

a) b)

Figure 5- FDAT screenshots. a. the Tile view of the Xilinx Virtex-5 device (colour highlights tiles

of the same type). b. the user-design (blue – FPGA tiles used as logic, yellow – FPGA tiles used

for routing) and unused resources (grey) within the Virtex-5 device.

5.3.3. Design API (DAPI) Module

The FDAT Design API module provides access to the user-design netlist. Just before

the FPGA bitstream is generated by the Xilinx bitgen application (during the final

stage of the FPGA design implementation flow), the netlist describes the design as a

set of FPGA family-specific primitives and interconnections. All used primitives are

annotated with information about their placement at the dedicated physical primitive

 Chapter 5 - FDAT Framework For Low-Level FPGA Design Analysis

– 86 –

site within the FPGA fabric. Also, design nets (inter-site connections) are tied to

physical routing resources, namely pin-wires, wires and PIPs.

The DAPI class module has been proposed to facilitate unrestricted user access

to already placed and routed designs. In order to gain access to the ASCII version of

the design netlist file (.xdl) the Xilinx ISE xdl tool is used in the ncd-to-xdl

conversion mode (xdl –ncd2xdl <design.ncd>).

The DAPI class implements an XDL syntax parser along with a number of

interfacing and conversion methods. Figure 5- illustrates the available data structures

and most significant DAPI methods (the method parameters and less important

methods are omitted to aid clarity). The XDL description of the design is parsed and

the FPGA resource usage is reported. The parser recognises design structures such as

named instances of FPGA primitives, routing resources establishing a connection

network and design-module definitions used in non-standard design flows, e.g.

modular design and partial reconfiguration. Design structures are in the form of

mixed abstract data types, e.g. dictionaries, lists and tuples. Design structures

retrieved by DAPI (depicted in Figure 5-) are available as DAPI methods which

operate on the following design dictionary:

Design dictionary: provides information about design name, target FPGA device

and logic organisation of the design IO pins and buses. Information is available

through the method getDesignInfo().

Instance dictionary: contains all FPGA primitives (sites) used by the design

(indexed by instance name). Data available through getDesignInstances() describes

the location of design sites along with configuration.

Nets dictionary: contains all design nets (indexed by net name). Data available

through getDesignNets() describes the design signals along with sources (inpins),

sinks (outpins), routing PIPs usage, and element configuration.

Module dictionary: contains all design modules used within the modular design

flow and partial reconfiguration (indexed by module name). Data available through

getDesingModules() describes the design modules along with internals such as IO

ports, resources used, and routing.

Tile dictionary: provided by getDesignTiles(), getInstanceTiles() or getNetTiles()

contains information (indexed by tile name) on all used FPGA tiles, design instances

or nets, respectively. The returned dictionary is cross-referenced with Instances and

Routing dictionaries.

Site dictionary: provided by getDesignSites() contains all FPGA sites used by

design (indexed by site name), cross-referenced with the Instances dictionary.

The Tiles and Sites dictionaries contain redundant design information grouped

by physical location. This grouping is introduced in order to speed up design

analysis, targeting location constraints (rather than logical organisation).

To ease the process of design analysis, the DAPI class module also provides

methods for spatial grouping of occupied resources (getDesignTiles(),

getDesignSites() methods). This provides a different view on design resources used

 Chapter 5 - FDAT Framework For Low-Level FPGA Design Analysis

– 87 –

within a relevant FPGA location, e.g. tile or site. This approach supports tile-by-tile

analysis of the design.

Figure 5- The available data structures and most significant DAPI methods (the method

parameters and less important methods are omitted to aid clarity).

5.3.4. Bitstream API (BAPI) Module

The Bitstream API (BAPI) module of FDAT parses the Xilinx bitstream in order

to decode FPGA configuration commands (see the section 2.3.3) and extract content

of FPGA configuration frames (Figure 2-). Xilinx FPGA devices are typically

configured by loading FPGA configuration data into the device configuration

memory at power-up. To program configuration memory, instructions for the

configuration control logic and data are included as packets in the bitstream (Figure

5-). Configuration packets extended with a bitstream header form the complete

bitstream which is delivered to the FPGA device through one of its configuration

interfaces [9], e.g. serial configuration interface, SelectMAP, SPI, JTAG etc.

The structural description of the configuration bitstream for a particular device is

usually provided by the FPGA vendor. Documentation for all but obsolete devices

(i.e. first generation of Virtex/Virtex-E devices) does not describe the internal

structure of the FPGA configuration frames [44]. Results reported in [119], [174],

[175], [177] provide only partial information. The use of FDAT and the BAPI class

module allows discovery of the relation between the configuration of an arbitrary

resource (logic, routing, IO etc) and the content of the configuration frames.

The BAPI class, depicted in Figure 5-, implements a bitstream parser

(bitstreamParser()) and packet parser (packetParser()). The packet parser reads the

bitstream file and decomposes it into packets on-the-fly. Partial bitstreams are also

supported. Data packets are unpacked in order to extract the content of configuration

frames and the address of their intended location within the FPGA device

(getConfigurationFrames()). The packet parser emulates behavioural functionality

and part of the internal structure of the FPGA configuration control logic [44]. All

-XDL parser()

+getDesignInfo()

+getDesignNets()

+getDesignModules()

+getDesignInstances()

+getDesignTiles()

+getDesignSites()

+getInstanceTiles()

+getNetTiles()

+demos()

+design dictionary

+tiles dictionary

+sites dictionary

+nets dictionary

+instances dictionary

+modules dictionary

DAPI class

+name

+site

+placement

+configuration

Instance
+name

+type

+configuration

+outpins

+inpins

+pips

Net

+name

+reference point

+ports

+configuration

+nets dictionary

+instances dictionary

Module

+sites dictionary

+instances dictionary

+nets dictionary

+pips list

Tile

+instances dictionary

Site

n

n

nn

1

1

1

1

1

1

1

1

1

1

n

 Chapter 5 - FDAT Framework For Low-Level FPGA Design Analysis

– 88 –

configuration commands (and their parameters are available through the method

getRegisterTransactions(). Methods decodeFarAutoincSeq() and

getFPGAGeometry() are used for debug purposes, e.g. to reconstruct the frame

addressing sequence used by FPGA control logic (in FAR auto-increment mode) and

the geometry of the FPGA device, respectively.

The BAPI class also provides methods for decoding the bitstream header

(headerParser()) and analysing the content of the frame by checking which bits are

asserted and their location within the frame (reportSetBits()). This functionality is

verified in the FDAT-based FPGA routing analysis test scenario which is described

in section 5.4.

Figure 5- The available data structures and most significant BAPI methods (the method

parameters and less important methods are omitted to aid clarity).

5.3.5. FDAT Function Recipes Exploiting A Script Programming

Paradigm

This section describes the script-based functionality of FDAT which exploits

advantages of the Python dynamic language. The framework functionality is

supported by a number of recipe scripts. FDAT recipes are regular Python scripts

operating on class objects provided by underlying components (FDAT modules) or

other recipes. Recipe interaction with FDAT modules is depicted in Figure 5-. FDAT

recipes can be considered as glue for module functionality in order to provide an

automated design analysis flow. For example, the FDAT recipe, “Pip2BitMapping”

described in the next section, uses FFAPI and BAPI modules to discover information

about the configuration bits for all PIPs within an arbitrary FPGA tile.

Figure 5- illustrates FDAT recipe structural organisation and interaction with

FDAT modules, other recipes and user interface. FDAT recipes are divided into two

logical parts, namely the FDAT initialisation part and the FDAT functionality part.

The FDAT initialisation part provides recipe dependency checking, similar to related

functionality available within software packet managers from major Linux

-bitstream parser()

-header parser()

-packet parser()

+reportSetBits()

+getFPGAGeometry()

+getConfigurationFrames()

+getRegisterTransactions()

+decodeFarAutoincSeq()

+header data dictionary

+control logic register dictionary

+data packet list

BAPI class

+control data

+configuration data

Data packet

+address

+content

Configuration frame

+name

+command list

Control logic register

n

n

1

1

1

1

1

 Chapter 5 - FDAT Framework For Low-Level FPGA Design Analysis

– 89 –

distributions (e.g. Aptitude in Debian
37

). Execution of the initialisation recipe

element is optional. Dependency checks performed prior to recipe execution verify

that all conditions required for correct operation are satisfied, e.g. that the required

versions of FDAT modules, external tools, and design netlist files (.NCD or .XDL)

are available and that active sub-recipes are initialised etc.

Figure 5- FDAT recipe structural organisation (left side) and interaction with FDAT modules,

other recipes and user interface.

The FDAT recipe structure is flexible in order to exploit advantages offered by

the dynamic scripting language, and to aid the recipe writer. Depending of the

application domain, recipes can be implemented as single functions or groups of

functions. Functions can be further grouped into classes and modules, spanning one

37

 Debian Aptitude Wiki (http://wiki.debian.org/Aptitude)

Persistent storage

ANALYSIS

RESULTS

RECIPES

LIBRARY

Zipshelve

SNAPSHOTS

RECIPE

PARAMETERS

RECIPE

SCRIPT

FDAT modules

FFAPI

class

DAPI

class

BAPI

class

FDAT user interface

GUI

class

CMD

Interactive

command line

RECIPE

RESULTS

C
a
ll

o
th

e
r
re

ci
p
e

Store data

P
ro

d
u
ce

 r
e
su

lts

Get parameters

Process input data

Interact with

the user

Visualise results

FDAT USER

Organisation of

the FDAT Recipe Scripts

RECIPE INITIALISATION SECTION

Non-obligatory initialisation code

RECIPE BODY SECTION

Functionality code

FDAT RECIPE SCRIPT

FDAT tile view

 Chapter 5 - FDAT Framework For Low-Level FPGA Design Analysis

– 90 –

or more script files. This flexibility of implementation allows the recipe writer to

apply implementation standards (coding patterns) most suitable for the target

application domain and programming proficiency level. Moreover, recipes can be

developed in other languages (e.g. C/C++, Java etc) and executed within the FDAT

Python environment by using wrapper code generated by the interface compiler

[178]. Integration of recipes (native Python scripts) within different languages (e.g.

C/C++) is also possible.

FDAT also provides an interactive command interface to the Python interpreter.

This allows rapid prototyping of the verification libraries by interactive combination

and reuse of available recipes to capture the new algorithm function. This facility

also enables fast, customised processing of design analysis results.

Figure 5- illustrates the layered model of FDAT recipes. FDAT recipes can be

categorised into four groups, depending of recipe main role (e.g. low-level design

access, design modelling, model transformation etc):

Module-specific (low-level) recipes: extend the functionality of the basic

FDAT modules (FFAPI, DAPI, BAPI etc) by providing an additional set of low-level

functions to support design analysis and data conversion.

Transformation (mid-level) recipes: used to define new abstract models of the

FDAT system, e.g. component model for platform-based design [179],

dataflow/actor model for communication systems etc. Transformation recipes also

provide bidirectional conversion functions between the new and the base model of

the system.

Model-specific (high-level) recipes: provide an API which is specific to the

abstract model defined by the Transformation recipe, e.g. methods for manipulating

reconfigurable modules (modification, relocation, error checking etc) within a PR

design flow.

Auxiliary recipes: provide support for other recipes, e.g. the “zipshelve” recipe

provides archiving (snapshot) and reuse of partial results of the FDAT analysis for

debugging purposes. This type of recipe extends the general functionality of the

FDAT framework. The auxiliary recipes do not contribute directly to the design

analysis.

Since Python is an interpreted language, recipes can be dynamically generated

and applied (executed) without the need for code recompilation. Also, lower-level

recipes can be easily imported into advanced recipes (bottom-up algorithm

composition) in order to build powerful analysis tools. This approach exploits the

advantages of scripting languages and is naturally convergent with their

programming paradigms. Recipes allow the FDAT user to focus on the behavioural

part of the analysis algorithm rather than on its implementation details. Use of

hierarchical recipe structures supports the definition of FDAT functionality at

different abstraction-levels in order to maintain clarity of the analysis algorithms, e.g.

for auditing or formal verification purposes. Recipes also allow the application of a

straightforward trial-and-error methodology for obtaining new knowledge about the

FPGA fabric, the design and its bitstream.

 Chapter 5 - FDAT Framework For Low-Level FPGA Design Analysis

– 91 –

Figure 5- Layered model of FDAT recipes.

5.4. FDAT Implementation And Analysis Of Virtex-II Pro

Routing

5.4.1. Introduction

This section reports FDAT implementation in Python. The FDAT GUI and

visualisation front-end has been developed using the Python TkInter graphic

framework. This section also provides results of FDAT application in the analysis of

Virtex-II Pro configurable routing.

The FDAT framework has been implemented using Python. The GUI and

visualisation front-end has been developed using the TkInter
38

 graphic framework.

Evaluation of FDAT FFAPI and DAPI recipes has been performed on a FPGA

netlist. The design XDL description and FPGA configuration bitstreams have been

generated using Xilinx ISE tools operating in the standard ISE flow and targeting

Xilinx XC2VP30 and XC5VLX50T devices. FDAT components are implemented

and evaluated according to publicly available information about the Xilinx FPGA

structure [48], [44], XDL design description [17], [167], [169]–[173] and bitstream

[44], [119], [175], [177] .

All API modules are implemented as separate classes with data structures based

on abstract data types, e.g. sets, lists, dictionaries and tuples. Each of the API classes

(FFAPI, DAPI, BAPI) contains a dedicated one-pass, top-down parser used for

contextual processing of the input data file (FPGA fabric netlist, design netlist and

bitstream, respectively). The use of automatic parser generators would simplify the

FDAT implementation. However, this approach would require a complete formal

grammar of the input data to be available a priori, e.g. syntax described using

38

 Tkinter is Python's de-facto standard GUI package (http://wiki.python.org/moin/TkInter).

Transformation Recipes

Module

Recipes

Model #1

Recipes

A
u

x
il
ia

ry

R
e

c
ip

e
s

FDAT data abstraction

(e.g. FPGA tiles,

primitives etc.)

Application- specific

model abstraction

(e.g. PR design flow)

Model

conversion

A
b

s
tr

a
c
ti
o

n
 l
e

v
e

l

Model #k

Recipes

Model #N

Recipes
... ...

 Chapter 5 - FDAT Framework For Low-Level FPGA Design Analysis

– 92 –

Regular Expressions
39

 (regex) or Backus–Naur Form
40

 (BNF). While the detailed

syntax of the configuration bitstream, e.g. the internal structure of configuration

frames, is not published and the XDL file format described in Xilinx ISE 6.1

documentation is incomplete, all parsers have been implemented manually. Manual

implementation provides full control over data processing and thus enables detection

of undocumented data structures (e.g. “_DESIGN_PROP” and “_INST_PROP”

XDL file properties) and commands (access to reserved registers and non-default

reserved bits in the configuration bitstream. When the parser detects an unrecognised

data structure, an exception is raised and the file position of the unrecognised

statement is reported to the user, along with the processing context. Manual

implementation also enables fine control over the parser memory footprint, which

enables its use in embedded applications such as SeReCon.

The FDAT framework uses a two-level caching mechanism for both permanent

and temporary data storage in order to speed up the retrieval of information from the

FPGA fabric netlist (the netlist size can be in the range of several gigabytes). During

the initial execution of the FFAPI module the FFAPI parser optionally produces

persistent cache files containing parsed and compressed information about every tile

within the FPGA fabric, along with the location index of its definition within the

original netlist file. During design analysis, the required FPGA fabric information is

retrieved from the persistent cache file and stored in a limited-size local memory

cache. The advantage of this two-level cache is that the typical memory footprint of

20-60MB, regardless of the netlist size which can vary from a few megabytes to tens

of gigabytes. Moreover, the relevant FPGA fabric information is available

immediately since parsing is performed only once.

5.4.2. Results Of FDAT Application In The Analysis Of Virtex-II Pro

Routing

This section reports the application of FDAT in the analysis of the Xilinx

(Virtex-II Pro) FPGA routing configuration, e.g. identification of PIP configuration

bits in the bitstream. A selection of FDAT recipes have been implemented in order to

verify the correct implementation of the FDAT framework, e.g. the

“Pip2BitMapping” reference recipe identifies PIP configuration bits, the

“ShowDesign” recipe reports and visualises user design (logic and routing) within the

FPGA fabric. The FDAT has been also tested using a set of XDL design files. To

evaluate the correctness of the FFAPI and BAPI modules, a “Pip2BitMapping”

reference recipe has been developed. The recipe flowchart (Figure 5-) algorithm

determines the bit patterns within bitstream configuration frames (using the BAPI

39

 Regular Expressions (regex) provide a concise and flexible means for matching strings of text, such

as particular characters, words, or patterns of characters (http://en.wikipedia.org/wiki/Regular

_expression).

40
 The Backus–Naur Form (BNF) ia grammar for expressing context-free grammars (http://en.

wikipedia.org/wiki/Backus-Naur_Form).

http://en.wikipedia.org/wiki/Regular%20_expression
http://en.wikipedia.org/wiki/Regular%20_expression

 Chapter 5 - FDAT Framework For Low-Level FPGA Design Analysis

– 93 –

module), corresponding to configuration of the FPGA element (e.g. PIP, BEL etc)

provided as an input. In this section, inter-tile routing analysis is considered, e.g.

configuration bit patterns of PIPs which connect routing resources in more than one

tile, in order to detect possible implicit communication channels in IP core

bitstreams. The algorithm generates a list of relevant bit locations (packet, frame and

internal offset) for all tileName PIPs that can be used in inter-tile routing.

The list of inter-tile PIP’s (getExternalTilePips()) (Figure 5-) is extracted from

the detailed structure of the tile (tileName), retrieved using the FFAPI method

(getTileDetails()). An exhaustive search approach is applied in an iterative loop. A

single PIP is configured (included in the design) during each iteration of the

algorithm. The xdlFile is generated (genXdlFile()) from the template and converted

(convXDL2NCD()) to the Xilinx NCD using the xdl tool (xdl –xdl2ncd

<pip_name.xdl>). In order to create a partial bitstream the Xilinx bitgen tool

is executed (genPBitFile()) with the NCD netlist file (ncdFile) provided as a

parameter. The cfgFrames data within the partial bitstream file (pBitFile) is analysed

using the getCfgFrames() BAPI method in order to extract relevant configuration

frame content and the positions of the bits corresponding to the configured PIP

(getPipBits()). The recipe iterates over the list of PIPs used in the inter-tile routing.

On completion of each iteration, the PIP entry (pip) in the externalPips list is

annotated with the position of the active bits. Partial results from the single iteration

are accumulated, providing a list of possible switchbox configurations which use

inter-tile routing. When all PIPs in the list are processed, a final text report is

produced (report) which contains PIPs mapping (indexed by PIP name). Figure 5-

illustrates a HTML version of the bit mapping table which is produced in order to

enable visualisation of addressing patterns. Accumulated results for Virtex-II Pro are

consistent with data reported by Hubner et al. [177] which are obtained using the

JBits tool. The “Pip2BitMapping” recipe has also been used to obtain configuration

bit patterns for Virtex-5 external PIPs. The reference dataset of PIP configuration bits

for the Virtex-5 family is not provided. The “Pip2BitMapping” recipe is generic for

all Xilinx FPGA families and could be used with other Xilinx devices, e.g. Virtex-

4/6 and Spartan-3/6 due to the use of the technology independent fabric abstraction

produced by the FFAPI module (derived from the data provided by the xdl tool).

Data obtained from the “Pip2BitMapping” recipe is used to detect active inter-

tile routing. This type of analysis is important in design assurance and within the PR

design flow. Active inter-tile routing can lead to the setup of covert communication

channels, e.g. violation of spatial isolation between designs [26], [57]. This is

detailed in Section 3.2).

It is assumed, in a similar way to that proposed by [119], that the FPGA

configuration defined by the design bitstream is a superposition of configurations of

all FPGA resources and that all of these configurations are independent. Thus,

identification of configured (asserted) bits for a single configuration of the particular

resource (PIP, BEL etc) reveals the corresponding configuration mapping.

 Chapter 5 - FDAT Framework For Low-Level FPGA Design Analysis

– 94 –

Figure 5- “Pip2BitMapping” recipe flowchart. The recipe is used in the FDAT framework

verification test.

Figure 5-a illustrates a bit mapping table which is used by FDAT to verify

design spatial isolation. Figure 5-b illustrates bit patterns for various PIP classes.

Frame content is analysed using the bit mapping table in order to obtain a list of

configured PIPs. The list is then compared with the current system state in order to

detect illegal routing, e.g. the configured connections which are not exported by the

system as a communication interface. Upon successful analysis of the IP core,

reconfiguration can occur. If an illegal connection is detected, then the

reconfiguration process terminates.

The FDAT “Pip2BitMapping” recipe execution time is in the order of 11 hours

for all inter-tile PIPs within the Virtex-II Pro CLB tile (around 3200 algorithm

iterations), measured on a mid-class PC (1GB RAM, Intel Pentium Dual-Core

2.16GHz). Over 99% of this time is spent on conversion of XDL files to NCD

format, and partial-bitstream generation (using Xilinx bitgen tool). The

getExternalTilePips(tile)

getPip(externalPips)

All PIPs

processed?

genXdlFile(pip)

convXDL2NCD(xdlFile)

genPBitFile(ncdFile)

getCfgFrames(pBitFile)

getPipBits(cfgFrames)

upd(externalPips[pip])

report(externalPips)

YES

NO

getTileDetails(tileName)

 Chapter 5 - FDAT Framework For Low-Level FPGA Design Analysis

– 95 –

“Pip2BitMapping” execution time depends only of the number of PIPs within the tile

(here less than 3200). Thus the time will vary for different tile types.

The time devoted to bitstream parsing and XDL template generation is between

90-120 seconds. In order to speed-up the execution time, the recipe could be modi-

fied to accommodate multiple PIPs within a single bitstream, e.g. one PIP per CLB

tile.

Figure 5- a. the bit mapping table generated for CLB column PIPs within the Virtex-II Pro.

b. bit patterns for various PIP classes (used by FDAT to analyse partial-bitstreams and verify

design spatial isolation).

The DAPI module has been tested using a set of XDL design files, with designs

containing forced invalid XDL syntax. In all cases, the XDL parser correctly detects

the introduced issue (XDL syntax error) either by returning details on the specific

design structure or by raising an exception when the syntax error is detected.

The “ShowDesign” recipe reports and visualises areas (user-logic and routing)

occupied by the design within the FPGA fabric (Figure 5-b). This can be used to

assess logic utilisation ratio within the IP core.

The “ResourceSelect” recipe allows selection and grouping of FPGA resources

based on arbitrary logic or regular expressions. Groups can be reported and high-

lighted within the FDAT GUI. Resources can be selected by their coordinates or

properties. Also, user defined tags can be attached to groups. This recipe supports

logical resource partitioning. The results of various recipe executions are

demonstrated in Figure 3-, Figure 3-, Figure 3-, Figure 5-, Figure 5- and Figure 5-.

For example, Figure 5-a illustrates the tile view of the Xilinx Virtex-5 device (colour

highlights tiles of the same type). Figure 5-b illustrates the tile view of the User-

MNA 0 MNA 1 MNA 2 MNA 3 MNA k MNA N
[9

:9
6

]

 ‘
O

M
U

X
1

3
 -

>
 F

4
_

B
1

'

[9
:9

8
]

 ‘
O

M
U

X
_

N
1

5
 -

>
 F

4
_

B
1

'

No

routing

info

No

routing

info

No

routing

info
...96

B
it

 o
ff

s
e

t
w

it
h

in
 f

ra
m

e

... ...

No

routing

info
...

97

...

M

No

routing

info

No

routing

info

No

routing

info

No

routing

info

No

routing

info

No

routing

info

...
No

routing

info

No

routing

info
No

routing

info

No

routing

info

No

routing

info

...

No

routing

info

No

routing

info

...

No

routing

info

No

routing

info

No

routing

info

...

No

routing

info

No

routing

info

...

No

routing

info

...

PIP ‘<pip_name>' = <mna> : <bit> [, mna:bit]*

 e.g.

 PIP ‘OMUX13 -> F4_B1’ = 3:96, 9:96

 PIP ‘OMUX_N15 -> F4_B1’ = 3:96, 9:98

Minor frame addresses

Virtex-II Pro

PIPs configuration bit patterns

E
X

T
E

R
N

A
L

 P
IP

s

IN
P

U
T

 P
IP

s

O
U

T
P

U
T

 P
IP

s

PIP entry
a)

b)

 Chapter 5 - FDAT Framework For Low-Level FPGA Design Analysis

– 96 –

design (blue indicates FPGA tiles used as logic, yellow indicates FPGA tiles used for

routing) and unused resources (coloured grey) within the Virtex-5 device.

The device-independent syntax of the FPGA fabric netlists and XDL files allows

generic support for designs targeting other Xilinx FPGA architectures (e.g. Virtex-

4/5/6, Spartan-3/6). Although FDAT provides device-independent access to the

configuration bitstream structures, every device family (e.g. Virtex-II Pro, Virtex-5)

requires a customised implementation of the BAPI module due to the differences in

configuration logic.

5.5. Porting Of FDAT Functionality To The Embedded

SeReCon

5.5.1. Introduction

This section proposes the porting of FDAT functionality to the embedded

SeReCon for on-line bitstream analysis. FDAT enables the generation of the

Embedded Routing Database (ERDB) which includes description of the FPGA

fabric. Considerations in creating the ERDB are highlighted. The ERDB is a compact

and size-optimised description of the FPGA routing which contains the description of

the inter-tile routing shapes available in various FPGA tiles and relative locations of

PIP configuration bits in the bitstream. The feasibility and accuracy of the ERDB-

based IP core routing verification are demonstrated. Also FDAT recipes, describing

the design verification algorithm using an abstract FPGA model, can be ported and

reused within the SeReCon firmware.

5.5.2. Requirements For ERDB Implementation

Figure 1- illustrates a block diagram of an example PCIe-connected FPGA

reconfigurable accelerator system which incorporates the SeReCon module along

with a communication gateway and a number of IP cores. SeReCon controls all

access to the PR region of the FPGA and loads requested IP cores from the local

repository via the FPGA reconfiguration port (ICAP). System level drivers use PR to

exchange IP cores during run-time, e.g. to modify system operation in response to

application data traffic trends. The proposed FDAT tool can generate the FPGA

routing database containing a minimal FPGA fabric description which is embedded

in SeReCon firmware and used by SeReCon for on-line verification of IP core

routing. The maximum generated database size is limited since available memory

within the FPGA package boundary also includes the SeReCon root-of-trust

firmware. Analysis of the Virtex-II Pro bit-mapping table, produced by the

“Pip2BitMapping” recipe, reveals regular patterns in the location of PIP

configuration bits within bitstream configuration frames (Figure 5-). These patterns

 Chapter 5 - FDAT Framework For Low-Level FPGA Design Analysis

– 97 –

can be exploited for online calculation of PIP configuration bit positions within the

bitstream configuration frames. Online calculation allows balancing of the database

memory footprint, at the cost of SeReCon performance. In a similar way, the

database implementation could exploit the regularity of the FPGA fabric (2D array of

tiles) and configuration bitstream structure (frame addressing, block types etc).

5.5.3. Embedded Routing DataBase (ERDB)

The C ERDB is a set of C source and header file which can be included in

embedded RC applications, e.g. in the SeReCon firmware. SeReCon uses the ERDB

to detect implicit communication channels in the IP core design (Figure 3- and

Figure 3-). The Python ERDB is the FDAT zipshelve archive which is used to

validate SeReCon-based IP core analysis. Figure 5- illustrates the FDAT

“ErdbCGenerator” recipe flowchart which generates the ERDB C source and header

files. The recipe uses the FFAPI module, temporary wire shape database (WS_DB)

and PIP database (PIP_DB) in order to generate the ERDB (in C and Python). This

section describes the algorithm used in the FDAT “ErdbCGenerator” recipe.

Figure 5- The FDAT “ErdbCGenerator” recipe flowchart.

createRoutingDB(WireShapesDB,PipsDB)

getRoutingShapes(FpgaFabricFile)

generatePipBitData(ERDB_PD)

generateErdbC(ERDB_TG, ERDB_WS,

ERDB_RD,ERDB_PD,ERDB_PB)

Virtex-5 FPGA

Fabric netlist

PIP_DB

WS_DB

erdb_tg.cerdb_pd.c erdb_ws.c

erdb.h erdb_routing.c erdb_layout.c

FDAT ERDB

(Python)

SeReCon ERDB (C)

Intermediate

files

ERDB_TG

ERDB_RD

ERDB_WS

ERDB_PD

ERDB_PB

ErdbCGenerator recipe FDAT

FFAPI

partial.bitpartial.bitpartial.bitpartial.bitpartial.bitpartial.bitpartial.bitpartial.bitpartial.bit

 Chapter 5 - FDAT Framework For Low-Level FPGA Design Analysis

– 98 –

5.5.3.1. GetRoutingShapes()

The getRoutingShapes algorithm is illustrated in Figure 5-. The function

processes all tiles described in the FPGA fabric description file (FpgaFabricFile),

provided by the FDAT’s FAPI module. The algorithm produces wires shape database

(WS_DB) and PIPs database (PIP_DB) which support ERDB generation.

For every tile a list of external PIPs is extracted (getExternalPips) and added

(addPip) to the PIPs database (PIP_DB). The external PIP is a PIP interconnecting at

least one shared routing resource (e.g. the wire connected multiple FPGA tiles). The

function also generates a list of shared wires (getPipWires) and their taps

(getWireTaps). These are converted to wire shapes (normaliseWireShape) and are

added (addWireShape) to the output wire shape database (WS_DB). Wire taps are

Cartesian coordinates of FPGA tiles connected by the shared wire. A wire shape is a

set of wire taps normalised using the Manhattan distance metrics
41

 with the current

tile (an ‘anchor tap’) set in the origin.

Figure 5- The FDAT GetRoutingShapes() function flowchart.

41

 Manhattan distance definition (http://www.itl.nist.gov/div897/sqg/dads/HTML/manhattan

Distance.html)

All tiles

processed?

getExternalPips(tile)

getPipWires(tile)

addPip(PIP_DB, pip)

All PIPs

processed?

geWireTaps(wire)

normaliseWireShape(taps)

addShape(WS_DB, shape)

All wires

processed?

Start

Done

NO

YESNO

NO

YES

http://www.itl.nist.gov/div897/sqg/dads/HTML/manhattan%20Distance.html
http://www.itl.nist.gov/div897/sqg/dads/HTML/manhattan%20Distance.html

 Chapter 5 - FDAT Framework For Low-Level FPGA Design Analysis

– 99 –

The FPGA routing, e.g. in Xilinx Virtex-5 devices, is non-homogeneous [41].

The wire shape (number and relative distribution of taps) depends of the wire group,

e.g. ‘double-wires’, ‘pent-wires’
42

 etc. The wire shape within the wire group is also

irregular [173], [174], and depends on the wire location within the FPGA fabric, e.g.

some wires have additional taps. Shape irregularity can be observed using e.g. the

Xilinx FPGA Editor. Public FPGA documentation provided by Xilinx does not

describe routing irregularities or its correlation with the wire location in the FPGA

fabric.

5.5.3.2. CreateRoutingDB()

The FDAT createRoutingDB algorithm flowchart is illustrated in Figure 5-. The

algorithm generates the ERDB PIPs database (ERDB_PD), the ERDB Routing

database (ERDB_RD) and the ERDB Tile Groups database (ERDB_TG). The

getTileTypePips function reads PIPs data (e.g. FPGA tile type, associated wire names

and interconnection type) from the PIP_DB. The list of PIP tiles is compressed

(function groupPipTiles) into the group and saved (addGroup) into ERDB_TG. The

PIP and the list of its group indices are saved in the ERDB_PD. The algorithm

(getWireTileTypes) reads the WS_DB file and produces (getShape) a list of

normalised wire shapes and shape-associated tiles. Tiles which are associated with

the wire are grouped (groupShapeTiles) and are added (addGroup) to the ERDB_TG

using the grID index which is returned by the addGroup function. The function

transposeShape converts the wire shape tap coordinates (relative manhattan distances

to the anchor tap) to non-negative values. This ‘moves’ the shape origin point (0, 0)

from the anchor tap (shape tap in the current tile) to the bottom-left shape tap. This

reduces the number of wire shape entries in the ERDB, e.g. all wire entries which

have different sets of tap coordinates (relative to the parent tiles) share the same

(single) shape description (set of transposed taps). The function addShape stores the

shape in the ERDB Wire Shape database (ERDB_WS) using the shID index which is

returned by the addShape function. The function addRoute stores the wire shape

entry in the ERDB (ERDB_RD). The wire shape entry includes grID, shID and the

wire shape anchor tap.

5.5.3.3. GeneratePipBitData()

The GeneratePipBitData algorithm flowchart is illustrated in Figure 5-. The

function exploits the “Pip2BitMapping” recipe in order to generate the relative

locations of PIP configuration bits in the bitstream. The “Pip2BitMapping” recipe is

executed (pip2BitMapping) to generate partial bitstreams (partial.bit) for all PIP tile

groups (getGroupPips) and FPGA tile types (getTileTypeGroups) which are included

in the ERDB_PD. For every PIP the configuration word offsets are normalised

(normalisePipCfgWords) prior to storing PIP configuration (cfg) data in the ERDB

42

 This type of wires is introduced in Xilinx Virtex-5 FPGAs and connects FPGA tiles which are

located 5 tiles away.

 Chapter 5 - FDAT Framework For Low-Level FPGA Design Analysis

– 100 –

Pip Bits database (ERDB_PB). Word offset normalisation is required to reflect the

relative vertical position of the PIP tile within the bitstream configuration frames,

e.g. some PIPS in the CLB column appear only in certain rows or span multiple

rows.

Figure 5- The CreateRoutingDB() function flowchart. The algorithm generates the ERDB PIPs

database (ERDB_PD), the ERDB Routing database (ERDB_RD) and the ERDB Tilegroup

database (ERDB_TG).

YESNO

All tile types

processed?

getTileTypePips(PIP_DB)

getWireTileTypes(WS_DB)
All PIPs

processed?

geShape(wire, tileType)

groupShapeTiles(shapeTiles)

addGroup(ERDB_TG, group)

All wires

processed?

Done

groupPipTiles(pip)

addGroup(ERDB_TG, group)

addPip(ERDB_PD, pip)

Start

transposeShape(shape)

addShape(ERDB_WS, shape)

addRoute(ERDB_RD, grID, shID)

All shapes

processed?

YES

NO

NO YES

YES

NO

 Chapter 5 - FDAT Framework For Low-Level FPGA Design Analysis

– 101 –

Figure 5- The GeneratePipBitData() function flowchart. This algorithm exploits the

“Pip2BitMapping” recipe in order to generate ERDB PIPs Bit database (ERDB_PB) which

describes relative locations of PIP configuration bits in the bitstream.

5.5.3.4. GenerateErdbC()

The GenerateErdbC algorithm flowchart is illustrated in Figure 5-. The function

uses Python ERDB to generate the ERDB headers and C source files (ERDB_C)

which are included in the SeReCon firmware (Figure 1-e). The genErdb_H function

generates the C header (erdb.h) which includes the ERDB data structures
43

 used by

SeReCon. Table 5- illustrates the ERDB C source and header files (produced by the

“ErdbCGenerator” FDAT recipe) which are used by the SeReCon firmware.

43

 Appendix C illustrates the ERDB C header file (erdb.h) which includes declarations of ERDB C

data structures.

getGroupPips(group)

normalisePipCfgWords(cfg)

pip2BitMapping(pips)

Start

Done

YES

NO

getTileTypeGroups(ERDB_PD)

All tile types

processed?

addCfgData(ERDB_PB, cfg)

All Pips

processed?

All groups

processed?

YES

YESNO

NO

 Chapter 5 - FDAT Framework For Low-Level FPGA Design Analysis

– 102 –

Figure 5- The GenerateErdbC() function flowchart.

File name Content

erdb.h ERDB header file which defines ERDB data structures (see Appendix C).

erdb_tg.c Provides tile group database (ERDB_TG).

erdb_ws.c Provides wire shape database (ERDB_WS).

erdb_pd.c
Provides PIP database (ERDB_PD) which includes PIP bits locations. The

wire name database, and PIP mode database are also included.

erdb_routing.c
Provides FPGA routing database which includes shape database of FPGA

shared wires.

erdb_layout.c Provides Cartesian tile type layout of the FPGA fabric.

Table 5- ERDB C source and header files produced by the “ErdbCGenerator” FDAT recipe

which are used by the SeReCon firmware.

5.5.4. ERDB-Based IP Core Routing Analysis

The ERDB provides a compact description of the routing resources in the FPGA

device. This facilitates IP core bitstream verification within the embedded RC

system, e.g. SeReCon. The ERDB-based IP core analysis examines the IP core

bitstream in order to detect active external routing, e.g. wires which cross the

boundary of the FPGA region configured by the IP core. The active external routing

is typically documented by the IPV and describes the legitimate IP core I/O interface.

genErdb_H()

genErdbTG_C(ERDB_TG)

Start

Done

genErdbWS_C(ERDB_WS)

genErdbPD_C(ERDB_PD/B)

genErdbRouting_C(ERDB_RD)

genErdbLayout_C()

 Chapter 5 - FDAT Framework For Low-Level FPGA Design Analysis

– 103 –

Undocumented external routing which could result from inaccurate or malicious use

of EDA software, creates implicit communication channels. Risk can result from the

use of a multi-party PR design flow and IP core implementation secrecy. The FDAT

"GetBitPips" and “getExtWires” recipes demonstrate ERDB-based IP core external

routing detection.

