Barton Esters for Initiator-Free Radical Cyclisation with Heteroaromatic Substitution and Anti-Cancer Evaluation of Benzo $[e][1,2,4]$ triazin-7-ones

Robert Coyle, BSc (Hons)

Thesis presented for the $\mathbf{P h D}$ degree of the

National University of Ireland, Galway

NUI Galway OÉ Gaillimh

School of Chemistry
National University of Ireland, Galway

June 2014

Head of School: Professor Paul V. Murphy

Supervisor: Dr. Fawaz Aldabbagh
Abstract V
Acknowledgements vi
Abbreviations vii
Chapter 1: General Introduction
1.1 Introduction 2
1.1.1 Intramolecular homolytic aromatic substitutions onto heterocycles 2
1.1.2 COMPARE; Anti-cancer activity elucidation of small heterocyclic 9 compounds
1.1.2.1 DTP NCI-60 human tumour cell line screen 9
1.2 Thesis aims and objectives 13
Chapter 2 Barton esters for initiator-free radical cyclisation with heteroaromatic substitution
2.1 Introduction 15
2.2 Results and discussion 17
2.2.1 Cyclopropyl radical cyclisations 17
2.2.1.1 Synthesis of cyclopropyl radical precursors 17
2.2.1.2 Initiator-free cyclopropyl radical cyclisation 19
2.2.1.3 $\mathrm{Bu}_{3} \mathrm{SnH} / \mathrm{AIBN}$-mediated seven membered cyclopropyl radical 23 cyclisation
2.2.2 Alkyl radical cyclisations 26
2.2.2.1 Synthesis of alkyl radical precursors 26
2.2.2.2 Initiator-free alkyl radical cyclisation 27
2.3 Conclusions 29
Chapter 3 Tandem reactions via Barton esters with intermolecular addition and vinyl radical substitution onto indole
3.1 Introduction 31
3.2 Results and discussion 33
3.2.1 Synthesis of radical precursors 33
3.2.2 Initiator free tandem radical reactions 34
3.3 Conclusion 42
Chapter 4 Benzo[e][1,2,4]triazin-7-ones: New thioredoxin reductase inhibitors and comparisons of anti-cancer activity with pleurotin
4.1 Introduction 44
4.1.1 The chemistry of benzo $[e][1,2,4]$ triazin-7-ones 44
4.1.2 Biological activity of 1,3-diphenylbenzo-[e][1,2,4]-triazine-7- 46
$(1 H)$ ones and the link to thioredoxin reductase (TrxR)
4.2 Results and discussion 48
4.2.1 Developmental Therapeutic Program (DTP) National Cancer 48 Institute (NCI) 60 human tumour cell line screen and COMPARE analysis.
4.2.2 Cytotoxicity against normal and cancer cell lines using the MTT 50 assay
4.3 Conclusions 53
4.4 Future work 53
Chapter 5 Experimental
5.1 General 55
5.1.1 Instrumental 55
5.1.2 Methods and Materials 55
5.2 Experimental for Chapter 2 56
5.3 Experimental for Chapter 3 117
5.4 Experimental for Chapter 4 139
5.4.1 Cell culture and cytotoxicity evaluation 139
5.4.1.1 Cell lines 139
5.4.1.2 Cell resuscitation 140
5.4.1.3 Cytotoxicity measurements using the MTT assay 140
References 141
Appendix 149
A. 1 X-Ray crystallographic data 150
A. 2 NMR for Chapter 3 153
A.3.1 MTT assay cell viability graphs 183
A.3.2 DTP NCI-60 mean growth percent graphs 197
A.3.2.1 One dose testing for 1,3-Diphenylbenzo[e][1,2,4]triazin- 197 $7(1 H$)-one (19a)
A.3.2.2 Five dose testing for 1,3-Diphenylbenzo[e][1,2,4]triazin- 198 7(1H)-one (19a)
A.3.3 COMPARE correlations 199
Conference Proceedings and Peer-reviewed Publications 211

Abstract

Chapter 1 provides a general introduction to Chapters 2-5. Homolytic aromatic substitution routes to alicyclic ring-fused azoles and diazoles is reviewed. A review of recent literature using the COMPARE program of the National Cancer Institute (NCI, USA) to elucidate anti-cancer activity of small heterocyclic molecules is presented.

Chapter 2 describes S-(1-oxido-2-pyridinyl)-1,1,3,3-tetramethylthiouronium hexafluorophosphate (HOTT) facilitating the first examples of efficient radical cyclisation with (hetero)aromatic substitution via Barton ester intermediates. Cyclopropyl and alkyl radicals allow access to five, six and seven-membered alicyclic-ring fused heterocycles with and without an additional fused cyclopropane, including the skeleton of the anti-cancer agent, cyclopropamitosene, expanded, and diazole analogues. Radical initiators are not required for cyclisation from carboxylic acid precursors. For constrained cyclisations such as the seven-membered cyclopropyl radical aromatic substitution onto indole, the $\mathrm{Bu}_{3} \mathrm{SnH}$-mediated reaction was found to give higher yields, and X-ray crystal structure of the adduct, $1,1 a, 2,3,4,10 b-$ hexahydrocyclopropa[3,4]azepino[1,2-a]indole-10-carbaldehyde was obtained.

Chapter 3 describes a new synthetic use of Barton esters, as precursors for one-pot initiator-free cascade/tandem reactions. The tandem reaction involves intermolecular addition of alkyl radicals onto activated terminal (monosubstituted) alkynes followed by intramolecular substitution of vinyl radicals onto indoles. Investigations into the use of disubstituted alkynes (with two different substituents) are also presented with X-ray crystal structures of substitution products demonstrating the selectivity of the radical addition onto the alkyne.

Chapter 4 describes preliminary investigations into elucidating the anti-cancer activity of diphenylbenzo-[e][1,2,4]triazin-7-one (compounds) supplied by the group of Prof. Panayiotis A. Koutentis (University of Cyprus) using cytotoxicity evaluation of the parent compound (1,3-diphenylbenzo-[e][1,2,4]triazin-7-one) at the NCI, and MTT assays of analogues. The COMPARE program established a very strong correlation with the naturally occurring antibiotic, pleurotin.

Chapter 5 is a comprehensive description of synthetic and tissue culture procedures carried out.

Acknowledgements

I am extremely grateful to my supervisor Dr. Fawaz Aldabbagh for his tireless guidance and reassurance throughout the period of my research.

I would like to thank the College of Science, National University of Ireland Galway for generous sponsorship of my work.

Lastly to my family and friends for their eternal support and encouragement.

Abbreviations

ACCN
AChE
AD
AIBN
BChE
Boc
Bu
${ }^{\circ} \mathrm{C}$
CCDC
Calcd
CSA
DBU
DCM
DEPT
DLP
DMAP
DMF
DMSO
DTP
ESI
Et
Equiv.
EWG
FAD
FBS
FT-IR
GI_{50}
h
growth inhibition: concentration required to inhibit cell growth by 50%
hours
HMGA2
high-mobility group AT-hook 2
HMQC
HOTT S-(1-oxido-2-pyridinyl)-1,1,3,3-tetramethylthiouronium hexafluorophosphate
HRMS
high resolution mass spectra

Hz	hertz
K	kelvin
IC_{50}	inhibition concentration: concentration that inhibits cell population by 50%
LC_{50}	lethal concentration: concentration required to kill 50% of cells
M	molar
MAPK14	Mitogen-activated protein kinase 14
Me	methyl
MEM	minimum essential media
MHz	megahertz
min	minutes
MMC	mitomycin C
$\mu \mathrm{M}$	micromolar
mM	millimolar
mp	melting point
Ms	mesyl (methane sulfonyl)
MTT	3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
NADH	nicotinamide adenine dinucleotide
NADPH	nicotinamide adenine dinucleotide phosphate
NCI	National Cancer Institute
NMR	nuclear magnetic resonance
NQO1	$\mathrm{NAD}(\mathrm{P}) \mathrm{H}$:quinone oxidoreductase 1
Ph	phenyl
ppm	parts per million
PTEN	protein tyrosine phosphatase and tensin homolog
PTOC	pyridine-2-thione-N-oxycarbonyl
rt	room temperature
SAS	Statistical Analysis System
SPy	thiopyridine
t	tertiary-
TCFH	tetramethylchloroformamidinium hexafluorophosphate
tert-	tertiary-
TGI	total growth inhibition
THF	tetrahydrofuran

TMU
Tol
Trx
TrxR
Ts

1,1,3,3-tetramethylurea
toluene
thioredoxin protein
thioredoxin reductase
tosyl (toluenesulfonyl)

Chapter 1

General Introduction

1.1 Introduction

The Introduction is divided into two main parts:
(i) A brief review of the literature related to Chapters 2 and 3;
(ii) A brief review of the literature related to Chapter 4.

1.1.1 Intramolecular homolytic aromatic substitutions onto heterocycles

Proceeds through an addition-elimination process with radical addition onto an aromatic ring and elimination of a leaving group from the σ-complex (Scheme 1.1).

Scheme 1.1: Oxidative homolytic aromatic substitution
In cases where the leaving group is H^{\bullet}, then the reaction proceeds with oxidative rearomatisation. Many reported intramolecular homolytic aromatic substitutions are mediated by $\mathrm{Bu}_{3} \mathrm{SnH} / \mathrm{AIBN}$ (2,2'-azobis(2-methylpropionitrile)), and it is now accepted that AIBN or an AIBN-derived radical is involved in the oxidative rearomatisation. ${ }^{1-4}$ A brief review of literature homolytic aromatic substitutions that result in similar annulated products to those reported in this thesis follows.

Scheme 1.2. Intermolecular alkyl radical substitution of protonated lepidine

Minisci et al demonstrated the first reported "oxidative" aromatic substitution carried out in the presence of the "reductant" $\mathrm{Bu}_{3} \mathrm{SnH}$. Successful $\mathrm{Bu}_{3} \mathrm{SnH} / \mathrm{AIBN}$-mediated intermolecular aromatic substitution was possible with protonation of the basic nitrogen of heteroarenes (Scheme 1.2). ${ }^{1}$ The incoming nucleophilic (cyclo)alkyl radical substituted selectively onto the electron deficient 2-position of lepidine with highest yields noted for the most nucleophilic tertiary radicals. The use of a $\left(\mathrm{Me}_{3} \mathrm{Si}_{3}\right)_{3} \mathrm{SiH} / \mathrm{AIBN}$ mediated system improved yields which can be ascribed to the weaker reductant nature of $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{SiH}$ relative to $\mathrm{Bu}_{3} \mathrm{SnH}$.

Scheme 1.3. Barton decarboxylation/addition onto protonated lepidine

Barton circumvented the use of toxic and hazardous initiators by reporting radical decarboxylations of esters of N -hydroxy-2-thiopyridone (Barton ester), which after irradiation undergo efficient radical intermolecular substitution onto heteroarenes containing a protonated basic nitrogen site (Scheme 1.3). ${ }^{5}$ The activated form of the heteroarene was obtained through CSA protonation, which was found crucial to obtaining high yields of substitution product.

i. $\mathrm{Bu}_{3} \mathrm{SnH}$ (1 equiv.), ACCN (0.2 equiv.), Tol, reflux

Scheme 1.4. Aziridinyl radical cyclisations onto indoles without activating groups at the 3-position of indole
$\mathrm{Bu}_{3} \mathrm{SnH} / \mathrm{ACCN}$ mediated reductive cyclisation of aziridinyl and vinyl radicals from bromine precursors with and without substitution at the $3-C$ position of indole have been reported (Schemes 1.4, 1.5). ${ }^{6,7}$

Scheme 1.5. Reductive radical cyclisations of vinyl radicals onto indoles

Hydrogen abstraction from $\mathrm{Bu}_{3} \mathrm{SnH}$ is thought to be responsible for the formation of the dihydroindoles in moderate yields ($42-61 \%$) while the use of less than full equivalents of azo-initiator may explain the lack of aromatic substitution product.

Scheme 1.6. Intramolecular aromatic substitution via ipso-substitution onto indole substituted sulfones, sulfides and sulfoxides

Radical ipso-substitution can lead to high yielding and regioselective reactions. Caddick et al synthesized pyrrolo-, pyrido- and azepino-fused [1,2-a]indoles involving radical ipso-substitution of sulfone, sulfide and sulfoxide substituted at the 2-position of indoles. (Scheme 1.6). ${ }^{8}$

Scheme 1.7. Intramolecular aromatic substitution of vinyl radicals via ipsosubstitution onto indole substituted sulfones

Moreover, vinyl radical cyclisations can be achieved in high yields onto sulfone substituted indoles using sub-stoichiometric Se-phenyl-p-tolueneseleno-sulfonate (TsSePh)/AIBN-radical chain conditions (Scheme 1.7). ${ }^{9}$

Scheme 1.8 $\mathrm{Bu}_{3} \mathrm{SnH} / \mathrm{AIBN}$-mediated intramolecular aromatic substitution of imidazole and benzimidazole

Aldabbagh and Bowman reported radical ipso-substitution at the $C-2$ position of benzimidazoles and imidazoles when using phenylselenides precursors for radical cyclisations (Scheme 1.8). ${ }^{10}$ When using good sulfur-leaving groups, the sulfur radical generated is thought to be reduced by $\mathrm{Bu}_{3} \mathrm{SnH}$ to regenerate the $\mathrm{Bu}_{3} \mathrm{Sn}^{\bullet}$ chain carrier.

Scheme 1.9. $\mathrm{Bu}_{3} \mathrm{SnH} / \mathrm{ACCN}$-mediated intramolecular aromatic substitution

Lynch et al utilized a $\mathrm{Bu}_{3} \mathrm{SnH} / \mathrm{ACCN}$-mediated homolytic aromatic substitution protocol towards the synthesis of tricyclic bioreductive benzimidazolequinones, without the requirement for radical leaving groups (Scheme 1.9). ${ }^{3}$ CSA activation of the heteroarene and large excesses of initiators allowed for good yields of pyridoand azepino[$1,2-a]$-fused benzimidazoles with more moderate yields obtained for the strained five-membered cyclisation. The use of non-functionalised heterocycles is advantageous, since radical precursors used in ipso-substitutions ${ }^{8-10}$ require prior synthesis using time-consuming and moderate yielding organometallic heterocycle protection-deprotection procedures.

Scheme 1.10. Alkyl radical cyclisations onto imidazole-4-carbaldehydes and imidazole-5-carbaldehydes

Aldabbagh et al demonstrated $\mathrm{Bu}_{3} \mathrm{SnH} / \mathrm{AIBN}$ mediated primary alkyl radical cyclisations onto imidazole-4 and 5-carbaldehydes (Scheme 1.10) occurred selectively at the $C-5$ and $C-2$ sites of imidazole respectively. ${ }^{11}$

Scheme 1.11. $\mathrm{Bu}_{3} \mathrm{SnH} / \mathrm{AIBN}$-mediated intramolecular aromatic substitution of indole-3-carbaldehyde

Moody and Norton used homolytic aromatic substitution of primary alkyl radicals to give [1,2-a] indoles fused with five-, six- and seven-membered rings in 29-75\% yield (Scheme 1.11). ${ }^{12}$ Stoichiometric amounts of AIBN were used as the source of initiating radical and presumably to facilitate the re-aromatisation step.

Scheme 1.12. Formation of pyrrolo[1,2-a]benzimidazole via oxidative radical cyclisation

Gagosz and Zard have reported fused azoles via intramolecular aromatic substitution using xanthate and dilauroyl peroxide (DLP)-mediated procedure (Scheme 1.12), where the peroxide is probably involved in the oxidative rearomatisation. ${ }^{13}$ CSA is critical to the reaction, through basic nitrogen quaternization, thus activating the benzimidazole-2-position towards nucleophilic radical attack. Moreover CSA serves to prevent inadvertent nucleophilic attack from the basic benzimidazole $3-N$ onto the xanthate moiety.

* Camphorsulfonic acid not required

$$
n=3,54 \%
$$

$$
n=3,13 \%
$$

Scheme 1.13. One-pot double $\mathrm{Bu}_{3} \mathrm{SnH} / \mathrm{ACCN}$-mediated intramolecular aromatic substitution

One-pot double intramolecular radical cyclisations of primary alkyl radicals onto imidazobenzimidazoles from phenylselenide precursors were recently reported by Fagan et al (Scheme 1.13). ${ }^{14}$ Quaternization of the basic nitrogen allows for pyrroloand azepiono fused heteroarenes to be formed in reasonable yields, with large excesses of $\mathrm{Bu}_{3} \mathrm{SnH}$ and ACCN required to drive the non-chain reaction process.

1.1.2 COMPARE: Anti-cancer activity analysis of small heterocyclic compounds

1.1.2.1 DTP NCI-60 human tumour cell line screen

Fully operational since 1990, the cytotoxicity screen ran by the National Cancer Institute (NCI) under the Developmental Therapeutics Program (DTP) allows free evaluation of compounds with potential anti-cancer activity. The screen consists of two stages with the first involving a single $10 \mu \mathrm{M}$ dose to generate a mean growth $\%$ graph for the 60 human tumour cell lines derived from nine major histological tissue types; breast, colon, central nervous system, leukemia, melanoma, non-small cell lung, prostate, ovarian and renal.

Compounds are then selected by the NCI for stage 2 evaluation which is five dose screening, allowing $\mathrm{GI}_{50} \mathrm{LC}_{50}$ and TGI to be established. ${ }^{15-17}$

- GI_{50} represents the concentration of a compound required to inhibit cell growth by 50%
- LC_{50} represents the concentration of a compound required to reduce cell population by 50%.
- TGI represents the concentration of a compound required to mediate a cytostatic effect

The stated parameters provide the seed vector through which the NCI COMPARE algorithm determines closely matching cytotoxicity profiles. COMPARE allows comparisons to be carried out against a standard agents’ database. The standard agents' database includes ~ 200 well documented compounds with anti-tumour activity and presumed mechanisms of action. COMPARE also allows comparisons to be carried out towards the ~ 70000 synthetic compounds in the NCI database.

Comparisons are made using a commercially available SAS statistical package to calculate a Pearson product moment correlation coefficient $(0- \pm 1)$ to establish the degree of similarity or lack thereof between two cytotoxicity profiles. ${ }^{16,17}$ Pearsons in the range $(\pm 0.3- \pm 0.5)$ are considered medium strength, while those above (± 0.5) are considered strong. ${ }^{18}$ Negative correlation coefficients represent a general inverse relationship for the seed parameter across the 60 human tumour cell lines, between the test and correlated compound.

The COMPARE program allows a possible mode of action of a test compound to be determined, should its cytotoxicity response share strong similarities to a compound whose mode of action is known.

Alternatively the mode of action can be determined should a biological response correlate to the activity of a known molecular target. Some examples where the COMPARE program has been applied now follow.

$\begin{array}{lll}\text { NSC 635477: } & R=H, & R=H \\ \text { NSC 635478: } & R=H, & R=O C H_{3} \\ \text { NSC 635479: } & R=\mathrm{CH}_{3}, & R=\mathrm{H}\end{array}$

Figure 1.1. Novel antimitotic agents discovered through COMPARE analysis of known antimitotic agents

Through COMPARE Paull et al. discovered a number of novel antimitotic agents acting through inhibition of tubulin polymerisation and causing the mitotic arrest of cells grown in culture (Figure 1.1). ${ }^{19}$

Using the cytotoxicity response profiles of ten known antimitotic agents including taxol, vincristine and vinblastine as COMPARE seeds, 82 compounds were identified by COMPARE correlation. Fifty compounds identified were the seeds or seed analogues, 32 were novel compounds broken down into 19 distinct chemical species with a correlation coefficient of 0.6 or greater to the seed compounds, and a GI_{50} of $1 \mu \mathrm{M}$ or less towards HL-60 human leukemia cell-line. Of the 32 compounds, 23 inhibited in vitro tubulin polymerisation with the majority (21) identified by six or more seeds.

MMC
NSC 26980 (0.43: NQO1)

NSC 753790 (0.51: NQO1)

Figure 1.2. Correlations of the clinically used bioreductive anti-cancer agent MMC and iminoquinone NSC753790 to the two-electron reductase NQO1

Recently iminoquinone (NSC 753790) synthesized by Fagan et al. showed a superior correlation of 0.51 than mitomycin C (MMC) with a correlation of 0.43 towards $\mathrm{NAD}(\mathrm{P}) \mathrm{H}$:quinone oxidoreductase 1 (NQO1). MMC is a known substrate for this enzyme, which is overexpressed in many human tumour cell lines. NQO1 reductive activation of prodrugs induces a cytotoxic effect (Figure 1.2). Computational docking further established the iminoquinone and MMC as substrates for the NQO1 active site. ${ }^{20}$

Figure 1.3 (-)-Sesamin a lignin present in sesame oil and a number of medicinal plants

COMPARE analysis recently determined an alternative mode of action for a series of iridium complexes in comparison to cisplatin and related transition metal complexes, ${ }^{21}$ while (- -sesamin, a compound with known anticancer activity, was subjected to standard and reverse COMPARE analysis to determine genes responsible for resistance and sensitivity towards (-)-sesamin . ${ }^{22}$

Standard COMPARE correlates a compound with high levels of molecular target, while reverse COMPARE correlates a compound with low levels of molecular target, or where a molecular target confers resistance.

DLK-36

NSC 401005
(0.836: IV-2)

NSC 665103

Figure 1.4. Novel thioredoxin reductase inhibitors discovered through COMPARE analysis of known imidazole disulfide inhibitors

Kunkel et al. utilized the cytotoxicity profile of known thioredoxin reductase inhibitors, 1-methylpropyl 2-imizolyl-disulfide (IV-2) and benzyl-2mercaptoimidazolyl disulphide (DLK-36) as COMPARE seeds to determine novel inhibitors of thioredoxin reductase. Pleurotin NSC 401005 had the largest correlation from the synthetic compound database (0.836) to IV-2, while pleurotin and NSC 665103 were the most potent inhibitors in a thioredoxin reductase/thioredoxindependent insulin reductase assay. Moreover of the compounds identified from the NCI database, 77% had IC_{50} values of $10 \mu \mathrm{~g} / \mathrm{ml}$ or less while 32% had IC_{50} values of $1 \mu \mathrm{~g} / \mathrm{ml}$ when subjected to a thioredoxin reductase/thioredoxin assay (Figure 1.4). ${ }^{23}$

1.2 Thesis Aims and Objectives

- To carry out HOTT-mediated initiator free intramolecular aromatic substitution via Barton esters leading to heterocycles with and without fused cyclopropane rings.

- To carry out HOTT mediated formation of Barton esters for use in tandem intermolecular addition and vinyl radical cyclisations leading to novel alicyclic [1,2-a] ring fused indoles.
- To carry out cytotoxicity evaluations using the MTT assay and NCI 60 human tumour cell line screen on benzo-[e][1,2,4]-triazine-7-(1H)ones, and to carry out COMPARE analysis of the parent compound against the compounds and molecular targets in the NCI database in order to determine possible biochemical pathways for anti-cancer activity.

Chapter 2

Barton esters for initiator-free radical cyclisation with heteroaromatic substitution

Most of this Chapter is published in two publications:

Barton esters for initiator-free radical cyclisation with heteroaromatic substitution, Robert Coyle, Karen Fahey and Fawaz Aldabbagh, Org. Biomol. Chem. 2013, 11, 1672-1682

$\mathrm{Bu}_{3} \mathrm{SnH}$-mediated cyclopropyl radical cyclisations onto indole-3-carbaldehyde,
Karen Fahey, Robert Coyle, Patrick McArdle and Fawaz Aldabbagh,
ARKIVOC 2013, (iii), 401-412

2.1 Introduction

Trialkylmetal hydrides (usually $\mathrm{Bu}_{3} \mathrm{SnH}$) with an azo-initiator are now used commonly in organic synthesis to perform intramolecular homolytic aromatic substitutions. ${ }^{4}$ Since effectively a hydrogen atom $\left(\mathrm{H}^{\bullet}\right)$ is lost, it is welldocumented that difficulties exist in forming "oxidized" aromatic substitution product in the presence of the "reductant" $\mathrm{Bu}_{3} \mathrm{SnH}$. Moreover, the substitution is thought to proceed via a non-chain reaction, which requires greater than full equivalents of often toxic and hazardous radical initiators. ${ }^{1-4,14,24-30}$ The initiators should be added slowly via a syringe pump to minimise reduction of the cyclising radical by $\mathrm{Bu}_{3} \mathrm{SnH}$, in a protocol that can lead to substantial organotin waste with associated disposal issues.

Nevertheless, many alkyl, cycloalkyl, acyl, vinyl, (hetero)aryl and iminyl radical cyclisations have been reported to give aromatic substitution, albeit in often moderate to good yields. There are however scant reports of three-membered ring radicals giving substitution product upon cyclisation with only reports of $\mathrm{Bu}_{3} \mathrm{SnH} / \mathrm{AIBN}$ (2,2'-azobis(2-methylpropionitrile)) used to cyclise a tertiary cyclopropyl radical to give spiro-adduct. ${ }^{29-30}$ The quest for more efficient, and benign cyclisation alternatives led us to Barton ester \{pyridine-2-thione- N oxycarbonyl (PTOC) or O-acyl thiohydroxamate ester\} intermediates. ${ }^{31-32}$ Barton esters have been utilised in intermolecular radical addition chain reactions onto alkenes, ${ }^{33-35}$ quinones ${ }^{35-36}$ and 5-exo-trig radical cyclisations. ${ }^{35}$ Moreover, Barton et al. have proposed a chain reaction mechanism for the use of the esters in intermolecular substitutions onto (hetero)aromatics. ${ }^{5}$

Despite this, Barton esters have thus far not been reported after radical cyclisation onto (hetero)aromatics to give acceptable yields of substitution product. Ziegler et al. reported cyclisations onto the indole-2-position by aziridinyl and oxiranyl radicals via Barton esters (formed by treatment of carboxylic acids with 2,2'-dithiobis-(pyridine- N-oxide) and n-Bu ${ }_{3} \mathrm{P}$). ${ }^{6,37-39}$

However, in the latter seminal work, the reported yields of aromatic substitution
products formed upon photochemical breakdown of the Barton esters were very low ($<10 \%$), and hydride reduction or dimerisation of the cyclised indolyl radical was the major outcome.

Cyclopropane-fused onto pyrrolo[1,2-a]indole forms the skeleton of the highly potent anti-tumour agent cyclopropamitosene, an analogue of aziridinomitosene, the bioactivated form of mitomycin C (Fig. 2.1). ${ }^{40-44}$ Alicyclic ring-fused benzimidazolequinones with and without the fused cyclopropane possess cytotoxicity in the nanomolar range $\left.\left(10^{-9} \mathrm{M}\right)\right)^{3}$

Aziridinomitosene

Cyclopropamitosene

Benzimidazolequinones $n=1,2$

Figure 2.1: Bioreductive anti-tumour agents

The cyclopropane-fused tetracycles were accessed using traditional intramolecular 1,3-dipolar [3+2] cycloaddition of diazomethine intermediates onto alkenes with subsequent breakdown of $40-47$ with subsequent breakdown of the pyrazoline cycloadduct.

We now report a new means to access cyclopropane-fused tetracycles, involving initiator-free intramolecular aromatic substitutions of cyclopropyl radicals onto the 2-position of indoles and benzimidazoles, formed via the decomposition of Barton esters. The first alkyl radical cyclisations using Barton esters are also performed, allowing comparisons with the cyclopropyl radical.

2.2 Results and discussion

2.2.1 Cyclopropyl radical cyclisations

2.2.1.1 Synthesis of cyclopropyl radical precursors

Cyclopropyl radical precursors were readily obtained by N -alkylation of the heterocycle with the mesylate ${ }^{48}$ or ethyl 2-(ω-bromoalkyl)cyclopropane carboxylate. ${ }^{49}$

Scheme 2.1. N-Alkylation of indole-3-carbonitrile with trans-cyclopropane mesylate

Indole-3-carbonitrile underwent N-alkylation following treatment with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in DMF, while benzimidazoles and indole-3-carbaldehyde underwent N-alkylation following treatment with sodium hydride in DMF.

Scheme 2.2. N-Alkylation of indole-3-carbaldehyde with trans-cyclopropane bromides

Scheme 2.3. N-Alkylation of indole-3-carbaldehyde and benzimidazole with ciscyclopropane bromides

Scheme 2.4. N-Alkylation of 4,7-dimethoxybenzimidazole and 5,6-dimethylbenzimidazole with trans-cyclopropane bromide
N-Alkylation of indole was achieved through treatment with potassium tert-butoxide and 18 -crown-6 in dry $\mathrm{Et}_{2} \mathrm{O}$ at room temperature with rapid stirring prior to addition of the bromide. ${ }^{50}$

Scheme 2.5. N-Alkylation of indole- with trans-cyclopropane bromide

Saponification of the ethyl esters 1a-l gave the carboxylic acids 2a-l, which were isolated in high purity, and required no further purification (Scheme 2.6). The use
of carboxylic acids is advantageous because of their robustness, unlike many conventional more labile radical cyclisation precursors.

Scheme 2.6. Saponification of cyclopropane carboxylic acids

2.2.1.2 Initiator-free cyclopropyl radical cyclisation

Garner introduced HOTT (S-(1-oxido-2-pyridinyl)-1,1,3,3-tetramethylthiouronium hexafluorophosphate) for the synthesis of "hindered" or "difficult" Barton esters, ${ }^{51}$ which upon radical decarboxylation can be used to give reduced, oxygenated, halogenated and intermolecular addition products. ${ }^{51-57}$ After surveying available literature methods for forming Barton esters, ${ }^{58-59}$ we found HOTT, which has never been utilized in homolytic aromatic substitutions to be the most efficient (Scheme 2.7).

The main difference in optimising the formation of the Barton ester was benzimidazoles, unlike indoles required a catalytic amount of DMAP (Table 2.1). Although it is possible to isolate Barton ester intermediates, ${ }^{35,60,61}$ it is more
convenient to perform the intramolecular substitution in the same one-pot reaction.

$X=C(C H O), C(C N), N$ $\mathrm{n}=1-3 ; \mathrm{R}^{1}, \mathrm{R}^{2}=$ see Table 1
(ii) heat, hv

3

4

Scheme 2.7. One pot Barton ester formation and initiator-free cyclopropyl radical cyclisation. Conditions: (i) HOTT (1.5 equiv.), $\mathrm{ET}_{3} \mathrm{~N}$ (3 equiv.), THF-MeCN $3: 1$ (0.1 M), rt, $40 \mathrm{~min}^{\mathrm{a}}$; (ii) $\mathrm{MeCN}\left(0.01 \mathrm{M}\right.$), reflux, $2 \times 100 \mathrm{~W}, 6 \mathrm{~h}^{\mathrm{b}}$ (see Table 2.1 for modifications ${ }^{\text {a,b }}$ and yields).

Traditionally the cyclopropyl radical is thought of as being difficult to generate with predicted increased s-character. ${ }^{62-63}$ This would make cyclopropyl radical cyclisations onto indoles containing electron-withdrawing groups and benzimidazoles more difficult in comparison to the analogous alkyl examples.

