<table>
<thead>
<tr>
<th>Title</th>
<th>Cataloguing and Linking Life Sciences LOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Hasnain, Ali; Fox, Ronan; Deus, Helena F.; Decker, Stefan</td>
</tr>
<tr>
<td>Publication Date</td>
<td>2012</td>
</tr>
<tr>
<td>Item record</td>
<td>http://hdl.handle.net/10379/4841</td>
</tr>
</tbody>
</table>

Downloaded 2020-05-06T15:53:01Z

Some rights reserved. For more information, please see the item record link above.
Cataloguing and Linking Life Sciences LOD Cloud

Ali Hasnain, Ronan Fox, Stefan Decker and Helena F. Deus

Digital Enterprise Research Institute (DERI) NUI Galway, Ireland
{ali.hasnain, ronan.fox, stefan.decker, helena.deus}@deri.org

Abstract. The Life Sciences Linked Open Data (LSLOD) Cloud is currently comprised of multiple datasets that add high value to biomedical research. The ability to navigate through these datasets in order to derive and discover new meaningful biological correlations is considered one of the most significant resources for supporting clinical decision making. However, navigating these multiple datasets is not easy as most of them are fragmented across multiple SPARQL endpoints, each containing trillions of triples and represented with insufficient vocabulary reuse. To retrieve and match, from multiple endpoints, the data required to answer meaningful biological questions, it is first necessary to catalogue the data represented in each endpoint, in order to understand how powerful queries traversing several SPARQL endpoints can be assembled. In this report, we explore the schema used to represent data from a total of 52 meaningful Life Sciences SPARQL endpoints and present our methodology for linking related concepts and properties from the “pool” of available elements. We found the outcome of this exploratory work not only to be helpful in identifying redundancy and gaps in the data, but also for enabling the assembly of complex federated queries. In this report we present three different approaches used to weave concepts and properties and discuss their applicability for creating complex links in the LSLOD cloud.

Keywords: Linked Open Data, SPARQL, Life Sciences, Query Element.

1 Introduction

In the past few years, the linked open data cloud has earned a significant attention and it is becoming the de facto standard for publishing data on the web[1]. One of the ambitions behind the linked data effort is the ability to create a web of interlinked data which can be queried using a unified query language and protocol, regardless of where the data is stored. The life sciences domain has been one of the early adopters of linked data, and a significant portion of the linked data cloud is comprised of datasets from this domain, including multiple datasets from the bio2rdf\(^1\) project, linkedlifedata\(^2\), the health care and life sciences knowledge base \(^3\)(HCLS Kb), neurocom-

\(^1\)http://bio2rdf.org/
\(^2\)http://linkedlifedata.com/
\(^3\)http://www.w3.org/TR/hcls-kb/

© Springer-Verlag Berlin Heidelberg 2011
mons' and the linked open drug data effort. These efforts have been partially devised and are still motivated by the deluge of data in biomedical facilities in the past few years, which is still in need of a single programmatic interface to access and query any life sciences dataset regardless of its representation formalisms. Although the publication of datasets as Linked Data is a necessary step towards achieving unified querying of biological datasets, it is not enough to achieve the interoperability necessary to enable a queryable web of life sciences data since it solves only the syntactic interoperability problem without addressing the interoperability problem caused by use of multiple overlapping terminologies when representing the data.[2],[3]. To achieve the ability for assembling queries encompassing multiple graphs hosted at various places, it is necessary either that vocabularies and ontologies are reused or that translation maps between the different terminologies are created.[4]. As discussed in[5], there are two approaches that can be considered for enabling integrated queries using Linked Data: “a priori integration”, which relies on linked data representations schemas that make use of the same vocabularies and ontologies and “a posteriori integration”, a methodology that makes use of mapping rules between different schemas, enabling the modification of the topology of queried graphs and the integration of datasets even when alternative vocabularies are used. As an example, there are multiple datasets in the LSLOD describing the concept “Molecule”- in Bio2RDF skeggdataset, they are represented as chemical compounds using <kegg#Compound> whereas in chebi, these are identified as <chebi#Compound> and in BioPax they are denoted as <biopax-level3.owl#SmallMolecule>. A “posteriori integration” enables retrieving instances from these three concepts using a single triple pattern, provided they are mapped to each other and the SPARQL engine enables query transformation (e.g. SWobjects[6]). Using a posteriori integration, the following SPARQL algebra would enable the query rewrite necessary to retrieve all instances of “Molecule”:

CONSTRUCT (bgp(triple?molecule agr:Molecule))unionService({kegg/sparql},kegg/sparql)bgp(triple ?molecule <kegg#Compound>))
Service({chebi/sparql},${chebi/sparql} bgp(triple ?molecule rdf:type <chebi#Compound>)))

The “a posteriori” approach therefore relies on identifying and creating the rules to transform the topology of the graphs using “CONSTRUCT” templates, thus enabling integration even when terminologies are not reused. A posteriori solutions are favored by Semantic Web Technologies given the extensive standardization of mechanisms to support the assignment of instances to new concepts through inference by simply creating a link that describes, for example, that two concepts are “subClassOf” of each other [5]. Identifying and creating such links between similar or related concepts and properties is therefore a key requirement for the posteriori approach. In this report, we will focus on linking approaches that enable “a posteriori integration” in the LSLOD.
Currently a few Query Engines QE exist to support several techniques developed to meet the requirements of efficient query computation in the distributed environment. FedX, for example[7], is a project which extends the Sesame Framework with a federation layer that enables efficient query processing on distributed Linked Open Data sources. SWobjects[8] is a query engine and “swiss-army-knife” of semantic web technologies which supports also the query transformation requirement for “a posteriori” data integration.

1.1 Challenges in linking LSLOD

To enable a posteriori integration of LSLOD, we introduce an approach to discover related and/or similar linked life sciences concepts and properties to facilitate federated SPARQL queries. We do not attempt to create a new semantic matching algorithm but to apply existing ones. In addition to the “Compound” example mentioned earlier (previous section), there are other concepts which instances should be returned upon querying “Molecules” such as instance of “Drugs” or “Ingredients” (Figure 5), which can be considered as subClassOf “Molecule”. This type of problem is prevalent in LSLOD. Furthermore, it is conventional in LSLOD for multiple endpoints to contain different fractions of data or predicates about the same entities – as an example, the chebi dataset would contain information related to the mass or the charge of a Molecule, whereas the kegg dataset contains information about the Molecule’s interaction with biological entities such as Proteins. There is an utmost need for linking particular concepts to address the issue of data inconsistency and heterogeneity. In this report we present our approach for linking concepts/classes and properties available at different SPARQL endpoints. Our approach will be discussed in detail in section 3.

2 Related Work

The studies or categories that are related to the work presented here come under the topic of “linking heterogeneous data”. In this report we considered all the SPARQL endpoints in LSLOD to be represented according to a schema (list of concepts and properties). One typical way of addressing the data heterogeneity problem is through usage and alignment of ontologies. Semantic information systems use ontologies to represent domain-specific knowledge and support its users by enabling the usage of ontology terms to represent data and construct queries[9]. A system named BLOOMS was presented in [10] for finding schema-level links between LOD datasets. In BLOOMS, ontology alignment was achieved by bootstrapping information already available in the LOD cloud. BLOOMS relies heavily on Wikipedia and also on the API used for the ontology alignment [11]. Although BLOOMS would potentially be a candidate for achieving the linking proposed here, the life science domain is not covered in sufficient detail in Wikipedia’s categorization to render sufficient and useful
Furthermore, ontology alignment approaches cannot be applied in our case given that such methods frequently rely on a set of assumptions that our datasets did not follow: 1) they often require an ontology as a starting point whereas the majority of SPARQL endpoints explored here did not have a clear representation ontology; 2) they do not attempt to link beyond the label or concept name, whereas named entity matching can provide a powerful method for linking and 3) they do not take into consideration domain matching approaches which are the core of our research and will be discussed in detail in the next sections. In [23] an alternative data linking mechanism is presented that relies on the unsupervised discovery of the required similarity parameters while taking into account several desired properties instead of relying only on labeled data. Ontology alignment techniques are more suited towards solving integration challenges where data has been structured as a hierarchy, which is not the case in the majority of SPARQL endpoints considered. The Silk Framework [12]provides a language for specifying and creating links between entities by matching based on predicates. Although we made use of it on the course of this work, it is not automated enough to cover the needs described as they still rely on extensive configuration and participation of data producers and consumers with expert knowledge. Also, it does not provide a mechanism for linking schema elements. The Silk framework can be useful for creating syntactic links (naïve) as it uses string comparison algorithms. The VoID vocabulary[13], which we used in this work is helpful for enabling the description of Linked Datasets, but cannot provide an automated way for link discovery between LOD datasets. The SameAs.org service also addresses the problem partially at concepts level by finding co-references between different data sets.