Figure 5- illustrates the "GetBitPips" recipe flowchart. This recipe reports all

PIPs (including ‘fake’ always-on PIPs) in the IP core. The recipe uses ERDB and

FPGA configuration frames (the cfgFrames parameter). The CfgFrames parameter is

obtained from the IP core bitstream (bitFile) using the BAPI module

(getCfgFrames). The tile configuration data is extracted (getTileCfg) for all tiles

within the PR region configured by the bitstream. Non-PR bitstreams (i.e. bitstreams

which do not participate in PR) are also supported. The getTileGroupPips uses the

ERDB_PB in order to provide a list of external PIPs which is specific for a tile group,

e.g. the number of external PIPs in a tile varies with tile type and also depends on

physical location of the tile within the FPGA fabric. Tiles in the same tile group

include the same set of PIPs. A tile can be a member of a number of tile groups. Thus

the complete list of tile PIPs is a concatenation of PIP lists from all tile groups. For

every PIP in the list of tile PIPs, the getPipCfg() function reads the PIP configuration

bit templates from the ERDB_PB. The PIP Configuration Bit Template (CBT)

includes the list of frame Minor Addresses (MNAs) [9], configuration word offsets

(within the FPGA configuration frame) configuration word bit masks which must be

set in order to ‘activate’ the PIP. For the ‘fake arc’ (always-on) PIPs the CBT is

empty. If the PIP is a ‘fake arc’ (always-on PIP) or the bit pattern in the tile

configuration frames (tileCfgFrames) match the CBT (checkPipBits), then the PIP is

assumed active and is added (addBitPip) to the list (bitPips). The bitPips list is

returned to the user (report).

Figure 5- illustrates the “getExtWires” recipe flowchart. The recipe exploits the

“GetBitPips” recipe and uses the ERDB to detect and report IP core (bitFile) external

routing which could be used to setup implicit communication channels. The

“GetBitPips” recipe provides a list of IP core PIPs (including ‘fake arcs’). The

calcCfgRegion function uses IP core configuration frames (cfgFrames) to calculate

the IP core perimeter (region) and its location within the FPGA device
44

. For every

PIP tile, an envelope is calculated (calcShapeEnvelope). Figure 5- illustrates the

relation between the IP core region, the tile envelope and wire shape taps. The

envelope is the manhattan distance between the tile and region corners. Also, the

wire shape, e.g. the number and distribution of taps, depends on the physical tile

location within the FPGA fabric. Tiles which use the same wire shape form a tile

group (similar to the PIPs tile group). The getTileShapeGroup function provides the

wire shape index to the checkWireShape function in order to obtain wire shape taps

from the ERDB_WS. The checkWireShape function uses the tile envelope in order to

verify whether any of PIP wire shape extends outside the IP core region. If any of the

wire shape taps (manhattan distances calculated from the current tile (anchor tap)

exceeds the tile envelope the wire is added to the list of IP core external wires

44

 For clarity, this thesis assumes rectangular region shape.

 Chapter 5 - FDAT Framework For Low-Level FPGA Design Analysis

– 104 –

(addExtWire). The process is repeated for all PIPs. The complete extWires list is

returned to the user (report). The user compares the extWires list with IP core

interfaces documented by the IPV. The existence of additional external wires which

are not documented in the IP core interface specification provided by the IPV could

suggest the presence of an implicit communication chanel and therefore a possible

security threat.

Figure 5- The FDAT "GetBitPips" recipe flowchart. This recipe reports all PIPs (incuding fake

arcs) in the IP core. The recipe uses ERDB and FPGA configuration frames (obtained using the

BAPI module).

getTileCfg(cfgFrames)

getCfgFrames(bitFile)

isFakeArc?

getTileGroupPips(ERDB_PB)

getPipCfgData(pip)

addBitPip(pip, fake|real) allPipBitsSet?

checkPipBits(tileCfgFrames)

all Pips

processed?

all Tile Groups

processed?

report(bitPips)

YESNO

YES

NO

YES

NO

YES

NO

all Tile Groups

processed?

YES

NO

 Chapter 5 - FDAT Framework For Low-Level FPGA Design Analysis

– 105 –

Figure 5- The "GetExtWires" recipe flowchart. The recipe exploits the “GetBitPips” recipe and

uses ERDB in order to detect and report IP core external routing which could be used to set

implicit communication channels.

Figure 5- Relation between the IP core region, the tile envelope and wire shape taps.

getBitPips(bitFile)

YES

NO YES

NO

YES

NO

calcCfgRegion(cfgFrames)

checkWireShape(ERDB_WS)

any tap

outside

envelope?

both PIP wires

processed?

addExtWire(tap,shape,pip)

all Pips

processed?

report(extWires)

getTileShapeGroup(ERDB_RD)

calcShapeEnvelope(tile,region)

3,8

(-2,5)

13,8

(8,5)

3,2

(-2,-1)

13,2

(8,-1)

(-4,0) (-2,0)

5,3

(0,0)

IP core region

(3,2) – (13,8)

Tile

 8

5

-1

-2

Tile envelope

(-2,-1) – (8,5)

9876543210 151413121110

9

8

7

6

5

4

3

2

1

0

anchor tap

tap

wire shape

 [(-4,0), (-2,0), (0,0)]

 Chapter 5 - FDAT Framework For Low-Level FPGA Design Analysis

– 106 –

5.5.5. Verification Of The ERDB Correctness

The correctness of the ERDB-based IP core analysis depends on the FPGA

fabric model and the accuracy of the Configuration Bit Template (CBT)-to-PIP

mapping. The FPGA fabric model is provided by the FDAT FFAPI module which

uses the FPGA description generated by the Xilinx XDL tool. The CBT mapping is

obtained using the FDAT Pip2BitMapping recipe. The recipe implementation

assumes:

 configuration superposition, e.g. the CBT of a single PIP does not depend on

other PIPs

 location invariant CBT; the PIP CBT is the same for corresponding PIPs in all

tiles of the same type

Figure 5- illustrates the "BitPipsVerificator" recipe flowchart which verifies the

accuracy of the ERDB-based “GetBitPips” recipe. The list of bitstream PIPs

(bitPips) is compared with the reference PIP list (xdlPips) which is obtained

(getXdlPips) from the reference XDL file (xdlFile). Both lists are split

(getXdlTilePips, getBitTilePips) into sub lists (xdlTPips vs. bitTPips) in order to

support tile-based comparison. If xdlTPips and bitTPips are not equal, e.g. when

some reference PIPs are not detected or the bitstream contains ‘extra’ PIPs which do

not exist in the reference set, then lists of missing PIPs (missingTPips) and extra PIPs

(extraTPips) are included (updateMissingPips, updateExtraPips) in the global lists

(missingPips, extraPips) and are reported to the user (reportDiffs).

Appendix D provides the detailed report of results obtained after

"BitPipsVerificator" recipe execution
45

. Table 5- illustrates fragment of the

"BitPipsVerificator" report which shows the difference between the list of XDL PIPs

and a list of bitstream PIPs (for the ‘INT’ FPGA tile type). The report includes a list

of XDL PIPs which are not found in the bitstream and a list of bitstream PIPs which

do not appear in the reference design. The difference between the XDL reference PIP

set and the bitstream PIP set is limited to certain routing resources only, e.g. carry-

chain routing (*_COUT* wires) in CLB tiles, clock-related routing (*CLK* wires) in

various, mostly clock-related, tiles and global routing (LV* and LH* wires) in the

routing (INT) tiles. Also, the visible correlation between the set of missing and extra

PIPs in the bitstream, e.g. PIPs missing in some tiles appear as extra PIPs in other

ones, suggests that the EDA tools have modified the design netlist prior to bitstream

generation.

Table 5- illustrates the correlation between the ERDB-based bitstream analysis

and the reference XDL file, which is reported by the FDAT "BitPipsVerificator"

recipe. Results highlight >99% accuracy of the ERDB-based IP core analysis and

minor (<0.22%) difference in the number of detected PIPs. The bitstream file

45
 The report provides analysis results for the Virtex-5 LX50T FGA design (the

prototype of a SeReCon-enabled RC system).

 Chapter 5 - FDAT Framework For Low-Level FPGA Design Analysis

– 107 –

contains 2621 (0.65%) extra PIPs which do not appear in the reference XDL design.

Also, 837 (0.21%) of XDL PIPs are missing in the bitstream file. Further analysis of

this problem is required and suggested as a future work.

Figure 5- The "BitPipsVerificator" recipe flowchart which verifies accuracy of the PIP list

generated using the ERDB-based “GetBitPips” recipe.

getBitPips(bitFile)

getBitTilePips(bitPips)

getXdlTilePips(xdlPips)

YES

NO

getXdlPips(xdlFile)

All tiles

processed?

calcMissingPips(xdlTPips,bitTPips)
xdlTPips ==

bitTPips?

missingTPips

== 0 ?

YES

YES

NO

NO
updateMissingPips(missingTPips)

calcExtraPips(xdlTPips,bitTPips)

extraTPips

== 0 ?
updateExtraPips(extraTPips)

reportDiffs(extraPips, missingPips)

YES

NO

 Chapter 5 - FDAT Framework For Low-Level FPGA Design Analysis

– 108 –

XDL PIPs missing in the bitstream (BIT) file Extra bitstream PIPs not included in the XDL file

...

INT tile type (6 pips):

LH0 =- LH18 (131 tiles):

LV0 =- LH0 (23 tiles):

LV0 =- LH18 (44 tiles):

LV0 =- LV18 (242 tiles):

LV18 =- LH0 (66 tiles):

LV18 =- LH18 (38 tiles):

...

...

INT tile type (6 pips):

LH0 =- LV0 (57 tiles):

LH0 =- LV18 (55 tiles):

LH18 =- LH0 (151 tile):

LH18 =- LV0 (117 tiles):

LH18 =- LV18 (78 tiles):

LV18 =- LV0 (240 tiles):

...

Table 5- Fragment of the "BitPipsVerificator" report which shows the difference between the list

of XDL PIPs and a list of bitstream PIPs (for the ‘INT’ FPGA tile type).

Source Total PIPs Extra PIPs

.XDL 405869 837

.BIT 404990 2621

Table 5- Correlation between the ERDB-based bitstream analysis and the reference XDL file,

which is reported by the FDAT "BitPipsVerificator"recipe.

5.6. Chapter Summary

This chapter discusses the risks in a multi-party PR design flow, and investigates

the issue of implicit communication channels which could be created during PR

using third party IP cores. The need for low (bitstream) level design analysis is

highlighted and the FPGA Design Analysis Tool (FDAT) is proposed and applied as

a solution.

To the best knowledge of the authors, FDAT is the first available toolset to

provide high-level and unrestricted access to the low-level description of the Xilinx

FPGA fabric and the user design at the netlist- and bitstream-level. The GUI front-

end extends FDAT functionality by providing customised visualisations of the design

and FPGA resources. Use of a Python programming language provides clean and

self-documenting code (algorithm syntax), unrestricted tool customisation and

defines higher-level abstractions for design analysis.

FDAT enables the generation of the ERDB embedded database containing a

minimal description of the FPGA fabric and bitstream for use by the SeReCon IP

core to perform on-line verification of IP core routing. The FDAT framework offers

a generic and unified support for analysis of designs targeting all Xilinx

architectures. The FDAT framework has been tested using Virtex-II Pro and Virtex-5

LXT designs and device descriptions.

 Chapter 5 - FDAT Framework For Low-Level FPGA Design Analysis

– 109 –

FDAT has been developed around the concept of component and recipe

separation. Components provide the necessary data and data (design/device/

bitstream) abstract models, while recipes describe policies (algorithms) defining data

model usage. This separation enables the reuse of high-level (model-specific) recipes

which can be ported to other systems, e.g. the SeReCon IP core. Also, the

hierarchical recipe structure supports a range of high-level analysis flows and offers

virtually unlimited functionality extensions, thus supporting domain-specific design

analysis.

The chapter proposes porting FDAT functionality to SeReCon for on-line

bitstream analysis. Considerations in creating an ERDB (including FPGA fabric

description) are highlighted. The feasibility and accuracy of the ERDB-based IP core

routing verification is demonstrated.

The proposed FDAT framework offers increased productivity in low-level

design analysis by seamlessly extending the FPGA design flow. Similar tools could

be developed for other FPGA fabrics, i.e. Altera, Actel etc.

– 110 –

 Chapter 6. SeReCon Initialisation And Operation For

Secure FPGA Reconfiguration

6.1. Introduction

This thesis proposes the IP-aware SeReCon element which provides RC system

integrity protection during PR. SeReCon is included in the RC system design and

comprises both hardware element (IP core) and firmware. This chapter describes the

internals (state diagram, the block diagram and firmware) of the SeReCon IP core.

The SeReCon firmware stack is highlighted. This chapter also describes the

operation of SeReCon RoT within the PR RC device during RoT initialisation, IP

core installation, IP activation and IP deactivation.

The SeReCon RoT initialisation process occurs at the trusted TA site and

includes EIDR credentials initialisation, RC system security credentials generation

and publication. SeReCon exploits the EIDR element to provide design IP protection

and executes in-system design analysis of new IP cores to maintain the integrity of

the RC system.

SeReCon implements a two-phase RC system reconfiguration process which

includes the IP core installation and IP core activation (RC system reconfiguration).

IP core installation is performed online, once for every new IP core. A SafeLock

scheme for IP core security credentials protection is highlighted. The process of

establishing the shared encryption key between the IPV and SeReCon, using the

Diffie-Hellman (DH) shared key agreement protocol is also described. During the IP

core activation process, SeReCon performs verification of the IP core compliance

with the current RC system state in order to protect the integrity of the BaseSFC and

to countermeasure the risk of implicit communication channel setup.

The IP core activation process is initiated by the RC system software. The main

steps in the IP core activation process are illustrated. The verification of IP core

compliance with the current RC system state is highlighted. The IP core license

validation and RC system reconfiguration are also described. License validation prior

to RC system PR enforces both transaction-based and metered-usage IP business

models. The IP core deactivation process removes the remains of previously

activated IP cores which could interact with the current system configuration, thus

leading to RC system integrity issues. IP core deactivation ensures that the unused IP

core configuration is removed from the FPGA configuration memory.

 Chapter 6 - SeReCon Initialisation And Operation For Secure FPGA

Reconfiguration

– 111 –

6.2. SeReCon Internal State Diagram

Figure 1-c illustrates the block diagram of the SeReCon IP core. SeReCon is a

CPU-based embedded system which is almost entirely (except for the EIDR element)

implemented in FPGA user logic to reduce the cost of modification to the FPGA

fabric which is required in order to support the proposed RoT. The SeReCon element

has an open source architecture which supports public code auditing. SeReCon

hardware (Figure 1-c) includes a MicroBlaze CPU
46

 with local memory containing

SeReCon firmware, general purpose IO registers which are used for communication

(CommIF), a non-volatile (LIPS) memory interface (MemoryCtrlIF), hardware RNG

(TRNG), symmetric-key encryption module (AES) [36], internal configuration port

(ConfigPort) and trusted security credentials register (EIDR).

Figure 1-e illustrates the SeReCon firmware stack which is installed in the CPU

local memory (Figure 1-c). The firmware stack provides low-level drivers for

SeReCon hardware elements, e.g. Board Support Package, ICAP, TRNG, EIDR,

AES/ECC, Communication and Memory IP cores (MFS, SysAce, FATFS). Low-level

drivers are used by the ERDB-based routing analyser (ERDB Analyser) and the

ERDB Verifier for IP core verification prior to RC system reconfiguration. The

Configuration Manager provides an abstract SeReCon API to the SDR application.

Figure 1- illustrates the SeReCon-based RoT and its usage scenario. The

BaseSFC after power up contains only the SeReCon IP core, communication

interface and LIPS interface. During RoT initialisation (Figure 1-b), the TA verifies

the RoT implementation, certifies the device and the BaseSFC, and internally

generates the RoT public-key. The SI uses the RoT and its public-key to install

encrypted IP cores (Figure 1-c), obtained from the third-party IPV upon receipt of a

request from the SI (Figure 1-a). The SDR User activates IP cores installed in the

LIPS (Figure 1-d) by sending activation requests to the RoT (Figure 1-a) which

validate the IP core resource requirements with the RC system current configuration.

The integrity of the system is maintained by SeReCon through spatial isolation

between components, constraining the IP core configuration data to predefined areas

of the FPGA. IP core analysis is employed prior to reconfiguration in order to

enforce this policy.

A two-phase self-reconfiguration process is implemented in SeReCon in order to

improve the performance of the IP core activation (Figure 1-). During phase 1 the IP

core is installed in the system. SeReCon performs analysis of its structure and

generates a resource report which becomes an integral part of the installed IP core.

This approach speeds up the subsequent reconfiguration process. In phase 2, when IP

core activation is requested, SeReCon performs a controlled reconfiguration

46

 Open source CPU is an ultimate goal. The prototype implemenetation of SeReCon uses Xilinx

MicroBlaze CPU as it is well integrated with the Xilinx EDA software. Since June 2008 MicroBlaze

source code is not available (http://www.xilinx.com/support/documentation/customer_notices/xcn

08003.pdf). Number of open source CPU designs is available from OpenCores (http://opencores.org),

e.g. OpenRisc (or1k, http://opencores.org/ project,or1k).

http://www.xilinx.com/support/documentation/customer_notices/xcn%2008003.pdf
http://www.xilinx.com/support/documentation/customer_notices/xcn%2008003.pdf
http://opencores.org/
http://opencores.org/%20project,or1k

 Chapter 6 - SeReCon Initialisation And Operation For Secure FPGA

Reconfiguration

– 112 –

following verification of the available resources and interfaces for the required IP

core and the current system configuration. Only IP cores verified by SeReCon can be

downloaded and configured in the RC system. The two-phase reconfiguration

algorithm supports IP core spatial isolation [26] and allows dynamic instantiation of

physical isolation primitives [57]. The interface between SeReCon, IP cores and the

rest of the system must be well defined so that activation of an IP core which

eavesdrops on current IP cores can be prevented.

Figure 6- illustrates the SeReCon internal state diagram. After power up

(POWER UP), SeReCon checks EIDR status (SERECON INITIALISATION); when

EIDR is not activated (e.g. during the first power up), SeReCon waits for the TA

initialisation command. If the EIDR is already activated, e.g. during a subsequent

power up, SeReCon waits for commands from the SDR application (IDLE). Upon

receipt of an IP core installation request, SeReCon installs the new IP core in the RC

system (IP CORE INSTALLATION). The IP core activation request reconfigures the

RC system using a previously installed IP core (IP CORE ACTIVATION), while a

deactivation request removes the currently active IP core (IP CORE

DEACTIVATION).

Figure 6- The SeReCon internal state diagram. SeReCon RoT Initialisation

6.3. SeReCon-based RoT Initialisation

6.3.1. Introduction

This section details the SeReCon RoT initialisation process which occurs at the

trusted TA site (see Figure 1-b). This minimises the risk of malicious device

tampering (during initialisation) and enables independent scrutiny, e.g. through

public audit.

IDLE

POWER UP

SERECON

INITIALISATION

IP CORE

INSTALLATION

IP CORE

ACTIVATION

IP CORE

DEACTIVATION

Wait for

initialisation

Install

IP core

Deactivate

IP core

Activate

IP core

Check

EIDR

Wait for

commands

Return

status

Return

status

 Chapter 6 - SeReCon Initialisation And Operation For Secure FPGA

Reconfiguration

– 113 –

6.3.2. Initialisation Algorithm

Figure 6- illustrates the SeReCon RoT initialisation flowchart. The initialisation

process includes EIDR credentials initialisation, RC system security credentials

generation and publication. The initialisation is successful if all steps complete

without errors.

EIDR credentials initialisation. During EIDR credentials initialisation,

SeReCon clears (resetEIDR) the Credential and Key registers (Figure 4-), and resets

the EIDR counters (AAC, LTC, FRC, MNC). The TRNG element (genTrngData)

generates a configuration bitstream containing random data which is used as the new

EIDR credentials (rndCredentials) and is stored in the EIDR the Credentials Register

(writeEidr). The BaseSFC signature (MAC) is also stored in the EIDR Key Register

(Figure 4-). This provides access to the EIDR content (credentials and counters) only

to authenticated design, e.g. BaseSFC which includes the SeReCon RoT.

EIDR credentials protect the unique RC system security credentials which are

generated within the SeReCon RoT and are stored in the unprotected LIPS
47

. RC

system security credentials include the private key and public key pair which is used

in the SeReCon messages signing (using public-key cryptography) in order to

facilitate RC system authentication to the IPV and to secure IP core transfer over the

untrusted network (Figure 1-). SeReCon supports Elliptic Curve Cryptography
48

(ECC) which uses the algebraic structure of elliptic curves over finite fields. Blake et

al. [180] provide a thorough review of ECC mathematical foundations.

RC system security credentials generation. SeReCon uses the random TRNG

bitstream (rndKey) in order to initialise (initPrivKey) the secret ECC private key

(PrivKey) prior to its encryption (encPrivKey). SeReCon uses the secret privKey and

standard (NIST-recommended), ECC parameters [181] in order to calculate

(calcPubKey) the ECC public key (PubKey).

RC system security credentials publication. During credentials publication,

pubKey and privKey are stored in the LIPS (storeLipsFile). The content of the

privKey file is encrypted using a symmetric-key cipher, (e.g. AES in CBC mode
49

),

with EIDR credentials serving as the symmetric-key and the initialisation vector

(IV). Thus, RC system credentials are available only to the SeReCon RoT. The

authenticity of an unencrypted pubKey file is certified by the TA (Figure 1-b) which

makes it available to parties involved in RC system development (Figure 1-), e.g. SI,

IPV’s, user etc.

47

 This approach reduces the size of the EIDR Credentials Register.

48
 The U.S. National Security Agency has endorsed ECC technology by including it in its Suite B set

of recommended algorithms, and allows their use for protection of information classified up to top

secret. (http://www.nsa.gov/ia/programs/suiteb_cryptography/index.shtml)

49
 Cipher-Block-Chaining mode (http://en.wikipedia.org/wiki/CBC_mode_of_operation)

http://www.nsa.gov/ia/programs/suiteb_cryptography/index.shtml
http://en.wikipedia.org/wiki/CBC_mode_of_operation

 Chapter 6 - SeReCon Initialisation And Operation For Secure FPGA

Reconfiguration

– 114 –

Figure 6- The SeReCon RoT initialisation flowchart.

6.3.3. SafeLock - EIDR Support For IP Core Privacy & Integrity

Protection

IP cores installed in the RC system are encrypted. SeReCon uses random, core-

unique security credentials (encryption key and IV) for every installed IP core. IP

core security credentials are organised in a dynamic list structure which is referred to

as the SafeLock. The SafeLock data is kept in the SeReCon local memory (Figure

1-a), entirely inside the RoT. The backup copy of the SafeLock data is encrypted

using EIDR credentials and stored in the LIPS. During RC system power up, the

SafeLock data is restored from the backup copy located in LIPS. SeReCon rewrites

the SafeLock backup copy during SafeLock update, e.g. when a new IP core is

installed and its credentials are added to SafeLock.

Table 6- illustrates the SafeLock API which is provided by the SeReCon EIDR

driver. The SeReCon firmware uses SafeLock in order to access IP cores installed in

LIPS.

The safelock_reset() call resets the SafeLock data. The SafeLock backup copy in

LIPS is also rewritten. This call is used during EIDR initialisation.

genTrngData()

writeEidr(rndCredentials)

resetEidr()

initEccGenPoint(curve)

genTrngData()

initPrivKey(rndKey)

calcPubKey(rndKey,genPoint)

encPrivKey(PrivKey,EIDR)

storeLipsFile(encPrivKey)

storeLipsFile(PubKey)

EIDR credentials

initialisation

RC system credentials

initialisation

RC system credentials

publication

 Chapter 6 - SeReCon Initialisation And Operation For Secure FPGA

Reconfiguration

– 115 –

The safelock_atomic_backup() call creates an encrypted backup copy of SafeLock

data using EIDR credentials. The backup copy is stored in LIPS. This call uses EIDR

MNC and random data from TRNG in order to prevent file tampering. SeReCon

includes the updated (idr_update_msg_no) EIDR MNC value (msgNo) and random

TRNG data (nonce) in the SafeLock file prior to file encryption and storing in the

LIPS. During SafeLock data recovery the msgNo and nonce from the backup file are

compared with the original values. Any mismatch indicates tampering.

The safelock_get_new_credentials() call generates new SafeLock credentials for the

IP core file and the license file, e.g. during IP core installation. This call updates the

credentials_ptr contents using the SafeLock entry specified by the msg_no value.

This is an atomic operation.

The safelock_get_credentials() call updates the credentials_ptr contents using the

SafeLock entry for msg_no value.

The safelock_update_license_credentials() call generates new license credentials for

the SafeLock entry specified by the msg_no value. This call uses the

safelock_atomic_backup() call.

API call Parameters Description

safelock_reset() None Resets SafeLock data. This also rewrites the

SafeLock backup file.

safelock_get_new_

credentials()

credentials_ptr Generates new SafeLock credentials for the IP

core file and license file. Updates the

credentials_ptr content using the SafeLock

entry specified by the msg_no value. This is

an atomic operation (increases EIDR MNC).

safelock_get_

credentials()

msg_no

credentials_ptr

Updates the credentials_ptr contents using the

SafeLock entry for msg_no value.

safelock_update_

license_

credentials()

msgNo Generates new license credentials for the

SafeLock entry specified by the msg_no

value.

safelock_atomic_

backup()

atomic_ptr Creates encrypted backup copy of SafeLock

data. This is an atomic operation (increases

EIDR MNC).

Table 6- The SafeLock API which is provided by the SeReCon EIDR driver.

Figure 6- illustrates the structure of the SafeLock backup file. The file includes

the list of security credentials (encryption key and IV) which are used to access

installed IP cores. The ipCredentialsCnt field provides the size of the list. Other

fields (Magicfield, msgNo and nonce) are used in order to detect file tampering.

 Chapter 6 - SeReCon Initialisation And Operation For Secure FPGA

Reconfiguration

– 116 –

Figure 6- The structure of the SafeLock backup file.

6.4. IP Core Installation

6.4.1. Introduction

This section describes the process of IP core installation within the SeReCon-

enabled RC system. IP core installation is performed online, once for every new IP

core.

Figure 1-a and c illustrate the SeReCon-based RoT activity during the IP core

installation. The SI uses SeReCon RoT and RC system security credentials in order

to install IP cores which are obtained from the third-party IPV upon receipt of a

request from SI. SeReCon facilitates an ECC-based Diffie-Hellman (DH) key

exchange protocol [157] and Elliptic Curve Digital Signature Algorithm (ECDSA)

[182] in order to establish the authenticated secret Shared Key (SK). SeReCon

encrypts subsequent communication with IPV, e.g. IP core transfer which is

encrypted using the AES symmetric-key cipher [38].

Figure 6- illustrates The IP core installation flowchart and players. This includes

the DH Shared Key (SK) agreement between the IPV and SeReCon, the IP core

preparation, and the transfer and installation of the IP into the RC system. The DH

SK agreement [157] requires a single message exchange between the IPV and

SeReCon. This exchange results in a secret SK which is used to encrypt the IP core

and its license. The IPV message and SeReCon reply do not require encryption.

Thus, communication can occur over an unprotected network, e.g. Internet.

6.4.2. Shared Key Agreement Between IPV And SeReCon

This section describes the process of establishing the shared encryption key

between the IPV and SeReCon, using the DH shared key agreement protocol (Figure

6-a). The SK is used in order to protect the IP core PR bitstream and the IP core

license during transfer of IP over the unsecured network and non-trusted parties

(Figure 1-). The SI initiates the SK agreement by sending the specification of the

Magicfield

msgNo

nonce

ipCredentialsCnt

ipCredentialsN

.

.

.

MNC KEY IV

msgNo

KEY IV

ipcoreKey licenseKey

IP core credentials entry

ipCredentials0

 Chapter 6 - SeReCon Initialisation And Operation For Secure FPGA

Reconfiguration

– 117 –

requested IP core to the IPV. The specification describes the requested core

functionality, target region for IP placement within the FPGA fabric and the location

of required interfaces, e.g. BM location within the IP core region.

Figure 6- The IP core installation flowchart and players. a. Shared Key (SK) negotiation

between the IPV and SeReCon RoT. b. IP core preparation and transfer. c. IP core installation

in the RC system.

6.4.2.1. IPV-side DH Shared Key Generation

Figure 6- illustrates the IPV algorithm flowchart for the DH SK agreement

which starts when the IPV receives a request from the SI (receiveIpRequest). On

receipt of an acknowledge from the IPV (getSeReConCreds&msgNo), the SI

SI IPV TASeReCon

Obtains

IP core #k

Device

integration

Request IP core #k

Request SPK & MNC

Read SPK and MNC

Return SPK and MNC

Send SPK Verifiy SPK

SPK OK

IP core + license

encrypted with DH-SK

Install request +

encrypted IP core #1

Installed OK

(IP core #k)

Prepares

IP core #k Verifies SeReCon

public-key

Installs

IP core #k

Installs N

IP cores

Decrypts IP core

with shared-key (SK)

Analyses resource

requirements,

generates report &

blanking data

Activates IP license

Encrypts IP core,

license & report

using SafeLock Creds

Stores encrypted IP

core, license and

report in external

repository

Installs

IP core #k

Integrates

FPGA system

Requests and

installs

IP cores #k+1..N

Send IPV message

Forward IPV message

Prepares DH reply

Calcs shared key

(SK)
Send SeReCon reply

Forward SeReCon reply
Shared-key

negotiation

IP core

installation

IP core

preparation

& transfer

a)

b)

c)

 Chapter 6 - SeReCon Initialisation And Operation For Secure FPGA

Reconfiguration

– 118 –

provides the RC system security credentials (SeReCon pubKey) and msgNo which is

the current value of the EIDR MNC. The IPV uses the TA certificate in order to

validate the pubKey authenticity. This can also be performed on-line (see Figure 6-).

If the SeReCon pubKey is genuine, then the IPV generates a random bitstream

(getRndData) which is required in order to generate (sign) the IPV message (the

ECDSA signature of the msgNo
50

). The use of the rndData ensures the IPV message

uniqueness. The IPV message is bounded-to-msgNo and verifiable using the IPV

credentials (public key). The IPV uses the SI in order to deliver the message to

SeReCon (sendMsg) and waits for a reply from SeReCon (receiveSeReConReply).

The SI also delivers the IPV credentials (public key).

The SeReCon reply is the ECDSA signature of the current EIDR state (msgNo2)

signed using the RC system credentials (SeReCon privKey). The IPV uses the

SeReCon pubKey in order to verify the signature authenticity. If the signature is

valid and the msgNo2 is equal to msgNo + 1, then the DH SK is calculated

(calcSharedkey) using the signature and rndData. The msgNo2 authentication

ensures the reply message has been generated by the genuine RC system since only

the SeReCon firmware has access to the privKey which is required during the sign

operation.

Figure 6- The IPV algorithm flowchart for Diffie-Hellman (DH) Shared Key (SK) agreement.

50

 Details of the ECDSA and DH key agreement are omitted for clarity. Wikipedia provides good

examples of the ECDSA (http://en.wikipedia.org/wiki/ECDSA) and DH key agreement (http://en.

wikipedia.org/wiki/Diffie–Hellman_key_exchange).

verifySeReConCreds() getIpvCreds()

receiveIPRequest()

sign(msgNo,rndDta,ipvCreds)

calcSharedKey(signature,rndData)

getSeReConCreds&msgNo()

TA certificate

ok?

YES

NO

abort()

sendMsg()

receiveSeReConReply()

signature==OK

& msgNo2==

msgNo + 1 ?
verify(signature,msgNo2)

genRndData()

YES

NO

http://en.wikipedia.org/%20wiki/ECDSA

 Chapter 6 - SeReCon Initialisation And Operation For Secure FPGA

Reconfiguration

– 119 –

Message authentication protects the communication between the IPV and

SeReCon against (communication) message tampering. Unique message marking

(using msgNo) is a countermeasure to replay attacks, e.g. this makes the IP core

readable only for an RC system with valid security credentials and matching EIDR

state (‘synchronised’ MNC value). If the SI would reuse an old SeReCon reply with

the previous msgNo2, the IPV SK would differ from the one calculated by SeReCon

(due to the use of different rndData).

6.4.2.2. SeReCon-side DH Shared Key Generation

Figure 6- illustrates the SeReCon algorithm flowchart for DH SK agreement.

SeReCon reads and verifies the IPV message prior to calculating the SK. The SK is

encrypted using the EIDR credentials and stored in the LIPS. SeReCon generates and

signs the reply message prior to saving it in the LIPS. The SI returns the reply

message to the IPV.

SeReCon calculates the SK on receipt of a request from the SI

(receiveSkRequest). SeReCon reads the IPV message file (readIpvMsgFile), verifies

the IPV signature and compares the current value of the EIDR MNC (msgNo) with

the value included in the message (IpvMsgNo). Signature verification is not required

but could be used to enforce the RC system to accept IP cores only from a closed

IPV list. This could facilitate vendor-locking in commercial applications.

If msgNo and IpvMsgNo match, then SeReCon calculates the SK

(calcSharedKey) using the IPV signature and a random data bitstream (rndData)

which is generated by the TRNG (getRndData). The calculated SK is encrypted

using the EIDR credentials (encSK) and stored in the LIPS (saveSkFile). SeReCon

updates the EIDR MNC (updateMsgNo) and generates a reply message which is the

ECDSA signature of the msgNo, signed (sign) using rndData and the RC system

security credentials (privKey) prior to storage in the LIPS (saveReply).

The message unique marking (using msgNo) protects against a replay attack, e.g.

if the SI would reuse an old IPV message then the msgNo will not match the current

SeReCon state (EIDR MNC value) and a reply message is not generated.

6.4.3. IP Core Production And Transfer To The RC System

Figure 6-a illustrates the IP core preparation flowchart. The IPV implements the

IP core (implementIpcore) according to the SI specification (spec) and generates the

PR bitstream with IP core placement constrained to the SI-defined FPGA region. IP

core interfaces (IO), e.g. Bus Macros, are also defined in spec. The IP core license

(genLicense) is merged (merge) with the IP core PR bitstream into IP package (IP

core license + PR bitstream), and is encrypted (encIpPackage) using the calculated

SK, prior to sending the IP to the SI (sendIpPackage). The SI receives the IP

package, e.g. over the Internet, and forwards it the RC system, using an RC system

communication interface (Figure 1-a), or stores the IP package directly in the LIPS

(Figure 6-, Figure 1-a).

 Chapter 6 - SeReCon Initialisation And Operation For Secure FPGA

Reconfiguration

– 120 –

Figure 6- The SeReCon algorithm flowchart for DH SK agreement.

Table 6- illustrates the IP core license modes and license restrictions which are

supported by SeReCon. The IPV limits IP core usage, e.g. the number of activations

and/or total lifetime depending on the agreement with the SI, as follows:

Unlimited IP usage license: unconstrained IP core usage. The IP core can be

activated an unlimited number of times and will operate for an unlimited amount of

time.

Limited life-time license: allows a predefined number of IP core activations. IP

remaining lifetime decreases with time when the IP core is active in the RC system.

The number of IP core activations is not limited. This supports a metered IP usage

business model.

Activation-limited license: allows only a predefined number of IP core activations

to be performed. The remaining number of activations allowed decreases each time a

PR using the IP core takes place. The IP core becomes inoperable when the

remaining number of activations (activation counter) reaches zero. This supports a

transaction-based IP usage business model.

verify(signature,IpvMsgNo) getRndData()

calcSharedKey(signature,rndData)

updateMsgNo()

saveReply()

readIpvMsgFile()

signature==OK

& msgNo==

IpvMsgNo ?

YES

NO

abort()

sign(msgNo,rndDta,privKey)

encSK(EIDR)

getPrivKey(EIDR)

saveSkFile(encSharedKey)

receiveSkRequest()

getMsgNo()

 Chapter 6 - SeReCon Initialisation And Operation For Secure FPGA

Reconfiguration

– 121 –

Combined license: enforces both a time-limited and an activation counted licensing

schemes. The IP core is disabled when the remaining lifetime is zero or when the

remaining number of activations reach zero.

Expired license: indicates an already disabled IP core. The IP core can be installed

in the RC system but cannot be activated. This ‘dummy’ IP core installation can be

used during RC system integration in order to verify RC system implementation and

ensure correct communication with SeReCon.

Figure 6- a. IP core preparation flowchart. b. the IP package.

Activations limit Lifetime limit License description

0xffffffff 0xffffffff Unlimited usage – has no restrictions

0xfffffff 0x1–0xfffffff
Limited life-time license supports metered-

based business model

0x1–0xffffffe 0xfffffff
Activation-limited license supports transaction-

based business model

0x1–0xffffffe 0x1–0xffffffe
Combined license supports metered-based and

transaction-based business models

0x1–0xfffffff 0 Expired license. The IP core can be installed but

not activated. 0 -

Table 6- IP core license modes and license restrictions which are supported by SeReCon.

6.4.4. IP Core Installation In The RC System

Figure 6- illustrates the IP core installation flowchart in the RC system.

SeReCon uses EIDR credentials in order to access (getSharedKey) the SK (used to

encIpPackage(sharedKey)

implementIpCore(spec)

genLicense(activations,lifetime)

merge(ipCore,license)

sendIpPackage()

genIpCoreBitstream(region,IO) IP license
FPGA region-constrained

PR bitstream

IP core

IP package

a)

b)

 Chapter 6 - SeReCon Initialisation And Operation For Secure FPGA

Reconfiguration

– 122 –

decode the IP package), and to extract the IP core license and the PR bitstream

(decIpPackage). The PR bitstream is analysed using the ERDB Analyser

(callErdbAnalyser) which returns the IP core configuration region and a list of IP

core external PIPs (extPips). SeReCon uses region and extPips in order to generate

the IP core analysis report (genCoreReport). Also, new SafeLock credentials

(safeLockGetNewCredentials) are generated in order to encrypt the IP core analysis

report, license and PR bitstream prior to saving in the LIPS (saveReport, saveLicense

and saveIpCore).

