<table>
<thead>
<tr>
<th>Title</th>
<th>Random Manhattan Integer Indexing: Incremental L1 Normed Vector Space Construction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>QasemiZadeh, Behrang; Handschuh, Siegfried</td>
</tr>
<tr>
<td>Publication Date</td>
<td>2014</td>
</tr>
<tr>
<td>Item record</td>
<td>http://hdl.handle.net/10379/4650</td>
</tr>
</tbody>
</table>

Some rights reserved. For more information, please see the item record link above.
Random Manhattan Integer Indexing: Incremental L₁ Normed Vector Space Construction

Behrang Q. Zadeh†
† Insight Centre
National University of Ireland, Galway
Galway, Ireland
behrang.qasemizadeh@insight-centre.org

Siegfried Handschuh‡†
‡ Dept. of Computer Science and Mathematics
University of Passau
Bavaria, Germany
siegfried.handschuh@uni-passau.de

Abstract

Vector space models (VSMs) are mathematically well-defined frameworks that have been widely used in the distributional approaches to semantics. In VSMs, high-dimensional vectors represent linguistic entities. In an application, the similarity of vectors—and thus the entities that they represent—is computed by a distance formula. The high dimensionality of vectors, however, is a barrier to the performance of methods that employ VSMs. Consequently, a dimensionality reduction technique is employed to alleviate this problem. This paper introduces a novel technique called Random Manhattan Indexing (RMI) for the construction of L₁ normed VSMs at reduced dimensionality. RMI combines the construction of a VSM and dimension reduction into an incremental and thus scalable two-step procedure. In order to attain its goal, RMI employs the sparse Cauchy random projections. We further introduce Random Manhattan Integer Indexing (RMII): a computationally enhanced version of RMI. As shown in the reported experiments, RMI and RMII can be used reliably to estimate the L₁ distances between vectors in a vector space of low dimensionality.

1 Introduction

Distributional semantics embraces a set of methods that decipher the meaning of linguistic entities using their usages in large corpora (Lenci, 2008). In these methods, the distributional properties of linguistic entities in various contexts, which are collected from their observations in corpora, are compared to quantify their meaning. Vector spaces are intuitive, mathematically well-defined frameworks to represent and process such information. In a vector space model (VSM), linguistic entities are represented by vectors and a distance formula is employed to measure their distributional similarities (Turney and Pantel, 2010).

In a VSM, each element sᵢ of the standard basis of the vector space (informally, each dimension of the VSM) represents a context element. Given n context elements, an entity whose meaning is being analyzed is expressed by a vector \(\vec{v} \) as a linear combination of \(sᵢ \) and scalars \(\alphaᵢ \in \mathbb{R} \) such that \(\vec{v} = \alpha₁s₁ + \cdots + \alphaₙsₙ \). The value of \(\alphaᵢ \) is derived from the frequency of the occurrences of the entity that \(\vec{v} \) represents in the context element that \(sᵢ \) represents. As a result, the values assigned to the coordinates of a vector (i.e. \(\alphaᵢ \)) exhibit the correlation of entities and context elements in an n-dimensional real vector space \(\mathbb{R}^n \). Each vector can be written as a \(1 \times n \) row matrix, e.g. \((\alpha₁, \cdots, \alphaₙ) \). Therefore, a group of \(m \) vectors in a vector space is often represented by a matrix \(M_{m \times n} \).

Latent semantic analysis (LSA) is a familiar technique that employs a word-by-document VSM (Deerwester et al., 1990). In this word-by-document model, the meaning of words (i.e. the linguistic entities) is described by their occurrences in documents (i.e. the context elements). Given \(m \) words and \(n \) distinct documents, each word is represented by an \(n \)-dimensional vector \(\vec{v}_i = (\alphaᵢ₁, \cdots, \alphaᵢₙ) \), where \(\alphaᵢj \) is a numeric value that associates the word \(\vec{v}_i \) represents to the document \(d_j \), for \(1 < j < n \). For instance, the value of \(\alphaᵢj \) may correspond to the frequency of the word in the document. It is hypothesized that the relevance of words can be assessed by counting the documents in which they co-occur. Therefore, words with similar vectors are assumed to have the same meaning (Figure 1).