The breakdown of the Barton esters was carried out in refluxing acetonitrile in the presence of $2 \times 100 \mathrm{~W}$ light bulbs. From the yields in Table 2.1, it is clear
that six-membered cyclisations onto the 2-position of various indoles and benzimidazoles are more favoured than most five and seven-membered analogues, and found to give only the substitution product in excellent yields of 76-81\%.

An electron withdrawing group at the 3-position of indole is required, as indicated from the lack of six-membered cyclisation onto unactivated indole 2d. The formation of radical reduction products $\mathbf{4}$ is probably due to hydrogen abstraction from the solvent as previously observed in tin-free photochemical reactions of aromatic σ-radicals carried out in acetonitrile, ${ }^{64-66}$ however abstraction from other reagents cannot be ruled out. THF was also present from the initial $3: 1$ solvent mixture with acetonitrile, ${ }^{51}$ this mix is required to solubilise starting materials (including HOTT).

For more difficult cyclisations onto benzimidazoles, 4 equivalents of camphorsulfonic acid (CSA) was present to quaternise the pyridine-like $3-N$ of ${ }^{1,3,5,13,14}$ including for six-membered cyclisation onto 4,7-dimethoxybenzimidazole $2 \mathbf{i}$. In the latter case, the dimethoxy substituents make the benzimidazole-2-position less electrophilic, and CSA activation is required to obtain the high yield of 80% of adduct $\mathbf{3 i}$. The quaternisation was in agreement with reports of nucleophilic character for the cyclopropyl radical obtained from intermolecular reactions.

For most five and seven-membered attempted cyclisations approximately equal yields of substitution and reduction products were given, except for the cyclisation onto indole-3-carbonitrile $\mathbf{2 c}$, which gave only the substitution product 3c in high yield of 75%. This relatively constrained cyclisation is favourable in comparison to its aldehyde analogue possibly due to polar effects, given that the addition of the nucleophilic t - Bu^{\bullet} radical is reported to occur approximately twice as fast onto acrylonitrile in comparison with onto acrolein. ${ }^{69}$ The success of this five-membered cyclisation is important, as it allows efficient access to the cyclopropamitosene skeleton.

Table 2.1 Optimized HOTT-Mediated Barton Ester Formation \& Radical Cyclisations
Entry Acid Products c (\%)

2a $\mathrm{X}=\mathrm{C}(\mathrm{CHO})$
$\begin{array}{ll}2^{a, b, d} & \text { 2b } \mathrm{X}=\mathrm{N} \\ 3 & \text { 2c } \mathrm{X}=\mathrm{C}(\mathrm{CN})\end{array}$
2

4
2d

$5 \quad$ 2e $\mathrm{X}=\mathrm{C}(\mathrm{CHO})$
6^{a} 2f $\mathrm{X}=\mathrm{N}$

$7 \quad 2 \boldsymbol{g} X=\mathrm{C}(\mathrm{CN}), \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}$
$8^{a} \quad$ 2h $\mathrm{X}=\mathrm{N}, \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{CH}_{3}$
$9^{a, b} \quad 2 i \mathrm{X}=\mathrm{N}, \mathrm{R}^{1}=\mathrm{OMe}, \mathrm{R}^{2}=\mathrm{H}$

2 j

11
2k

12
21
12 (01 ${ }^{\text {D }}$. ${ }^{b}$ (

$4 \mathbf{a}$ (43)
4b (40)
4 c (0)

4d (76)

4 e (0)
$4 f$ (0)

$\mathbf{3 g}(77)$
$\mathbf{3 h}(76)$
$\mathbf{3 i}(80)$
$4 \mathrm{~g}(0)$
4h (0)
4i (0)

4j (42)

3k (37)

31 (39)

4 k (41)

41 (38)
${ }^{a}$ DMAP (0.1 equiv.). ${ }^{b} \mathrm{CSA}$ (4 equiv.) added. ${ }^{c}$ Isolated yields. ${ }^{d}$ K. Fahey, PhD Thesis 2010. NUI Galway.

2.2.1.3 $\mathrm{Bu}_{3} \mathrm{SnH} / \mathrm{AIBN}$-mediated seven membered cyclopropyl radical cyclisation

The success of previously reported five-membered cyclopropyl radical cyclisation onto indole-3-carbaldehyde ${ }^{48}$ led us to investigate the seven-membered analogue.

Separable bromides $\mathbf{5}(\mathbf{5 a}+\mathbf{5 b})$ were obtained in 83% combined yield from carboxylic acid $\mathbf{2 l}$ via efficient HOTT-mediated Barton ester formation (Scheme 2.8).

Scheme 2.8. HOTT mediated Barton decarboxylation and bromination of indole-3carbaldehyde. Conditions: i, HOTT, $\mathrm{Et}_{3} \mathrm{~N}$, THF-MeCN (3:1), rt, dark, 40 min ; ii, BrCCl_{3} (50 equiv.), CHCl_{3}, reflux, 4 h .

Using the cyclisation conditions in Scheme 2.9, bromides 5 were converted into novel cyclopropane-fused adduct 1,1a,2,3,4,10b-hexahydrocyclopropa[3,4]azepino [1,2a] indole-10-carbaldehyde (3I) in 53% yield with 29% reduced cyclopropane 41 obtained. This compares favourably with yields of 39% and 38% of $\mathbf{3 1}$ and $\mathbf{4 I}$ obtained from carboxylic acid 21 using the one-pot Barton ester, and radical cyclisation protocol (Table 2.1). X-ray crystal structure of cyclopropane-fused azepino[1,2a]indole 31 is provided in Figure 2.1 showing the ($1 \mathrm{a} R, 10 \mathrm{~b} S$) enantiomer, which is part of a racemic mixture.

Scheme 2.9. $\mathrm{Bu}_{3} \mathrm{SnH} / \mathrm{AIBN}$-mediated cyclopropyl radical cyclisation. Conditions: i. $\mathrm{Bu}_{3} \mathrm{SnH}$ (1.2 equiv.), AIBN (1 equiv.) added over 15 min, toluene, reflux; ii. reflux, 3 h; iii, $\mathrm{Bu}_{3} \mathrm{SnH}$ (0.4 equiv.), AIBN (0.3 equiv.) added over 5 min , toluene, reflux; iv, reflux, 15 min .

The reasons for improved yields using the $\mathrm{Bu}_{3} \mathrm{SnH}$-mediated protocol for radical cyclisations onto indole-3-carbaldehyde remain unclear, and the use of different solvents and temperatures for reactions with and without initiators, makes the drawing of definitive explanations difficult.

It is however well-documented that the addition-step of homolytic aromatic substitution (in this case the cyclisation) is slow and reversible ${ }^{70}$ and it is plausible that initiator-derived radicals may intercept the cyclised radical intermediate leading to higher yields of the aromatic substitution product, in comparison to the noncyclised reduced product.

It is noteworthy that the initiators had to be added over a relatively short-time of 5-15 minutes, in order to give the cyclised optimized yields reported. This supports the involvement of azo-initiator derived radicals in the aromatisation process due to the rapid breakdown of AIBN at this reaction temperature (AIBN, $t_{1 / 2}<2 \mathrm{~min}$ in toluene at $\left.110{ }^{\circ} \mathrm{C}\right) .{ }^{3}$

The AIBN derived 2-cyano-2-propyl radical may be involved in either hydrogen abstraction from the cyclised radical to give directly the aromatic substitution product and/or via thermal breakdown of cyclised non-aromatic intermediates trapped by the 2-cyano-2-propyl radical. ${ }^{2}$ The latter may account for the requirement of prolonged (3 hour) heating of the reaction mixture in toluene under reflux after the addition of most of the initiators was completed, as previously observed in our related radical cyclisations. ${ }^{14}$

Figure 2.1. X-ray crystal structure of ($1 \mathrm{a} R, 10 \mathrm{~b} S$)-1,1a,2,3,4,10b-hexahydrocyclopropa[3,4]azepino[1,2-a]indole-10-carbaldehyde (3I)

2.2.2 Alkyl radical cyclisations

2.2.2.1 Synthesis of alkyl radical precursors

6a: $\mathrm{X}=\mathrm{N}, \quad n=1:(80 \%)$
6c: $\quad \mathrm{X}=\mathrm{C}(\mathrm{CHO}), n=2:(75 \%)$
6d: $X=N, \quad n=2:(75 \%)$
6f: $\mathrm{X}=\mathrm{N}, \quad n=3:(77 \%)$
Scheme 2.10. N-Alkylation of benzimidazole and indole-3-carbaldehyde

Benzimidazole and indole-3-carbaldehyde underwent N -alkylation following treatment with NaH in DMF, while indole-3-carbonitrile required treatment with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in DMF, prior to addition of the appropriate bromide.

Scheme 2.11. N-Alkylation of indole-3-carbonitrile

Saponification of the methyl esters 6a-g gave the carboxylic acids 7a-g, which were isolated in high purity, and required no further purification (Scheme 2.12).

6a-6g

$X=\mathrm{N}, \mathrm{C}(\mathrm{CN}), \mathrm{C}(\mathrm{CHO})$

7a:	$X=N$,	$n=1:$	(66%)
7b:	$X=C(C N)$,	$n=1:$	(74%)
7c:	$X=C(C H O)$,	$n=2:$	(66%)
7d:	$X=N$,	$n=2:$	(75%)
7e:	$X=C(C N)$,	$n=2:$	(73%)
7f:	$X=N$,	$n=3:$	(73%)
$7 \mathrm{~g}:$	$X=C(C N)$,	$n=3:$	(72%)

Scheme 2.12. Saponification of alkyl carboxylic acids

2.2.2.2 Initiator-free alkyl radical cyclisation

Therefore alicyclic ring-fused indoles and benzimidazoles can be accessed via a straight forward three-step synthesis with facile synthesis of the carboxylic acid, and new initiator-free radical cyclisation protocol (Scheme 2.13).

Six-membered alkyl radical cyclisation onto indoles and benzimidazole proceeded to give only the substitution product ($\mathbf{8 c} \mathbf{c} \mathbf{8 e}$) in $77-82 \%$ yield, and without CSA activation for benzimidazole 8d.

As with the cyclopropane series, five-membered alkyl radical cyclisation onto indole-3-carbonitrile 7b was effective in giving only the substitution product $\mathbf{8 b}$ in 78% yield, and radical reduction competed with the analogous cyclisation onto benzimidazole 7a. However, the seven-membered alkyl radical cyclisation onto $\mathbf{7 g}$ was also favoured (unlike cyclopropyl analogue $\mathbf{2 k}$ or benzimidazole analogue 7f) giving a good yield of 61% of novel azepino[1,2-a]indole $\mathbf{8 g}$, with non-cyclised 9 g separated in 21% yield.

Scheme 2.13. One pot Barton ester formation and initiator-free alkyl radical cyclisation. Conditions: (i) HOTT (1.5 equiv.), $\mathrm{Et}_{3} \mathrm{~N}$ (3 equiv.), THF-MeCN $3: 1$ (0.1 M), rt, 40 min , ${ }^{a}$ (DMAP 0.1 equiv.) (ii) MeCN (0.01 M), reflux, $2 \times 100 \mathrm{~W}$, $6 \mathrm{~h},{ }^{b}$ (CSA 4 equiv.) added.

2.3 Conclusions

Tin-free intramolecular homolytic aromatic substitutions via Barton esters that circumvent the requirement for harmful radical initiators have been realised. Efficient formation of the Barton ester intermediate is achieved using HOTT. Eleven favoured cyclisations onto indoles and benzimidazoles from the carboxylic acid give exclusively (or overwhelmingly in the case of $\mathbf{7 g}$) the substitution product. The reactivity of the cyclopropyl radical is shown to be similar to that of the alkyl radical with generally constrained cyclisations onto indole-3-carbonitrile being more facile than onto indole-3-carbaldehyde and benzimidazole. Alternative annulations using this new Barton ester cyclisation protocol are anticipated.
$\mathrm{Bu}_{3} \mathrm{SnH} / \mathrm{AIBN}$-mediated seven-membered cyclopropyl radical cyclisation was used to access azepino[1,2-a]indole in respectable yield. The transformation is another example of "oxidative" aromatic substitutions mediated by the "reductant" $\mathrm{Bu}_{3} \mathrm{SnH}$. Included in this Chapter is a first crystal structure of the cyclopropane-fused azepino $[1,2-a]$ indole heterocyclic system.

Overall, our radical cyclisation pathways via Barton esters compare favourably with alternative cycloaddition protocols for making these cyclopropane-fused heterocyclic systems. ${ }^{40-47}$

Chapter 3

Tandem reactions via Barton esters with intermolecular addition and vinyl radical substitution onto indole

Most of this Chapter is published in one publication:

Tandem reactions via Barton esters with intermolecular addition and vinyl radical substitution onto indole,

Robert Coyle, Patrick McArdle and Fawaz Aldabbagh,
J. Org. Chem. 2014, 79, 5903-5907.

3.1 Introduction

Stork and Baine first demonstrated the synthetic utility of vinyl radicals by carrying out reductive cyclisations to form five and six-membered rings. ${ }^{71} \mathrm{Bu}_{3} \mathrm{SnH}$ and azobisisobutyronitrile (AIBN) were used to carry out vinyl radical cyclisations onto indole yielding mainly reduced adducts. ${ }^{7}$ Later vinyl radical cyclisation with aromatic substitution was achieved using a tin-free chain reaction, where displacement of indole-2-sulfonyl substituent occurs. ${ }^{9}$ Effective five and six-membered intramolecular aromatic substitutions of vinyl radicals using $\mathrm{Bu}_{3} \mathrm{SnH}$ and AIBN were reported by Padwa et al. ${ }^{72}$ Although, usually the use of the "reductant" $\mathrm{Bu}_{3} \mathrm{SnH}$ is not conducive with efficient aromatic substitution, where net-loss of H^{\bullet} or "oxidation" occurs. ${ }^{1,4}$

Scheme 3.1. $\mathrm{Bu}_{3} \mathrm{SnH}$ and AIBN mediated intramolecular aromatic substitutions of vinyl radicals

Where prior to the substitution the vinyl radical is generated via an intermolecular addition onto alkynes, ${ }^{73}$ yields of aromatic product are traditionally modest. ${ }^{74-78}$ The first synthetically viable tandem process containing an intermolecular addition onto alkynes was reported by Santi et al. using $\mathrm{Mn}(\mathrm{III})$-mediated oxidation of benzylmalonates with the subsequent vinyl radical aromatic substitution giving naphthalene derivatives in moderate to good yields. ${ }^{79-80}$

Scheme 3.2. Mn (III)-mediated oxidation of benzylmalonates leading to vinyl radical aromatic substitution

Most recently, Zhou and co-workers used a photo-redox catalytic system to synthesize 2-trifluoromethyl quinolines with imidoyl radical addition onto alkyne followed by aromatic substitution, ${ }^{81}$ and Li and co-workers reported benzothiophenes under oxidative catalytic conditions with an initial sulfanyl radical addition onto but-2ynedioates. ${ }^{82}$

The decomposition of Barton esters $\{O$-acyl thiohydroxamate ester or pyridine-2-thione- N-oxycarbonyl (PTOC) $\}^{31-32}$ provides a means of achieving aromatic substitution under mild initiator-free conditions, ${ }^{5,83,84}$ as demonstrated by Barton et al for intermolecular substitution of nucleophilic alkyl radicals onto heteroaromatic salts. ${ }^{5}$ Most recently we used Barton esters in radical cyclisations resulting in some high yielding five to seven-membered alkyl and cyclopropyl annulations of indoles and benzimidazoles (See Schemes 2.7, 2.13). ${ }^{83,84}$

In this chapter we report a new use of Barton esters, as precursors for one-pot initiator-free cascade/tandem reactions. The tandem reaction involves intermolecular addition of alkyl radicals onto alkyl propiolates or phenylacetylene followed by intramolecular substitution of vinyl radicals onto indoles. Investigations into the use of disubstituted (internal) alkynes with two different substituents are also presented with substitution products demonstrating the selectivity of the radical addition onto the alkyne.

3.2 Results and discussion

3.2.1 Synthesis of radical precursors

$\mathrm{X}=\mathrm{CN}, \mathrm{CHO}$

$$
\begin{array}{ll}
\text { 10a: } \mathrm{X}=\mathrm{CN}, & n=1: 84 \% \\
\text { 10b: } \mathrm{X}=\mathrm{CHO}, & n=1: 81 \% \\
\text { 10c: } \mathrm{X}=\mathrm{CHO}, & n=2: 88 \%
\end{array}
$$

Scheme 3.3. N-Alkylation of indole-3-carbonitrile and indole-3-carbaldehyde

Indole-3-carbonitrile and indole-3-carbaldehyde underwent N -alkylation following treatment with $\mathrm{K}_{2} \mathrm{CO}_{3}$ (3 equiv.) in DMF.

Scheme 3.4. N-Alkylation of indole
N-Alkylation of indole was achieved through treatment with potassium tert-butoxide and 18 -crown-6 in dry $\mathrm{Et}_{2} \mathrm{O}$ with rapid stirring prior to addition of bromide with reactions proceeding in moderate yield. ${ }^{50}$

Scheme 3.5. Saponification of alkyl carboxylic acids

Though carboxylic acids 11b, 11d and 11e are commercially available, saponification of the methyl esters 10a-e gave the carboxylic acids 11a-e, which were isolated in high purity, and required no purification (Scheme 3.5). The use of carboxylic acids is advantageous because of their robustness, unlike many conventional more labile radical cyclisation precursors.

3.2.2 Initiator free tandem radical reactions

The two-step one-pot protocol involves initial transformation of indole carboxylic acids (e.g. 11a and 11b) into Barton esters using Garner's HOTT (S-(1-oxido-2-pyridinyl)-1,1,3,3-tetramethyl thiouronium hexafluorophosphate ${ }^{51}$ in the absence of light (Scheme 3.6).

HOTT is a useful coupling reagent for forming labile Barton esters from hindered or difficult carboxylic acids. The alkyne is present in excess (8 equivalents) in order to favour the intermolecular addition with reactions using terminal alkynes only proceeding efficiently by carrying out the radical generation and tandem reactions step under acidic conditions \{4 equivalents of camphorsulfonic acid (CSA)\}. CSA neutralizes remaining triethylamine from the Barton ester formation step, which would otherwise cause inadvertent dimerization of the alkyne.

(ii) MeCN , reflux

12a: $X=C N ; \quad R=M e:(79 \%)$
12b: $X=C H O ; R=M e:(72 \%)$
12c: $\mathrm{X}=\mathrm{CN} ; \quad \mathrm{R}=t$-Bu: (68\%)
12d: $\mathrm{X}=\mathrm{CHO} ; \mathrm{R}=\mathrm{Et}: \quad$ (78\%)
12e: $X=M e ; \quad R=M e \quad(76 \%)$

Scheme 3.6. One pot and initiator free radical cyclisation onto indole-3-carbonitrile and indole-3-carbaldehyde via tandem reaction and Barton ester. Conditions: (i) Barton ester formation: HOTT (1.5 equiv.), $\mathrm{Et}_{3} \mathrm{~N}$ (3 equiv.), THF-MeCN (3:1, 0.1 M), rt, dark, 40 min ; (ii) radical generation and tandem reaction: $\mathrm{MeCN}(0.01 \mathrm{M})$, propiolate (8 equiv.), CSA (4 equiv.), reflux, 6 h .

The one-pot reaction sequence begins with Barton ester thermal dissociation to give a nucleophilic ethyl radical that undergoes addition onto the unsubstituted carbon of the terminal alkyne resulting in a vinyl radical for aromatic substitution.

The yields for reactions with indole-3-carbonitrile 11a and indole-3-carbaldehyde 11b with methyl and ethyl propiolate to give 6,7 -dihydropyrido $[1,2-a$] indoles 12a, 12b
and $\mathbf{1 2 d}$ are $72-79 \%$, with a smaller isolated yield obtained of adduct 12c (68\%) from the reaction of 11a with tert-butyl propiolate. The tandem protocol is insensitive to substituents at the indole-3-position with 3-methylindole-1-propanoic acid (11f) giving 10-methyl-6,7-dihydropyrido[1,2-a]indole-9-carboxylate 12e in 76\% yield inferring a nonpolar cyclising radical. An efficient chain for vinyl radical aromatic substitution is indicated since no other indole adducts were observed.

Scheme 3.7. Radical cyclisation onto indole via tandem reaction and Barton ester

Though ESR data has suggested α-carboxy and α-phenyl vinylic radicals adopt close to linear π-type resonance stabilized structures, ${ }^{85,86}$ a bent σ-type structure has been reported. ${ }^{87-89}$ The conjugation of the vinyl radical with the adjacent substituent gives an electrophilic radical, while a nucleophilic or neutral radical would be expected if the σ-type structure is adopted.

The isolation of only aromatic substitution product 13a in 72% yield from the reaction of 3 -unsubstituted 1-indolepropanoic acid 11d with methyl propiolate (Scheme 3.7) indicates that the intermediate vinyl radical is not influenced by polar effects.

In agreement with the Barton et al chain proposal, ${ }^{5}$ it can be inferred that the 2thiopyridinyl S-radical traps the intermediate cyclised radical (the indol-3-yl radical in Scheme 3.6) prior to elimination of 2-pyridinethiol on rearomatisation.

In contrast to 3 -substituted indoles, aromatic S-radical adduct 13a is formed by oxidation during the reaction (presumably by the presence of adventitious oxygen), as confirmed by analysis of the reaction mixture. A mechanism similar to that proposed by Curran and Keller may be involved where hydrogen atom transfer to oxygen would
give $\mathrm{HO}_{2}{ }^{\bullet}$, which is used to explain the formation of "oxidised" aromatic substitution products from metal hydride-mediated reactions. ${ }^{14,90}$

A seven-membered vinyl radical cyclisation allowed access to the 7,8 -dihydro- 6 H -azepino[1,2-a]indole system. Use of 3-formylindole-1-butanoic acid 11c and methyl propiolate allowed isolation of seven-membered adduct 7,8-dihydro-6H-azepino[1,2a] indole-10-carboxylate 15 albeit in 23% yield with 2,3-dihydro- 1 H -pyrrolo[1,2a]indole 16 predominating in 51% yield (Scheme 3.8).

Scheme 3.8. 7,8-Dihydro- 6 H -azepino[1-2- a]indole via one-pot initiator-free tandem reactions

The higher yield for the propyl radical adduct $\mathbf{1 6}$ is in accordance with a more favourable five-membered cyclisation, where there is also compatible polar effects between the nucleophilic radical and the activated 2-position of indole-3carbaldehyde. We previously reported a five-membered alkyl radical cyclisation occurring in 78% yield via the decomposition of the Barton ester of 4-(3-cyano- 1 H -indol-1-yl)butanoic acid. ${ }^{83}$ Thus, it seemed that the tandem reaction via a cyclising seven-membered vinyl radical would be more favorable using non-activated indole 11e (Scheme 3.7), however unexpectedly this gave 2,3-dihydro- 1 H -pyrrolo[1,2a] indole 14 as the major product in 53% yield with the desired 7,8 -dihydro- 6 H -azepino[1,2-a] indole-10-carboxylate 13b isolated in 21% yield. Therefore, it seems that cyclisations of alkyl radicals like vinyl radicals onto indoles are not significantly influenced by polar effects.

The addition of nucleophilic radicals ($t-\mathrm{Bu}^{\bullet}$) onto electron-deficient alkyl propiolates is reported to be about ten times faster than onto phenylacetylene $\left(\sim k=2 \times 10^{5} \mathrm{M}^{-1} \mathrm{~s}^{-1}\right.$ for alkyl propiolates in 1,2-epoxypropane in comparison to $k=2.1 \times 10^{4} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ for
phenylacetylene in isopropanol at 300 K), ${ }^{73,85}$ which may explain the higher yield for reaction of indole-3-carbaldehyde 11b with alkyl propiolates (Scheme 3.6) in comparison with phenylacetylene to give the phenyl analogue $\mathbf{1 7 a}$ in 61% yield, with 14% isolated of 2-thiopyridine 18a (Scheme 3.9). Nevertheless this convenient tandem radical approach represents the first synthesis of 9 -substituted 6,7-dihydropyrido[1,2-a]indoles.

Scheme 3.9 One-pot initiator-free tandem reactions with less reactive alkynes

Yields of 8,9-disubstituted 6,7-dihydropyrido[1,2-a]indoles 17b and 17c (5-23\% in Scheme 3.9) were low from reactions of 3-cyanoindole-1-propanoic acid (11a) with internal alkynes under analogous Barton ester conditions to those used for terminal alkynes (Scheme 3.6).

The major product was 1-[2-(pyridin-2-ylthio)ethyl]-1 H -indole-3-carbonitrile (18b) (in $59-81 \%$ yield) indicative of a less competitive chain for the aromatic substitution.

The addition of the intermediate ethyl radical onto disubstituted alkynes is expected to be slow, as indicated by literature radical addition rates of nucleophilic radicals (t Bu^{\bullet}) onto ethyl 3-phenylprop-2-ynoate and methyl but-2-ynoate, which are $k=4.2 \mathrm{x}$ $10^{4} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ and $k=5.2 \times 10^{2} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ respectively in 1,2-epoxypropane at $300 \mathrm{~K},{ }^{73,85}$ factors of 10-1000 times slower than onto alkyl propiolates.

The selectivity of the ethyl radical addition onto ethyl 3-phenylprop-2-ynoate to give an α-styryl vinylic radical and onto methyl hex-2-ynoate to give an α-propyl vinylic radical respectively was confirmed by the X-ray crystal structures of the substitution
products; ethyl 10-cyano-9-phenyl-6,7-dihydropyrido[1,2-a]indole-8-carboxylate (17b) (Figure 3.1), and methyl 10-cyano-9-propyl-6,7-dihydropyrido[1,2-a]indole-8carboxylate (17c). (Figure 3.2).

The addition is thus dictated by steric factors in agreement with the ESR observation of α-phenyl vinyl radical formation from the addition of $\mathrm{Me}_{3} \mathrm{C}^{\bullet}$ onto alkyl 3-phenylprop-2-ynoates. ${ }^{85}$ The lowest yielding tandem reaction to give adduct $\mathbf{1 7 c}$ emphasizes the steric congestion about methyl hex-2-ynoate. The formation of sulfides 18a and 18b is only observed where the alkyne is less reactive, and can occur by alternative ethyl radical reactions such as combination with the 2-thiopyridinyl S radical or from addition onto the Barton ester ${ }^{5,91}$ to establish a chain.

Figure 3.1. X-ray crystal structures of ethyl 10-cyano-9-phenyl-6,7-dihydropyrido [1,2-a] indole -8-carboxylate (17b)

Figure 3.2. X-ray crystal structures of methyl 10-cyano-9-propyl-6,7-dihydropyrido[1,2- a]indole-8-carboxylate (17c)

3.3 Conclusion

One-pot initiator-free Barton ester decomposition, and tandem radical addition onto alkyl propiolates or phenylacetylene with aromatic substitution of the resultant vinyl radical allows convenient access to 9 -substituted 6,7-dihydropyrido[1,2-a]indoles. Propyl radical cyclisations compete when forming the expanded 7,8 -dihydro- 6 H -azepino[1,2-a]indole system.

2-Thiopyridinyl S-radical is incorporated into aromatic adducts when using unsubstituted indole-1-alkanoic acid precursors.

X-ray crystal structures of ethyl 10-cyano-9-phenyl-6,7-dihydropyrido [1,2-a] indole-8-carboxylate (17b) and methyl 10-cyano-9-propyl-6,7-dihydropyrido[1,2-a]indole-8carboxylate ($\mathbf{1 7 c}$) allowed selectivity of the radical addition onto less reactive internal alkynes to be determined.

Chapter 4

Benzo[e][1,2,4]triazin-7-ones: Comparisons of anticancer activity with pleurotin

Most of this Chapter is to be submitted for publication:

Benzo[e][1,2,4]triazin-7-ones: New thioredoxin reductase inhibitors and comparisons of anti-cancer activity with pleurotin,

Robert Coyle, Martin Sweeney, Andrey A. Berezin, Daniele Lo Re, Panayiotis A. Koutentis, Michael P. Carty and Fawaz Aldabbagh

4.1 Introduction

4.1.1 Synthesis of benzo[e][1,2,4]triazin-7-ones

Scheme 4.1 Synthesis of benzotriazinones 19a and $\mathbf{2 0}$ from benzotriazinyl radicals via oxidation with MnO_{2} and conversion of benzotriazinone 19a into 6 -substituted analogues 19b-I

First identified by Huisgen and Wulff in the late 1960s, ${ }^{92}$ and isolated in $1980,{ }^{93}$ the rich chemistry of 1,3-diphenylbenzo-[e][1,2,4]triazin-7-ones 19 has only recently been explored. ${ }^{94-96}$

1,3-Diphenyl- and 1-phenyl-3-(trifluoromethyl)benzo[e][1,2,4]triazin-7($1 H$)-ones (19a and 20) were prepared by mild oxidation of the readily available 1,3-diphenyland 1-phenyl-3-(trifluoromethyl)-1,4-dihydro-benzo[e][1,2,4]triazin-4-yl radicals ${ }^{94,97}$ using MnO_{2} (10 equiv) in DCM at $c a .20^{\circ} \mathrm{C}$ (Scheme 4.1).

Described as indefinitely stable ${ }^{98}$ benzotriazin-4-yl radicals such as Blatter's radical have recently been prepared in high yields via oxidative cyclisation using Pd-C and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) in an air atmosphere from N phenylamidrazone (Scheme 4.2). ${ }^{94}$

Scheme 4.2 Synthesis of various 1,3-diphenyl-1,4-dihydro-1,2,4-benzotriazin-4-yls from N -phenylamidrazones

Treatment of 1,3-diphenylbenzo $[e][1,2,4]$ triazin- $7(1 \mathrm{H})$-one $(\mathbf{1 9 a})^{95,96}$ with a series of nitrogen and oxygen nucleophiles subsequently gave the corresponding 6 -substituted benzotriazinones $\mathbf{1 9 b} \mathbf{- i}, \mathbf{k}$ and 191, ${ }^{96,99,100}$ while the 6 -acetamido derivative $\mathbf{1 9 j}$ was prepared from acetylation of the 6 -aminobenzotriazinone 19b using acetyl bromide in DMF, according to reported procedures ${ }^{95,96,99-101}$ (Scheme 4.1).