3 Methodology

We have catalogued the LSLOD by harvesting, from SPARQL endpoints and the set of distinct concept/properties that may be used to query the data. A total of 52 different SPARQL endpoints were catalogued and the resulting triples were organized in an RDF document, the LSLOD Catalogue. These 52 endpoints include publically available bio2rdf datasets and datasets in CKAN tagged with “life sciences” or “healthcare”. Concept and properties were obtained by issuing queries such as “select distinct* where{[?a?concept]}” and “select distinct* where{<URI>?property ?object}”.

As explained in the previous section, the LSLOD contains multiple overlapping instances which are described using different terminologies (e.g. bio2rdf:compound vs biopax:smallMolecule). However, for each data consumer, there is typically a set of preferred keywords (e.g. Molecule, Name, Weight) for retrieving these instances from LSLOD; we define these keywords as query elements (Qe). In this report we present our 3-pronged approach for creating schema-level links between concepts and properties in the LSLOD catalogue and a predefined list of Qe. For queries expressed using schema keywords, this schema-level linking is meant to

\[^{7}http://hcls.deri.org/RoadMapEvaluation/#Sparql_Endpoints\]
\[^{8}http://wiki.ckan.org/Main_Page\]
\[^{9}http://hcls.deri.org/RoadMapEvaluation/#Query_Elements\]
support the translation of SPARQL queries, assembled using a set of user-defined Qe, into a syntax that is amenable for querying multiple endpoints. For example when the data consumer requests instances of type “Molecule”, the topology of remote graphs containing such instances should be transformed, according to a set of rules, into a compatible syntax in the remote service (e.g. instances of “Compound” is the equivalent query in the CHEBI endpoint). Our aim was to enable the automated identification of such rules and represent them in a format amenable for use by a federated SPARQL engine.

In the following sections, we describe weaving the “concepts” and “properties” in the LSLOD catalogue to a list of Qe determined as relevant by a set of life sciences experts on the course of the EU GRANATUM project, focused in the domain of cancer chemoprevention. It is worth noticing that this initial set of Qe is a subset of the LSLOD catalogue, collected from the GRANATUM SPARQL endpoint, resulted in Qe e.g. gr:Molecule, gr:Protein and thus it can be replaced with any subset of the LSLOD catalogue. In order to enable the query rewrite necessary for “a posteriori” integration queries, links between these Qe and concepts/properties in LSLOD were created using predicates that can be used by reasoning engines to infer new instances/links (e.g. subClassOf and subPropertyOf). Doing so ensures that a federated query engine is able to make use of RDFS reasoning to transform a simple query into a federated query.

3.1 Links Creation
The LSLOD catalogue resulted in a “pool” of 12,396 distinct concepts and 1,255 distinct properties from 52 endpoints, the majority of which were not included in any Bioportal ontologies. Also, as described in the related work section, none of the existing semantic matching/ontology alignment approaches could be used for addressing the challenge in its entirety (results in the next section). As such, we combined several approaches towards maximizing the number of links created. We divided our approach into 3 types of matching, described below namely: 1) Naïve; 2) Named Entity; 3) Domain dependent.