Figure 6- The flowchart of the IP core installation in the RC system.

The main goal of ERDB-based IP core analysis is to check if the external routing

(external PIPs) match the system interface and the current system state. The ERDB

Analyser also calculates the IP core isolation region which is an expanded

configuration region that covers the external wires used by ‘fake’ PIPs.

Figure 6- illustrates the IP core isolation region and its relation with the IP core

configuration region. The isolation region contains additional unused tiles in order to

include all external always-on PIPs (‘fake arcs’). Use of the isolation region instead

of the configuration region simplifies IP core analysis, e.g. the ERDB Analyser is

not required to determine which always-on PIPS are used by the IP core.

Figure 6- illustrates the structure of the IP core analysis report. The report

defines the IP core configuration and isolation regions and provides lists of external

PIPs in both regions. The PIP entry includes PIP tile location (x, y) and indexes in

the ERDB.

saveLicense(safeLockCreds)

getEIDRCreds()

decIpPackage(sharedKey)

safeLockGetNewCredentials()

saveIpCore(safeLockCreds)

getSharedKey(EIDR)

callErdbAnalyser(ipCore)

genCoreReport(region,extPips)

saveReport(safeLockCreds)

 Chapter 6 - SeReCon Initialisation And Operation For Secure FPGA

Reconfiguration

– 123 –

Figure 6- The IP core isolation region and its relation with the IP core region.

Figure 6- a. Structure of the IP core analysis report. The report defines IP core configuration

and isolation regions. b. List of external PIPs in both regions.

1,9 14,9

1,1 14,1

3,8 13,8

3,2 13,2

9876543210 151413121110

9

8

7

6

5

4

3

2

1

0

tap

Always-on ‘fake’ PIP

Always-on ‘fake’ PIP

IP core region

(3,2) – (13,8)

IP core isolation region

(1,1) – (14,9)

FPGA

column

FPGA

row

Magicfield

Configuration region

Isolation region

CfgPipsCnt

ConfigurationPipN

IsolationPipsCnt

IsolationPipN

.

.

.

.

.

.

X Y TYPE

TILE

DIR FAKE

PIP WIRE1

NAME MODE SHAPE

WIRE2

NAME MODE SHAPE

CONFIGURATION/ISOLATION PIP ENTRY

CfgPip0

isolationPip0

a)

b)

 Chapter 6 - SeReCon Initialisation And Operation For Secure FPGA

Reconfiguration

– 124 –

6.5. IP Core Activation And Deactivation

6.5.1. Introduction

The IP core activation process is initiated by the RC system software, e.g. an

SDR application which requests new functionality to be loaded in the RC system.

Figure 6- illustrates the main steps in the IP core activation process. During the IP

core activation, SeReCon checks the IP core license, the IP core usage restrictions

(e.g. limited lifetime or limited activations) and verifies the IP core compatibility

with the current state of the RC system (e.g. loaded modules) prior to

reconfiguration. If any of these checks fail, then SeReCon aborts the activation

process.

This section describes the IP core activation and deactivation in the RC system.

The verification of IP core compliance with the current RC system state is

highlighted. The IP core license validation and RC system reconfiguration are also

described.

Figure 6- Main steps in the IP core activation process.

6.5.2. Verification of IP Core Compatibility with Current System

State

Figure 6- illustrates the data structure which describes the current state of the RC

system PR region. The data structure includes the details of the PR configuration and

isolation regions, e.g. region location within the FPGA fabric (Xmin, Ymin to Xmax,

Ymax) and a list of external PIPs which provide the IP core interface (PIP

ENTRY#1..N). SeReCon uses the Xilinx FPGA ICAP and ERDB Analyser in order to

SeReCon

IP core

activation

IP core #N

activation

request from

higher-level

sw

IP core license

checking

Verification of IP

core compatibility

with currrent RC

system state

RC system

reconfiguration

 Chapter 6 - SeReCon Initialisation And Operation For Secure FPGA

Reconfiguration

– 125 –

detect external PIPs in the empty PR region within the BaseSFC (Figure 1-a). The

perimeter of the PR region is predefined by the SI during system design and is

hardcoded into the SeReCon data structure which describes the RC system state. IP

core usage statistics (e.g. activation time and deactivation time) of the currently

active IP cores are also included in order to enforce IP core deactivation when the

remaining lifetime is zero.

During IP core activation, SeReCon updates the data structure with active IP

core details
51

, e.g IP core name, msgNo and IP core activation/deactivation time

(LTC start, LTC max). SeReCon uses the data structure which describes active IP

core details in order to supports IP core license restrictions enforcement, e.g. IP core

deactivation when all of its lifetime ‘credit’ is consumed.

Figure 6- The data structure which describes the current state of the RC system PR region.

Figure 6- illustrates the IP core compatibility verification flowchart. SeReCon

compares the current PR region state (see Figure 6-) with the IP core resource

requirements which are obtained from the IP core analysis report (see Figure 6-). The

comparison includes verification of the IP core configuration and isolation region

perimeters (cmpCfgRegion, cmpIsolationRegion). This enables detection of BaseSFC

configuration overwrites. Also, lists of IP core external PIPs (in both configuration

and isolation regions) are compared with a list of allowed (interface) PIPs. This

enables detection of possible implicit communication channels between the activated

IP core and the current RC system configuration, e.g. BaseSFC and active cores. If

any of IP core regions extends outside the PR region perimeter or additional external

PIPs are detected, then the verification process fails and SeReCon interrupts the IP

core activation.

51

 This thesis assumes only one IP core within the RC system PR region. Research on dynamic

isolation of multiple IP cores is encouraged and recomended as a future work.

Configuration region

PIP ENTRY#1

.

.

.

Xmin YminXmax Ymax

region

Isolation region

PIP ENTRY#1

.

.

.

Xmin YminXmax Ymax

region

MSGNO NAME LTC START LTC MAX

IP core #1

.

.

.

Active cores

PR region state data

 Chapter 6 - SeReCon Initialisation And Operation For Secure FPGA

Reconfiguration

– 126 –

Figure 6- The IP core compatibility verification flowchart.

6.5.3. IP Core License Validation

Figure 6- illustrates the IP core license checking flowchart. SeReCon verifies the

number of remaining IP core activations (checkActivationsLimit) and the remaining

lifetime (checkLifetime) prior to IP core activation (Figure 6-a). If the IP core license

includes limits on the number of IP core activations and/or IP core lifetime (see

Table 6-) then SeReCon decreases the number of the remaining activations

(updRemainingActivations) and calculates the IP core deactivation time

(calcDeactivationTime). The IP core name, the activation and deactivation times are

written to the RC system state (updateSysState, see Figure 6-).

SeReCon also updates the IP core license if the IP core activation has been

unsuccessful (updRemainigActivations), e.g. the number of activations is restored

when the IP core footprint is not compatible with the current RC system state (Figure

6-b).

During the IP core deactivation (Figure 6-c) SeReCon decreases the remaining IP

core lifetime by the time period for which the IP core was activated

(updRemainingLifetime).

The attacker could circumvent the license restrictions by replacing the license

file with its old version in order to ‘freeze’ the pool of available activations or

cmpCfgRegion()

cmpIsolationRegion()

cmpSysState(reportedExtPips)

Return(OK) Return(ERROR)

cfgRegion

match system

state ?

isolationRegion

match system

state ?

IP core has

additional

external PIPs ?

 Chapter 6 - SeReCon Initialisation And Operation For Secure FPGA

Reconfiguration

– 127 –

lifetime. Thus, SeReCon updates the IP core licenseKey (safelockUpdCreds) and re-

encrypts the license file (saveLicenseFile) with a new licenseKey.

Figure 6- The IP core license checking flowchart. a. SeReCon verifies the number of remaining

IP core activations and usage lifetime prior to IP core activation. b. SeReCon updates IP license

during unsuccessful IP core activation. c. SeReCon updates IP license during IP core

deactivation.

checkMode(mode)

checkLifetime()

checkActivationsLimit()

Unlimited

activations (-1) ?

Activations > 0 ?

updRemainigActivations(dec)

Lifetime > 0 ?

Unlimited

lifetime (-1) ?

updateSysState()

safelockUpdCreds(licenseKey)

Return(OK)

Mode ==

ACTIVATE ?

Mode ==

DEACTIVATE ?

Mode ==

ROLLBACK ?

updRemainigLifetime()

saveLicenseFile(licenseKey)

Return(ERROR)

updRemainigActivations(inc)

calcDeactivationTime()

YES

NO

YES

NO

YES

NO

YES

NO

YES

NO

YES

NO

YES

NO

c)

b)

a)

 Chapter 6 - SeReCon Initialisation And Operation For Secure FPGA

Reconfiguration

– 128 –

6.5.4. RC System Reconfiguration

Figure 6- illustrates the IP core activation flowchart. IP core activation requires

msgNo which has been used during the IP core installation. SeReCon uses msgNo

SafeLock credentials (getSafeLockCreds) and licenseKey (see Figure 6-) in order to

decrypt the IP core license file (decIpLicense) prior to license verification

(verifyLicense(ACTIVATE)). The IP core analysis report is also decoded

(decIpReport) and validated with the current RC system state

(verifyCoreCompatibility). IP core compatibility verification ensures that the

requested PR does not overwrite the BaseSFC or active IP cores. SeReCon also

checks if the IP core communication interface matches the RC system interface (IO)

in order to eliminate the risk of implicit communication channels. The IP core

activation process is interrupted and the IP core license update is ‘rolled-back’

(Figure 6-b) when the IP core contains additional external PIPs which are not listed

in the RC system resources (see Figure 6-).

If the IP core does not contain additional external PIPs SeReCon decodes the IP

core bitstream (decIpCore) and disables the IP core interface (disableBM) prior to

reconfiguring the RC system (loadIcap) using the FPGA reconfiguration port and the

IP core PR bitstream. SeReCon enables the IP core interface (enableBM) after

successful reconfiguration.

Figure 6- The IP core activation flowchart.

disableBM()

verifyCoreCompatibility(report)
YES

NO

getSafeLockCreds(msgNo)

verifyLicense(license,activate)

decIpLicense(licenseKey)

decIpReport(ipcoreKey)

All external PIPs

are genuine IO?

loadIcap(ipCore)

decIpCore(ipcoreKey)

verifyLicense(license,rollBack) enableBM()

 Chapter 6 - SeReCon Initialisation And Operation For Secure FPGA

Reconfiguration

– 129 –

6.5.5. IP Core Deactivation

In the RC system, different IP cores can occupy the same PR region over the

lifetime of a system. Multiple IP cores can also share a single PR region
52

. Thus, the

IP core PR bitstream typically configures only a fraction of the PR region. The

remains of previously activated IP cores, which are scattered around the PR region,

could interact with the current system configuration, leading to RC system integrity

issues. SeReCon avoids this by using IP core deactivation which ensures that the IP

core configuration is removed, when unused, from the FPGA configuration memory.

This also supports metered IP core usage, e.g. during the IP core deactivation

SeReCon updates the remaining IP core lifetime.

Figure 6- illustrates the SeReCon-based IP core deactivation process. The RC

application, e.g. SDR system, sends an IP core deactivation request to SeReCon.

SeReCon uses the IP core SafeLock credentials in order to access the IP core license

file prior to updating the remaining IP core lifetime (Figure 6-c). SeReCon also uses

the PR region description (Figure 6-) in order to obtain the location of the

deactivated IP core (configuration region) which is then reconfigured using default

(empty) FPGA configuration frames.

Figure 6- The SeReCon-based IP core deactivation process.

52

 SeReCon prototype supports only single IP core in the PR region. Extending SeReCon upport for

multiple cores is proposed as future work.

SeReCon

IP core

deactivation

IP core #N

deactivation

request from

higher-level

sw

Scrub IP core

configuration with

default data

Update IP core

license using RC

system state data

Access the IP

core license using

SafeLock

credentials

 Chapter 6 - SeReCon Initialisation And Operation For Secure FPGA

Reconfiguration

– 130 –

6.6. Chapter Summary

This chapter describes the operation of SeReCon RoT within the PR RC device

during initialisation, IP core installation, IP activation and IP deactivation. SeReCon

is included in the RC system design and comprises both hardware element (IP core)

and firmware. The internal state diagram and the block diagram of the SeReCon IP

core are also described and the SeReCon firmware stack is highlighted.

This chapter describes the SeReCon RoT operations during the RoT

initialisation process which occurs at the trusted TA site in order to minimise the risk

of malicious device tampering and support independent scrutiny, e.g. through public

audit. The SeReCon initialisation process includes EIDR credentials initialisation,

RC system security credentials generation and publication. SeReCon exploits the

EIDR element to provide design IP protection and executes in-system design analysis

of new IP cores to maintain the integrity of the RC system.

The processes of IP core installation is performed online, once for every new IP

core. A SafeLock scheme for IP core security credentials protection is highlighted.

The process of establishing the shared encryption key between the IPV and

SeReCon, using the Diffie-Hellman (DH) shared key agreement protocol is also

described.

The IP core activation process is initiated by the RC system software. The main

steps in the IP core activation process are illustrated. During the IP core activation

process, SeReCon performs verification of the IP core compliance with the current

RC system state in order to protect the integrity of the BaseSFC and to

countermeasure the risk of implicit communication channel setup. IP core license

validation and RC system reconfiguration are also described. License validation prior

to RC system PR enforces both transaction based and metered usage IP business

models. The IP core deactivation process removes the remains of previously

activated IP cores which could interact with the current system configuration, thus

leading to RC system integrity issues. IP core deactivation ensures that the unused IP

core configuration is removed from the FPGA configuration memory.

– 131 –

 Chapter 7. Case Study: SeReCon Architecture

Implementation And Application in SDR

device

7.1. Introduction

This chapter reports on the implementation and application of the prototype

SeReCon-enabled RC system using Xilinx Virtex-5 FPGA technology. The

implementation of SeReCon internal elements, the main RC system elements and

example PR IP cores is described. Analysis of the SeReCon FPGA resource usage

and RC system prototype implementation issues is included. The SeReCon IP core is

a CPU-based system which is implemented using the Xilinx EDK software.

SeReCon uses an embedded 32-bit MicroBlaze processor which is operating at 125

MHz.

Figure 7-a illustrates the block diagram of the SeReCon demonstrator. The

demonstrator application is implemented in Python and executed within the Python

interpreter which is a standard part of Ubuntu Linux distribution, installed on the

Intel host server. The demonstrator application uses the RC system communication

library and SeReCon API. The Intel server includes a Xilinx ML505 FPGA

evaluation board which contains the prototype of SeReCon-enabled RC system

(Figure 7-b). The RC system is connected to the host using the PCIe interface and

standard Linux PCIe Device Driver. This chapter reports and describes the SeReCon-

enabled RC system prototype, including implementation results, and SeReCon

demonstrator application (Figure 7-). The communication library of the RC system

demonstrator and host-side SeReCon API are highlighted. Demonstrator application

results are also reported.

The chapter provides detailed insight into the operation of the prototype RC

system during the SeReCon (and EIDR) initialisation, IP core installation and

activation (see Chapter 6). The implemented RC system uses four IP cores in order

to demonstrate the SeReCon-based PR, e.g. 32-bit Adder, 32-bit Multiplier, 128-AES

Cipher and 128-bit AES Decipher. The VHDL model for each of these IP cores is

included in the thesis DVD.

This chapter describes the SDR device prototype and illustrates how the

SeReCon element can be included within the SDR RC system. Modifications to the

SeReCon implementation, required to integrate SeReCon within the prototype SDR

device, are also highlighted.

 Chapter 7 - Case Study: SeReCon Architecture Implementation

– 132 –

Figure 7- a. the block diagram of the SeReCon demonstrator. b. SeReCon-enabled RC system.

7.2. RC System Implementation

7.2.1. Introduction

The prototype of the SeReCon-enabled RC system has been implemented in the

Xilinx Virtex-5 LXT FPGA
53

 using the Xilinx EAPR design flow [10] and Xilinx

EDA software
54

, e.g ISE, EDK and PlanAhead tools.

This section illustrates the block diagram of the implemented SeReCon-enabled

RC system. The functionality of the RC system elements, e.g. PCIe interface, PCIe

BAR Splitter and Configuration Controller are highlighted. SeReCon internals and

example PR region IP cores are also described.

7.2.2. SeReCon-Enabled RC System Block Diagram

Figure 7- illustrates the block diagram of the SeReCon-enabled RC system

(Figure 1-) which is implemented in the Xilinx Virtex-5 FPGA. For clarity, the block

diagram includes only simplified IP core interfaces. The RC system includes

SeReCon, PCIe interface and a number of interfacing modules, e.g. PCIe BAR

Splitter, Config Controller and Bus Macros. The RC system also includes the PR

region which is reconfigured with a number of IP cores
55

 (e.g. AES cipher/decipher

53

 Xilinx ML505 board includes Virtex XC5VLX50TFFG1136 FPGA device.

54
 Xilinx ISE v9.2.04i_PR11, Xilinx EDK v9.2.02i and Xilinx PlanAhead v10.1.8.

55
 The RC system prototype is implemented using the Xilinx EAPR design flow and tools. EAPR

tools require that all PR IP cores must be included during the RC system development.

PCIe Device

DriverUbuntu Linux

RC system

comm library

SeReCon

Demonstrator

Application

Intel Xeon

CPU

Intel Xeon

CPU

Xilinx

ML505
V5

LXT

SeReCon API

Python interpreter

PCIe x1

SeReCon-enabled RC system

CTRL

SPLIT

CFLEDsPCIe

BMs

DDR2

RS232

PCIe IF

PR

region

SeReCon

Xilinx ML505

Virtex-5 LXT FPGA

SeReCon demonstratora) b)

 Chapter 7 - Case Study: SeReCon Architecture Implementation

– 133 –

and simple math adder/multiplier IP cores which are described in Section 7.2.6) in

order to demonstrate SeReCon functionality.

External devices, e.g. LEDs, the PCIe edge-connector, the DDR2 SDRAM

memory, the SysAce chip and the RS232 voltage converter, are included on the

ML505 board. Xilinx IP cores are available from the Xilinx EDA software
56

, e.g.

Xilinx ISE (PCIe reference design), Xilinx EDK (SeReCon elements) or the Xilinx

EAPR lounge website (PR Bus Macros).

Figure 7- Block diagram of the SeReCon-enabled RC system which is implemented in the Xilinx

Virtex-5 FPGA (Xilinx Virtex-5 LXT FPGA ML505 Evaluation Platform).

56

 Xilinx IP core design files, e.g. HDL sources and netlists, are proprietary and are not included in

this thesis. Also, valid license or access to the EAPR Lounge is typically required.

Config Ctrl

(config_ctrl)

PCIe BAR

Splitter (splitter)

PCIe endpoint

(ep)

PCIe ep wrapper

(app)

SysAceUser LEDs

AES

DDR2 IF

DEBUG

MB PLB IF

SYS RESET RS232 IF

Sysace IF

TRNG
BM CTRL

(GPIO)

ICAP

INTC

SYSMON

TIMER

MicroBlaze

PCIE IF

Local Memory

(BRAM)

PCIE edge

V5 Bus Macros

DDR2 IF

RS232

bar_splitter.vhd

config_manager.vhd

vt_trng_puf.vhd

system_i.xmp

aes.vhd

pcie_interface.vhd

PCIe ref design

pr_wrapper.vhd

Xilinx Virtex-5 LXT FPGA

PR region

AES encoder

AES decoder

adder

multiplier

adder.vhd

multiplier.vhd

aes_cipher_top.vhd

aes_inv_cipher_top.vhd

SeReCon

P
R

 I
F

P
R

 I
F

P
C

Ie
 I
F

CTRL IF
BM_enable

M
B

_
B

M
_

e
n

a
b

le

S
e

R
e

C
o

n
 I
F

P
L

B
 b

u
s

top_serecon_v1.vhd

External

device/PHY

XILINX

IP core

Implemented

IP core

IP_core_ID

 Chapter 7 - Case Study: SeReCon Architecture Implementation

– 134 –

Figure 7- illustrates the Xilinx PlanAhead view of the SeReCon-enabled RC

system top-level netlists.

Figure 7- illustrates the Xilinx ISE Schematic top-level view for the SeReCon-

enable the RC system which includes all interfaces between the RC system elements.

Figure 7- The Xilinx PlanAhead view of the SeReCon-enabled RC system top-level netlists.

 Chapter 7 - Case Study: SeReCon Architecture Implementation

– 135 –

Figure 7- Xilinx ISE Schematic view of the SeReCon-enabled RC system.

7.2.3. PCIe Interface IP Core

The demonstrator application (Figure 7-) communicates with the PR region and

the SeReCon system using the PCIe endpoint (Figure 7-). The PCIe interface is

implemented using the modified PCIe reference design which is generated using the

Xilinx CORE Generator
57

.

The PCIe reference design used in the implementation example includes a small

block of (BRAM) memory. This BRAM element is substituted with the IP core

external interface which is connected to the RC system (PCIe BAR Splitter). This

enables support for (and demonstration of) data transfer (reading and writing) over

the PCIe link. Communication to/from the SeReCon-enabled RC system is

performed through writing/reading registers which are mapped into the PCIe Block

Address Ranges (BARs
58

). Figure 7- illustrates the VHDL description of the

57

 The CORE Generator tool is part of the Xilinx ISE software.

58
 PCIe BARs are host memory regions reserved for a PCIe device (here RC systems).

PCIe BAR

splitter

(splitter)

Config

controller

(config_ctrl)

PCIe

endpoint

(ep)

SeReCon

(system_i)

PCIe endpoint

wrapper

(app)

PR region (prm)

Bus

Macros

Bus Macro

Bus Macro

 Chapter 7 - Case Study: SeReCon Architecture Implementation

– 136 –

modified PCIe reference design which includes the additional memory interface

which is used for communication with the RC system. The PCIe endpoint-related

signals are removed for clarity. The PCIe reference design signal data dictionary is

extended with following signals:

 mem_rd_data[31:0]: 32-bit PCIe input port which is read from memory upon

receipt of a read data request from the PCIe root complex (PCIe master

device).

 mem_rd_addr[10:0]: bits [10:9] select the active BAR while bits [8:0]

provide the 9-bit address of the memory location which is to be read.

 mem_rd_be[3:0]: byte enable flag. Asserted bits indicate the valid bytes in

the mem_rd_data word.

 mem_wr_data[31:0]: 32-bit PCIe output port which is written to memory

upon receipt of the write data request from the PCIe root complex (PCIe

master device).

 mem_wr_addr[10:0]: bits [10:9] select the active BAR while bits [8:0]

provide the 9-bit address of the memory location which is to be written.

 mem_wr_be[3:0]: byte enable flag. Asserted bits indicate the valid bytes in

the mem_wr_data word.

 mem_wr_en: enables write to the memory cell (when asserted).

 mem_wr_busy: assertion indicates that the target memory is busy. The PCIe

root complex waits until the signal is deasserted by the memory
59

.

Table 7- describes the PCIe interface BARs which are used by the SeReCon-

enabled RC system. The PCIe reference design supports four BARs, but only two are

used. Requests addressing BAR1 reach the RC system Configuration Controller IP

core (Config Ctrl) which connects SeReCon with the RC system, while BAR2

supports communication with the PR region.

Figure 7- The VHDL description of the modified PCIe reference design which includes the

additional memory interface which is used for communication with the RC system. PCIe

Endpoint-related signals are removed for clarity.

59

 Experiments with the PCIe reference design shown (reboot-requiring) stalls of the server when the

mem_wr_busy is left asserted.

COMPONENT pci_exp_64b_app

PORT (

--PCIe endpoint signals removed for clarity

mem_rd_data : in std_logic_vector(31 downto 0);

mem_rd_addr : out std_logic_vector(10 downto 0);

mem_rd_be : out std_logic_vector(3 downto 0);

mem_wr_data : out std_logic_vector(31 downto 0);

mem_wr_addr : out std_logic_vector(10 downto 0);

mem_wr_be : out std_logic_vector(7 downto 0);

mem_wr_en : out std_logic;

mem_wr_busy : in std_logic

);

END COMPONENT;

 Chapter 7 - Case Study: SeReCon Architecture Implementation

– 137 –

Block Address Range (BAR) Used addresses Description

BAR0 N/A Used internally by PCIe reference design.

BAR1 TBD
Provides R/W access to the SeReCon

configuration controller.

BAR2 TBD
Provides R/W access to the PR region in the

RC sytem.

BAR3 - Not used.

Table 7- Description of the PCIe interface BARs.

7.2.4. PCIe BAR Splitter IP Core

The PCIe BAR Splitter IP core separates PCIe requests depending on the

destination BAR (2 MSBs in the mem_rd_addr or mem_wr_addr). Figure 7-

illustrates the VHDL description of the PCIe BAR Splitter IP core interface
60

. The

PCIe BAR Splitter connects the PCIe interface with the Config Ctrl IP core and PR

region (Figure 7- and Figure 7-). The description of Config Ctrl interface signals

(bar_1_*) and PR region interface signals (bar_2_*) is the same as in the PCIe

reference design.

Figure 7- The VHDL description of the PCIe BAR Splitter IP core interface.

60

 The VHDL source code of the PCIe BAR Splitter IP core (bar_splitter.vhd) is included in the

attached DVD.

COMPONENT bar_splitter

PORT(

-- PCIe interface

rd_addr_i : IN std_logic_vector(10 downto 0);

rd_be_i : IN std_logic_vector(3 downto 0);

wr_addr_i : IN std_logic_vector(10 downto 0);

wr_be_i : IN std_logic_vector(7 downto 0);

wr_data_i : IN std_logic_vector(31 downto 0);

wr_en_i : IN std_logic;

rd_data_o : OUT std_logic_vector(31 downto 0);

wr_busy_o : OUT std_logic;

-- Cntrl interface

bar_1_rd_data_i : IN std_logic_vector(31 downto 0);

bar_1_wr_busy_i : IN std_logic;

bar_1_rd_addr_o : OUT std_logic_vector(8 downto 0);

bar_1_rd_be_o : OUT std_logic_vector(3 downto 0);

bar_1_wr_addr_o : OUT std_logic_vector(8 downto 0);

bar_1_wr_be_o : OUT std_logic_vector(7 downto 0);

bar_1_wr_data_o : OUT std_logic_vector(31 downto 0);

bar_1_wr_en_o : OUT std_logic;

-- PR region interface

bar_2_rd_data_i : IN std_logic_vector(31 downto 0);

bar_2_wr_busy_i : IN std_logic;

bar_2_rd_addr_o : OUT std_logic_vector(8 downto 0);

bar_2_rd_be_o : OUT std_logic_vector(3 downto 0);

bar_2_wr_addr_o : OUT std_logic_vector(8 downto 0);

bar_2_wr_be_o : OUT std_logic_vector(7 downto 0);

bar_2_wr_data_o : OUT std_logic_vector(31 downto 0);

bar_2_wr_en_o : OUT std_logic

);

END COMPONENT;

 Chapter 7 - Case Study: SeReCon Architecture Implementation

– 138 –

7.2.5. Configuration Controller IP core

The Configuration Controller (Config Ctrl) IP core provides the SeReCon

wrapper interface which is compatible with the PCIe interface. This IP core controls

SeReCon, the FPGA PR region and the FPGA development system LEDs which are

located on the ML505 board. The IP core contains two asynchronous FIFO buffers
61

(DIN, DOUT) which are used for data transfers between SeReCon and the

demonstrator application.

Figure 7- illustrates the VHDL description of the SeReCon-enabled RC system

Config Ctrl IP core interface.

The SeReCon interface provides a communication link between the Config Ctrl IP

core and SeReCon IP core (system_i.xmp). Communication with SeReCon occurs

through a number of Config Ctrl IP core registers which are mapped into the PCIe

BAR memory space (all signals are active high unless stated otherwise), as follows:

 mb_bm_en: SeReCon asserts this signal in order to enable the bus macros

between the PR region and the PCIe interface (Figure 7-, Figure 7-)

 mb_dcm_locked: assertion indicates that the FPGA Digital Clock Managers

(DCMs) used by SeReCon have been successfully initialised (locked). This

signal is used during FPGA power up

 mb_rst_n: active low SeReCon reset signal which supports SeReCon reset

using PCIe

 mb_clk: 125MHz clock signal generated by SeReCon. This signal is required

by the DDR2 IP core

 mb_dout_pin[31:0]: FIFO-buffered SeReCon data register (DOUT) output

port

 mb_dout_wr_pin: asserted by SeReCon to write data from the SeReCon data

output register into the Configuration Controller FIFO

 mb_din_pin[31:0]: FIFO-buffered SeReCon data register input port

 mb_din_rd_pin: asserted by SeReCon to read data from the Configuration

Controller FIFO into the SeReCon data input register

 mb_stat[31:0]: unbuffered SeReCon status register

 mb_ctrl[31:0]: unbuffered SeReCon control register

The Cntrl interface provides a communication link between the Config Ctrl IP core

and the PCIe interface. The Cntrl interface signals are connected to the PCIe BAR

Splitter IP core (Figure 7-).

LED interface signals are connected to 8 LEDs mounted on the ML505 board.

LEDs are controlled through the register which is mapped into the PCIe BAR

memory space.

61

 The VHDL source code of the Configuration Controller IP core (config_manager.vhd) is included

in the attached DVD. The code does not include DIN and DOUT FIFO netlists which are generated

using the Xilinx ISE CORE generator.

 Chapter 7 - Case Study: SeReCon Architecture Implementation

– 139 –

PR region interface signals control the FPGA PR region, as follows:

 prm_bm_en: enables and disables PR region Bus Macros

 prm_id: 4-bit ID of the IP core loaded into the PR region

The rst_btn signal is connected to the push button on the ML505 board. This

facilitates manual SeReCon reset.

Table 7- describes the contents of the Config Ctrl IP core registers which are

mapped into the PCIe (BAR1) address space.

Figure 7- The VHDL description of the SeReCon-enabled RC system Configuration Controller

IP core interface.

COMPONENT config_manager

PORT(

-- Cntrl interface

pcie_clk : in std_logic;

pcie_rst_n : in std_logic;

pcie_rd_addr : in std_logic_vector(8 downto 0);

pcie_rd_be : in std_logic_vector(3 downto 0);

pcie_rd_data : out std_logic_vector(31 downto 0);

pcie_wr_addr : in std_logic_vector(8 downto 0);

pcie_wr_be : in std_logic_vector(7 downto 0);

pcie_wr_data : in std_logic_vector(31 downto 0);

pcie_wr_en : in std_logic;

pcie_wr_busy : out std_logic;

-- SeReCon interface

mb_bm_en : in std_logic;

mb_dcm_locked : in std_logic;

mb_rst_n : out std_logic;

mb_clk : in std_logic;

mb_dout_wr_pin : in std_logic;

mb_dout_pin : in std_logic_vector(31 downto 0);

mb_din_pin : out std_logic_vector(31 downto 0);

mb_din_rd_pin : in std_logic;

mb_ctrl : out std_logic_vector(31 downto 0);

mb_stat : in std_logic_vector(31 downto 0);

-- LED interface

user_led : out std_logic_vector(7 downto 0);

-- PR region interface

prm_bm_en : OUT std_logic;

prm_id : in std_logic_vector(3 downto 0);

-- Other interfaces

rst_btn : in std_logic

);

END COMPONENT;

 Chapter 7 - Case Study: SeReCon Architecture Implementation

– 140 –

Register

number
NAME

Access

mode
Description

0 LED R/W Bits [8:0] control LEDs on the ML505 board.

1 STATUS R Bits [31:0] indicate current SeReCon status.

2 CONTROL R/W

This register controls SeReCon, internal FIFOs and PR

region BMs.

Bits description:

0 – resets SeReCon IP core,

1 – resets internal DIN FIFO and write counter,

2 – resets internal DOUT FIFO and read counter,

3 – indicates DIN FIFO is full,

4 – indicates DIN FIFO is empty,

5 – indicates DOUT FIFO is full,

6 – indicates DOUT FIFO is empty,

7 – indicates SeReCon BM enable status,

11:8 – Provide the 4-bit ID of the IP core in the PR region,

12 – enables RC system BM’s.

3 DIN R
Contains 32-bit word which is send to SeReCon (written to

DIN FIFO).

4 DOUT R
Contains 32-bit word which is received from SeReCon (read

from DOUT FIFO).

5 RD_CNT R/W

Dummy write to this register reads SeReCon data word

(from DOUT FIFO) to DOUT register. Register read returns

number of 32-bit words read from DOUT FIFO.

6 WR_CNT R/W

Dummy write to this register sends DIN register content to

SeReCon (writes data word to DIN FIFO). Register read

returns number of 32-bit words written to DIN FIFO.

Table 7- Description of Configuration Controller registers which are mapped into the PCIe

BAR1.

 Chapter 7 - Case Study: SeReCon Architecture Implementation

– 141 –

7.2.6. PR Region IP Cores

7.2.6.1. Introduction

The PR region is the part of the RC system which is reconfigured in run time

using the IP cores (Figure 1-, Figure 1-, Figure 1-). The implemented RC system uses

four IP cores in order to demonstrate the SeReCon-based PR, e.g. 32-bit Adder, 32-

bit Multiplier, 128-AES Cipher and 128-bit AES Decipher. The VHDL model for

each of these IP cores is included in the thesis DVD. Each core is described briefly in

this section.

Figure 7- illustrates the VHDL description of the PR region interface which is

available through the PCIe interface (BAR2). Most signals are already described in

the PCIe interface section. Additional signals are:

 Clk:the input clock signal (100MHz) provided by the PCIe interface

 rst_n: active low reset signal provided by the PCIe interface

 id[3:0]: 4-bit IP core ID. The IP core ID is used by the demonstrator in order

to identify the activated IP core

Figure 7- The VHDL description of the PR region interface.

Figure 7- illustrates the FPGA fabric with a size-constrained PR region and

location-constrained BMs (a view from the Xilinx PlanAhead tool). The

implemented RC system includes cryptographic and math IP cores, e.g. AES

cipher/decipher, simple adder and multiplier.

The Xilinx EAPR design flow does not support multiple IP cores within a single

PR region
62

. EAPR also requires BMs between the PR IP cores and the static part of

the RC system, e.g. BaseSFC. Thus, all IP cores must be implemented using the

62

 Thus, this thesis does not addres the issue of implicit communication channels between multiple IP

cores in the PR region.

COMPONENT prm_wrapper

PORT(

clk : IN std_logic;

rst_n : IN std_logic;

rd_addr_i : IN std_logic_vector(8 downto 0);

rd_be_i : IN std_logic_vector(3 downto 0);

rd_data_o : OUT std_logic_vector(31 downto 0);

wr_addr_i : IN std_logic_vector(8 downto 0);

wr_be_i : IN std_logic_vector(7 downto 0);

wr_data_i : IN std_logic_vector(31 downto 0);

wr_en_i : IN std_logic;

wr_busy_o : OUT std_logic;

id : OUT std_logic_vector(3 downto 0)

);

END COMPONENT;

 Chapter 7 - Case Study: SeReCon Architecture Implementation

– 142 –

default ‘wrapper’ IP core which provides the interface compatible with the SeReCon-

enabled RC system.

Figure 7- The FPGA fabric with a size-constrained PR region and location-constrained Bus

Macros (a view from the Xilinx PlanAhead tool).

PR region

Bus Macros

 Chapter 7 - Case Study: SeReCon Architecture Implementation

– 143 –

7.2.6.2. Adder PR IP Core (adder.vhd)

This IP core adds content of two 32-bit registers (A and B) and stores the result

in the third register (C). Table 7- describes IP core registers which are available

through the PR region memory-mapped interface. The Adder IP core uses four

memory-mapped registers in the PCIe BAR2.

Register

number
NAME

Access

mode
Description

0 REG_A R/W Contains 32-bit argument A.

1 REG_B R/W Contains 32-bit argument B.

2 REG_C R Contains 32-bit sum of A and B.

3 REG_CTRL R Bits [3:0] contain IP core ID = “0001”.

Table 7- Description of the Adder interface registers.

7.2.6.3. Multiplier PR IP Core (multiplier.vhd)

The multiplier IP core multiplies the contents of two 32-bit registers (A and B)

and stores the lower-half of the 64-bit result in register (C). Table 7- describes the IP

core registers which are available through the PR region memory-mapped interface.

The Multiplier IP core uses four memory-mapped registers in the PCIe BAR2.

Register

number
NAME

Access

mode
Description

0 REG_A R/W Contains 32-bit multiplier A.

1 REG_B R/W Contains 32-bit multiplicand B.

2 REG_C R Contains lower 32-bits of product of A and B.

3 REG_CTRL R Bits [3:0] contain IP core ID = “1101”.

Table 7- Description of the Multiplier register interface.

 Chapter 7 - Case Study: SeReCon Architecture Implementation

– 144 –

7.2.6.4. AES Cipher PR IP Core (aes_enc_wrapper.vhd)

The AES Cipher IP core uses the open-source design of the 128-bit AES block

cipher [36] which is available through OpenCores
63

.The IP core encrypts the

contents of a 128-bit TEXT_IN register using the key which is stored in the 128-bit

KEY register. The ciphertext is stored in the 128-bit TEXT_OUT register.

Table 7- describes IP core registers which are available through the PR region

memory-mapped interface. The AES Cipher IP core uses 13 memory-mapped

registers in the PCIe BAR2.