4.1.2 Biological activity of 1,3 -diphenylbenzo- $[e][1,2,4]$-triazine-7-($1 H$)ones and the link to thioredoxin reductase (TrxR)

Triazin-7-ones 19 (Figure 4.1) and derivatives have lately been implicated as multitarget inhibitors in Alzheimer's disease of beta-amyloid (A β) aggregation and acetyl-(AChE)/butyryl- (BChE) cholinesterase. ${ }^{99}$

19a: R = H
NSC: S768093

NSC: S401005

20

NSC: S668844

Figure 4.1 1,3-Diphenylbenzo-[$e][1,2,4]$-triazine-7-(1H)ones 19a-1 and 1-phenyl-3-(trifluoromethyl)-benzo $[e][1,2,4]$ triazin- $7(1 H)$-one $\mathbf{2 0}$ with correlated compounds pleurotin and 8-fluoro-11-methyl-1 H -benzo[a]carbazole-1,4(11H)-dione using NCI COMPARE analysis

Scaffold 19 contains a highly conjugated iminoquinone motif. Recently an iminoquinone derivative of imidazo[5,4-f] benzimidazoles was shown to be a potent anti-cancer compound. ${ }^{14,20}$

Specificity of the latter towards $\mathrm{NAD}(\mathrm{P}) \mathrm{H}$:quinone oxidoreductase 1 (NQO1) expression was demonstrated using COMPARE analysis of toxicity towards the 60 cell lines at the National Cancer Institute (NCI) Development Therapeutics Program (DTP) and using computational docking of iminoquines and quinones into the enzyme active site. ${ }^{20}$

We now report COMPARE analysis of toxicity of parent triazin-7-one 19a leading to alternative correlations to synthetic and biomolecules, including the discovery of a very strong correlation to the naturally occurring antibiotic, pleurotin. This paraquinone with perhydroanthracene core was first isolated in the 1940s by Robbins et al. from the basidiomycete; Pleurotus griseus. ${ }^{102}$ Though, pleurotin has been synthesized, ${ }^{103}$ Shipley et al. reported a multi-gram fermentation process using H. atrocaerulea for supply of pleurotin to the $\mathrm{NCI}\left(\mathrm{LC}_{50}\right.$ of 42 mM by NCI). ${ }^{104}$

Pleurotin possesses antibacterial, ${ }^{102}$ antifungal, ${ }^{105}$ and anti-cancer activity, including inhibiting the hypoxia-induced factor (HIF-1 α); a transcription factor associated with many aspects of tumour growth. ${ }^{106}$ The underlying pathway to much of this antibiotic and anticancer activity is pleurotin's ability to act as a potent inhibitor $(0.17 \mu \mathrm{M})$ of thioredoxin protein (Trx)-thioredoxin reductase (TrxR) system. ${ }^{107,108}$

Earlier reports more specifically describe pleurotin as an irreversible inhibitor of TrxR with a K_{i} of $0.28 \mu \mathrm{M} .{ }^{23,106} \mathrm{TrxR}$ is flavoprotein homodimer with each monomer containing FAD prosthetic group, NADPH binding domain, and a redox-active selenothiol active site. ${ }^{109,110}$ TrxR is the only known enzyme to reduce Trx protein, which in turn provides reducing equivalents for a number of essential redoxdependent cellular processes, such as $\mathrm{H}_{2} \mathrm{O}_{2}$ metabolism, sulfate assimilation, DNAsignalling and signal transduction. ${ }^{111,112}$

Trx protein is however over-expressed in a number of cancers, ${ }^{113}$ and is associated with increased cell proliferation, inhibition of apoptosis, and decreased patient survival. ${ }^{111}$ Further the reduced form of Trx protein inhibits the tumour suppressor protein PTEN (protein tyrosine phosphatase and tensin homolog). ${ }^{14,115}$

Mutations in PTEN occur in a number of cancers, including in a number of prostate and breast cancer cell lines. ${ }^{116}$ Thus negative regulation of Trx protein through TrxR inhibition is a highly significant strategy for the discovery of new anticancer agents.

The toxicity of 1,3-diphenylbenzo-[e][1,2,4]triazin-7-ones 19a-l with variable substitution at C-6 and compound 20 where the 3-phenyl is replaced by a trifluoromethyl substituent is presented in order to determine key-structure activity relationships (Fig 4.1).

4.2 Results and discussion

4.2.1 Developmental Therapeutic Program (DTP) National Cancer Institute (NCI) 60 human tumour cell line screen and COMPARE analysis.

One dose $(10 \mu \mathrm{~m})$ mean graph data of triazin-7-one 19a showed strong growth inhibition against a number of cancer cell lines, particularly leukaemia, colon, melanoma and renal (Fig 4.2).

Figure 4.2 Summary of DTP NCI-60 single dose ($10 \mu \mathrm{~m}$) screening results for compound 19a expressed as average percent growth of each cancer type

The variable toxicity profile resulted in compound 19a being selected for five dose testing; establishing the $\mathrm{GI}_{50}, \mathrm{LC}_{50}$ and TGI. Naturally occurring anti-cancer agent pleurotin had the highest correlation coefficient (out of ~ 70000 compounds) in the NCI database to triazine 19a at 0.84 (Table 4.1). Further a very strong correlation was noted between triazin-7- one 19a (0.80) and carbazole para-quinone (NSC S668844, Figure 4.1), which was also strongly associated to pleurotin (0.87) indicating potential common mechanisms of action.

Entry	Compound	Pleurotin	NSC S668844
1	19a	0.84	0.80
2	Pleurotin	-	0.87

Table 4.1 COMPARE analysis to strongly correlated synthetic compounds in the NCI database expressed as Pearson correlation coefficients.

A negative correlation was obtained between compounds 19a, pleurotin and NSC S668844 with TrxR (TXNRD1), indicating the three compounds exert a greater cytotoxic effect in cell lines with reduced TrxR activity. Medium to strong correlations (0.41-0.61) for all three compounds (19a, NSC S668844 and pleurotin) to alternative cancer markers (Table 4.2); the mitogen-activated protein kinase MAPK14 (also known as $\mathrm{p} 38 \alpha$) and high-mobility group AT-hook 2 (HMGA2) were obtained.

Entry	Compound	Biological (Cancer) Markers		
		MAPK14	HMGA2	TXNRD1
1	$\mathbf{1 9 a}$	0.45	0.50	$-(0.25)$
2	Pleurotin	0.61	0.41	$-(0.21)$
3	NSC S668844	0.60	0.56	$-(0.22)$

Table 4.2 COMPARE analysis to strongly correlated biological markers MAPK14 and HMGA2 in the NCI database expressed as Pearson correlation coefficients.

MAPKs form part of cellular signal pathways activated in response to extracellular stresses, although the MAPK pathway is also concerned with cell survival, differentiation and immune response. ${ }^{117}$ A literature link between TrxR and MAPK exists in that PTEN tumour-suppressor protein inhibition (stimulated by the reduced form of $\operatorname{Trx})^{114,115}$ is reported, as a downstream blocker of the MAPK pathway in breast and prostate cancers. ${ }^{118,119}$ The recent discovery of the 1,3-diphenylbenzo$[e][1,2,4]$ triazin-7-one scaffold in inhibition of Alzheimer's disease (AD) ${ }^{99}$ can be linked to compound 19a correlations with MAPK14 (Table 4.2); in that p38 MAPK-
signalling is a widely accepted cascade contributing to neurodegenerative processes of AD. ${ }^{120-122}$

HMGA2 gene expression is negligible in adult human healthy tissues with heightened expression occurring in a variety of cancers. ${ }^{123,124}$ The precise mechanisms by which HMGA2 contributes to cancer are unknown, but its associated with metastasis and poor prognosis for the patient.

4.2.2. Cytotoxicity against normal and cancer cell lines using the MTT assay

Toxicity towards the prostate DU-145 and breast MCF-7 cancer cell lines was investigated further using benzo-[e][1,2,4]triazin-7-one analogues using the MTT assay. Both cell lines form part of the NCI-60 human tumour cell line screen with the response of a normal human-skin fibroblast (GM00637) cell line determined for comparison purposes.

Pleurotin displayed sub-micromolar toxicity towards all three cell lines investigated with parent 1,3-diphenylbenzo-[e][1,2,4]triazin-7-ones 19a showing comparable toxicity (Table 5.3). Substitution at the 6-position of the 1,3-diphenylbenzo-[e][1,2,4]triazin-7-one scaffold with amine, amide and alkoxy substituents was investigated (compounds 19a-I).

Substitution with methoxy- and ethoxy-groups in compounds 19k and 191 and amide 19j decreased toxicity to negligible values. The methoxy substituent (OMe) on indolequinones has previously been shown to lead to significant reductions in toxicity towards normal cells in comparison to its replacement with an aziridinyl substituent, with the trends in toxicity correlated to a less electron-affinic property, as a result of OMe. ${ }^{125-126}$

Cyclic amine substituents in 19f-19i (pyrrolo-, piperidino-, morpholino-, thiomorpholino-) led to toxicity values $1.5-13$ times smaller than the parent 19a. For cyclic amine substituents, morpholino- and thiomorpholino of $\mathbf{1 9 h}$ and 191 toxicity is reduced in comparison to piperidinyl analogue $\mathbf{1 9 g}$.

Among the amines 19b-19e, primary amine substituents in 19c and 19d gave submicromolar toxicity across all three cell lines with ethylamino- in 19d resulting in similar potency to the parent 19a, with an approximately two-fold reduced toxicity in comparison to 19a towards the MCF-7 cell line.

The most selective compound towards the two cancer lines investigated was however compound 20, where the 3-phenyl is replaced by a trifluoromethyl substituent. Benzo-[e][1,2,4]triazin-7-one 20 showed sub-micromolar toxicity towards the prostate (DU 145) and breast (MCF-7) cancer cell lines which were about 2-3 fold greater than towards the normal human cell line (GM00637).

$\mathrm{Compd}^{\text {c }}$	R	Cell Lines		
		GM00637	DU-145	MCF-7
Pleurotin		0.51 ± 0.12	0.43 ± 0.06	0.28 ± 0.03
19a	H	0.23 ± 0.01	0.23 ± 0.03	0.81 ± 0.08
19b	NH_{2}	2.04 ± 0.21	1.83 ± 0.08	0.95 ± 0.03^{b}
19c	NHMe	0.93 ± 0.03	0.98 ± 0.06	0.69 ± 0.12^{b}
19d	NHEt	0.24 ± 0.01	0.22 ± 0.01	1.62 ± 0.24
19e	NEt_{2}	2.73 ± 0.36	3.11 ± 0.08	>5.0
19f	N	1.79 ± 0.12	2.46 ± 0.19	0.36 ± 0.08^{b}
19g		1.19 ± 0.02	0.61 ± 0.05	1.98 ± 0.06
19h		2.29 ± 0.06	3.21 ± 0.37	2.37 ± 0.07
19i		1.63 ± 0.31	1.22 ± 0.06	0.97 ± 0.16^{b}
19j	$\begin{gathered} \mathrm{O} \\ \mathrm{HNCCH}_{3} \end{gathered}$	>5.0	>5.0	>5.0
19k	OMe	>5.0	>5.0	>5.0
191	OEt	>5.0	>5.0	$>5.0^{b}$
20		1.61 ± 0.21	0.85 ± 0.04	0.60 ± 0.13

${ }^{a} \mathrm{IC}_{50}(\mu \mathrm{M})$ represents the compound concentration required for the reduction of the mean cell viability to 50% of the control value after incubation for 72 h at $37{ }^{\circ} \mathrm{C}$. ${ }^{b}$ IC_{50} values obtained by Martin Sweeney. ${ }^{c}$ Compounds 19a-191 \& 20 were obtained from P. A. Koutentis, Associate Professor, Department of Chemistry, University of Cyprus
Table 4.3 Cytotoxicity evaluation using the MTT assay: IC_{50} values $(\mu \mathrm{M})^{a}$

4.3. Conclusions

Developmental Therapeutic Program (DTP) National Cancer Institute (NCI) 60 human tumour cell line screen and COMPARE analysis of 1,3-diphenylbenzo-[e][1,2,4]-triazine-7-(1 H) one yielded an excellent correlation to the natural occurring antibiotic pleurotin, and to cancer markers MAPK14 and HMGA2.

MTT cytotoxicity evaluations determined substitution at the 6-position of diphenylbenzo-[e][1,2,4]-triazine-7-(1 H)ones led to reduce cytotoxicity across all three cell-lines with ethylamine substituted 19d, the single exception. A large cytotoxicity drop-off was noted for alkoxy and amide substituted benzo- $[e][1,2,4]-$ triazine-7-(1H)ones 19j-I.

4.4. Future work

Given the now described strong correlation to pleurotin of triazin-7-one 19a, an examination of the inhibitory activity of the latter compound and analogues towards thioredoxin reductase (TrxR) using the purified human enzyme is required.

The first comprehensive computational docking study of pleurotin into the human TrxR active site is envisioned, along with that of the selected benzo-[e][1,2,4]triazin-7-ones, in order to determine the substrate structural requirements for efficient TrxR reduction, and to assess the relationship between cytotoxicity and protein-ligand interactions.

Potent triazine-7ones 19d and 20 will now be submitted to the (NCI) 60 human tumour cell line screen.

Chapter 5

Experimental

5.1 General

5.1.1 Instrumental

Melting points were determined on a Stuart Scientific melting point apparatus SMP3. IR spectra were obtained using a Perkin-Elmer Spectrum 1000 FT-IR spectrophotometer with ATR accessory. NMR spectra were recorded using a JOEL GXFT 400 MHz instrument equipped with a DEC AXP 300 computer workstation. Chemical shifts are reported relative to trimethylsilane as internal standard with NMR assignments supported by DEPT for all compounds and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ NMR 2D spectra for all compounds. Coupling constants (J) are expressed in Hertz (Hz). High resolution mass spectra (HRMS) for all compounds were carried out using electrospray ionization (ESI) on a Waters LCT Premier XE spectrometer by manual peak matching. The precision of all accurate mass measurements is better than 5 ppm.

5.1.2 Methods and Materials

All commercially available reagents were obtained from Sigma-Aldrich. Ethyl trans-2'-\{[(methylsulfonyl)oxy]methyl\}cyclopropanecarboxylate, ethyl 2-(2bromoethyl)cyclopropanecarboxylate and ethyl 2-(3-bromopropyl) cyclopropanecarboxylate were prepared in accordance with a previously reported preocedures. ${ }^{48,49}$ Solvents were purified and dried prior to use according to conventional methods. All reactions were carried out under a nitrogen atmosphere apart from those involving aqueous solutions. NaH was obtained as 60% dispersion in oil and used without further purification. Monitoring of reactions by Thin Layer Chromatography (TLC) was carried out on aluminium-backed plates coated with silica gel (Merck Kieselgel $60 \mathrm{~F}_{254}$). Column chromatography were carried out using Merck Kieselgel silica gel 60 (particle size $0.040-0.063 \mathrm{~mm}$)

5.2 Experimental for Chapter 2

General Procedure for \boldsymbol{N}-Alkylation of Indole-3-carbonitrile (Procedure 1.)

Indole-3-carbonitrile ($0.700 \mathrm{~g}, 4.92 \mathrm{mmol}$), mesylate ($1.175 \mathrm{~g}, 5.30 \mathrm{mmol}$) or bromide (5.30 mmol) and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.955 \mathrm{~g}, 14.15 \mathrm{mmol})$ in DMF $(125 \mathrm{~mL})$ were heated at 100 ${ }^{\circ} \mathrm{C}$ for 16 h . The mixture was filtered, evaporated, dissolved in $\mathrm{CHCl}_{3}(250 \mathrm{~mL})$, and washed with water ($3 \times 100 \mathrm{~mL}$). The organic extract was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, evaporated, and the residue purified by column chromatography using silica gel as absorbent with a gradient elution of hexanes and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Experiment 1: carboxylate (1c)

Ethyl trans-2'-[(3-cyano-1H-indol-1-yl)methyl]cyclopropane

In accordance with procedure 1 gave ($1.112 \mathrm{~g}, 84 \%$), white solid, $\mathrm{mp} 85-86{ }^{\circ} \mathrm{C}, R_{\mathrm{f}}$ $0.25\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v_{\max }\left(\right.$ neat, $\left.\mathrm{cm}^{-1}\right)$ 2983, $2218(\mathrm{CN}), 1719(\mathrm{C}=\mathrm{O}), 1531,1467,1451$, $1415,1392,1367,1350,1266,1175,1089,1042 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.95(1 \mathrm{H}$, ddd, J 5.0, 6.2, 8.5, $\left.3^{\prime}-\mathrm{H}\right), 1.23\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CH}_{3}\right), 1.31\left(1 \mathrm{H}, \mathrm{ddd}, J 5.0,5.0,9.2,3^{\prime}-\mathrm{H}\right)$, $1.67-1.71\left(1 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}\right), 1.85-1.94\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 4.02-4.17(4 \mathrm{H}, \mathrm{m}), 7.25-7.35(2 \mathrm{H}$, m), $7.40(1 \mathrm{H}, \mathrm{d}, J 7.8,7-\mathrm{H}), 7.65(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 7.73(1 \mathrm{H}, \mathrm{d}, J 7.8,4-\mathrm{H}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 14.0\left(3^{\prime}-\mathrm{CH}_{2}\right), 14.3\left(\mathrm{CH}_{3}\right), 19.7\left(1^{\prime}-\mathrm{CH}\right), 21.1\left(2^{\prime}-\mathrm{CH}\right), 49.3\left(\mathrm{NCH}_{2}\right), 61.1$ $\left(\mathrm{OCH}_{2}\right), 86.3$ (3-C), 110.5 (7-CH), $115.9(\mathrm{CN}), 120.0(4-\mathrm{CH}), 122.4,124.1$ (5,6-CH), 127.9 (C), $134.3(2-\mathrm{CH}), 135.5(\mathrm{C}), 172.7$ (C=O); HRMS (ESI): found $\mathrm{M}+\mathrm{H}^{+}$, 269.1283. $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires 269.1290 .

Experiment 2: Ethyl trans-2'-[2-(3-cyano-1H-indol-1-yl)ethyl]cyclopropane carboxylate (1g)

In accordance with procedure 1 gave ($1.086 \mathrm{~g}, 78 \%$), yellow oil, $R_{\mathrm{f}} 0.28\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; $v_{\text {max }}\left(\right.$ neat, cm^{-1}) 2981, $2216(\mathrm{CN}), 1716(\mathrm{C}=\mathrm{O}), 1532,1468,1411,1394,1368,1336$, $1266,1176,1087,1045 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.51\left(1 \mathrm{H}, \mathrm{ddd}, J 4.3,6.2,8.2,3^{\prime}-\mathrm{H}\right)$, $1.02\left(1 \mathrm{H}, \mathrm{ddd}, J 4.3,4.3,8.7,3^{\prime}-\mathrm{H}\right), 1.10-1.20\left(5 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}, 2^{\prime}-\mathrm{H} \& \mathrm{CH}_{3}\right), 1.65-1.71$ $(1 \mathrm{H}, \mathrm{m}), 1.76-1.83(1 \mathrm{H}, \mathrm{m}), 3.93-4.06\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 4.18\left(2 \mathrm{H}, \mathrm{t}, J 6.9, \mathrm{NCH}_{2}\right)$, 7.16-7.25 ($2 \mathrm{H}, \mathrm{m}$), 7.32 ($1 \mathrm{H}, \mathrm{d}, J 7.8,7-\mathrm{H}$), 7.53 ($1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}$), 7.64 ($1 \mathrm{H}, \mathrm{d}, ~ J 7.8,4-$ $\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 13.8\left(\mathrm{CH}_{3}\right)$, $14.1\left(3^{\prime}-\mathrm{CH}_{2}\right), 19.2,19.3\left(1^{\prime}, 2^{\prime}-\mathrm{CH}\right), 32.6$ $\left(\mathrm{CH}_{2}\right), 46.3\left(\mathrm{NCH}_{2}\right), 60.3\left(\mathrm{OCH}_{2}\right), 85.1(3-\mathrm{C}), 110.2(7-\mathrm{CH}), 115.6(\mathrm{CN}), 119.4(4-$ $\mathrm{CH}), 121.7,123.4(5,6-\mathrm{CH}), 127.5$ (C), 134.6 (2-CH), 134.8 (C), 173.1 (C=O); HRMS (ESI): found $\mathrm{M}+\mathrm{H}^{+}$, 283.1441. $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires 283.1447.

Experiment 3: Ethyl trans-2'-[3-(3-cyano-1H-indol-1-yl)propyl]cyclopropane carboxylate (1k)

In accordance with procedure 1 gave ($1.196 \mathrm{~g}, 82 \%$), yellow oil, $R_{\mathrm{f}} 0.45\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; $v_{\text {max }}\left(\mathrm{neat}, \mathrm{cm}^{-1}\right)$ 2983, $2218(\mathrm{CN}), 1719(\mathrm{C}=\mathrm{O}), 1532,1468,1411,1396,1367,1335$, $1269,1173,1086,1048 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.64-0.69\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 1.15-1.19$ ($1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}$), $1.25\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.1, \mathrm{CH}_{3}\right), 1.29-1.37(4 \mathrm{H}, \mathrm{m}), 1.95-2.03(2 \mathrm{H}, \mathrm{m}), 4.07-$ $4.13\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 4.18\left(2 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{NCH}_{2}\right), 7.26-7.40(3 \mathrm{H}, \mathrm{m}), 7.59(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$, $7.76(1 \mathrm{H}, \mathrm{d}, J 7.8,4-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 14.2\left(\mathrm{CH}_{3}\right), 15.3\left(3^{\prime}-\mathrm{CH}_{2}\right), 20.2,21.7$ (1', 2'- CH), 29.4, $30.1\left(\mathrm{CH}_{2}\right), 46.7\left(\mathrm{NCH}_{2}\right), 60.6\left(\mathrm{OCH}_{2}\right), 85.8(3-\mathrm{C}), 110.4(7-\mathrm{CH})$, 115.9 (CN), 120.1 (4-CH), 122.1, 123.8 (5,6-CH), 127.9 (C), 134.4 (2-CH), 135.2 (C), 174.0 ($\mathrm{C}=\mathrm{O}$); HRMS (ESI): found $\mathrm{M}+\mathrm{H}^{+}$, 297.1602. $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires 297.1603.

General Procedure for N-Alkylation of Indole-3-carbaldehyde and benzimidazoles (Procedure 2.)

Indole-3-carbaldehyde or benzimidazoles (8.50 mmol) and $\mathrm{NaH}(0.224 \mathrm{~g}, 9.35$ mmol) in DMF (25 mL) were heated at $100{ }^{\circ} \mathrm{C}$ for 30 min . A solution of mesylate ($2.08 \mathrm{~g}, 9.35 \mathrm{mmol}$) or bromide $(9.35 \mathrm{mmol})$ in DMF (10 mL) was added, and the mixture stirred at room temperature for 16 h . The mixture was evaporated, dissolved in CHCl_{3} (50 mL), and washed with water (3 x 25 mL). The organic extract was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, evaporated and the residue purified by column chromatography using silica gel as absorbent with a gradient elution of hexanes and EtOAc.

Experiment 4: Ethyl cis-2'-[2-(3-formyl-1H-indol-1-yl)ethyl]cyclopropane carboxylate (1e)

In Accordance with procedure 2 gave ($2.013 \mathrm{~g}, 83 \%$), yellow oil, $R_{\mathrm{f}} 0.22\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; $\nu_{\max }$ (neat, cm^{-1}) 1714 ($\mathrm{C}=\mathrm{O}$ ester), $1656(\mathrm{C}=\mathrm{O}$ aldehyde), 1613, 1529, 1466, 1398, $1380,1269,1168,1140,1039 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.92\left(1 \mathrm{H}, \mathrm{ddd}, J 5.3,5.3,7.1,3^{\prime}-\right.$ H), 1.01-1.06 ($\left.1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 1.09-1.18\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 1.24\left(3 \mathrm{H}, \mathrm{t}, J 7.2, \mathrm{CH}_{3}\right), 1.69$ (1 H, ddd, $\left.J 5.3,8.3,8.3,1^{\prime}-\mathrm{H}\right), 2.12-2.27(2 \mathrm{H}, \mathrm{m}), 3.94-4.03(1 \mathrm{H}, \mathrm{m}, \mathrm{OCH} H), 4.03-$ $4.12(1 \mathrm{H}, \mathrm{m}, \mathrm{OCHH}), 4.20\left(2 \mathrm{H}, \mathrm{t}, J 6.9, \mathrm{NCH}_{2}\right), 7.28-7.36(2 \mathrm{H}, \mathrm{m}), 7.39-7.41(1 \mathrm{H}, \mathrm{m}$, $7-\mathrm{H}), 7.72(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 8.28-8.31(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 10.00(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 13.3\left(3^{\prime}-\mathrm{CH}_{2}\right), 14.4\left(\mathrm{CH}_{3}\right), 17.8\left(1^{\prime}-\mathrm{CH}\right), 18.8\left(2^{\prime}-\mathrm{CH}\right), 27.3\left(\mathrm{CH}_{2}\right), 47.3$ $\left(\mathrm{NCH}_{2}\right), 60.8\left(\mathrm{OCH}_{2}\right), 110.2(7-\mathrm{CH}), 118.3(\mathrm{C}), 122.2(4-\mathrm{CH}), 123.0,124.1(5,6-\mathrm{CH})$, 125.5, 137.3 (C), 138.4 (2-CH), 172.7 (COOEt), 184.6 (CHO); HRMS (ESI): found $\mathrm{M}+\mathrm{H}^{+}$, 286.1447. $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{3}$ requires 286.1443.

Experiment 5: Ethyl cis-2'-[2-(1H-benzimidazol-1-yl)ethyl]cyclopropane carboxylate (1f)

In accordance with procedure 2 gave ($1.691 \mathrm{~g}, 77 \%$), yellow oil, $R_{\mathrm{f}} 0.51$ (EtOAc); $v_{\text {max }}\left(\right.$ neat, $\left.\mathrm{cm}^{-1}\right) 1724(\mathrm{C}=\mathrm{O}), 1610,1499,1456,1398,1383,1284,1178,1089 ; \delta_{\mathrm{H}}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $0.90\left(1 \mathrm{H}, \mathrm{q}, J 5.2,3^{\prime}-\mathrm{H}\right), 0.98-1.04\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 1.05-1.15(1 \mathrm{H}$, $\left.\mathrm{m}, 2^{\prime}-\mathrm{H}\right), 1.23\left(3 \mathrm{H}, \mathrm{t}, J 7.2, \mathrm{CH}_{3}\right), 1.68$ (1 H, ddd, $\left.J 5.2,8.4,8.4,1^{\prime}-\mathrm{H}\right), 2.08-2.23(2 \mathrm{H}$, $\mathrm{m}), 3.95-4.03(1 \mathrm{H}, \mathrm{m}, \mathrm{OCHH}), 4.03-4.11(1 \mathrm{H}, \mathrm{m}, \mathrm{OCHH}), 4.18\left(2 \mathrm{H}, \mathrm{t}, J 6.9, \mathrm{NCH}_{2}\right)$, 7.24-7.31 ($2 \mathrm{H}, \mathrm{m}$), $7.42(1 \mathrm{H}, \mathrm{d}, J 7.6,7-\mathrm{H}), 7.78(1 \mathrm{H}, \mathrm{d}, J 7.1,4-\mathrm{H}), 7.91(1 \mathrm{H}, \mathrm{s}, 2-$ H); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 13.2\left(3^{\prime}-\mathrm{CH}_{2}\right), 14.4\left(\mathrm{CH}_{3}\right), 17.8\left(1^{\prime}-\mathrm{CH}\right), 18.8\left(2^{\prime}-\mathrm{CH}\right), 27.3$ $\left(\mathrm{CH}_{2}\right), 45.0\left(\mathrm{NCH}_{2}\right), 60.7\left(\mathrm{OCH}_{2}\right), 109.9(7-\mathrm{CH}), 120.4(4-\mathrm{CH}), 122.2,123.0(5,6-$ $\mathrm{CH}), 133.9(\mathrm{C}), 143.1(2-\mathrm{CH}), 143.8(\mathrm{C}), 172.8(\mathrm{C}=\mathrm{O})$; HRMS (ESI): found $\mathrm{M}+\mathrm{H}^{+}$, 259.1439. $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires 259.1447.

Experiment 6: Ethyl trans-2'-[2-(5,6-dimethyl-1H-benzimidazol-1-yl)ethyl]

 cyclopropanecarboxylate (1h)

In accordance with procedure 2 gave ($1.980 \mathrm{~g}, 81 \%$), yellow oil, $R_{\mathrm{f}} 0.41$ (EtOAc); $v_{\max }\left(\right.$ neat, $\left.\mathrm{cm}^{-1}\right) 1717(\mathrm{C}=\mathrm{O}), 1498,1470,1451,1411,1370,1329,1274,1204,1177$, 1086,$1044 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.50-0.55\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 1.04-1.09\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right)$, $1.16\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CH}_{3}\right), 1.21-1.26\left(2 \mathrm{H}, \mathrm{m}, 1^{\prime}, 2^{\prime}-\mathrm{H}\right), 1.69-1.79(2 \mathrm{H}, \mathrm{m}), 2.30(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 2.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.97-4.03\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 4.12\left(2 \mathrm{H}, \mathrm{t}, J 6.9, \mathrm{NCH}_{2}\right), 7.06$ $(1 \mathrm{H}, \mathrm{s}, 7-\mathrm{H}), 7.50(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 7.69(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 13.9\left(\mathrm{CH}_{3}\right)$, $14.4\left(3^{\prime}-\mathrm{CH}_{2}\right), 19.4,19.5\left(1^{\prime}, 2^{\prime}-\mathrm{CH}\right), 20.0,20.3\left(\mathrm{CH}_{3}\right), 32.9\left(\mathrm{CH}_{2}\right), 44.2\left(\mathrm{NCH}_{2}\right), 60.3$ $\left(\mathrm{OCH}_{2}\right), 109.4(7-\mathrm{CH}), 120.1(4-\mathrm{CH}), 130.6,131.7,131.9$ (all C), 141.9 (2-CH), 142.3 (C), 173.3 ($\mathrm{C}=\mathrm{O}$); HRMS (ESI): found $\mathrm{M}+\mathrm{H}^{+}$, 287.1759. $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires 287.1760.

Experiment 7: Ethyl trans-2'-[2-(4,7-dimethoxy-1H-benzimidazol-1-yl)ethyl]

 cyclopropanecarboxylate (1i)

In accordance with procedure 2 gave ($1.980 \mathrm{~g}, 73 \%$), yellow oil, $R_{\mathrm{f}} 0.50$ (EtOAc); $v_{\max }\left(\right.$ neat, $\left.\mathrm{cm}^{-1}\right) 1751(\mathrm{C}=\mathrm{O}), 1523,1456,1443,1371,1265,1207,1116,1088,1077$, $1038 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.58\left(1 \mathrm{H}, \mathrm{ddd}, J 4.6,6.4,8.2 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right), 1.12$ (1 H, ddd, J 4.6, 4.6, 8.9, $\left.3^{\prime}-\mathrm{H}\right), 1.23\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CH}_{3}\right), 1.27-1.37\left(2 \mathrm{H}, \mathrm{m}, 1^{\prime}, 2^{\prime}-\mathrm{H}\right), 1.77-1.88(2 \mathrm{H}$, $\mathrm{m}), 3.89\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.97\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.03-4.12\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right), 4.36-4.52$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 6.52(1 \mathrm{H}, \mathrm{d}(\mathrm{AB}-\mathrm{q}), J 8.4,5,6-\mathrm{H}), 6.56(1 \mathrm{H}, \mathrm{d}(\mathrm{AB}-\mathrm{q}), J 8.4,5,6-\mathrm{H})$, $7.70(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 14.3\left(\mathrm{CH}_{3}\right), 14.8\left(3^{\prime}-\mathrm{CH}_{2}\right), 19.6,19.8\left(1^{\prime}, 2^{\prime}-\right.$ $\mathrm{CH}), 35.2\left(\mathrm{CH}_{2}\right), 46.6\left(\mathrm{NCH}_{2}\right), 55.7,56.1\left(\mathrm{OCH}_{3}\right), 60.6\left(\mathrm{OCH}_{2}\right), 101.8,103.1(5,6-$ CH), 124.7, 136.2, 141.6 (all C), 142.2 (2-CH), 146.3 (C), 173.9 (C=O); HRMS (ESI): found $\mathrm{M}+\mathrm{H}^{+}$, 319.1654. $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires 319.1658.

