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In Honor of Jim Lepowsky and Robert Wilson

Abstract We discuss recent work of the authors concerning correlation
functions and partition functions for free bosons/fermions and the b-c or
ghost system. We compare and contrast the nature of the 1-point functions
at genus 1, and explain how one may understand the free boson partition
function at genus 2 via vertex operators and sewing complex tori.

1 Introduction

This paper is based on the talk given by one of the authors at the North
Carolina State Conference honoring Jim Lepowsky and Robert Wilson. The
paper concerns the idea of partition functions in the theory of chiral algebras.
The genus 1 partition function of a vertex operator algebra - a.k.a. the graded
dimension - has been studied extensively, but the case when either the genus
is greater than 1 or else the chiral algebra is not a vertex operator algebra

∗Partial support provided by NSF DMS-0245225 and the Committee on Research,
University of California, Santa Cruz

†Supported by the Millenium Fund, National University of Ireland, Galway

1



has received little attention from mathematicians thus far. Physicists have
expended more effort in this direction. The authors have been investigating
the higher genus case for some time (cf. [T] for some preliminary results).
What has become clear is that in trying to define and study higher genus
partition functions attached to chiral algebras, it is imperative to understand
the physicist’s approach via path integrals.

Let us therefore begin with some well-known ideas in the physics string
theory literature on conformal field theory on higher genus Riemann surfaces
[MS], [So], [DP], [VV], [ABMNV], [P]. In particular, there has been much
progress in recent years in understanding genus two superstring theory [DPI],
[DPVI], [DGP]. The g-loop probability amplitudeA(g) for the 26-dimensional
bosonic string is given by a heuristic path integral over all metric and string
configurations on all two-dimensional compact surfaces with g holes parame-
terized by σ1, σ2 [GSW]:

A(g) =
Z

Dh(σ)DX(σ)e−S[h,X],

with Polyakov action

S[h,X] =

Z
d2σ
p
det(h)hab∂aX

μ∂bXμ.

We are not going to be at all precise about such path integrals here - we
are using them to motivate rather than inform. Formally dividing by vari-
ous infinite group volumes, A(g) may be re-expressed via the Faddeev-Popov
procedure as a path integral over fermionic ghost b, c and bosonic Xμ config-
urations (loc. cit):

A(g) =
Z

DbDcDX exp(−S0[X]− Sghost[b, c]),

where

S0[X] ≡ SP [X,hconf ] =

Z
∂zX

μ∂z̄X
μdzdz̄,

Sghost[b, c] =

Z
(b̄∂z c̄+ b∂z̄c)dzdz̄.
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with hconf = dz⊗dz̄ the conformal metric with z a local coordinate on a com-
pact Riemann surface S(g) of genus g. We let B denote this 26-dimensional
boson and ghost system.
One can find a detailed physical discussion of the genus 1 bosonic string

in [GSW] or [P], where one finds the factorization property

A(1) =
Z

dμ(τ)
1

Im(τ)12

¯̄̄
Z
(1)
B (τ)

¯̄̄2
with torus modular parameter τ and SL(2,Z)-invariant measure dμ(τ) =

d2τ

Im(τ)2 . Z
(1)
B is the partition function

Z
(1)
B (τ) =

1

∆
(1)
12

= η(q)−24 (1)

= q−1
∞Y
n=1

(1− qn)−24,

i.e. the (inverse of) the familiar cusp-form ∆
(1)
12 of weight 12 on SL(2,Z).

Z
(1)
B (τ) is holomorphic on the complex upper half-plane H(1).
For g > 1, Belavin and Knizhnik [BK], [Kn] proposed the following re-

markable general factorization formula (which is related to the absence of
the conformal anomaly)

A(g) =
Z

dyidȳi
1

det(Im(Ω(g)))13

¯̄̄
Z
(g)
B (y)

¯̄̄2
(2)

for 3g−3 complex modular parameters yi, genus g period matrix Ω(g)(y), and
holomorphic partition function Z

(g)
B (y). The existence of Z

(g)
B is intimately

related to Mumford’s Theorem concerning the existence of a global section
on genus g moduli space for E = K ⊗ λ−13, where K and λ are certain
determinant line bundles [Mu]. Physically, K is identified with a chiral ghost
determinant and λ−1 with a chiral 2-dimensional boson determinant.