1 Amongst other representation frameworks.
2 See Martin and Berry (2007) for an overview of the mathematical foundation of LSA.
Figure 1: Illustration of a word-by-document model consisting of 2 words and 3 documents. The words are represented in a 3-dimensional vector space, in which each \(\vec{s}_i \) (each dimension) represents each of the 3 documents in the model. \(\vec{v}_1 = (\alpha_{11}, \alpha_{12}, \alpha_{13}) \) and \(\vec{v}_2 = (\alpha_{21}, \alpha_{22}, \alpha_{23}) \) represent the two words in the model. The dashed line shows the Euclidean distance between the two vectors that represent words, while the sum of dash-dotted lines is the Manhattan distance between them.

In order to assess the similarity between vectors, a vector space \(V \) is endowed with a norm structure. A norm \(||.|| \) is a function that maps vectors from \(V \) to the set of non-negative real numbers, i.e., \(V \rightarrow [0, \infty) \). The pair of \((V, ||.||)\) is then called a normed space. In a normed space, the similarity between vectors is assessed by their distances. The distance between vectors is defined by a function that satisfies certain axioms and assigns a real value to each pair of vectors, i.e.,

\[
\text{dist} : V \times V \mapsto \mathbb{R}, \quad d(\vec{v}, \vec{u}) = ||\vec{v} - \vec{u}||. \tag{1}
\]

The smaller the distance between two vectors, the more similar they are.

Euclidean space is the most familiar example of a normed space. It is a vector space that is endowed by the \(\ell_2 \) norm. In Euclidean space, the \(\ell_2 \) norm—which is also called the Euclidean norm—of a vector \(\vec{v} = (v_1, \cdots, v_n) \) is defined as

\[
||\vec{v}||_2 = \sqrt{\sum_{i=1}^{n} v_i^2}. \tag{2}
\]

Using the definition of distance given in Equation 1 and the \(\ell_2 \) norm, the Euclidean distance is measured as

\[
dist_2(\vec{v}, \vec{u}) = ||\vec{v} - \vec{u}||_2 = \sqrt{\sum_{i=1}^{n} (v_i - u_i)^2}. \tag{3}
\]

In Figure 1, the dashed line shows the Euclidean distance between the two vectors. In \(\ell_2 \) normed vector spaces, various similarity metrics are defined using different normalization of the Euclidean distance between vectors, e.g., the cosine similarity.

The similarity between vectors, however, can also be computed in \(\ell_1 \) normed spaces. The \(\ell_1 \) norm for \(\vec{v} \) is given by

\[
||\vec{v}||_1 = \sum_{i=1}^{n} |v_i|, \tag{4}
\]

where \(|.|\) signifies the modulus. The distance in an \(\ell_1 \) normed vector space is often called the Manhattan or the city block distance. According to the definition given in Equation 1, the Manhattan distance between two vectors \(\vec{v} \) and \(\vec{u} \) is given by

\[
dist_1(\vec{v}, \vec{u}) = ||\vec{v} - \vec{u}||_1 = \sum_{k=1}^{n} |v_i - u_j|. \tag{5}
\]

In Figure 1, the collection of the dash-dotted lines is the \(\ell_1 \) distance between the two vectors. Similar to the \(\ell_2 \) spaces, various normalizations of the \(\ell_1 \) distance define a family of \(\ell_1 \) normed similarity metrics.

As the number of text units that are being modelled in a VSM increases, the number of context elements that are required to be utilized to capture their meaning escalates. This phenomenon is explained using power-law distributions of text units in context elements (e.g., the familiar Zipfian distribution of words). As a result, extremely high-dimensional vectors, which are also sparse—i.e., most of the elements of the vectors are zero—represent text units. The high dimensionality of the vectors results in setbacks, which are colloquially known as the curse of dimensionality. For instance, in a word-by-document model that consists of a large number of documents, a word appears only in a few documents, and the rest of the documents are irrelevant to the meaning of the word. Few common documents between words results in sparsity of the vectors; and the presence of irrelevant documents introduces noise.

