<table>
<thead>
<tr>
<th>Title</th>
<th>The bosonic vertex operator algebra on a genus g Riemann surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Tuite, Michael P.; Zuevsky, Alexander</td>
</tr>
<tr>
<td>Publication Date</td>
<td>2011-08</td>
</tr>
<tr>
<td>Link to publisher's version</td>
<td>http://hdl.handle.net/2433/171291</td>
</tr>
<tr>
<td>Item record</td>
<td>http://hdl.handle.net/10379/4847</td>
</tr>
</tbody>
</table>

Some rights reserved. For more information, please see the item record link above.
The Bosonic Vertex Operator Algebra on a Genus g Riemann Surface

Michael P. Tuite and Alexander Zuevsky*

School of Mathematics, Statistics and Applied Mathematics,
National University of Ireland Galway
University Road, Galway, Ireland.

Abstract
We discuss the partition function for the Heisenberg vertex operator algebra on a genus g Riemann surface formed by sewing g handles to a Riemann sphere. In particular, it is shown how the partition can be computed by means of the MacMahon Master Theorem from classical combinatorics.

1 Introduction
In this paper we briefly sketch recent progress in defining and computing the partition function for the Heisenberg Vertex Operator Algebra (VOA) on a genus g Riemann surface. The partition function and n-point correlation functions are familiar concepts at genus one and have recently been computed on genus two Riemann surfaces formed from sewing tori together [MT1],[MT2]. Here we discuss an alternative approach for computing these objects on a general genus g Riemann surface formed by sewing g handles onto a Riemann sphere. This approach includes the classical Schottky parameterisation and a related simpler canonical parameterisation for which we obtain the partition function for rank 2 Heisenberg VOA in terms of an explicit infinite determinant. This determinant is computed by means of the MacMahon Master Theorem in classical combinatorics [MM].

*Supported by a Science Foundation Ireland Frontiers of Research Grant and by Max–Planck Institut für Mathematik, Bonn
2 A Generalized MacMahon Master Theorem

We begin with a review of the MacMahon Master Theorem and a recent generalization. We will provide a proof of this which gives some flavour of the combinatorial graph theory methods developed to compute higher genus partition functions [MT2], [TZ].

Let \(A = (A_{ij}) \) be an \(n \times n \) matrix indexed by \(i, j \in \{1, \ldots, n\} \). Consider the cycle decomposition of \(\pi \in \Sigma_n \), the symmetric group on \(\{1, \ldots, n\} \),

\[
\pi = \sigma_1 \ldots \sigma_{C(\pi)}.
\]

(1)

The \(\beta \)-extended Permanent of the matrix \(A \) is defined by [FZ]

\[
\text{perm}_\beta A = \sum_{\pi \in \Sigma_n} \beta^{C(\pi)} \prod_i A_{i\pi(i)}.
\]

(2)

The standard permanent and determinant are the particular cases:

\[
\text{perm} A = \text{perm}_{+1} A, \quad \det A = (-1)^n \text{perm}_{-1} A.
\]

(3)

Consider a multiset \(\{k_1, \ldots, k_m\} \) with \(1 \leq k_1 \leq \ldots \leq k_m \leq n \) i.e. index repetition is allowed. We notate the multiset as the unrestricted partition

\[
k = \{r_1^1 2^r_2 \ldots n^r_n\},
\]

(4)

i.e. the index \(i \) occurs \(r_i \geq 0 \) times and where \(m = \sum_{i=1}^{n} r_i \). Let \(A(k) \) denote the \(m \times m \) matrix indexed by \(k \) for a given matrix \(A \) indexed by \(\{1, \ldots, n\} \).

We now describe a generalisation of the classic MacMahon Master Theorem (MMT) of combinatorics [MM]. Let \(A \) be an \(n \times n \) matrix indexed by \(\{1, \ldots, n\} \). Let \(A(k) \) denote the \(m \times m \) matrix indexed by a multiset \(k \) (4).