Register

number
NAME

Access

mode
Description

0 KEY_3 R/W Contains [127:96] bits of the AES KEY register.

1 KEY_2 R/W Contains [95:64] bits of the AES KEY register.

2 KEY_1 R/W Contains [63:32] bits of the AES KEY register.

3 KEY_0 R/W Contains [31:0] bits of the AES KEY register.

4 TXT_IN_3 R/W Contains [127:96] bits of the AES TEXT_IN register.

5 TXT_IN_2 R/W Contains [95:64] bits of the AES TEXT_IN register.

6 TXT_IN_1 R/W Contains [63:32] bits of the AES TEXT_IN register.

7 TXT_IN_0 R/W Contains [31:0] bits of the AES TEXT_IN register.

8 TXT_OUT_3 R Contains [127:96] bits of the AES TEXT_OUT register.

9 TXT_OUT_2 R Contains [95:64] bits of the AES TEXT_OUT register.

10 TXT_OUT_1 R Contains [63:32] bits of the AES TEXT_OUT register.

11 TXT_OUT_0 R Contains [31:0] bits of the AES TEXT_OUT register.

12-15 - - Unused.

16
STAT/CTL R/W Bit 0 provides the IP core status (when asserted the IP core is

busy). Write to this register initiates encryption process (.

Table 7- Description of the AES Cipher register interface.

63

 OpenCores (http://www.opencores.org)

http://www.opencores.org/

 Chapter 7 - Case Study: SeReCon Architecture Implementation

– 145 –

7.2.6.5. AES Decipher PR IP Core (aes_dec_wrapper.vhd)

The AES decipher IP core uses the open-source design of the AES block

decipher [36] which is available through the OpenCores. The IP core decrypts the

contents of a 128-bit TEXT_IN register using the key which is stored in the 128-bit

KEY register. The plaintext is stored in the 128-bit TEXT_OUT register.

Table 7- describes the AES Decipher IP core registers which are available

through the PR region memory-mapped interface. The AES Decipher IP core uses 13

memory-mapped registers in the PCIe BAR2.

Register

number
NAME

Access

mode
Description

0 KEY_3 R/W Contains [127:96] bits of the AES KEY register.

1 KEY_2 R/W Contains [95:64] bits of the AES KEY register.

2 KEY_1 R/W Contains [63:32] bits of the AES KEY register.

3 KEY_0 R/W Contains [31:0] bits of the AES KEY register.

4 TXT_IN_3 R/W Contains [127:96] bits of the AES TEXT_IN register.

5 TXT_IN_2 R/W Contains [95:64] bits of the AES TEXT_IN register.

6 TXT_IN_1 R/W Contains [63:32] bits of the AES TEXT_IN register.

7 TXT_IN_0 R/W Contains [31:0] bits of the AES TEXT_IN register.

8 TXT_OUT_3 R Contains [127:96] bits of the AES TEXT_OUT register.

9 TXT_OUT_2 R Contains [95:64] bits of the AES TEXT_OUT register.

10 TXT_OUT_1 R Contains [63:32] bits of the AES TEXT_OUT register.

11 TXT_OUT_0 R Contains [31:0] bits of the AES TEXT_OUT register.

12-15 - - Unused.

16

STAT/CTL R/W Bits [1:0] provides the IP core status (assertion of either bit

indicates that the IP core is busy). A write to this register

initiates the decryption process.

17 KEY_LD W A write to this register initiates the key calculation process.

Table 7- Description of the AES Decipher register interface.

 Chapter 7 - Case Study: SeReCon Architecture Implementation

– 146 –

7.2.7. SeReCon IP Core

The SeReCon IP core is a CPU-based system which is implemented using the

Xilinx EDK software. SeReCon uses an embedded 32-bit MicroBlaze processor

which is operating at 125 MHz.

Figure 7- illustrates the Xilinx EDK view of the SeReCon internal organisation.

SeReCon includes the MicroBlaze CPU (MICROBLAZE_0) along with a number of

IP cores which are connected using the Processor Local Bus (PLB) interface and the

Local Memory Block (LMB) interface. Only the AES (AES_0), TRNG

(VT_TRNG_PUF_0) and the PCIe interface IP cores (PCIE_INTERFACE_0) have

been implemented and described in this thesis. The remaining IP cores are generated

using the Xilinx EDK software.

Figure 7- The Xilinx EDK view of the SeReCon internal organisation.

Figure 7- illustrates the VHDL description of the SeReCon IP core interface.

SeReCon includes the RC system interface, SysAce interface, UART interface and

DDR2_SDRAM interface as follows:

The RC system interface connects SeReCon to the Configuration Controller IP core

and to the RC system BMs. Table 7- describes the SeReCon RC system interface

signals.

 Chapter 7 - Case Study: SeReCon Architecture Implementation

– 147 –

SysAce interface signals drive the ML505 SysAce CompactFlash controller which is

used as the SeReCon LIPS. Xilinx EDK documentation provides the SysAce signals

description.

The UART interface provides a serial console interface
64

 used for SeReCon

debugging. Figure 7- illustrates the view of the SeReCon serial console which uses

the UART interface in order to support RC system debugging.

The DDR2_SDRAM interface drives the external 256MB DDR2 memory card

mounted in the ML505 SODIMM slot. The RC system prototype uses this memory

in order to store the SeReCon firmware
65

.

Figure 7- VHDL description of the SeReCon IP core interface.

64

 115200 kbps, 8-bit, no parity.

65
 The DDR2 SDRAM memory is used to simplify the prototyping process. The thesis assumes that

the SeReCon firmware is located in the FPGA internal (BRAM) memory resources.

COMPONENT system

PORT(

--RC system interface

pcie_interface_0_mb_din_pin : IN std_logic_vector(31 downto 0);

pcie_interface_0_mb_ctrl_pin : IN std_logic_vector(31 downto 0);

pcie_interface_0_mb_dout_wr_pin : OUT std_logic;

pcie_interface_0_mb_din_rd_pin : OUT std_logic;

pcie_interface_0_mb_dout_pin : OUT std_logic_vector(31 downto 0);

pcie_interface_0_mb_stat_pin : OUT std_logic_vector(31 downto 0);

BM_enable_pin : OUT std_logic_vector(0 to 0);

sys_clk : OUT std_logic;

sys_clk_pin : IN std_logic;

sys_rst_pin : IN std_logic;

Dcm_all_locked_pin : OUT std_logic;

--SysAce interface

SysACE_CompactFlash_SysACE_CLK_pin : IN std_logic;

SysACE_CompactFlash_SysACE_MPIRQ_pin : IN std_logic;

SysACE_CompactFlash_SysACE_MPD_pin : INOUT std_logic_vector(15 downto 0);

SysACE_CompactFlash_SysACE_MPA_pin : OUT std_logic_vector(6 downto 0);

SysACE_CompactFlash_SysACE_CEN_pin : OUT std_logic;

SysACE_CompactFlash_SysACE_OEN_pin : OUT std_logic;

SysACE_CompactFlash_SysACE_WEN_pin : OUT std_logic;

--UART interface

RS232_Uart_1_TX_pin : OUT std_logic;

RS232_Uart_1_RX_pin : IN std_logic;

--DDR2_SDRAM interface

DDR2_SDRAM_DDR2_DQS : INOUT std_logic_vector(7 downto 0);

DDR2_SDRAM_DDR2_DQS_n : INOUT std_logic_vector(7 downto 0);

DDR2_SDRAM_DDR2_DQ : INOUT std_logic_vector(63 downto 0);

DDR2_SDRAM_DDR2_ODT_pin : OUT std_logic_vector(1 downto 0);

DDR2_SDRAM_DDR2_Addr_pin : OUT std_logic_vector(12 downto 0);

DDR2_SDRAM_DDR2_BankAddr_pin : OUT std_logic_vector(1 downto 0);

DDR2_SDRAM_DDR2_CAS_n_pin : OUT std_logic;

DDR2_SDRAM_DDR2_CE_pin : OUT std_logic_vector(1 downto 0);

DDR2_SDRAM_DDR2_CS_n_pin : OUT std_logic_vector(1 downto 0);

DDR2_SDRAM_DDR2_RAS_n_pin : OUT std_logic;

DDR2_SDRAM_DDR2_WE_n_pin : OUT std_logic;

DDR2_SDRAM_DDR2_Clk_pin : OUT std_logic_vector(1 downto 0);

DDR2_SDRAM_DDR2_Clk_n_pin : OUT std_logic_vector(1 downto 0);

DDR2_SDRAM_DDR2_DM_pin : OUT std_logic_vector(7 downto 0)

);

END COMPONENT;

 Chapter 7 - Case Study: SeReCon Architecture Implementation

– 148 –

Figure 7- View of the SeReCon serial console which uses the UART interface in order to support

RC system debugging.

 Chapter 7 - Case Study: SeReCon Architecture Implementation

– 149 –

Signal name Description

pcie_interface_0_mb_din_pin[31:0] SeReCon data input port which is connected to DIN FIFO

inside the Configuration Controller IP core.

pcie_interface_0_mb_dout_pin[31:0] SeReCon data output port which is connected to DOUT

FIFO inside the Configuration Controller IP core.

pcie_interface_0_mb_ctlr_pin[31:0] SeReCon control port which is connected to the CTRL

register inside the Configuration Controller IP core.

pcie_interface_0_mb_stat_pin[31:0] SeReCon status port which is connected to STAT register

inside the Configuration Controller IP core.

pcie_interface_0_mb_din_rd_pin DIN FIFO read signal. SeReCon asserts this signal prior to

reading the data word from pcie_interface_0_mb_din_pin.

pcie_interface_0_mb_dout_wr_pin DOUT FIFO write signal. SeReCon asserts this signal after

writing the data word to pcie_interface_0_mb_dout_pin.

sys_clk_pin The main RC system clock signal (100MHz). SeReCon uses

this signal as a reference input clock signal.

sys_clk SeReCon internal clock signal (125MHz) which is used to

drive SeReCon interface of DI and DOUT FIFOs inside the

Configuration Controller IP core.

sys_rst_pin Assertion of this signal disables SeReCon. The RC system

toggles this signal in order to restart SeReCon firmware (the

EIDR content is not affected)

dcm_all_locked_pin Assertion of this signal indicates that SeReCon internal

Digital Clock Managers (DCMs) are operating correctly.

bm_enable_pin Assertion of this signal indicates that SeReCon enabled RC

system bus macros, e.g. after successful IP core activation.

In the RC system prototype this signal is used only for

information, e.g. RC system bus macros are enabled using

separate bit in the Configuration Cntrl IP core.

Table 7- Description of the SeReCon RC system interface signals which connect SeReCon to the

Configuration Controller IP core and RC system BMs.

 Chapter 7 - Case Study: SeReCon Architecture Implementation

– 150 –

7.2.7.1. SeReCon PCIe Interface IP Core

Figure 7- illustrates the block diagram of the SeReCon PCIe interface IP core
66

.

The SeReCon IP core is connected to the RC system through the modified Interface

(IPIF) core wrapper which is generated using Xilinx EDK. The modification includes

the extension of the IP core IO interface in order to connect the IPIF registers to the

Configuration Controller IP core. This supports SeReCon access to the RC system

through the IPIF registers which are mapped into the Microblaze memory.

Figure 7- The block diagram of the SeReCon PCIe interface IP core.

66

 VHDL model source code for the SeReCon PCIe interface IP core is included in the thesis DVD.

MicroBlaze PLB

RC system

mb_ctrl[31:0]

mb_din[31:0]

mb_dout[31:0]

mb_stat[31:0]

mb_din_rd

mb_dout_wr

 Chapter 7 - Case Study: SeReCon Architecture Implementation

– 151 –

7.2.7.2. SeReCon TRNG IP Core

The TRNG IP core implements a compact (TRNG + PUF) Ring-Oscillator (RO)

based design which was first proposed by Maiti et al. [35]. The design provides

scalability and portability. The SeReCon TRNG IP core uses 8 RO ‘macrocells’
67

.

The macrocell contains single RO which is implemented using FPGA device specific

primitives. Macrocells are implemented in the Virtex-5 FPGA as hard macros

(similar to BMs). This prevents the Xilinx EDA software from automatic RO

removal during the TRNG netlist implementation and supports macrocell location

constraining in the PlanAhead during PR design flow.

The TRNG IP core is connected to the Microblaze using the Xilinx IPIF core

wrapper. Table 7- describes TRNG IP core registers which are mapped in the

MicroBlaze memory and are available to the SeReCon firmware. Current version of

the SeReCon firmware does not use the PUF functionality.

Register

number
NAME

Access

mode
Description

0 TRNG_DATA R
Contains a 32-bit random word generated by the IP core in the

TRNG mode.

1 PUF_CNT R

Not used. Contains 32-bit PUF counter value. The registered

value is a number of RO oscillations during a period of time

which is defined by the TIMER register value.

2 RO_ENABLE R/W

Bits[7:0] enable TRNG ROs. In the TRNG mode all RO’s are

enabled. In the PUF mode a single RO is enabled only. RO’s

are activated only during the SeReCon requests.

3 TIMER R/W

Not used. Contains 32-bit PUF timer value. This is ten number

of system clock cycles for which the IP core counts RO

oscillations. The counted value is read from the PUF_CNT

register. Write to this register starts counting.

4 CTRL R/W

Bit 0 – IP core mode (‘1’–TRNG, ‘0’–PUF),

bit 1 – is a TRNG busy flag,

bit 2 – is a PUF busy flag,

bit 3 – is asserted when the content of the TRNG_DATA is

updated with new data,

bits [31:4] are unused.

Table 7- Description of the TRNG IP core registers which are mapped in the MicroBlaze

memory and are available to the SeReCon firmware.

67

 The increase in the number of included Ring-Oscillators (ROs) up to 32 requires only simple

modification of the TRNG VDHL code and does not change TRNG API. If more than 32 RO’s are

required, e.g. for generating high-quality random data, an additional RO_ENABLE register must be

added to the core.

 Chapter 7 - Case Study: SeReCon Architecture Implementation

– 152 –

7.2.7.3. SeReCon AES IP Core

The SeReCon AES IP core uses the CBC operation mode in order to support the

encryption of arbitrary-length data, e.g. IP core bitstreams. In the CBC mode, each

block of plaintext is XORed with the previous ciphertext block before being

encrypted
68

. The first block of the plaintext is XORed with the initialisation vector

(IV). The SeReCon AES IP core uses the same AES block cipher (and decipher) as

the RC system PR IP cores (the AES cipher/decipher PR IP core). The SeReCon

AES IP core is connected to the Microblaze using the Xilinx IPIF core wrapper.

Table 7- and Table 7- describe the SeReCon AES IP core registers which are mapped

into the MicroBlaze memory and are available to the SeReCon firmware.

Register

number
NAME

Access

mode
Description

0 ENC_KEY_3 R/W Contains [127:96] bits of the AES cipher KEY register.

1 ENC_KEY_2 R/W Contains [95:64] bits of the AES cipher KEY register.

2 ENC_KEY_1 R/W Contains [63:32] bits of the AES cipher KEY register.

3 ENC_KEY_0 R/W Contains [31:0] bits of the AES cipher KEY register.

4 ENC_TXT_IN_3 R/W
Contains [127:96] bits of the AES cipher TEXT_IN

register.

5 ENC_TXT_IN_2 R/W
Contains [95:64] bits of the AES cipher TEXT_IN

register.

6 ENC_TXT_IN_1 R/W
Contains [63:32] bits of the AES cipher TEXT_IN

register.

7 ENC_TXT_IN_0 R/W
Contains [31:0] bits of the AES cipher TEXT_IN

register.

8 ENC_TXT_OUT_3 R
Contains [127:96] bits of the AES cipher TEXT_OUT

register.

9 ENC_TXT_OUT_2 R
Contains [95:64] bits of the AES cipher TEXT_OUT

register.

10 ENC_TXT_OUT_1 R
Contains [63:32] bits of the AES cipher TEXT_OUT

register.

11 ENC_TXT_OUT_0 R
Contains [31:0] bits of the AES cipher TEXT_OUT

register.

Table 7- Description of the SeReCon AES IP core registers (continued in Table 7-) which are

mapped into the MicroBlaze memory and are available to the SeReCon firmware.

68

 Wikipedia, Block cipher modes of operation (http://en.wikipedia.org/wiki/Cipher_block_chaining)

http://en.wikipedia.org/wiki/Cipher_block_chaining

 Chapter 7 - Case Study: SeReCon Architecture Implementation

– 153 –

Register

number
NAME

Access

mode
Description

12 DEC_KEY_3 R/W
Contains [127:96] bits of the AES decipher KEY

register.

13 DEC_KEY_2 R/W Contains [95:64] bits of the AES decipher KEY register.

14 DEC_KEY_1 R/W Contains [63:32] bits of the AES decipher KEY register.

15 DEC_KEY_0 R/W Contains [31:0] bits of the AES decipher KEY register.

16 DEC_TXT_IN_3 R/W
Contains [127:96] bits of the AES decipher TEXT_IN

register.

17 DEC_TXT_IN_2 R/W
Contains [95:64] bits of the AES decipher TEXT_IN

register.

18 DEC_TXT_IN_1 R/W
Contains [63:32] bits of the AES decipher TEXT_IN

register.

19 DEC_TXT_IN_0 R/W
Contains [31:0] bits of the AES decipher TEXT_IN

register.

20 DEC_TXT_OUT_3 R
Contains [127:96] bits of the AES decipher TEXT_OUT

register.

21 DEC_TXT_OUT_2 R
Contains [95:64] bits of the AES decipher TEXT_OUT

register.

22 DEC_TXT_OUT_1 R
Contains [63:32] bits of the AES decipher TEXT_OUT

register.

23 DEC_TXT_OUT_0 R
Contains [31:0] bits of the AES decipher TEXT_OUT

register.

24 STAT/CTL R/W

Bit 0 – provides the AES cipher busy flag,

bit 1 – starts AES encryption,

bit [3:2] – provide the AES decipher busy flags,

bit 4 – starts AES decryption,

bit 5 – starts decryption key calculation

bits [31:6] are unused.

Table 7- Description of the SeReCon AES IP core registers (continuation of Table 7-).

 Chapter 7 - Case Study: SeReCon Architecture Implementation

– 154 –

7.2.7.4. SeReCon Firmware

Figure 1-e illustrates the SeReCon firmware installed in the FPGA local memory

(BRAM). The SeReCon-enabled RC system prototype uses the DDR2 SDRAM

memory in order to simplify SeReCon debugging. The SeReCon firmware is divided

into modules
69

, as follows:

The Board Support Package (BSP) module provides the standard drivers for

Xilinx EDK IP cores and software libraries which are required by the MicroBlaze

CPU. The BSP module is automatically generated by Xilinx EDK.

The AES/ECC module is a SeReCon crypto library which provides 128-bit AES

encryption in the CBC mode (using the SeReCon AES IP core) and the generic

implementation of the Elliptic Curve Digital Signature Algorithm (ECDSA) and

ECC-based Diffie-Hellman SK agreement routines which are using (NIST standard)

P192 elliptic curve.

The ERDB module implements the ERDB-based IP core analyser and verifier, used

prior to IP core installation and activation.

The ICAP module uses modified MicroBlaze drivers in order to support FPGA self-

reconfiguration using PR bitstreams stored in the LIPS. The ICAP module also

provides user (read/write) access to FPGA configuration registers and individual

FPGA configuration frames.

The EIDR module emulates the EIDR in software. The emulation is mostly

transparent to the SeReCon software, e.g. SeReCon has additional debug routines

which are used to update the EIDR content, e.g. increment the EIDR counters. The

EIDR module also implements the SafeLock functionality (using the EIDR element

and the AES module).

The MFS module supports the volatile Memory File System (MFS), implemented in

the DDR2 memory in order to support SeReCon debugging. The MFS module

extends the MFS library which is available from Xilinx EDK.

The Comm module provides high-level drivers and a communication library for the

SeReCon PCIe interface IP core. The communication library supports file-based data

transfer between the demonstrator application and SeReCon LIPS.

The Config Manager module includes the SeReCon main program routine which

services the RC system requests in an infinite loop. This module also includes a

number of debug routines which are available through the SeReCon UART interface.

The SysAce module and the FATFS module provide file-based access to the

SeReCon LIPS which is implemented in the ML505 CF card.

69

 The C source code of the SeReCon firmware is included in the attached DVD. The Xilinx

proprietary code is removed.

 Chapter 7 - Case Study: SeReCon Architecture Implementation

– 155 –

The TRNG module provides drivers for the SeReCon TRNG IP core. This module

is mainly used by the AES/ECC module.

The Memory Manager module uses the AES/ECC module, MFS module and

FATFS module in order to support transparent
70

 data (e.g. IP core file) encryption

prior to storage in the SeReCon LIPS. Transparent decryption during file reading is

also supported.

7.3. RC System and SeReCon Implementation Results

7.3.1. Introduction

Figure 7- illustrates the FPGA Editor view of the SeReCon-enabled RC system

implementation on the Xilinx Virtex-5 FPGA. The figure illustrates the location of

the PR region, FPGA logic occupation (a) and complexity of RC system routing (b).

The location of RC system modules (e.g. PCIe interface, SeReCon etc) is not

constrained in order to speed-up implementation time.

This section highlights quantitative results of the prototype SeReCon-enabled

RC system implementation and the SeReCon resource cost analysis (including

firmware). Implementation issues and proposed solutions are also highlighted.

7.3.2. Hardware Implementation Results

Table 7- illustrates the FPGA logic resources (LUTs, FFs and BRAMs) which

are used by the prototype SeReCon-enabled RC system. Figure 7- illustrates the

relative (percentage of the FPGA) resource costs of each of the main SeReCon-

enabled RC system prototype elements, e.g. FPGA LUTs (a) and FPGA FF’s (b).

Results show that the SeReCon resource cost is 36% of the size of the mid-size

Xilinx Virtex-5 device (used in the ML505 board).

Table 7- illustrates the FPGA logic resources used by the SeReCon IP core.

Figure 7- illustrates the relative (percentage of the FPGA) resource costs of each of

the SeReCon elements, e.g. FPGA LUTs (Figure 7-a) and FPGA FF’s (Figure 7-b).

Results show a significant amount of resources consumed by the DDR2 SDRAM

memory controller (up to 38% of SeReCon size). The RC system prototype uses this

memory in order to store the SeReCon firmware. The SeReCon security model and

SeReCon-enabled RC system RoT assume that the SeReCon firmware is stored

within the FPGA local memory, e.g. BRAM.

70

 The current SeReCon implementation uses intermediate, dynamically allocated buffers? in the

DDR2 SDRAM memory.

 Chapter 7 - Case Study: SeReCon Architecture Implementation

– 156 –

a) b)

Figure 7- The FPGA Editor view of the SeReCon-enabled RC system implementation in the

Xilinx Virtex-5 FPGA and location of the PR region. a. FPGA logic occupation. b. complexity of

RC system routing.

RC system module name FFs (max 28800) LUTs (max 28800) BRAMs (36kbits per block)

SeReCon 10480 10492 32
71

PR region 3840 3840 8

PCIe endpoint 3059 2486 6

PCIe endpoint wrapper 199 240 0

Config controller 162 247 2

PCIe BAR splitter 0 59 0

Table 7- FPGA logic resources used by the prototype SeReCon-enabled RC system.

71

 The RC system prototype uses the DDR2 SDRAM memory in order to store the SeReCon

firmware. Thus, the required number of SeReCon RAM blocks does not include SeReCon firmware

cost.

PR region PR region

 Chapter 7 - Case Study: SeReCon Architecture Implementation

– 157 –

a)

b)

Figure 7- The relative (percentage of FPGA resources) cost of the main SeReCon-enabled RC

system prototype elements. a. FPGA LUT usage. b. FPGA FF usage.

SeReCon
10492
36%

PR region
3840
13%

PCIe endpoint
2486
9%

PCIe endpoint
wrapper

240
1%

Config
controller

247
1%

PCIe BAR
splitter

59
0%

Free
11436
40%

RC system FPGA LUT's usage

SeReCon
10480
36%

PR region
3840
13%

PCIe endpoint
3059
11%

PCIe endpoint
wrapper

199
1%

Config
controller

162
1%

PCIe BAR
splitter

0
0%

Free
11060
38%

RC system FPGA FF's usage

 Chapter 7 - Case Study: SeReCon Architecture Implementation

– 158 –

SeReCon module name FFs (max 28800) LUTs (max 28800) 36k BRAMs

AES 1789 2294 0

BM CTRL (GPIO) 73 42 0

DDR2 IF 3708 2244 0

ICAP 418 1152 0

INT CTRL 157 113 0

LMB 6 14 0

MB_PLB 170 594 0

MDM_DEBUG 123 108 0

MICROBLAZE 1848 1966 3

PCIE IF 204 170 0

RS232 144 65 0

SYS_RESET 67 41 0

SYSACE IF 265 95 0

SYSMON 178 127 0

TIMER 361 308 0

TRNG 360 273 0

Table 7- FPGA logic resources used by the SeReCon IP core.

 Chapter 7 - Case Study: SeReCon Architecture Implementation

– 159 –

a)

b)

Figure 7- The relative (percentage of FPGA resources) cost of the SeReCon elements. a. FPGA

LUT usage. b. FPGA FF usage.

AES
24%

DDR2 IF
23% MICROBLAZE

20%

ICAP
12%

MB_PLB
6%

TIMER
3%

TRNG
3%

PCIE IF (GPIO)
2%

SYSMON
1%

INT CTRL
1%

MDM_DEBUG
1%

SYSACE IF
1%

RS232
1%

BM CTRL (GPIO)
0%

SYS_RESET
0%

LMB
0%

SeReCon modules % LUT usage

DDR2 IF
38%

MICROBLAZE
19%

AES
18%

ICAP
4%

TIMER
4%

TRNG
4%

SYSACE IF
3%

PCIE IF (GPIO)
2%

SYSMON
2% MB_PLB

2%

INT CTRL
2%

RS232
1%

MDM_DBG
1%

BM CTRL (GPIO)
1%

SYS_RESET
1%

SeReCon modules % FF usage

 Chapter 7 - Case Study: SeReCon Architecture Implementation

– 160 –

7.3.3. SeReCon Firmware Implementation Results

Table 7- illustrates the FPGA memory resources used by the SeReCon firmware

modules. Some modules, e.g. the ECC module and the ERDB module, include

multiple files which represent the internal module hierarchy.

The total size of the SeReCon firmware is dominated by the ERDB module

(95%). The ERDB module mainly contains the description of the FPGA routing

(erdb_routing.o, 42.3%) and PIP configuration bits (erdb_pd.o, 47.6%). Further

investigation of compact FPGA fabric representations, e.g. erdb_routing and

erdb_pd organisation could optimise ERDB footprint.

SeReCon module Module files Module size in bytes

aes aes_soft.o 25980

ecc bignum.o 15424

ecdsa.o 6068

ecdsa_demo.o 20104

ellipticcurve.o 8188 ECC size = 49784 (1.3%)

erdb bit_data_parser.o 7972 (0.2%)

bit_header-parser.o 1832 (<0.1%)

cfg_analyser.o 16060 (0.4%)

erdb_demo.o 9452 (0.3%)

erdb_layout.o 19824 (0.5%)

erdb_pd.o 1764372 (47.6%)

erdb_routing.o 1565036 (42.2%)

erdb_tg.o 235764 (6.4%)

erdb_ws.o 32392 (0.9%)

far_seq_v5ls50t.o 54097 (1.46%) ERDB size = 3706801 (95%)

debug debug.o

4124 (0.1%)

icap icap_demo

9092 (0.2%)

debug menu.o

2748 (0.1%)

eidr idr.o

12708 (0.3%)

mfs mfs_demo.o

7296 (0.2%)

comm. (pcie) pcie_demo.o

43484 (1.1%)

erdb

analyser/verifier
serecon.o

25632 (0.7%)

main SeReCon@Intel.o

3984 (0.1%)

sysace/fatfs sysace_demo.o

7752 (0.2%)

trng trng.o

1032 (<0.1%)

SeReCon firmware serecon.elf Summarised size = 3900417 (100%)

Table 7- FPGA memory resources used by the SeReCon firmware.

 Chapter 7 - Case Study: SeReCon Architecture Implementation

– 161 –

7.3.4. SeReCon-enabled RC System Prototype Implementation

Issues

The following implementation issue have been observed during prototyping of

the SeReCon-enable RC system, and require address during a future implementation:

 The unreliable Xilinx EAPR design flow support for Xilinx Virtex-5

FPGAs results in a random implementation error. Listing 7- illustrates the

EAPR critical exceptions which have occurred during the SeReCon-enabled

RC system implementation. Exceptions appear to be related to the always-on

‘fake’ PIPs and appear randomly, e.g. re-implementation of an unchanged

design results in errors occurring in a different phase (e.g. Xilinx ISE P&R

Phase 10) or even successful completion of implementation with no errors.

The Xilinx EAPR design flow support for Xilinx Virtex-5 devices is

unreliable, e.g a successful implementation currently requires a number of

time consuming iterations, and is not advised.

 SeReCon resource cost: Table 7- illustrates the relative (percentage of

FPGA resources) cost of the SeReCon implementation in a range of modern

Xilinx FPGAs, e.g. the largest Virtex-6 FPGA device, and also the mid-sized

and the largest Virtex-5 FPGA. The SeReCon size introduces a reasonable

(2%-5%) overhead only in the largest FPGAs. The SeReCon firmware size

exceeds the amount of memory which is available in most of the currently

available Xilinx devices, except for the Virtex-6 device. The SeReCon-

enabled RC system prototype uses the DDR2 SDRAM memory for SeReCon

firmware storage. This indicates the need for firmware optimisation, e.g.

investigation of the optimal ERDB structure is suggested as future work.

Generalisation of FPGA routing types and the use of device-specific data

field sizes (e.g. bit fields, instead of generic ‘int’) could also be considered in

order to reduce SeReCon firmware footprint.

Further work could also investigate the use of external RAM encryption,

which was proposed by Edmison [139], or software authentication as a

complementary approach to use of scarce FPGA internal memory (BRAM)

resources for the SeReCon firmware storage.

 Incomplete SeReCon AES implementation. Prototype SeReCon

implementation does not support authentication-encryption (e.g. AES in

EAX
72

 mode); only the CBC mode is supported. A solution could be to

include an additional authentication field in the IP core entry in SafeLock.

Also, the AES IP core which is included in the SeReCon element does not

pass test routines provided with the IP core source code
73

. Thus, the IP core

72

 EAX mode is a mode of operation for cryptographic block ciphers (http://en.wikipedia.org/wiki/

EAX_mode)

73
 This could be caused by experimental-only EAPR support for Virtex-5 FPGAs. The exact reason

requires further investigation. Interestingly, the same AES IP core operates correctly when used as the

PR IP core.

http://en.wikipedia.org/wiki/%20EAX_mode
http://en.wikipedia.org/wiki/%20EAX_mode

 Chapter 7 - Case Study: SeReCon Architecture Implementation

– 162 –

remains unused and the software-only implementation of the AES cipher and

decipher is included in the SeReCon firmware (as a workaround).

Additionally, the software implementation of AES slows down SeReCon-

based PR.

 The software ECC implementation is slow. The SeReCon ECC uses the

P192 elliptic curve [181] which offers only 96 secure bits (half of the key

width). Thus the hardware accelerator for large number ECC operations

would improve SeReCon performance during the DH shared key agreement

with the IPV and would support longer ECC keys.

 The TRNG IP core uses only 8 ROs. The small RO number affects the

TRNG quality, e.g. the output data stream is biased and the TRNG fails the

standard tests for data randomness. The TRNG extension up to 32 ROs is a

straightforward addition of RO macro cells and does not require a change to

the TRNG API. The TRNG macrocell architecture could also be optimised

towards the architecture of Virtex-5 (or Virtex-6) CLB.

 The ERDB Analyser does not support the detection of IP core internal

design errors, e.g. short circuits between signals. Future work could improve

the ERDB Analyser robustness by including this functionality. Also, the

ERDB Analyser reports only the shape of external wires (without its unique

name in the FPGA tile). The distinction between two FPGA tile wires, both

having the same shape, is not possible. Thus the ERDB Verifier (Figure 1-e)

could raise a false alarm in situation when two IP cores are isolated and but

use routing (wires) of the same shape. This affects only the ERDB

implemented in SeReCon. The FDAT (offline) version of ERDB contains an

additional namespace database which eliminates this risk. The ERDB Verifier

also uses a single static and a predefined reconfigurable region in order to

support the EAPR design flow. In future work, an extension of the IP core

verification is suggested in order to incorporate a model of multiple cores

within the reconfigurable region.

 The Microblaze architecture is closed-source. Thus, public audit of the

SeReCon element is not possible. Also, use of formal verification methods

could significantly improve the robustness of SeReCon. Thus, open-source

CPUs, e.g. OpenRISC
74

 or Leon
75

, is suggested for future SeReCon

implementations. Also, the SeReCon architecture and firmware is not

hardened against power analysis attacks which could expose the SeReCon

security credentials, e.g. the EIDR contents or the SafeLock encryption keys.

Thus, future work could also support SeReCon firmware and architecture

modification in order to include DPA-preventing hardware primitives (e.g.

WDDL logic) and algorithms (branch balancing etc).

 The EIDR is emulated in SeReCon firmware. Thus, the EIDR is assumed

to be active after power-up and no check of BaseSFC configuration bitstream

74

 OpenCores, OpenRISC processor (http://opencores.org/project,or1k)

75
 Aeroflex Gaisler, Leon processor (http://www.gaisler.com/cms/index.php?option=com_content&

task=section&id=4&Itemid=33)

http://opencores.org/project,or1k
http://www.gaisler.com/cms/index.php?option=com_content&%20task=section&id=4&Itemid=33
http://www.gaisler.com/cms/index.php?option=com_content&%20task=section&id=4&Itemid=33

 Chapter 7 - Case Study: SeReCon Architecture Implementation

– 163 –

can be made. Also, an activity of the internal EIDR counters (AAC, LTC,

FRC and MSG_NO) is emulated through the ‘backup-modify-restore’

operation on the EIDR contents. Future work could implement the EIDR

using an external FPGA board which is connected to the RC system

configuration interface in order to detect BaseSFC tampering.

 The PCIe interface uses a generic (slow) PCIe reference design which

supports only single-word PCIe transactions. Future work could focus on

more robust PCIe interface implementation which would support multi-word

(burst) read/write PCIe transactions.

 SeReCon does not currently deactivate expired IP cores, e.g. when the IP

core is active and its lifetime has expired. SeReCon includes the Timer IP

core which could be used to generate periodic interrupts to MicroBlaze which

are used to request a poll and check of the IP core license.

1 Starting Router

2 Phase 1: 16593 unrouted; REAL time: 52 secs

3 Phase 2: 15126 unrouted; REAL time: 54 secs

4 Phase 3: 5927 unrouted; REAL time: 1 mins 4 secs

5 Phase 4: 5927 unrouted; (140864) REAL time: 1 mins 5 secs

6 Phase 5: 6069 unrouted; (111829) REAL time: 1 mins 30 secs

7 Phase 6: 6072 unrouted; (111817) REAL time: 1 mins 31 secs

8 Phase 7: 0 unrouted; (117091) REAL time: 3 mins 5 secs

9

10 Updating file: top_routed.ncd with current fully routed design.

11 Pin<BRID:102377> to be detached from RUGNODE:FAKE_RFNODE not found

12 Pin<BRID:111380> to be detached from RUGNODE:FAKE_RFNODE not found

13 EXCEPTION:Rf:Rf_DeviceMgr.c:221:1.7 - GetDevice called with bad index

14 Pin<BRID:111380> to be detached from RUGNODE:FAKE_RFNODE not found

15 EXCEPTION:Rf:Rf_DeviceMgr.c:221:1.7 - GetDevice called with bad index

16 Pin<BRID:114121> to be detached from RUGNODE:FAKE_RFNODE not found

17 Pin<BRID:114172> to be detached from RUGNODE:FAKE_RFNODE not found

18 EXCEPTION:Rf:Rf_DeviceMgr.c:221:1.7 - GetDevice called with bad index

Listing 7- EAPR critical exceptions which occur during the SeReCon-enabled RC system

implementation.

SeReCon size

FPGA device
10480 FFs 10492 LUTs 24712 BRAM Kbits

Mid-size FPGA (ML505)

(XC5VLX50T)
36% 36% 1144 % (2160)

Largest Virtex-5 FPGA

(XC5VLX330T)
5% 5% 212% (11664)

Largest Virtex-6 FPGA

(XC6VLX760)
1% 2% 95% (25920)

Table 7- The percentage resource cost of the SeReCon implementation in modern Xilinx

FPGAs.

 Chapter 7 - Case Study: SeReCon Architecture Implementation

– 164 –

7.4. RC System Demonstrator

7.4.1. Introduction

This section reports and describes the SeReCon-enabled RC system

demonstrator application (Figure 7-). The communication library of the RC system

demonstrator and host-side SeReCon API are highlighted. Demonstrator application

results are also reported.

The demonstrator application uses the interactive Python command line in order

to provide a live experience of the RC system behaviour. This supports non-standard

ad-hoc system tests and interactive RC system application development.

The RC system communication library uses the internally developed PCIe device

driver which provides Python API for communication with the RC system and

SeReCon. The RC system communication library supports read and write of the RC

system registers, BM control and identification of the active PR module.

The SeReCon API supports SeReCon control, status monitoring and bidirectional

data transfer between SeReCon and demonstrator application.

The demonstrator application shows that SeReCon detects additional external

PIPs in IP cores which are created using the genuine Xilinx EAPR design flow. This

confirms that even genuine IP cores, when developed in a multi-party environment,

could include implicit communication channels and could introduce security risks.

