<table>
<thead>
<tr>
<th>Title</th>
<th>The bosonic vertex operator algebra on a genus g Riemann surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Tuite, Michael P.; Zuevsky, Alexander</td>
</tr>
<tr>
<td>Publication Date</td>
<td>2011-08</td>
</tr>
<tr>
<td>Publication Information</td>
<td>M.P. Tuite and A. Zuevsky (2011) The bosonic vertex operator algebra on a genus g Riemann surface RIMS Kokyuroko 1756 81-93 (2011)</td>
</tr>
<tr>
<td>Link to publisher's version</td>
<td>http://hdl.handle.net/2433/171291</td>
</tr>
<tr>
<td>Item record</td>
<td>http://hdl.handle.net/10379/4847</td>
</tr>
</tbody>
</table>

Some rights reserved. For more information, please see the item record link above.
The Bosonic Vertex Operator Algebra on a Genus g Riemann Surface

Michael P. Tuite and Alexander Zuevsky*
School of Mathematics, Statistics and Applied Mathematics,
National University of Ireland Galway
University Road, Galway, Ireland.

Abstract
We discuss the partition function for the Heisenberg vertex operator algebra on a genus g Riemann surface formed by sewing g handles to a Riemann sphere. In particular, it is shown how the partition can be computed by means of the MacMahon Master Theorem from classical combinatorics.

1 Introduction
In this paper we briefly sketch recent progress in defining and computing the partition function for the Heisenberg Vertex Operator Algebra (VOA) on a genus g Riemann surface. The partition function and n-point correlation functions are familiar concepts at genus one and have recently been computed on genus two Riemann surfaces formed from sewing tori together [MT1],[MT2]. Here we discuss an alternative approach for computing these objects on a general genus g Riemann surface formed by sewing g handles onto a Riemann sphere. This approach includes the classical Schottky parameterisation and a related simpler canonical parameterisation for which we obtain the partition function for rank 2 Heisenberg VOA in terms of an explicit infinite determinant. This determinant is computed by means of the MacMahon Master Theorem in classical combinatorics [MM].

*Supported by a Science Foundation Ireland Frontiers of Research Grant and by Max–Planck Institut für Mathematik, Bonn
2 A Generalized MacMahon Master Theorem

We begin with a review of the MacMahon Master Theorem and a recent generalization. We will provide a proof of this which gives some flavour of the combinatorial graph theory methods developed to compute higher genus partition functions [MT2], [TZ].

Let $A = (A_{ij})$ be an $n \times n$ matrix indexed by $i, j \in \{1, \ldots, n\}$. Consider the cycle decomposition of $\pi \in \Sigma_n$, the symmetric group on $\{1, \ldots, n\}$,

$$\pi = \sigma_1 \ldots \sigma_{C(\pi)}. \quad (1)$$

The β-extended Permanent of the matrix A is defined by [FZ]

$$\text{perm}_\beta A = \sum_{\pi \in \Sigma_n} \beta^{C(\pi)} \prod_i A_{i\pi(i)}. \quad (2)$$

The standard permanent and determinant are the particular cases:

$$\text{perm} A = \text{perm}_{+1} A, \quad \det A = (-1)^n \text{perm}_{-1} A. \quad (3)$$

Consider a multiset $\{k_1, \ldots, k_m\}$ with $1 \leq k_1 \leq \ldots \leq k_m \leq n$ i.e. index repetition is allowed. We notate the multiset as the unrestricted partition

$$k = \{1^{r_1}2^{r_2}\ldots n^{r_n}\}, \quad (4)$$

i.e. the index i occurs $r_i \geq 0$ times and where $m = \sum_{i=1}^n r_i$. Let $A(k)$ denote the $m \times m$ matrix indexed by k for a given matrix A indexed by $\{1, \ldots, n\}$. We now describe a generalisation of the classic MacMahon Master Theorem (MMT) of combinatorics [MM]. Let A be an $n \times n$ matrix indexed by $\{1, \ldots, n\}$. Let $A(k)$ denote the $m \times m$ matrix indexed by a multiset k (4).