Dimension reduction, which usually follows the construction of a VSM, alleviates the problems

3The definition of the norm is generalized to \(\ell_p \) spaces with
\[||v||_p = \left(\sum_i |v_i|^p \right)^{1/p},\]
which is beyond the scope of this paper.

4As long as the axioms in the distance definition hold.
listed above by reducing the number of context elements that are employed for the construction of the VSM. In its simple form, dimensionality reduction can be performed using a selection process: choose a subset of contexts and eliminate the rest using a heuristic. Alternatively, transformation methods can be employed. A transformation method maps a vector space V_n onto a V_m of lowered dimension, i.e. $\tau : V_n \rightarrow V_m, m \ll n$. The vector space at reduced dimension, i.e. V_m, is often the best approximation of the original V_n in a sense. LSA employs a dimension reduction technique called truncated singular value decomposition (SVD). In a standard truncated SVD, the transformation guarantees the least distortion in the ℓ_2 distances.\(^5\)

Besides the problem of high computational complexity of SVD computation,\(^6\) which can be addressed by incremental techniques (see e.g. Brand (2006)), matrix factorization methods such as truncated SVD are data-sensitive: if the structure of the data being analyzed changes, i.e. when either the linguistic entities or context elements are updated, e.g. some are removed or new ones are added, the transformation should be recomputed and reapplied to the whole VSM to reflect the updates. In addition, a VSM at the original high dimension must be first constructed. Following the construction of the VSM, the dimension of the VSM is reduced in an independent process. Therefore, the VSM at reduced dimension is available for processing only after the whole sequence of these processes. Construction of the VSM at its original dimension is computationally expensive and a delay in access to the VSM at reduced dimension is not desirable. Hence, the application of truncated SVD is not suitable in several applications, particularly when dealing with frequently updated big text–data such as applications in the web context.

Random indexing (RI) is an alternative method that solves the problems stated above by combining the construction of a vector space and the dimensionality reduction process. RI, which is introduced in Kanerva et al. (2000), constructs a VSM directly at reduced dimension. Unlike methods that first construct a VSM at its original high dimension and conduct a dimensionality reduction afterwards, the RI method avoids the construction of the original high-dimensional VSM. Instead, it merges the vector space construction and the dimensionality reduction process. RI, thus, significantly enhances the computational complexity of deriving a VSM from text. However, the application of the RI technique (likewise the standard truncated SVD in LSA) is limited to ℓ_2 normed spaces, i.e. when similarities are assessed using a measure based on the ℓ_2 distance. It can be verified that using RI causes large distortions in the ℓ_1 distances between vectors (Brinkman and Charikar, 2005). Hence, if the similarities are computed using the ℓ_1 distance, then the RI technique is not suitable for the VSM construction.

Depending on the distribution of vectors in a VSM, the performance of similarity measures based on the ℓ_1 and the ℓ_2 norms varies from one task to another. For instance, it is known that the ℓ_1 distance is more robust to the presence of outliers and non-Gaussian noise than the ℓ_2 distance (e.g. see the problem description in Ke and Kanade (2003)). Hence, the ℓ_1 distance can be more reliable than the ℓ_2 distance in certain applications. For instance, Weeds et al. (2005) suggest that the ℓ_1 distance outperforms other similarity metrics in a term classification task. In another experiment, Lee (1999) observed that the ℓ_1 distance gives more desirable results than the Cosine and the ℓ_2 measures.

In this paper, we introduce a novel method called Random Manhattan Indexing (RMI). RMI constructs a vector space model directly at reduced dimension while it preserves the pairwise ℓ_1 distances between vectors in the original high-dimensional VSM. We then introduced a computationally enhanced version of RMI called Random Manhattan Integer Indexing (RMII). RMI and RMII, similar to RI, merge the construction of a VSM and dimension reduction into an incremental and thus efficient and scalable process.