7.4.2. RC System Communications Library

The demonstrator application communicates with the SeReCon-enabled RC

system through the single-lane (x1) PCIe interface. Table 7- describes the RC system

communication library which is used by the host-side SeReCon API. The RC system

communication library is implemented in Python and uses the unpublished driver

(C++/Python) for the Xilinx PCIe reference design
76

. The RC system communication

library supports read and write of RC system registers which are mapped to PCIe

BARs. RC system BM control and identification (ID read) of the active PR module is

also supported.

76

 The Python/C++ driver for the PCIe reference design was implemented by Krzysztof

Kościuszkiewicz.

 Chapter 7 - Case Study: SeReCon Architecture Implementation

– 165 –

Function Parameters Description

reg
number,

value, BAR

Sets the number register in BAR to value (if value is not none).

Returns current content of the register.

bm mode
Enables and disables RC system BMs. Returns the current state of

the BM enable register.

moduleid – Returns 4-bit PR IP core ID.

leds value

Uses value [7:0] in order to control the ML505 board LEDs.

Returns current status of the Configuration Controller LED

register

Table 7- Description of the RC system communication library which is used by the host-side

SeReCon API.

7.4.3. Host-side SeReCon API

Table 7- describes the host-side SeReCon API which is implemented in Python

and used by the SeReCon-enabled RC system demonstrator application. The API

supports SeReCon control (CTRL register), status monitoring (STAT register) and

bidirectional data transfer (DIN and DOUT FIFOs).

Function Parameters Description

mbRdCnt – Returns MB_READ counter.

mbWrCnt – Returns MB_WRITE counter.

mbDout – Returns MB_DOUT value.

mbDin value Sets MB_DIN to value. Returns current content.

mbWrite –
Writes MB_DIN data to MB FIFO (asserts

pcie_interface_0_mb_dout_wr_pin signal).

mbRead –
Reads MB FIFO data to MB_DOUT (asserts

pcie_interface_0_mb_din_rd_pin signal).

mbSend word
Writes the 32-bit word to the Configuration Controller DIN FIFO.

Waits if the FIFO is full and timeouts after 100 failed retries.

mbReceive –
Returns the 32-bit word which is read from the Configuration

Controller DOUT FIFO. Raises an exception if the FIFO is empty.

mbStat – Returns the SeReCon status word.

mbRst mode
Asserts/deasserts the SeReCon reset line and returns the current state

of the reset line.

mbCmd cmd Sets SeReCon command word. Returns current command.

mbIsFull fifo Returns true if fifo (DIN/DOUT) FIFO is full.

mbIsEmpty fifo Returns true if fifo (DIN/DOUT) FIFO is empty.

Table 7- Description of the host-side SeReCon API which is used by the RC system

demonstrator application.

 Chapter 7 - Case Study: SeReCon Architecture Implementation

– 166 –

7.4.4. Demonstrator Application Results

The demonstrator application uses the interactive Python command line in order

to provide a live experience of the RC system behaviour. This supports non-standard

ad-hoc system tests and interactive RC system application development.

Table 7- describes the SeReCon demonstrator API which is tested using the

interactive Python command line. Table 7- describes SeReCon demonstrator API

support for RC system interactive debugging. Table 7- describes SeReCon

demonstrator API support for testing activated IP cores and LEDs on the RC system

board.

Function Parameters Description

initEidr – SeReCon initialises the EIDR register.

getMsgNo – Return the current EIDR MNC value (msgNo).

instIpCore
name, vendor,

msgNo, dest

Demonstrate SeReCon-based IP core (name)

installation in the RC system dest (LIPS or MFS).

actIpCore
name, msgNo,

dest

Demonstrate SeReCon-based IP core (name)

activation in the RC system dest (LIPS or MFS).

deactIpCore
name, msgNo,

dest

Demonstrate SeReCon-based IP core (name)

deactivation.

genIpvSKey
vendor, msgNo,

source

Demonstrate ECDSA-based SeReCon DH shared-

key calculation.

removeFile file, fs Remove file from fs file system (CF or MFS).

getFileNames fs
Return dictionary of files and their sizes in the fs file

system (CF or MFS).

sendFile file, dest
Send file to SeReCon which stores it in dest (LIPS or

MFS).

receiveFile file, source
Receive file from SeReCon which reads it from

source (LIPS or MFS).

Table 7- Description of the SeReCon demonstrator API which is tested using the interactive

Python command line. The API description is continued in Table 7- and Table 7-.

 Chapter 7 - Case Study: SeReCon Architecture Implementation

– 167 –

Function Parameters Description

restoreFs
source,

target

Restore the SeReCon target files, e.g. CF (LIPS) or MFS,

using the host source directory content.

resetMfs - Reset MFS.

getMfsStats – Return the number of MFS blocks (free and used).

checkFile
file,

source
Check file in dest (LIPS or MFS). Returns file status

getFpgaFrame

block,

bottom,

row,

major,

minor

Return FPGA configuration frame (41 32-bit words) which

is addressed by the block type, FPGA half (bottom), clock

row, major and minor frame number.

setFpgaReg
reg,

values

Write a list of 32-bit words (values) into the FPGA

configuration register (reg).

getFpgaReg reg
Return the current content of the FPGA configuration

register (reg).

tamperEidr -
Mimic malicious EIDR tampering . This resets the EIDR

content.

backupEidr target

This is the prototype-only debug support function which

uses target (LIPS or MFS) in order to store a backup copy

of the EDIR content.

restoreEidr source

This is the prototype-only debug support function which

restores the EDIR content from the source backup copy (in

the LIPS or MFS).

initPr –
Initialise RC system PR region using default (blank)

configuration.

allowRiskyIp

Core
-

SeReCon overrides the results of the ERDB-based

verification prior to PR. This allows activation of insecure

IP cores.

getEidrCnts –
Return current values of EIDR counters (AAC, LTC and

FRC).

getSysState –

Return RC system PR region data, e.g. region coordinates,

total number and list of region external PIPs.

Configuration and isolation regions are supported.

resetSysAce –
Enforce SysAce-based FPGA reconfiguration using the

default (.ACE) configuration file.

resetIcap - Reset ICAP.

loadPrFile
file,

source

This is the prototype-only debug support function which

uses ICAP in order to reconfigure FPGA using the PR

bitstream loaded from source.

Table 7- Continued description of the SeReCon demonstrator API which includes support for

RC system interactive debugging.

 Chapter 7 - Case Study: SeReCon Architecture Implementation

– 168 –

Function Parameters Description

leds val
Use val bits [7:0] to control (on/off) 8 LEDs on the ML505

board.

test arg1, arg2

Test and demonstrate simple math IP cores, e.g. adder and

multiplier which are loaded in PR region. Arg1 and arg2

are parameters used by the core.

testAesEnc key, txtIn

Test and demonstrate the AES Cipher IP core which is

loaded in PR region. Key and txtIn are parameters used by

the core.

testAesDec key, txtIn

Test and demonstrate the AES decipher IP core which is

loaded in PR region. Key and txtIn are parameters used by

the core.

Table 7- Continued description of the SeReCon demonstrator API which includes functional

tests for activated IP cores and LEDs on the RC system board.

Listing 7- illustrates the SeReCon-enabled RC system demonstrator application

algorithm which includes SeReCon initialisation and credentials exchange (lines 1-

10), installation of IP cores in the SeReCon-enabled RC system (lines 13-36) and

their activation (lines 38-40). Appendix E illustrates the complete output of the

SeReCon debug console during SeReCon-enabled RC system demonstration.

SeReCon initialisation and credentials exchange. The demonstrator

application initialises SeReCon EIDR (line 5) and receives the SeReCon public key

(line 7). The IPV security credentials are generated (line 8) prior to sending the IPV

public key to SeReCon (line 10).

IP cores installation in the RC system. For every IP core in the list (line 2) the

demonstrator requests the current EIDR MNC value (line 15) and creates the IPV

message (line 17) which is sent to SeReCon (line19) in order to generate a shared

key using the DH key agreement protocol (line 21). The IPV reads the SeReCon

reply (line 25) and locally generates the DH shared key (line 27) using the updated

value of the EIDR MNC value (line 23). The IPV uses the shared key in order to

prepare the IP package (line 29), e.g. the encrypted IP core PR bitstream and its

license, which is sent to SeReCon (lines 31-33). The demonstrator also commands

SeReCon to install the IP core (line 35).

Listing 7-, Listing 7-, Listing 7-, Listing 7- and Listing 7- illustrate fragments of the

SeReCon debug console output which are related to IP core analysis (during RC

system demonstration). SeReCon analyses adder (Listing 7-), blank (Listing 7-),

multiplier (Listing 7-), AES encoder (Listing 7-) and AES decoder IP cores (Listing

7-).

IP cores activation in the RC system. The demonstrator application uses the IP

core name and the EIDR MNC value (from the IP core installation) in order to

activate the IP cores (line 40).

 Chapter 7 - Case Study: SeReCon Architecture Implementation

– 169 –

Listing 7- The demonstrator application routine.

Listing 7-, Listing 7-, Listing 7-, Listing 7- and Listing 7- illustrate fragments of the

SeReCon debug console output which are related to verification of IP core

compatibility with current SeReCon-enabled RC system state (during IP core

activation). SeReCon attempts to activate adder (Listing 7-), blank (Listing 7-),

multiplier (Listing 7-), AES encoder (Listing 7-) and AES decoder IP core (Listing

7-). Lines 8 and 10 in Listing 7-, Listing 7-, Listing 7- and Listing 7- show that

SeReCon detects additional external PIPs during verification of IP core compatibility

with the RC system current state
77

. Those PIPs could be used to setup implicit

communication channel so SeReCon writes an activation report file
78

 (line 15),

cancels the IP core activation (line 19) and rolls back the IP core license (line 20).

77

 The blank IP core in Listing 7-.b passed the test because it is used as the default (reference) layout

of the ‘empty’ PR region.

78
 The report includes list of additional PIPs in IP core configuration region and isolation region. Its

structure is compatible with ERDB Analiser report file and can be read using FDAT tool.

1 ipv_name = "ipv_demo"

2 ip_cores = ["add", "blank", "mul", "enc", "dec"]

3 msg_nums = {}

4 print"\n\n\n ### INITIALISE SeReCon"

5 rcSystem.initidr()

6 print"\n\n\n ### RECEIVE Serecon pubkey"

7 rcSystem.receivefile('serecon.pub', 'cf')

8 create_ipv_key(ipv_name)

9 print"\n\n\n ### SEND IPV pubkey"

10 rcSystem.sendfile('ipv_demo.ipv', 'mfs')

11

12

13 for ip_name in ip_cores:

14 print"\n\n\n ### GET msgNo"

15 msg_no=dead.getmsgno()

16 print"\n\n\n ### CREATE IPV msg (%d)"%msg_no

17 create_ipv_msg(ipv_name, msg_no)

18 print"\n\n\n ### SEND IPV message"

19 rcSystem.sendfile(ipv_name+'.m%02x'%msg_no,'mfs')

20 print"\n\n\n ### SeReCon generates shared key"

21 rcSystem.generateipvskey(ipv_name, msg_no, "mfs")

22 print"\n\n\n ### GET msgNo"

23 msg_no=dead.getmsgno()

24 print"\n\n\n ### RECEIVE SeReCon reply"

25 rcSystem.receivefile(ipv_name+'.r%02x'%msg_no, 'mfs')

26 print"\n\n\n ### CALCULATE shared key"

27 calc_shared_key(ipv_name, msg_no)

28 print"\n\n\n ### CREATE IP package '%s' "%ip_name

29 create_ip_package(ip_name,ipv_name,msg_no,ip_name,0xffffffff,0xffffffffffffffff)

30 print"\n\n\n ### SEND encrypted IP core"

31 rcSystem.sendfile(ip_name+".e%02x"%msg_no, "mfs")

32 print"\n\n\n ### SEND encrypted license"

33 rcSystem.sendfile(ip_name+".c%02x"%msg_no, "mfs")

34 print"\n\n\n ### INSTALL IP core '%s' "%ip_name

35 rcSystem.installipcore(ip_name, ipv_name, msg_no, "mfs")

36 msg_nums[ip_name] = msg_no

37

38 for ip_name in ip_cores:

39 print"\n\n\n ### ACTIVATE IP core '%s' "%ip_name

40 rcSystem.activateipcore(ip_name, msg_nums[ip_name], "mfs")

SeReCon initialisation

and credentials exchange

IP cores installation

in the RC system

IP cores activation

in the RC system

 Chapter 7 - Case Study: SeReCon Architecture Implementation

– 170 –

All affected IP cores (adder, multiplier AES cipher and AES decipher) are created

using the genuine Xilinx EAPR design flow which ensures that the static part of the

design (e.g. BaseSFC) does not share routing with PR IP cores, except explicitly

defined BMs. This non-sharing policy cannot be ensured in a multi-party PR design

flow where IP cores are delivered through third-party IPVs with no knowledge of the

static design, e.g. third party IP core which is delivered as an update to the already-

deployed SeReCon-enabled RC system. This example shows that even genuine IP

cores, when developed in a multi-party environment, could include implicit

communication channels and could introduce security risks.

1 ERDB_analyser v.1.0 (release Jan 29 2010, 18:40:42)

2 - read header

3 Header data:

4 - HeaderLength : 86

5 - BitstreamLength : 145732

6 - DesignName : prm_adder_partial.ncd

7 - PartName : 5vlx50tff1136

8 - Date : 2009/10/27

9 - Time : 19: 7:46

10 - parse bitstream...OK

11 Region (x,y): (10,0) to (42,43)

12 - detect external pips...OK

13 Found 2699 external pips (2254 real, 445 fake).

14 - analyse isolation boundary...OK

15 Region (x,y): (10,0) to (42,45)

16 - detect io pips...OK

17 Found 2468 io pips (2154 real, 314 fake).

18 Analysis finished successfully.

Listing 7- Fragment of the SeReCon debug console output which is related to Adder IP core

analysis.

1 ERDB_analyser v.1.0 (release Jan 29 2010, 18:40:42)

2 - read header

3 Header data:

4 - HeaderLength : 85

5 - BitstreamLength : 126420

6 - DesignName : pblock_prm_blank.ncd

7 - PartName : 5vlx50tff1136

8 - Date : 2009/10/27

9 - Time : 19:36:42

10 - parse bitstream...OK

11 Region (x,y): (10,0) to (42,43)

12 - detect external pips...OK

13 Found 2684 external pips (2239 real, 445 fake).

14 - analyse isolation boundary...OK

15 Region (x,y): (10,0) to (42,45)

16 - detect io pips...OK

17 Found 2453 io pips (2139 real, 314 fake).

18 Analysis finished successfully.

Listing 7- Fragment of the SeReCon debug console output which is related to blank design

analysis.

 Chapter 7 - Case Study: SeReCon Architecture Implementation

– 171 –

1 ERDB_analyser v.1.0 (release Jan 29 2010, 18:40:42)

2 - read header

3 Header data:

4 - HeaderLength : 91

5 - BitstreamLength : 150968

6 - DesignName : prm_multiplier_partial.ncd

7 - PartName : 5vlx50tff1136

8 - Date : 2009/10/27

9 - Time : 19:14: 0

10 - parse bitstream...OK

11 Region (x,y): (10,0) to (42,43)

12 - detect external pips...OK

13 Found 2709 external pips (2264 real, 445 fake).

14 - analyse isolation boundary...OK

15 Region (x,y): (10,0) to (42,45)

16 - detect io pips...OK

17 Found 2478 io pips (2164 real, 314 fake).

18 Analysis finished successfully.

Listing 7- Fragment of the SeReCon debug console output which is related to Multiplier IP core

analysis.

1 ERDB_analyser v.1.0 (release Jan 29 2010, 18:40:42)

2 - read header

3 Header data:

4 - HeaderLength : 88

5 - BitstreamLength : 165696

6 - DesignName : prm_encoder_partial.ncd

7 - PartName : 5vlx50tff1136

8 - Date : 2009/10/27

9 - Time : 19:20:24

10 - parse bitstream...OK

11 Region (x,y): (10,0) to (42,43)

12 - detect external pips...OK

13 Found 3330 external pips (2885 real, 445 fake).

14 - analyse isolation boundary...OK

15 Region (x,y): (10,0) to (42,45)

16 - detect io pips...OK

17 Found 3064 io pips (2750 real, 314 fake).

18 Analysis finished successfully.

Listing 7- Fragment of the SeReCon debug console output which is related to AES Encoder IP

core analysis.

 Chapter 7 - Case Study: SeReCon Architecture Implementation

– 172 –

19 ERDB_analyser v.1.0 (release Jan 29 2010, 18:40:42)

20 - read header

21 Header data:

22 - HeaderLength : 88

23 - BitstreamLength : 168576

24 - DesignName : prm_decoder_partial.ncd

25 - PartName : 5vlx50tff1136

26 - Date : 2009/10/27

27 - Time : 19:27: 4

28 - parse bitstream...OK

29 Region (x,y): (10,0) to (42,43)

30 - detect external pips...OK

31 Found 3869 external pips (3424 real, 445 fake).

32 - analyse isolation boundary...OK

33 Region (x,y): (10,0) to (42,45)

34 - detect io pips...OK

35 Found 3594 io pips (3280 real, 314 fake).

36 Analysis finished successfully.

Listing 7- Fragment of the SeReCon debug console output which is related to AES Decoder IP

core analysis.

1 ERDB_verifier v.1.0 (release Jan 29 2010, 18:40:42)

2 - get IP core report 'add.d01'...OK

3 - make diff with system state...OK

4 Verification report:

5 - IP core configuration region: (10,0 - 42,43)...OK

6 - IP core isolation region : (10,0 - 42,45) ...OK

7 - external pips found : 2699 (2254 real, 445 fake)

8 - unmatched ext pips : 15 (15 real, 0 fake)

9 - io pips found : 2468 (2154 real, 314 fake)

10 - unmatched io pips : 15 (15 real, 0 fake)

11

12 !!!WARNING!!!

13 Potentially dangerous IP core!!!

14

15 - write report file 'add.t01'...OK

16 Verification finished without errors.

17 IP core 'add' violates security requirements for reconfigurable region.

18 - check security bypass flag...OFF

19 IP core activation cancelled due to security risk.

20 - roll back license update...OK

21 Waiting for ACK...OK

22 Waiting for NULL...OK

23 PCIe command finished.

Listing 7- Fragments of the SeReCon debug console output which is related to verification of

Adder IP core compatibility with the current RC system state (during IP core activation).

 Chapter 7 - Case Study: SeReCon Architecture Implementation

– 173 –

1 ERDB_verifier v.1.0 (release Jan 29 2010, 18:40:42)

2 - get IP core report 'blank.d03'...OK

3 - make diff with system state...OK

4 Verification report:

5 - IP core configuration region: (10,0 - 42,43)...OK

6 - IP core isolation region : (10,0 - 42,45) ...OK

7 - external pips found : 2684 (2239 real, 445 fake)

8 - unmatched ext pips : 0 (0 real, 0 fake)

9 - io pips found : 2453 (2139 real, 314 fake)

10 - unmatched io pips : 0 (0 real, 0 fake)

11 Verification finished without errors.

12 IP core 'blank' is safe.

13 - get IP core from "blank.i03" file...OK

14 - check bitstream header...OK

15 - disable BM interface...OK

16 - load IP core to ICAP...OK

17 - update system state...OK

18 IP core 'blank.i03' (msg 03) activated.

19 - enable BM interface...OK

20 Waiting for ACK...OK

21 Waiting for NULL...OK

22 PCIe command finished.

Listing 7- Fragments of the SeReCon debug console output which is related to verification of

blank design compatibility with the current RC system state (during IP core activation).

1 ERDB_verifier v.1.0 (release Jan 29 2010, 18:40:42)

2 - get IP core report 'mul.d05'...OK

3 - make diff with system state...OK

4 Verification report:

5 - IP core configuration region: (10,0 - 42,43)...OK

6 - IP core isolation region : (10,0 - 42,45) ...OK

7 - external pips found : 2709 (2264 real, 445 fake)

8 - unmatched ext pips : 25 (25 real, 0 fake)

9 - io pips found : 2478 (2164 real, 314 fake)

10 - unmatched io pips : 25 (25 real, 0 fake)

11

12 !!!WARNING!!!

13 Potentially dangerous IP core!!!

14

15 - write report file 'mul.t05'...OK

16 Verification finished without errors.

17 IP core 'mul' violates security requirements for reconfigurable region.

18 - check security bypass flag...OFF

19 IP core activation cancelled due to security risk.

20 - roll back license update...OK

21 Waiting for ACK...OK

22 Waiting for NULL...OK

23 PCIe command finished.

Listing 7- Fragments of the SeReCon debug console output which is related to verification of

Multiplier IP core compatibility with the current RC system state (during IP core activation).

 Chapter 7 - Case Study: SeReCon Architecture Implementation

– 174 –

1 ERDB_verifier v.1.0 (release Jan 29 2010, 18:40:42)

2 - get IP core report 'enc.d07'...OK

3 - make diff with system state...OK

4 Verification report:

5 - IP core configuration region: (10,0 - 42,43)...OK

6 - IP core isolation region : (10,0 - 42,45) ...OK

7 - external pips found : 3330 (2885 real, 445 fake)

8 - unmatched ext pips : 646 (646 real, 0 fake)

9 - io pips found : 3064 (2750 real, 314 fake)

10 - unmatched io pips : 611 (611 real, 0 fake)

11

12 !!!WARNING!!!

13 Potentially dangerous IP core!!!

14

15 - write report file 'enc.t07'...OK

16 Verification finished without errors.

17 IP core 'enc' violates security requirements for reconfigurable region.

18 - check security bypass flag...OFF

19 IP core activation cancelled due to security risk.

20 - roll back license update...OK

21 Waiting for ACK...OK

22 Waiting for NULL...OK

23 PCIe command finished.

Listing 7- Fragments of the SeReCon debug console output which is related to verification of

AES encoder IP core compatibility with the current RC system state (during IP core activation).

1 ERDB_verifier v.1.0 (release Jan 29 2010, 18:40:42)

2 - get IP core report 'dec.d09'...OK

3 - make diff with system state...OK

4 Verification report:

5 - IP core configuration region: (10,0 - 42,43)...OK

6 - IP core isolation region : (10,0 - 42,45) ...OK

7 - external pips found : 3869 (3424 real, 445 fake)

8 - unmatched ext pips : 1185 (1185 real, 0 fake)

9 - io pips found : 3594 (3280 real, 314 fake)

10 - unmatched io pips : 1141 (1141 real, 0 fake)

11

12 !!!WARNING!!!

13 Potentially dangerous IP core!!!

14

15 - write report file 'dec.t09'...OK

16 Verification finished without errors.

17 IP core 'dec' violates security requirements for reconfigurable region.

18 - check security bypass flag...OFF

19 IP core activation cancelled due to security risk.

20 - roll back license update...OK

21 Waiting for ACK...OK

22 Waiting for NULL...OK

23 PCIe command finished.

Listing 7- Fragments of the SeReCon debug console output which is related to verification of

AES decoder IP core compatibility with the current RC system state (during IP core activation).

 Chapter 7 - Case Study: SeReCon Architecture Implementation

– 175 –

7.5. Proposal: SeReCon Application Within The SDR Device

7.5.1. Introduction

This section describes the SDR device prototype and proposes how SeReCon

element can be included within the SDR RC system. Modifications to the SeReCon

implementation required to integrate SeReCon within the prototype SDR device are

also described.

7.5.2. SDR Device Block Diagram

Figure 7-a illustrates the SDR device prototype
79

. The SDR device includes a

radio interface, communication interface and the RC System-in-Package (SIP).

Figure 7-b highlights System-in-Package (SiP) internals, e.g. embedded FPGA

fabrics. Figure 7- illustrates the SiP block diagram. The SIP includes a number of

FPGAs which are used for digital RF signal processing and the SDR application

which is implemented in the Linux-based embedded control system running on an

ARM CPU. The SIP block diagram also includes the suggested location of the

SeReCon element which could manage secure FPGA reconfiguration within the SDR

system and could provide SDR IP core protection. Proposed integration with the

CADBUS interface and FPGA ICAPs is also highlighted.

Figure 7- a. the SDR device hardware prototype. b. SDR System-in-Package internals. (Source:

VT CCM Lab).

79

 SDR device prototype and block diagram included with the permission of Configurable Computing

Lab, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.

SDR System-in-Package (SiP)

DAC/

ADC

ETHERNET

COMM IO

FPGA

#1

FPGA

#2

FPGA

#3

FPGA

#4

SDR System-in-Package (SiP)

a)

b)

 Chapter 7 - Case Study: SeReCon Architecture Implementation

– 176 –

Figure 7- SDR block diagram and the suggested location of the SeReCon element .

7.5.3. Proposed SeReCon Modifications For Embedding Within The

Prototype SDR System

Integrating SeReCon within the prototype SDR device would require only minor

changes in the SeReCon hardware and SDR prototype. Modifications include an

updated SeReCon communication/control interface and extension of the SeReCon

interface in order to enable and control multiple ICAPs in remote FPGAs (see Figure

7-). Also, a SeReCon firmware update and small configuration update of SIP FPGAs

are also required in order to support ICAP-based reconfiguration using SeReCon

which is implemented in the remote FPGA (see Figure 7-). The required

modifications are outlined below.

SeReCon communication/control interface. The SDR application uses a

simple Control-Address-Data (CADBUS) bus-based communication interface which

provides register-based access to the SDR IP cores implemented in the SIP FPGAs

(Figure 7-). The SeReCon element also uses a register-based control interface

(SeReCon PCIe interface IP core) in order to communicate with the RC system

Configuration Cntrl IP core (Figure 7-). Thus, an additional wrapper IP core is

required in order to provide an interface bridge between the CADBUS and SeReCon.

Extension of the SeReCon interface. The SeReCon prototype uses a single

ICAP element which is connected internally. In the SDR application, SeReCon is

ARM

CPU

ADC
FPGA #3

A

D

C

I

F

CADBUS IF

ALTERA

FPGA

FPGA #4

SDR System-in-a-Package (SiP)

DAC FPGA #1

D

A

C

I

F

CADBUS IF

FPGA #2

CADBUS IF

CADBUS IF

VRegs

RAMFLASH

RECEIVER

TRANSMITTER CONTROLLER

Ethernet

Board Support Package

MontaVista LINUX

C, C++, Python

SDR Application

SOFTWARE STACKSeReCon

DEBUG

UART

IC
A

P

W
ra

p
p

e
r

01

ICAP 2ICAP 1

0 1addr

RD

WR

STAT

CNTL

DTA OUT

DTA IN

Registers

SeReCon security perimeter

1 0

ICAP 3

0 1

 Chapter 7 - Case Study: SeReCon Architecture Implementation

– 177 –

required to control multiple ICAPs in external FPGAs. Thus, SeReCon should

provide an external ICAP interface with multiple enable signals which could select

the active (FPGA) ICAP, e.g. using the GPIO IP core which is available from Xilinx

EDK. Multiple ICAP support also requires changes to the SeReCon firmware which

must be updated in order to facilitate multiple FPGA configurations, e.g. through the

implementation of the RC system state context switching. Static configuration update

of the SIP FPGAs is also required in order to provide exclusive SeReCon access to

ICAP.

7.6. Chapter Summary

This chapter reports on the implementation and application of the prototype

SeReCon-enabled RC system using Xilinx Virtex-5 FPGA technology. The

implementation of SeReCon internal elements, the main RC system elements and

example PR IP cores is described. Analysis of the SeReCon FPGA resource usage

and RC system prototype implementation issues is included.

The implemented RC system uses four IP cores in order to demonstrate the

SeReCon-based PR, e.g. 32-bit Adder, 32-bit Multiplier, 128-AES Cipher and 128-

bit AES Decipher. The VHDL model for each of these IP cores is included in the

thesis DVD.

The SeReCon IP core is a CPU-based system which is implemented using the

Xilinx EDK software. SeReCon uses an embedded 32-bit MicroBlaze processor

which is operating at 125 MHz.

The chapter also reports the SeReCon demonstrator which includes the

demonstrator application, implemented in Python and executed on the Intel server.

The RC system communication library of the SeReCon demonstrator and the host-

side SeReCon API are highlighted. The Intel server includes a Xilinx Virtex-5 FPGA

evaluation board which contains the prototype of SeReCon-enabled RC system (and

SeReCon IP core), connected to the host server using the PCIe interface. This chapter

reports and describes the SeReCon-enabled RC system prototype, including

implementation results. The demonstrator application results confirm the feasibility

of the SeReCon-based secure reconfiguration in the largest Xilinx Virtex-6 FPGAs

(e.g. XC6VLX760). The chapter provides detailed insight into the operation of the

prototype RC system during the SeReCon (and EIDR) initialisation, IP core

installation and activation.

The demonstrator application shows that even genuine IP cores, when developed

in multi-party environment, could include implicit communication channels and

could introduce security risks.

This chapter also describes the SDR device prototype and proposes how the

SeReCon element can be included within the SDR RC system. Modifications to the

SeReCon implementation required to integrate SeReCon within the prototype SDR

device are also highlighted.

– 178 –

 Chapter 8. Conclusions And Future Work

8.1. Introduction

This thesis contributes to IP security and IP usage accounting in PR Xilinx

FPGA-based RC systems. This chapter concludes the thesis and proposes future

work.

8.2. RC Systems And Security Risks In The Multi-Party

Design Environment

This thesis reviews and describes the RC system application domain and

advantages offered by RC systems over general purpose processors and ASICs.

FPGA technology and architectures are introduced and the FPGA-based RC system

design flow and PR are described.

This thesis investigates secure IP management in RC systems and describes

FPGA-based RC systems in context of SDR application. The SDR application

exploits the PR technology in order to update RC system configuration using

hardware components (IP cores) which are obtained from third party IP vendors

within the multi-player design environment.

A consequence of the multi-player environment is an increased risk to system

integrity and to design IP protection, e.g. design IP theft, cloning, counterfeiting and

tampering. Also, current IP infringement countermeasures do not support IP core

usage accounting and license enforcement in a multi-party design flow and in active

(deployed) PR-enabled RC systems. This approach hinders massive-scale adoption

of third-party IP cores in high assurance RC systems.

The provision of IP core transaction-based and metered access licensing models

in addition to a protection model for PR systems could increase the use of IP cores in

reconfigurable consumer devices. A trusted license enforcement scheme requires

methods for reliable control of IP core utilisation in the RC system, e.g. enforcement

of counted IP core activation and IP core run time metering.

This thesis reviews the state of the art in RC security. A motivating example on

security risks in PR FPGA systems is provided. Risks of the malicious IP core

designs and threat of rogue EDA software also are highlighted. Security

countermeasures supported by Xilinx FPGA fabric are described prior to critical

examination of the reported work on the RC system integrity protection. The IP theft

countermeasures and the principle of IP licensing models are also described.

Directions of research activity in the field of RC systems security are two-fold,

 Chapter 8 – Conclusions

– 179 –

focusing on system integrity protection and design IP protection. System integrity

protection measures aim towards seamless integration of multiple externally-

developed IP cores into a stable and trustworthy system. Design IP privacy

protection must be ensured to commercially available third-party IP core vendors.

This is not ensured where the system integrator is in full control of, and has

unrestricted access to, all design modules, including third-party IP cores. Current

design IP protection methods focus on the confidentiality of the IP core

implementation, mainly by using authentication and encryption protocols, though

without considering the risks caused by including erroneous or malicious IP cores.

This exhibits contradictory goals of system protection (integrity) and design IP

protection (privacy). Also, none assume a system model which includes IP protection

of untrusted third-party cores while guaranteeing system integrity, e.g. protecting

against design errors in third-party IP. Thus, new IP-aware methods for development

of trustworthy systems are required.

8.3. SeReCon, A RoT For PR FPGAs

The thesis proposes SeReCon, a RoT for PR FPGAs with RC system usage

accounting. The requirements of credentials storage in a secure RoT and the

implementation of usage accounting for RC systems are reviewed. The thesis

proposes and describes the EIDR element, which is a novel extension to the FPGA

fabric. EIDR provides non-volatile storage of RoT credentials and RC system usage

data. Techniques for storage of the RoT security credentials and RC system usage

accounting data in modern FPGAs are also reviewed. The suitability of SRAM-based

configuration memory is discussed. The EIDR element prototype implementation in

a Virtex-5 LXT device (ML505 Board) and the register-based EIDR control/status

interface (which is implemented in the FPGA user-logic) are reported prior to

description of EIDR API functions, which are provided by the SeReCon EIDR

driver.

The thesis proposes secure multi-party RoT credentials generation process and

highlights activity of SeReCon and various parties (e.g. SI, TA, IPV) during RoT

initialisation. The proposed RoT initialisation process supports public audit of the

RC device security (device, source and implementation files review) and guarantees

exclusive and authenticated access to the sensitive part of the RC system security

credentials only for the legitimate system, e.g. SeReCon RoT. The SeReCon-based

RoT is immune to credentials leakage as a result of a future successful attack on the

TA.

 Chapter 8 – Conclusions

– 180 –

8.4. FDAT Framework For Low-Level FPGA Design

Analysis

The thesis proposes FPGA Design Analysis Tool (FDAT) framework for low-

level FPGA design analysis. Risks in a multi-party PR design flow are discussed.

The thesis investigates the issue of implicit communication channels which could be

created during PR using third party IP cores. The need for low (bitstream) level

design analysis is highlighted and FDAT is proposed and applied as a solution.

FDAT is the first available toolset to provide high-level and unrestricted access

to the low-level description of the Xilinx FPGA fabric and the user design at the

netlist- and bitstream-level. The GUI front-end extends FDAT functionality by

providing customised visualisations of the design and FPGA resources. Use of a

Python programming language provides clean and self-documenting code (algorithm

syntax), unrestricted tool customisation and defines higher-level abstractions for

design analysis.

FDAT has been developed around the concept of component and recipe

separation. Components provide the necessary data and abstract models (design,

device or bitstream), while recipes describe policies (algorithms) defining data model

usage. This separation enables the reuse of high-level (model-specific) recipes which

can be ported to other systems, e.g. SeReCon. Also, the hierarchical recipe structure

supports a range of high-level analysis flows and offers virtually unlimited

functionality extensions, thus supporting domain-specific design analysis.

FDAT enables the generation of the ERDB embedded database containing a

minimal description of the FPGA fabric and bitstream for use by the SeReCon IP

core to perform on-line verification of IP core routing. The FDAT framework offers

a generic and unified support for analysis of designs targeting all Xilinx

architectures. The FDAT framework has been tested using Virtex-II Pro and Virtex-5

LXT designs and device descriptions.

The thesis reports porting FDAT functionality to SeReCon for on-line Virtex-5

bitstream analysis. Considerations in creating an ERDB (including FPGA fabric

description) are highlighted. The feasibility and accuracy of the ERDB-based IP core

routing verification is demonstrated.

 Chapter 8 – Conclusions

– 181 –

8.5. SeReCon Initialisation And Operation For Secure FPGA

Reconfiguration

The thesis proposes the SeReCon initialisation which provides secure FPGA

reconfiguration and usage accounting, e.g. SeReCon-based IP core installation,

activation and deactivation. The internal state diagram and the block diagram of the

SeReCon IP core are also described and the SeReCon firmware stack is highlighted.

The thesis describes the SeReCon RoT operations during the RoT initialisation

process which occurs at the trusted TA site in order to minimise the risk of malicious

device tampering and support independent scrutiny, e.g. through public audit. The

SeReCon initialisation process includes EIDR credentials initialisation, RC system

security credentials generation and publication. SeReCon exploits the EIDR element

in order to provide design IP protection and executes in-system design analysis of

new IP cores to maintain the integrity of the RC system.

IP core installation is performed online, once for every new IP core. A SafeLock

scheme for IP core security credentials protection is highlighted. The process of

establishing the shared encryption key between the IPV and SeReCon, using the

Diffie-Hellmann (DH) shared key agreement protocol is also described.

During the IP core activation process, SeReCon performs verification of the IP

core compliance with the current RC system state in order to protect the integrity of

the BaseSFC and to countermeasure the risk of implicit communication channel

setup. IP core license validation and RC system reconfiguration are also described.

License validation prior to RC system PR enforces both transaction based and

metered usage IP business models. The IP core deactivation process removes the

remains of previously activated IP cores which could interact with the current system

configuration, thus leading to RC system integrity issues. IP core deactivation

ensures that the unused IP core configuration is removed from the FPGA

configuration memory.

8.6. Case Study: SeReCon Architecture Implementation And

Proposed Application In SDR Device

The thesis reports the SeReCon case study which demonstrates SeReCon

architecture implementation, and proposes the potential SeReCon application in the

SDR device. The prototype of the SeReCon-enabled RC system is implemented

using the Xilinx Virtex-5 FPGA. The implementation of SeReCon internal elements,

the main RC system elements and example PR IP cores is described. The

implemented RC system uses four IP cores in order to demonstrate the SeReCon-

based PR, e.g. 32-bit Adder, 32-bit Multiplier, 128-AES Cipher and 128-bit AES

Decipher. The SeReCon IP core is a CPU-based system which is implemented using

 Chapter 8 – Conclusions

– 182 –

the Xilinx EDK software. SeReCon uses an embedded 32-bit MicroBlaze processor

which is operating at 125 MHz. Analysis of the SeReCon FPGA resource usage is

included. The RC system prototype implementation issues and suggested future work

also are highlighted. The VHDL sources for each of implemented (non-proprietary)

IP cores are included in the thesis DVD.

The thesis also reports the SeReCon demonstrator which includes demonstrator

application, the RC system communication library and SeReCon API. The SeReCon

demonstrator is implemented in Python and executed on the Intel server.

Demonstrator application results confirm feasibility of the SeReCon-based secure

reconfiguration in largest Xilinx Virtex-6 FPGAs (e.g. XC6VLX760). The thesis

provides detailed insight into the operation of the prototype RC system during the

SeReCon (and EIDR) initialisation, IP core installation and activation.

