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Abstract. The Life Sciences Linked Open Data (LSLOD) Cloud is currently 

comprised of multiple datasets that add high value to biomedical research. The 

ability to navigate through these datasets in order to derive and discover new 

meaningful biological correlations is considered one of the most significant re-

sources for supporting clinical decision making. However, navigating these 

multiple datasets is not easy as most of them are fragmented across multiple 

SPARQL endpoints, each containing trillions of triples and represented with in-

sufficient vocabulary reuse. To retrieve and match, from multiple endpoints, the 

data required to answer meaningful biological questions, it is first necessary to 

catalogue the data represented in each endpoint, in order to understand how 

powerful queries traversing several SPARQL endpoints can be assembled. In 

this report, we explore the schema used to represent data from a total of 52 

meaningful Life Sciences SPARQL endpoints and present our methodology for 

linking related concepts and properties from the “pool” of available elements. 

We found the outcome of this exploratory work not only to be helpful in identi-

fying redundancy and gaps in the data, but also for enabling the assembly of 

complex federated queries. In this report we present three different approaches 

used to weave concepts and properties and discuss their applicability for creat-

ing complex links in the LSLOD cloud.  
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1 Introduction  

In the past few years, the linked open data cloud has earned a significant attention 

and it is becoming the de facto standard for publishing data on the web[1]. One of the 

ambitions behind the linked data effort is the ability to create a web of interlinked data 

which can be queried using a unified query language and protocol, regardless of 

where the data is stored. The life sciences domain has been one of the early adopters 

of linked data, and a significant portion of the linked data cloud is comprised of data-

sets from this domain, including multiple datasets from the bio2rdf1 project, linkedli-

fedata2, the health care and life sciences knowledge base 3(HCLS Kb), neurocom-

                                                           
1http://bio2rdf.org/ 
2http://linkedlifedata.com/ 
3http://www.w3.org/TR/hcls-kb/ 
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mons4and the linked open drug data effort5. These efforts have been partially devised 

and are still motivated by the deluge of data in biomedical facilities in the past few 

years, which is still in need of a single programmatic interface to access and query 

any life sciences dataset regardless of its representation formalisms. Although the 

publication of datasets as Linked Data is a necessary step towards achieving unified 

querying of biological datasets, it is not enough to achieve the interoperability neces-

sary to enable a queryable web of life sciences data since it solves only the syntactic 

interoperability problem without addressing the interoperability problem caused by 

use of multiple overlapping terminologies when representing the data[2],[3]. To 

achieve the ability for assembling queries encompassing multiple graphs hosted at 

various places, it is necessary either that vocabularies and ontologies are reused or 

that translation maps between the different terminologies are created[4]. As discussed 

in[5], there are two approaches that can be considered for enabling integrated queries 

using Linked Data: “a priori integration”, which relies on linked data representations 

schemas that make use of the same vocabularies and ontologies and “a posteriori 

integration”, a methodology that makes use of mapping rules between different 

schemas, enabling the modification of the topology of queried graphs and the integra-

tion of datasets even when alternative vocabularies are used. As an example, there are 

multiple datasets in the LSLOD describing the concept “Molecule”- in 

Bio2RDF’skeggdataset, they are represented as chemical compounds using 

<kegg#Compound> whereas in chebi, these are identified as <chebi#Compound>and 

in BioPax they are denoted as <biopax-level3.owl#SmallMolecule>. A “posteriori 

integration” enables retrieving instances from these three concepts using a single 

triple pattern, provided they are mapped to each other and the SPARQL engine 

enables query transformation (e.g. SWobjects[6]). Using a posteriori integration, the 

following SPARQL algebra would enable the query rewrite necessary to retrieve all 

instances of “Molecule”: 

CONSTRUCT (bgp(triple?molecule 

agr:Molecule))unionService(<kegg/sparql>,<kegg/sparql>bgp(triple ?mole-

cule a<kegg#Compound>))) 

Service(<chebi/sparql>,<chebi/sparql> 

bgp(triple ?msolecule rdf:type <chebi#Compound>)))) 

The “a posteriori” approach thereforerelies on identifying and creating the rules to 

transform the topology of the graphs using “CONSTRUCT” templates, thus enabling 

integration even when terminologies are not reused. A posteriori solutions are favored 

by Semantic Web Technologies given the extensive standardization of mechanisms to 

support the assignment of instances to new concepts through inference by simply 

creating a link that describes, for example, that two concepts are “subClassOf” of 

each other [5].Identifying and creating such links between similar or related concepts 

and properties is therefore a key requirement for the posteriori approach. In this re-

port, we will focus on linking approaches that enable “a posteriori integration” in the 

LSLOD. 