In Section 2, we explain and evaluate the RMI method. In Section 3, the RMII method is explained. We compare the proposed method with RI in Section 4. We conclude in Section 5.

2 Random Manhattan Indexing

We propose the RMI method: a novel technique that adapts an incremental procedure for the construction of ℓ_1 normed vector spaces at a reduced dimension. The RMI method employs a two-step

\(^5\)Please note that there are matrix factorization techniques that guarantee the least distortion in the ℓ_1 distances, see e.g. Kwak (2008).

\(^6\)Matrix factorization techniques, in general.
procedure: (a) the creation of index vectors and (b) the construction of context vectors.

In the first step, each context element is assigned exactly to one index vector r'_i. Index vectors are high-dimensional and generated randomly such that entries r_j of index vectors have the following distribution:

$$r_i = \begin{cases} \frac{-1}{U_1} & \text{with probability } \frac{s}{2} \\ 0 & \text{with probability } 1 - s \\ \frac{1}{U_2} & \text{with probability } \frac{1-s}{2} \end{cases} \tag{6}$$

where U_1 and U_2 are independent uniform random variables in $(0, 1)$. In the second step, each target linguistic entity that is being analyzed in the model is assigned to a context vector \vec{v}_c in which all the elements are initially set to 0. For each encountered occurrence of a linguistic entity and a context element—e.g. through a sequential scan of an input text collection—\vec{v}_c that represents the linguistic entity is accumulated by the index vector r'_i that represents the context element, i.e. $\vec{v}_c = \vec{v}_c + r'_i$. This process results in a VSM of a reduced dimensionality that can be used to estimate the ℓ_1 distances between linguistic entities. In the constructed VSM by RMI, the ℓ_1 distance between vectors is given by the sample median (Indyk, 2000). For given vectors \vec{u} and \vec{v}, the approximate ℓ_1 distance between vectors is estimated by

$$\hat{L}_1(\vec{u}, \vec{v}) = \text{median}\{|u_i - v_i|, i = 1, \ldots, m\}, \tag{7}$$

where m is the dimension of the VSM constructed by RMI, and $|.|$ denotes the modulus.

RMI is based on the random projection (RP) technique for dimensionality reduction. In RP, a high-dimensional vector space is mapped onto a random subspace of lowered dimension expecting that—with a high probability—relative distances between vectors are approximately preserved. Using the matrix notation, this projection is given by

$$M'_{p \times m} = M_{p \times n} R_{n \times m}, \quad m \ll p, n, \tag{8}$$

where R is often called the random projection matrix, and M and M' denote p vectors in the original n-dimensional and reduced m-dimensional vector spaces, respectively.

In RMI, the stated mapping in Equation 8 is given by Cauchy random projections. Indyk (2000) suggests that vectors in a high-dimensional space \mathbb{R}^n can be mapped onto a vector space of lowered dimension \mathbb{R}^m while the relative pairwise ℓ_1 distances between vectors are preserved with a high probability. In Indyk (2000, Theorem 3) and Indyk (2006, Theorem 5), it is shown that for an $m \geq m_0 = \log(1/\delta)^{O(1/\epsilon)}$, where $\delta > 0$ and $\epsilon \leq 1/2$, there exists a mapping from \mathbb{R}^n onto \mathbb{R}^m that guarantees the ℓ_1 distances between any pair of vectors \vec{u} and \vec{v} in \mathbb{R}^n after the mapping does not increase by a factor more than $1 + \epsilon$ with constant probability δ, and it does not decrease by more than $1 - \epsilon$ with probability $1 - \delta$.