The demonstrator application shows that even genuine IP cores, when developed

in multi-party environment, could include implicit communication channels and

could introduce security risks.

This thesis also describes the SDR device prototype and proposes how the

SeReCon element can be included within the SDR RC system. Modifications to the

SeReCon implementation required to integrate SeReCon within the prototype SDR

device are also highlighted.

8.7. Future Research Directions

Future work could investigate risks of implicit communication channel

exploiting design clock signals as the communication medium. The motivating

example included in this thesis suggests that further research is required in this area,

and that further research on RC systems security could focus on SeReCon

optimisation and FDAT functional extension.

Future work could optimise the performance and robustness of the SeReCon IP core.

The following work packages are suggested:

 ERDB structure optimisation, e.g. generalisation of FPGA routing types and the

use of device-specific data field sizes (e.g. bit fields) could be considered in

order to reduce SeReCon firmware footprint.

The ERDB Analyser does not support the detection of IP core internal design

errors, e.g. short circuits between signals. Future work could improve the ERDB

Analyser robustness by including this functionality.

The ERDB Verifier uses a single static and a predefined reconfigurable region in

order to support the EAPR design flow. In future work an extension of the IP

core verification is suggested in order to incorporate a model of multiple cores

within the reconfigurable region.

 Chapter 8 – Conclusions

– 183 –

 External memory encryption. Further work could investigate the use of external

RAM encryption as a complementary approach to the use of scarce FPGA

internal memory (BRAM) resources for the SeReCon firmware storage.

 The prototype SeReCon implementation does not support data authentication,

e.g. authenticated-encryption. Only the Cipher Block Chaining encryption-mode

is supported. A solution could be to include an additional authentication field in

the IP core entry in the SafeLock data structures. Practical analysis of trade-offs

between the encryption methods used and RC system reconfiguration time could

also be investigated.

 The TRNG macrocell architecture could be optimised towards the architecture

of Virtex-5 (or Virtex-6) CLB.

 The software ECC implementation could be updated in order to include the

hardware accelerator for large number ECC operations. This would improve

SeReCon performance during the DH shared key calculation. SeReCon could

also support longer ECC keys.

 The EIDR could be implemented using an external FPGA board which is

connected to the RC system configuration interface (e.g JTAG) in order to detect

BaseSFC tampering.

 A more robust PCIe interface could be implemented in order to support multi-

word (burst) read/write PCIe transactions.

 A new, open-source CPU architecture is suggested for future SeReCon

implementations. Also, the SeReCon architecture and firmware is not hardened

against power analysis attacks which could expose the SeReCon security

credentials, e.g. the EIDR contents or the SafeLock encryption keys. Thus,

future work could also support SeReCon firmware and architecture modification

in order to include DPA-preventing hardware primitives (e.g. WDDL logic) and

algorithms (branch balancing etc).

Future work could also focus on the FDAT framework extension. The following

work packages are suggested:

 The proposed FDAT framework offers increased productivity in low-level

design analysis by seamlessly extending the Xilinx FPGA design flow. Similar

tools could be developed for other FPGA fabrics, i.e. Altera, Actel etc.

 Future FDAT releases could provide support for industry standard open design

netlist formats (e.g. EDIF) and standard XML-based IP core descriptions (e.g.

IP-XACT).

 Additional FDAT modules could also be developed in order to support FDAT

communication and debug of RC systems, e.g. FDAT JTAG module etc. Also,

research on FDAT modules supporting RC system PR and debugging, e.g. by

providing write access to design XDL netlist or implementing various phases of

the FPGA design flow (design placers & routers, JBITS-like functionality etc)

could increase RC systems design productivity.

– 184 –

References

[1] I. Hadzic, S. Udani, and J. M. Smith, ”FPGA viruses,” in FPL ’99: Proceedings of the 9th

International Workshop on Field-Programmable Logic and Applications, 1999.

[2] S. T. King, J. Tucek, A. Cozzie, C. G. Weihang Jiang, and Y. Zhou, ”Designing and

implementing malicious hardware,” in Proc. of First USENIX Workshop on Large-Scale

Exploits and Emergent Threats, 2008.

[3] Y. Alkabani, and F. Koushanfar, “Designer’s hardware Trojan horse,” Extended abstract in

Proc. of IEEE International Workshop on Hardware-Oriented Security and Trust (HOST),

2008, pp. 82-83.

[4] J. Roy, F. Koushanfar, and I. Markov, “Circuit CAD tools as a security threat,” Extended

abstract in Proc. of IEEE International Workshop on Hardware-Oriented Security and Trust

(HOST), 2008, pp. 65-66.

[5] M. Kucera, and M. Vetter, “FPGA-Rootkits Hiding Malicious Code inside the Hardware,” in

Proc. of Fifth Workshop on Intelligent Solutions in Embedded Systems, 2007, pp. 262-272.

[6] A. Lesea, “IP Security in FPGAs,” Xilinx, 2007.

[7] S. Trimberger, S. ”Trusted design in FPGAs,” in DAC’07: Proceedings of the 44th Annual

Design Automation Conference, 2007.

[8] S. Drimer, T. Guneysu, M. G. Kuhn, and C. Paar, “Protecting multiple cores in a single

FPGA design,” unpublished, 2008. [Online]. Available: www.cl.cam.ac.uk/~sd410/papers/

protect_ many_cores.pdf. [Accessed: Apr. 1, 2010].

[9] Xilinx, “Virtex-5 Configuration User Guide,” Xilinx, UG191, 2007. [Online]. Available:

http://www.xilinx.com. [Accessed: Dec. 01, 2008].

[10] Xilinx, “Early Access Partial Reconfiguration User Guide,” Xilinx, UG 208, 2008. [Online].

Available: http://kom.aau.dk/~ylm/rc/mm4-5/ug208_92.pdf. [Accessed: Apr. 1, 2010].

[11] C. Bobda, C., Introduction to Reconfigurable Computing: Architectures, algorithms and

applications. Dordrecht: Springer, 2007.

[12] J. Lotze, S. A. Fahmy, J. Noguera, L. Doyle, and R. Esser, “An FPGA-based cognitive radio

framework,”in IET Irish Signals and Systems Conference, 2008, pp. 138-143.

[13] U. Bondhugula, A. Devulapalli, J. Fernando, P. Wyckoff, and P. Sadayappan, “Parallel

FPGA-based all-pairs shortest-paths in a directed graph,” in Proc. of 20th International

Parallel and Distributed Processing Symposium IPDPS, 2006, pp. 90.

[14] B. Blodget, P. James-Roxby, E. Keller, S. McMillan, and P. Sundararajan, ”A self-

reconfiguring platform,” in Proc. of 13th International Conference on Field Programmable

Logic and Application (FPL), 2003.

[15] T. Streichert, D. Koch, C. Haubelt, and J. Teich, ”Modeling and Design of Fault-Tolerant and

Self-Adaptive Reconfigurable Networked Embedded Systems,” EURASIP Journal on

Embedded Systems, vol. 2006, Article ID 42168, 2006. [Online]. Available:

http://www.hindawi.com/journals/es/2006/042168.abs.html. [Accessed: Apr. 1, 2010].

[16] N. Steiner, and P. Athanas, “Foundations of Hardware Autonomy in Xilinx FPGAs,”

International Journal of Reconfigurable Computing, vol. 2008, Article ID 513246, 2008.

[17] N. J. Steiner, “Autonomous Computing Systems,” Ph.D. dissertation, Virginia Polytechnic

Institute and State University, Blacksburg, VA, USA, 2008.

[18] R. Hartenstein, ”Reconfigurable computing: a new business model-and its impact on soc

design,” in Proc. Euromicro Symposium on Digital Systems, Design, 2001.

References

– 185 –

[19] United States. Department of Defense, Defense Science Board Task Force on High

Performance Microchip Supply, Washington DC: Office of the Under Secretary of Defense,

2005. [Online]. Available: http://www.acq.osd.mil/dsb/reports/2005-02-HPMS_Report_

Final.pdf, [Accessed: 1/12/2008].

[20] D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi, and B. Sunar, B. ”Trojan detection using

IC fingerprinting,” in SP’07: Proceedings of the IEEE Symposium on Security and Privacy,

2007.

[21] K. Thompson, ”Reflections on trusting trust,”, Commun. ACM, vol. 27, no. 8, pp. 761–763,

1984.

[22] S. Skorobogatov, “Low temperature data remanence in static ram,” Computer Laboratory,

University of Cambridge, Cambridge, UK, Tech. Rep. UCAM-CL-TR-536, 2002. [Online].

Available: http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-536.pdf, [Accessed: Dec. 1,

2008].

[23] T. Tuan, T. Strader, and S. Trimberger, ”Analysis of data remanence in a 90nm FPGA,” in

Proc. of IEEE Custom Integrated Circuits Conference CICC ’07, 2007.

[24] M. Chirania and P. D. Costello, “Process monitor vehicle,” U.S. Patent 7,518,394, April 14,

2009.

[25] R. J. Anderson, Security engineering: A guide to building dependable distributed systems,

John Wiley & Sons, 2001.

[26] M. McLean, and J. More, J. ”Fpga-based single chip cryptographic solution,” Military

embedded systems, March 2007. [Online]. Available: http://www.mil-embedded.com/pdfs/

NSA.Mar07.pdf. [Accessed: Apr. 1, 2010].

[27] Xilinx, “Virtex-5 Libraries Guide for HDL Designs,” Xilinx, 2007. [Online]. Available:

http://www.xilinx.com. [Accessed: Jun. 6, 2006].

[28] S. Drimer, S. J. Murdoch, and R. Anderson, “Failures of tamper-proofing in PIN entry

devices,” IEEE Security & Privacy magazine, vol. 7, no. 6, pp. 39-45, Nov. 2009.

[29] S. J. Murdoch, S. Drimer, R. Anderson, and M. Bond, “Chip and PIN is broken,” to appear in

31st IEEE Symposium on Security & Privacy, 2010. [Online]. Available:

http://www.statewatch.org/news/2010/feb/chip-and-pin-broken.pdf, [Accessed: Apr.1, 2010].

[30] Xilinx, “Single Chip Crypto,” Xilinx, 2008. [Online]. Available: http://www.xilinx.com/esp/

aero_def/crypto.htm. [Accessed: Dec. 1, 2008].

[31] Sun, “OpenSPARC,” Sun, 2010. [Online]. Available: http://www.opensparc.net/. [Accessed:

Apr. 1, 2010].

[32] Aeroflex Gaisler, “Leon processor,” Aeroflex Gaisler, 2010. [Online]. Available:

http://www.gaisler.com/cms/index.php?option=com_content&task=section&id=4&Itemid=3

3. [Accessed: Apr. 1, 2010].

[33] Xilinx, “Virtex-6 FPGA Configuration Guide,” Xilinx, UG360 (v1.1), 2009. [Online].

Available: http://www.xilinx.com/support/documentation/virtex-6.htm. [Accessed: Apr. 1,

2010].

[34] R. Farrell, M. Sanchez, and G. Corley, ”Software-Defined Radio Demonstrators: An

Example and Future Trends,” International Journal of Digital Multimedia Broadcasting, vol.

2009, Article ID 547650, 2009.

[35] A. Maiti, R. Nagesh, A. Reddy, and P. Schaumont, ”Physical unclonable function and true

random number generator: a compact and scalable implementation,” in GLSVLSI '09: Proc.

of the 19th ACM Great Lakes symposium on VLSI, 2009.

[36] R. Usselman R, “AES (Rijndael) IP Core," OpenCores, 2002. [Online]. Available:

http://www.opencores.org/project,aes_core. [Accessed: Apr. 1, 2010].

References

– 186 –

[37] B. Sunar, W. J. Martin, D. R. Stinson, “A Provably Secure True Random Number Generator

with Built-In Tolerance to Active Attacks,” IEEE Trans. Comput., vol. 56, no. 1, pp. 109-

119, Jan. 2007.

[38] J. Talbot and D. Welsh, Complexity and Cryptography: An Introduction, Cambridge:

Cambridge University Press, 2006.

[39] E. Roza, E. “System-on-chip: what are the limits?,” IEE Electronics and Communication

Engineering Journal, vol. 13, no. 6, pp. 249-255, Dec. 2001.

[40] International Roadmap Committee, “International Technology Roadmap for Semiconductors

(ITRS): 2007 Edition Executive Summary,” International Technology Roadmap for

Semiconductors, Executive Summary, 2007. [Online]. Available: http://www.itrs.net.

[Accessed: Apr. 1, 2010].

[41] S. P. Young, “Efficient tile layout for a programmable logic device,” U.S. Patent 7,274,214,

September 25, 2009.

[42] B. Nelson, M. Wirthlin, B. Hutchings, P. Athanas, S. Bohner, “Design Productivity for

Configurable Computing,” in Proc. of the 2008 International Conference on Engineering of

Reconfigurable Systems & Algorithms, ERSA, 2008.

[43] United States. Department of Defense. Special Technology Area Review on Field

Programmable Gate Arrays (FPGAs) For Military, Defense Advisory Group On Electron

Devices (AGED), 2005.

[44] Xilinx, “Virtex-II Pro User Guide,” Xilinx, UG012, 2005. [Online]. Available:

http://www.xilinx.com/support/documentation/user_guides/ug012.pdf [Accessed: Dec. 1,

2008].

[45] Xilinx, “Virtex-4 User Guide,” Xilinx, UG070 (v2.6), 2004. [Online]. Available:

http://www.xilinx.com/support/documentation/user_guides/ug070.pdf. [Accessed: Dec. 1,

2008].

[46] Xilinx, “Virtex-5 User Guide,” Xilinx, UG190 (v5.1), 2007. [Online]. Available:

http://www.xilinx.com/support/documentation/user_guides/ug190.pdf. [Accessed: Sep. 18,

2009].

[47] Xilinx, “Virtex-4 Configuration Guide,” Xilinx, 2006. [Online]. Available:

http://www.xilinx.com/support/documentation/user_guides/ug071.pdf. [Accessed: Apr. 1,

2010].

[48] Xilinx, “ISE Design Suite 10.1 Software Tutorials,” Xilinx, 2007. [Online]. Available:

http://www.xilinx.com/direct/ise10_tutorials/ise10tut.pdf. [Accessed: Apr. 1, 2010].

[49] C. Schalick, “Debugging FPGA designs may be harder than you expect,” Electronics Design,

Strategy, News (EDN), October 22, 2009. [Online]. Available: http://www.edn.com/article/

CA6702270.html?text=Debugging+FPGA+designs+may+be+HARDER+THAN+YOU+EX

PECT+. [Accessed: Apr. 1, 2010].

[50] B. Rousseau et al., “Enabling certification for dynamic partial reconfiguration using a

minimal flow,” in DATE '07: Proceedings of the conference on Design, automation and test

in Europe, 2007, pp. 983-988.

[51] Xilinx, “Two Flows for Partial Reconfiguration: Module Based or Difference Based,” Xilinx,

XAPP290, 2004.

[52] Xilinx, “Modular design,” Xilinx, Dev. System Ref. Guide. [Online]. Available:

http://www.xilinx.com/itp/xilinx7/books/data/docs/dev/dev0025_7.html#wp234787.

[Accessed: Apr. 1, 2010].

[53] Xilinx, “PlanAhead Design Analysis Tool,” Xilinx. [Online]. Available:

http://www.xilinx.com/tools/planahead.htm. [Accessed: Apr. 1, 2010].

References

– 187 –

[54] N. P. Sedcole, “Reconfigurable Platform-Based Design in FPGAs for Video Image

Processing,” Ph.D. dissertation, Imperial College of Science, Technology and Medicine,

University of London, UK, 2006.

[55] Xilinx, “2-, 4-, 8-, 16-Bit Loadable Cascadable Binary Counters with Clock Enable and

Asynchronous Clear ,” Xilinx. [Online]. Available: http://www.xilinx.com/itp/xilinx6/books/

data/docs/lib/lib0080_48.html. [Accessed: Apr. 1, 2010].

[56] J. Suris, C. Patterson, and P. Athanas, “An efficient run-time router for connecting modules

in FPGAs,” in Proc. of International Conference on Field Programmable Logic and

Applications (FPL), 2008, pp. 125-130.

[57] T. Huffmire et al., ”Moats and drawbridges: An isolation primitive for reconfigurable

hardware based systems,” in SP’07: Proceedings of the IEEE Symposium on Security and

Privacy, 2007.

[58] R. Wojtczuk, J. Rutkowska, and A. Tereshkin, ”Another Way to Circumvent Intel Trusted

Execution Technology ,” Invisible Things Lab, 2009. [Online]. Available: http://

invisiblethingslab.com/resources/misc09/Another TXT Attack.pdf. [Accessed: Apr. 1, 2010].

[59] I. McLoughlin, “Secure Embedded Systems: The Threat of Reverse Engineering,” in Proc. of

the 14th IEEE International Conference on Parallel and Distributed Systems ICPADS '08,

2008, pp. 729-736.

[60] S. Ravi, A. Raghunathan, P. Kocher, and S. Hattangady, ”Security in embedded systems:

Design challenges,” Trans. On Embedded Computing Sys., vol. 3, no. 3, pp. 461–491, Aug.

2004.

[61] T. Wollinger, J. Guajardo, and C. Paar, ”Security on FPGAs: State-of-the-art

implementations and attacks,” Transactions on Embedded Computing Systems, vol. 3, no. 3,

pp. 534–574, 2004.

[62] N. Valette, L. Torres, G. Sassatelli, and F. Bancel, ”Securing embedded programmable gate

arrays in secure circuits,” in Proc. of Parallel and Distributed Processing Symposium, 2006.

[63] J. Jurjens, “Developing Secure Embedded Systems: Pitfalls and How to Avoid Them,” in

Proc. of the 29th International Conference on Software Engineering ICSE 2007 Companion

Volume, 2007, pp. 182-183.

[64] C. E. Irvine, K. Levitt, “Trusted Hardware: Can It Be Trustworthy?,” in Proc. of the 44th

annual Design Automation Conference (DAC), 2007.

[65] R. Kastner and T. Huffmire, “Threats and Challenges in Reconfigurable Hardware Security,”

in Proc. of International Conference on Engineering of Reconfigurable Systems and

Algorithms (ERSA), 2008.

[66] S. Drimer, “Volatile FPGA design security – a survey,” unpublished. [Online]. Available:

http://www.cl.cam.ac.uk/~sd410/papers/fpga_security.pdf. [Accessed: Oct. 29, 2007].

[67] J.-S. Coron, D. Naccache, and P. Kocher, “Statistics and secret leakage,” ACM Trans. on

Embedded Computing Sys., vol. 3, no. 3, pp. 492-508, Aug. 2004.

[68] M. Aigner, and E. Oswald, “Power Analysis Tutorial,” Institute for Applied Information

Processing and Communication, University of Technology Graz, Graz, Austria. [Online].

Available: http://www.iaik.tugraz.at/content/research/implementation_attacks/introduction_

to_impa/dpa_tutorial.pdf. [Accessed: Apr. 1, 2010].

[69] S. Mangard, E. Oswald, and T. Popp, Revealing the Secrets of Smart Cards. Springer, 2007.

[70] P. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis,” Lecture Notes in Computer

Science (LNCS), vol. 1666, pp. 388-397, 1999.

[71] K. Tiri, I. Verbauwhede, “Simulation models for side-channel information leaks,” in Proc. of

42nd Design Automation Conference (DAC), 2005, pp. 228-233.

References

– 188 –

[72] F.-X. Standaert, E. Peeters,G. Rouvroy, and J.-J. Quisquater, “An overview of power analysis

attacks against Field Programmable Gate Arrays,” in Proc. of the IEEE, vol. 94, no. 2, pp.

383-394, Feb. 2006.

[73] E. Peeters, F.-X. Standaert, and J.-J. Quisquater, “Power and electromagnetic analysis:

improved model, consequences and comparisons,” Integr. VLSI J., vol. 40, no. 1. pp. 52-60,

Jan. 2007.

[74] K. Tiri, “Side-Channel Attack Pitfalls,” in Proc. of 44th Design Automation Conference

(DAC), 2007.

[75] D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi, “The EM Side-Channel(s),”

Lecture Notes In Computer Science (LNCS), CHES 2002 4th International Workshop, vol.

2523, pp. 29–45, Jan. 2003.

[76] K. K. W. Poon, S. J. E. Wilton, and A. Yan, “A detailed power model for field-

programmable gate arrays,” ACM Trans. Des. Autom. Electron. Syst., vol. 10, no. 2 pp. 279-

302, Apr. 2005.

[77] L. Shang, A. S. Kaviani, and K. Bathala, “Dynamic power consumption in Virtex-II FPGA

family,” in FPGA '02: Proceedings of the 2002 ACM/SIGDA tenth international symposium

on Field-programmable gate arrays, 2002, pp. 157-164.

[78] D. Curd, “Power Consumption in 65nm FPGAs,” Xilinx, WP 246, 2007. [Online]. Available:

http://www.xilinx.com/support/documentation/white_ papers/wp246.pdf. [Accessed: Apr. 1,

2010].

[79] S. Chaudhuri et al., “Physical Design of FPGA Interconnect to Prevent Information

Leakage,” Lecture Notes In Computer Science (LNCS), Proceedings of the 4th international

workshop on Reconfigurable Computing: Architectures, Tools and Applications (ARC), vol.

4943, pp. 87 - 98, Aug. 2008.

[80] K. Tiri, P. Schaumont, and I. Verbauwhede, “Side-Channel Leakage Tolerant Architectures,”

in Proc. of Third International Conference on Information Technology: New Generations

ITNG, 2006, pp. 204-209.

[81] P. Yu, P. Schaumont, “Secure FPGA Circuits using Controlled Placement and Routing,” in

Proc. of International Conference on Hardware/Software Codesign and System Synthesis

(CODES+ISSS 2007), 2007.

[82] A. P. Donlin, S. M. Trimberger, “Physically-enforced time-limited cores and method of

operation,” U.S. Patent 7,183,799, February 27 2007.

[83] United States. Department of Commerce. Implementation Guidance for FIPS PUB 140-2 and

the Cryptographic Module Validation Program, National Institute of Standards and

Technology (NIST), 2007.

[84] Trusted Computing Group, “Trusted Platform Module,” Trusted Computing Group, Trusted

Platform Module (TPM) Specifications, 2010. [Online]. Available:http://www.trusted

computinggroup.org/developers/trusted_platform_module/specifications. [Accessed: Apr. 1,

2010].

[85] R. J. F. Chaves, “Secure Computing on Reconfigurable Systems,” Ph.D. dissertation, Delft

University of Technology, Delft, Netherlands, 2007.

[86] T. Eisenbarth, T. Güneysu, C. Paar, A.-R. Sadeghi, D. Schellekens, D. and M. Wolf,

“Reconfigurable trusted computing in hardware,” in STC '07: Proc. of the 2007 ACM

workshop on Scalable trusted computing, 2007, pp. 15-20.

[87] B. Glas, A. Klimm, O. Sander, K. Mueller-Glaser, and J. Becker, ”A System Architecture for

Reconfigurable Trusted Platforms,” in Proc. of Design, Automation and Test in Europe

(DATE), 2008.

References

– 189 –

[88] I. Verbauwhede and P. Schaumont, “Design methods for Security and Trust,” in Proc. of

Design, Automation and Test in Europe (DATE), 2007.

[89] P. Schaumont and D. D. Hwang, “Turning liabilities into assets: Exploiting deep submicron

CMOS technology to design secure embedded circuits,” in Proc. of IEEE International

Symposium on Circuits and Systems (ISCAS), 2008, pp. 3178-3181.

[90] S. Chaudhuri, J.-L. Danger, S. Guilley, and P. Hoogvorst, “FASE: An Open Run-Time

Reconfigurable FPGA Architecture for Tamper-Resistant and Secure Embedded Systems,” in

Proc. of IEEE International Conference on Reconfigurable Computing and FPGA's

ReConFig, 2006.

[91] T. Huffmire et al., “Trustworthy system security through 3-D integrated hardware,” Extended

abstract in IEEE International Workshop on Hardware-Oriented Security and Trust (HOST),

2008, pp. 91-92.

[92] G. Marsaglia, “Diehard: A battery of tests for random number generators”, 1995. [Online].

Available: http://stat.fsu.edu/pub/diehard/. [Accessed: Apr. 1, 2010].

[93] United States. Department of Commerce, “A Statistical Test Suite for the Validation of

Random Number Generators and Pseudo Random Number Generators for Cryptographic

Applications,” National Institute of Standards and Technology (NIST), SP800-22rev1, 2008.

[Online]. Available: http://csrc.nist.gov/rng/. [Accessed: Apr. 1, 2010].

[94] V. Fischer and M. Drutarovsky, “True random number generator embedded in reconfigurable

hardware,” in Lecture Notes In Computer Science (LNCS), vol. 2523, Proc. of Cryptographic

Hardware and Embedded Systems Workshop (CHES), 2002, pp. 415-430.

[95] P. Kohlbrenner, and K. Gaj, “An embedded true random number generator for FPGAs,” in

FPGA '04: Proc. of the 2004 ACM/SIGDA 12th international symposium on Field

programmable gate arrays, 2004, pp. 71-78.

[96] D. Schellekens, B. Preneel, and I. Verbauwhede, “FPGA Vendor Agnostic True Random

Number Generator,” in Proc. of International Conference on Field Programmable Logic and

Applications (FPL), 2006, pp. 1-6.

[97] M. Simka, M. Drutarovsky, V. Fischer, and J. Fayolle, ”Model of a true random number

generator aimed at cryptographic applications,” in Proc. of IEEE International Symposium on

Circuits and Systems (ISCAS), 2006.

[98] M. Dichtl, and J. D. Golić, “High-Speed True Random Number Generation with Logic Gates

Only,” in CHES '07: Proc. of the 9th international workshop on Cryptographic Hardware

and Embedded Systems, 2007, pp. 45-62.

[99] S.-K. Yoo, B. Sunar, D. Karakoyunlu, and B. Birand, “A Robust and Practical Random

Number Generator” under review, 2008. [Online]. Available: http://ece.wpi.edu/~sunar/

preprints/rings.pdf. [Accessed: Apr. 1, 2010].

[100] I. Vasyltsov, E. Hambardzumyan, Y.-S. Kim, and B. Karpinskyy, “Fast Digital TRNG Based

on Metastable Ring Oscillator,” in CHES '08: Proc. of the 10th international workshop on

Cryptographic Hardware and Embedded Systems, 2008, pp. 164-180.

[101] K. Wold, and C. H. Tan, “Analysis and Enhancement of Random Number Generator in

FPGA Based on Oscillator Rings,” in Proc. of International Conference on Reconfigurable

Computing and FPGAs ReConFig, 2008, pp. 385-390.

[102] S. Drimer, “True random number generator and method of generating true random numbers,”

U.S. Patent 7,502,815, March 10, 2009.

[103] S. Drimer, J. Moore, and A. Lesea, ”Circuit for and method of implementing a plurality of

circuits on a programmable logic device,” U.S. Patent 7,408,381, August 5, 2008.

References

– 190 –

[104] C. D. Mackey, B. Bormann, “Scaleable Architecture To Support High Assurance Internet

Protocol Encryption (HAIPE),” US Patent Application 2009/0113201, April 30, 2009.

[105] B. C. Boorman, C. D. Mackey, and T. Kurdziel, “A Scalable Hardware Architecture to

Support Applications of the HAIPE 3.1 Standard,” in Proc. of the IEEE Military

Communications Conference MILCOM, 2007, pp. 1-8.

[106] D. G. Harris, C. D. Mackey, B. C. Boorman, “Realization of a High-Assurance Multiplexer

Using FPGA-Based Single-Chip Cryptography,” in Proc. of military Communications

Cnference (Milcom), 2009.

[107] R. N. Pittman, A. Forin, “A Security Model for Reconfigurable Microcomputers,” Microsoft

Research, 2008. [Online]. Available: http://research.microsoft.com/apps/pubs/default.aspx?id

=70627. [Accessed: Apr. 1, 2010].

[108] S. Drimer, ”Authentication of FPGA bitstreams: Why and how,” in Proc. of Workshop on

Applied Reconfigurable Computing and Applications (ARC), 2007.

[109] Y. Hori, H. Yokoyama, H. Sakane, and K. Toda, “A Secure Content Delivery System Based

on a Partially Reconfigurable FPGA,” IEICE Transactions, vol. 91-D, no. 5, pp. 1398-1407,

May 2008.

[110] B. Badrignans, R. Elbaz, and L. Torres, “Secure FPGA configuration technique preventing

system downgrade,” in Proc. of the 18th IEEE international conference on Field

Programmable Logic, 2008.

[111] G. Gogniat, T. Wolf, W. Burleson, J.-P Diguet, L. Bossuet, and R. Vaslin, ”Reconfigurable

Hardware for High-Security / High-Performance Embedded Systems: The SAFES

Perspective,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 16,

no. 2, pp.144-155, Feb. 2008.

[112] L. Jones, ”Single Event Upset (SEU) Detection and Correction Using Virtex-4 Devices,”

Xilinx, Application Note #714, 2007.

[113] J. Heiner, B. Sellers, M. Wirthlin, and J. Kalb, “FPGA partial reconfiguration via

configuration scrubbing,” in Proc. of International Conference on Field Programmable

Logic and Applications (FPL), 2009, pp. 99-104.

[114] S. Dutt, and L. Li, “Trust-Based Design and Check of FPGA Circuits Using Two-Level

Randomized ECC Structures,” ACM Trans. on Reconfigurable Technology and Systems

(TRETS), vol. 2, no. 1, pp. 1-36, Mar. 2009.

[115] L. Yuan, G. Qu, L. Ghout, and A. Bouridane, “VLSI Design IP protection: solutions, new

challenges, and opportunities,” in Proc. of NASA/ESA Conference on Adaptive Hardware and

Systems, 2006, pp. 469-476.

[116] T. Kean, ”Secure configuration of Field Programmable Gate Arrays,” in FPL ’01: Proc. of

the 11th International Conference on Field-Programmable Logic and Applications, 2001.

[117] L. Bossuet, G. Gogniat, and W. Burleson, “Dynamically configurable security for SRAM

FPGA bitstreams,” International Journal of Embedded Systems (IJES), vol. 2, no.1/2, pp. 73

- 85, 2006.

[118] M. Nakanishi, “An FPGA Configuration Scheme for Bitstream Protection,” in ARC '08:

Proceedings of the 4th international workshop on Reconfigurable Computing, 2008, pp. 330-

335.

[119] J. B. Note, and E. Rannaud, ”From the bitstream to the netlist,” in FPGA ’08: Proceedings of

the 16th international ACM/SIGDA symposium on Field programmable gate arrays, 2007.

[120] A. B. Kahng, D. Kirovski, S. Mantik, M. Potkonjak, and J. L. Wong, “Copy detection for

intellectual property protection of VLSI designs,” in ICCAD '99: Proceedings of the 1999

IEEE/ACM international conference on Computer-aided design, 1999, pp. 600-605.

References

– 191 –

[121] A. B. Kahng et al., ”Constraint-based watermarking techniques for design IP protection,”

IEEE Trans. on CAD of Integrated Circuits and Systems, vol. 20, no. 10, pp. 1236-1252,

2001.

[122] G. Qu, “Publicly Detectable Techniques for the Protection Virtual Components,” in Proc. of

the 38th annual Design Automation Conference (DAC), 2001, pp. 474-479.

[123] A. K. Jain, L. Yuan, P. R. Pari, and G. Qu, ”Zero overhead watermarking technique for

FPGA designs,” in GLSVLSI '03: Proceedings of the 13th ACM Great Lakes symposium on

VLSI, 2003, pp. 147-152.

[124] D. Ziener, and J. Teich, “FPGA core watermarking based on power signature analysis,” in

Proc. of IEEE International Conference on Field-Programmable Technology (FPT), 2006,

pp. 205-212.

[125] D. Ziener, S. Abmust, and J. Teich, “Identifying FPGA IP-Cores Based on Lookup Table

Content Analysis,” in Proc. of International Conference on Field Programmable Logic and

Applications, 2006, pp. 1-6.

[126] B .D. Christiansen, Y. C. Kim, R. W. Bennington, and C. J. Ristich, “Decoy circuits for

FPGA design protection” in Proc. of IEEE International Conference on Field Programmable

Technology (FPT), 2006, pp. 373-376.

[127] B. D. Christiansen, “FPGA security through decoy circuits,” M.S. thesis, Air Force Institute

of Technology, Ohio, USA, 2006.

[128] H. Walker, “Xilinx speeds HDL simulation with SecureIP and FAST Simulation Mode

Models”, FPGA and Programmable Logic Journal, June 10, 2008. [Online]. Available:

http://www.fpgajournal.com/articles_2008/20080610_xilinx.htm. [Accessed: Apr. 1, 2010].

[129] M. Miller, “Synplicity introduces secure IP flow for FPGAs, signs ARM, Tensilica as

partners,“ EDN, Apr. 15, 2008. [Online]. Available: http://www.edn.com/index.asp?layout=

article&articleid=CA6551580. [Accessed: Apr. 1, 2010].

[130] T. Kean, “Method for Protecting Intellectual Property Cores on Field Programmable Gate

Array,” U.S. Patent Application 2002/0199110A1, December 26, 2002.

[131] R. Siripokarpirom, “Distribution of bitstream-level IP cores for functional evaluation using

FPGAs,” Lecture Notes in Computer Science (LNCS) Field Programmable Logic and

Application, vol. 3203/2004, pp. 700-709, 2004.

[132] J. Castillo, P. Huerta, and J. I. Martinez, “Secure IP downloading for SRAM FPGAs,”

Microprocessors and Microsystems, vol. 31, no. 2, pp. 77-86, Mar. 2007.

[133] M. Kuhn, ”The TrustNo1 Cryptoprocessor Concept,” Purdue University, Purdue, USA,

CS555 Report, 1997. [Online]. Available: http://www.cl.cam.ac.uk/~mgk25/trustno1.pdf.

[Accessed: Apr. 1, 2010].

[134] J. Graf and P. Athanas, “A Key Management Architecture for Securing Off-Chip Data

Transfers,” Lecture Notes in Computer Science (LNCS) Field Programmable Logic and

Application, vol. 3203/2004, pp. 33-42, 2004.

[135] J. P. Graf, “A key management architecture for securing off-chip data transfers on an FPGA,”

M.S. thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 2004.

[136] W. Adi, R. Ernst, B. Soudan, and A. Hanoun, “VLSI design exchange with intellectual

property protection in FPGA environment using both secret and public-key cryptography,” in

Proc. of IEEE Computer Society Annual Symposium on Emerging VLSI Technologies and

Architectures, 2006.

[137] G. E.Suh, C. W. O’Donnell, and S. Devadas, ”Aegis: A single-chip secure processor,” IEEE

Des. Test, vol. 24, no. 6, pp. 570–580, 2007.

References

– 192 –

[138] R. Lee, P. Kwan, J. McGregor, J. Dwoskin, and Z. Wang, “Architecture for protecting critical

secrets in microprocessors,” in ISCA '05. Proceedings. 32nd International Symposium on

Computer Architecture, 2005, pp. 2-13.

[139] J. N. Edmison, “Hardware Architectures for Software Security,” Ph.D. dissertation, Virginia

Polytechnic Institute and State University, Blacksburg, VA, 2006.

[140] A. J. Mahar, P. M. Athanas, S. D. Craven, J. N. Edmison, and J. Graf, “Design and

Characterization of a Hardware Encryption Management Unit for Secure Computing

Platforms,” in Proc. of 39th Annual Hawaii International Conference on System Sciences

HICSS '06, 2006, pp. 10.

[141] E. Simpson, and P. Schaumont, “Offline hardware/software authentication for reconfigurable

platforms,” Lecture Notes in Computer Science (LNCS) Cryptographic Hardware and

Embedded Systems Workshop, vol. 4249/2006, pp. 311-323, 2006.

[142] E. Simpson, “Runtime Intellectual Property Protection on Programmable Platforms,” M.S.

thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 2007.

[143] J. W. Lee, D. Lim, B. Gassend, G. E. Suh, M. van Dijk, and S. Devadas, “A technique to

build a secret key in integrated circuits for identification and authentication application,” in

Proc. of the Symposium on VLSI Circuits, 2004, pp.176-159.

[144] G. E. Suh, and S. Devadas, “Physical unclonable functions for device authentication and

secret key generation,” in Proc. of Design Automation Conference (DAC), 2007, pp. 9-14.

[145] J. Guajardo, S. S. Kumar, G. J. Schrijen, and P. Tuyls, “Physical Unclonable Functions and

Public-Key Crypto for FPGA IP Protection,” in Proc. of International Conference on Field

Programmable Logic and Applications (FPL), 2007, pp. 189-195.

[146] Y. Alkabani, and F. Koushanfar, “Active control and digital rights management of integrated

circuit IP cores,” in CASES '08: Proceedings of the 2008 international conference on

Compilers, architectures and synthesis for embedded systems, 2008, pp. 227-234.

[147] A. Zeineddini, and K. Gaj, “Secure partial reconfiguration of FPGAs,” in Proc. of IEEE

International Conference on Field-Programmable Technology (FPT), 2005 pp. 155-162.

[148] A. H. S. Zeineddini, “Secure partial reconfiguration of FPGAs,” M.S. thesis, George Mason

University, Fairfax, VA, USA, 2005.

[149] T. Guneysu, B. Moller, and C. Paar, “Dynamic Intellectual Property Protection for

Reconfigurable Devices,” in FPT '07: Proceedings of the 15th Annual IEEE Symposium on

Field-Programmable Technology (FPT), 2007, pp. 287-288.