                                                           
4http://neurocommons.org/page/Main_Page 
5http://www.w3.org/wiki/HCLSIG/LODD 

http://chebi.bio2rdf.org/sparql
http://neurocommons.org/page/Main_Page
http://www.w3.org/wiki/HCLSIG/LODD
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Currently a few Query Engines QE exist to support several techniques developed 

to meet the requirements of efficient query computation in the distributed environ-

ment. FedX, for example[7], is a project which extends the Sesame Framework with a 

federation layer that enables efficient query processing on distributed Linked Open 

Data sources. SWobjects[8] is a query engine and “swiss-army-knife” of semantic web 

technologies which supports also the query transformation requirement for “a post-

eriori” data integration. 

1.1 Challenges in linking LSLOD 

To enable a posteriori integration of LSLOD, we introduce an approach to discover 

related and/or similar linked life sciences concepts and properties to facilitate fede-

rated SPARQL queries. We do not attempt to create a new semantic matching algo-

rithm but to apply existing ones. In addition to the “Compound” example mentioned 

earlier (previous section), there are other concepts which instances should be returned 

upon querying “Molecules” such as instance of“ Drugs” or “Ingredients” (Figure6), 

which can be considered as subClassOf “Molecule”. This type of problem is prevalent 

in LSLOD. Furthermore, it is conventional in LSLOD for multiple endpoints to con-

tain different fractions of data or predicates about the same entities – as an example, 

the chebi dataset would contain information related to the mass or the charge of a 

Molecule, whereas the kegg dataset contains information about the Molecule’s inte-

raction with biological entities such as Proteins. There is an utmost need for linking 

particular concepts to address the issue of data inconsistency and heterogeneity. In 

this report we present our approach for linking concepts/classes and properties availa-

ble at different SPARQL endpoints. Our approach will be discussed in detail in sec-

tion 3.  

2 Related Work 

The studies or categories that are related to the work presented here come under the 

topic of “linking heterogeneous data”. In this report we considered all the SPARQL 

endpoints in LSLOD to be represented according to a schema (list of concepts and 

properties).One typical way of addressing the data heterogeneity problem is through 

usage and alignment of ontologies. Semantic information systems use ontologies to 

represent domain-specific knowledge and support its users by enabling the usage of 

ontology terms to represent data and construct queries[9]. A system named B 

LOOMS was presented in [10] for finding schema-level links between LOD datasets. 

In BLOOMS, ontology alignment was achieved by bootstrapping information already 

available in the LOD cloud. BLOOMS relies heavily on Wikipedia and also on the 

API used for the ontology alignment [11]. Although BLOOMS would potentially be a 

candidate for achieving the linking proposed here, the life science domain is not cov-

ered in sufficient detail in Wikipedia’s categorization to render sufficient and useful 

                                                           
6http://hcls.deri.org/RoadMapEvaluation/#sameData 
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links. Furthermore, ontology alignment approaches cannot be applied in our case 

given that such methods frequently rely on a set of assumptions that our datasets did 

not follow: 1) they often require an ontology as a starting point whereas the majority 

of SPARQL endpoints explored here did not have a clear representation ontology; 2) 

they do not attempt to link beyond the label or concept name, whereas named entity 

matching can provide a powerful method for linking and 3) they do not take into con-

sideration domain matching approaches which are the core of our research and will be 

discussed in detail in the next sections. In [23] an alternative data linking mechanism 

is presented that relies on the unsupervised discovery of the required similarity para-

meters while taking into account several desired properties instead of relying only on 

labeled data. Ontology alignment techniques are more suited towards solving integra-

tion challenges where data has been structured as a hierarchy, which is not the case in 

the majority of SPARQL endpoints considered. The Silk Framework [12]provides a 

language for specifying and creating links between entities by matching based on 

predicates. Although we made use of it on the course of this work, it is not automated 

enough to cover the needs described as they still rely on extensive configuration and 

participation of data producers and consumers with expert knowledge. Also, it does 

not provide a mechanism for linking schema elements. The Silk framework can be 

useful for creating syntactic links (naïve) as it uses string comparison algorithms. The 