In Indyk (2000), this projection is proved to be obtained using a random projection matrix R that has Cauchy distribution—i.e. for r_{ij} in R, $r_{ij} \sim C(0, 1)$. Since R has a Cauchy distribution, for every two vectors \vec{u} and \vec{v} in the high-dimensional space \mathbb{R}^n, the projected differences $x = \vec{u} - \vec{v}$ also have Cauchy distribution, with the scale parameter being the ℓ_1 distances, i.e. $x \sim C(0, \sum_{i=1}^{\infty} |u_i - v_i|)$. As a result, in Cauchy random projections, estimating the ℓ_1 distances boils down to the estimation of the Cauchy scale parameter from independent and identically distributed (i.i.d.) samples x. Because the expectation value of x is infinite, the sample mean cannot be employed to estimate the Cauchy scale parameter. Instead, using the 1-stability of Cauchy distribution, Indyk (2000) proves that the median can be employed to estimate the Cauchy scale parameter, and thus the ℓ_1 distances at the projected space \mathbb{R}^m.

Subsequent studies simplified the method proposed by Indyk (2000). Li (2007) shows that R with Cauchy distribution can be substituted by a sparse R that has a mixture of symmetric 1-Pareto distribution. A 1-Pareto distribution can be sampled by $1/U$, where U is an independent uniform random variable in $(0, 1)$. This results in a random matrix R that has the same distribution as described by Equation 6.

The RMI’s two-step procedure is explained using the basic properties of matrix arithmetic and the descriptions given above. Given the projection in Equation 8, the first step of RMI refers to the construction of R: index vectors are the row vectors of R. The second step of the process refers to the construction of M': context vectors are the row vectors of M'. Using the distributive property of multiplication over addition in matrices,\footnote{That is $E(x) = \infty$, since x has a Cauchy distribution.}
it can be verified that the explicit construction of \(M \) and its multiplication to \(R \) can be substituted by a number of summation operations. \(M \) can be represented by the sum of unit vectors in which a unit vector corresponds to the co-occurrence of a linguistic entity and a context element. The result of the multiplication of each unit vector and \(R \) is the row vector that represents the context element in \(R \)—i.e. the index vector. Therefore, \(M' \) can be computed by the accumulation of the row vectors of \(R \) that represent encountered context elements, as stated in the second step of the RMI procedure.

2.1 Alternative Distance Estimators

As stated above, Indyk (2000) suggests using the sample median for the estimation of the \(\ell_1 \) distances. However, Li (2008) argues that sample median estimator can be biased and inaccurate, specifically if \(m \)—i.e. the targeted (reduced) dimensionality—is small. Hence, Li (2008) suggests using the geometric mean estimator instead of the median sample:\(^9\)

\[
\hat{L}_1(\vec{u}, \vec{v}) = \left(\prod_{i=1}^{m} |u_i - v_i| \right)^{\frac{1}{m}}. \tag{9}
\]

We suggest computing the \(\hat{L}_1(\vec{u}, \vec{v}) \) in Equation 9 using arithmetic mean of logarithm-transformed values of \(|u_i - v_i| \). Therefore, using the logarithmic identities, the multiplications and the power in Equation 9 are, respectively, transformed to a sum and a multiplication:

\[
\hat{L}_1(\vec{u}, \vec{v}) = \exp \left(\frac{1}{m} \sum_{i=1}^{m} \ln(|u_i - v_i|) \right). \tag{10}
\]

Equation 10 for computing \(\hat{L}_1 \) is more plausible for computational implementation than Equation 9 (e.g. the overflow is less likely to happen during the process). Moreover, calculating the median involves sorting an array of real numbers. Thus, computation of the geometric mean in logarithmic scales can be faster than computation of the median sample, especially when the value of \(m \) is large.

2.2 RMI’s Parameters

In order to employ the RMI method for the construction of a VSM at reduced dimension and the estimation of the \(\ell_1 \) distance between vectors, two model parameters should be decided: (a) the targeted (reduced) dimensionality of the VSM, which is indicated by \(m \) in Equation 8 and (b) the number of non-zero elements in index vectors, which is determined by \(s \) in Equation 6. In contrast to the classic one-dimension-per-context-element methods of VSM construction,\(^10\) the value of \(m \) in RPs and thus in RMI is chosen independently of the number of context elements in the model (\(n \) in Equation 8).