Experiment 8: Ethyl cis-2'-[3-(1H-benzimidazol-1-yl)propyl]cyclopropane

 carboxylate ($\mathbf{1} \mathbf{j}$)

In accordance with procedure 2 gave ($1.880 \mathrm{~g}, 81 \%$), yellow oil, $R_{\mathrm{f}} 0.35$ (EtOAc); $v_{\text {max }}\left(\right.$ neat, $\left.\mathrm{cm}^{-1}\right) 1717(\mathrm{C}=\mathrm{O}), 1613,1492,1456,1381,1328,1285,1254,1166,1090$, $1044 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.85-0.88\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 0.97\left(1 \mathrm{H}, \mathrm{ddd}, J 4.6,8.2,8.2,3^{\prime}-\right.$ H), $1.16\left(3 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{CH}_{3}\right), 1.12-1.21(1 \mathrm{H}, \mathrm{m}), 1.50-1.66(3 \mathrm{H}, \mathrm{m}), 1.77-1.92(2 \mathrm{H}, \mathrm{m})$, $4.01\left(2 \mathrm{H}, \mathrm{q}, J 7.3, \mathrm{OCH}_{2}\right), 4.09\left(2 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{NCH}_{2}\right), 7.19-7.25(2 \mathrm{H}, \mathrm{m}), 7.31-7.34$ $(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 7.73-7.76(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 7.82(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 13.6$ $\left(3^{\prime}-\mathrm{CH}_{2}\right), 14.4\left(\mathrm{CH}_{3}\right), 18.1,21.0\left(1^{\prime}, 2^{\prime}-\mathrm{CH}\right), 24.5,29.9\left(\mathrm{CH}_{2}\right), 44.8\left(\mathrm{NCH}_{2}\right), 60.5$ $\left(\mathrm{OCH}_{2}\right), 109.7(7-\mathrm{CH}), 120.4(4-\mathrm{CH}), 122.1,122.8(5,6-\mathrm{CH}), 133.8(\mathrm{C}), 142.9$ (2CH), 144.0 (C), 172.9 ($\mathrm{C}=\mathrm{O}$); HRMS (ESI): found $\mathrm{M}+\mathrm{H}^{+}$, 273.1598. $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires 273.1603.

Experiment 9 Ethyl cis-2'-[3-(3-formyl-1H-indol-1-yl)propyl]cyclopropane

 carboxylate (11)

In accordance with procedure 2 gave $(1.840 \mathrm{~g}, 72 \%)$, yellow oil, $R_{\mathrm{f}} 0.51$ (hexanesEtOAc 3:2); IR ($v_{\max }$, neat/ $/ \mathrm{cm}^{-1}$) 2933, 2249, 1718 ($\mathrm{C}=\mathrm{O}$ ester), 1659 ($\mathrm{C}=\mathrm{O}$ aldehyde), $1615,1578,1533,1468,1402,1389,1178,1136,1095,1048 ; \delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.92$ (1 H, ddd, $J 4.6,6.9,6.9,3^{\prime}-\mathrm{H}$), 1.03 (1 H, ddd, J4.6, 8.2, 8.2, $3^{\prime}-$ H), $1.20\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CH}_{3}\right), 1.23-1.26\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 1.55-1.71(3 \mathrm{H}, \mathrm{m}), 1.82-2.00$ $(2 \mathrm{H}, \mathrm{m}), 4.02-4.08\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 4.15\left(2 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{NCH}_{2}\right), 7.29-7.33(3 \mathrm{H}, \mathrm{m})$, $7.69(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 8.27-8.29(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 9.97(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $13.6\left(3^{\prime}-\mathrm{CH}_{2}\right), 14.4\left(\mathrm{CH}_{3}\right), 18.1,21.1\left(1^{\prime}, 2^{\prime}-\mathrm{CH}\right), 24.5,29.9\left(\mathrm{CH}_{2}\right), 47.1\left(\mathrm{NCH}_{2}\right), 60.5$ $\left(\mathrm{OCH}_{2}\right), 110.1(7-\mathrm{CH}), 118.2(\mathrm{C}), 122.2(4-\mathrm{CH}), 123.0,124.0(5,6-\mathrm{CH}), 125.6(\mathrm{C})$, 137.2 (3-C), $138.3(2-\mathrm{CH}), 172.9$ (COOEt), 184.6 (CHO); HRMS (ESI): found $\mathrm{M}+\mathrm{H}^{+}, 300.1598 . \mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{3}$ requires 300.1600.

General Procedure for \boldsymbol{N}-Alkylation of Indole (Procedure 3.)

Indole ($0.500 \mathrm{~g}, 4.26 \mathrm{mmol}), t$-BuOK $(0.500 \mathrm{~g}, 4.46 \mathrm{mmol})$ and 18 -crown-6 $(0.120 \mathrm{~g}$, $0.45 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ were stirred vigorously at room temperature for 10 min . Ethyl trans-2'-(2-bromoethyl)cyclopropanecarboxylate ($1.000 \mathrm{~g}, 4.52 \mathrm{mmol}$) was added and the reaction stirred at room temperature for 16 h . Water (50 mL) was added, the $\mathrm{Et}_{2} \mathrm{O}$ layer extracted, evaporated and purified by column chromatography using silica gel as absorbent with a gradient elution of hexanes and EtOAc.

Experiment 10: Ethyl-trans-2'-[2-(1H-indol-1-yl)ethyl] cyclopropanecarboxylate

(1d)

In accordance with procedure 3 gave ($0.537 \mathrm{~g}, 49 \%$), colourless oil, $R_{\mathrm{f}} 0.65$ (hexanesEtOAc 4:1); $v_{\text {max }}\left(\right.$ neat, $\left.\mathrm{cm}^{-1}\right) 1718$ (C=O), 1512, 1464, 1411, 1369, 1335, 1314, 1265, 1244, 1201, 1176, 1085, 1045, 1012; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.61(1 \mathrm{H}$, ddd, J 4.6, 6.2, 8.2, $3^{\prime}-\mathrm{H}$), 1.13 (1 H , ddd, $\left.J 4.6,4.6,8.9,3^{\prime}-\mathrm{H}\right), 1.24\left(3 \mathrm{H}, \mathrm{t}, J 6.8, \mathrm{CH}_{3}\right)$, 1.26-1.33 (2H, m, 1'-H \& 2'-H), 1.77-1.83 (2H, m), 4.04-4.10 (2H, m, OCH ${ }_{2}$), 4.22 $\left(2 \mathrm{H}, \mathrm{t}, J 6.8, \mathrm{NCH}_{2}\right), 6.49(1 \mathrm{H}, \mathrm{d}, J 2.3,3-\mathrm{H}), 7.07-7.12(2 \mathrm{H}, \mathrm{m}), 7.18-7.22(1 \mathrm{H}, \mathrm{m})$, $7.31-7.33(1 \mathrm{H}, \mathrm{m}), 7.64(1 \mathrm{H}, \mathrm{d}, J 7.8 \mathrm{~Hz}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 14.2\left(\mathrm{CH}_{3}\right), 14.8$ $\left(3^{\prime}-\mathrm{CH}_{2}\right), 19.9,20.1\left(1^{\prime}, 2^{\prime}-\mathrm{CH}\right), 33.6\left(\mathrm{CH}_{2}\right), 45.8\left(\mathrm{NCH}_{2}\right), 60.5\left(\mathrm{OCH}_{2}\right), 101.2(3-$ CH), 109.1, 119.1, 121.0, 121.4, 127.7 (all CH), 128.6, 135.8 (C), 173.8 (C=O); HRMS (ESI): found $\mathrm{M}+\mathrm{H}^{+}$, 258.1485. $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}_{2}$ requires 258.1494.

General Procedure for Hydrolysis of Esters (Procedure 4.)

A mixture of ethyl ester (5.80 mmol) and $\mathrm{NaOH}(2.5 \mathrm{M}, 3.5 \mathrm{~mL})$ in EtOH (30 mL) was refluxed for 4 h . The solution was evaporated, dissolved in water (20 mL) and washed with EtOAc ($2 \times 10 \mathrm{~mL}$) to remove traces of unreacted ester. The aqueous solution was acidified with $\mathrm{HCl}(2.8 \mathrm{M})$ to pH 4 , extracted with EtOAc ($2 \times 30 \mathrm{~mL}$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated to give the acid.

Experiment 11: 2'-[(3-Cyano-1H-indol-1-yl)methyl]-trans-cyclopropane

 carboxylic acid (2c)

In accordance with procedure 4 gave ($1.030 \mathrm{~g}, 74 \%$), brown solid, $\mathrm{mp} 59-60{ }^{\circ} \mathrm{C}$; $v_{\text {max }}$ (neat, cm^{-1}) 2924, 2218 (CN), 1695 (C=O), 1531, 1466, 1451, 1432, 1392, 1336, $1264,1230,1184,1086,1024,1013 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{MeOH}-d_{4}\right) 1.04$ (1 H, ddd, J 4.6, $\left.6.2,8.7,3^{\prime}-\mathrm{H}\right), 1.19$ (1H, ddd, J 4.6, 4.6, 9.2, $\left.3^{\prime}-\mathrm{H}\right), 1.72$ (1 H, ddd, $J 4.6,4.6,8.7,1^{\prime}-$ H), 1.82-1.91 ($1 \mathrm{H}, \mathrm{m}$), $4.20\left(2 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{NCH}_{2}\right), 7.23-7.35(2 \mathrm{H}, \mathrm{m}, 5,6-\mathrm{H}), 7.57-7.64$ $(2 \mathrm{H}, \mathrm{m}, 4,7-\mathrm{H}), 7.98(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$, OH not observed; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{MeOH}-d_{4}\right) 14.3$ (3'- CH_{2}), 20.1 ($\left.1^{\prime}-\mathrm{CH}\right), 22.8\left(2^{\prime}-\mathrm{CH}\right), 49.9\left(\mathrm{NCH}_{2}\right), 85.9$ (3-C), 112.1 ($\left.7-\mathrm{CH}\right), 116.9$ (CN), 120.2 ($4-\mathrm{CH}$), 123.3, 124.9 (5,6-CH), 129.1 (C), 136.8 (2-CH), 137.0 (C), 176.8 ($\mathrm{C}=\mathrm{O}$); HRMS (ESI): found $\mathrm{M}+\mathrm{H}^{+}$, 241.0976. $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires 241.0977.

Experiment 12: 2'-[2-(1H-indol-1-yl)ethyl]-trans-cyclopropanecarboxylic acid (2d)

In accordance with procedure 4 gave ($1.093 \mathrm{~g}, 82 \%$), white solid, mp $106-107{ }^{\circ} \mathrm{C}$; $v_{\text {max }}\left(\right.$ neat, $\left.\mathrm{cm}^{-1}\right) 2927,1687(\mathrm{C}=\mathrm{O}), 1512,1463,1432,1336,1314,1230,1203,1086$, $1012 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{MeOH}-d_{4}\right) 0.59$ (1 H , ddd, $J 4.4,6.3,8.4,3^{\prime}-\mathrm{H}$), 0.97 (1 H , ddd, J $\left.4.4,4.4,8.7,3^{\prime}-\mathrm{H}\right), 1.14-1.22(1 \mathrm{H}, \mathrm{m}), 1.26$ (1 H , ddd, $\left.J 4.4,4.4,8.4,1^{\prime}-\mathrm{H}\right), 1.66-1.82$ $(2 \mathrm{H}, \mathrm{m}), 4.21\left(2 \mathrm{H}, \mathrm{t}, J 6.8, \mathrm{NCH}_{2}\right), 6.39(1 \mathrm{H}, \mathrm{dd}, J 0.7,3.2,3-\mathrm{H}), 6.96-7.00(1 \mathrm{H}, \mathrm{m})$, $7.08-7.12(1 \mathrm{H}, \mathrm{m}), 7.14(1 \mathrm{H}, \mathrm{d}, J 3.2,2-\mathrm{H}), 7.34(1 \mathrm{H}, \mathrm{dd}, J 0.7,8.2,7-\mathrm{H}), 7.50(1 \mathrm{H}, \mathrm{d}$, $J 7.8,4-\mathrm{H})$, OH not observed; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{MeOH}-d_{4}\right) 14.2\left(3^{\prime}-\mathrm{CH}_{2}\right), 19.2\left(1^{\prime}-\mathrm{CH}\right)$, 20.0 ($\left.2^{\prime}-\mathrm{CH}\right), 33.3\left(\mathrm{CH}_{2}\right), 45.2\left(\mathrm{NCH}_{2}\right), 100.6$ (3-CH), 109.0 (7-CH), 118.7, 120.4, 120.9 (all CH), 127.7 (2-CH), 128.8, 136.1 (C), 176.6 (C=O). HRMS (ESI): found $\mathrm{M}+\mathrm{H}^{+}, 230.1188 . \mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NO}_{2}$ requires 230.1181.

Experiment 13: 2'-[2-(3-Formyl-1H-indol-1-yl)ethyl]-cis-cyclopropane carboxylic acid (2e)

In accordance with procedure 4 gave ($1.149 \mathrm{~g}, 77 \%$), brown solid, mp $133-134{ }^{\circ} \mathrm{C}$; $v_{\max }$ (neat, cm^{-1}) 1699 ($\mathrm{C}=\mathrm{O}$ acid), 1605 ($\mathrm{C}=\mathrm{O}$ aldehyde), 1572, 1532, 1469, 1456, 1393 , 1302, 1274, 1206, 1175, 1140, 1100, 1074, 1044, 1024, 1014; $\delta_{\mathrm{H}}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)$ 0.95-1.00 $(1 \mathrm{H}, \mathrm{m}), 1.12-1.14(1 \mathrm{H}, \mathrm{m}), 1.18-1.28(1 \mathrm{H}, \mathrm{m}), 1.74(1 \mathrm{H}, \mathrm{ddd}, J$ $\left.5.5,8.3,8.3,1^{\prime}-\mathrm{H}\right), 2.13-2.29(2 \mathrm{H}, \mathrm{m}), 4.22\left(2 \mathrm{H}, \mathrm{t}, J 6.8, \mathrm{NCH}_{2}\right), 7.27-7.34(2 \mathrm{H}, \mathrm{m})$, 7.36-7.40 ($1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}$), $7.73(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 8.27-8.30(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 9.98(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO})$, OH not observed; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 14.0\left(3^{\prime}-\mathrm{CH}_{2}\right), 17.5,19.6\left(1^{\prime}, 2^{\prime}-\mathrm{CH}\right), 27.3$ $\left(\mathrm{CH}_{2}\right), 46.9\left(\mathrm{NCH}_{2}\right), 110.1(7-\mathrm{CH}), 118.0(\mathrm{C}), 122.0(4-\mathrm{CH}), 123.0,124.0(5,6-\mathrm{CH})$, 125.3 (C), $137.2(2-\mathrm{CH}), 138.7$ (C), $178.3(\mathrm{COOH}), 184.9$ (CHO); HRMS (ESI): found $\mathrm{M}+\mathrm{H}^{+}$, 258.1137. $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NO}_{3}$ requires 258.1130.

Experiment 14: 2'-[2-(1H-benzimidazol-1-yl)ethyl]-cis-cyclopropane carboxylic acid (2f).

In accordance with procedure 4 gave ($0.855 \mathrm{~g}, 64 \%$), yellow solid, mp $155-156{ }^{\circ} \mathrm{C}$; $v_{\text {max }}\left(\right.$ neat, $\left.\mathrm{cm}^{-1}\right) 1696(\mathrm{C}=\mathrm{O}), 1608,1496,1456,1380,1322,1304,1274,1261,1183$, $1140,1079,1001 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) 0.60-0.64\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 0.89(1 \mathrm{H}, \mathrm{ddd}$, $\left.J 4.1,8.2,8.2,3^{\prime}-\mathrm{H}\right), 1.07-1.18(1 \mathrm{H}, \mathrm{m}), 1.57-1.63(1 \mathrm{H}, \mathrm{m}), 1.94-2.00(2 \mathrm{H}, \mathrm{m}), 4.14-$ $4.30\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right), 7.14-7.23(2 \mathrm{H}, \mathrm{m}), 7.55(1 \mathrm{H}, \mathrm{d}, J 7.8,7-\mathrm{H}), 7.63(1 \mathrm{H}, \mathrm{d}, J 7.8,4-$ H), $8.18(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 12.30(1 \mathrm{H}, \mathrm{bs}, \mathrm{OH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) 13.2\left(3^{\prime}-\mathrm{CH}_{2}\right)$, 17.7, $18.4\left(1^{\prime}, 2^{\prime}-\mathrm{CH}\right), 27.8\left(\mathrm{CH}_{2}\right), 44.6\left(\mathrm{NCH}_{2}\right), 110.9(7-\mathrm{CH}), 120.0(4-\mathrm{CH}), 122.0$, 122.8 (5,6-CH), 134.3, 143.9 (C), $144.5(2-\mathrm{CH}), 174.4(\mathrm{C}=\mathrm{O})$; HRMS (ESI): found $\mathrm{M}+\mathrm{H}^{+}$, 231.1124. $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires 231.1134.

Experiment 15: 2'-[2-(3-Cyano-1H-indol-1-yl)ethyl]-trans-cyclopropane

 carboxylic acid (2g)

In accordance with procedure 4 gave ($1.168 \mathrm{~g}, 79 \%$), pale yellow oil, $v_{\text {max }}$ (neat, cm^{-} $\left.{ }^{1}\right) 2926,2216(\mathrm{CN}), 1690(\mathrm{C}=\mathrm{O}), 1531,1467,1394,1359,1336,1183,1085,1014 ; \delta_{\mathrm{H}}$ $\left(400 \mathrm{MHz}, \mathrm{MeOH}-d_{4}\right) 0.52\left(1 \mathrm{H}, \mathrm{ddd}, J 4.2,7.3,7.3,3^{\prime}-\mathrm{H}\right), 0.94$ (1 H, ddd, $J 4.2,4.2$, 8.8, $\left.3^{\prime}-\mathrm{H}\right), 1.10-1.19$ ($2 \mathrm{H}, \mathrm{m}, 1^{\prime}, 2^{\prime}-\mathrm{H}$), 1.60-1.76 (2H, m), 4.17 ($2 \mathrm{H}, \mathrm{t}, J 6.8, \mathrm{NCH}_{2}$), $7.14-7.25(2 \mathrm{H}, \mathrm{m}), 7.43(1 \mathrm{H}, \mathrm{d}, J 8.2,7-\mathrm{H}), 7.55(1 \mathrm{H}, \mathrm{d}, J 7.8,4-\mathrm{H}), 7.76(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$, OH not observed; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{MeOH}-d_{4}\right) 15.1\left(3^{\prime}-\mathrm{CH}_{2}\right)$, 20.3, 20.7 ($\left.1^{\prime}, 2^{\prime}-\mathrm{CH}\right), 33.8$ $\left(\mathrm{CH}_{2}\right), 47.3\left(\mathrm{NCH}_{2}\right), 85.4(3-\mathrm{C}), 112.0(7-\mathrm{CH}), 117.0(\mathrm{CN}), 120.0(4-\mathrm{CH}), 123.0$, 124.7 (5,6-CH), 128.9, $136.6(\mathrm{C}), 137.0(2-\mathrm{CH}), 177.5(\mathrm{C}=\mathrm{O})$; HRMS (ESI): found $\mathrm{M}+\mathrm{H}^{+}$, 255.1124. $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires 255.1134.

Experiment 16: $\quad 2^{\prime}$-[2-(5,6-Dimethyl-1 \mathbf{H}-benzimidazol-1-yl)ethyl]-transcyclopropanecarboxylic acid (2h).

In accordance with procedure 4 gave ($0.961 \mathrm{~g}, 64 \%$), white solid, $\mathrm{mp} 205-206{ }^{\circ} \mathrm{C}$; $\nu_{\text {max }}\left(\right.$ neat, $\left.\mathrm{cm}^{-1}\right) 1696(\mathrm{C}=\mathrm{O}), 1497,1472,1449,1378,1329,1276,1224,1199,1141$, $1008 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) 0.59$ (1 H , ddd, $J 4.1,6.2,8.0,3^{\prime}-\mathrm{H}$), 0.84 (1 H , ddd, J $\left.4.1,4.1,8.5,3^{\prime}-\mathrm{H}\right), 1.08(1 \mathrm{H}, \mathrm{bs}), 1.31(1 \mathrm{H}, \mathrm{bs}), 1.64-1.82(2 \mathrm{H}, \mathrm{m}), 2.26\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $2.29\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.21\left(2 \mathrm{H}, \mathrm{t}, J 6.9, \mathrm{NCH}_{2}\right), 7.33-7.37(2 \mathrm{H}, \mathrm{m}), 8.01(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$, $12.07(1 \mathrm{H}, \mathrm{bs}, \mathrm{OH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) 14.2\left(3^{\prime}-\mathrm{CH}_{2}\right), 19.0,19.2\left(1^{\prime}, 2^{\prime}-\mathrm{CH}\right)$, 19.9, $20.1\left(\mathrm{CH}_{3}\right), 32.3\left(\mathrm{CH}_{2}\right), 43.7\left(\mathrm{NCH}_{2}\right), 110.4(7-\mathrm{CH}), 119.4(4-\mathrm{CH}), 129.7$, 130.9, 132.3, 142.0 (all C), 143.1 (2-CH), 174.8 (C=O); HRMS (ESI): found $\mathrm{M}+\mathrm{H}^{+}$, 259.1443. $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires 259.1447.

Experiment 17: 2'-[2-(4,7-Dimethoxy-1H-benzimidazol-1-yl)ethyl]-trans-

 cyclopropanecarboxylic acid (2i)

In accordance with procedure 4 gave ($1.000 \mathrm{~g}, 59 \%$), white solid, $\mathrm{mp} 186-187{ }^{\circ} \mathrm{C}$; $v_{\text {max }}\left(\right.$ neat, $\left.\mathrm{cm}^{-1}\right) 1690(\mathrm{C}=\mathrm{O}), 1526,1499,1457,1442,1381,1358,1338,1286,1261$, 1228, 1092, 1067; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) 0.54$ (1 H , ddd, J 3.9, 6.2, 8.2, $3^{\prime}-\mathrm{H}$), $0.81-0.88\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 1.02-1.08(1 \mathrm{H}, \mathrm{m}), 1.24\left(1 \mathrm{H}, \mathrm{ddd}, J 4.5,4.5,8.2,1^{\prime}-\mathrm{H}\right), 1.65-$ $1.79(2 \mathrm{H}, \mathrm{m}), 3.81\left(6 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.36\left(2 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{NCH}_{2}\right), 6.51(1 \mathrm{H}, \mathrm{d}(\mathrm{AB}-\mathrm{q}), J$ $8.7,5,6-\mathrm{H}), 6.60(1 \mathrm{H}, \mathrm{d}(\mathrm{AB}-\mathrm{q}), J 8.7,5,6-\mathrm{H}), 7.95(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 12.00(1 \mathrm{H}, \mathrm{bs}, \mathrm{OH})$; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) 15.2\left(3^{\prime}-\mathrm{CH}_{2}\right)$, 19.9, $20.1\left(1^{\prime}, 2^{\prime}-\mathrm{CH}\right), 35.3\left(\mathrm{CH}_{2}\right), 46.8$ $\left(\mathrm{NCH}_{2}\right), 56.8,57.0\left(\mathrm{OCH}_{3}\right), 103.5,104.4(5,6-\mathrm{CH}), 125.5,136.6,142.4$ (all C), 144.1 (2-CH), 146.7 (C), 175.9 (C=O); HRMS (ESI): found $\mathrm{M}+\mathrm{H}^{+}$, 291.1347. $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires 291.1345 .

Experiment 18: 2'-[3-(1H-benzimidazol-1-yl)propyl]-cis-cyclopropane carboxylic acid (2j)

In accordance with procedure 4 gave ($1.001 \mathrm{~g}, 71 \%$), white solid, mp $165-166{ }^{\circ} \mathrm{C}$; $v_{\text {max }}\left(\right.$ neat, $\left.\mathrm{cm}^{-1}\right) 1694(\mathrm{C}=\mathrm{O}), 1611,1499,1456,1363,1290,1239,1204,1183,1138$, $1034 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{MeOH}-d_{4}\right)$ 0.81-0.85 ($1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}$), 1.03 (1 H , ddd, J 4.1, 8.2, 8.2, 3'-H), 1.30 (1 H , ddd, J 8.2, 15.4, 15.4, 1'-H), 1.54-1.70 (3H, m), 1.88-2.02 (2 H , $\mathrm{m}), 4.29\left(2 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{NCH}_{2}\right), 7.25-7.33(2 \mathrm{H}, \mathrm{m}), 7.54-7.56(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 7.65-7.68$ $(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 8.18(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), \mathrm{OH}$ not observed; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{MeOH}-d_{4}\right) 14.0$ $\left(\mathrm{CH}_{2}\right), 19.0,21.9\left(1^{\prime}, 2^{\prime}-\mathrm{CH}\right), 25.5,30.8\left(\mathrm{CH}_{2}\right), 45.8\left(\mathrm{NCH}_{2}\right), 111.5(7-\mathrm{CH}), 120.0(4-$ CH), 123.5, 124.3 (5,6-CH), 134.9, 143.8 (C), 144.5 (2-CH), 176.8 (C=O); HRMS (ESI): found $\mathrm{M}+\mathrm{H}^{+}, 245.1292 . \mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires 245.1290.

Experiment 19:
2'-[3-(3-Cyano-1H-indol-1-yl)propyl]-trans-cyclopropane carboxylic acid (2 k)

In accordance with procedure 4 gave ($1.264 \mathrm{~g}, 81 \%$), brown oil, $v_{\max }$ (neat, cm^{-1}) 2925, 2216 (CN), 1689 (C=O), 1530, 1454, 1395, 1361, 1335, 1228, 1264, 1180, 1087,$1045 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{MeOH}-d_{4}\right)$ 0.60-0.65 ($1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}$), 1.03-1.07 ($1 \mathrm{H}, \mathrm{m}, 3^{\prime}-$ H), 1.18-1.28 (4H, m), 1.81-1.89 (2H, m), $4.12\left(2 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{NCH}_{2}\right), 7.16-7.27(2 \mathrm{H}$, $\mathrm{m}), 7.43(1 \mathrm{H}, \mathrm{d}, J 8.3,7-\mathrm{H}), 7.56(1 \mathrm{H}, \mathrm{d}, J 7.8,4-\mathrm{H}), 7.81(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$, OH not observed; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{MeOH}-d_{4}\right) 14.7\left(3^{\prime}-\mathrm{CH}_{2}\right)$, 19.6, $22.0\left(1^{\prime}, 2^{\prime}-\mathrm{CH}\right), 29.2,29.7$ $\left(\mathrm{CH}_{2}\right), 46.2\left(\mathrm{NCH}_{2}\right), 84.2(3-\mathrm{C}), 110.8(7-\mathrm{CH}), 115.8(\mathrm{CN}), 118.9(4-\mathrm{CH}), 121.9$, 123.5 (5,6-CH), 127.8, 135.5 (C), 135.7 (2-CH), 176.8 (C=O); HRMS (ESI): found $\mathrm{M}+\mathrm{H}^{+}$, 269.1297. $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires 269.1290.

Experiment 20: 2'-[3-(3-Formyl-1H-indol-1-yl)propyl]-cis-cyclopropane carboxylic acid (2I)

In accordance with procedure 4 gave ($1.231 \mathrm{~g}, 78 \%$), brown oil, ($v_{\text {max, }}$ neat $/ \mathrm{cm}^{-1}$) 1689 ($\mathrm{C}=\mathrm{O}$ acid), 1651 ($\mathrm{C}=\mathrm{O}$ aldehyde), 1613, 1575, 1527, 1459, 1396, 1388, 1171, $1133,1070,1042 . \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.94-0.99\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 1.11$ (1 H, ddd, J $\left.4.6,8.0,8.0,3^{\prime}-\mathrm{H}\right), 1.26-1.32(1 \mathrm{H}, \mathrm{m}), 1.59-1.75(3 \mathrm{H}, \mathrm{m}), 1.87-1.98(2 \mathrm{H}, \mathrm{m}), 4.11$ $\left(2 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{NCH}_{2}\right), 7.25-7.33(3 \mathrm{H}, \mathrm{m}), 7.67(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 8.26-8.28(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H})$, $9.90(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}), 10.90(1 \mathrm{H}, \mathrm{bs}, \mathrm{OH}) . \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 14.6\left(3^{\prime}-\mathrm{CH}_{2}\right), 18.0$, $22.1\left(1^{\prime}, 2^{\prime}-\mathrm{CH}\right), 24.4,29.7\left(\mathrm{CH}_{2}\right), 47.0\left(\mathrm{NCH}_{2}\right), 110.2(7-\mathrm{CH}), 118.0(\mathrm{C}), 122.2$, 123.1, 124.1 (all CH), 125.5 (C), 137.3 (C), $138.9(2-\mathrm{CH}), 178.9(\mathrm{COOH}), 185.0$ (CHO). HRMS (ESI) found $\mathrm{M}+\mathrm{H}^{+}$272.1284. $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}_{3}$ requires 272.1287.

Experiment 21: Methyl 4-(1H-benzimidazol-1-yl)butanoate (6a)

In accordance with procedure 2 except using benzimidazole (8.50 mmol) and methyl 4-bromobutanoate (9.35 mmol) gave $\left(1.480 \mathrm{~g}, 74 \%\right.$), pale yellow oil, $R_{\mathrm{f}} 0.40$ (EtOAc); $v_{\text {max }}\left(\right.$ neat, $\left.\mathrm{cm}^{-1}\right) 1729$ (C=O), 1615, 1496, 1459, 1438, 1365, 1332, 1286, 1255, 1201, 1162, 1122 1094, 1061, 1007; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.90-1.99(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2}\right), 2.09\left(2 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{CH}_{2} \mathrm{CO}\right), 3.45\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.98\left(2 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{NCH}_{2}\right)$, 7.07-7.10 ($2 \mathrm{H}, \mathrm{m}, 5,6-\mathrm{H}$), 7.20-7.23 ($1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}$), $7.58(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 7.61-7.64(1 \mathrm{H}$, $\mathrm{m}, 4-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 24.9\left(\mathrm{CH}_{2}\right), 30.4\left(\mathrm{CH}_{2} \mathrm{CO}\right), 43.8\left(\mathrm{NCH}_{2}\right), 51.7$ $\left(\mathrm{OCH}_{3}\right), 109.7$ (7-CH), 120.2 (4-CH), 122.1, 122.9 (5,6-CH), 143.0 (2-CH), 143.8 (C), 172.7 ($\mathrm{C}=\mathrm{O}$); HRMS (ESI): found $\mathrm{M}+\mathrm{H}^{+}$, 219.1140. $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires 219.1134.