VoID vocabulary[13],which we used in this work is helpful for enabling the descrip-

tion of Linked Datasets, but cannot provide an automated way for link discovery be-

tween LOD datasets. The SameAs.org service also addresses the problem partially at 

concepts level by finding co-references between different data sets. 

3 Methodology 
 

We have catalogued the LSLOD by harvesting, from SPARQL endpoints and the 

set of distinct concept/properties that may be used to query the data. A total of 52 

different SPARQL endpoints7were catalogued and the resulting triples were organized 

in an RDF document, the LSLOD Catalogue. These 52 endpoints include publically 

available bio2rdf datasets and datasets in CKAN 8  tagged with “life sciences” or 

“healthcare”. Concept and properties were obtained by issuing queries such as “select 

distinct*where{[]a?concept}”and “select distinct* where{<URI>?property ?object}”.  

As explained in the previous section, the LSLOD contains multiple overlapping in-

stances which are described using different terminologies (e.g. 

bio2rdf:compoundvsbiopax:smallMolecule). However, for each data consumer, there 

is typically a set of preferred keywords (e.g. Molecule, Name, Weight) for retrieving 

these instances from LSLOD; we define these keywords as query elements (Qe)9.In 

this report we present our 3-prongued approach for creating schema-level links be-

tween concepts and properties in the LSLOD catalogue and a predefined list of Qe. 

For queries expressed using schema keywords, this schema-level linking is meant to 

                                                           
7http://hcls.deri.org/RoadMapEvaluation/#Sparql_Endpoints 
8http://wiki.ckan.org/Main_Page 

9http://hcls.deri.org/RoadMapEvaluation/#Query_Elements 
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support the translation of SPARQL queries, assembled using a set of user-defined Qe, 

into a syntax that is amenable for querying multiple endpoints. For example when the 

data consumer requests instances of type “Molecule”, the topology of remote graphs 

containing such instances should be transformed, according to a set of rules, into a 

compatible syntax in the remote service (e.g. instances of “Compound” is the equiva-

lent query in the CHEBI endpoint). Our aim was to enable the automated identifica-

tion of such rules and represent them in a format amenable for use by a federated 

SPARQL engine. 

In the following sections, we describe weaving the “concepts” and “properties” in 

the LSLOD catalogue to a list of Qe determined as relevant by a set of life sciences 

experts on the course of the EU GRANATUM 10project, focused in the domain of can-

cer chemoprevention. It is worth noticing that this initial set of Qe is a subset of the 

LSLOD catalogue, collected from the GRANATUM SPARQL endpoint11, resulted in 

Qe e.g. gr:Molecule, gr;Protein and thus it can be replaced with any subset of the 

LSLOD catalogue. In order to enable the query rewrite necessary for “a posteriori” 

integration queries, links between these Qe and concepts/properties in LSLOD were 

created using predicates that can be used by reasoning engines to infer new in-

stances/links (e.g. subClassOf and subPropertyOf). Doing so ensures that a federated 

query engine is able to make use of RDFS reasoning to transform a simple query into 

a federated query. 

3.1 Links Creation  

The LSLOD catalogue resulted in a “pool” of 12,396 distinct concepts and 1,255 

distinct properties from 52 endpoints, the majority of which were not included in any 

Bioportal12 ontologies. Also, as described in the related work section, none of the 

existing semantic matching/ontology alignment approaches could be used for address-

ing the challenge in its entirety (results in the next section). As such, we combined 

several approaches towards maximizing the number of links created. We divided our 

approach into 3 types of matching, described below namely: 1) Naïve; 2) Named Enti-

ty; 3) Domain dependent. 