For g = 2, Knizhnik [Kn] and Moore [Mo] have argued that

Z
(2)
B =

1

∆
(2)
10

,

where ∆(2)
10 is the Igusa cusp form of weight 10 on Sp(4,Z), defined on the

Siegel upper half-space H(2) of genus 2. This is a physical result, i.e. not
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mathematically rigorous. A complete mathematical explanation remains to
be found.

Aside from any details, the partition function of a chiral algebra V at
genus g should be a meromorphic function Z

(g)
V defined on some domain of

several complex variables. In good cases, one expects Z(g)V to have automor-
phic properties with respect to an appropriate discrete group. An additional
property that one expect is multiplicativity:

Z
(g)
V1⊗V2 = Z

(g)
V1
Z
(g)
V2
. (3)

A general goal is to understand how expressions such as Z(1)B and Z(2)B can
be interpreted, and (hopefully) calculated, in the language of chiral algebras,
i.e. (super) vertex (operator) algebras V . The present paper is devoted to a
discussion of a few ideas in this direction. Proofs of some of the results to be
described will appear elsewhere.

The paper is organized as follows. In Section 2 we discuss the chiral
algebra B which corresponds to the bosonic string, and in Sections 3 and
4 we consider genus 1 (torus) correlation functions, and in particular the
partition function and graded dimension of B. One of the main points is
that these are not the same. In Section 5 we take up a few of the issues that
arise at genus 2, limiting the discussion to the vertex operator algebra part
of the bosonic string, that is to say the Heisenberg, or free bosonic vertex
operator algebra. We refer the reader to [T], [Ma] and [MT1] for additional
background.

2 The chiral algebra B

Let M be the Heisenberg vertex operator algebra of rank 1, corresponding
to a single free boson. The vertex operator algebra for l free bosons is then
just the tensor product M⊗l of central charge c = l.
Let VZ be the super vertex operator algebra lattice theory based on the

integer lattice Z:
VZ =M ⊗C[Z]

It has central charge 1. If α = α(−1)1 ∈ (VZ)1 generates the lattice (1 is the
vacuum), the standard conformal vector is ω = 1

2
α(−1)21. There is a family
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of conformal vectors

ωλ = ω − λL(−1)α, λ ∈ C,

each defining a chiral algebra

(VZ, Y,1, ωλ)

with central charge cλ = 1− 12λ2. The ghost system, or bc-system G, is the
chiral algebra which obtains in case λ = 3/2, when cλ = −26. The chiral
algebra of the bosonic string is then defined as

B =M⊗26 ⊗G.

Evidently, B has central charge zero.

In addition to the (bosonic) description of G just presented, there is a
fermionic description which runs as follows. It is generated by states c ∈ G−1
and b ∈ G2 and relations given by anticommutators:

{b(m), c(n)} = δm+n+1,0I,

{b(m), b(n)} = {c(m), c(n)} = 0.

A convenient basis of G consists of the states

b(−m1)...b(−mr)c(−n1)...c(−ns)1, (4)

1 ≤ m1 < ... < mr, 1 ≤ n1 < ... < ns.

There is a Z-grading on G given by the ghost number, whereby the state
(4) has ghost number r − s. If G(m) are the states of ghost number m then

G = ⊕m∈ZG
(m).

G(0) is a subalgebra of G, essentially a rank 1 free bosonic theory with a
shifted conformal vector. Each G(m) is a simple G(0)-module. For further
background regarding G, see [Ka].
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3 Some Graded Characters

The genus 1 partition function of a vertex operator algebra is essentially
the same as the graded dimension of V . Thus if V = ⊕n∈ZVn is the usual
decomposition of V given by the natural L(0)-grading, then

Z
(1)
V = TrV q

L(0)−c/24 = q−c/24
X
n

dimVnq
n. (5)

where c is the central charge. For example, it is well-known that

Z
(1)

M⊗l = η(q)−l.

Now compare this with (3) and (1). We find that

Z
(1)
G = Z

(1)
B /Z

(1)

M⊗26

= ∆−112 η(q)
26

= η(q)2

= q1/12(1− 2q + ...) (6)

On the other hand, the graded dimension of G is

TrGq
L(0)+26/24 = 2

µ
η(q2)

η(q)

¶2
= 2q1/12(1 + 2q + 3q2 + ...).