Experiment 22: Methyl 4-(3-cyano-1H-indol-1-yl)butanoate (6b)

In accordance with procedure 1 exept using indole-3-carbonitrile (4.92 mmol) and methyl 4-bromobutanoate (5.30 mmol) gave ($0.996 \mathrm{~g}, 84 \%$), colourless oil, $R_{\mathrm{f}} 0.68$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v_{\text {max }}\left(\right.$ neat, $\left.\mathrm{cm}^{-1}\right) 2953,2217(\mathrm{CN}), 1731(\mathrm{C}=\mathrm{O}), 1532,1468,1437,1395$, $1364,1243,1196,1165,1045 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 2.12-2.19 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.31$ $\left(2 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{CH}_{2} \mathrm{CO}\right), 3.66\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.23\left(2 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{NCH}_{2}\right), 7.24-7.35(2 \mathrm{H}$, $\mathrm{m}, 5,6-\mathrm{H}), 7.43(1 \mathrm{H}, \mathrm{d}, J 8.2,7-\mathrm{H}), 7.58(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 7.71-7.74(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}) ; \delta_{\mathrm{C}}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 24.9\left(\mathrm{CH}_{2}\right), 30.3\left(\mathrm{CH}_{2} \mathrm{CO}\right), 46.0\left(\mathrm{NCH}_{2}\right), 51.8\left(\mathrm{OCH}_{3}\right), 85.7$ (3-C), 110.5 (7-CH), 115.8 (CN), 119.8 (4-CH), 122.1, 123.8 (5,6-CH), 127.8 (C), 134.6 (2CH), 135.2 (C), 172.7 (C=O); HRMS (ESI): found $\mathrm{M}+\mathrm{H}^{+}$, 243.1140. $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires 243.1134 .

Experiment 23: Methyl 5-(3-formyl-1H-indol-1-yl)pentanoate (6c)

In accordance with procedure 2 except using indole-3-carbaldehyde (8.50 mmol) and methyl 5-bromopentanoate (9.35 mmol) gave $(1.651 \mathrm{~g}, 75 \%)$, yellow oil, $R_{\mathrm{f}} 0.31$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v_{\max }\left(\right.$ neat, $\left.\mathrm{cm}^{-1}\right) 2950,1732(\mathrm{C}=\mathrm{O}$ ester), 1654 ($\mathrm{C}=\mathrm{O}$ aldehyde), 1532, $1468,1437,1401,1388,1254,1166,1089,1013 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.56-1.66$ $(2 \mathrm{H}, \mathrm{m}), 1.82-1.89(2 \mathrm{H}, \mathrm{m}), 2.28\left(2 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{CH}_{2} \mathrm{CO}\right), 3.59\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.11$ $\left(2 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{NCH}_{2}\right), 7.21-7.32(3 \mathrm{H}, \mathrm{m}), 7.67(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 8.22-8.25(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H})$, $9.90(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 21.9,28.9\left(\mathrm{CH}_{2}\right), 33.0\left(\mathrm{CH}_{2} \mathrm{CO}\right), 46.7$ $\left(\mathrm{NCH}_{2}\right), 51.4\left(\mathrm{OCH}_{3}\right), 109.9(7-\mathrm{CH}), 117.8(\mathrm{C}), 121.9,122.7123 .7(\mathrm{CH}), 125.2$, 136.9 (C), 138.3 (2-CH), 173.1 (COOMe), 184.3 (CHO); HRMS (ESI): found $\mathrm{M}+\mathrm{H}^{+}$, 260.1292. $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{3}$ requires 260.1287.

Experiment 24: Methyl 5-(1H-benzimidazol-1-yl)pentanoate (6d)

In accordance with procedure 2 except using benzimidazole (8.50 mmol) and methyl 5-bromopentanoate (9.35 mmol) gave ($1.480 \mathrm{~g}, 75 \%$), yellow oil, $R_{\mathrm{f}} 0.40$ (EtOAc); $v_{\max }\left(\right.$ neat, $\left.\mathrm{cm}^{-1}\right) 1729(\mathrm{C}=\mathrm{O}), 1615,1496,1458,1437,1365,1331,1287,1252,1200$, 1174; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.56-1.64(2 \mathrm{H}, \mathrm{m}), 1.82-1.90(2 \mathrm{H}, \mathrm{m}), 2.28(2 \mathrm{H}, \mathrm{t}, J 7.3$, $\left.\mathrm{CH}_{2} \mathrm{CO}\right), 3.59\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.11\left(2 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{NCH}_{2}\right), 7.20-7.27(2 \mathrm{H}, \mathrm{m}), 7.32-7.35$ ($1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}$), $7.75-7.77(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 7.83(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 22.2$, $29.3\left(\mathrm{CH}_{2}\right), 33.3\left(\mathrm{CH}_{2} \mathrm{CO}\right), 44.8\left(\mathrm{NCH}_{2}\right), 51.7\left(\mathrm{OCH}_{3}\right), 109.7(7-\mathrm{CH}), 120.5(4-\mathrm{CH})$, 122.1, 122.9 ($5,6-\mathrm{CH}), 133.8$ (C), 143.0 ($2-\mathrm{CH}$), 143.9 (C), 173.4 (C=O); HRMS (ESI): found $\mathrm{M}+\mathrm{H}^{+}$, 233.1280. $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires 233.1290.

Experiment 25: Methyl 5-(3-cyano-1H-indol-1-yl)pentanoate (6e)

In accordance with procedure 1 except using indole-3-carbonitrile (4.92 mmol) and methyl 5-bromopentanoate $(5.30 \mathrm{mmol})$ gave $(1.000 \mathrm{~g}, 79 \%)$, white solid, mp 62-64 ${ }^{\circ} \mathrm{C}, R_{\mathrm{f}} 0.60\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v_{\max }\left(\right.$ neat, $\left.\mathrm{cm}^{-1}\right) 3120,2952$, $2211(\mathrm{CN}), 1736(\mathrm{C}=\mathrm{O}), 1527$, $1471,1457,1436,1396,1358,1189,1168,1076 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.50-1.59$ $(2 \mathrm{H}, \mathrm{m}), 1.76-1.84(2 \mathrm{H}, \mathrm{m}), 2.25\left(2 \mathrm{H}, \mathrm{t}, J 7.2, \mathrm{CH}_{2} \mathrm{CO}\right), 3.56\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.08$ ($2 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{NCH}_{2}$), 7.16-7.26 ($2 \mathrm{H}, \mathrm{m}$), $7.33(1 \mathrm{H}, \mathrm{d}, J 8.3,7-\mathrm{H}), 7.55(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$, $7.63(1 \mathrm{H}, \mathrm{d}, J 7.8,4-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 22.1,29.2\left(\mathrm{CH}_{2}\right), 33.3\left(\mathrm{CH}_{2} \mathrm{CO}\right), 46.9$ $\left(\mathrm{NCH}_{2}\right), 51.7\left(\mathrm{OCH}_{3}\right), 85.3$ (3-C), $110.7(7-\mathrm{CH}), 116.1(\mathrm{CN}), 119.8(4-\mathrm{CH}), 122.1$, 123.8 (5,6-CH), 127.9 (C), 135.0 (2-CH), 135.3 (C), 173.4 (C=O); HRMS (ESI): found $\mathrm{M}+\mathrm{H}^{+}$, 257.1283. $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires 257.1290.

Experiment 26: Methyl 6-(1H-benzimidazol-1-yl)hexanoate (6f)

In accordance with procedure 2 except using benzimidazole (8.50 mmol) and methyl 6-bromohexanoate (9.35 mmol) gave ($1.610 \mathrm{~g}, 77 \%$), yellow oil, $R_{\mathrm{f}} 0.41$ (EtOAc); $v_{\text {max }}\left(\right.$ neat, $\left.\mathrm{cm}^{-1}\right) 2945,2863,1730(\mathrm{C}=\mathrm{O}), 1615,1496,1459,1437,1365,1331,1286$, 1243, 1200, 1172, 1155, 1099, 1007; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) 1.17-1.25 (2H, m), 1.49$1.57(2 \mathrm{H}, \mathrm{m}), 1.70-1.78(2 \mathrm{H}, \mathrm{m}), 2.17\left(2 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{CH}_{2} \mathrm{CO}\right), 3.53\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.01$ $\left(2 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{NCH}_{2}\right), 7.13-7.20(2 \mathrm{H}, \mathrm{m}), 7.24-7.28(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 7.69-7.72(1 \mathrm{H}, \mathrm{m}, 4-$ H), $7.77(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 24.3,26.2,29.4\left(\mathrm{CH}_{2}\right), 33.7\left(\mathrm{CH}_{2} \mathrm{CO}\right)$, $44.8\left(\mathrm{NCH}_{2}\right), 51.5\left(\mathrm{OCH}_{3}\right), 109.7(7-\mathrm{CH}), 120.3(4-\mathrm{CH}), 122.0,122.8(5,6-\mathrm{CH})$, 133.8 (C), 143.0 ($2-\mathrm{CH}$), 143.9 (C), 173.7 (C=O); HRMS (ESI): found $\mathrm{M}+\mathrm{H}^{+}$, 247.1447. $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires 247.1447.

Experiment 27: Methyl 6-(3-cyano-1H-indol-1-yl)hexanoate (6g)

In accordance with procedure 1 except using indole-3-carbonitrile (4.92 mmol) and methyl 6-bromohexanoate (5.30 mmol) gave ($1.076 \mathrm{~g}, 81 \%$), yellow oil, $R_{\mathrm{f}} 0.53$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v_{\max }\left(\right.$ neat, $\left.\mathrm{cm}^{-1}\right) 2947,2215(\mathrm{CN}), 1731(\mathrm{C}=\mathrm{O}), 1531,1467,1436,1395$, $1361,1336,1242,1252,1193,1162,1013 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.24-1.32(2 \mathrm{H}, \mathrm{m})$, $1.56-1.64(2 \mathrm{H}, \mathrm{m}), 1.77-1.85(2 \mathrm{H}, \mathrm{m}), 2.24\left(2 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{CH}_{2} \mathrm{CO}\right), 3.59(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 4.10\left(2 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{NCH}_{2}\right), 7.19-7.29(2 \mathrm{H}, \mathrm{m}), 7.35(1 \mathrm{H}, \mathrm{d}, J 8.2,7-\mathrm{H}), 7.55$ $(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 7.66-7.69(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 24.0,25.9,29.2\left(\mathrm{CH}_{2}\right)$, $33.4\left(\mathrm{CH}_{2} \mathrm{CO}\right), 46.7\left(\mathrm{NCH}_{2}\right), 51.3\left(\mathrm{OCH}_{3}\right), 85.0(3-\mathrm{C}), 110.3(7-\mathrm{CH}), 115.8(\mathrm{CN})$, 119.5 (4-CH), 121.8, 123.5 (5,6-CH), 127.6 (C), 134.6 (2-CH), 135.0 (C), 173.5 (C=O); HRMS (ESI): found $\mathrm{M}+\mathrm{H}^{+}, 271.1444 . \mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires 271.1447.

Experiment 28: 4-(1-H-benzimidazol-1-yl)butanoic acid (7a)

In accordance with procedure 4 except using NaOH in MeOH gave ($0.781 \mathrm{~g}, 66 \%$), white solid, mp 137-139 ${ }^{\circ} \mathrm{C}$, lit mp $146-147{ }^{\circ} \mathrm{C}$. Physical and spectroscopic data were consistant with that previously reported. ${ }^{127}$

Experiment 29: 4-(3-Cyano-1H-indol-1-yl)butanoic acid (7b)

In accordance with procedure 4 except using NaOH in MeOH gave ($0.979 \mathrm{~g}, 74 \%$), white solid, mp $82-84{ }^{\circ} \mathrm{C}$, lit $\mathrm{mp} 91-93{ }^{\circ} \mathrm{C}$. Physical and spectroscopic data were consistant with that previously reported. ${ }^{129}$

Experiment 30: 5-(3-Formyl-1H-indol-1-yl)pentanoic acid (7c)

In accordance with procedure 4 except using NaOH in MeOH gave ($0.942 \mathrm{~g}, 66 \%$), brown solid, mp 126-129 ${ }^{\circ} \mathrm{C}$; $v_{\max }$ (neat, cm^{-1}) 3116, 2935, 2590, 1703 ($\mathrm{C}=\mathrm{O}$ acid), 1610 ($\mathrm{C}=\mathrm{O}$ aldehyde), 1578, 1524, 1491, 1475, 1465, 1449, 1393, 1381, 1347, 1218, $1174,1142,1077,1014 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{MeOH}-d_{4}\right) 1.57-1.65(2 \mathrm{H}, \mathrm{m}), 1.88-1.96(2 \mathrm{H}$, $\mathrm{m}), 2.32\left(2 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{CH}_{2} \mathrm{CO}\right), 4.29\left(2 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{NCH}_{2}\right), 7.23-7.33(2 \mathrm{H}, \mathrm{m}, 5,6-\mathrm{H})$, $7.52(1 \mathrm{H}, \mathrm{d}, J 8.2,7-\mathrm{H}), 8.12(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 8.15(1 \mathrm{H}, \mathrm{d}, J 7.8,4-\mathrm{H}), 9.83(1 \mathrm{H}, \mathrm{s}$, $\mathrm{CHO}), \mathrm{OH}$ not observed; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{MeOH}-d_{4}\right) 23.2,30.3\left(\mathrm{CH}_{2}\right), 34.2\left(\mathrm{CH}_{2} \mathrm{CO}\right)$, $47.8\left(\mathrm{NCH}_{2}\right), 111.7$ (7-CH), 119.1 (C), 122.8, 123.9, 125.1 (CH), 126.5, 138.9 (C), $142.2(2-\mathrm{CH}), 177.0(\mathrm{COOH}), 185.7(\mathrm{CHO}) ;$ HRMS (ESI): found $\mathrm{M}+\mathrm{H}^{+}, 246.1125$. $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NO}_{3}$ requires 246.1130 .

Experiment 31: 5-(1H-benzimidazol-1-yl)pentanoic acid (7d)

In accordance with procedure 4 except using NaOH in MeOH gave ($0.949 \mathrm{~g}, 75 \%$), white solid, mp $154-157^{\circ} \mathrm{C}$; $v_{\max }\left(\right.$ neat, cm^{-1}) $3102,2944,2872,1687(\mathrm{C}=\mathrm{O}), 1615$, $1504,1464,1453,1420,1372,1317,1291,1251,1183 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{MeOH}-d_{4}\right)$ $1.55-1.63(2 \mathrm{H}, \mathrm{m}), 1.86-1.94(2 \mathrm{H}, \mathrm{m}), 2.31\left(2 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{CH}_{2} \mathrm{CO}\right), 4.28(2 \mathrm{H}, \mathrm{t}, J 7.1$, NCH_{2}), 7.23-7.33 ($2 \mathrm{H}, \mathrm{m}$), $7.56(1 \mathrm{H}, \mathrm{d}, J 7.8,7-\mathrm{H}), 7.65(1 \mathrm{H}, \mathrm{d}, J 8.3,4-\mathrm{H}), 8.19(1 \mathrm{H}$, $\mathrm{s}, 2-\mathrm{H})$, OH not observed; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{MeOH}-d_{4}\right) 21.9,29.0\left(\mathrm{CH}_{2}\right), 33.0\left(\mathrm{CH}_{2} \mathrm{CO}\right)$, $44.4\left(\mathrm{NCH}_{2}\right), 110.2(7-\mathrm{CH}), 118.7$ (4-CH), 122.3, 123.0 (5,6-CH), 133.6, 142.5 (C), 143.3 (2-CH), $175.8(\mathrm{C}=\mathrm{O})$; HRMS (ESI): found $\mathrm{M}+\mathrm{H}^{+}$, 219.1127. $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires 219.1134 .

Experiment 32: 5-(3-Cyano-1H-indol-1-yl)pentanoic acid (7e)

In accordance with procedure 4 except using NaOH in MeOH gave ($1.029 \mathrm{~g}, 73 \%$), white solid, mp 117-118 ${ }^{\circ} \mathrm{C}$; $v_{\max }$ (neat, cm^{-1}) 3120, 2943, 2875, 2212 (CN), 1701 (C=O), 1532, 1470, 1392, 1323, 1310, 1285, 1259, 1228, 1205, 1151, 1113, 1083; δ_{H} ($400 \mathrm{MHz}, \mathrm{MeOH}-d_{4}$) 1.44-1.52 (2H, m), 1.71-1.79 (2H, m), 2.22 ($2 \mathrm{H}, \mathrm{t}, J 7.4$, $\left.\mathrm{CH}_{2} \mathrm{CO}\right), 4.08\left(2 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{NCH}_{2}\right), 7.14-7.25(2 \mathrm{H}, \mathrm{m}, 5,6-\mathrm{H}), 7.41(1 \mathrm{H}, \mathrm{d}, J 8.2,7-$ H), $7.54(1 \mathrm{H}, \mathrm{d}, J 8.0,4-\mathrm{H}), 7.78(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$, OH not observed; $\delta_{\mathrm{C}}(100 \mathrm{MHz}$, $\left.\mathrm{MeOH}-d_{4}\right) 24.5,31.7\left(\mathrm{CH}_{2}\right), 35.6\left(\mathrm{CH}_{2} \mathrm{CO}\right), 49.0\left(\mathrm{NCH}_{2}\right), 86.7(3-\mathrm{C}), 113.5(7-\mathrm{CH})$, 118.5 (CN), 121.5, 124.5, 126.1 (CH), 130.4, 138.1 (C), 138.4 (2-CH), 178.4 (C=O); HRMS (ESI): found $\mathrm{M}+\mathrm{H}^{+}$, 243.1134. $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires 243.1134.

Experiment 33: 6-(1H-benzimidazol-1-yl)hexanoic acid (7f)

In accordance with procedure 4 except using NaOH in MeOH gave ($0.982 \mathrm{~g}, 73 \%$), white solid, $\mathrm{mp} 110-112{ }^{\circ} \mathrm{C}$; $v_{\max }$ (neat, cm^{-1}) 2953, 2457, 1906, 1694 (C=O), 1505, $1465,1400,1292,1276,1238,1209,1187,1042,1006 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{MeOH}-d_{4}\right)$ $1.30-1.39(2 \mathrm{H}, \mathrm{m}), 1.59-1.67(2 \mathrm{H}, \mathrm{m}), 1.86-1.94(2 \mathrm{H}, \mathrm{m}), 2.26\left(2 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{CH}_{2} \mathrm{CO}\right)$, 4.29 ($2 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{NCH}_{2}$), 7.24-7.33 (2H, m), 7.56 ($1 \mathrm{H}, \mathrm{d}, J 8.3,7-\mathrm{H}$), 7.66 ($1 \mathrm{H}, \mathrm{d}, ~ J$ $7.8,4-\mathrm{H}), 8.18(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), \mathrm{OH}$ not observed; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{MeOH}-d_{4}\right) 25.5,27.2$, $30.6\left(\mathrm{CH}_{2}\right), 34.7\left(\mathrm{CH}_{2} \mathrm{CO}\right), 45.9\left(\mathrm{NCH}_{2}\right), 111.5(7-\mathrm{CH}), 120.0(4-\mathrm{CH}), 123.6,124.3$ (5,6-CH), 134.9, $143.8(\mathrm{C}), 144.6(2-\mathrm{CH}), 177.5(\mathrm{C}=\mathrm{O})$; HRMS (ESI): found $\mathrm{M}+\mathrm{H}^{+}$, 233.1295. $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires 233.1290.

Experiment 34: 6-(3-Cyano-1H-indol-1-yl)hexanoic acid (7g)

In accordance with procedure 4 except using NaOH in MeOH gave ($1.073 \mathrm{~g}, 72 \%$), white precipitate, $\mathrm{mp} 90-91{ }^{\circ} \mathrm{C}$; $v_{\max }\left(\right.$ neat, cm^{-1}) $3127,2952,2874,2212(\mathrm{CN}), 1705$ (C=O), 1524, 1466, 1450, 1410, 1364, 1298, 1252, 1189, 1010; $\delta_{\mathrm{H}}(400 \mathrm{MHz}$, $\left.\mathrm{MeOH}-d_{4}\right)$ 1.28-1.36 (2H, m), 1.57-1.65 (2H, m), 1.81-1.89 (2H, m), $2.25(2 \mathrm{H}, \mathrm{t}, J$ $7.3, \mathrm{CH}_{2} \mathrm{CO}$), $4.24\left(2 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{NCH}_{2}\right), 7.22-7.34(2 \mathrm{H}, \mathrm{m}), 7.55(1 \mathrm{H}, \mathrm{d}, J 8.2,7-\mathrm{H})$, $7.62(1 \mathrm{H}, \mathrm{d}, J 8.0,4-\mathrm{H}), 7.96(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), \mathrm{OH}$ not observed; $\delta_{\mathrm{C}}(100 \mathrm{MHz}, \mathrm{MeOH}-$ $\left.d_{4}\right) 24.2,25.9,29.3\left(\mathrm{CH}_{2}\right), 33.3\left(\mathrm{CH}_{2} \mathrm{CO}\right), 46.5\left(\mathrm{NCH}_{2}\right), 84.0(3-\mathrm{C}), 110.8(7-\mathrm{CH})$, 115.7 (CN), 118.8 (4-CH), 121.8, 123.4 (5,6-CH), 127.9, 135.6 (C), 135.9 ($2-\mathrm{CH}$), 176.1 ($\mathrm{C}=\mathrm{O}$); HRMS (ESI): found $\mathrm{M}+\mathrm{H}^{+}$, 257.1293. $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires 257.1290.

General Procedure for One-Pot Barton Ester Formation and Radical

 Cyclisations onto Indole-3-Carbonitrile and Indole-3-Carbaldehyde (Procedure 5.)$\mathrm{Et}_{3} \mathrm{~N}(0.32 \mathrm{~mL}, 2.30 \mathrm{mmol})$ in THF (5.7 mL) was added to a mixture of carboxylic acid (0.76 mmol) and HOTT ($0.424 \mathrm{~g}, 1.14 \mathrm{mmol}$) in MeCN (1.9 mL). The solution was stirred at room temperature in the absence of light for 40 min . MeCN (68 mL) was added, and the mixture illuminated with two 100 W light bulbs, and heated under reflux for 6 h . The solution was evaporated, dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$. The organic extract evaporated and purified by column chromatography using silica gel as absorbent with a gradient elution of hexanes and $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{Et}_{2} \mathrm{O}$ or EtOAc.

General Procedure for One-Pot Barton Ester Formation and Radical

 Cyclisations onto Benzimidazoles (Procedure 6.)$\mathrm{Et}_{3} \mathrm{~N}(0.32 \mathrm{~mL}, 2.30 \mathrm{mmol})$ in THF (5.7 mL) was added to a mixture of carboxylic acid (0.76 mmol), HOTT ($0.424 \mathrm{~g}, 1.14 \mathrm{mmol}$) and (DMAP $9.3 \mathrm{mg}, 0.08 \mathrm{mmol}$) in $\mathrm{MeCN}(1.9 \mathrm{~mL})$. The solution was stirred at room temperature in the absence of light for 40 min . $\mathrm{MeCN}(68 \mathrm{~mL}$) was added or a solution of CSA ($0.711 \mathrm{~g}, 3.06 \mathrm{mmol}$) in $\mathrm{MeCN}(68 \mathrm{~mL})$ for selected benzimidazoles and the mixture illuminated with two 100 W light bulbs, and heated under reflux for 6 h . The solution was evaporated, dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$. The organic extract evaporated and purified by column chromatography using silica gel as absorbent with a gradient elution of hexanes and EtOAc.

Experiment 35: 1,1a,2,8b-Tetrahydrocyclopropa[3,4]pyrrolo[1,2-a]indole-8carbonitrile (3c)

In accordance with procedure 5 gave $(0.111 \mathrm{~g}, 75 \%)$, white solid, $\mathrm{mp} 117-118{ }^{\circ} \mathrm{C}, R_{\mathrm{f}}$ $0.70\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v_{\max }\left(\right.$ neat, $\left.\mathrm{cm}^{-1}\right) 2922,2208(\mathrm{CN}), 1617,1567,1475,1458,1418$, $1360,1327,1306,1279,1247,1175,1124 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.73(1 \mathrm{H}, \mathrm{q}, J 4.6$, $1-\mathrm{H}), 1.40-1.46(1 \mathrm{H}, \mathrm{m}), 2.46-2.53(1 \mathrm{H}, \mathrm{m}), 2.64-2.69(1 \mathrm{H}, \mathrm{m}), 4.11(1 \mathrm{H}, \mathrm{d}, J 11.0,2-$ H), $4.19(1 \mathrm{H}, \mathrm{dd}, J 5.7,11.0,2-\mathrm{H}), 7.12-7.20(3 \mathrm{H}, \mathrm{m}), 7.58-7.61(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}) ; \delta_{\mathrm{C}}$ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $16.3(\mathrm{CH}), 17.4\left(1-\mathrm{CH}_{2}\right), 21.6(\mathrm{CH}), 47.8\left(2-\mathrm{CH}_{2}\right), 77.7(8-\mathrm{C})$, 110.0 (4-CH), 116.4 (CN), 119.6 (7-CH), 121.7, 122.8 (5,6-CH), 131.7, 132.1, 154.5 (all C); HRMS (ESI): found $\mathrm{M}+\mathrm{H}^{+}$, 195.0919. $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{2}$ requires 195.0922.

Experiment 36: 1-(2-Cyclopropylethyl)-1H-indole (4d)

In accordance with procedure 5 gave ($0.108 \mathrm{~g}, 76 \%$), colourless oil, $R_{\mathrm{f}} 0.26$ (hexane); $v_{\text {max }}\left(\right.$ neat, $\left.\mathrm{cm}^{-1}\right) 2924,2854,1559,1512,1463,1332,1313,1247,1178 ; \delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 0.00-0.04 ($2 \mathrm{H}, \mathrm{m}$), 0.40-0.44 ($2 \mathrm{H}, \mathrm{m}$), 0.58-0.63 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}$), 1.66$1.73(2 \mathrm{H}, \mathrm{m}), 4.20\left(2 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{NCH}_{2}\right), 6.47(1 \mathrm{H}, \mathrm{d}, J 2.3,3-\mathrm{H}), 7.06-7.12(2 \mathrm{H}, \mathrm{m})$, 7.16-7.21 ($1 \mathrm{H}, \mathrm{m}$), $7.35-7.37(1 \mathrm{H}, \mathrm{m}), 7.61(1 \mathrm{H}, \mathrm{d}, J 8.2,4-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $4.3\left(2 \mathrm{x} \mathrm{CH}_{2}\right), 8.7(\mathrm{CH}), 35.3\left(\mathrm{CH}_{2}\right), 46.5\left(\mathrm{NCH}_{2}\right), 100.8(3-\mathrm{CH}), 109.4(7-\mathrm{CH}), 119.1$ (4-CH), 120.9, 121.2, 127.9, (all CH), 128.5, 135.9 (C); HRMS (ESI): found M+H ${ }^{+}$, 186.1280. $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}$ requires 186.1283.

Experiment 37: 1a,2,3,9b-Tetrahydro-1H-cyclopropa[3,4]pyrido[1,2-a]indole-9carbaldehyde (3e)

In accordance with procedure 5 gave ($0.125 \mathrm{~g}, 78 \%$), brown solid, $\mathrm{mp} 121-122{ }^{\circ} \mathrm{C}, R_{\mathrm{f}}$ $0.52\left(\mathrm{Et}_{2} \mathrm{O}\right)$; $v_{\text {max }}\left(\right.$ neat, $\left.\mathrm{cm}^{-1}\right) 1643(\mathrm{C}=\mathrm{O}), 1605,1580,1532,1459,1436,1393,1373$, 1317, 1257, 1231, 1194, 1128, 1080, 1062; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.13(1 \mathrm{H}, \mathrm{q}, J 5.5$, $1-\mathrm{H}), 1.29-1.35(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 1.85-1.91(1 \mathrm{H}, \mathrm{m}), 2.12-2.22(1 \mathrm{H}, \mathrm{m}), 2.34-2.39(1 \mathrm{H}$, $\mathrm{m}), 2.76-2.83(1 \mathrm{H}, \mathrm{m}), 3.55(1 \mathrm{H}, \mathrm{dt}, J 5.0,12.8,3-\mathrm{H}), 4.25(1 \mathrm{H}, \mathrm{dd}, J 6.0,12.8,3-\mathrm{H})$, 7.19-7.28 (3H, m), 8.20-8.23 ($1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}$), $10.21(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 6.3(\mathrm{CH}), 8.7\left(1-\mathrm{CH}_{2}\right), 11.1(\mathrm{CH}), 17.8\left(2-\mathrm{CH}_{2}\right), 34.9\left(3-\mathrm{CH}_{2}\right), 106.2(5-\mathrm{CH})$, 111.4 (C), 118.1 (8-CH), 120.3 (6 \& 7-CH), 123.4, 133.6, 147.9 (all C), 180.9 (CHO); HRMS (ESI): found $\mathrm{M}+\mathrm{H}^{+}$, 212.1074. $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{NO}$ requires 212.1075.

Experiment 38: 1a,2,3,9b-Tetrahydro-1H-cyclopropa[3,4]pyrido[1,2-a]

 benzimidazole (3f)

In accordance with procedure 6 gave $(0.113 \mathrm{~g}, 81 \%)$, white solid, mp $122-123{ }^{\circ} \mathrm{C}$, lit mp 123-124 ${ }^{\circ} \mathrm{C}, R_{\mathrm{f}} 0.50$ (EtOAc-MeOH 9:1). Physical and spectroscopic data were consistant with that previously reported. ${ }^{45}$

Experiment 39: 1a,2,3,9b-Tetrahydro-1H-cyclopropa[3,4]pyrido[1,2-a]indole-9-

 carbonitrile ($\mathbf{3 g}$)

In accordance with procedure 5 gave ($0.122 \mathrm{~g}, 77 \%$), white solid, $\mathrm{mp} 91-93{ }^{\circ} \mathrm{C}, R_{\mathrm{f}}$ $0.68\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v_{\text {max }}\left(\right.$ neat, $\left.\mathrm{cm}^{-1}\right) 2929,2206(\mathrm{CN}), 1551,1464,1456,1435,1363$, 1337, 1324, 1260, 1193, 1049; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.08(1 \mathrm{H}, \mathrm{q}, J 5.6,1-\mathrm{H}), 1.29$ (1 H, ddd, $J 5.7,8.5,8.5,1-\mathrm{H}), 1.84-1.91(1 \mathrm{H}, \mathrm{m}), 2.10-2.19(1 \mathrm{H}, \mathrm{m}), 2.33-2.38(1 \mathrm{H}$, m), $2.50(1 \mathrm{H}$, ddd, $J 4.3,8.5,8.5,9 \mathrm{~b}-\mathrm{H}), 3.55(1 \mathrm{H}, \mathrm{dt}, J 5.0,13.1,3-\mathrm{H}), 4.27(1 \mathrm{H}, \mathrm{dd}$, $J 6.0,13.1,3-H), 7.20-7.26(3 H, \mathrm{~m}), 7.61-7.66(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $10.0(9 b-C H), 10.8\left(1-\mathrm{CH}_{2}\right), 13.4(1 \mathrm{a}-\mathrm{CH}), 20.6\left(2-\mathrm{CH}_{2}\right), 37.5\left(3-\mathrm{CH}_{2}\right), 82.7(9-\mathrm{C})$, 109.1 (5-CH), 116.9 (CN), 118.8 ($8-\mathrm{CH}), 121.9,122.6$ (6,7-CH), 127.4, 135.1, 148.2 (all C); HRMS (ESI): found $\mathrm{M}+\mathrm{H}^{+}$, 209.1072. $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{2}$ requires 209.1079.