In RMI, \(m \) determines the probability and the maximum expected amount of distortions \(\epsilon \) in the pairwise distance between vectors. Based on the proposed refinements of Indyk (2000, Theorem 3) by Li et al. (2007), it is verified that the pairwise \(\ell_1 \) distance between any \(p \) vectors is approximated within a factor \(1 \pm \epsilon \), if \(m = O(\log p/\epsilon^2) \), with a constant probability. Therefore, the value of \(\epsilon \) in RMI is subject to the number of vectors \(p \) in the model. For a fixed \(p \), a larger \(m \) yields to lower bounds on the distortion with a higher probability. Because a small \(m \) is desirable from the computational complexity outlook, the choice of \(m \) is often a trade-off between accuracy and efficiency. According to our experiment, \(m > 400 \) is suitable for most applications.

The number of non-zero elements in index vectors, however, is decided by the number of context elements \(n \) and the sparseness of the VSM \(\beta \) at its original dimension. Li (2007) suggests \(\frac{1}{O(\sqrt{\beta n})} \) as the value of \(s \) in Equation 6. VSMs employed in distributional semantics are highly sparse. The sparsity of a VSM in its original dimension \(\beta \) is often considered to be around 0.0001–0.01. As the original dimension of VSM \(n \) is very large—otherwise there would be no need for dimensionality reduction—the index vectors are often very sparse. Similar to \(m \), larger \(s \) produces smaller errors; however, it imposes more processes during the construction of a VSM.

2.3 Experimental Evaluation of RMI

We report the performance of the RMI method with respect to its ability to preserve the relative \(\ell_1 \) distance between linguistic entities in a VSM. Therefore, instead of a task-specific evaluation, we show that the relative \(\ell_1 \) distance between a set of words in a high-dimensional word-by-document model remains intact when the model

\(^9\)See also Li et al. (2007, Lemma 5–9).

\(^{10}\)That is, \(n \) context elements are modelled in an \(n \)-dimensional VSM.
is constructed at reduced dimensionality using the RMI technique. We further explore the effect of the RMI’s parameter setting in the observed results.

Depending on the structure of the data that is being analyzed and the objective of the task in hand, the performance of the ℓ_1 distance for similarity measurement varies from one application to another.11 The purpose of our reported evaluation, thus, is not to show the superiority of the ℓ_1 distance (thus RMI) to another similarity measure (e.g. the ℓ_2 distance or the cosine similarity) and employed techniques for dimensionality reduction (e.g. RI or truncated SVD) in a specific task. If, in a task, the ℓ_1 distance shows higher performance than the ℓ_2 distance, then the RMI technique is preferable to the RI technique or truncated SVD. Contrariwise, if the ℓ_2 norm shows higher performance than the ℓ_1, then RI or truncated SVD are more desirable than the RMI method.

In our experiment, a word-by-document model is first constructed from the UKWaC corpus at its original high dimension. UKWaC is a freely available corpus of 2,692,692 web documents, nearly 2 billion tokens and 4 million types (Baroni et al., 2009).12 Therefore, a word-by-document model constructed from this corpus using the classic one-dimension-per-context-element method has a dimension of 2.69 million. In order to keep the experiments computationally tractable, the reported results are limited to 31 words from this model, which are listed in Table 1.

In the designed experiment, a word from the list is taken as the reference and its ℓ_1 distance to the remaining 30 words is calculated using the vector representations in the high-dimensional VSM. These 30 words are then sorted in ascending order by the calculated ℓ_1 distance. The procedure is repeated for all the 31 words in the list, one by one. Therefore, the procedure results in 31 sorted lists, each containing 30 words. Figure 2 shows an example of the obtained sorted list, in which the reference is the word ‘research’.13

The procedure described above is replicated to obtain the lists of sorted words from VSMs that are constructed by the RMI method at reduced dimensionality, when the method’s parameters—i.e. the dimensionality of VSM and the number of non-zero elements in index vectors—are set differently. We expect the obtained relative ℓ_1 distances between each reference word and the 30 other words in an RMI-constructed VSM to be the same as the obtained relative distances in the original high-dimensional VSM. Therefore, for each VSM that is constructed by the RMI technique, the resulting sorted lists of words are compared by the sorted lists that are obtained from the original high-dimensional VSM.