Theorem 2.1 (Generalized MMT - Foata and Zeilberger [FZ])

\[
\sum_k \frac{\text{perm}_\beta A(k)}{r_1! r_2! \ldots r_n!} = \frac{1}{\det(I - A)^\beta},
\]

(5)

where the (infinite) sum ranges over all multisets \(k = \{r_1^1 2^{r_2} \ldots n^{r_n}\} \).
For $\beta = 1$, Theorem 2.1 reduces to the classical MMT [MM]. For $\beta = -1$ we use (3) to find that the sum is restricted to proper subsets of \{1, 2, \ldots, n\} resulting in the determinant identity

$$\det(I + B) = \sum_{1 \leq k_1 < \ldots < k_m \leq n} \det B(k),$$

for $B = -A$.

Proof of Theorem 2.1. We use a graph theory method applied in [MT2]. Define a set of oriented graphs Γ with elements γ_π whose vertices are labelled by multisets $k = \{1^{r_1} \ldots n^{r_n}\}$ and directed edges $\{e_{ij}\}$ determined by permutations $\pi \in \Sigma(k)$ as follows

$e_{ij} = \begin{array}{c} k_i \\ \downarrow \\ \pi \\ \downarrow \\ k_j \end{array}$ for $k_j = \pi(k_i)$

Define a β dependent weight for each γ_π

$$w_\beta(e_{ij}) = A_{k_i,k_j}, \quad w_\beta(\gamma_\pi) = \beta^{C(\pi)} \prod_{e_{ij} \in \gamma_\pi} w_\beta(e_{ij}), \quad (6)$$

where $C(\pi)$ is the number of disjoint cycles in π. Then we may write

$$\text{perm}_\beta A(k) = \sum_{\pi \in \Sigma(k)} w_\beta(\gamma_\pi).$$

γ_π is invariant under permutations of the identical labels of k. Hence the left hand side of (5) can be rewritten as

$$\sum_k \text{perm}_\beta A(k) = \frac{1}{r_1!r_2!\ldots r_n!} \sum_{\gamma \in \Gamma} \frac{w_\beta(\gamma)}{|\text{Aut}(\gamma)|},$$

where we sum over all inequivalent graphs in Γ. Each $\gamma \in \Gamma$ can be decomposed into disjoint connected cycle graphs $\gamma_\sigma \in \Gamma$

$$\gamma = \gamma_{\sigma_1}^{m_1} \ldots \gamma_{\sigma_K}^{m_K}.$$

Each cycle σ corresponds to a disjoint connected cycle graph $\gamma_\sigma \in \Gamma$ with weight

$$w_\beta(\gamma_\sigma) = \prod_i w_\beta(\gamma_{\sigma_i})^{m_i}.$$
Furthermore
\[|\text{Aut}(\gamma_\sigma)| = \prod_i |\text{Aut}(\gamma_{\sigma_i})|^{m_i} m_i! \]

Let \(\Gamma_\sigma \) denote the set of inequivalent cycles. Then
\[
\sum_{g \in \Gamma} \frac{w_\beta(g)}{|\text{Aut}(g)|} = \prod_{\gamma_\sigma \in \Gamma_\sigma} \sum_{m \geq 0} \frac{w_\beta(\gamma_\sigma)^m}{|\text{Aut}(\gamma_\sigma)|^m m!} = \exp \left(\sum_{\gamma_\sigma \in \Gamma_\sigma} \frac{w_\beta(\gamma_\sigma)}{|\text{Aut}(\gamma_\sigma)|} \right). \tag{7}
\]

For a cycle \(\sigma \) of order \(|\sigma| = r \) then \(\text{Aut}(\gamma_\sigma) = \langle \sigma^s \rangle \), a cyclic group of order \(|\text{Aut}(\gamma_\sigma)| = \frac{r}{s} \). Using the trace identity
\[
\sum_{\gamma_\sigma \mid \sigma = r} s \ w_\beta(\gamma_\sigma) = \beta \text{Tr}(A^r),
\]
we find
\[
\sum_{\gamma_\sigma \in \Gamma_\sigma} w_\beta(\gamma_\sigma) \frac{1}{|\text{Aut}(\gamma_\sigma)|} = \beta \sum_{r \geq 1} \frac{1}{r} \text{Tr}(A^r) = -\beta \text{Tr}(\log(I - A)) = -\beta \log \det(I - A).
\]