Naïve Matching/Syntactic Matching/Label Matching.
The simpler method of creating links between concepts is through naïve matching. In our catalogue development phase we captured the labels of all the concepts and properties or, when labels were missing, a new label was created from the last portion of the URIs. In the majority of cases, when two concepts share a label (e.g. “Compound”), they can confidently be linked together in same context (e.g. in LSLOD a “Compound” is always a “Chemical Compound”). The algebra used by a SPARQL federated engine to assign instances to the naïve matched concepts is formalized as:

\[
type(I_2,D_1) := type(I_1,D_1), type(I_2,D_2), label(D_1,L), label(D_2,L)
\]

-where \(I_1\) and \(I_2\) are instances; \(D_1, D_2\) are two concepts, and \(L\) is the shared label.

10 http://www.granatum.org/
11 http://hcls.deri.org:8080/openrdf-sesame/repositories/granatumLBDS
12 http://bioportal.bioontology.org/#
Named Entity Matching.
A significant number of instances in LSLOD are annotated to concepts representing the same entity (e.g. Molecule) but differ in their labels (e.g. Compound or Drug). Given that our main concern was to enable query transformation, this method was also used for matching concepts even when they are not exactly the same: as an example, even though “Compound” and “Drug” are not always synonyms, instances of “Compound” and “Drug” are also the instances of “Molecule”. For such links, we created “bags of related words” through synonym and related terms identification. WordNet [14], and Unified Medical Language System (UMLS) [15] vocabularies were used to achieve automated similarity and relatedness scores with limited success (non specific, un-realistic and redundant links). To improve and explain this observation we contacted domain experts after examining the unmatched concepts; the involvement of domain experts was minimal and only used for filling gaps in recognizing identifiable patterns e.g. http://bio2rdf.org/blastprodom:PD002610>and all concept URIs with similar patterns could be mapped to the Protein Qe automatically13.

Manual and Domain dependent unique identifier Matching.

Domain matching relied on properties that uniquely identify14 concepts. For example, InChi15 is a property specifically devised for describing molecules. We captured these properties using owl:hasKey. In addition to enable schema-level matching, identifying these properties has the added advantage of enabling the automated linking of instances as well. The following formalization describes the assignment of instances to two concepts matched using domain matching:

\[
\text{map}(D_1, D_2) := \text{type}(I_1, D_1), \text{type}(I_2, D_2), \text{hasKey}(D_1, \text{InChi1}), \text{hasKey}(D_2, \text{InChi2}), \text{same}(\text{InChi1}, \text{InChi2})
\]

Figure 1 presents the complete overview of our method. A LSLOD catalogue is created given a list of SPARQL endpoints. Given a selection of Qe identified by the data consumer, concepts and properties from the “pool” were linked to the Qe by

13 http://hcls.deri.org/RoadMapEvaluation/#Similar_Class_Patterns
14 http://hcls.deri.org/RoadMapEvaluation/#Domain_Matching_Property
15 http://www.iupac.org/home/publications/e-resources/inchi.html
applying all the approaches sequentially (figure 1). The linking process was designed to be iterative and to reuse the output of the previous stages, i.e. after each linking stage all the previous stages were repeated using the new set Q_e matches resulting from previous stages. The RDF catalogue and the matched concepts can be examined at publicly available endpoint (http://srvgal78.deri.ie/arc/roadmap.php)

4 Results and Discussion

In this section we present our results and findings related to LSLOD catalogue development and Link Creation. In our initial exploration of LSLOD we found a total of 12,396 concepts, of which 12,119 were unique and out of 40,833 properties, 1,255 of which were unique. In section 4.1 we expose and discuss our linking results obtained with WordNet. Section 4.2 discusses the statistics regarding the mapping created on the basis of different sequential approaches discussed in section 3.1.

4.1 Linking results using WordNet

WordNet similarity measures can be classified into three categories: Edge counting-based; Information content-based and feature based. Using WordNet thesauri we attempted to automate the creation of bags of related words using 6 algorithms: Jing & Conrath[16], Lin[17], Path[18], Resnik[19], Vector[20] and WuPalmer[21]. Concepts were considered the same when the similarity/relatedness value between them was ”1” and dissimilar/unrelated when ”0”; other threshold values were also considered. The links created were evaluated by the experts working in Granatum.