We employ the Spearman’s rank correlation coefficient (ρ) to compare the sorted lists of words and thus the degree of distance preservation in the RMI-constructed VSMs at reduced dimensionality. The Spearman’s rank correlation measures the strength of association between two ranked variables, i.e. two lists of sorted words in our experiments. Given a list of sorted words obtained from the original high-dimensional VSM (list\textsubscript{o}) and its corresponding list obtained from a VSM of reduced dimensionality (list\textsubscript{RMI}), the Spearman’s rank correlation for the two lists is calculated by

$$\rho = 1 - \frac{6 \sum d_i^2}{n(n^2 - 1)}, \quad (11)$$

where d_i is the difference in paired ranks of words in list\textsubscript{o} and list\textsubscript{RMI}, and $n = 30$ is the number of words in each list. We report the average of ρ over the 31 lists of sorted words, denoted by $\bar{\rho}$, to

<table>
<thead>
<tr>
<th>PoS</th>
<th>Words</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noun</td>
<td>website, students, skills, support, software, research, organisations</td>
</tr>
<tr>
<td>Adj</td>
<td>online, digital, unique, mobile, sustainable, available</td>
</tr>
<tr>
<td>Verb</td>
<td>use, visit, improve, provided</td>
</tr>
</tbody>
</table>

Table 1: Words employed in the experiments.

![Figure 2: List of words sorted by their ℓ_1 distance to the word `research`. The distance increases from left to right and top to bottom.](https://example.com/figure2.png)
indicate the performance of RMI with respect to its ability for distance preservation. The closer \(\bar{\rho} \) is to 1, the better the performance of RMI.

Figure 3 shows the observed results at a glance when the distances are estimated using the median (Equation 7). As shown in the figure, when the dimension of the VSM is above 400 and the number of non-zero elements is more than 12, the obtained relative distances from the VSMs constructed by the RMI technique start to be analogous to the relative distances that are obtained from the original high-dimensional VSM, i.e. a high correlation \(\bar{\rho} > 0.90 \). For the baseline, we report the average correlation of \(\bar{\rho}_{\text{random}} = -0.004 \) between the sorted lists of words obtained from the high-dimensional VSM and 31 \(\times \) 1000 lists of sorted words that are obtained by randomly assigned distances.

Figure 4 shows the same results as Figure 3, however, in minute detail and only for VSMs of dimension \(m \in \{100, 400, 800, 3200\} \). In these plots, squares (\(\Box \)) indicate the \(\bar{\rho} \) while the error bars show the best and the worst observed \(\rho \) amongst all the sorted lists of words. The minimum value of \(\rho \)-axis is set to 0.611, which is the worst observed correlation in the baseline (i.e. randomly generated distances). The dotted line (\(\rho = .591 \)) shows the best observed correlation in the baseline and the dashed-dotted line shows the average correlation in the baseline (\(\rho = -0.004 \)). As suggested in Section 2.2, it can be verified that an increase in the dimension of VSMs (i.e. \(m \)) increases the stability of the obtained results (i.e. the probability of preserving distances increases). Therefore, for large values of \(m \) (i.e. \(m > 400 \)), the difference between the best and the worst observed \(\rho \) decreases; average correlation \(\bar{\rho} \rightarrow 1 \) and the observed relative distances in RMI-constructed VSMs tend to be identical to those in the original high-dimensional VSM.

Figure 5 represents the obtained results in the same setting as above, however, when the distances are approximated using the geometric mean (Equation 10). The obtained average correlations \(\bar{\rho} \) from the geometric mean estimations are almost identical to the median estimations. However, as expected, the geometric mean estimations are more reliable for small values of \(m \); particularly, the worst observed correlations when using the geometric mean are higher than those observed when using the median estimator.