We conclude that Z
(1)
G is not equal to TrGq

L(0)+26/24, indeed the two q-
expansions are quite different1. We have not contradicted (5), because G
is not a vertex operator algebra. Rather, it arises from the super vertex
operator algebra VZ, and this suggests that we might better off to include a
ghost number operator - the super version of (5). Formally, this is the super
graded dimension

STrV q
L(0)−c/24 = TrV (−1)F qL(0)−c/24,

where (−1)F acts on G(m) as multiplication by (−1)m. But this does not
solve the problem (indeed, it appears to make it worse) because it turns out
that

STrGq
L(0)+26/24 = 0.

1The referee points out that this phenomenon is closely related to space-time super-
symmetry in string theory.
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Thus the correct definition of Z(1)G , which we provide in the next Section, is
less straightforward than might have been anticipated.

We complete this Section with a detour to lookmore closely at TrGqL(0)+26/24

and STrGq
L(0)+26/24. Though neither is the desired partition function of G,

nevertheless they have a rôle to play. In order to rescue STrGqL(0)+26/24 from
the ignominy of vanishing we introduce yet another operator e2πiα(0)z. Here,
α is the normalized weight 1 state in G(0). Then one has the following:

TrVZq
L(0)+26/24e2πizα(0) = Θ3(q, z)/η(q),

STrVZq
L(0)+26/24e2πizα(0) = Θ2(q, z)/η(q),

T rGq
L(0)+26/24e2πizα(0) = Θ1(q, z)/η(q),

STrGq
L(0)+26/24e2πizα(0) = Θ0(q, z)/η(q).

Here,

Θ3(τ, z) =
∞Y
n=1

(1− qn)(1 + qn−1/2qz)(1 + qn−1/2q−1z ),

Θ2(τ, z) =
∞Y
n=1

(1− qn)(1− qn−1/2qz)(1− qn−1/2q−1z ),

Θ1(τ, z) = q1/8(q1/2z + q−1/2z )
∞Y
n=1

(1− qn)(1 + qnqz)(1 + qnq−1z ),

Θ0(τ, z) = q1/8(q−1/2z − q1/2z )
∞Y
n=1

(1− qn)(1− qnqz)(1− qnq−1z ),

with qz = e2πiz. These are the four Jacobi theta functions written out as
products. The displayed product formulas arise from the fermionic construc-
tions of VZ and G. There are also sum formulas arising from the bosonic
description ([Ka]).

4 1-point functions

Vertex operators Y (v, z) can be considered as insertions at a point of the
complex plane or sphere with local variable z. The conformal map

z 7→ ez − 1
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puts the insertions on a cylinder via

Y [v, z] = Y (ezL(0)v, ez − 1) =
X
n∈Z

v[n]z−n−1.

The operators Y [v, z] define a VOA which has Virasoro state ω̃ = ω − c
24
1

and which is isomorphic to the original VOA. Then V = ⊕n∈ZV[n], where [n]
denotes the L[0]-weight and Y [ω̃, z] =

P
n∈Z L[n]z

−n−2. 1-point functions
on the torus may then be defined as

Z
(1)
V (v, q) = TrV Y [v, z]q

L(0)−c/24

where q = e2πiτ , τ ∈ H(1) (complex upper half-plane). If v = 1 this reduces
to Z(1)V . These important ideas go back to Zhu [Z].
In the case ofM and G we have the following results. For the free bosonic

system,

Z
(1)
M (v, q) =

QM(v)

η(q)
(7)

for some QM(v) ∈ C[E2(q), E4(q), E6(q)] which can be explicitly described.
Here,

E2k(q) = −
B2k
(2k)!

+
2

(2k − 1)!

∞X
n=1

(
X
d|n

d2k−1)qn, k ≥ 1,

is the usual Eisenstein series of weight 2k (cf. [Se]). Thus QM(v) is a holo-
morphic quasi-modular form on SL(2,Z). On the other hand, for the ghost
system we find:

STrGY [v, z]q
L(0)+26/24 = −η(q)2QG(v) (8)

for some QG(v) ∈ C[E4(q), E6(q)] , a holomorphic modular form on SL(2,Z)
which can be explicitly described. Thus we find the interesting result that
for the ghost system, one-point functions are actually holomorphic modular
forms on SL(2,Z), whereas for free bosons they are merely quasi-modular
forms.
The results for M are proved in [DMN] and [MT1]. Those for G, due

to the authors, are unpublished, and we say a bit more about them here.
Taking v in the basis (4), QG(v) = 0 unless the ghost number r − s is zero
and m1 = n1 = 1. In particular,