Thus
\[
\sum_{k} \frac{\text{perm}_\beta A(k)}{r_1! r_2! \ldots r_n!} = \det(I - A)^{-\beta}. \quad \square
\]

Define a cycle to be primitive (or rotationless) if \(|\text{Aut}(\gamma_\sigma)| = 1 \). For a general cycle \(\sigma \) with \(|\text{Aut}(\gamma_\sigma)| = s \) we have for \(\beta = 1 \)
\[w_1(\gamma_\sigma) = w_1(\gamma_\rho)^s, \]
for some primitive cycle \(\rho \). Let \(\Gamma_\rho \) denote the set of all primitive cycles. Then
\[
\sum_{\gamma_\sigma \in \Gamma_\sigma} \frac{w_1(\gamma_\sigma)}{|\text{Aut}(\gamma_\sigma)|} = \sum_{\gamma_\sigma \in \Gamma_\rho} \sum_{s \geq 1} \frac{1}{s} w_1(\gamma_\rho)^s = -\sum_{\gamma_\sigma \in \Gamma_\rho} \log \det(1 - w_1(\gamma_\rho)).
\]
Combining this with (7) implies [MT2]
Theorem 2.2
\[
\det(I - A) = \prod_{\gamma \rho \in \Gamma} (1 - w_1(\gamma \rho)).
\]

3 Riemann Surfaces from a Sewn Sphere

3.1 The Riemann torus

Consider the construction of a torus by sewing a handle to the Riemann sphere \(C\) by identifying annular regions centred at \(A_{\pm 1} \in C\) via a sewing condition with complex sewing parameter \(\rho\)

\[
(z - A_{-1})(z' - A_1) = \rho. \tag{8}
\]

We call \(\rho, A_{\pm}\) canonical parameters. The annuli do not intersect provided

\[
|\rho| < \frac{1}{4}|A_{-1} - A_1|^2. \tag{9}
\]

Inequivalent tori depend only on

\[
\chi = -\frac{\rho}{(A_{-1} - A_1)^2}, \tag{10}
\]

where (9) implies \(|\chi| < \frac{1}{4}\) [MT1].

Equivalently, we define \(q, a_{\pm 1}\), known as Schottky parameters, by

\[
a_i = \frac{A_i + qA_{-i}}{1 + q},
\]

\[
\frac{q}{(1 + q)^2} = \chi. \tag{11}
\]
for $i = \pm 1$. Inequivalent tori depend only on q with $|q| < 1$. The canonical sewing condition (8) is equivalent to:

$$
\left(\frac{z - a_{-1}}{z - a_1} \right) \left(\frac{z' - a_1}{z' - a_{-1}} \right) = q.
$$

(12)

Inverting (11) we find that $q = C(\chi)$ for Catalan series

$$
C(\chi) = \frac{1 - (1 - 4\chi)^{1/2}}{2\chi} - 1 = \sum_{n \geq 1} \frac{1}{n(n + 1)} \chi^n.
$$

(13)

3.2 Genus g Riemann Surfaces

We may similarly construct a general genus g Riemann surface by identifying g pairs of annuli centred at $A_{\pm i} \in \hat{\mathbb{C}}$ for $i = 1, \ldots, g$ and sewing parameters ρ_i satisfying

$$
(z - A_{-i})(z' - A_i) = \rho_i,
$$

(14)

provided no two annuli intersect. Equivalently, for $i = 1, \ldots, g$ we define Schottky parameters $a_{\pm i}, q_i$ by

$$
a_{\pm i} = \frac{A_{\pm i} + \rho_i}{1 + q_i},
$$

$$
\frac{q_i}{(1 + q_i)^2} = -\frac{\rho_i}{(A_{-i} - A_i)^2},
$$

(15)

where $|q_i| < 1$ is again related to the Catalan series (13)

$$
q_i = C(\chi_i), \quad \chi_i = -\frac{\rho_i}{(A_i - A_{-i})^2}.
$$

The canonical sewing condition can then be rewritten as a standard Schottky sewing condition:

$$
\left(\frac{z - a_{-1}}{z - a_1} \right) \left(\frac{z' - a_1}{z' - a_{-1}} \right) = q_i.
$$