Figure 4: Detailed observation of the obtained correlation between relative distances in RMI-constructed VSMs and the original high-dimensional VSM. The \(\ell_1 \) distance is estimated using the median. The squares denote \(\bar{\rho} \) and the error bars show the best and the worst observed correlations. The dashed-dotted line shows the random baseline.
The ℓ_1 distance between context vectors must be estimated using either the median or the geometric mean. The use of the median estimator—for the reasons stated in Section 2.1—is not plausible. On the other hand, the computation of the geometric mean can be laborious as the overflow is highly likely to happen during its computation. Using the value of $\left\lfloor \frac{1}{\ln |\v u|} \right\rfloor$ for non-zero elements of index vectors, we know that for any pair of context vectors $\v u = (u_1, \ldots, u_m)$ and $\v v = (v_1, \ldots, v_m)$, if $u_i \neq v_i$ then $|u_i - v_i| \geq 1$. Therefore, for $u_i \neq v_i$, $\ln |u_i - v_i| \geq 0$ and thus $\sum_{i=1}^{m} \ln(|u_i - v_i|) \geq 0$. In this case, the exponent in Equation 10 is a scale factor that can be discarded without a change in the relative distances between vectors.\footnote{Please note that according to the axioms in the distance definition, the distance between two numbers is always a non-negative value. When index vectors consist of non-zero elements of real numbers, the value of $|u_i - v_i|$ can be between 0 and 1, i.e. $0 < |u_i - v_i| < 1$. Therefore, $\ln(|u_i - v_i|)$ can be a negative number and thus the exponent scale is required to make sure that the result is a non-negative number.} Based on the intuition that the distance between a vector and itself is zero and the explanation given above, inspired by smoothing techniques and without being able to provide mathematical proofs, we suggest estimating the relative distances between vectors using

$$L_1(\v u, \v v) = \sum_{i=1, u_i \neq v_i}^{m} \ln(|u_i - v_i|).$$ \hspace{1cm} (12)

In order to distinguish the above changes in RMI, we name the resulting technique random Manhattan integer indexing (RMII). The experiment described in Section 2.2 is repeated using the RMII method. As shown in Figure 6, the obtained results are almost identical to the observed results when using the RMI technique. While RMI performs slightly better than RMII in lower dimensions, e.g. $m = 400$, RMII shows more stable behaviour than RMI at higher dimensions, e.g. $m = 800$.

4 Comparison of RMI and RI

RMI and RI utilize a similar two-step procedure consisting of the creation of index vectors and the construction of context vectors. Both methods are incremental techniques that construct a VSM at reduced dimensionality directly, without requiring the VSM to be constructed at its original high dimension. Despite these similarities, RMI and RI are motivated by different applications and math-

![Figure 5: The observed results when the ℓ_1 distance in RMI-constructed VSMs is estimated using the geometric mean.](image-url)
VSMs cannot be used for the ℓ_1 distance estimation, we evaluate the RI method in the experimental setup that has been used for the evaluation of RMI and RMII. In these experiments, however, we use RI to construct vector spaces at reduced dimensionality and estimate the ℓ_1 distance using Equation 5 (the standard ℓ_1 distance definition) and Equation 7 (the median estimator) for $m \in 400, 800$. As shown in Figure 7, the experiments support the theoretical claims.

5 Conclusion

In this paper, we introduce a novel technique, named Random Manhattan Indexing (RMI), for the construction of ℓ_1 normed VSMs directly at reduced dimensionality. We further suggest the Random Manhattan Integer Indexing (RMII) technique, a computationally enhanced version of the RMI technique. We demonstrated the ℓ_1 distance preservation ability of the proposed technique in an experimental setup using a word-by-document model. In these experiments, we showed how the variable parameters of the methods, i.e. the number of non-zero elements in index vectors and the
dimensionality of the VSM, influence the obtained results. The proposed incremental (and thus efficient and scalable) methods significantly enhance the computation of the ℓ_1 distances in VSMs.

Acknowledgements

This publication has emanated from research conducted with the financial support of Science Foundation Ireland under Grant Number SFI/12/RC/2289.

References

[Li2007] Ping Li. 2007. Very sparse stable random projections for dimension reduction in L_0 ($0 < \alpha < 2$) norm. In Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’07, pages 440–449, New York, NY, USA. ACM.