STrGY [b[−1]c[−1]1, z]qL(0)+26/24 = −η(q)2.
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Comparing (7) and (8), we are led by analogy to define the partition function
of G as the super graded trace of −b[−1]c[−1]. This is what we were looking
for (cf.(6)), and is also what one gets from physics via the Polyakov path
integral and Faddeev-Popov procedure [GSW] and [P], p.212.

5 Genus 2 Bosonic Partition Function

At genus 1, 1-point functions and partition functions (however they are de-
fined) are functions in the complex upper half-plane H(1). This will no longer
be true for g ≥ 2, when we expect 3g−3 variables. For g = 2 we thus expect
3 complex parameters.
Consider the genus two Riemann surface, which we denote by T1#T2,

formed by sewing together two tori T1 and T2 as follows. For a = 1, 2, each
torus Ta has a modulus τa ∈ H(1) which determines a lattice La ⊆ C spanned
by τa and 1 with Ta = C/La. Let za ∈ Ta be a local coordinate and letDa > 0
be the minimum distance of La. We introduce a complex sewing parameter
� where |�| < 1

4
D1D2 and identify the annuli {|�|/r2 ≤ |z1| ≤ r1} ⊂ T1 and

{|�|/r1 ≤ |z2| ≤ r2} ⊂ T2 for ra < 1
2
Da via the sewing relation

z1z2 = �. (9)

The domain in which sewing T1 and T2 is possible is then

D� = {(τ1, τ2, �) ∈ H(1) ×H(1) ×C | |�| <
1

4
D1D2}. (10)

This provides a natural parameterization of genus two Riemann surfaces, at
least in the neighborhood of the degeneration point where � = 0.

Important for this is work of [Y] on sewing Riemann surfaces. Define
infinite matrices (Aa(k, l)), a = 1, 2, as follows:

Aa(k, l) = Aa(k, l, τa, �) = (−1)k+1
�(k+l)/2√

kl

(k + l − 1)!
(k − 1)!(l − 1)!Ek+l(τa).

This should be construed as a weighted moment of the normalized differential
of the second kind on Ta. The normalized differential itself is

P2(τa, x− y)dxdy,
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where P2(τ, z) = ℘La(z) + E2(τ) and ℘La(z) is the Weierstrass ℘-function.
Note that

A1A2 = AN +O(�N+1)

where AN is the (2N − 1)× (2N − 1) principal submatrix. Then we define

det(I −A1A2) = lim
N→∞

det(I −AN)

where I denotes the infinite identity matrix. Then one finds

Theorem 5.1 ([MT2]) (a) The infinite matrix

(I −A1A2)
−1 =

X
n≥0
(A1A2)

n,

is convergent for (τ1, τ2, �) ∈ D�.
(b) det(I −A1A2) is non-vanishing and holomorphic on D�.

We can assign to T1#T2 its normalized period matrix

Ω = Ω(τ1, τ2, �) ∈ H(2),

which defines a map

D� F �

−→ H(2)
(τ1, τ2, �) 7−→ Ω(τ1, τ2, �)

(11)

The entries of Ω can be found explicitly in terms of the moment matrices
A1, A2 by applying the methods of [Y] to find ([T], [MT2])

2πiΩ11 = 2πiτ1 + �(A2(I −A1A2)
−1)(1, 1),

2πiΩ22 = 2πiτ2 + �(A1(I −A2A1)
−1)(1, 1),

2πiΩ12 = −�(I −A1A2)
−1(1, 1).