[150] S. Drimer, and M. G. Kuhn, “A Protocol for Secure Remote Updates of FPGA

Configurations,” Lecture Notes in Computer Science (LNCS), vol. 5453, Proce. of the 5th

International Workshop on Reconfigurable Computing: Architectures, Tools and

Applications, J. Becker, R. Woods, P. M. Athanas, and F. Morgan, Ed. Berlin / Heidelberg:

Springer, 2009, pp. 50-61.

[151] E. Dijkstra, ”Structured programming,” in Classics in software engineering, E. N. Yourdon,

Ed. Upper Saddle River, NJ: Yourdon Press, 1979, pp. 41–48.

[152] L. Hohmann, Beyond Software Architecture: Creating and Sustaining Winning Solutions,

Addison-Wesley Longman Publishing Co. Inc., 2003.

[153] T. Erjavec, “Introducing the Xilinx Targeted Design Platform: Fulfilling the Programmable

Imperative,” Xilinx, WP 306, 2009. [Online]. Available: http://www.xilinx.com/support/

documentation/white_papers/wp306.pdf. [Accessed: Apr. 1, 2010].

[154] N. Couture and K. B. Kent, “Periodic licensing of FPGA based intellectual property,” in

Proc. of IEEE International Conference on Field Programmable Technology (FPT), 2006,

pp. 357-360.

References

– 193 –

[155] R. Krueger, “Using High Security Features in Virtex-II Series FPGAs,” Xilinx, XAPP 766,

2004. [Online]. Available: http://www.xilinx.com/support/documentation/application_notes/

xapp766.pdf. [Accessed: Dec. 1, 2008].

[156] D. P. Schultz, L. C. Hung, and F. E. Goetting, “FPGA configuration circuit including bus-

based crc register,” U.S. Patent 6,191,614, February 20, 2001.

[157] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Applied Cryptography, CRC Press,

1996.

[158] J. Becker, M. Hubner, G. Hettich, R. Constapel, J. Eisenmann, and J. Luka, “Dynamic and

Partial FPGA Exploitation,” Proc. of the IEEE, vol. 95, pp. 438-452, Feb. 2007.

[159] P. Sedcole, B. Blodget, T. Becker, J. Anderson, and P. Lysaght, “Modular dynamic

reconfiguration in Virtex FPGAs,” IEE Proc. Computers and Digital Techniques, vol 153,

no. 3. 157-164, 2006.

[160] T. Huffmire et al., “Managing Security in FPGA-Based Embedded Systems,” IEEE Design &

Test of Computers, vol. 25, pp. 590-598, 2008.

[161] B. L. Hutchings, R. Franklin, and D. Carver, “Assisting network intrusion detection with

reconfigurable hardware,” in Proc. of 10th Annual IEEE Symposium on Field-Programmable

Custom Computing Machines (FCCM), 2002, pp. 111-120.

[162] B. Salefski and L. Caglar, “Re-configurable computing in wireless,” in Proc. of Design

Automation Conference (DAC), 2001, pp. 178-183.

[163] K. Appiah, A. Hunter, T. Kluge, P. Aiken, and P. Dickinson, “FPGA-Based Anomalous

Trajectory Detection Using SOFM,“ Lecture Notes In Computer Science (LNCS), vol. 5453,

Proce. of the 5th International Workshop on Reconfigurable Computing: Architectures, Tools

and Applications, J. Becker, R. Woods, P. M. Athanas, and F. Morgan, Ed. Berlin /

Heidelberg: Springer, 2009, pp.243-254.

[164] F. Muhlbauer and C. Bobda, “A Dynamic Reconfigurable Hardware/Software Architecture

for Object Tracking in Video Streams,” EURASIP Journal on Embedded Systems, vol. 2006,

Article ID 82564, 2006.

[165] H. T. Ngo, R. Gottumukkal, and V. K. Asari, “A flexible and efficient hardware architecture

for real-time face recognition based on eigenface,” in Proc. of IEEE Computer Society

Annual Symposium on VLSI, 2005, pp. 280-281.

[166] Xilinx, “JBits 3.0 SDK for Virtex-II,” Xilinx, 2008. [Online]. Available: http://www.xilinx.

com/labs/projects/jbits/. [Accessed: Apr. 1, 2010].

[167] A. Ehliar, D. Llu, “Thinking Outside The Flow: Creating Customized Backend Tools For

Xilinx Based Designs,” in Proc. of 4th annual FPGAworld Conference, 2007.

[168] N. Steiner and P. Athanas, “An Alternate Wire Database for Xilinx FPGAs,” in FCCM '04:

Proc. of the 12th Annual IEEE Symposium on Field-Programmable Custom Computing

Machines, 2004.

[169] Xilinx, XDL: Xilinx Design Language, Available: Xilinx ISE 6.1 documentation,

<INSTDIR>/help/data/xdl/xdl.html.

[170] E. Todorovich, “Estimación Estadística de Consumo en FPGAs,” Ph.D dissertation,

Universidad Autónoma de Madrid, 2006.

[171] C. Claus, B. Zhang, M. Hubner, C. Schmutzler, J. Becker, and W. Stechele, “An XDL-based

busmacro generator for customizable communication interfaces for dynamically and partially

reconfigurable systems,” in Proc. of . Workshop on Reconfigurable Computing Education at

ISVLSI, 2007.

References

– 194 –

[172] O. Maslennikow and P. Soltan, “Automated implementation of digital circuits in current-

mode FPGA chips,” in Proc. of 7th International Conference The Experience of Designing

and Application of CAD Systems in Microelectronics (CADSM), 2003, pp. 223-225.

[173] S. Raaijmakers, ”Run-Time Partial Reconfiguration on the Virtex-II Pro,” M.S. thesis, TU

Delft. 2007

[174] N. J. Steiner, “A Standalone Wire Database for Routing and Tracing in Xilinx Virtex, Virtex-

E, and Virtex-II FPGAs,” M.S. thesis, Virginia Polytechnic Institute and State University,

Blacksburg, VA, USA, 2002.

[175] Y. E. Krasteva, E. de la Torre, T. Riesgo, and D. Joly, ”Virtex-II FPGA bitstream

manipulation: Application to reconfiguration control systems,” in Proc. of FPL ’06.

International Conference on Field Programmable Logic and Applications, 2006.

[176] H. Kalte and M. Porrmann, ”Replica2pro: task relocation by bitstream manipulation in

Virtex-II/Pro FPGAs,” in CF ’06: Proceedings of the 3
rd

 conference on Computing frontiers,

2006.

[177] M. Hubner, L. Braun, J. Becker, C. Claus, W. and Stechele, ”Physical configuration on-line

visualization of Xilinx Virtex-II FPGAs,” in ISVLSI ’07. IEEE Computer Society Annual

Symposium on VLSI, 2007.

[178] SWIG, “Interface compiler SWIG,” 2009. [Online]. Available: http://www.swig.org.

[Accessed: Apr. 1, 2010].

[179] Xilinx, “Platform Studio and the EDK,” 2009. [Online]. Available:

http://www.xilinx.com/tools/platform.htm. [Accessed: Apr. 1, 2010].

[180] I. F. Blake, G. Seroussi, and N. P. Smart, Elliptic curves in cryptography Cambridge:

Cambridge University Press, 1999.

[181] United States. Department of Commerce. FIPS PUB 186-3: Digital Signature Standard.

National Institute for Standards and Technology (NIST), 2006.

[182] ANSI, “Public Key Cryptography for the Financial Services Industry, The Elliptic Curve

Digital Signature Algorithm (ECDSA),” ANSI standard X9.62:2005, 2005.

– 195 –

Appendix A – List of Reconfigurable Computing
architectures

This appendix lists various technologies which are used in RC systems.

 3P plus 1 Technology

 Achronix Semiconductor Corp

 Ambric

 AsceniumCorp

 Aspex

 ChipWrights

 Clearspeed

 Coherent Logix

 Connex

 Context Corporation

 Cradle

 Element CXI

 IP Flex

 IceraSemiconductor Ltd

 IkoaCorporation

 IntellasysCorporation

 M2000

 MathStar

 Mesh Semiconductor

 Morphotech

 PACT

 PicochipDesigns

 Pluarity

 Rapport

 Raytheon Monarch

 ReCore

 Sandbridge

 Silicon Hive

 Spiral Gateway

 Stream Processors

 Stretch

 Systemonic

 Tabula

 Tilera

 Videantis

 VivaceSemiconductor

 XMOS Semiconductor

 Xelerated

Source: B. Nelson, “Productivity Issues in FPGA Application Development”,

Keynote at 5th International Workshop on Applied Reconfigurable Computing,

Karlsruhe, Germany, March 2009.

– 196 –

Appendix B – EIDR source code (eidr.vhdl)

This appendix provides the reference EIDR source code in VHDL.

--

-- Company: BIRC Group, NUI Galway, Ireland

-- Author: Krzysztof Kepa

-- Copyright: Krzysztof Kepa (2009). All rights reserved.

-- Copying, using and modification without author's written permission PROHIBITED.

--

-- Create Date: 14:53:05 11/18/2009

-- Design Name: IDR

-- Module Name: EIDR reference design - Behavioral

-- Project Name: Secure Reconfiguration Controller (SeReCon)

-- Target Devices: Virtex-5 LXT

-- Tool versions: 9.2.04i_PR11

-- Description: This file contains the reference implementation of the Extended ID

-- Register (EIDR).

-- Revision:

-- Revision 1.00 - Reference implementation

--

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity id_reg_top is

 Generic(MAC_WIDTH : integer := 256;--taken from V6CG

 CREDENTIALS_WIDTH : integer := 128;--useAES128

 ACC_WIDTH : integer := 28;

 MNC_WIDTH : integer := 28;

 LTC_WIDTH : integer := 56;

 UTC_WIDTH : integer := 56);

 Port (clk : in STD_LOGIC;

 rst : in STD_LOGIC;

 wr : in STD_LOGIC;

 done : in STD_LOGIC;

 update : in STD_LOGIC;

 mac : in STD_LOGIC_VECTOR (MAC_WIDTH-1 downto 0);

 data : in STD_LOGIC_VECTOR (CREDENTIALS_WIDTH-1 downto 0);

 credentials : out STD_LOGIC_VECTOR (CREDENTIALS_WIDTH-1 downto 0);

 device_restarts : out STD_LOGIC_VECTOR (ACC_WIDTH-1 downto 0);

 lifetime : out STD_LOGIC_VECTOR (LTC_WIDTH-1 downto 0);

 msg_no : out STD_LOGIC_VECTOR (MNC_WIDTH-1 downto 0);

 uptime : out STD_LOGIC_VECTOR (UTC_WIDTH-1 downto 0));

end id_reg_top;

architecture Behavioral of id_reg_top is

 signal kr_data : STD_LOGIC_VECTOR (MAC_WIDTH-1 downto 0);

 signal cr_data : STD_LOGIC_VECTOR (CREDENTIALS_WIDTH-1 downto 0);

 signal device_restarts_cnt : STD_LOGIC_VECTOR (ACC_WIDTH-1 downto 0);

 signal lifetime_cnt : STD_LOGIC_VECTOR (LTC_WIDTH-1 downto 0);

 signal msg_no_cnt : STD_LOGIC_VECTOR (MNC_WIDTH-1 downto 0);

 signal uptime_cnt : STD_LOGIC_VECTOR (UTC_WIDTH-1 downto 0);

 signal equal_en : STD_LOGIC;

 signal auth_cfg_ok : STD_LOGIC;

 signal auth_update : STD_LOGIC;

 signal device_restarts_cnt_en : STD_LOGIC;

 type state_type is (FSM_IDLE, FSM_INIT, FSM_ACTIVATED);

 signal state, next_state : state_type;

 signal auth_cfg_ok_en_i : std_logic;

 function is_zero(input_vector : in STD_LOGIC_VECTOR) return std_logic is

Appendix B – EIDR source code (eidr.vhdl)

– 197 –

 variable result : STD_LOGIC := '1';

 begin

 for i in input_vector'low to input_vector'high loop

 if '0' /= input_vector(i) then

 result := '0';

 end if;

 end loop;

 return result;

 end is_zero;

begin

EQUAL_EN_SIGNAL:

 equal_en <= '1' when (mac = kr_data and '0'=is_zero(kr_data)) else '0';

AUTH_CFG_OK_SIGNAL:

 auth_cfg_ok <= '1' when done='1' and equal_en = '1' else '0';

CREDENTIAL_ENABLE:

 credentials <= cr_data when auth_cfg_ok='1' else (others=>'0');

LTC_ENABLE:

 lifetime <= lifetime_cnt when auth_cfg_ok='1' else (others=>'0');

AAC_ENABLE:

 device_restarts <= device_restarts_cnt when auth_cfg_ok='1' else

(others=>'0');

FRC_ENABLE:

 uptime <= uptime_cnt;

AUTH_UPDATE_SIGNAL:

 auth_update <= auth_cfg_ok and update;

MNC_ENABLE:

 msg_no <= msg_no_cnt when auth_cfg_ok='1' else (others=>'0');

KR : process (clk, rst) --KEY_REGISTER

 begin

 if rst='1' then

 kr_data <= (others => '0');

 elsif (clk'event and clk='1') then

 if wr = '1' then

 kr_data <= mac;

 end if;

 end if;

 end process;

CR : process (clk, rst) --CREDENTIAL_REGISTER

 begin

 if rst='1' then

 cr_data <= (others => '0');

 elsif (clk'event and clk='1') then

 if wr = '1' then

 cr_data <= data;

 end if;

 end if;

 end process;

AAC: process (clk, rst) --AUTHENTICATED_CONFIGURATIONS_COUNTER

 begin

 if rst='1' then

 device_restarts_cnt <= (others => '0');

 elsif clk='1' and clk'event then

 if device_restarts_cnt_en = '1' then

 device_restarts_cnt <= device_restarts_cnt + 1;

 end if;

 end if;

 end process;

LTC: process (clk, rst) --LIFETIME_COUNTER

Appendix B – EIDR source code (eidr.vhdl)

– 198 –

 begin

 if rst='1' then

 lifetime_cnt <= (others => '0');

 elsif clk='1' and clk'event then

 if auth_cfg_ok='1' then

 lifetime_cnt <= lifetime_cnt + 1;

 end if;

 end if;

 end process;

MNC: process (clk, rst) --MSG_NO_COUNTER

 begin

 if rst='1' then

 msg_no_cnt <= (others => '0');

 elsif clk='1' and clk'event then

 if auth_update='1' then

 msg_no_cnt <= msg_no_cnt + 1;

 end if;

 end if;

 end process;

FRC: process (clk, rst, done) --FREE_RUNNING_COUNTER

 begin

 if (rst='1' or done='0') then

 uptime_cnt <= (others => '0');

 elsif clk='1' and clk'event then

 uptime_cnt <= uptime_cnt + 1;

 end if;

 end process;

ONE_SHOT_SYNC_PROC: process (clk)

 begin

 if (clk'event and clk = '1') then

 if (rst = '1') then

 state <= FSM_IDLE;

 device_restarts_cnt_en <= '0';

 else

 state <= next_state;

 device_restarts_cnt_en <= auth_cfg_ok_en_i;

 end if;

 end if;

 end process;

ONE_SHOT_NEXT_STATE_DECODE: process (state, auth_cfg_ok)

 begin

 next_state <= state;

 case (state) is

 when FSM_IDLE =>

 if auth_cfg_ok = '1' then

 next_state <= FSM_INIT;

 end if;

 when others =>

 next_state <= FSM_ACTIVATED;

 end case;

 end process;

ONE_SHOT_OUTPUT_DECODE: process (state)

 begin

 if state = FSM_INIT then

 auth_cfg_ok_en_i <= '1';

 else

 auth_cfg_ok_en_i <= '0';

 end if;

 end process;

end Behavioral;

– 199 –

Appendix C – ERDB C Data Structures (erdb.h)

This appendix provides the ERDB header file (erdb.h) which defines ERDB

data structures.

1 /*

2 ** Author: Krzysztof Kepa

3 * Company: BIRC Group, NUI Galway, Ireland

4 * Copyright: Krzysztof Kepa (2010). All rights reserved. Copying, using and

5 * implementation without author's written permision PROHIBITED.

6 **/

7

8 #ifndef __ERDB_H__

9 #define __ERDB_H__

10

11 typedef struct {

12 unsigned char x;

13 unsigned char y;

14 unsigned char x_next;

15 unsigned char y_next;

16 unsigned char x_offset;

17 unsigned char y_offset;

18 unsigned char x_times;

19 unsigned char y_times;

20 } tilegroup_entry_t;

21

22 typedef struct {

23 unsigned int len;

24 tilegroup_entry_t* tilegroup_entry;

25 } tilegroup_t;

26

27 typedef struct {

28 int x;

29 int y;

30 } shape_tap_t;

31

32 typedef struct {

33 unsigned int len;

34 shape_tap_t* tap;

35 } shape_t;

36

37 typedef struct {

38 unsigned char mna; //cfg mna

39 unsigned char word;//cfg word offset (or number in some cases!)

40 unsigned int word_mask;//actual word mask

41 } cfg_data_t;

42

43 typedef struct {

44 unsigned int wire1_index; //offset in WIRE_NAME_DB

45 unsigned char dir_index; //offset in PIP_DIR_DB

46 unsigned int wire2_index; //offset in WIRE_NAME_DB

47 cfg_data_t* cfg_words;

48 unsigned char cfg_words_cnt;

Appendix C – ERDB C Data Structures (erdb.h)

– 200 –

49 } pip_entry_t;

50

51 typedef struct {

52 unsigned int pips_cnt;//number of pips in the tilegroup

53 pip_entry_t* pips;//pip entries

54 tilegroup_t* tilegroup;//related tilegroup

55 } tile_type_entry_t;

56

57 typedef struct {

58 unsigned int tilegroups_cnt;//number of tiletype grups

59 unsigned char tiletype_index;// offset in TILE_TYPE_DB

60 tile_type_entry_t* tilegroups;//related tiletype group entry

61 } tile_type_t;

62

63 typedef struct {

64 shape_tap_t tap;

65 shape_t* shape;

66 tilegroup_t* tilegroup;

67 } wire_entry_t;

68

69 typedef struct {

70 unsigned int wire_index;//wire name

71 unsigned int tilegroup_cnt;

72 wire_entry_t* tilegroups;

73 } wire_tg_entry_t;

74

75 typedef struct {

76 unsigned int wire_cnt;//number of wires in tile type

77 unsigned char tiletype_index; //offset in TILE_TYPE_DB

78 wire_tg_entry_t* wires;//related wire entry

79 } wire_tile_type_t;

80

81 extern const unsigned int WS_DB_LEN;

82 extern const unsigned int TG_DB_LEN;

83 extern const unsigned int PIP_DIR_DB_LEN;

84 extern const unsigned int WIRE_NAME_DB_LEN;

85 extern const unsigned int WIRE_MODE_DB_LEN;

86 extern const unsigned int TILE_TYPE_DB_LEN;

87 extern const unsigned int PD_DB_LEN;

88 extern const unsigned int ROUTING_DB_LEN;

89

90 extern shape_t WS_DB[];

91 extern tilegroup_t TG_DB[];

92 extern unsigned char* PIP_DIR_DB[];

93 extern unsigned char* WIRE_NAME_DB[];

94 extern unsigned char* WIRE_MODE_DB[];

95 extern unsigned char* TILE_TYPE_DB[];

96 extern tile_type_t PD_DB[];

97 extern wire_tile_type_t ROUTING_DB[];

98 extern unsigned char* LAYOUT_DB[];

99

100 #endif // __ERDB_H__

– 201 –

Appendix D – “BitPipsVerificator “ recipe report

This appendix provides the detailed report of results obtained after

"BitPipsVerificator" recipe execution, e.g the list of XDL pips which are not found

in the bitstream and the list of additional bitstream pips which are not found in the

reference XDL file.

D.1. List of XDL pips which are not found in the bitstream

1 Found 15 tile types with missing pips:

2 CLBLL tile type (2 pips):

3 LL_COUT -> M_COUT_N (24 tiles):

4 L_COUT -> L_COUT_N (18 tiles):

5

6 CLBLM tile type (2 pips):

7 M_COUT -> M_COUT_N (27 tiles):

8

9 CLK_BUFGMUX tile type (11 pips):

10 CLK_BUFGMUX_CKINT1_12 -> CLK_BUFGMUX_PREMUX0_CLK12 (1 tile):

11 CLK_BUFGMUX_MUXED_IN_CLKB_P10 -> CLK_BUFGMUX_PREMUX0_CLK5 (1 tile):

12 CLK_BUFGMUX_MUXED_IN_CLKB_P12 -> CLK_BUFGMUX_PREMUX0_CLK6 (1 tile):

13 CLK_BUFGMUX_MUXED_IN_CLKB_P14 -> CLK_BUFGMUX_PREMUX0_CLK7 (1 tile):

14 CLK_BUFGMUX_MUXED_IN_CLKB_P16 -> CLK_BUFGMUX_PREMUX0_CLK8 (1 tile):

15 CLK_BUFGMUX_MUXED_IN_CLKB_P18 -> CLK_BUFGMUX_PREMUX0_CLK9 (1 tile):

16 CLK_BUFGMUX_MUXED_IN_CLKB_P2 -> CLK_BUFGMUX_PREMUX0_CLK1 (1 tile):

17 CLK_BUFGMUX_MUXED_IN_CLKB_P20 -> CLK_BUFGMUX_PREMUX0_CLK10 (1 tile):

18 CLK_BUFGMUX_MUXED_IN_CLKB_P30 -> CLK_BUFGMUX_PREMUX0_CLK15 (1 tile):

19 CLK_BUFGMUX_MUXED_IN_CLKB_P6 -> CLK_BUFGMUX_PREMUX0_CLK3 (1 tile):

20 CLK_BUFGMUX_MUXED_IN_CLKB_P8 -> CLK_BUFGMUX_PREMUX0_CLK4 (1 tile):

21

22 CLK_CMT_BOT tile type (12 pips):

23

24 CLK_CMT_CMT_CLK_00 -> CLK_IOB_MUXED_CLKOUT18 (1 tile):

25 CLK_CMT_CMT_CLK_01 -> CLK_IOB_MUXED_CLKOUT14 (1 tile):

26 CLK_CMT_CMT_CLK_12 -> CLK_IOB_MUXED_CLKOUT6 (1 tile):

27 CLK_CMT_CMT_CLK_13 -> CLK_IOB_MUXED_CLKOUT8 (1 tile):

28 CLK_CMT_CMT_CLK_18 -> CLK_IOB_MUXED_CLKOUT10 (1 tile):

29 CLK_CMT_CMT_CLK_18 -> CLK_IOB_MUXED_CLKOUT12 (1 tile):

30 CLK_CMT_CMT_CLK_22 -> CLK_IOB_MUXED_CLKOUT16 (1 tile):

31 CLK_CMT_CMT_CLK_25 -> CLK_IOB_MUXED_CLKOUT20 (1 tile):

32 CLK_IOB_MUXED_CLKIN10 -> CLK_IOB_MUXED_CLKOUT10 (1 tile):

33 CLK_IOB_MUXED_CLKIN20 -> CLK_IOB_MUXED_CLKOUT20 (1 tile):

34 CLK_IOB_MUXED_CLKIN6 -> CLK_IOB_MUXED_CLKOUT6 (1 tile):

35 CLK_IOB_MUXED_CLKIN8 -> CLK_IOB_MUXED_CLKOUT8 (2 tiles):

36

37 CLK_HROW tile type (19 pips):

38 CLK_HROW_CLK_METAL9_4 -> CLK_HROW_CLK_H_METAL9_4 (1 tile):

39 CLK_HROW_CLK_METAL9_5 -> CLK_HROW_CLK_H_METAL9_5 (1 tile):

40 CLK_HROW_GCLK_BUF1 -> CLK_HROW_HCLKL_P0 (1 tile):

41 CLK_HROW_GCLK_BUF10 -> CLK_HROW_HCLKL_P4 (1 tile):

42 CLK_HROW_GCLK_BUF10 -> CLK_HROW_HCLKR_P4 (1 tile):

Appendix D – “BitPipsVerificator “ recipe report

– 202 –

43 CLK_HROW_GCLK_BUF12 -> CLK_HROW_HCLKL_P3 (1 tile):

44 CLK_HROW_GCLK_BUF12 -> CLK_HROW_HCLKL_P4 (1 tile):

45 CLK_HROW_GCLK_BUF12 -> CLK_HROW_HCLKR_P2 (2 tiles):

46 CLK_HROW_GCLK_BUF3 -> CLK_HROW_HCLKR_P3 (2 tiles):

47 CLK_HROW_GCLK_BUF4 -> CLK_HROW_HCLKL_P1 (1 tile):

48 CLK_HROW_GCLK_BUF4 -> CLK_HROW_HCLKR_P1 (2 tiles):

49 CLK_HROW_GCLK_BUF5 -> CLK_HROW_HCLKL_P6 (1 tile):

50 CLK_HROW_GCLK_BUF7 -> CLK_HROW_HCLKL_P2 (1 tile):

51 CLK_HROW_GCLK_BUF7 -> CLK_HROW_HCLKL_P3 (1 tile):

52 CLK_HROW_GCLK_BUF8 -> CLK_HROW_HCLKL_P5 (2 tiles):

53 CLK_HROW_GCLK_BUF9 -> CLK_HROW_HCLKL_P0 (1 tile):

54 CLK_HROW_GCLK_BUF9 -> CLK_HROW_HCLKL_P1 (1 tile):

55 CLK_HROW_GCLK_BUF9 -> CLK_HROW_HCLKR_P0 (2 tiles):

56 CLK_HROW_MGT_CLK_P2 -> CLK_HROW_MGT_CLKV2 (1 tile):

57

58 CLK_IOB_B tile type (6 pips):

59 CLK_IOB_B_CLK_BUF12 -> CLK_IOB_MUXED_CLKOUT2 (1 tile):

60 CLK_IOB_CLK_BUF2 -> CLK_IOB_MUXED_CLKOUT30 (1 tile):

61 CLK_IOB_CLK_BUF4 -> CLK_IOB_IOB_CLKP4 (1 tile):

62 CLK_IOB_CLK_BUF5 -> CLK_IOB_IOB_CLKP5 (1 tile):

63 CLK_IOB_MUXED_CLKIN18 -> CLK_IOB_MUXED_CLKOUT18 (1 tile):

64 CLK_IOB_MUXED_CLKIN20 -> CLK_IOB_MUXED_CLKOUT20 (1 tile):

65

66 CMT_BOT tile type (5 pips):

67 CMT_BUFG0 -> CMT_DCM_0_CLKFB (1 tile):

68 CMT_BUFG0 -> CMT_PLL_CLKIN1 (1 tile):

69 CMT_BUFG4 -> CMT_DCM_0_CLKIN (1 tile):

70 CMT_BUFG4 -> CMT_DCM_1_CLKIN (1 tile):

71 CMT_GIOB5 -> CMT_DCM_1_CLKFB (1 tile):

72

73 CMT_TOP tile type (2 pips):

74 CMT_BUFG6_TOP -> CMT_DCM_1_CLKFB (1 tile):

75 CMT_GIOB4 -> CMT_DCM_1_CLKIN (1 tile):

76

77 GT3 tile type (4 pips):

78 GT3_CLK_B_0_10 -> GT3_RXUSRCLK0 (1 tile):

79 GT3_CLK_B_0_11 -> GT3_TXUSRCLK0 (1 tile):

80 GT3_CLK_B_1_8 -> GT3_TXUSRCLK1 (1 tile):

81 GT3_CLK_B_1_9 -> GT3_RXUSRCLK1 (1 tile):

82

83 HCLK_IOI tile type (11 pips):

84 HCLK_IOI_BUFIO_OUT0 -> HCLK_IOI_IOCLKP0 (2 tiles):

85 HCLK_IOI_BUFIO_OUT1 -> HCLK_IOI_IOCLKP1 (3 tiles):

86 HCLK_IOI_BUFIO_OUT2 -> HCLK_IOI_IOCLKP2 (2 tiles):

87 HCLK_IOI_BUFIO_OUT3 -> HCLK_IOI_IOCLKP3 (1 tile):

88 HCLK_IOI_G_HCLK_P0 -> HCLK_IOI_LEAF_GCLK_P0 (4 tiles):

89 HCLK_IOI_G_HCLK_P1 -> HCLK_IOI_LEAF_GCLK_P1 (2 tiles):

90 HCLK_IOI_G_HCLK_P2 -> HCLK_IOI_LEAF_GCLK_P2 (2 tiles):

91 HCLK_IOI_G_HCLK_P3 -> HCLK_IOI_LEAF_GCLK_P3 (2 tiles):

92 HCLK_IOI_G_HCLK_P5 -> HCLK_IOI_LEAF_GCLK_P5 (2 tiles):

93 HCLK_IOI_LEAF_GCLK_P2 -> HCLK_IOI_REFCLK (1 tile):

94 HCLK_IOI_LEAF_GCLK_P5 -> HCLK_IOI_REFCLK (2 tiles):

95

96 HCLK_IOI_BOTCEN tile type (1 pips):

97 HCLK_IOI_G_HCLK_P0 -> HCLK_IOI_LEAF_GCLK_P0 (1 tile):

98

Appendix D – “BitPipsVerificator “ recipe report

– 203 –

99 HCLK_IOI_CMT tile type (1 pips):

100 HCLK_IOI_G_HCLK_P0 -> HCLK_IOI_LEAF_GCLK_P0 (1 tile):

101

102 HCLK_IOI_TOPCEN tile type (1 pips):

103 HCLK_IOI_G_HCLK_P0 -> HCLK_IOI_LEAF_GCLK_P0 (1 tile):

104

105 INT tile type (6 pips):

106 LH0 =- LH18 (131 tiles):

107 LV0 =- LH0 (23 tiles):

108 LV0 =- LH18 (44 tiles):

109 LV0 =- LV18 (242 tiles):

110 LV18 =- LH0 (66 tiles):

111 LV18 =- LH18 (38 tiles):

112

113 IOI tile type (12 pips):

114 IOI_IOCLKP0 -> IOI_ICLKP_0 (9 tiles):

115 IOI_IOCLKP0 -> IOI_ICLKP_1 (7 tiles):

116 IOI_IOCLKP1 -> IOI_ICLKP_0 (13 tiles):

117 IOI_IOCLKP1 -> IOI_ICLKP_1 (11 tile):

118 IOI_IOCLKP2 -> IOI_ICLKP_0 (9 tiles):

119 IOI_IOCLKP2 -> IOI_ICLKP_1 (7 tiles):

120 IOI_IOCLKP3 -> IOI_ICLKP_0 (3 tiles):

121 IOI_IOCLKP3 -> IOI_ICLKP_1 (5 tiles):

122 IOI_LEAF_GCLK_P2 -> IOI_OCLKP_0 (15 tiles):

123 IOI_LEAF_GCLK_P2 -> IOI_OCLKP_1 (12 tiles):

124 IOI_LEAF_GCLK_P3 -> IOI_ICLKP_0 (7 tiles):

125 IOI_LEAF_GCLK_P3 -> IOI_ICLKP_1 (9 tiles):

126 Found 837 missing pips (95 tiles of 15 types)

127

Appendix D – “BitPipsVerificator “ recipe report

– 204 –

D.2. List of additional bitstream pips which are not found

in the reference XDL file

1 Found 11 tile types with extra pips :

2

3

4 CLBLL tile type (2 pips):

5 LL_COUT -> M_COUT_N (21 tile):

6 L_COUT -> L_COUT_N (18 tiles):

7

8

9 CLBLM tile type (2 pips):

10 L_COUT -> L_COUT_N (25 tiles):

11 M_COUT -> M_COUT_N (27 tiles):

12

13 CLK_CMT_BOT tile type (8 pips):

14 CLK_CMT_CMT_CLK_00 -> CLK_IOB_MUXED_CLKOUT14 (1 tile):

15 CLK_CMT_CMT_CLK_01 -> CLK_IOB_MUXED_CLKOUT10 (1 tile):

16 CLK_CMT_CMT_CLK_12 -> CLK_IOB_MUXED_CLKOUT2 (2 tiles):

17 CLK_CMT_CMT_CLK_13 -> CLK_IOB_MUXED_CLKOUT4 (2 tiles):

18 CLK_CMT_CMT_CLK_18 -> CLK_IOB_MUXED_CLKOUT8 (1 tile):

19 CLK_IOB_MUXED_CLKIN12 -> CLK_IOB_MUXED_CLKOUT12 (1 tile):

20 CLK_IOB_MUXED_CLKIN2 -> CLK_IOB_MUXED_CLKOUT2 (1 tile):

21 CLK_IOB_MUXED_CLKIN4 -> CLK_IOB_MUXED_CLKOUT4 (1 tile):

22

23 CLK_HROW tile type (4 pips):

24 CLK_HROW_GCLK_BUF28 -> CLK_HROW_HCLKL_P3 (1 tile):

25 CLK_HROW_GCLK_BUF29 -> CLK_HROW_HCLKL_P3 (1 tile):

26 CLK_HROW_GCLK_BUF29 -> CLK_HROW_HCLKL_P6 (1 tile):

27 CLK_HROW_GCLK_BUF29 -> CLK_HROW_HCLKR_P6 (1 tile):

28

29 CLK_IOB_B tile type (3 pips):

30 CLK_IOB_CLK_BUF2 -> CLK_IOB_MUXED_CLKOUT26 (1 tile):

31 CLK_IOB_MUXED_CLKIN2 -> CLK_IOB_MUXED_CLKOUT2 (1 tile):

32 CLK_IOB_MUXED_CLKIN4 -> CLK_IOB_MUXED_CLKOUT4 (1 tile):

33

34 GT3 tile type (1 pips):

35 GT3_CLKPN -> GT3_CLKOUT_NORTH_N (1 tile):

36

37 HCLK_IOI tile type (6 pips):

38 HCLK_IOI_G_HCLK_P3 -> HCLK_IOI_LEAF_GCLK_P3 (1 tile):

39 HCLK_IOI_G_HCLK_P4 -> HCLK_IOI_LEAF_GCLK_P4 (1 tile):

40 HCLK_IOI_I2CLK_P9 -> HCLK_IOI_BUFR_I0 (1 tile):

41 HCLK_IOI_LEAF_GCLK_P5 -> HCLK_IOI_REFCLK (1 tile):

42 HCLK_IOI_LEAF_GCLK_P9 -> HCLK_IOI_REFCLK (1 tile):

43 HCLK_IOI_MGT_CLK_P2 -> HCLK_IOI_BUFR_I0 (2 tiles):

44

45 HCLK_IOI_BOTCEN tile type (1 pips):

46 HCLK_IOI_LEAF_GCLK_P0 -> HCLK_IOI_REFCLK (1 tile):

47

48 HCLK_IOI_CMT tile type (1 pips):

49 HCLK_IOI_G_HCLK_P4 -> HCLK_IOI_LEAF_GCLK_P4 (1 tile):

50

Appendix D – “BitPipsVerificator “ recipe report

– 205 –

51 INT tile type (6 pips):

52 LH0 =- LV0 (57 tiles):

53 LH0 =- LV18 (55 tiles):

54 LH18 =- LH0 (151 tile):

55 LH18 =- LV0 (117 tiles):

56 LH18 =- LV18 (78 tiles):

57 LV18 =- LV0 (240 tiles):

58

59 IOI tile type (44 pips):

60 IOI_IMUX_B11 -> IOI_ICLKP_0 (67 tiles):

61 IOI_IMUX_B11 -> IOI_ICLKP_1 (67 tiles):

62 IOI_IMUX_B5 -> IOI_ICLKP_0 (67 tiles):

63 IOI_IMUX_B5 -> IOI_ICLKP_1 (67 tiles):

64 IOI_IOCLKP0 -> IOI_OCLKP_0 (67 tiles):

65 IOI_IOCLKP0 -> IOI_OCLKP_1 (67 tiles):

66 IOI_IOCLKP1 -> IOI_OCLKP_0 (3 tiles):

67 IOI_IOCLKP1 -> IOI_OCLKP_1 (5 tiles):

68 IOI_IOCLKP2 -> IOI_ICLKP_0 (16 tiles):

69 IOI_IOCLKP2 -> IOI_ICLKP_1 (17 tiles):

70 IOI_IOCLKP3 -> IOI_ICLKP_0 (67 tiles):

71 IOI_IOCLKP3 -> IOI_ICLKP_1 (67 tiles):

72 IOI_LEAF_GCLK_P1 -> IOI_ICLKP_0 (16 tiles):

73 IOI_LEAF_GCLK_P1 -> IOI_ICLKP_1 (17 tiles):

74 IOI_LEAF_GCLK_P2 -> IOI_ICLKP_0 (16 tiles):

75 IOI_LEAF_GCLK_P2 -> IOI_ICLKP_1 (17 tiles):

76 IOI_LEAF_GCLK_P2 -> IOI_OCLKP_0 (50 tiles):

77 IOI_LEAF_GCLK_P2 -> IOI_OCLKP_1 (50 tiles):

78 IOI_LEAF_GCLK_P3 -> IOI_ICLKP_0 (16 tiles):

79 IOI_LEAF_GCLK_P3 -> IOI_ICLKP_1 (17 tiles):

80 IOI_LEAF_GCLK_P4 -> IOI_ICLKP_0 (16 tiles):

81 IOI_LEAF_GCLK_P4 -> IOI_ICLKP_1 (17 tiles):

82 IOI_LEAF_GCLK_P4 -> IOI_OCLKDIV0 (67 tiles):

83 IOI_LEAF_GCLK_P4 -> IOI_OCLKDIV1 (67 tiles):

84 IOI_LEAF_GCLK_P4 -> IOI_OCLKP_0 (46 tiles):

85 IOI_LEAF_GCLK_P4 -> IOI_OCLKP_1 (44 tiles):

86 IOI_LEAF_GCLK_P5 -> IOI_ICLKP_0 (67 tiles):

87 IOI_LEAF_GCLK_P5 -> IOI_ICLKP_1 (67 tiles):

88 IOI_LEAF_GCLK_P5 -> IOI_OCLKP_0 (1 tile):

89 IOI_LEAF_GCLK_P5 -> IOI_OCLKP_1 (1 tile):

90 IOI_LEAF_GCLK_P6 -> IOI_ICLKP_0 (67 tiles):

91 IOI_LEAF_GCLK_P6 -> IOI_ICLKP_1 (67 tiles):

92 IOI_LEAF_GCLK_P6 -> IOI_OCLKDIV0 (67 tiles):

93 IOI_LEAF_GCLK_P6 -> IOI_OCLKDIV1 (67 tiles):

94 IOI_LEAF_GCLK_P6 -> IOI_OCLKP_0 (67 tiles):

95 IOI_LEAF_GCLK_P6 -> IOI_OCLKP_1 (67 tiles):

96 IOI_LEAF_GCLK_P7 -> IOI_ICLKP_0 (67 tiles):

97 IOI_LEAF_GCLK_P7 -> IOI_ICLKP_1 (67 tiles):

98 IOI_LEAF_GCLK_P7 -> IOI_OCLKP_0 (3 tiles):

99 IOI_LEAF_GCLK_P7 -> IOI_OCLKP_1 (5 tiles):

100 IOI_RCLK_FORIO_P2 -> IOI_OCLKP_0 (46 tiles):

101 IOI_RCLK_FORIO_P2 -> IOI_OCLKP_1 (44 tiles):

102 IOI_RCLK_FORIO_P3 -> IOI_OCLKP_0 (1 tile):

103 IOI_RCLK_FORIO_P3 -> IOI_OCLKP_1 (1 tile):

104

105 Found 2621 extra pips (78 tiles of 11 types)

– 206 –

Appendix E – SeReCon debug console output during
RC system demonstration

This appendix illustrates the complete output of the SeReCon debug console

during SeReCon-enabled RC system demonstration.