Theorem 2.1 (Generalized MMT - Foata and Zeilberger [FZ])

$$\sum_k \frac{\text{perm}_\beta A(k)}{r_1!r_2!\ldots r_n!} = \frac{1}{\det(I - A)^\beta}, \quad (5)$$

where the (infinite) sum ranges over all multisets $k = \{1^{r_1}2^{r_2}\ldots n^{r_n}\}$.

2
For $\beta = 1$, Theorem 2.1 reduces to the classical MMT [MM]. For $\beta = -1$ we use (3) to find that the sum is restricted to proper subsets of $\{1, 2, \ldots, n\}$ resulting in the determinant identity

$$\det(I + B) = \sum_{1 \leq k_1 < \ldots < k_m \leq n} \det B(k),$$

for $B = -A$.

Proof of Theorem 2.1. We use a graph theory method applied in [MT2]. Define a set of oriented graphs Γ with elements γ_π whose vertices are labelled by multisets $k = \{1^{r_1} \ldots n^{r_n}\}$ and directed edges $\{e_{ij}\}$ determined by permutations $\pi \in \Sigma(k)$ as follows

$$e_{ij} = \bullet \rightarrow \bullet \text{ for } k_j = \pi(k_i)$$

Define a β dependent weight for each γ_π

$$w_\beta(e_{ij}) = A_{k_i,k_j}, \quad w_\beta(\gamma_\pi) = \beta^{C(\pi)} \prod_{e_{ij} \in \gamma_\pi} w_\beta(e_{ij}), \quad (6)$$

where $C(\pi)$ is the number of disjoint cycles in π. Then we may write

$$\text{perm}_\beta A(k) = \sum_{\pi \in \Sigma(k)} w_\beta(\gamma_\pi).$$

γ_π is invariant under permutations of the identical labels of k. Hence the left hand side of (5) can be rewritten as

$$\sum_{k} \text{perm}_\beta A(k) \frac{1}{r_1!r_2! \ldots r_n!} = \sum_{\gamma \in \Gamma} \frac{w_\beta(\gamma)}{|\text{Aut}(\gamma)|},$$

where we sum over all inequivalent graphs in Γ. Each $\gamma \in \Gamma$ can be decomposed into disjoint connected cycle graphs $\gamma_\sigma \in \Gamma$

$$\gamma = \gamma_\sigma_1^{m_1} \ldots \gamma_\sigma_K^{m_K}.$$

Each cycle σ corresponds to a disjoint connected cycle graph $\gamma_\sigma \in \Gamma$ with weight

$$w_\beta(\gamma_\sigma) = \prod_{i} w_\beta(\gamma_{\sigma_i})^{m_i}.$$
Furthermore
\[|\text{Aut}(\gamma_\sigma)| = \prod_i |\text{Aut}(\gamma_{\sigma_i})|^{m_i}m_i! \]

Let \(\Gamma_\sigma \) denote the set of inequivalent cycles. Then
\[
\sum_{g \in \Gamma} \frac{w_\beta(g)}{|\text{Aut}(g)|} = \prod_{\gamma_\sigma \in \Gamma_\sigma} \sum_{m \geq 0} \frac{w_\beta(\gamma_\sigma)^m}{|\text{Aut}(\gamma_\sigma)|^m m!} = \exp \left(\sum_{\gamma_\sigma \in \Gamma_\sigma} \frac{w_\beta(\gamma_\sigma)}{|\text{Aut}(\gamma_\sigma)|} \right).
\] (7)

For a cycle \(\sigma \) of order \(|\sigma| = r\) then \(\text{Aut}(\gamma_\sigma) = \langle \sigma \rangle \), a cyclic group of order \(|\text{Aut}(\gamma_\sigma)| = \frac{r}{s}\). Using the trace identity
\[\sum_{\gamma_\sigma, |\sigma| = r} s \ w_\beta(\gamma_\sigma) = \beta \text{Tr}(A^r), \]
we find
\[
\sum_{\gamma_\sigma \in \Gamma_\sigma} \frac{w_\beta(\gamma_\sigma)}{|\text{Aut}(\gamma_\sigma)|} = \beta \sum_{r \geq 1} \frac{1}{r} \text{Tr}(A^r) = -\beta \text{Tr}(\log(I - A)) = -\beta \log \det(I - A).
\]