Here (1, 1) refers to the (1, 1)-entry of a matrix. Furthermore

Theorem 5.2 ([MT2]) The map F � is holomorphic on D�.
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We now consider the definition of the genus two partition function Z
(2)
M

for M . Firstly recall that M admits a unique Li-Zamolochikov metric, i.e. a
non-degenerate M-invariant symmetric bilinear form

h , i :M ⊗M → C

where
hY (u, z)v, wi = hv, Y (u, z)†wi

and h1,1i = 1. ([B], [Li], [FHL]). There is a corresponding orthogonal direct
sum decomposition

M = ⊥n≥0 Mn,

so the Gram matrix on Mn for basis {uni }, that is

(Gn
ij) = (huni , unj i),

is symmetric and invertible. We can thus define a dual basis {ūni = (Gn
ij)
−1unj }

for Mn such that huni , ūnj i = δij.
For a VOA with unique Li-Zamolochikov metric we then define the genus

2 partition function in terms of genus 1 data as follows ([T], [MT3]):

Z
(2)
V (τ1, τ2, �) =

X
n≥0

�n
X
u∈V[n]

Z
(1)
V (u, q1)Z

(1)
V (ū, q2). (12)

Here, qa = e2πiτa and the inner sum is taken over any basis for V[n]. Note that
(12) automatically satisfies the multiplicativity requirement (3). Expressions
such as (12) might be expected from physical considerations concerning CFT
and sewing punctured Riemann surfaces e.g. [So], [P], [MS]. (Indeed, the
very axioms for vertex algebras can be couched in this language for the
Riemann sphere [H]).

Using (7) and some involved but natural combinatorics, we can calculate
Z
(2)
M for the bosonic VOA M to find:

Theorem 5.3 ([MT3]) (a) We have

Z
(2)
M (τ1, τ2, �) =

Z
(1)
M (q1)Z

(1)
M (q2)p

det(I −A1A2)
.

(b) Z(2)M is holomorphic on D�.
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This result seems to be consistent with the physico/algebraic geometry
idea of viewing partition functions as sections of determinant line bundles. In
particular, the appearance of the inverse square root of a bosonic determinant
concurs with the remarks concerning the determinant line bundle λ following
(2), i.e. det(I −A1A2) appears to be associated with a local section for λ.

Note that Z(2)M (τ1, τ2, �) is not an automorphic form on Sp(4,Z). Indeed,
it is not even a function on the Siegel half-space H(2). The best one can
do along these lines is as follows (cf. [MT2], [MT3] for details). Let G =
SL(2,Z) × SL(2,Z). There is an embedding G /→ Sp(4,Z) in which G
maps to a ’diagonal’ subgroup, and there is also a natural action of G on
the domain D� (10). In this way, G acts on both domain and codomain
in (11), and it can be shown that the map F � is G-equivariant. Moreover,
Z
(2)
M (τ1, τ2, �) transforms under G as an automorphic form of weight −1/2.

We briefly discuss an alternative construction for a genus two Riemann
surface obtained by self-sewing a single torus T with modulus τ . We may
identify two annuli with relative position w on T via a sewing relation anal-
ogous to (9) and with sewing parameter ρ. The sewing scheme is defined for
(τ, ρ, w) ∈ Dρ, an appropriately defined domain. Explicit formulas for the
period matrix Ω can be found in terms of an appropriate infinite moment
matrix R. An alternative definition for the genus two partition function
Z̃
(2)
M (τ, ρ, w) in terms of genus one 2-point functions can then be formulated.
This can be calculated to find

Theorem 5.4 ([MT3]) (a) We have

Z̃
(2)
M (τ, ρ, w) =

Z
(1)
M (q)p

det(I −R)
.

(b) Z̃(2)M is holomorphic on Dρ.

Crucially, Z(2)M (τ1, τ2, �) and Z̃
(2)
M (τ, ρ, w) can be compared in a neighbor-

hood of the two-torus degeneration point. One finds that Z(2)M (τ1, τ2, �) and
Z̃
(2)
M (τ, ρ, w) do not agree. This again concurs with the results of physical
string theory since λ does not have a global section.

The challenge remains to carry out this programme for the ghost super
VOA system at genus two. As outlined in Section 4, even the definition of

12



Z
(1)
G is subtle. However, once properly defined, our ultimate goal is to com-
pute Z(2)G (τ1, τ2, �) and Z̃

(2)
G (τ, ρ, w) and hence show that Z

(2)
B = Z

(2)
G Z

(2)
M⊗26 is

globally defined with

Z
(2)
B = Z

(2)
G (τ1, τ2, �)Z

(2)
M⊗26(τ1, τ2, �)

= Z̃
(2)
G (τ, ρ, w)Z̃

(2)
M⊗26(τ, ρ, w)

=
1

∆
(2)
10

where ∆(2)
10 is the Igusa cusp form of weight 10.
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