(16)

The Schottky sewing condition (16) determines a Möbius map $z' = \gamma_i(z)$ where

$$
\gamma_i = \sigma_i^{-1} \begin{pmatrix} q_i & 0 \\ 0 & 1 \end{pmatrix} \sigma_i,
$$

(17)
for Möbius map

$$\sigma_i(z) = \frac{z - a_i}{z - a_{-i}}.$$ \hfill (18)

We define the Schottky group \(\Gamma = \langle \gamma_i \rangle \) as the Kleinian group freely generated by \(\gamma_i \) for \(i = 1, \ldots, g \).

One can find explicit formulas for various objects defined on the Riemann surface such as the bilinear form of the second kind, a basis of \(g \) holomorphic 1-forms and the genus \(g \) period matrix in terms of either the Canonical or Schottky parametrizations [TZ]. In the Schottky case, these involve sums or products over the Schottky group or subsets thereof.

4 Vertex Operator Algebras

Consider a simple VOA with \(\mathbb{Z} \)-graded vector space \(V = \bigoplus_{n \geq 0} V^{(n)} \) and local vertex operators \(Y(a, z) = \sum_{n \in \mathbb{Z}} a_n z^{-n-1} \) for \(a \in V \) e.g. [Ka],[FLM],[MN],[MT3]. We assume that \(V \) is of CFT type (i.e. \(V_0 = \mathbb{C} \)) with a unique symmetric invertible invariant bilinear form \(\langle \ , \ \rangle \) with normalization \(\langle 1, 1 \rangle = 1 \) where [FHL],[Li]

$$\langle Y(a, z)b, c \rangle = \langle b, Y(e^{zL_1}(-\frac{1}{z^2})L_0 a, \frac{1}{z})c \rangle$$ \hfill (19)

For a \(V \)-basis \(\{u^a\} \), we let \(\{\pi^a\} \) denote the dual basis. If \(a \in V^{(k)} \) is quasi-primary \((L_1 a = 0) \) then (19) implies

$$\langle a_n b, c \rangle = (-1)^k \langle b, a_{2k-n-2} c \rangle.$$

In particular:

$$\langle a_n b, c \rangle = -\langle b, a_{-n} c \rangle \quad \text{for } a \in V^{(1)}$$
$$\langle L_n b, c \rangle = \langle b, L_{-n} c \rangle \quad \text{for } \omega \in V^{(2)},$$ \hfill (20)

so that \(b, c \) with unequal weights are orthogonal.

4.1 Genus Zero Correlation Functions

For \(u_1, u_2, \ldots, u_n \in V \) define the \(n \)-point (correlation) function by

$$\langle 1, Y(u_1, z_1)Y(u_2, z_2) \ldots Y(u_n, z_n) 1 \rangle.$$ \hfill (21)
The locality property of vertex operators implies that this formal expression (21) coincides with the analytic expansion of a rational function of \(z_1, z_2, \ldots, z_n\) in the domain \(|z_1| > |z_2| > \ldots > |z_n|\). Thus the \(n\)-point function can taken to be a rational function of \(z_1, z_2, \ldots, z_n \in \hat{\mathbb{C}}\), the Riemann sphere in the domain. For example [HT]

Theorem 4.1 For a VOA of central charge \(C\), the Virasoro \(n\)-point function is a \(\beta\)-extended permanent

\[
\langle 1, Y(\omega, z_1) \ldots Y(\omega, z_n) \rangle = \text{perm}_{C} B,
\]

for \(B_{ij} = \frac{1}{(z_i - z_j)²}, i \neq j\) and \(B_{ii} = 0\).