Thus
\[\sum \frac{\text{perm}_s A(k)}{r_1! r_2! \ldots r_n!} = \det(I - A)^{-\beta}. \quad \square \]

Define a cycle to be primitive (or rotationless) if \(|\text{Aut}(\gamma_\sigma)| = 1\). For a general cycle \(\sigma \) with \(|\text{Aut}(\gamma_\sigma)| = s\) we have for \(\beta = 1 \)
\[w_1(\gamma_\sigma) = w_1(\gamma_\rho)^s, \]
for some primitive cycle \(\rho \). Let \(\Gamma_\rho \) denote the set of all primitive cycles. Then
\[
\sum_{\gamma_\sigma \in \Gamma_\sigma} \frac{w_1(\gamma_\sigma)}{|\text{Aut}(\gamma_\sigma)|} = \sum_{\gamma_\rho \in \Gamma_\rho} \sum_{s \geq 1} \frac{1}{s} w_1(\gamma_\rho)^s = -\sum_{\gamma_\rho \in \Gamma_\rho} \log \det(1 - w_1(\gamma_\rho)).
\]
Combining this with (7) implies [MT2]
Theorem 2.2
\[\det(I - A) = \prod_{\gamma\rho \in \Gamma_\rho} (1 - w_1(\gamma_{\rho})). \]

3 Riemann Surfaces from a Sewn Sphere

3.1 The Riemann torus

Consider the construction of a torus by sewing a handle to the Riemann sphere \(\hat{\mathbb{C}} \) by identifying annular regions centred at \(A_{\pm 1} \in \hat{\mathbb{C}} \) via a sewing condition with complex sewing parameter \(\rho \)
\[(z - A_{-1})(z' - A_1) = \rho. \] (8)

We call \(\rho, A_{\pm} \) canonical parameters. The annuli do not intersect provided
\[|\rho| < \frac{1}{4}|A_{-1} - A_1|^2. \] (9)

Inequivalent tori depend only on
\[\chi = -\frac{\rho}{(A_{-1} - A_1)^2}, \] (10)

where (9) implies \(|\chi| < \frac{1}{4} \) [MT1].

Equivalently, we define \(q, a_{\pm 1} \), known as Schottky parameters, by
\[a_i = \frac{A_i + qA_{-i}}{1 + q}, \]
\[\frac{q}{(1 + q)^2} = \chi, \] (11)
for \(i = \pm 1 \). Inequivalent tori depend only on \(q \) with \(|q| < 1\). The canonical sewing condition (8) is equivalent to:

\[
\left(\frac{z - a_{-1}}{z - a_1} \right) \left(\frac{z' - a_1}{z' - a_{-1}} \right) = q.
\]

(12)

Inverting (11) we find that \(q = C(\chi) \) for Catalan series

\[
C(\chi) = \frac{1 - (1 - 4\chi)^{1/2}}{2\chi} - 1 = \sum_{n \geq 1} \frac{1}{n \binom{n+1}{n}} \chi^n.
\]

(13)

3.2 Genus \(g \) Riemann Surfaces

We may similarly construct a general genus \(g \) Riemann surface by identifying \(g \) pairs of annuli centred at \(A_{\pm i} \in \hat{\mathbb{C}} \) for \(i = 1, \ldots, g \) and sewing parameters \(\rho_i \) satisfying

\[
(z - A_{-i})(z' - A_i) = \rho_i,
\]

(14)

provided no two annuli intersect. Equivalently, for \(i = 1, \ldots, g \) we define Schottky parameters \(a_{\pm i}, q_i \) by

\[
a_{\pm i} = A_{\pm i} + \frac{q}{1 + q_i},
\]

\[
q_i \frac{(1 + q_i)^2}{(1 + q_i)^2} = -\frac{\rho_i}{(A_{-i} - A_i)^2},
\]