The linking results obtained by usage of these algorithms are available in figure 2. The results show that a negligible amount of links was created with a maximum of 1.08% accepted links using Resnik. Only the links that have similarity greater than 0.9 were considered correct; links to more than one Q_e via Resnik needed manual intervention to decide which link is appropriate.

<table>
<thead>
<tr>
<th>Algorithms</th>
<th>Total link created</th>
<th>Correct links</th>
<th>% correct links</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jing/Conrath</td>
<td>0.24754517721</td>
<td>0.173281624</td>
<td></td>
</tr>
<tr>
<td>Lin</td>
<td>0.85815661481</td>
<td>0.338311742</td>
<td></td>
</tr>
<tr>
<td>Path</td>
<td>0.148527106</td>
<td>0.148527106</td>
<td></td>
</tr>
<tr>
<td>Resnik</td>
<td>0.63540551213</td>
<td>0.580947213</td>
<td></td>
</tr>
<tr>
<td>Vector</td>
<td>0.148527106</td>
<td>0.148527106</td>
<td></td>
</tr>
<tr>
<td>WuPalmer</td>
<td>0.33872431107</td>
<td>0.862911131</td>
<td></td>
</tr>
</tbody>
</table>

These results suggest that the concepts and properties in LSLOD are too specific and thus WordNet thesauri is possibly too generic for this domain. We had similar results with the UMLS thesaurus, where linking results were not considered relevant as very low similarity scores were assigned for reasonably similar concepts (full results table at16 - e.g. UMLS similarity(molecule, drug) = 0.4835 - with high similarity scores

16http://hcls.deri.org/RoadMapEvaluation/#UMLS
being assigned for some dissimilar concepts - e.g. UMLS similarity *(molecule, organism) = 0.7298*. Also, we found that several concepts which labels consisted of compound words such as underscore, camel-case or dash separated words (e.g. *Pathway-Database*) could be easily used for matching using the simplest strategy (Naïve Matching). Most of the existing tools and technologies do not support this heterogeneity in label composition and this could also explain the poor matching results obtained. It is therefore *Wordnet* or *UMLS* couldn’t be considered as a basis for our proposed linking approaches, results of which are presented in next section.

4.2 Concept linking results

The link creation results from the various matching approaches are available in Figure 3 – the large majority of concepts (93.6%) were mapped using the Named Entity Matching approach. One of the reasons for explaining these results, points to the differences in the methods used to populate the SPARQL endpoints. In the majority of SPARQL endpoints, the number of concepts retrieved was low (between 1 and 108), while in two cases (PDB and SGD), the number of concepts retrieved was significantly larger (1672 and 9476, respectively). We noticed that, in these cases, concepts, as opposed to instances, were being used to describe entities of type Molecule or Organism, with each concept containing only one or two instances. Our methodology could map these concepts based on named entity matching (e.g. concepts with pattern `http://bio2rdf.org/hmmpir` could be mapped to *Protein*). However, in future work we will transform the topology of the graphs in each of these two endpoints in order to match graphs with the same topology.

In many cases the URI representing concepts consisted of url-encoded labels (e.g. `http://bio2rdf.org/pdb:1%2C1%2C5%2C5tetrafluorophosphopentylphosphonicAcidAdenylateEster`), which made linking a challenge. A similar situation was found when the concept was formed using alpha-numeric combination for which a label could not be found either in its source SPARQL endpoints or through browsing ontology registry services such as Bioportal, e.g. `<http://bio2rdf.org/so:0000436>`.