The SeReCon debug output report is divided into four sections. Section E.1

illustrates the default view of the SeReCon debug console. SeReCon debug messages

which are generated during EIDR initialisation are reported in Section E.2. Section

E.3 illustrates installation of demonstrator IP cores, e.g. Adder (‘add’), blank design

(‘blank’), Multiplier (‘mul’), AES encoder (‘enc’) and AES decoder (‘dec’).

Activation of demonstrator IP cores is highlighted in Section 0.

E.1. Default view of the SeReCon debug console

This section illustrates the default view of the SeReCon debug console.

1 Initializing SysAce...OK

2 MFS: Initialising MFS ... DONE

3 MFS: 131072 KB MFS occupied @ 0x98000000

4 MFS: Used 1 block(s) out of 252288

5 MFS: Current dirname is "/"

6 Initializing ICAP...OK

7 Restore IDR

8 Reading 68 bytes from "serecon.idr" (CF) to RAM (@ 0x901B8FB4)...OK

9 68 bytes read.

10 Restore system state.

11 - load system state data (serecon.sys)...ERROR (get file size)

12

13 ==============================

14 == NUI SeReCon Demo ==

15 == Jan 28 2010 22:41:34 ==

16 ==============================

17

18 [1] Receive commands from PCIe

19 [2] MFS reset

20 [3] MFS file remove

21 [4] MFS stats

22 [5] MFS file copy

23 [6] MFS file rename

24 [7] MFS list dir

25 [8] MFS cat file

26 [9] MFS cat file HEX

27 [10] CF list directory

28 [11] CF remove file

29 [12] CF remove dir

30 [13] CF create dir

31 [14] CF change dir

32 [15] CF cat file content

33 [16] Read FPGA registers

Appendix E – SeReCon debug console output during RC system demonstration

– 207 –

34 [17] Initialise IDR

35 [18] Display IDR content

36 [19] IDR content backup to CF

37 [20] IDR content restore from CF

38 [21] IDR content backup to MFS

39 [22] IDR content restore from MFS

40 [23] Read IPV_demo.ipv

41 [24] Read IPV_demo.m00

42 [25] Generate shared key for IPV_demo

43 [26] Restore pubkey in CF

44 [27] Demo install IP core

45 [28] Demo activate IP core

46 [29] Generate default system state

47 [30] Allow non-safe IP cores

48 [31] Display system state

49 [32] Reset safelock

50

51 Choice? (1-32)1

52 Listening to PCIe interface...(press ESC key to break)

Appendix E – SeReCon debug console output during RC system demonstration

– 208 –

E.2. EIDR initialisation

This section illustrates SeReCon debug messages which are generated during

EIDR initialisation.

1 Init IDR.

2 Generating new data...OK

3

4 Generating ECC-P192 key-pair...

5 - initialise curve...OK

6 - initialise generating point...OK

7 - Collect random data...OK

8 - calculate public key...OK

9 - encrypt private key...OK

10 - store encrypted private key to "serecon.prv"...OK

11 - store public key to "serecon.pub"...Writing 276 bytes (from 0x901BEAC8) to K

12 OK

13 Done.

14 Waiting for ACK...OK

15 Waiting for NULL...OK

16 PCIe command finished.

17

18 Waiting for PCIe command...(press ESC key to break)

19

20 PCIe: file download.

21 Reading 'serecon.pub' file from CF card to RAM...OK

22 Uploading file from RAM...OK

23 Send file 'serecon.pub' (276 bytes).

24 File transfer completed.

25 Waiting for ACK...OK

26 Waiting for NULL...OK

27 PCIe command finished.

28

29 Waiting for PCIe command...(press ESC key to break)

30

31 PCIe: file upload.

32 Downloading file 'ipv_demo.ipv'to RAM...OK

33 Received file 'ipv_demo.ipv' (252 bytes).

34 Writing 252 bytes (from 0x901BE578) to MFS("ipv_demo.ipv")...OK

35 OK

36 File transfer completed.

37 Waiting for ACK...OK

38 Waiting for NULL...OK

39 PCIe command finished.

40

41 Waiting for PCIe command...(press ESC key to break)

Appendix E – SeReCon debug console output during RC system demonstration

– 209 –

E.3. IP cores installation

This section provides SeReCon debug messages illustrating installation of

demonstrator IP cores, e.g. Adder (‘add’), blank design (‘blank’), Multiplier (‘mul’),

AES encoder (‘enc’) and AES decoder (‘dec’).

E.3.1. The “add” IP core installation

This section illustrates installation of the Adder IP core (‘add’).

1 PCIe: get idr msg_no.

2 Sending msg_no...DONE

3 Waiting for ACK...OK

4 Waiting for NULL...OK

5 PCIe command finished.

6

7 Waiting for PCIe command...(press ESC key to break)

8

9 PCIe: file upload.

10 Downloading file 'ipv_demo.m00'to RAM...OK

11 Received file 'ipv_demo.m00' (108 bytes).

12 Writing 108 bytes (from 0x901BE578) to MFS("ipv_demo.m00")...OK

13 OK

14 File transfer completed.

15 Waiting for ACK...OK

16 Waiting for NULL...OK

17 PCIe command finished.

18

19 Waiting for PCIe command...(press ESC key to break)

20

21 Generate session key for ipv_demo IPV

22 - get IDR msg_no...OK (0x00)

23 - read IPV public key file "ipv_demo.ipv"...OK

24 - read IPV message file "ipv_demo.m00"...OK

25 - compare msg_no...OK

26 - get random data...OK

27 - get IDR credentials...OK

28 - get access to private key "serecon.prv"...OK

29 - calculate shared key...OK

30 Shared_key: 0x5F4FCB40C11DDEEA8351230556DF7D44F298E1A6C2B11369

31 - sign reply msg...OK

32 - save reply msg to "ipv_demo.r01"...OK

33 - save shared key to "ipv_demo.s01"...OK

34 Done.

35 Waiting for ACK...OK

36 Waiting for NULL...OK

37 PCIe command finished.

38

39 Waiting for PCIe command...(press ESC key to break)

40

41 PCIe: get idr msg_no.

Appendix E – SeReCon debug console output during RC system demonstration

– 210 –

42 Sending msg_no...DONE

43 Waiting for ACK...OK

44 Waiting for NULL...OK

45 PCIe command finished.

46

47 Waiting for PCIe command...(press ESC key to break)

48

49 PCIe: file download.

50 Reading file 'ipv_demo.r01' from MFS to RAM...OK

51 Uploading file from RAM...OK

52 Send file 'ipv_demo.r01' (80 bytes).

53 File transfer completed.

54 Waiting for ACK...OK

55 Waiting for NULL...OK

56 PCIe command finished.

57

58 Waiting for PCIe command...(press ESC key to break)

59

60 PCIe: file upload.

61 Downloading file 'add.e01'to RAM...OK

62 Received file 'add.e01' (145824 bytes).

63 Writing 145824 bytes (from 0x901BFB08) to MFS("add.e01")...OK

64 OK

65 File transfer completed.

66 Waiting for ACK...OK

67 Waiting for NULL...OK

68 PCIe command finished.

69

70 Waiting for PCIe command...(press ESC key to break)

71

72 PCIe: file upload.

73 Downloading file 'add.c01'to RAM...OK

74 Received file 'add.c01' (32 bytes).

75 Writing 32 bytes (from 0x901BE578) to MFS("add.c01")...OK

76 OK

77 File transfer completed.

78 Waiting for ACK...OK

79 Waiting for NULL...OK

80 PCIe command finished.

81

82 Waiting for PCIe command...(press ESC key to break)

83

84 PCIe: Install IP core.

85

86 Install 'add' core (provided by 'ipv_demo'):

87 - get IDR credentials...OK

88 - get IPV shared key from "ipv_demo.s01" file...OK

89 - get IP core license from "add.c01"...OK

90 - get safelock entry for msg 01...OK

91 - install IP core license in "add.l01"...OK

92 - get IP core from "add.e01"...OK

93 - call ERDB analyser

94

95 ERDB_analyser v.1.0 (release Jan 29 2010, 18:40:42)

96

97 - read header

Appendix E – SeReCon debug console output during RC system demonstration

– 211 –

98

99 Header data:

100 - HeaderLength : 86

101 - BitstreamLength : 145732

102 - DesignName : prm_adder_partial.ncd

103 - PartName : 5vlx50tff1136

104 - Date : 2009/10/27

105 - Time : 19: 7:46

106

107 - parse bitstream...OK

108 Region (x,y): (10,0) to (42,43)

109 - detect external pips...OK

110 Found 2699 external pips (2254 real, 445 fake).

111 - analyse isolation boundary...OK

112 Region (x,y): (10,0) to (42,45)

113 - detect io pips...OK

114 Found 2468 io pips (2154 real, 314 fake).

115 Analysis finished successfully.

116 - update safelock credentials...OK

117 - create installed IP file "add.i01"...OK

118 - create IP analysis report file "add.d01"...OK

119 Installed IP core 'add'.

120

121 Waiting for ACK...OK

122 Waiting for NULL...OK

123 PCIe command finished.

124

125 Waiting for PCIe command...(press ESC key to break)

Appendix E – SeReCon debug console output during RC system demonstration

– 212 –

E.3.2. The “blank” IP core installation

This section illustrates installation of the blank design IP core (‘blank’).

1 PCIe: get idr msg_no.

2 Sending msg_no...DONE

3 Waiting for ACK...OK

4 Waiting for NULL...OK

5 PCIe command finished.

6

7 Waiting for PCIe command...(press ESC key to break)

8

9 PCIe: file upload.

10 Downloading file 'ipv_demo.m02'to RAM...OK

11 Received file 'ipv_demo.m02' (108 bytes).

12 Writing 108 bytes (from 0x901BE578) to MFS("ipv_demo.m02")...OK

13 OK

14 File transfer completed.

15 Waiting for ACK...OK

16 Waiting for NULL...OK

17 PCIe command finished.

18

19 Waiting for PCIe command...(press ESC key to break)

20

21

22

23 Generate session key for ipv_demo IPV

24 - get IDR msg_no...OK (0x02)

25 - read IPV public key file "ipv_demo.ipv"...OK

26 - read IPV message file "ipv_demo.m02"...OK

27 - compare msg_no...OK

28 - get random data...OK

29 - get IDR credentials...OK

30 - get access to private key "serecon.prv"...OK

31 - calculate shared key...OK

32 Shared_key: 0x35C3495E63F3C4AFC11DAE993600D96B31A468C950F5C28E

33 - sign reply msg...OK

34 - save reply msg to "ipv_demo.r03"...OK

35 - save shared key to "ipv_demo.s03"...OK

36 Done.

37 Waiting for ACK...OK

38 Waiting for NULL...OK

39 PCIe command finished.

40

41 Waiting for PCIe command...(press ESC key to break)

42

43 PCIe: get idr msg_no.

44 Sending msg_no...DONE

45 Waiting for ACK...OK

46 Waiting for NULL...OK

47 PCIe command finished.

48

49 Waiting for PCIe command...(press ESC key to break)

50

Appendix E – SeReCon debug console output during RC system demonstration

– 213 –

51 PCIe: file download.

52 Reading file 'ipv_demo.r03' from MFS to RAM...OK

53 Uploading file from RAM...OK

54 Send file 'ipv_demo.r03' (80 bytes).

55 File transfer completed.

56 Waiting for ACK...OK

57 Waiting for NULL...OK

58 PCIe command finished.

59

60 Waiting for PCIe command...(press ESC key to break)

61

62 PCIe: file upload.

63 Downloading file 'blank.e03'to RAM...OK

64 Received file 'blank.e03' (126512 bytes).

65 Writing 126512 bytes (from 0x901BFB08) to MFS("blank.e03")...OK

66 OK

67 File transfer completed.

68 Waiting for ACK...OK

69 Waiting for NULL...OK

70 PCIe command finished.

71

72 Waiting for PCIe command...(press ESC key to break)

73

74 PCIe: file upload.

75 Downloading file 'blank.c03'to RAM...OK

76 Received file 'blank.c03' (32 bytes).

77 Writing 32 bytes (from 0x9023F3D0) to MFS("blank.c03")...OK

78 OK

79 File transfer completed.

80 Waiting for ACK...OK

81 Waiting for NULL...OK

82 PCIe command finished.

83

84 Waiting for PCIe command...(press ESC key to break)

85

86 PCIe: Install IP core.

87

88

89 Install 'blank' core (provided by 'ipv_demo'):

90 - get IDR credentials...OK

91 - get IPV shared key from "ipv_demo.s03" file...OK

92 - get IP core license from "blank.c03"...OK

93 - get safelock entry for msg 03...OK

94 - install IP core license in "blank.l03"...OK

95 - get IP core from "blank.e03"...OK

96 - call ERDB analyser

97

98 ERDB_analyser v.1.0 (release Jan 29 2010, 18:40:42)

99

100 - read header

101

102 Header data:

103 - HeaderLength : 85

104 - BitstreamLength : 126420

105 - DesignName : pblock_prm_blank.ncd

106 - PartName : 5vlx50tff1136

Appendix E – SeReCon debug console output during RC system demonstration

– 214 –

107 - Date : 2009/10/27

108 - Time : 19:36:42

109

110 - parse bitstream...OK

111 Region (x,y): (10,0) to (42,43)

112 - detect external pips...OK

113 Found 2684 external pips (2239 real, 445 fake).

114 - analyse isolation boundary...OK

115 Region (x,y): (10,0) to (42,45)

116 - detect io pips...OK

117 Found 2453 io pips (2139 real, 314 fake).

118 Analysis finished successfully.

119 - update safelock credentials...OK

120 - create installed IP file "blank.i03"...OK

121 - create IP analysis report file "blank.d03"...OK

122 Installed IP core 'blank'.

123

124 Waiting for ACK...OK

125 Waiting for NULL...OK

126 PCIe command finished.

127

128 Waiting for PCIe command...(press ESC key to break)

Appendix E – SeReCon debug console output during RC system demonstration

– 215 –

E.3.3. The “mul” IP core installation

This section illustrates installation of the Multiplier IP core (‘mul’).

1 PCIe: get idr msg_no.

2 Sending msg_no...DONE

3 Waiting for ACK...OK

4 Waiting for NULL...OK

5 PCIe command finished.

6

7 Waiting for PCIe command...(press ESC key to break)

8

9 PCIe: file upload.

10 Downloading file 'ipv_demo.m04'to RAM...OK

11 Received file 'ipv_demo.m04' (108 bytes).

12 Writing 108 bytes (from 0x902152E0) to MFS("ipv_demo.m04")...OK

13 OK

14 File transfer completed.

15 Waiting for ACK...OK

16 Waiting for NULL...OK

17 PCIe command finished.

18

19 Waiting for PCIe command...(press ESC key to break)

20

21

22

23 Generate session key for ipv_demo IPV

24 - get IDR msg_no...OK (0x04)

25 - read IPV public key file "ipv_demo.ipv"...OK

26 - read IPV message file "ipv_demo.m04"...OK

27 - compare msg_no...OK

28 - get random data...OK

29 - get IDR credentials...OK

30 - get access to private key "serecon.prv"...OK

31 - calculate shared key...OK

32 Shared_key: 0xDB5DBA0AED57E124B5D9730676471F4DD8D0115FA7E3E542

33 - sign reply msg...OK

34 - save reply msg to "ipv_demo.r05"...OK

35 - save shared key to "ipv_demo.s05"...OK

36 Done.

37 Waiting for ACK...OK

38 Waiting for NULL...OK

39 PCIe command finished.

40

41 Waiting for PCIe command...(press ESC key to break)

42

43 PCIe: get idr msg_no.

44 Sending msg_no...DONE

45 Waiting for ACK...OK

46 Waiting for NULL...OK

47 PCIe command finished.

48

49 Waiting for PCIe command...(press ESC key to break)

50

Appendix E – SeReCon debug console output during RC system demonstration

– 216 –

51 PCIe: file download.

52 Reading file 'ipv_demo.r05' from MFS to RAM...OK

53 Uploading file from RAM...OK

54 Send file 'ipv_demo.r05' (80 bytes).

55 File transfer completed.

56 Waiting for ACK...OK

57 Waiting for NULL...OK

58 PCIe command finished.

59

60 Waiting for PCIe command...(press ESC key to break)

61

62 PCIe: file upload.

63 Downloading file 'mul.e05'to RAM...OK

64 Received file 'mul.e05' (151072 bytes).

65 Writing 151072 bytes (from 0x90293A60) to MFS("mul.e05")...OK

66 OK

67 File transfer completed.

68 Waiting for ACK...OK

69 Waiting for NULL...OK

70 PCIe command finished.

71

72 Waiting for PCIe command...(press ESC key to break)

73

74 PCIe: file upload.

75 Downloading file 'mul.c05'to RAM...OK

76 Received file 'mul.c05' (32 bytes).

77 Writing 32 bytes (from 0x9023F3D0) to MFS("mul.c05")...OK

78 OK

79 File transfer completed.

80 Waiting for ACK...OK

81 Waiting for NULL...OK

82 PCIe command finished.

83

84 Waiting for PCIe command...(press ESC key to break)

85

86 PCIe: Install IP core.

87

88

89 Install 'mul' core (provided by 'ipv_demo'):

90 - get IDR credentials...OK

91 - get IPV shared key from "ipv_demo.s05" file...OK

92 - get IP core license from "mul.c05"...OK

93 - get safelock entry for msg 05...OK

94 - install IP core license in "mul.l05"...OK

95 - get IP core from "mul.e05"...OK

96 - call ERDB analyser

97

98 ERDB_analyser v.1.0 (release Jan 29 2010, 18:40:42)

99

100 - read header

101

102 Header data:

103 - HeaderLength : 91

104 - BitstreamLength : 150968

105 - DesignName : prm_multiplier_partial.ncd

106 - PartName : 5vlx50tff1136

Appendix E – SeReCon debug console output during RC system demonstration

– 217 –

107 - Date : 2009/10/27

108 - Time : 19:14: 0

109

110 - parse bitstream...OK

111 Region (x,y): (10,0) to (42,43)

112 - detect external pips...OK

113 Found 2709 external pips (2264 real, 445 fake).

114 - analyse isolation boundary...OK

115 Region (x,y): (10,0) to (42,45)

116 - detect io pips...OK

117 Found 2478 io pips (2164 real, 314 fake).

118 Analysis finished successfully.

119 - update safelock credentials...OK

120 - create installed IP file "mul.i05"...OK

121 - create IP analysis report file "mul.d05"...OK

122 Installed IP core 'mul'.

123

124 Waiting for ACK...OK

125 Waiting for NULL...OK

126 PCIe command finished.

127

128 Waiting for PCIe command...(press ESC key to break)

Appendix E – SeReCon debug console output during RC system demonstration

– 218 –

E.3.4. The “enc” IP core installation

This section illustrates installation of the AES Encoder IP core (‘enc’).

1 PCIe: get idr msg_no.

2 Sending msg_no...DONE

3 Waiting for ACK...OK

4 Waiting for NULL...OK

5 PCIe command finished.

6

7 Waiting for PCIe command...(press ESC key to break)

8

9 PCIe: file upload.

10 Downloading file 'ipv_demo.m06'to RAM...OK

11 Received file 'ipv_demo.m06' (108 bytes).

12 Writing 108 bytes (from 0x901E40E0) to MFS("ipv_demo.m06")...OK

13 OK

14 File transfer completed.

15 Waiting for ACK...OK

16 Waiting for NULL...OK

17 PCIe command finished.

18

19 Waiting for PCIe command...(press ESC key to break)

20

21

22

23 Generate session key for ipv_demo IPV

24 - get IDR msg_no...OK (0x06)

25 - read IPV public key file "ipv_demo.ipv"...OK

26 - read IPV message file "ipv_demo.m06"...OK

27 - compare msg_no...OK

28 - get random data...OK

29 - get IDR credentials...OK

30 - get access to private key "serecon.prv"...OK

31 - calculate shared key...OK

32 Shared_key: 0x4FC8376B29BBAE05E1C1695725B6DDB348B4A83E7019FC90

33 - sign reply msg...OK

34 - save reply msg to "ipv_demo.r07"...OK

35 - save shared key to "ipv_demo.s07"...OK

36 Done.

37 Waiting for ACK...OK

38 Waiting for NULL...OK

39 PCIe command finished.

40

41 Waiting for PCIe command...(press ESC key to break)

42

43 PCIe: get idr msg_no.

44 Sending msg_no...DONE

45 Waiting for ACK...OK

46 Waiting for NULL...OK

47 PCIe command finished.

48

49 Waiting for PCIe command...(press ESC key to break)

50

Appendix E – SeReCon debug console output during RC system demonstration

– 219 –

51 PCIe: file download.

52 Reading file 'ipv_demo.r07' from MFS to RAM...OK

53 Uploading file from RAM...OK

54 Send file 'ipv_demo.r07' (80 bytes).

55 File transfer completed.

56 Waiting for ACK...OK

57 Waiting for NULL...OK

58 PCIe command finished.

59

60 Waiting for PCIe command...(press ESC key to break)

61

62 PCIe: file upload.

63 Downloading file 'enc.e07'to RAM...OK

64 Received file 'enc.e07' (165792 bytes).

65 Writing 165792 bytes (from 0x902D6708) to MFS("enc.e07")...OK

66 OK

67 File transfer completed.

68 Waiting for ACK...OK

69 Waiting for NULL...OK

70 PCIe command finished.

71

72 Waiting for PCIe command...(press ESC key to break)

73

74 PCIe: file upload.

75 Downloading file 'enc.c07'to RAM...OK

76 Received file 'enc.c07' (32 bytes).

77 Writing 32 bytes (from 0x90276E70) to MFS("enc.c07")...OK

78 OK

79 File transfer completed.

80 Waiting for ACK...OK

81 Waiting for NULL...OK

82 PCIe command finished.

83

84 Waiting for PCIe command...(press ESC key to break)

85

86 PCIe: Install IP core.

87

88

89 Install 'enc' core (provided by 'ipv_demo'):

90 - get IDR credentials...OK

91 - get IPV shared key from "ipv_demo.s07" file...OK

92 - get IP core license from "enc.c07"...OK

93 - get safelock entry for msg 07...OK

94 - install IP core license in "enc.l07"...OK

95 - get IP core from "enc.e07"...OK

96 - call ERDB analyser

97

98 ERDB_analyser v.1.0 (release Jan 29 2010, 18:40:42)

99

100 - read header

101

102 Header data:

103 - HeaderLength : 88

104 - BitstreamLength : 165696

105 - DesignName : prm_encoder_partial.ncd

106 - PartName : 5vlx50tff1136

Appendix E – SeReCon debug console output during RC system demonstration

– 220 –

107 - Date : 2009/10/27

108 - Time : 19:20:24

109

110 - parse bitstream...OK

111 Region (x,y): (10,0) to (42,43)

112 - detect external pips...OK

113 Found 3330 external pips (2885 real, 445 fake).

114 - analyse isolation boundary...OK

115 Region (x,y): (10,0) to (42,45)

116 - detect io pips...OK

117 Found 3064 io pips (2750 real, 314 fake).

118 Analysis finished successfully.

119 - update safelock credentials...OK

120 - create installed IP file "enc.i07"...OK

121 - create IP analysis report file "enc.d07"...OK

122 Installed IP core 'enc'.

123

124 Waiting for ACK...OK

125 Waiting for NULL...OK

126 PCIe command finished.

127

128 Waiting for PCIe command...(press ESC key to break)

Appendix E – SeReCon debug console output during RC system demonstration

– 221 –

E.3.5. The “dec” IP core installation

This section illustrates installation of the AES Decoder IP core (‘dec’).

1 PCIe: get idr msg_no.

2 Sending msg_no...DONE

3 Waiting for ACK...OK

4 Waiting for NULL...OK

5 PCIe command finished.

6

7 Waiting for PCIe command...(press ESC key to break)

8

9 PCIe: file upload.

10 Downloading file 'ipv_demo.m08'to RAM...OK

11 Received file 'ipv_demo.m08' (108 bytes).

12 Writing 108 bytes (from 0x90203108) to MFS("ipv_demo.m08")...OK

13 OK

14 File transfer completed.

15 Waiting for ACK...OK

16 Waiting for NULL...OK

17 PCIe command finished.

18

19 Waiting for PCIe command...(press ESC key to break)

20

21

22

23 Generate session key for ipv_demo IPV

24 - get IDR msg_no...OK (0x08)

25 - read IPV public key file "ipv_demo.ipv"...OK

26 - read IPV message file "ipv_demo.m08"...OK

27 - compare msg_no...OK

28 - get random data...OK

29 - get IDR credentials...OK

30 - get access to private key "serecon.prv"...OK

31 - calculate shared key...OK

32 Shared_key: 0x70337D681E6EAA099C7D0E5015935178103DE12F6CDE3BE0

33 - sign reply msg...OK

34 - save reply msg to "ipv_demo.r09"...OK

35 - save shared key to "ipv_demo.s09"...OK

36 Done.

37 Waiting for ACK...OK

38 Waiting for NULL...OK

39 PCIe command finished.

40

41 Waiting for PCIe command...(press ESC key to break)

42

43 PCIe: get idr msg_no.

44 Sending msg_no...DONE

45 Waiting for ACK...OK

46 Waiting for NULL...OK

47 PCIe command finished.

48

49 Waiting for PCIe command...(press ESC key to break)

50

Appendix E – SeReCon debug console output during RC system demonstration

– 222 –

51 PCIe: file download.

52 Reading file 'ipv_demo.r09' from MFS to RAM...OK

53 Uploading file from RAM...OK

54 Send file 'ipv_demo.r09' (80 bytes).

55 File transfer completed.

56 Waiting for ACK...OK

57 Waiting for NULL...OK

58 PCIe command finished.

59

60 Waiting for PCIe command...(press ESC key to break)

61

62 PCIe: file upload.

63 Downloading file 'dec.e09'to RAM...OK

64 Received file 'dec.e09' (168672 bytes).

65 Writing 168672 bytes (from 0x90325010) to MFS("dec.e09")...OK

66 OK

67 File transfer completed.

68 Waiting for ACK...OK

69 Waiting for NULL...OK

70 PCIe command finished.

71

72 Waiting for PCIe command...(press ESC key to break)

73

74 PCIe: file upload.

75 Downloading file 'dec.c09'to RAM...OK

76 Received file 'dec.c09' (32 bytes).

77 Writing 32 bytes (from 0x901E6358) to MFS("dec.c09")...OK

78 OK

79 File transfer completed.

80 Waiting for ACK...OK

81 Waiting for NULL...OK

82 PCIe command finished.

83

84 Waiting for PCIe command...(press ESC key to break)

85

86 PCIe: Install IP core.

87

88

89 Install 'dec' core (provided by 'ipv_demo'):

90 - get IDR credentials...OK

91 - get IPV shared key from "ipv_demo.s09" file...OK

92 - get IP core license from "dec.c09"...OK

93 - get safelock entry for msg 09...OK

94 - install IP core license in "dec.l09"...OK

95 - get IP core from "dec.e09"...OK

96 - call ERDB analyser

97

98 ERDB_analyser v.1.0 (release Jan 29 2010, 18:40:42)

99

100 - read header

101

102 Header data:

103 - HeaderLength : 88

104 - BitstreamLength : 168576

105 - DesignName : prm_decoder_partial.ncd

106 - PartName : 5vlx50tff1136

Appendix E – SeReCon debug console output during RC system demonstration

– 223 –

107 - Date : 2009/10/27

108 - Time : 19:27: 4

109

110 - parse bitstream...OK

111 Region (x,y): (10,0) to (42,43)

112 - detect external pips...OK

113 Found 3869 external pips (3424 real, 445 fake).

114 - analyse isolation boundary...OK

115 Region (x,y): (10,0) to (42,45)

116 - detect io pips...OK

117 Found 3594 io pips (3280 real, 314 fake).

118 Analysis finished successfully.

119 - update safelock credentials...OK

120 - create installed IP file "dec.i09"...OK

121 - create IP analysis report file "dec.d09"...OK

122 Installed IP core 'dec'.

123

124 Waiting for ACK...OK

125 Waiting for NULL...OK

126 PCIe command finished.

127

128 Waiting for PCIe command...(press ESC key to break)

Appendix E – SeReCon debug console output during RC system demonstration

– 224 –

E.4. IP cores activation

This section provides SeReCon debug messages illustrating activation of

demonstrator IP cores, e.g. Adder (‘add’), blank design (‘blank’), Multiplier (‘mul’),

AES encoder (‘enc’) and AES decoder (‘dec’).

E.4.1. The “add” IP core activation

This section illustrates installation of the Adder IP core (‘add’).

1 PCIe: Activate IP core.

2

3

4 Activate 'add' core (msg 01):

5 - get safelock credentials...OK

6 - check IP core license file...OK

7 - update safelock credentials...OK

8 - call ERDB verifier...

9

10 ERDB_verifier v.1.0 (release Jan 29 2010, 18:40:42)

11

12 - get IP core report 'add.d01'...OK

13 - make diff with system state...OK

14

15

16 Verification report:

17

18 - IP core configuration region: (10,0 - 42,43)...OK

19 - IP core isolation region : (10,0 - 42,45) ...OK

20 - external pips found : 2699 (2254 real, 445 fake)

21 - unmatched ext pips : 15 (15 real, 0 fake)

22 - io pips found : 2468 (2154 real, 314 fake)

23 - unmatched io pips : 15 (15 real, 0 fake)

24

25

26 !!!WARNING!!!

27

28 Potentially dangerous IP core!!!

29

30 - write report file 'add.t01'...OK

31 Verification finished without errors.

32 IP core 'add' violates seurity requirements for reconfigurable region.

33 - check security bypass flag...OFF

34 IP core activation cancelled due to security risk.

35 - roll back license update...OK

36 Waiting for ACK...OK

37 Waiting for NULL...OK

38 PCIe command finished.

39

40 Waiting for PCIe command...(press ESC key to break)

Appendix E – SeReCon debug console output during RC system demonstration

– 225 –

E.4.2. The “blank” IP core activation

This section illustrates activation of the blank design IP core (‘blank’).

1 PCIe: Activate IP core.

2

3

4 Activate 'blank' core (msg 03):

5 - get safelock credentials...OK

6 - check IP core license file...OK

7 - update safelock credentials...OK

8 - call ERDB verifier...

9

10 ERDB_verifier v.1.0 (release Jan 29 2010, 18:40:42)

11

12 - get IP core report 'blank.d03'...OK

13 - make diff with system state...OK

14

15

16 Verification report:

17

18 - IP core configuration region: (10,0 - 42,43)...OK

19 - IP core isolation region : (10,0 - 42,45) ...OK

20 - external pips found : 2684 (2239 real, 445 fake)

21 - unmatched ext pips : 0 (0 real, 0 fake)

22 - io pips found : 2453 (2139 real, 314 fake)

23 - unmatched io pips : 0 (0 real, 0 fake)

24 Verification finished without errors.

25 IP core 'blank' is safe.

26 - get IP core from "blank.i03" file...OK

27 - check bitstream header...OK

28 - disable BM interface...OK

29 - load IP core to ICAP...OK

30 - update system state...OK

31

32 IP core 'blank.i03' (msg 03) activated.

33

34 - enable BM interface...OK

35 Waiting for ACK...OK

36 Waiting for NULL...OK

37 PCIe command finished.

38

39 Waiting for PCIe command...(press ESC key to break)

Appendix E – SeReCon debug console output during RC system demonstration

– 226 –

E.4.3. The “mul” IP core activation

This section illustrates activasion of the Multiplier IP core (‘mul’).

1 PCIe: Activate IP core.

2

3

4 Activate 'mul' core (msg 05):

5 - get safelock credentials...OK

6 - check IP core license file...OK

7 - update safelock credentials...OK

8 - call ERDB verifier...

9

10 ERDB_verifier v.1.0 (release Jan 29 2010, 18:40:42)

11

12 - get IP core report 'mul.d05'...OK

13 - make diff with system state...OK

14

15

16 Verification report:

17

18 - IP core configuration region: (10,0 - 42,43)...OK

19 - IP core isolation region : (10,0 - 42,45) ...OK

20 - external pips found : 2709 (2264 real, 445 fake)

21 - unmatched ext pips : 25 (25 real, 0 fake)

22 - io pips found : 2478 (2164 real, 314 fake)

23 - unmatched io pips : 25 (25 real, 0 fake)

24

25

26 !!!WARNING!!!

27

28 Potentially dangerous IP core!!!

29

30 - write report file 'mul.t05'...OK

31 Verification finished without errors.

32 IP core 'mul' violates seurity requirements for reconfigurable region.

33 - check security bypass flag...OFF

34 IP core activation cancelled due to security risk.

35 - roll back license update...OK

36 Waiting for ACK...OK

37 Waiting for NULL...OK

38 PCIe command finished.

39

40 Waiting for PCIe command...(press ESC key to break)

Appendix E – SeReCon debug console output during RC system demonstration

– 227 –

E.4.4. The “enc” IP core activation

This section illustrates activation of the AES Encoder IP core (‘enc’).

1 PCIe: Activate IP core.

2

3

4 Activate 'enc' core (msg 07):

5 - get safelock credentials...OK

6 - check IP core license file...OK

7 - update safelock credentials...OK

8 - call ERDB verifier...

9

10 ERDB_verifier v.1.0 (release Jan 29 2010, 18:40:42)

11

12 - get IP core report 'enc.d07'...OK

13 - make diff with system state...OK

14

15

16 Verification report:

17

18 - IP core configuration region: (10,0 - 42,43)...OK

19 - IP core isolation region : (10,0 - 42,45) ...OK

20 - external pips found : 3330 (2885 real, 445 fake)

21 - unmatched ext pips : 646 (646 real, 0 fake)

22 - io pips found : 3064 (2750 real, 314 fake)

23 - unmatched io pips : 611 (611 real, 0 fake)

24

25

26 !!!WARNING!!!

27

28 Potentially dangerous IP core!!!

29

30 - write report file 'enc.t07'...OK

31 Verification finished without errors.

32 IP core 'enc' violates seurity requirements for reconfigurable region.

33 - check security bypass flag...OFF

34 IP core activation cancelled due to security risk.

35 - roll back license update...OK

36 Waiting for ACK...OK

37 Waiting for NULL...OK

38 PCIe command finished.

39

40 Waiting for PCIe command...(press ESC key to break)

Appendix E – SeReCon debug console output during RC system demonstration

– 228 –

E.4.5. The “dec” IP core activation

This section illustrates activation of the AES Decoder IP core (‘dec’).

1 PCIe: Activate IP core.

2

3

4 Activate 'dec' core (msg 09):

5 - get safelock credentials...OK

6 - check IP core license file...OK

7 - update safelock credentials...OK

8 - call ERDB verifier...

9

10 ERDB_verifier v.1.0 (release Jan 29 2010, 18:40:42)

11

12 - get IP core report 'dec.d09'...OK

13 - make diff with system state...OK

14

15

16 Verification report:

17

18 - IP core configuration region: (10,0 - 42,43)...OK

19 - IP core isolation region : (10,0 - 42,45) ...OK

20 - external pips found : 3869 (3424 real, 445 fake)

21 - unmatched ext pips : 1185 (1185 real, 0 fake)

22 - io pips found : 3594 (3280 real, 314 fake)

23 - unmatched io pips : 1141 (1141 real, 0 fake)

24

25

26 !!!WARNING!!!

27

28 Potentially dangerous IP core!!!

29

30 - write report file 'dec.t09'...OK

31 Verification finished without errors.

32 IP core 'dec' violates seurity requirements for reconfigurable region.

33 - check security bypass flag...OFF

34 IP core activation cancelled due to security risk.

35 - roll back license update...OK

36 Waiting for ACK...OK

37 Waiting for NULL...OK

38 PCIe command finished.

39

40 Waiting for PCIe command...(press ESC key to break)

41

42 Received break signal.

43 Exiting.