 

Naïve Matching/Syntactic Matching/Label Matching.  

The simpler method of creating links between concepts is through naïve matching. 

In our catalogue development phase we captured the labels of all the concepts and 

properties or, when labels were missing, a new label was created from the last portion 

of the URIs. In the majority of cases, when two concepts share a label (e.g. “Com-

pound”), they can confidently be linked together in same context(e.g. in LSLOD a 

“Compound” is always a “Chemical Compound”). The algebra used by a SPARQL 

federated engine to assign instances to the naïve matched concepts is formalized as: 

type(I2,D1):= type(I1,D1),type(I2,D2),label(D1,L),label(D2,L) 

-where I1 and I2 are instances; D1,D2 are two concepts, and L is the shared label.  

 

                                                           
10 http://www.granatum.org/ 
11 http://hcls.deri.org:8080/openrdf-sesame/repositories/granatumLBDS 
12http://bioportal.bioontology.org/# 

http://bioportal.bioontology.org/


Named Entity Matching. 

A significant number of instances in LSLOD are annotated to concepts representing 

the same entity (e.g. Molecule) but differ in their labels (e.g. Compound or 

Drug).Given that our main concern was to enable query transformation, this method 

was also used for matching concepts even when they are not exactly the same: as an 

example, even though “Compound” and “Drug” are not always synonyms, instances 

of “Compound” and “Drug” are also the instances of “Molecule”. For such links, we 

created “bags of related words” through synonym and related terms identification. 

WordNet [14], and Unified Medical Language System(UMLS)[15]vocabularies were 

used to achieve automated similarity and relatedness scores with limited success (non 

specific, un-realistic and redundant links). To improve and explain this observation 

we contacted domain experts after examining the unmatched concepts; the involve-

ment of domain experts was minimal and only used for filling gaps in recognizing 

identifiable patterns e.g.<http://bio2rdf.org/blastprodom:PD002610>and all con-

cept URIs with similar patterns could be mapped to the Protein Qe automatically13. 

Manual and Domain dependent unique identifier Matching. 

Domain matching relied on properties that uniquely identify14 concepts. For exam-

ple, InChi15is a property specifically devised for describing molecules. We captured 

these properties using owl: hasKey. In addition to enable schema-level matching, 

identifying these properties has the added advantage of enabling the automated link-

ing of instances as well. The following formalization describes the assignment of 

instances to two concepts matched using domain matching: 

map(D1 , D2) := type(I1, D1), type( I2, D2), hasKey(D1, inc-
hi1),hasKey(D2, inchi2),  same (inchi1, inchi2) 
 

 

Figure. 1. Architecture of the components involved in LOD Catalogue and Link development 

Figure 1 presents the complete overview of our method. A LSLOD catalogue is 

created given a list of SPARQL endpoints. Given a selection of Qe identified by the 

data consumer, concepts and properties from the “pool” were linked to the Qe by 

                                                           
13http://hcls.deri.org/RoadMapEvaluation/#Similar_Class_Patterns 
14http://hcls.deri.org/RoadMapEvaluation/#Domain_Matching_Property 
15http://www.iupac.org/home/publications/e-resources/inchi.html 

http://www.iupac.org/home/publications/e-resources/inchi.html
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applying all the approaches sequentially (figure 1). The linking process was designed 

to be iterative and to reuse the output of the previous stages, i.e. after each linking 

stage all the previous stages were repeated using the new set Qe matches resulting 

from previous stages. The RDF catalogue and the matched concepts can be examined 

at publicly available endpoint (http://srvgal78.deri.ie/arc/roadmap.php) 

4 Results and Discussion 

In this section we present our results and findings related to LSLOD catalogue de-

velopment and Link Creation. In our initial exploration of LSLOD we found a total of 

12,396 concepts, of which 12,119 were unique and out of 40,833 properties, 1,255 of 

which were unique. In section 4.1 we expose and discuss our linking results obtained 

with WordNet. Section 4.2 discusses the statistics regarding the mapping created on 

the basis of different sequential approaches discussed in section 3.1. 