<table>
<thead>
<tr>
<th>Total Identified Concepts</th>
<th>12396</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Id Distinct Concepts</td>
<td>12119</td>
</tr>
<tr>
<td>Semi-auto NamedEntMatch</td>
<td>11343</td>
</tr>
<tr>
<td>Manual/Domain Match</td>
<td>248</td>
</tr>
<tr>
<td>Naïve Match</td>
<td>92</td>
</tr>
<tr>
<td>Unmapped</td>
<td>402</td>
</tr>
</tbody>
</table>

Figure 3. Linked concepts statistics

Domain experts were only consulted for filling the gap in recognizing possible matching patterns and the subsequent processes were automated. Although a very low percentage of linking was achieved through the naïve matching or domain matching, the quality of these links was very high as it relied on the precise, often standardized terms, when available. There were cases when a concept could not be directly mapped to any of our query elements but nevertheless remained within scope of the query elements. As an example, we found instances of concept *“Peptide”*, which represent a portion of a *“Protein”* but not necessarily an instance of a *“Protein”*. In those cases,
the appropriate relationship would to specify that { Peptide containedIn: gr:Protein } or to lift the term “Peptide” to query element level. Automating the creation of such links was out of scope for this report.

4.3 Properties linking results

Out of 40833 properties, 1255 were distinct, indicating that there is significantly more property reuse in LSLOD than concept reuse. Figure 4 illustrates the links created by each of the approaches described. Approximately 56.2% of the properties remained unlinked due to the fact that a significant proportion of properties were considered irrelevant in the context of the Qe selected, which indicates that they may be applicable with a new set of Qe.

<table>
<thead>
<tr>
<th>Total Properties</th>
<th>40833</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Distinct Properties</td>
<td>1255</td>
</tr>
<tr>
<td>Naïve Linking</td>
<td>149</td>
</tr>
<tr>
<td>Manual Linking</td>
<td>400</td>
</tr>
<tr>
<td>Out-of-scope/Unlinked</td>
<td>706</td>
</tr>
</tbody>
</table>

Figure 4. Linked properties statistics

It is also worth noticing that 3.5% of identified concepts and 56.2% of the properties remained unlinked; they were either out of scope or could not match any of the query element. This indicates that quality, as well as the quantity of links created is highly depended on the input list of query elements. The larger the number of query elements, the better the quality of the links created e.g a concept called ?peptide would link to gr:Peptide if such element existed. However, selecting from a large number of query elements is not always practical for querying. As such, there should be a balance between the number of Qe and the accuracy of links created. We attempted to link almost 12000 concepts to 60 query elements to avoid the need to browse more than 12000 concepts in order to assemble a query. Notice that the query elements selected were chosen by domain experts; a change in the query element set may result in different links being created and therefore our solution can be applicable for any set of query elements.

5 Conclusion and Future Work

Our preliminary analysis of existing LSLOD SPARQL endpoint reveals that the schemas of most datasets cannot be easily linked together using existing approaches. In fact, in the majority of cases there is very little ontology and URI reuse. In this report we describe a combined approach for data linking to facilitate “a posteriori” SPARQL query transformation in the LSLOD. Our methodology relies on systematically issuing queries on various life sciences SPARQL endpoints and collecting its results in an approach that would otherwise have to be encoded manually by domain experts or those interested in making use of the web of data towards answering meaningful scientific questions. Our aim was to support “a posteriori integration”, i.e. integration of instances in LSLOD where different terminologies were used. As a result of this work, rules such as R1:/ chebi:Compound rdfs:subClassOf gr:Molecule
can be used by a query engine supporting federated query to transform the query

\[\text{molecule a gr:Molecule} \] into the federated alternative \[\{(?\text{molecule a chebi:Compound}) \text{ UNION } (?\text{molecule a gr:Molecule}) \} \] since the integration of R1 ensures that all instances of chebi:Compound are also instances of gr:Molecule whereas the opposite is not true [14].

Created Links were evaluated by the experts working in Granatum and in future, will be evaluated by experts working in this area to evaluate whether the results of the queries returned are actually what the scientist would be looking for. A possible extension to the linking work presented here is the implementation of corpus based similarity using Wikipedia-based Explicit Semantic Analysis ESA Measure [22]. Our work has been limited to the linking of concepts and properties based on the terminological matching using three pronged approaches, hence will be extended in future beyond terminological linking approaches.

References.