(15)

where \(|q_i| < 1\) is again related to the Catalan series (13)

\[
q_i = C(\chi_i), \quad \chi_i = -\frac{\rho_i}{(A_i - A_{-i})^2}.
\]

The canonical sewing condition can then be rewritten as a standard Schottky sewing condition:

\[
\left(\frac{z - a_{-1}}{z - a_1} \right) \left(\frac{z' - a_1}{z' - a_{-1}} \right) = q_i.
\]

(16)

The Schottky sewing condition (16) determines a Möbius map \(z' = \gamma_i(z) \) where

\[
\gamma_i = \sigma_i^{-1} \begin{pmatrix} q_i & 0 \\ 0 & 1 \end{pmatrix} \sigma_i,
\]

(17)
for Möbius map

\[\sigma_i(z) = \frac{z - a_i}{z - a_{-i}}. \] (18)

We define the Schottky group \(\Gamma = \langle \gamma_i \rangle \) as the Kleinian group freely generated by \(\gamma_i \) for \(i = 1, \ldots, g \).

One can find explicit formulas for various objects defined on the Riemann surface such as the bilinear form of the second kind, a basis of \(g \) holomorphic 1-forms and the genus \(g \) period matrix in terms of either the Canonical or Schottky parametrizations [TZ]. In the Schottky case, these involve sums or products over the Schottky group or subsets thereof.

4 Vertex Operator Algebras

Consider a simple VOA with \(\mathbb{Z} \)-graded vector space \(V = \oplus_{n \geq 0} V^{(n)} \) and local vertex operators \(Y(a, z) = \sum_{n \in \mathbb{Z}} a_n z^{-n-1} \) for \(a \in V \) e.g. [Ka],[FLM],[MN],[MT3]. We assume that \(V \) is of CFT type (i.e. \(V_0 = \mathbb{C} 1 \)) with a unique symmetric invertible invariant bilinear form \(\langle \ , \ \rangle \) with normalization \(\langle 1, 1 \rangle = 1 \) where [FHL],[Li]

\[\langle Y(a, z)b, c \rangle = \langle b, Y(e^{zL_1}(-\frac{1}{z^2})L_0 a, \frac{1}{z})c \rangle \] (19)

For a \(V \)-basis \(\{u^\alpha\} \), we let \(\{\pi^\alpha\} \) denote the dual basis. If \(a \in V^{(k)} \) is quasi-primary \((L_1 a = 0) \) then (19) implies

\[\langle a_n b, c \rangle = (-1)^k \langle b, a_{2k-n-2} c \rangle. \]

In particular:

\[\langle a_n b, c \rangle = -\langle b, a_{-n} c \rangle \text{ for } a \in V^{(1)} \]
\[\langle L_n b, c \rangle = \langle b, L_{-n} c \rangle \text{ for } \omega \in V^{(2)}, \] (20)

so that \(b, c \) with unequal weights are orthogonal.

4.1 Genus Zero Correlation Functions

For \(u_1, u_2, \ldots, u_n \in V \) define the \(n \)-point (correlation) function by

\[\langle 1, Y(u_1, z_1)Y(u_2, z_2) \ldots Y(u_n, z_n) 1 \rangle. \] (21)
The locality property of vertex operators implies that this formal expression (21) coincides with the analytic expansion of a rational function of z_1, z_2, \ldots, z_n in the domain $|z_1| > |z_2| > \ldots > |z_n|$. Thus the n-point function can taken to be a rational function of $z_1, z_2, \ldots, z_n \in \hat{\mathbb{C}}$, the Riemann sphere in the domain. For example [HT]

Theorem 4.1 For a VOA of central charge C, the Virasoro n-point function is a β-extended permanent

$$\langle 1, Y(\omega, z_1) \ldots Y(\omega, z_n) 1 \rangle = \text{perm}_C B,$$

for $B_{ij} = \frac{1}{(z_i - z_j)^2}, i \neq j$ and $B_{ii} = 0$.