4.1 Linking results using WordNet 

WordNet similarity measures can be classified into three categories: Edge counting-

based; Information content-based and feature based. Using WordNet thesauri we 

attempted to automate the creation of bags of related words using 6 algorithms: Jing 

& Conrath[16], Lin[17], Path[18],Resnik[19],Vector[20]and WuPalmer[21].Concepts 

were considered the same when the similarity/relatedness value between them was 

“1” and dissimilar/ unrelated when “0”; other threshold values were also considered. 

The links created were evaluated by the experts working in Granatum. 

The linking results obtained by usage of these algorithms are available in figure2.The 

results show that a negligible amount of links was created with a maximum of 1.08% 

accepted links using Resnik. Only the links that have similarity greater than 0.9were 

considered correct; links to more than one Qe via Resnik needed manual intervention 

to decide which link is appropriate. 

Algorithms Total 

Link  

% link 

created 

Correct 

Links  

% correct 

links 

Jing/Conrath 30 0.247545177 21 0.173281624 

Lin 104 0.858156614 41 0.338311742 

Path 18 0.148527106 18 0.148527106 

Resnik 3592 29.63940919 131 1.080947273 

Vector 18 0.148527106 18 0.148527106 

WuPalmer 647 5.338724317 107 0.882911131 
  

Figure. 2. WordNet based linked concepts statistics 

These results suggest that the concepts and properties in LSLOD are too specific and 

thus WordNet thesauri is possibly too generic for this domain. We had similar results 

with the UMLS thesaurus, where linking results were not considered relevant as very 

low similarity scores were assigned for reasonably similar concepts (full results table 

at16) - e.g. UMLS similarity(molecule, drug) = 0.4835 - with high similarity scores 

                                                           
16http://hcls.deri.org/RoadMapEvaluation/#UMLS 

0
500

1000
1500
2000
2500
3000
3500
4000

Total Link Created Correct Links Created

http://srvgal78.deri.ie/arc/roadmap.php
http://hcls.deri.org/RoadMapEvaluation/#UMLS


being assigned for some dissimilar concepts - e.g. UMLS similarity(molecule, organ-

ism) = 0.7298. Also, we found that several concepts which labels consisted of com-

pound words such as underscore, camel-case or dash separated words (e.g. Pathway-

Database) could be easily used for matching using the simplest strategy (Naïve 

Matching). Most of the existing tools and technologies do not support this heterogene-

ity in label composition and this could also explain the poor matching results ob-

tained. It is therefore Wordnet or UMLS couldn’t be considered as a basis for our 

proposed linking approaches, results of which are presented in next section. 

4.2 Concept linking results 

The link creation results from the various matching approaches are available in 

Figure 3 – the large majority of concepts (93.6%) were mapped using the Named  

Entity Matching approach. One of the reasons for explaining these results, points to 

the differences in the methods used to populate the SPARQL endpoints. In the majori-

ty of SPARQL endpoints, the number of concepts retrieved was low (between 1 and 

108), while in two cases (PDB and SGD), the number of concepts retrieved was sig-

nificantly larger (1672 and 9476, respectively). We noticed that, in these cases, con-

cepts, as opposed to instances, were being used to describe entities of type Molecule 

or Organism, with each concept containing only one or two instances. Our methodol-

ogy could map these concepts based on named entity matching (e.g. concepts with 

pattern http://bio2rdf.org/hmmpir: could be mapped to Protein). However, in future 

work we will transform the topology of the graphs in each of these two endpoints in 

order to match graphs with the same topology. 

In many cases the URI representing concepts consisted of url-encoded labels (e.g 

http://bio2rdf.org/pdb:1%2C1%2C5%2C5tetrafluorophosphopentylphosphonicAcidA

denylateEster),which made linking a challenge. A similar situation was found when 

the concept was formed using alpha-numeric combination for which a label could not 

be found either in its source SPARQL endpoints or through browsing ontology regi-

stry services such as Bioportal , e.g. <http://bio2rdf.org/so:0000436>. 