Experiment 40: 6,7-Dimethyl-1a,2,3,9b-tetrahydro-1H-cyclopropa[3,4]pyrido

[1,2-a]benzimidazoles (3h)

In accordance with procedure 6 gave ($0.122 \mathrm{~g}, 76 \%$), brown solid, mp $135-136{ }^{\circ} \mathrm{C}$, lit $\mathrm{mp} 136-137{ }^{\circ} \mathrm{C}, R_{\mathrm{f}} 0.25$ (EtOAc). Physical and spectroscopic data were consistant with that previously reported. ${ }^{47}$

Experiment 41: 5,8-Dimethoxy-1a,2,3,9b-tetrahydro-1H-cyclopropa[3,4]

 pyrido $[1,2-a$]benzimidazole (3i)

In accordance with procedure 6 gave ($0.148 \mathrm{~g}, 80 \%$), white solid, mp $144-145{ }^{\circ} \mathrm{C}$, lit $\mathrm{mp} 145-146{ }^{\circ} \mathrm{C}, R_{\mathrm{f}} 0.36$ (EtOAc). Physical and spectroscopic data were consistant with that previously reported. ${ }^{46}$

Experiment 42: 1,1a,2,3,4,10b-Hexahydrocyclopropa[3,4]azepino[1,2-a] benzimidazole ($\mathbf{3} \mathbf{j}$)

In accordance with procedure 6 gave ($60 \mathrm{mg}, 40 \%$), white solid, $\mathrm{mp} 144-145{ }^{\circ} \mathrm{C}, R_{\mathrm{f}}$ 0.47 (EtOAc); $v_{\max }\left(\right.$ neat, $\left.\mathrm{cm}^{-1}\right) 2928,1524,1455,1404,1359,1325,1287,1270$, $1239,1177,1155 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.35-0.45(1 \mathrm{H}, \mathrm{m}), 0.72(1 \mathrm{H}, \mathrm{q}, J 4.8,1-\mathrm{H})$, 1.19-1.29 ($2 \mathrm{H}, \mathrm{m}$), 1.72-1.89 ($2 \mathrm{H}, \mathrm{m}$), 2.15-2.25 ($2 \mathrm{H}, \mathrm{m}$), 4.26-4.32 ($1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$), 4.36-4.45 ($1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$), 7.15-7.26 (3H, m), 7.67-7.70 ($1 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}$); $\delta_{\mathrm{C}}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)$ 11.9, $12.3(\mathrm{CH}), 13.4\left(1-\mathrm{CH}_{2}\right), 23.6,27.0\left(\mathrm{CH}_{2}\right), 40.8\left(4-\mathrm{CH}_{2}\right), 108.7(6-\mathrm{CH})$, 119.4 (9-CH), 121.6, 122.2 (7,8-CH), 134.1, 143.0, 154.4 (all C); HRMS (ESI): found $\mathrm{M}+\mathrm{H}^{+}$, 199.1226. $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{2}$ requires 199.1235.

1-(3-cyclopropylpropyl)-1H-benzimidazole (4j)

($64 \mathrm{mg}, 42 \%$), yellow oil, $R_{\mathrm{f}} 0.65$ (EtOAc); $v_{\max }\left(\right.$ neat, cm^{-1}) 2982, 2932, 1494, 1459, 1393, 1360, 1325, 1282, 1242, 1199, 1161; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(-0.01)-0.01(2 \mathrm{H}$, m), 0.41-0.45 ($2 \mathrm{H}, \mathrm{m}$), 0.62-0.72 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}$), 1.22-1.28 ($2 \mathrm{H}, \mathrm{m}$), 1.96-2.04 ($2 \mathrm{H}, \mathrm{m}$), $4.20\left(2 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{NCH}_{2}\right), 7.26-7.33(2 \mathrm{H}, \mathrm{m}), 7.40-7.42(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 7.79-7.82(1 \mathrm{H}$, $\mathrm{m}, 4-\mathrm{H}), 7.98(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.6\left(2 \mathrm{x} \mathrm{CH}_{2}\right), 10.3(\mathrm{CH}), 29.9,31.9$ $\left(\mathrm{CH}_{2}\right), 45.2\left(\mathrm{NCH}_{2}\right), 110.0(7-\mathrm{CH}), 119.9(4-\mathrm{CH}), 122.6,123.2(5,6-\mathrm{CH}), 133.7(\mathrm{C})$, 142.8 (2-CH), 142.9 (C); HRMS (ESI): found $\mathrm{M}+\mathrm{H}^{+}$, 201.1400. $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{2}$ requires 201.1392 .

Experiment 43: 1,1a,2,3,4,10b-Hexahydrocyclopropa[3,4]azepino[1,2-a]indole -10-carbonitrile (3 k)

In accordance with procedure 5 gave ($63 \mathrm{mg}, 37 \%$), white solid, $\mathrm{mp} 90-91^{\circ} \mathrm{C}, R_{\mathrm{f}} 0.66$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v_{\max }\left(\right.$ neat, $\left.\mathrm{cm}^{-1}\right) 2927,2213(\mathrm{CN}), 1546,1460,1418,1355,1326,1278$, $1248,1192,1042,1011 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.25-0.37(1 \mathrm{H}, \mathrm{m}), 0.74(1 \mathrm{H}, \mathrm{q}, J 5.0$, $1-\mathrm{H}), 1.24-1.32(1 \mathrm{H}, \mathrm{m}), 1.38-1.43(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 1.76-1.90(2 \mathrm{H}, \mathrm{m}), 2.10-2.16(1 \mathrm{H}$, m), 2.18-2.25 ($1 \mathrm{H}, \mathrm{m}$), 4.37-4.52 ($2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$), 7.19-7.33 ($3 \mathrm{H}, \mathrm{m}$), 7.67 ($1 \mathrm{H}, \mathrm{d}, J 7.8$, $9-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 10.4,12.1(\mathrm{CH}), 14.5\left(1-\mathrm{CH}_{2}\right), 23.7,26.9\left(\mathrm{CH}_{2}\right), 41.4(4-$ CH_{2}), 86.2 ($10-\mathrm{C}$), 109.6 ($6-\mathrm{CH}$), $116.6(\mathrm{CN}), 119.3(9-\mathrm{CH}), 121.7,123.3$ ($7,8-\mathrm{CH}$), 127.6, 134.5, 148.4 (all C); HRMS (ESI): found $\mathrm{M}+\mathrm{H}^{+}$, 223.1237. $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{2}$ requires 223.1235.

1-(3-cyclopropylpropyl)-1H-indole-3-carbonitrile (4k)

($70 \mathrm{mg}, 41 \%$), colourless oil, $R_{\mathrm{f}} 0.69\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; $v_{\max }\left(\right.$ neat, $\left.\mathrm{cm}^{-1}\right) 2998,2929,2215$ $(\mathrm{CN}), 1530,1465,1394,1360,1247,1184,1141 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(-0.01)-0.01$ $(2 \mathrm{H}, \mathrm{m}), 0.42-0.47(2 \mathrm{H}, \mathrm{m}), 0.62-0.70(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 1.20-1.26(2 \mathrm{H}, \mathrm{m}), 1.93-2.01$ $(2 \mathrm{H}, \mathrm{m}), 4.18\left(2 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{NCH}_{2}\right), 7.25-7.35(2 \mathrm{H}, \mathrm{m}), 7.41(1 \mathrm{H}, \mathrm{d}, J 7.8,7-\mathrm{H}), 7.60$ ($1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}$), $7.75(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.8,4-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.5\left(2 \times \mathrm{CH}_{2}\right), 10.2(\mathrm{CH})$, 30.0, $31.7\left(\mathrm{CH}_{2}\right), 47.0\left(\mathrm{NCH}_{2}\right), 85.5$ (3-C), 110.5 (7-CH), $116.0(\mathrm{CN}), 120.0(4-\mathrm{CH})$, 122.0, 123.7 (5,6-CH), 127.9 (C), 134.5 (2-CH), 135.3 (C); HRMS (ESI): found $\mathrm{M}+\mathrm{H}^{+}$, 225.1391. $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{2}$ requires 225.1392.

Experiment 44: 1,1a,2,3,4,10b-Hexahydrocyclopropa[3,4]azepino[1,2-a]indole-10-carbaldehyde (31)

In accordance with procedure 5 gave ($67 \mathrm{mg}, 39 \%$), yellow solid, $\mathrm{mp} 124-125{ }^{\circ} \mathrm{C}, R_{\mathrm{f}}$ 0.29 (hexane-EtOAc 3:7); IR ($v_{\text {max }}$, neat/ $/ \mathrm{cm}^{-1}$) 1638 (C=O), 1608, 1573, 1535, 1459, $1428,1368,1328,1282,1252,1211,1188,1168,1125,1077 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $0.32-0.47(1 \mathrm{H}, \mathrm{m}), 0.68(1 \mathrm{H}, \mathrm{q}, J 5.0,1-\mathrm{H}), 1.23-1.34(1 \mathrm{H}, \mathrm{m}), 1.45-1.51(1 \mathrm{H}, \mathrm{m}, 1-$ H), 1.79-1.94 ($2 \mathrm{H}, \mathrm{m}$), 2.16-2.27 ($2 \mathrm{H}, \mathrm{m}$), 4.37-4.53 ($2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$), 7.23-7.31 ($3 \mathrm{H}, \mathrm{m}$), 8.27-8.31 ($1 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}$), $10.31(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 9.4,11.6(\mathrm{CH})$, $15.6\left(1-\mathrm{CH}_{2}\right), 23.5,26.7\left(\mathrm{CH}_{2}\right), 41.0\left(4-\mathrm{CH}_{2}\right), 108.8(6-\mathrm{CH}), 115.6(\mathrm{C}), 121.7(9-\mathrm{CH})$, 122.5, 123.3 (7,8-CH), 125.2, 135.3, 150.9 (all C), 185.6 (CHO); HRMS (ESI): found $\mathrm{M}+\mathrm{H}^{+}$, 226.1231. $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NO}$ requires 226.1232.

1-(3-cyclopropylpropyl)-1H-indole-3-carbaldehyde (4I)

($66 \mathrm{mg}, 38 \%$), yellow oil, $R_{\mathrm{f}} 0.36$ (hexane-EtOAc 3:7); IR (v_{max}, neat $/ \mathrm{cm}^{-1}$) 1656 (C=O), 1611, 1605, 1578, 1532, 1467, 1398, 1388, 1257, 1170, 1133; $\delta_{\mathrm{H}}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)(-0.01)-0.01(2 \mathrm{H}, \mathrm{m}), 0.42-0.47(2 \mathrm{H}, \mathrm{m}), 0.62-0.73(1 \mathrm{H}, \mathrm{m}), 1.23-1.28(2 \mathrm{H}$, $\mathrm{m}), 1.96-2.04(2 \mathrm{H}, \mathrm{m}), 4.19\left(2 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{NCH}_{2}\right), 7.28-7.38(3 \mathrm{H}, \mathrm{m}), 7.71(1 \mathrm{H}, \mathrm{s}, 2-$ H), 8.28-8.31 ($1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 9.99(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.5\left(2 \mathrm{x} \mathrm{CH}_{2}\right)$, $10.3(\mathrm{CH}), 29.8,31.8\left(\mathrm{CH}_{2}\right), 47.0\left(\mathrm{NCH}_{2}\right), 110.0(7-\mathrm{CH}), 118.0(\mathrm{C}), 122.1,122.8$, 123.9 (all CH), 125.5, 137.2 (C), 138.1 (2-CH), 184.5 (CHO); HRMS (ESI): found $\mathrm{M}+\mathrm{H}^{+}$, 228.1380. $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}$ requires 228.1388 .

Procedure for the HOTT-mediated formation of bromides (Procedure 7.)

$\mathrm{Et}_{3} \mathrm{~N}(0.32 \mathrm{~mL}, 2.30 \mathrm{mmol})$ in THF (5.7 mL) was added to a mixture of acid $\mathbf{1 0 1}(0.76$ $\mathrm{mmol})$ and HOTT ($0.424 \mathrm{~g}, 1.14 \mathrm{mmol}$) in MeCN (1.9 mL). The solution was stirred at room temperature in the absence of light for $40 \mathrm{~min} . \mathrm{BrCCl}_{3}(3.7 \mathrm{~mL}, 38.00 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(40 \mathrm{~mL})$ was added, and the solution was heated under reflux for 4 h . The solution was evaporated, dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 10$ mL). The organic extract was evaporated and purified by column chromatography using silica gel as absorbent with a gradient elution of hexanes and $\mathrm{Et}_{2} \mathrm{O}$.

Experiment 45: 1-[3-(2'-Bromocyclopropyl)-cis-propyl]-1H-indole-3carbaldehyde (5a)

In accordance with procedure 7 gave ($74 \mathrm{mg}, 32 \%$), yellow oil, $R_{\mathrm{f}} 0.74\left(\mathrm{Et}_{2} \mathrm{O}\right)$; \mathbb{R} ($v_{\text {max }}$, neat $/ \mathrm{cm}^{-1}$) 2934, $1653(\mathrm{C}=\mathrm{O}), 1614,1576,1533,1486,1469,1402,1390,1258$, 1173,$1135 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.50-0.54\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 0.79-0.89\left(1 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}\right)$, $1.16-1.22\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 1.48-1.55(1 \mathrm{H}, \mathrm{m}), 1.56-1.66(1 \mathrm{H}, \mathrm{m}), 1.98-2.16(2 \mathrm{H}, \mathrm{m}$, CH_{2}), 3.03-3.08 ($1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}$), 4.21-4.25 ($2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}$), 7.29-7.41 ($3 \mathrm{H}, \mathrm{m}$), 7.74 ($1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}$), 8.29-8.31 ($1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$), $9.99(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 15.1$ (3'-CH2), $16.2\left(2^{\prime}-\mathrm{CH}\right), 23.4\left(1^{\prime}-\mathrm{CH}\right), 28.6,29.2\left(\mathrm{CH}_{2}\right), 47.1\left(\mathrm{NCH}_{2}\right), 110.1(7-\mathrm{CH})$, 118.2 (C), 122.3 (4-CH), 123.0, 124.1 (5,6-CH), 125.5, 137.3 (C), 138.2 (2-CH), 184.6 (CHO); HRMS (ESI): found $\mathrm{M}+\mathrm{H}^{+}$, 306.0504. $\mathrm{C}_{15} \mathrm{H}_{17}{ }^{79} \mathrm{BrNO}$ requires 306.0494.

1-[3-(2'-bromocyclopropyl)-trans-propyl]-1H-indole-3-carbaldehyde (5b)

($0.118 \mathrm{~g}, 51 \%$), yellow oil, $R_{\mathrm{f}} 0.70\left(\mathrm{Et}_{2} \mathrm{O}\right)$; IR ($v_{\text {max }}$, neat $\left./ \mathrm{cm}^{-1}\right)$ 2931, $1656(\mathrm{C}=\mathrm{O})$, $1614,1577,1532,1469,1401,1389,1245,1173,1134,1037 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $0.74-0.79\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 1.03\left(1 \mathrm{H}, \mathrm{ddd}, J 3.7,6.2,9.8,3^{\prime}-\mathrm{H}\right), 1.18-1.26\left(1 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}\right)$, 1.31-1.37 (2H, m, CH $)_{2}$, 2.00-2.08 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), 2.56 ($1 \mathrm{H}, \mathrm{ddd}, J 3.7,3.7,7.4,2^{\prime}-\mathrm{H}$), 4.19-4.24 ($2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}$), 7.29-7.40 (3H, m), $7.71(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 8.29-8.32(1 \mathrm{H}, \mathrm{m}, 4-$ H), $10.00(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 16.0\left(3^{\prime}-\mathrm{CH}_{2}\right), 19.3$ (2'-CH), 22.3 (1'$\mathrm{CH}), 29.1,30.0\left(\mathrm{CH}_{2}\right), 46.8\left(\mathrm{NCH}_{2}\right), 110.1(7-\mathrm{CH}), 118.3(\mathrm{C}), 122.3(4-\mathrm{CH}), 123.1$, 124.1 (5,6-CH), 125.6, 137.2 (C), 138.0 (2-CH), 184.6 (CHO); HRMS (ESI): found $\mathrm{M}+\mathrm{H}^{+}, 306.0493$. $\mathrm{C}_{15} \mathrm{H}_{17}{ }^{79} \mathrm{BrNO}$ requires 306.0494,

Procedure for the $\mathrm{Bu}_{3} \mathrm{SnH}$-mediated radical cyclisation (Procedure 8.)

A solution of $\mathrm{Bu}_{3} \mathrm{SnH}(0.116 \mathrm{~mL}, 0.431 \mathrm{mmol})$ and AIBN ($60 \mathrm{mg}, 0.360 \mathrm{mmol}$) in toluene (4.6 mL) was added to a solution of bromides $\mathbf{1 4}(0.110 \mathrm{~g}, 0.360 \mathrm{mmol})$ in toluene (3.4 mL) under reflux using a syringe pump over 15 min . The reaction was stirred under reflux for 3 h , and a further portion of $\mathrm{Bu}_{3} \mathrm{SnH}(38 \mu \mathrm{~L}, 0.141 \mathrm{mmol})$ and AIBN ($20 \mathrm{mg}, 0.120 \mathrm{mmol}$) in toluene (2 mL) was added over 5 min . The reaction was stirred under reflux for 15 min , and the cooled solution evaporated. EtOAc (5 mL), water (5 mL), and excess KF were added, and the mixture stirred overnight. The organic extract was evaporated and purified by column chromatography using silica gel as absorbant with gradient elution of hexanes and EtOAc.

Experiment 46: 1,1a,2,3,4,10b-Hexahydrocyclopropa[3,4]azepino[1,2-a]indole-

 10-carbaldehyde (31)

In accordance with procedure 8 gave ($43 \mathrm{mg}, 53 \%$), yellow solid, $\mathrm{mp} 124-125{ }^{\circ} \mathrm{C}, R_{\mathrm{f}}$ 0.29 (hexane-EtOAc 3:7). Physical and spectroscopic data were consistent with that previously reported in experiment 44.

1-(3-cyclopropylpropyl)-1H-indole-3-carbaldehyde (4I)

($24 \mathrm{mg}, 29 \%$), yellow oil, $R_{\mathrm{f}} 0.36$ (hexane-EtOAc 3:7). Physical and spectroscopic data were consistent with that previously reported in experiment 44.

Experiment 47: 2,3-Dihydro-1-pyrrolo[1,2-a]benzimidazole (8a)

In accordance with procedure 6 gave ($46 \mathrm{mg}, 38 \%$), off-white solid, mp $110-111{ }^{\circ} \mathrm{C}$, lit mp 114-115 ${ }^{\circ} \mathrm{C}, R_{\mathrm{f}} 0.22$ (EtOAc). Physical and spectroscopic data were consistent with that previously reported. ${ }^{10}$

1-Propyl-1H-benzimidazole (9a)

($47 \mathrm{mg}, 39 \%$), yellow oil, $R_{\mathrm{f}} 0.26$ (EtOAc). Physical and spectroscopic data were consistent with that previously reported ${ }^{10}$

Experiment 48: 2,3-Dihydro-1H-pyrrolo[1,2-a]indole-9-carbonitrile (8b)

7b

9b: (0\%)

In accordance with procedure 5 gave ($0.108 \mathrm{~g}, 78 \%$), off-white solid, $\mathrm{mp} 124-126^{\circ} \mathrm{C}$, lit ${ }^{129} \mathrm{mp} 126-127{ }^{\circ} \mathrm{C}, R_{\mathrm{f}} 0.57\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v_{\text {max }}\left(\right.$ neat, $\left.\mathrm{cm}^{-1}\right) 2894,2203(\mathrm{CN}), 1551$, $1454,1424,1366,1302,1243,1174,1121,1028 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.66-2.74$ ($2 \mathrm{H}, \mathrm{m}, 2-\mathrm{CH}_{2}$), $3.20\left(2 \mathrm{H}, \mathrm{t}, J 7.4,1-\mathrm{CH}_{2}\right), 4.15\left(2 \mathrm{H}, \mathrm{t}, J 7.1,3-\mathrm{CH}_{2}\right), 7.20-7.29(3 \mathrm{H}$, $\mathrm{m}), 7.65-7.67(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 24.8\left(2-\mathrm{CH}_{2}\right), 27.0\left(1-\mathrm{CH}_{2}\right), 45.0$ $\left(3-\mathrm{CH}_{2}\right), 78.0(9-\mathrm{C}), 110.6(5-\mathrm{CH}), 116.6(\mathrm{CN}), 119.8(8-\mathrm{CH}), 121.9,122.8(6,7-\mathrm{CH})$, 132.0, 132.3, 152.9 (all C); HRMS (ESI): found $\mathrm{M}+\mathrm{H}^{+}$, 183.0924. $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{2}$ requires 183.0922 .

Experiment 49: 6,7,8,9-Tetrahydropyrido[1,2-a]indole-10-carbaldehyde (8c)

In accordance with procedure 5 gave ($0.119 \mathrm{~g}, 79 \%$), off-white solid, mp $120-122{ }^{\circ} \mathrm{C}$, lit mp 121-125 ${ }^{\circ} \mathrm{C}, R_{\mathrm{f}} 0.17\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. Physical and spectroscopic data were consistent with that previously reported. ${ }^{130}$

Experiment 50: 1,2,3,4-Tetrahydropyrido[1,2-a]benzimidazole (8d)

In accordance with procedure 6 gave ($0.101 \mathrm{~g}, 77 \%$), off-white solid, mp $101-103{ }^{\circ} \mathrm{C}$, lit mp 98-100 ${ }^{\circ} \mathrm{C}, R_{\mathrm{f}} 0.32$ (EtOAc). Physical and spectroscopic data were consistent with that previously reported. ${ }^{10}$

Experiment 51: 6,7,8,9-Tetrahydropyrido[1,2-a]indole-10-carbonitrile (8e)

In accordance with procedure 5 gave ($0.122 \mathrm{~g}, 82 \%$), off-white solid, $\mathrm{mp} 89-91{ }^{\circ} \mathrm{C}, R_{\mathrm{f}}$ $0.62\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v_{\text {max }}\left(\right.$ neat, $\left.\mathrm{cm}^{-1}\right) 2950,2203(\mathrm{CN}), 1534,1491,1477,1458,1424$, $1358,1318,1245,1164,1045 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 1.93-2.00 ($2 \mathrm{H}, \mathrm{m}$), 2.09-2.16 $(2 \mathrm{H}, \mathrm{m}), 3.11\left(2 \mathrm{H}, \mathrm{t}, J 6.4,9-\mathrm{CH}_{2}\right), 4.08\left(2 \mathrm{H}, \mathrm{t}, J 6.2,6-\mathrm{CH}_{2}\right), 7.21-7.27(2 \mathrm{H}, \mathrm{m})$, $7.29-7.34(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 7.63-7.68(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 19.9,22.7$ $\left(\mathrm{CH}_{2}\right), 23.3\left(9-\mathrm{CH}_{2}\right), 42.6\left(6-\mathrm{CH}_{2}\right), 82.6(10-\mathrm{C}), 109.6(4-\mathrm{CH}), 116.6(\mathrm{CN}), 119.0(1-$ CH), 122.3, 122.7 ($2,3-\mathrm{CH}$), 127.4, 135.5, 146.3 (all C); HRMS (ESI): found $\mathrm{M}+\mathrm{H}^{+}$, 197.1072. $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{2}$ requires 197.1079.

Experiment 52: 7,8,9,10-Tetrahydro-6H-azepino[1,2-a]benzimidazole (8f)

In accordance with procedure 6 gave ($52 \mathrm{mg}, 37 \%$), off-white solid, $\mathrm{mp} 118-119{ }^{\circ} \mathrm{C}$, lit mp 124-125 ${ }^{\circ} \mathrm{C}, R_{\mathrm{f}} 0.23$ (EtOAc). Physical and spectroscopic data were consistent with that previously reported. ${ }^{10}$

1-Pentyl-1H-benzimidazole (9f)

($56 \mathrm{mg}, 39 \%$), yellow oil, $R_{\mathrm{f}} 0.27$ (EtOAc). Physical and spectroscopic data were consistent with that previously reported. ${ }^{131}$

Experiment 53: 7,8,9,10-Tetrahydro- $\mathbf{6 H}$-azepino[1,2-a]indole-11-carbonitrile (8g)

In accordance with procedure 5 gave ($98 \mathrm{mg}, 61 \%$), off-white solid, $\mathrm{mp} 112-114{ }^{\circ} \mathrm{C}$, $R_{\mathrm{f}} 0.64\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v_{\text {max }}\left(\right.$ neat, $\left.\mathrm{cm}^{-1}\right) 2931,2854,2210(\mathrm{CN}), 1543,1473,1461,1426$, $1361,1331,1206 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.75-1.82(4 \mathrm{H}, \mathrm{m}), 1.89-1.95(2 \mathrm{H}, \mathrm{m}), 3.08$ $\left(2 \mathrm{H}, \mathrm{t}, J 5.5,10-\mathrm{CH}_{2}\right), 4.20\left(2 \mathrm{H}, \mathrm{t}, J 4.8,6-\mathrm{CH}_{2}\right), 7.19-7.33(3 \mathrm{H}, \mathrm{m}), 7.64-7.67(1 \mathrm{H}$, $\mathrm{m}, 1-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 26.7,27.5,28.6\left(\mathrm{CH}_{2}\right), 30.8\left(10-\mathrm{CH}_{2}\right), 45.5\left(6-\mathrm{CH}_{2}\right)$, 84.2 (11-C), 109.7 (4-CH), 116.8 (CN), 119.4 (1-CH), 121.7, 123.0 (2,3-CH), 127.1, 136.0, 151.7 (all C); HRMS (ESI): found $\mathrm{M}+\mathrm{H}^{+}$, 211.1234. $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{2}$ requires 211.1235.

1-pentyl-1H-indole-3-carbonitrile (9g)

($34 \mathrm{mg}, 21 \%$), off-white solid, $\mathrm{mp} 48-51^{\circ} \mathrm{C}, R_{\mathrm{f}} 0.67\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; $v_{\max }\left(\mathrm{neat}, \mathrm{cm}^{-1}\right) 2957$, 2931, 2861, 2215 (CN), 1531, 1467, 1394, 1362, 1335, 1244, 1182, 1159, 1138; δ_{H} ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $0.88\left(3 \mathrm{H}, \mathrm{t}, J 6.9, \mathrm{CH}_{3}\right), 1.22-1.37(4 \mathrm{H}, \mathrm{m}), 1.79-1.87(2 \mathrm{H}, \mathrm{m})$, $4.12\left(2 \mathrm{H}, \mathrm{t}, J 7.2, \mathrm{NCH}_{2}\right), 7.24-7.34(2 \mathrm{H}, \mathrm{m}), 7.39-7.41(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 7.56(1 \mathrm{H}, \mathrm{s}, 2-$ H), 7.72-7.75 ($1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 13.7\left(\mathrm{CH}_{3}\right), 22.0,28.7,29.3\left(\mathrm{CH}_{2}\right)$, $47.1\left(\mathrm{NCH}_{2}\right), 85.1$ (3-C), 110.5 (7-CH), 116.0 (CN), 119.6 (4-CH), 121.8, 123.5 (5,6CH), 127.7 (C), 134.6 (2-CH), 135.1 (C); HRMS (ESI): found $\mathrm{M}+\mathrm{H}^{+}$, 213.1387. $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{2}$ requires 213.1392.

5.3 Experimental for Chapter 3

Experiment 54: Methyl 3-(3-cyano-1H-indol-1-yl)propanoate (10a)

In accordance with procedure 1 gave ($0.942 \mathrm{~g}, 84 \%$), colourless oil, $R_{\mathrm{f}} 0.70\left(\mathrm{Et}_{2} \mathrm{O}\right)$; IR $v_{\max }\left(\right.$ neat, $\left.\mathrm{cm}^{-1}\right) 3121,2954,2216(\mathrm{CN}), 1732(\mathrm{C}=\mathrm{O}), 1533,1468,1437,1395$, $1363,1335,1264,1197,1171,1013 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.84(2 \mathrm{H}, \mathrm{t}, J 6.4 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2}\right), 3.64\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.46\left(2 \mathrm{H}, \mathrm{t}, J 6.4 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 7.24-7.34(2 \mathrm{H}, \mathrm{m}, 5,6-\mathrm{H})$, $7.40(1 \mathrm{H}, \mathrm{d}, J 8.2 \mathrm{~Hz}, 7-\mathrm{H}), 7.67(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 7.71(1 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}, 4-\mathrm{H}) ; \delta_{\mathrm{C}}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 34.2\left(\mathrm{CH}_{2}\right), 42.5\left(\mathrm{NCH}_{2}\right), 52.3\left(\mathrm{OCH}_{3}\right), 86.0(\mathrm{C}), 110.4(7-\mathrm{CH})$, 115.9 (C), 120.1 (4-CH), 122.4, 124.1 (5,6-CH), 128.0 (C), 135.0 (C), 135.5 (2-CH), $171.2(\mathrm{C}=\mathrm{O})$; HRMS (ESI): found $\mathrm{M}+\mathrm{H}^{+}$, 229.0972. $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires 229.0977.

Experiment 55: Methyl 3-(3-formyl-1H-indol-1-yl)propanoate (10b)

In accordance with procedure 1 gave $(0.921 \mathrm{~g}, 81 \%)$, pale yellow oil, $R_{\mathrm{f}} 0.29\left(\mathrm{Et}_{2} \mathrm{O}\right)$; IR $v_{\text {max }}\left(\right.$ neat, $\left.\mathrm{cm}^{-1}\right) 3109,2953,2812,1732$ ($\mathrm{C}=\mathrm{O}$ ester), 1653 ($\mathrm{C}=\mathrm{O}$ aldehyde), 1614, $1578,1531,1468,1437,1401,1389,1196,1166,1137,1047 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $2.86\left(2 \mathrm{H}, \mathrm{t}, J 6.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.64\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.46\left(2 \mathrm{H}, \mathrm{t}, J 6.5 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 7.27-$ 7.33 ($3 \mathrm{H}, \mathrm{m}, 5,6,7-\mathrm{H}$), 7.72 ($1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}$), 8.27-8.29 ($1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$), 9.94 ($1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}$), $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 34.1\left(\mathrm{CH}_{2}\right), 42.6\left(\mathrm{NCH}_{2}\right), 52.2\left(\mathrm{OCH}_{3}\right), 109.8(7-\mathrm{CH}), 118.4$ (C), 122.4 ($4-\mathrm{CH}$), 123.1, 124.2 (5,6-CH), 125.5 (C), 136.8 (C), 139.3 (2-CH), 171.3 $(\mathrm{COOH}), 184.8(\mathrm{CHO})$; HRMS (ESI): found $\mathrm{M}+\mathrm{H}^{+}, 232.0963 . \mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NO}_{3}$ requires 232.0974 .