4.2 Rank Two Heisenberg VOA M_2

Consider the VOA generated by two Heisenberg vectors $a^\pm \in V^{(1)}$ whose modes satisfy non-trivial commutator

$$[a^+_m, a^-_n] = m\delta_{m,-n}. \quad (22)$$

V has a Fock basis spanned by

$$a_{k,1} = a^+_{-k_1} \ldots a^+_{-k_m} a^-_{-l_1} \ldots a^-_{-l_n} 1, \quad (23)$$

labelled by a multisets $k = \{k_1, \ldots, k_m\} = \{1^{r_1}, 2^{r_2} \ldots\}$ and $l = \{l_1, \ldots, l_n\} = \{1^{s_1}, 2^{s_2} \ldots\}$. The Fock vectors are orthogonal with respect to to the invariant bilinear form with dual basis

$$\bar{a}_{k,1} = \prod_i \frac{1}{i^{r_i} r_i!} \prod_j \frac{1}{j^{s_j} s_j!} a_{1,k}. \quad (24)$$

The basic Heisenberg 2-point function is

$$\langle 1, Y(a^+, x)Y(a^-, y) 1 \rangle = \frac{1}{(x - y)^2}. \quad (25)$$

This function provides all the necessary data for computing the Heisenberg partition and correlation functions on a genus g surface! Thus the general rank 2 Heisenberg $2n$-point function is

$$\langle 1, Y(a^+, x_1) \ldots Y(a^+, x_n)Y(a^-, y_1) \ldots Y(a^-, y_n) 1 \rangle = \text{perm} \left(\frac{1}{(x_i - y_j)^2} \right). \quad (26)$$
This is a generating function for all rank two Heisenberg correlation functions by associativity of the VOA.

Let \(x_{-i} = x - A_{-i} \) and \(y_j = y - A_j \) be local coordinates in the neighborhood of canonical sewing parameters \(A_{-i}, A_j \) for \(i, j \in \{ \pm 1, \ldots, \pm g \} \) with \(i \neq -j \). The 2-point function has expansion

\[
\frac{1}{(x - y)^2} = \sum_{k, l \geq 1} (-1)^{k+1} \frac{(k + l - 1)!}{(k-1)!(l-1)!} x^{k-1}_i y^{l-1}_j (A_{-i} - A_j)^{k+l}.
\]

Define the canonical moment matrix \(R^{\text{Can}}_{ij} \), an infinite matrix indexed by \(k, l = 1, 2, \ldots \) and \(i, j \in \{ \pm 1, \ldots, \pm g \} \) where

\[
R^{\text{Can}}_{ij}(k, l) = \begin{cases} \frac{(-1)^{k} q_i^{k/2} q_j^{l/2}}{\sqrt{kl}} \frac{(k+l-1)!}{(k-1)!(l-1)!} \frac{1}{(A_{-i} - A_j)^{k+l}}, & i \neq -j \\ 0, & i = -j \end{cases}
\]

\((I - R^{\text{Can}})^{-1}\) plays a central role in computing the genus \(g \) period matrix and other structures.

We similarly have expansions in the Schottky parameters. Let

\[
x_{-i} = \sigma_{-i}(x) = \frac{x - a_{-i}}{x - a_i} \tag{28}
\]
\[
y_j = \sigma_j(y) = \frac{y - a_j}{y - a_{-j}} \tag{29}
\]

for \(i, j \in \{ 1, \ldots, g \} \) be local coordinates in the neighborhood of the Schottky points \(a_{-i} \) and \(a_j \) for \(i \neq -j \). The 2-point function expansion leads to the Schottky moment matrix with

\[
R^{\text{Sch}}_{ij}(k, l) = \begin{cases} q_i^{k/2} q_j^{l/2} D(k, l)(\sigma_i \sigma_j^{-1}), & i \neq -j \\ 0, & i = -j \end{cases}
\]

where for \(\gamma \in SL(2, \mathbb{C}) \)

\[
D(k, l)(\gamma) = \frac{1}{l!} \sqrt{\frac{l}{k}} \partial_z^l (\gamma(z)^k) |_{z=0}. \tag{31}
\]