Total Identified Concepts 12396 % Distinct 

Total Id Distinct Concepts 12119 2.2%Reused 

Semi-auto NamedEntity Match  11343 93.6 % 

Manual/Domain Match 248 2.0 % 

Naïve Match 92 0.8 % 

Unmapped 402 3.5 % 
 

 

Figure. 3.Linked concepts statistics 

Domain experts were only consulted for filling the gap in recognizing possible 

matching patterns and the subsequent processes were automated. Although a very low 

percentage of linking was achieved through the naïve matching or domain matching, 

the quality of these links was very high as it relied on the precise, often standardized 

terms, when available. There were cases when a concept could not be directly mapped 

to any of our query elements but nevertheless remained within scope of the query 

elements. As an example, we found instances of concept “Peptide”, which represent a 

portion of a “Protein” but not necessarily an instance of a “Protein”. In those cases, 

Semi-auto Named-Entity 
Match

Unmapped

Manual/ Domain Match

Naïve Match
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the appropriate relationship would to specify that { Peptide containedIn: gr:Protein } 

or to lift the term “Peptide” to query element level. Automating the creation of such 

links was out of scope for this report. 

 

4.3 Properties linking results 

Out of 40833 properties, 1255 were distinct, indicating that there is significantly 

more property reuse in LSLOD than concept reuse. Figure4 illustrates the links 

created by each of the approaches described. Approximately 56.2% of the properties 

remained unlinked due to the fact that a significant proportion of properties were con-

sidered irrelevant in the context of the Qe selected, which indicates that they may be 

applicable with a new set of Qe. 

 

Total Properties 40833   

Total Distinct Properties  1255  96.9%reused  

Naïve Linking  149  11.8%  

Manual Linking  400  31.8%  

Out-of-scope/Unlinked 706  56.2%   

Figure. 4.Linked properties statistics 

It is also worth noticing that 3.5% of identified concepts and 56.2% of the proper-

ties remained unlinked; they were either out of scope or could not match any of the 

query element. This indicates that quality, as well as the quantity of links created is 

highly depended on the input list of query elements. The larger the number of query 

elements, the better the quality of the links created e.g a concept called ?peptide 

would link to gr:Peptide if such element existed. However, selecting from a large 

number of query elements is not always practical for querying. As such, there should 

be a balance between the number of Qe and the accuracy of links created. We at-

tempted to link almost 12000 concepts to 60 query elements to avoid the need to 

browse more than 12000 concepts in order to assemble a query. Notice that the query 

elements selected were chosen by domain experts; a change in the query element set 

may result in different links being created and therefore our solution can be applicable 

for any set of query elements. 

 

5 Conclusion  and Future Work 
Our preliminary analysis of existing LSLOD SPARQL endpoint reveals that the 

schemas of most datasets cannot be easily linked together using existing approaches. 

In fact, in the majority of cases there is very little ontology and URI reuse. In this 

report we describe a combined approach for data linking to facilitate “a posteriori” 

SPARQL query transformation in the LSLOD. Our methodology relies on systemati-

cally issuing queries on various life sciences SPARQL endpoints and collecting its 

results in an approach that would otherwise have to be encoded manually by domain 

experts or those interested in making use of the web of data towards answering mea-

ningful scientific questions. Our aim was to support “a posteriori integration”, i.e. 

integration of instances in LSLOD where different terminologies were used. As a 

result of this work, rules such as R1:{ chebi:Compound rdfs:subClassOf gr:Molecule 

Naïve Linking

Manual Linking

Out-of-scope/Unlinked



} can be used by a query engine supporting federated query to transform the query [ 

?molecule a gr:Molecule ] into the federated alternative [{?molecule a che-

bi:Compound } UNION {?molecule a gr:Molecule}] since the integration of R1 en-

sures that all instances of chebi:Compound are also instances of gr:Moleculewhereas 

the opposite is not true [14].  

Created Links were evaluated by the experts working in Granatum and in future, 

will be evaluated by experts working in this area to evaluate whether the results of the 

queries returned are actually what the scientist would be looking for. A possible ex-

tension to the linking work presented here is the implementation of corpus based simi-

larity using Wikipedia-based Explicit Semantic Analysis ESA Measure [22].Our work 

has been limited to the linking of concepts and properties based on the terminological 

matching using three pronged approaches, hence will be extended in future beyond 

terminological linking approaches. 
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