Experiment 56: Methyl 4-(3-formyl-1H-indol-1-yl)butanoate (10c)

In accordance with procedure 1 gave $(1.061 \mathrm{~g}, 88 \%)$, yellow oil, $R_{\mathrm{f}} 0.31\left(\mathrm{Et}_{2} \mathrm{O}\right) ; v_{\text {max }}$ (neat, cm^{-1}) 2951, 1731 ($\mathrm{C}=\mathrm{O}$ ester), 1653 ($\mathrm{C}=\mathrm{O}$ aldehyde), 1531, 1468, 1437, 1401, 1388, 1257, 1165, 1152 1074; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.99-2.06\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.20$ $\left(2 \mathrm{H}, \mathrm{t}, J 7.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.54\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.07\left(2 \mathrm{H}, \mathrm{t}, J 7.1 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 7.15-7.22$ $(2 \mathrm{H}, \mathrm{m}, 5,6-\mathrm{H}), 7.26-7.30(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 7.59(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 8.17-8.21(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H})$, $9.82(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 24.9\left(\mathrm{CH}_{2}\right), 30.5\left(\mathrm{CH}_{2}\right), 46.1\left(\mathrm{NCH}_{2}\right), 51.8$ $\left(\mathrm{OCH}_{3}\right), 110.3(7-\mathrm{CH}), 118.1(\mathrm{C}), 122.0(4-\mathrm{CH}), 122.9,124.0(5,6-\mathrm{CH}), 125.3(\mathrm{C})$, 137.2 (C), 138.9 (2-CH), 172.8 (COOMe), 184.6 (CHO); HRMS (ESI): found $\mathrm{M}+\mathrm{H}^{+}$, 246.1139. $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NO}_{3}$ requires 246.1130.

Experiment 57: Methyl 3-(1H-indol-1-yl)propanoate (10d)

In accordance with procedure 3 gave ($0.389 \mathrm{~g}, 45 \%$), colourless oil, $R_{\mathrm{f}} 0.65\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$;
Physical and spectroscopic data were consistent with that previously reported. ${ }^{132}$

Experiment 58: Methyl 4-(1H-indol-1-yl)butanoate (10e)

In accordance with procedure 3 gave ($0.361 \mathrm{~g}, 39 \%$), colourless oil, $R_{\mathrm{f}} 0.64\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$;
Physical and spectroscopic data were consistent with that previously reported. ${ }^{132}$

Experiment 59: 3-(3-cyano-1H-indol-1-yl)propanoic acid (11a)

In accordance with procedure 4 except using NaOH in MeOH gave ($0.89 \mathrm{~g}, 72 \%$), off white solid, $\mathrm{mp} 123-124{ }^{\circ} \mathrm{C}$; IR $v_{\max }\left(\right.$ neat, cm^{-1}) 3123, 2894, $2221(\mathrm{CN}), 1701(\mathrm{C}=\mathrm{O})$, 1531, 1477, 1445, 1419, 1374, 1334, 1312, 1297, 1242, 1224, 1200, 1066, 1010; δ_{H} (400 MHz, DMSO-d d_{6}) $2.79\left(2 \mathrm{H}, \mathrm{t}, J 6.8 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.44\left(2 \mathrm{H}, \mathrm{t}, J 6.8 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 7.21-$ $7.32(2 \mathrm{H}, \mathrm{m}, 5,6-\mathrm{H}), 7.60(1 \mathrm{H}, \mathrm{d}, J 7.8 \mathrm{~Hz}, 7-\mathrm{H}), 7.69(1 \mathrm{H}, \mathrm{d}, J 8.2 \mathrm{~Hz}, 4-\mathrm{H}), 8.24$ $(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{CH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) 34.6\left(\mathrm{CH}_{2}\right), 42.9\left(\mathrm{NCH}_{2}\right), 84.1(\mathrm{C}), 112.2(7-$ CH), 116.5 (C), 119.3 (4-CH), 122.6, 124.0 (5,6-CH), 127.6 (C), 135.5 (C), 137.6 (2CH), 172.7 ($\mathrm{C}=\mathrm{O}$); HRMS (ESI): found $\mathrm{M}+\mathrm{H}^{+}$, 215.0820. $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires 215.0821.

Experiment 60: 3-(3-formyl-1H-indol-1-yl)propanoic acid (11b)

In accordance with procedure 4 except using NaOH in MeOH gave ($1.03 \mathrm{~g}, 82 \%$), yellow brown solid, mp 179-180; Physical and spectroscopic data were consistent with that previously reported. ${ }^{133}$

Experiment 61: 4-(3-Formyl-1H-indol-1-yl)butananoic acid (11c)

In accordance with procedure 4 except using NaOH in MeOH gave ($0.951 \mathrm{~g}, 71 \%$), yellow solid, $\mathrm{mp} 139-140^{\circ} \mathrm{C}$; $v_{\max }$ (neat, cm^{-1}) 3117, 2935, 2814, 1721 ($\mathrm{C}=\mathrm{O}$ acid), 1622 ($\mathrm{C}=\mathrm{O}$ aldehyde), 1575, 1534, 1462, 1398, 1267, 1250, 1185, 1164, 1153, 1080, 1067, 1036, 1012; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)$ 1.96-2.05 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), $2.24(2 \mathrm{H}, \mathrm{t}, J$ $\left.7.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.28\left(2 \mathrm{H}, \mathrm{t}, J 7.1 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 7.22-7.30(2 \mathrm{H}, \mathrm{m}, 5,6-\mathrm{H}), 7.62(1 \mathrm{H}, \mathrm{d}, J$ $8.2 \mathrm{~Hz}, 7-\mathrm{H}), 8.10(1 \mathrm{H}, \mathrm{d}, J 7.6 \mathrm{~Hz}, 4-\mathrm{H}), 8.30(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{CH}), 9.89(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO})$, $12.22(1 \mathrm{H}, \mathrm{bs}, \mathrm{OH}), \delta_{\mathrm{C}}\left(100 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) 25.4\left(\mathrm{CH}_{2}\right), 31.1\left(\mathrm{CH}_{2}\right), 46.1\left(\mathrm{NCH}_{2}\right)$, 111.5 (7-CH), 117.7 (C), 121.6 (4-CH), 123.0, 124.1 ($5,6-\mathrm{CH}$), 125.2, 137.5 (both C), $141.2(2-\mathrm{CH}), 174.3(\mathrm{COOH}), 185.1(\mathrm{CHO}), H R M S ~(E S I):$ found $\mathrm{M}+\mathrm{H}^{+}, 232.0963$. $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NO}_{3}$ requires 232.0974.

Experiment 62: 3-(1H-indol-1-yl)propanoic acid (11d)

In accordance with procedure 4 except using NaOH in MeOH gave ($0.778 \mathrm{~g}, 71 \%$), off white solid, $\mathrm{mp} 83-84^{\circ} \mathrm{C}$; IR Physical and spectroscopic data were consistent with that previously reported. ${ }^{134}$

Experiment 63: 4-(1H-indol-1-yl)butanoic acid (11e)

In accordance with procedure 4 except using NaOH in MeOH gave ($0.883 \mathrm{~g}, 75 \%$), yellow oil, Physical and spectroscopic data were consistent with that previously reported. ${ }^{132}$

General Procedure for One-Pot Barton Ester Formation, Alkyne Addition and Aromatic Substitution (Procedure 9.)
$\mathrm{Et}_{3} \mathrm{~N}(0.32 \mathrm{~mL}, 2.30 \mathrm{mmol})$ in THF (5.7 mL) was added to a mixture of carboxylic acid $(0.76 \mathrm{mmol})$ and HOTT $(0.424 \mathrm{~g}, 1.14 \mathrm{mmol})$ in $\mathrm{MeCN}(1.9 \mathrm{~mL})$. The solution was stirred at room temperature in the absence of light for 40 min . Alkyne (6.08 $\mathrm{mmol})$ in $\mathrm{MeCN}(40 \mathrm{~mL})$ and containing CSA ($0.711 \mathrm{~g}, 3.06 \mathrm{mmol}$) for propiolates was added, and heated under reflux for 6 h . The solution was evaporated, dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$. The organic extract evaporated and purified by column chromatography using silica gel as absorbent with a gradient elution of hexanes and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or $\mathrm{Et}_{2} \mathrm{O}$.

Experiment 64: Methyl 10-cyano-6,7-dihydropyrido[1,2-a]indole-9-carboxylate

 (12a)

In accordance with procedure 9 gave ($0.151 \mathrm{~g}, 79 \%$), off-white solid, $\mathrm{mp} 125-126^{\circ} \mathrm{C}$, $R_{\mathrm{f}} 0.62\left(\mathrm{Et}_{2} \mathrm{O}\right)$; IR $v_{\max }\left(\right.$ neat, $\left.\mathrm{cm}^{-1}\right)$ 2952, $2215(\mathrm{CN}), 1724(\mathrm{C}=\mathrm{O}), 1623,1473,1457$, 1439, 1337, 1276, 1198, 1082, 1017; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.77-2.83(2 \mathrm{H}, \mathrm{m}, 7-$ $\left.\mathrm{CH}_{2}\right), 3.98\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.17\left(2 \mathrm{H}, \mathrm{t}, J 7.1 \mathrm{~Hz}, 6-\mathrm{CH}_{2}\right), 7.25-7.32(4 \mathrm{H}, \mathrm{m}), 7.77(1 \mathrm{H}$, d, J $8.2 \mathrm{~Hz}, 1-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 24.3\left(7-\mathrm{CH}_{2}\right), 39.0\left(6-\mathrm{CH}_{2}\right), 52.2\left(\mathrm{OCH}_{3}\right)$, 85.1 (CN), 109.6 (4-CH), 115.8 (C), 120.2 (1-CH), 122.4, 124.8 (2,3-CH), 125.7, 128.9, 135.2 (all C), 138.7 (8-CH), 164.4 (C=O); HRMS (ESI): found $\mathrm{M}+\mathrm{H}^{+}$, 253.0973. $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires 253.0977.

Experiment 65: Methyl 10-formyl-6,7-dihydropyrido[1,2-a]indole-9-carboxylate

 (12b)

In accordance with procedure 9 gave ($0.140 \mathrm{~g}, 72 \%$), yellow solid, mp $119-120^{\circ} \mathrm{C}, R_{\mathrm{f}}$ $0.32\left(\mathrm{Et}_{2} \mathrm{O}\right)$; IR $v_{\max }\left(\right.$ neat, $\left.\mathrm{cm}^{-1}\right) 2952$, 1724 ($\mathrm{C}=\mathrm{O}$ ester), $1623(\mathrm{C}=\mathrm{O}$ aldehyde), 1473, 1457, 1439, 1337, 1276, 1198, 1082, 1017; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.76(2 \mathrm{H}, \mathrm{q}, 7.0 \mathrm{~Hz}$, $\left.7-\mathrm{CH}_{2}\right), 3.88\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.14\left(2 \mathrm{H}, \mathrm{t}, J 7.0 \mathrm{~Hz}, 6-\mathrm{CH}_{2}\right), 7.24-7.33(4 \mathrm{H}, \mathrm{m}), 8.36$ $(1 \mathrm{H}, \mathrm{d}, J 7.7 \mathrm{~Hz}, 1-\mathrm{H}), 10.13(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO})$, ; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 24.2\left(7-\mathrm{CH}_{2}\right)$, $38.6\left(6-\mathrm{CH}_{2}\right), 52.8\left(\mathrm{OCH}_{3}\right), 109.2(4-\mathrm{CH}), 113.5(\mathrm{C}), 122.5(1-\mathrm{CH}), 123.2,124.5(2,3-$ CH), 126.2, 127.1, 136.0, 136.7 (all C), 138.6 (8-CH), 166.3 (COOMe), 186.0 (CHO); HRMS (ESI): found $\mathrm{M}+\mathrm{H}^{+}, 256.0971 . \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{NO}_{3}$ requires 256.0974.

Experiment 66: tert-Butyl 10-cyano-6,7-dihydropyrido[1,2-a]indole-9carboxylate (12c)

In accordance with procedure 9 gave ($0.152 \mathrm{~g}, 68 \%$), yellow oil, $R_{\mathrm{f}} 0.76\left(\mathrm{Et}_{2} \mathrm{O}\right)$; IR $v_{\max }\left(\right.$ neat, $\left.\mathrm{cm}^{-1}\right) 2978,2217(\mathrm{CN}), 1715(\mathrm{C}=\mathrm{O}), 1533,1457,1428,1393,1368,1287$, $1254,1163,1080,1016 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.65(9 \mathrm{H}, \mathrm{s}, t \mathrm{Bu}), 2.73-2.78(2 \mathrm{H}, \mathrm{m}, 7-$ $\left.\mathrm{CH}_{2}\right), 4.16\left(2 \mathrm{H}, \mathrm{t}, J 7.1 \mathrm{~Hz}, 6-\mathrm{CH}_{2}\right), 7.17(1 \mathrm{H}, \mathrm{t}, J 4.8 \mathrm{~Hz}, 8-\mathrm{H}), 7.24-7.34(3 \mathrm{H}, \mathrm{m})$, $7.79(1 \mathrm{H}, \mathrm{d}, J 7.8 \mathrm{~Hz}, 1-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 24.1\left(7-\mathrm{CH}_{2}\right), 28.0\left(\left(\mathrm{CH}_{3}\right) \mathrm{C}\right)$), $38.8\left(6-\mathrm{CH}_{2}\right), 83.4(\mathrm{CN}), 109.5(4-\mathrm{CH}), 115.9(\mathrm{C}), 120.1(1-\mathrm{CH}), 122.1$ 124.5, (2,3CH), 127.5, 128.7, 135.0, 135.7 (all C), 137.3 (8-CH), 163.1 (C=O), HRMS (ESI): found $\mathrm{M}+\mathrm{H}^{+}$, 295.1439. $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires 295.1447.

Experiment 67: Ethyl 10-formyl-6,7-dihydropyrido[1,2-a]indole-9-carboxylate (12d)

In accordance with procedure $9(0.160 \mathrm{~g}, 78 \%)$, yellow brown solid, $\mathrm{mp} 149-151^{\circ} \mathrm{C}$, $R_{\mathrm{f}} 0.49\left(\mathrm{Et}_{2} \mathrm{O}\right)$; IR $v_{\max }\left(\right.$ neat, $\left.\mathrm{cm}^{-1}\right) 1719$ (C=O ester), 1649 ($\mathrm{C}=\mathrm{O}$ aldehyde), 1456, $1436,1400,1333,1271,1185,1130,1085 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.35(3 \mathrm{H}, \mathrm{t}, J 7.1$ $\left.\mathrm{Hz}, \mathrm{CH}_{3}\right), 2.73-2.78\left(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{CH}_{2}\right), 4.14\left(2 \mathrm{H}, \mathrm{t}, J 7.1 \mathrm{~Hz}, 6-\mathrm{CH}_{2}\right), 4.36(2 \mathrm{H}, \mathrm{q}, J 7.1$ $\left.\mathrm{Hz}, \mathrm{CH}_{2}\right), 7.22-7.33(4 \mathrm{H}, \mathrm{m}), 8.36-8.39(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 10.15(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}) ; \delta_{\mathrm{C}}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 14.2\left(\mathrm{CH}_{3}\right), 24.2\left(7-\mathrm{CH}_{2}\right), 38.6\left(6-\mathrm{CH}_{2}\right), 62.0\left(\mathrm{OCH}_{2}\right), 109.2(4-\mathrm{CH})$, 113.5 (C), 122.6 (1-CH), 123.2, 124.5 (2,3-CH), 126.2, 127.4, 136.0, 136.9 (all C), 138.4 (8-CH), 165.9 (COOMe), 186.1 (CHO); HRMS (ESI): found $\mathrm{M}+\mathrm{H}^{+}, 270.1132$. $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NO}_{3}$ requires 270.1130.

Experiment 68: Methyl 10-methyl-6,7-dihydropyrido[1,2-a]indole-9-carboxylate (12e)

In accordance with procedure $9(0.139 \mathrm{~g}, 76 \%)$, yellow oil, $R_{\mathrm{f}} 0.43\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR $v_{\text {max }}$ (neat, cm^{-1}) 2949, $1726(\mathrm{C}=\mathrm{O}), 1464,1438,1385,1334,1271,1195,1179,1077$, $1016 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.30\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.63-2.68\left(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{CH}_{2}\right), 3.90(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{OCH}_{3}\right), 4.07\left(2 \mathrm{H}, \mathrm{t}, J 6.6 \mathrm{~Hz}, 6-\mathrm{CH}_{2}\right), 6.79(2 \mathrm{H}, \mathrm{t}, J 5.0 \mathrm{~Hz}, 8-\mathrm{H}), 7.05-7.10(1 \mathrm{H}$ $\mathrm{m}), 7.21-7.22(2 \mathrm{H} \mathrm{m}), 7.57(1 \mathrm{H}, \mathrm{d}, J 7.8 \mathrm{~Hz}, 1-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 10.0$ $\left(\mathrm{CH}_{3}\right), 24.8\left(7-\mathrm{CH}_{2}\right), 38.7\left(6-\mathrm{CH}_{2}\right), 52.1\left(\mathrm{OCH}_{3}\right), 108.4(4-\mathrm{CH}), 109.1(\mathrm{C}), 119.0$ $(\mathrm{CH}), 119.3$ (1-CH), 122.7 (CH), 127.2, 127.9, 129.0 (all C), 131.8 (8-CH), 135.8 (C), $167.1(\mathrm{C}=\mathrm{O})$; HRMS (ESI): found $\mathrm{M}+\mathrm{H}^{+}$, 242.1178. $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NO}_{2}$ requires 242.1181.

Experiment 69: Methyl 10-(pyridine-2-ylthio)-6,7-dihydropyrido[1,2-a]indole-9-

 carboxylate (13a)

11d

(ii) $\mathrm{MeCN}, \mathrm{CSA}$, reflux $\equiv \mathrm{CO}_{2} \mathrm{Me}$ (8 equiv)

13a: (72\%)

In accordance with procedure 9 gave ($0.183 \mathrm{~g}, 72 \%$), yellow oil, $R_{\mathrm{f}} 0.45\left(\mathrm{Et}_{2} \mathrm{O}\right)$; IR $v_{\text {max }}\left(\right.$ neat, $\left.\mathrm{cm}^{-1}\right) 3052,2947,2983,1726(\mathrm{C}=\mathrm{O}), 1574,1559,1448,1435,1417,1341$, $1272,1194,1170,1127,1070 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.72-2.77\left(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{CH}_{2}\right), 3.50$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.22\left(2 \mathrm{H}, \mathrm{t}, J 6.8 \mathrm{~Hz}, 6-\mathrm{CH}_{2}\right), 6.75(1 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}$, pyr-3-H), 6.78 $(1 \mathrm{H}, \mathrm{t}, J 4.9 \mathrm{~Hz}, 8-\mathrm{H}), 6.92-6.95(1 \mathrm{H}, \mathrm{m}$, pyr-5-H), 7.11-7.15 (1H, m), 7.28-7.37 $(3 \mathrm{H}, \mathrm{m}), 7.56(1 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}, 1-\mathrm{H}), 8.39-8.41(1 \mathrm{H}, \mathrm{m}, \operatorname{pyr}-6-\mathrm{H}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 24.4\left(7-\mathrm{CH}_{2}\right), 39.3\left(6-\mathrm{CH}_{2}\right), 52.1\left(\mathrm{OCH}_{3}\right), 98.3(\mathrm{C}), 109.2(4-\mathrm{CH}), 119.2$ (pyr-5-CH), $120.2(\mathrm{CH}), 121.1,123.9$ (both CH), 128.0, 130.0 (both C), 133.1 (8CH), 135.1 (C), 136.5 (pyr-4-CH), 149.2 (pyr-6-CH), 162.6 (pyr-2-C), 167.3 (C=O); HRMS (ESI): found $\mathrm{M}+\mathrm{H}^{+}$, 337.1003. $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{~S}$ requires 337.1011.

Experiment 70: Methyl 11-(pyridin-2-ylthio)-7,8-dihydro-6H-azepino[1,2a]indole-10-carboxylate (13b)

(i) $\mathrm{HOTT}, \mathrm{Et}_{3} \mathrm{~N}$, dark, rt
(ii) $\mathrm{MeCN}, \mathrm{CSA}$, reflux

11e
$\equiv \mathrm{CO}_{2} \mathrm{Me}$
(8 equiv)

In accordance with procedure 9 gave ($56 \mathrm{mg}, 21 \%$), yellow oil, $R_{\mathrm{f}} 0.55\left(\mathrm{Et}_{2} \mathrm{O}\right)$; IR $v_{\text {max }}$ (neat, cm^{-1}) 2949, $1719(\mathrm{C}=\mathrm{O}), 1577,1559,1449,1417,1265,1126,1045 ; \delta_{\mathrm{H}}(400$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 2.21-2.28 ($2 \mathrm{H}, \mathrm{m}, 7-\mathrm{CH}_{2}$), 2.29-2.35 ($2 \mathrm{H}, \mathrm{m}, 8-\mathrm{CH}_{2}$), $3.43(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 4.28\left(2 \mathrm{H}, \mathrm{t}, J 6.3 \mathrm{~Hz}, 6-\mathrm{CH}_{2}\right), 6.69(1 \mathrm{H}, \mathrm{d}, J 8.3 \mathrm{~Hz}$, pyr-3-H$), 6.89-6.92(1 \mathrm{H}$, m, pyr-5-H), 7.12-7.17 ($1 \mathrm{H}, \mathrm{m}$), 7.28-7.33 ($2 \mathrm{H}, \mathrm{m}$), 7.36 ($1 \mathrm{H}, \mathrm{t}, J 7.0 \mathrm{~Hz}, 9-\mathrm{H}$), 7.41 ($1 \mathrm{H}, \mathrm{d}, J 8.5 \mathrm{~Hz}, 4-\mathrm{H}), 7.57(1 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}, 1-\mathrm{H}), 8.37-8.39\left(1 \mathrm{H}, \mathrm{m}\right.$, pyr-6-H); δ_{C} ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 25.3, 29.7 (both CH_{2}), $41.9\left(6-\mathrm{CH}_{2}\right), 52.0\left(\mathrm{OCH}_{3}\right), 99.9(\mathrm{C})$, 109.3 (4-CH), 119.0 (pyr-5-H), 119.9 (CH), 120.9, 123.1 (all CH), 128.4, 129.1 (both C), 136.3 (pyr-4-CH), 136.6, 139.3 (both C), 144.0 ($9-\mathrm{CH}$), 149.1 (pyr-6-CH), 162.3 (pyr-2-C), 166.4 (C=O), HRMS (ESI): found $\mathrm{M}+\mathrm{H}^{+}, 351.1180 . \mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ requires 351.1167.

9-(Pyridin-2-ylthio)-2,3-dihydro-1H-pyrrolo[1,2-a]indole (14)

($107 \mathrm{mg}, 53 \%$), off white solid, $\mathrm{mp} 147-148{ }^{\circ} \mathrm{C}, R_{\mathrm{f}} 0.68\left(\mathrm{Et}_{2} \mathrm{O}\right)$; IR $v_{\text {max }}$ (neat, cm^{-1}) 2953, 1574, 1558, 1449, 1417, 1339, 1298, 1229, 1125, 1010; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $2.62-2.70\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{CH}_{2}\right), 3.08\left(2 \mathrm{H}, \mathrm{t}, J 7.6 \mathrm{~Hz}, 1-\mathrm{CH}_{2}\right), 4.19(2 \mathrm{H}, \mathrm{t}, J 7.1 \mathrm{~Hz}, 3-$ $\left.\mathrm{CH}_{2}\right), 6.70(1 \mathrm{H}, \mathrm{d}, J 8.3 \mathrm{~Hz}$, pyr-3-H), 6.89-6.92 $(1 \mathrm{H}, \mathrm{m}, \operatorname{pyr}-5-\mathrm{H}), 7.11-7.15(1 \mathrm{H}$, $\mathrm{m})$, 7.18-7.22 ($1 \mathrm{H}, \mathrm{m}$), 7.28-7.33 ($2 \mathrm{H}, \mathrm{m}$), $7.55(1 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}, 8-\mathrm{H})$, 8.39-8.41 ($1 \mathrm{H}, \mathrm{m}$, pyr-6-H), $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 24.0\left(1-\mathrm{CH}_{2}\right), 27.0\left(2-\mathrm{CH}_{2}\right), 44.8\left(3-\mathrm{CH}_{2}\right)$, 90.3 (C), 109.9 (5-CH), 118.9 (pyr-5-H), 119.1, 119.2, 120.4, 121.5 (all CH), 133.3, 134.1 (both C), 136.4 (pyr-4-CH), 149.3 (pyr-6-CH), 151.0 (C), 163.3 (pyr-2-C); HRMS (ESI): found $\mathrm{M}+\mathrm{H}^{+}$, 267.0963. $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{~S}$ requires 267.0956.

Experiment 71: Methyl 11-formyl-7,8-dihydro-6H-azepino[1,2-a]indole-10carboxylate (15)

In accordance with procedure 9 gave ($47 \mathrm{mg}, 23 \%$), yellow oil, $R_{\mathrm{f}} 0.33\left(\mathrm{Et}_{2} \mathrm{O}\right)$; IR $v_{\max }\left(\right.$ neat, $\left.\mathrm{cm}^{-1}\right) 2952,1720(\mathrm{C}=\mathrm{O}$ ester $), 1653(\mathrm{C}=\mathrm{O}$ aldehyde $), 1575,1518,1458$, $1438,1393,1376,1267,1246,1210,1128,1072,1051 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.31-$ $2.33(4 \mathrm{H}, \mathrm{m}), 3.82\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.24\left(2 \mathrm{H}, \mathrm{t}, J 6.4 \mathrm{~Hz}, 6-\mathrm{CH}_{2}\right), 7.30-7.40(3 \mathrm{H}, \mathrm{m})$, $7.69(1 \mathrm{H}, \mathrm{t}, J 7.3 \mathrm{~Hz}, 9-\mathrm{H}), 8.31-8.34(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 10.03(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}), \delta_{\mathrm{C}}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 24.7,30.4\left(\right.$ both $\left.\mathrm{CH}_{2}\right), 41.5\left(6-\mathrm{CH}_{2}\right), 52.6\left(\mathrm{OCH}_{3}\right), 109.2(4-\mathrm{CH})$, $114.9(\mathrm{C}), 121.7(1-\mathrm{CH}), 123.0,123.9(2,3-\mathrm{CH}), 125.8,127.8,136.2,142.1$ (all C), $147.0(9-\mathrm{CH}), 165.5(\mathrm{COOMe}), 184.8(\mathrm{CHO}), \mathrm{HRMS}(\mathrm{ESI}):$ found $\mathrm{M}+\mathrm{H}^{+}$, 270.1136. $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NO}_{3}$ requires 270.1130.

2,3-Dihydro-1H-pyrrolo[1,2-a]indole-9-carbaldehyde (16)

(72 mg, 51\%), off white solid, mp $134-135{ }^{\circ} \mathrm{C}$, lit $\mathrm{mp} 136{ }^{\circ} \mathrm{C}$. Physical and spectroscopic data were consistent with that previously reported ${ }^{12}$

Experiment 72: 9-Phenyl-6,7-dihydropyrido[1,2-a]indole-10-carbaldehyde (17a)

In accordance with procedure 9 gave ($0.127 \mathrm{~g}, 61 \%$), yellow solid, $123-124{ }^{\circ} \mathrm{C}, R_{\mathrm{f}}$ $0.65\left(\mathrm{Et}_{2} \mathrm{O}\right)$; IR $v_{\max }\left(\right.$ neat, $\left.\mathrm{cm}^{-1}\right) 2978,1643(\mathrm{C}=\mathrm{O}), 1576,1469,1456,1428,1394$, $1368,1331,1300,1175,1127,1067,1020 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.74-2.80(2 \mathrm{H}, \mathrm{m}$, $\left.7-\mathrm{CH}_{2}\right), 4.22\left(2 \mathrm{H} \mathrm{t}, J 7.1 \mathrm{~Hz}, ~, 6-\mathrm{CH}_{2}\right), 6.33(1 \mathrm{H}, \mathrm{t}, J 5.0 \mathrm{~Hz}, 8-\mathrm{H}), 7.26-7.29(1 \mathrm{H}, \mathrm{m})$, 7.30-7.45 ($7 \mathrm{H}, \mathrm{m}$), $8.41(1 \mathrm{H}, \mathrm{d}, J 7.8 \mathrm{~Hz}, 1-\mathrm{H}), 9.20(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 24.0\left(7-\mathrm{CH}_{2}\right), 39.4\left(6-\mathrm{CH}_{2}\right), 109.0(4-\mathrm{CH}), 113.8(\mathrm{C}), 122.1,123.2,124.4$ (1,2,3-CH), 126.2 (C), 128.3, 128.6 (Ph-CH), 129.0 ($8-\mathrm{CH}, \mathrm{Ph}-\mathrm{CH}$), 134.5, 136.2, 139.9, 142.2 (all C), 186.9 (CHO), HRMS (ESI): found $\mathrm{M}+\mathrm{H}^{+}, 274.1229 . \mathrm{C}_{19} \mathrm{H}_{16} \mathrm{NO}$ requires 274.1232 .

1-[2-(pyridin-2-ylthio)ethyl]-1H-indole-3-carbaldehyde (18a)

($30 \mathrm{mg}, 14 \%$), pale yellow oil, $R_{\mathrm{f}} 0.35\left(\mathrm{Et}_{2} \mathrm{O}\right)$; IR $v_{\max }\left(\right.$ neat, cm^{-1}) $3046,2809,1655$ (C=O), 1558, 1577, 1531, 1467, 1454, 1415, 1400, 1388, 1164, 1151, 1125, 1043; δ_{H} ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $3.55\left(2 \mathrm{H}, \mathrm{t}, J 7.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.48\left(2 \mathrm{H}, \mathrm{t}, J 7.1 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 6.98-$ $7.02(1 \mathrm{H}, \mathrm{m}$, pyr-5-H), $7.14(1 \mathrm{H}, \mathrm{d}, J 8.2 \mathrm{~Hz}$, pyr-3-H), 7.27-7.36 ($2 \mathrm{H}, \mathrm{m}, 5,6-\mathrm{H}$), 7.43-7.48 (1H, m, pyr-4-H), $7.56(1 \mathrm{H}, \mathrm{d}, J 8.3 \mathrm{~Hz}, 7-\mathrm{H}), 7.72(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 8.28(1 \mathrm{H}$, d, J $7.8 \mathrm{~Hz}, 4-\mathrm{H}$), $8.41-8.43(1 \mathrm{H}, \mathrm{m}, \mathrm{pyr}-6-\mathrm{H}), 9.95(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 29.3\left(\mathrm{CH}_{2}\right), 47.1\left(\mathrm{NCH}_{2}\right), 110.4(7-\mathrm{CH}), 118.3(\mathrm{C}), 120.1$ (pyr-5-CH), 122.2 (4-CH), 122.7, 123.0 (5-6-CH), 124.1 (pyr-3-CH), 125.5 (C), 136.3 (pyr-4-CH), 137.2 (C), 139.0 (2-CH), 149.6 (pyr-6-CH), 156.9 (pyr-2-C), 184.7 (CHO); HRMS (ESI): found $\mathrm{M}+\mathrm{H}^{+}$, 283.0911. $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{OS}$ requires 283.0905.