\(D \) is an \(SL(2, \mathbb{C}) \) representation [Mo]. Then it follows

\[
\sum_{s \geq 1} R^{\text{Sch}}_{ij}(r, s) R^{\text{Sch}}_{jk}(s, t) = q_i^{r/2} q_k^{t/2} D(r, t)(\sigma_i \gamma_j \sigma_k^{-1}), \tag{32}
\]

for Schottky generator (17).
4.3 The Genus g Partition Function - Canonical Parameters

We now define the genus g partition function for a VOA V in the canonical sewing scheme in terms of genus zero $2g$-point correlation functions as follows:

$$Z_V^{(g)}(\rho_i, A_{\pm i}) = \langle 1, \prod_{i=1}^{g} \sum_{n_i \geq 0} \rho_i^{n_i} \sum_{v_i \in V} Y(v_i, A_{-i})Y(\bar{v}_i, A_i)1 \rangle,$$

(33)

where \bar{v}_i is dual to v_i.

For genus one this reverts to the standard definition:

Theorem 4.2 (Mason and T.)

$$Z_V^{(1)}(\rho, A_{\pm 1}) = \text{Tr}_V(q^{L_0})$$

where $q = C(\chi)$, the Catalan series for $\chi = -\frac{\rho}{(A_{-1} - A_1)^2}$.

4.4 $Z_{M_2}^{(g)}(\rho_i, A_{\pm i})$ for Heisenberg VOA M_2

The genus g partition function can be computed for the rank 2 Heisenberg VOA by means of the MacMahon Master Theorem where, schematically, we have:

- Sum over g Fock bases \longrightarrow Sum over multisets
- $2g$-point function \longrightarrow Permanent of matrix
- Dual vector factorials \longrightarrow Multiset factorials
- ρ_i and other dual vector factors \longrightarrow Absorbed into matrix definition

We then find that [TZ]

Theorem 4.3

$$Z_{M_2}^{(g)}(\rho_i, A_{\pm i}) = \frac{1}{\det(I - R^{\text{Can}})},$$

where R^{Can} is the canonical moment matrix. Furthermore, $\det(I - R^{\text{Can}})$ is holomorphic and non-vanishing. In general, the genus g Heisenberg generating function is expressed in terms of a permanent of genus g bilinear forms of the second kind.
We may repeat this by using an alternative definition of the genus g partition function in terms of in Schottky parameters account must be taken of the Möbius maps σ_i of (18). We then find [TZ]

Theorem 4.4 The genus g partition function is

$$Z_{M_2}^{(g)}(q_i, a_{\pm i}) = \frac{1}{\det(I - R^{\text{Sch}})},$$

where R^{Sch} is the Schottky moment matrix. Furthermore, $\det(I - R^{\text{Sch}})$ is holomorphic and non-vanishing and the genus g Heisenberg generating function is expressed in terms of a permanent of genus g bilinear forms of the second kind.

Conjecture: $\det(I - R^{\text{Can}}) = \det(I - R^{\text{Sch}})$. This is true for $g = 1$ [MT2].

4.5 The Montonen-Zograf Product Formula

$\det(I - R^{\text{Sch}})$ can be also re-expressed in terms of an infinite product formula originally calculated in physics by Montonen in 1974 [Mo]. A similar product formula was subsequently found by Zograf [Z]. This has been recently related by McIntyre and Takhtajan [McT] to Mumford’s theorem concerning the absence of a global section on moduli space for the canonical line bundle [Mu].

Recall that $R^{\text{Sch}}_{ij}(k, l)$ is expressed in terms of an $SL(2, \mathbb{C})$ representation D. This leads to

$$\det(I - R^{\text{Sch}}) = \prod_{m \geq 1} \prod_{\gamma^\alpha \in \Gamma} (1 - q^\alpha_m);$$

where the inner product ranges over the primitive classes $\gamma^\alpha \neq 1$ of the Schottky group Γ i.e. $\gamma^\alpha \neq \gamma^k$ for any $\gamma \in \Gamma$ for $k \neq 1$. Each such element has a multiplier q_α where

$$\gamma^\alpha \sim \begin{pmatrix} q_\alpha & 0 \\ 0 & 1 \end{pmatrix}. \quad (35)$$
References