4.2 Rank Two Heisenberg VOA \(M_2\)

Consider the VOA generated by two Heisenberg vectors \(a^\pm \in V^{(1)}\) whose modes satisfy non-trivial commutator

\[
[a^+_m, a^-_n] = m\delta_{m,-n}.
\]

\(V\) has a Fock basis spanned by

\[
a_{k,l} = a^+_{-k_1} \ldots a^+_{-k_m} a^-_{-l_1} \ldots a^-_{-l_n} 1,
\]

labelled by multisets \(k = \{k_1, \ldots, k_m\} = \{1^{r_1}, 2^{r_2} \ldots\}\) and \(l = \{l_1, \ldots, l_n\} = \{1^{s_1}, 2^{s_2} \ldots\}\). The Fock vectors are orthogonal with respect to the invariant bilinear form with dual basis

\[
\overline{a}_{k,l} = \prod_i \frac{1}{i^{r_i}r_i!} \prod_j \frac{1}{j^{s_j}s_j!} a_{l,k}.
\]

The basic Heisenberg 2-point function is

\[
\langle 1, Y(a^+, x)Y(a^-, y) \rangle = \frac{1}{(x - y)^2}.
\]

This function provides all the necessary data for computing the Heisenberg partition and correlation functions on a genus \(g\) surface! Thus the general rank 2 Heisenberg 2\(n\)-point function is

\[
\langle 1, Y(a^+, x_1) \ldots Y(a^+, x_n)Y(a^-, y_1) \ldots Y(a^-, y_n) \rangle = \text{perm} \left(\frac{1}{(x_i - y_j)^2} \right).
\]
This is a generating function for all rank two Heisenberg correlation functions by associativity of the VOA.

Let \(x_{-i} = x - A_{-i} \) and \(y_j = y - A_j \) be local coordinates in the neighborhood of canonical sewing parameters \(A_{-i}, A_j \) for \(i, j \in \{\pm 1, \ldots, \pm g\} \) with \(i \neq -j \). The 2-point function has expansion

\[
\frac{1}{(x - y)^2} = \sum_{k, l \geq 1} (-1)^{k+1} \frac{(k + l - 1)!}{(k-1)!(l-1)!} \frac{x_{-i}^{k-1} y_j^{l-1}}{(A_{-i} - A_j)^{k+l}}.
\]

Define the canonical moment matrix \(R_{\text{Can}}^{ij} \), an infinite matrix indexed by \(k, l = 1, 2, \ldots \) and \(i, j \in \{\pm 1, \ldots, \pm g\} \) where

\[
R_{\text{Can}}^{ij}(k, l) = \begin{cases} \frac{(-1)^k p_i^{k/2} p_j^{l/2}}{\sqrt{kl}} \frac{(k+l-1)!}{(k-1)!(l-1)!} \frac{1}{(A_{-i} - A_j)^{k+l}}, & i \neq -j \\ 0, & i = -j \end{cases}
\]

\((I - R_{\text{Can}})^{-1}\) plays a central role in computing the genus \(g \) period matrix and other structures.

We similarly have expansions in the Schottky parameters. Let

\[
x_{-i} = \sigma_{-i}(x) = \frac{x - a_{-i}}{x - a_i}, \quad y_j = \sigma_j y = \frac{y - a_j}{y - a_{-j}}
\]

for \(i, j \in \{1, \ldots, g\} \) be local coordinates in the neighborhood of the Schottky points \(a_{-i} \) and \(a_j \) for \(i \neq -j \). The 2-point function expansion leads to the Schottky moment matrix with

\[
R_{\text{Sch}}^{ij}(k, l) = \begin{cases} q_i^{k/2} q_j^{l/2} D(k, l)(\sigma_i \sigma_j^{-1}), & i \neq -j \\ 0, & i = -j \end{cases}
\]

where for \(\gamma \in SL(2, \mathbb{C}) \)

\[
D(k, l)(\gamma) = \frac{1}{l!} \sqrt{\frac{l}{k}} \left(\frac{\partial^l_\gamma (\gamma(z))^k}{|z=0} \right).
\]

\(D \) is an \(SL(2, \mathbb{C}) \) representation [Mo]. Then it follows

\[
\sum_{s \geq 1} R_{ij}^{\text{Sch}}(r, s) R_{jk}^{\text{Sch}}(s, t) = q_i^{r/2} q_k^{t/2} D(r, t)(\sigma_i \gamma_j \sigma_k^{-1}),
\]

for Schottky generator (17).
4.3 The Genus g Partition Function - Canonical Parameters

We now define the genus g partition function for a VOA V in the canonical sewing scheme in terms of genus zero $2g$-point correlation functions as follows:

$$Z_V^{(g)}(\rho_i, A_{\pm i}) = \langle 1, \prod_{i=1}^{g} \sum_{n_i \geq 0} \rho_i^{n_i} \sum_{v_i \in V} Y(v_i, A_{-i})Y(\bar{v}_i, A_i)1 \rangle,$$ \hspace{1cm} (33)

where \bar{v}_i is dual to v_i.

For genus one this reverts to the standard definition:

Theorem 4.2 (Mason and T.)

$$Z_V^{(1)}(\rho, A_{\pm 1}) = \text{Tr}_V(q^{L_0})$$

where $q = C(\chi)$, the Catalan series for $\chi = -\frac{\rho}{(A_{-1} - A_1)^2}$.

4.4 $Z_M^{(g)}(\rho_i, A_{\pm i})$ for Heisenberg VOA M_2

The genus g partition function can be computed for the rank 2 Heisenberg VOA by means of the MacMahon Master Theorem where, schematically, we have:

- Sum over g Fock bases \rightarrow Sum over multisets
- $2g$-point function \rightarrow Permanent of matrix
- Dual vector factorials \rightarrow Multiset factorials
- ρ_i and other dual vector factors \rightarrow Absorbed into matrix definition

We then find that [TZ]

Theorem 4.3

$$Z_M^{(g)}(\rho_i, A_{\pm i}) = \frac{1}{\det(I - R^{\text{Can}})},$$

where R^{Can} is the canonical moment matrix. Furthermore, $\det(I - R^{\text{Can}})$ is holomorphic and non-vanishing. In general, the genus g Heisenberg generating function is expressed in terms of a permanent of genus g bilinear forms of the second kind.
We may repeat this by using an alternative definition of the genus \(g \) partition function in terms of in Schottky parameters account must be taken of the Möbius maps \(\sigma_i \) of (18). We then find [TZ]

Theorem 4.4 The genus \(g \) partition function is

\[
Z_{M_2}^{(g)}(q_i, a_{\pm i}) = \frac{1}{\det(I - R^{\text{Sch}})},
\]

where \(R^{\text{Sch}} \) is the Schottky moment matrix. Furthermore, \(\det(I - R^{\text{Sch}}) \) is holomorphic and non-vanishing and the genus \(g \) Heisenberg generating function is expressed in terms of a permanent of genus \(g \) bilinear forms of the second kind.

Conjecture: \(\det(I - R^{\text{Can}}) = \det(I - R^{\text{Sch}}) \). This is true for \(g = 1 \) [MT2].

4.5 The Montonen-Zograf Product Formula

\(\det(I - R^{\text{Sch}}) \) can be also re-expressed in terms of an infinite product formula originally calculated in physics by Montonen in 1974 [Mo]. A similar product formula was subsequently found by Zograf [Z]. This has been recently related by McIntyre and Takhtajan [McT] to Mumford’s theorem concerning the absence of a global section on moduli space for the canonical line bundle [Mu].

Recall that \(R^{\text{Sch}}_{ij}(k, l) \) is expressed in terms of an \(SL(2, \mathbb{C}) \) representation \(D \). This leads to

\[
\det(I - R^{\text{Sch}}) = \prod_{m \geq 1} \prod_{\gamma^\alpha \in \Gamma} (1 - q^\alpha_m)^{\gamma^\alpha};
\]

where the inner product ranges over the primitive classes \(\gamma^\alpha \neq 1 \) of the Schottky group \(\Gamma \) i.e. \(\gamma^\alpha \neq \gamma^k \) for any \(\gamma \in \Gamma \) for \(k \neq 1 \). Each such element has a multiplier \(q_\alpha \) where

\[
\gamma^\alpha \sim \begin{pmatrix} q_\alpha & 0 \\ 0 & 1 \end{pmatrix}.
\]
References