Experiment 73: ethyl 10-cyano-9-phenyl-6,7-dihydropyrido[1,2-a]indole-8carboxylate (17b)

In accordance with procedure 9 gave ($60 \mathrm{mg}, 23 \%$), off-white solid, $\mathrm{mp} 119-120^{\circ} \mathrm{C}$, $R_{\mathrm{f}} 0.31\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR $v_{\max }$ (neat, $\left.\mathrm{cm}^{-1}\right) 2980,2213(\mathrm{CN}), 1696(\mathrm{C}=\mathrm{O}), 1475,1426$, $1378,1296,1247,1216,1130,1110,1017 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.90(3 \mathrm{H}, \mathrm{t}, J 7.2$ $\left.\mathrm{Hz}, \mathrm{CH}_{3}\right), 3.11\left(2 \mathrm{H}, \mathrm{t}, J 7.2 \mathrm{~Hz}, 7-\mathrm{CH}_{2}\right), 3.98\left(2 \mathrm{H}, \mathrm{q}, J 7.2 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 4.31(2 \mathrm{H}, \mathrm{t}, J$ $\left.7.2 \mathrm{~Hz}, 6-\mathrm{CH}_{2}\right), 7.21-7.30(3 \mathrm{H}, \mathrm{m}), 7.35-7.40(2 \mathrm{H}, \mathrm{m}), 7.43-7.53(3 \mathrm{H}, \mathrm{m}), 7.68(1 \mathrm{H}$, d, $J 8.0 \mathrm{~Hz}, 1-\mathrm{H}), \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 13.6\left(\mathrm{CH}_{3}\right), 25.7\left(7-\mathrm{CH}_{2}\right), 40.0\left(6-\mathrm{CH}_{2}\right), 61.0$ $\left(\mathrm{OCH}_{2}\right), 88.3(\mathrm{C}), 109.9(4-\mathrm{CH}), 113.6(\mathrm{CN}), 120.3(1-\mathrm{CH}), 122.5,125.5(2,3-\mathrm{CH})$, 126.6 (C), 128.5, 129.0129 .1 (Ph-CH), 129.2, 135.8, 135.9, 137.5 (C), 140.1 (C), 167.3 (C=O), HRMS (ESI): found $\mathrm{M}+\mathrm{H}^{+}, 343.1444 . \quad \mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires 343.1447.

1-[2-(Pyridin-2-ylthio)ethyl]-1H-indole-3-carbonitrile (18b)

($0.125 \mathrm{~g}, 59 \%$), pale yellow oil, $R_{\mathrm{f}} 0.28\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR $v_{\max }\left(\right.$ neat, $\left.\mathrm{cm}^{-1}\right) 2927,2217$ (CN), 1578, 1558, 1533, 1467, 1455, 1415, 1392, 1349, 1283, 1250, 1167, 1125, $1015 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.55\left(2 \mathrm{H}, \mathrm{t}, J 7.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.50\left(2 \mathrm{H}, \mathrm{t}, J 7.1 \mathrm{~Hz}, \mathrm{NCH}_{2}\right)$, 7.00-7.04 (1H, m, pyr-5-H), 7.15 ($1 \mathrm{H} \mathrm{d}, J 7.8 \mathrm{~Hz}$, pyr-3-H), 7.26-7.37 (2H, m, 5,6H), $7.46-7.52(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 7.61(1 \mathrm{H}, \mathrm{d}, J 8.2 \mathrm{~Hz}, 4-\mathrm{H}), 7.64(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 7.73(1 \mathrm{H}$, d, J 8.3 Hz, pyr-4-H), $8.42\left(1 \mathrm{H}, \mathrm{d}, J 5.0 \mathrm{~Hz}\right.$, pyr-6-H), $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 29.4$ $\left(\mathrm{CH}_{2}\right), 47.1\left(\mathrm{NCH}_{2}\right), 85.8$ (3-C), 110.9 (7-CH), 116.1 (CN), $120.0(4-\mathrm{CH}), 120.1$ (pyr-5-CH), 122.3, 122.8 (5,6-CH), 124.0 (ppy-3-CH), 128.0 (C), 135.3 ($2-\mathrm{CH}$), 135.4 (C), 136.4 (pyr-4-CH), 149.4 (pyr-6-CH), 156.7 (pyr-2-C), HRMS (ESI): found $\mathrm{M}+\mathrm{H}^{+}$, 280.0905. $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{~S}$ requires 280.0908 .

Experiment 74: Methyl 10-cyano-9-propyl-6,7-dihydropyrido[1,2-a]indole-8carboxylate (17c)

In accordance with procedure 9 gave ($11 \mathrm{mg}, 5 \%$), pale yellow solid, $\mathrm{mp} 166-167{ }^{\circ} \mathrm{C}$, $R_{\mathrm{f}} 0.63\left(\mathrm{Et}_{2} \mathrm{O}\right)$; IR $v_{\max }\left(\right.$ neat, $\left.\mathrm{cm}^{-1}\right)$ 2925, $2215(\mathrm{CN}), 1715(\mathrm{C}=\mathrm{O}), 1596,1457,1423$, $1292,1272,1245,1213,1086 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.08\left(3 \mathrm{H}, \mathrm{t}, J 7.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$, 1.66-1.76 (2H, m, CH 2), $2.93\left(2 \mathrm{H}, \mathrm{t}, J 7.1 \mathrm{~Hz}, 7-\mathrm{CH}_{2}\right), 3.18\left(2 \mathrm{H}, \mathrm{t}, J 8.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$, $3.85\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.15\left(2 \mathrm{H}, \mathrm{t}, J 7.1 \mathrm{~Hz}, 6-\mathrm{CH}_{2}\right), 7.25-7.29(1 \mathrm{H}, \mathrm{m}), 7.33-7.39(2 \mathrm{H}$, $\mathrm{m}), 7.77(1 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}, 1-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 13.9\left(\mathrm{CH}_{3}\right), 23.8,25.6,31.2$ (all CH_{2}), $39.9\left(6-\mathrm{CH}_{2}\right), 52.1\left(\mathrm{OCH}_{3}\right), 85.4(\mathrm{C}), 109.9(4-\mathrm{CH}), 116.3(\mathrm{CN}), 120.1(1-$ CH), 121.9 (C), 122.6, 125.3 (2,3-CH), 128.9 (C), 135.4 (C), 139.9 (C), 149.9 (C), 167.5 ($\mathrm{C}=\mathrm{O}$); HRMS (ESI): found $\mathrm{M}+\mathrm{H}^{+}$, 295.1445. $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires 295.1447.

1-[2-(pyridin-2-ylthio)ethyl]-1H-indole-3-carbonitrile (18b)

($0.172 \mathrm{~g}, 81 \%$), pale yellow oil, $R_{\mathrm{f}} 0.28\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. Physical and spectroscopic data were consistent with that previously reported in experiment 73 .

5.4 Experimental for Chapter 4

5.4.1 Cell culture and cytotoxicity evaluation

5.4.1.1 Cell lines

DU145 prostate cancer cell line (ATCC repository number HTB-81) was obtained from Prof. William Watson, School of Medicine \& Medical Science, University College Dublin, Ireland. SV40-transformed human normal skin fibroblast cell line (repository number GM00637) was obtained from the National Institute for General Medical Sciences (NIGMS) Human Genetic Cell Repository (Coriell Institute for Medical Research, New Jersey, USA). The MCF-7 breast cancer cell line was obtained from Dr. Adrienne Gorman, Biochemistry, School of Natural Sciences, National University of Ireland, Galway.

Cell culture reagents were obtained from Sigma-Aldrich and sterile plastic ware was obtained from Sarstedt AG (Numbrecht, Germany).

The SV40-transformed human normal skin fibroblast cell line (GM00637) was grown in Minimum Essential Media (MEM) Eagle-Earle's BSS supplemented with 15% non heat-inactivated fetal bovine serum (FBS), 1% penicillin-streptomycin, $2 \mathrm{mM}_{\mathrm{L}^{-}}$ glutamine, 2 X essential and non-essential amino acids and 2 X vitamins. MCF-7 breast cancer cells were cultured in Dulbecco's modified Eagle's medium (DMEM) containing high glucose $(4.5 \mathrm{~g} / \mathrm{mL})$ and supplemented with 10% heat-inactivated FBS and 1% penicillin-streptomycin. DU145 prostate cancer cells were grown in RPMI1640 medium supplemented with 10% non heat-inactivated fetal bovine serum, penicillin-streptomycin and 2 mM L-glutamine. All cell lines grew as adherent cultures.

Cell culture procedures were carried out in a Class III Bio-Safety Cabinet (Medical Supply Company, Dublin, Ireland). Disposable sterile plastic ware was used for all cell culture protocols. Surfaces were sprayed with 70% ethanol prior to carrying out procedures. Cells were grown in $75 \mathrm{~cm}^{3}$ flasks in 20 mL of medium, and incubated in an autoflow CO_{2} water-jacket incubator at $37{ }^{\circ} \mathrm{C}$ and $5 \% \mathrm{CO}_{2}$

When cells were approximately 80% confluent, they were subcultured by treatment with 2X trypsin-EDTA in Hanks balanced salt solution for five minutes. Cells were centrifuged at $1,200 \mathrm{rpm}$ in a Rotanta 300 centrifuge and the cell pellet was resuspended in fresh culture medium. The total cell number was determined using a Kova® Glasstic® Slide 10 combination coverslip-microslip slide. When cells did not need to be counted the GM00637 stock was seeded at $1 / 4$, MCF-7 at $1 / 10$ and DU145 at $1 / 6$ and were added to 20 mL of pre warmed medium in a sterile $75 \mathrm{~cm}^{3}$ flask and incubated at $37{ }^{\circ} \mathrm{C}$ and $5 \% \mathrm{CO}_{2}$. Cell culture medium was changed every two-three days.

5.4.1.2 Cell resuscitation

All cell lines were resuscitated by rapid thawing of the cell suspension at $37^{\circ} \mathrm{C} .1 \mathrm{~mL}$ of pre-warmed culture medium was added to a $25 \mathrm{~cm}^{3}$ sterile culture flask followed by the thawed cell suspension, and a further 5 mL of pre warmed culture medium was added. The cells were incubated at $37{ }^{\circ} \mathrm{C}$ and $5 \% \mathrm{CO}_{2}$ and the culture medium was changed the following day.

5.4.1.3 Cytotoxicity measurements using the MTT assay

Cell viability was determined using the MTT colorimetric assay. ${ }^{135}$ Cells were plated into 96 -well plates at a density of 10,000 cells per well (GM00637, $200 \mu \mathrm{~L}$ per well), 1,000 cells per well (MCF-7, $200 \mu \mathrm{~L}$ per well) and 2,000 cells per well (DU145, 200 $\mu \mathrm{L}$ per well) and allowed to adhere over a period of 24 hours. Drug solutions were applied in DMSO. All cells were incubated at $37{ }^{\circ} \mathrm{C}$ under a humidified atmosphere containing $5 \% \mathrm{CO}_{2}$ for 72 hours. Control cells were exposed to an equivalent concentration of DMSO control alone. MTT ($20 \mu \mathrm{~L}, 5 \mathrm{mg} / \mathrm{mL}$ solution) was added and the cells were incubated for a further 4 hours. The supernatant was then removed by careful pipetting. The resultant MTT formazan crystals were dissolved in $100 \mu \mathrm{~L}$ of DMSO and absorbance was determined using a Wallac Victor 21420 multilabel counter plate reader at 550 nm with a reference at 690 nm . Cell viability is expressed as a percentage of the DMSO-only treated control value. Dose-response curves were analyzed by nonlinear regression analysis and IC_{50} values were estimated by using GraphPad Prism software, v.5.02 (GraphPad Inc., San Diego, CA, USA). The in vitro activity of the drugs towards all cell lines is expressed as IC_{50} (i.e. concentration required for the reduction of the mean cell viability to 50%).

References

(1) Minisci, F.; Fontana, F.; Pianese, G.; Yan, Y. M. J. Org. Chem. 1993, 58, 4207-4211.
(2) McLoughlin, P. T. F.; Clyne, M. A.; Aldabbagh, F. Tetrahedron 2004, 60, 8065-8071.
(3) Lynch, M.; Hehir, S.; Kavanagh, P.; Leech, D.; O'Shaughnessy, J.; Carty, M. P.; Aldabbagh, F. Chem. - Eur. J. 2007, 13, 3218-3226.
(4) Bowman, W. R.; Storey, J. M. D. Chem. Soc. Rev. 2007, 36, 1803-1822.
(5) Barton, D. H. R.; Garcia, B.; Togo, H.; Zard, S. Z. Tetrahedron Lett. 1986, 27, 1327-1330.
(6) Ziegler, F. E.; Belema, M. J. Org. Chem. 1997, 62, 1083-1094.
(7) Ziegler, F. E.; Jeroncic, L. O. J. Org. Chem. 1991, 56, 3479-3486.
(8) Caddick, S.; Aboutayab, K.; Jenkins, K.; West, R. I. J. Chem. Soc., Perkin Trans. 1 1996, 675-682.
(9) Caddick, S.; Shering, C. L.; Wadman, S. N. Tetrahedron 2000, 56, 465-473.
(10) Aldabbagh, F.; Bowman, W. R. Tetrahedron 1999, 55, 4109-4122.
(11) Aldabbagh, F.; Bowman, W. R.; Mann, E.; Slawin, A. M. Z. Tetrahedron 1999, 55, 8111-8128.
(12) J. Moody, C.; L. Norton, C. J. Chem. Soc., Perkin Trans. 1 1997, 2639-2644.
(13) Gagosz, F.; Zard, S. Z. Org. Lett. 2002, 4, 4345-4348.
(14) Fagan, V.; Bonham, S.; Carty, M. P.; Aldabbagh, F. Org. Biomol. Chem. 2010, 8, 3149-3156.
(15) http://dtp.nci.nih.gov/
(16) Boyd, M. R.; Paull, K. D. Drug Dev. Res. 1995, 34, 91-109.
(17) Shoemaker, R. H. Nat. Rev. Cancer 2006, 6, 813-823.
(18) https://statistics.laerd.com/statistical-guides/pearson-correlation-coefficientstatisticalguide.php
(19) Paull, K. D.; Lin, C. M.; Malspeis, L.; Hamel, E. Cancer Res. 1992, 52, 38923900.
(20) Fagan, V.; Bonham, S.; Carty, M. P.; Saenz-Méndez, P.; Eriksson, L. A.; Aldabbagh, F. Bioorg. Med. Chem. 2012, 20, 3223-3232.
(21) Hearn, J. M.; Romero-Canelón, I.; Qamar, B.; Liu, Z.; Hands-Portman, I.; Sadler, P. J. ACS Chem. Biol. 2013, 8, 1335-1343.
(22) Saeed, M.; Khalid, H.; Sugimoto, Y.; Efferth, T. Phytomedicine 2014, 21, 689.
(23) Kunkel, M. W.; Kirkpatrick, D. L.; Johnson, J. I.; Powis, G. Anti-Cancer Drug Des. 1997, 12, 659-670.
(24) Beckwith, A. L. J.; Bowry, V. W.; Bowman, W. R.; Mann, E.; Parr, J.; Storey, J. M. D. Angew. Chem., Int. Ed. 2004, 43, 95-98.
(25) Crich, D.; Grant, D.; Krishnamurthy, V.; Patel, M. Acc. Chem. Res. 2007, 40, 453-463.
(26) Allin, S. M.; Barton, W. R. S.; Russell Bowman, W.; Bridge, E.; Elsegood, M. R. J.; McInally, T.; McKee, V. Tetrahedron 2008, 64, 7745-7758.
(27) Bennasar, M. L.; Roca, T. J. Org. Chem. 2011, 76, 4213-4218.
(28) Kostiuk, S. L.; Woodcock, T.; Dudin, L. F.; Howes, P. D.; Harrowven, D. C. Chem. -Eur. J. 2011, 17, 10906-10915.
(29) Storey, J. M. D.; Ladwa, M. M. Tetrahedron Lett. 2006, 47, 381-383.
(30) Beckwith, A. L. J.; Storey, J. M. D. J. Chem. Soc., Chem.Commun. 1995, 977978.
(31) Barton, D. H. R.; Crich, D.; Motherwell, W. B. J. Chem. Soc., Chem.Commun. 1983, 939-941.
(32) Barton, D. H. R.; Crich, D.; Motherwell, W. B. Tetrahedron 1985, 41, 39013924.
(33) Barton, D. H. R.; Crich, D.; Hervé, Y.; Potier, P.; Thierry, J. Tetrahedron 1985, 41, 4347-4357.
(34) Barton, D. H. R.; Hervé, Y.; Potier, P.; Thierry, J. Tetrahedron 1987, 43, 4297-4308.
(35) Barton, D. H. R.; Crich, D.; Kretzschmar, G. J. Chem. Soc., Perkin Trans. I 1986, 39-53.
(36) Ling, T.; Xiang, A. X.; Theodorakis, E. A. Angew. Chem. Int. Ed. 1999, 38, 3089-3091.
(37) Ziegler, F. E.; Harran, P. G. Tetrahedron Lett. 1993, 34, 4505-4508.
(38) Ziegler, F. E.; Belema, M. J. Org. Chem. 1994, 59, 7962-7967.
(39) Ziegler, F. E.; Berlin, M. Y. Tetrahedron Lett. 1998, 39, 2455-2458.
(40) Jones, G. B.; Moody, C. J. J. Chem. Soc., Perkin Trans. 1 1989, 2449-2454.
(41) Jones, G. B.; Moody, C. J. J. Chem. Soc., Perkin Trans. 1 1989, 2455-2462. 37, 3834-3843.
(43) Moody, C. J.; Norton, C. L.; Slawin, A. M. Z.; Taylor, S. Anti-Cancer Drug Des. 1998, 13, 611-634.
(44) Colucci, M. A.; Couch, G. D.; Moody, C. J. Org. Biomol. Chem. 2008, 6, 637656.
(45) O'Shaughnessy, J.; Cunningham, D.; Kavanagh, P.; Leech, D.; McArdle, P.; Aldabbagh, F. Synlett 2004, 2004, 2382-2384.
(46) O'Shaughnessy, J.; Aldabbagh, F. Synthesis 2005, 2005, 1069-1076.
(47) Hehir, S.; O'Donovan, L.; Carty, M. P.; Aldabbagh, F. Tetrahedron 2008, 64, 4196-4203.
(48) Fahey, K. PhD Thesis 2010, National University of Ireland Galway.
(49) Dappen, M. S.; Pellicciari, R.; Natalini, B.; Monahan, J. B.; Chiorri, C.; Cordi, A. A. J. Med. Chem. 1991, 34, 161-168.
(50) Guida, W. C.; Mathre, D. J. J. Org. Chem. 1980, 45, 3172-3176.
(51) Garner, P.; Anderson, J. T.; Dey, S.; Youngs, W. J.; Galat, K. J. Org.Chem.1998, 63, 5732-5733.
(52) Takasu, K.; Mizutani, S.; Noguchi, M.; Makita, K.; Ihara, M. J. Org.Chem. 2000, 65, 4112-4119.
(53) Garner, P.; Anderson, J. T.; Cox, P. B.; Klippenstein, S. J.; Leslie, R.; Scardovi, N. J. Org.Chem. 2002, 67, 6195-6209.
(54) Clive, D. L. J.; Huang, X. Tetrahedron 2002, 58, 10243-10250.
(55) Hohn, E.; Pietruszka, J. Adv.Synth. Catal. 2004, 346, 863-866.
(56) Inanaga, K.; Takasu, K.; Ihara, M. J. Am.Chem.Soc. 2004, 126, 1352-1353.
(57) Hohn, E.; Paleček, J.; Pietruszka, J.; Frey, W. Eur. J. Org. Chem. 2009, 2009, 3765-3782.
(58) Zard, S. Z. Radical Reactions in Organic Synthesis; Oxford University Press, 2003, 110-129.
(59) Motherwell, W. B.; Imboden, C. in Radicals in Organic Synthesis, Basic Principles, ed. Renaud, P.; Sibi, M. P. Wiley-VCH, Weinheim, 2001, 109-134.
(60) Barton, D. H. R.; Ozbalik, N.; Vacher, B. Tetrahedron 1988, 44, 3501-3512.
(61) Barton, D. H. R.; Albert Ferreira, J. Tetrahedron 1996, 52, 9347-9366.
(62) Kochi, J. K.; Krusic, P. J.; Eaton, D. R. J. Am.Chem.Soc. 1969, 91, 1879-1881.
(63) Walborsky, H. M. Tetrahedron 1981, 37, 1625-1651.
(64) Clyne, M. A.; Aldabbagh, F. Org. Biomol. Chem. 2006, 4, 268-277.
(65) Linsenmeier, A. M.; Williams, C. M.; Bräse, S. J. Org. Chem. 2011, 76, 91279132.
(66) O'Connell, J. M.; Moriarty, E.; Aldabbagh, F. Synthesis 2012, 44, 3371-3377.
(67) Clerici, A.; Minisci, F.; Porta, O. J. Chem. Soc., Perkin Trans. 2 1974, 16991701.
(68) Tanabe, Y.; Wakimura, K.-i.; Nishii, Y. Tetrahedron Lett. 1996, 37, 18371840.
(69) Fischer, H.; Radom, L. Angew. Chem.Int. Ed. 2001, 40, 1340-1371.
(70) Studer, A.; Bossart, M. in Radicals in Organic Synthesis, Vol 2 Applications, Renaud, P.; Sibi, M. P. Wiley-VCH, Weinheim, 2001 62-80.
(71) Stork, G.; Baine, N. H. J. Am.Chem.Soc. 1982, 104, 2321-2323.
(72) Padwa, A.; Rashatasakhon, P.; Ozdemir, A. D.; Willis, J. J. Org. Chem. 2005, 70, 519-528.
(73) Wille, U. Chem. Rev. 2013, 113, 813-853.
(74) Leardini, R.; Nanni, D.; Pedulli, G. F.; Tundo, A.; Zanardi, G. J. Chem. Soc., Perkin Trans. 1 1986, 1591-1594.
(75) Leardini, R.; Nanni, D.; Tundo, A.; Zanardi, G. Tetrahedron Lett. 1998, 39, 2441-2442.
(76) Back, T. G.; Krishna, M. V. J. Org. Chem. 1988, 53, 2533-2536.
(77) Montevecchi, P. C.; Navacchia, M. L. J. Org. Chem. 1998, 63, 537-542.
(78) Leardini, R.; Nanni, D.; Zanardi, G. J. Org. Chem. 2000, 65, 2763-2772.
(79) Santi, R.; Bergamini, F.; Citterio, A.; Sebastiano, R.; Nicolini, M. J. Org. Chem. 1992, 57, 4250-4255.
(80) Citterio, A.; Sebastiano, R.; Maronati, A.; Santi, R.; Bergamini, F. J. Chem. Soc.,Chem.Commun. 1994, 1517-1518.
(81) Dong, X.; Xu, Y.; Liu, J. J.; Hu, Y.; Xiao, T.; Zhou, L. Chem. -Eur. J. 2013, 19, 16928-16933
(82) Liu, K.; Jia, F.; Xi, H.; Li, Y.; Zheng, X.; Guo, Q.; Shen, B.; Li, Z. Org. Lett. 2013, 15, 2026-2029.
(83) Coyle, R.; Fahey, K.; Aldabbagh, F. Org. Biomol. Chem. 2013, 11, 16721682.
(84) Fahey, K.; Coyle, R.; McArdle, P.; Aldabbagh, F. ARKIVOC, 2013, (iii), 401412.
(85) Rubin, H.; Fischer, H. Helv. Chim. Acta. 1996, 79, 1670-1682.
(86) Neilson, G. W.; Symons, M. C. R. J. Chem. Soc., Perkin Trans. 2 1973, 14051410.
(87) Ito, O.; Omori, R.; Matsuda, M. J. Am.Chem.Soc. 1982, 104, 3934-3937.
(88) Korth, H.-G.; Lusztyk, J.; Ingold, K. U. J. Chem. Soc., Perkin Trans. 2 1990, 1997-2007.
(89) Goumans, T. P. M.; van Alem, K.; Lodder, G. Eur.J. Org. Chem. 2008, 2008, 435-443.
(90) Curran, D. P.; Keller, A. I. J. Am. Chem. Soc. 2006, 128, 13706-13707
(91) Newcomb, M.; Park, S. U. J. Am.Chem.Soc. 1986, 108, 4132-4134.
(92) Huisgen, R.; Wulff, J. Chem. Ber. 1969, 102, 1848-1858.
(93) Neugebauer, F. A.; Umminger, I. Chem. Ber. 1980, 113, 1205-1225.
(94) Koutentis, P. A.; Lo Re, D. Synthesis 2010, 2010, 2075-2079.
(95) Constantinides, C. P.; Koutentis, P. A.; Krassos, H.; Rawson, J. M.;

Tasiopoulos, A. J. J. Org. Chem. 2011, 76, 2798-2806.
(96) Koutentis, P. A.; Krassos, H.; Lo Re, D. Org. Biomol. Chem. 2011, 9, 52285237.
(97) Berezin, A. A.; Zissimou, G.; Constantinides, C. P.; Beldjoudi, Y.; Rawson, J. M.; Koutentis, P. A. J. Org. Chem. 2013, 79, 314-327.
(98) Blatter, H. M.; Lukaszewski, H. Tetrahedron Lett. 1968, 9, 2701-2705.
(99) Catto, M.; Berezin, A. A.; Lo Re, D.; Loizou, G.; Demetriades, M.; De Stradis, A.; Campagna, F.; Koutentis, P. A.; Carotti, A. Eur. J. Med. Chem. 2012, 58, 84-97.
(100) Koutentis, P. A.; Loizou, G.; Lo Re, D. J. Org. Chem. 2011, 76, 5793-5802.
(101) Berezin, A. A.; Constantinides, C. P.; Drouza, C.; Manoli, M.; Koutentis, P. A. Org. Lett. 2012, 14, 5586-5589.
(102) Robbins, W. J.; Kavanagh, F.; Hervey, A. Proc. Natl. Acad. Sci. 1947, 33, 171-176.
(103) Hart, D. J.; Huang, H. C.; Krishnamurthy, R.; Schwartz, T. J. Am.Chem.Soc. 1989, 111, 7507-7519.
(104) Shipley, S. M.; Barr, A. L.; Graf, S. J.; Collins, R. P.; McCloud, T. G.;

Newman, D. J. J. Ind. Microbiol. Biotechnol. 2006, 33, 463-468.
(105) Berdicevsky, I.; Kaufman, G.; Newman, D. J.; Horwitz, B. A. Mycoses 2009, 52, 313-317.
(106) Welsh, S. J.; Williams, R. R.; Birmingham, A.; Newman, D. J.; Kirkpatrick, D. L.; Powis, G. Mol. Cancer Ther. 2003, 2, 235-243.
(107) Wipf, P.; Hopkins, T. D.; Jung, J.-K.; Rodriguez, S.; Birmingham, A.; Southwick, E. C.; Lazo, J. S.; Powis, G. Bioorg. Med.Chem. Lett. 2001, 11, 26372641.
(108) Wipf, P.; Lynch, S. M.; Birmingham, A.; Tamayo, G.; Jimenez, A.; Campos, N.; Powis, G. Org. Biomol.Chem. 2004, 2, 1651-1658.
(109) Gromer, S.; Arscott, L. D.; Williams, C. H.; Schirmer, R. H.; Becker, K. J. Biol.Chem. 1998, 273, 20096-20101.
(110) Mustacich, D.; Powis, G. Biochem. J. 2000, 346, Pt 1, 1-8.
(111) Arnér, E. S. J.; Holmgren, A. Eur. J. Biochem. 2000, 267, 6102-6109.
(112) Gromer, S.; Urig, S.; Becker, K. Med. Res. Rev. 2004, 24, 40-89.
(113) Cha, M.-K.; Suh, K.-H.; Kim, I.-H. J. Exp. Clin.Canc.Res. 2009, 28, 93-104.
(114) Meuillet, E. J.; Mahadevan, D.; Berggren, M.; Coon, A.; Powis, G. Arch. Biochem. Biophys. 2004, 429, 123-133.
(115) Lee, S.-R.; Yang, K.-S.; Kwon, J.; Lee, C.; Jeong, W.; Rhee, S. G. J. Biol. Chem. 2002, 277, 20336-20342.
(116) Li, J.; Yen, C.; Liaw, D.; Podsypanina, K.; Bose, S.; Wang, S. I.; Puc, J.; Miliaresis, C.; Rodgers, L.; McCombie, R.; Bigner, S. H.; Giovanella, B. C.; Ittmann, M.; Tycko, B.; Hibshoosh, H.; Wigler, M. H.; Parsons, R. Science 1997, 275, 19431947.
(117) Cuadrado, A.; Nebreda, A. R. Biochem. J. 2010, 429, 403-417.
(118) Weng, L.-P.; Smith, W. M.; Brown, J. L.; Eng, C. Hum.Mol. Gen. 2001, 10, 605-616.
(119) Mulholland, D. J.; Kobayashi, N.; Ruscetti, M.; Zhi, A.; Tran, L. M.; Huang, J.; Gleave, M.; Wu, H. Cancer Res. 2012, 72, 1878-1889.
(120) Munoz, L.; Ammit, A. J. Neuropharmacology. 2010, 58, 561-568.
(121) Johnson, G. V. W.; Bailey, C. D. C. Exp.Neurol. 2003, 183, 263-268.
(122) Hensley, K.; Floyd, R. A.; Zheng, N.-Y.; Nael, R.; Robinson, K. A.; Nguyen, X.; Pye, Q. N.; Stewart, C. A.; Geddes, J.; Markesbery, W. R.; Patel, E.; Johnson, G. V. W.; Bing, G. J. Neurochem. 1999, 72, 2053-2058.
(123) Meyer, B.; Loeschke, S.; Schultze, A.; Weigel, T.; Sandkamp, M.; Goldmann, T.; Vollmer, E.; Bullerdiek, J. Mol.Carcinogen. 2007, 46, 503-511.
(124) Boo, L. M.; Lin, H. H.; Chung, V.; Zhou, B.; Louie, S. G.; O'Reilly, M. A.; Yen, Y.; Ann, D. K. Cancer Res. 2005, 65, 6622-6630.
(125) Naylor, M. A.; Jaffar, M.; Nolan, J.; Stephens, M. A.; Butler, S.; Patel, K. B.; Everett, S. A.; Adams, G. E.; Stratford, I. J. J. Med.Chem.1997, 40, 2335-2346.
(126) Fahey, K.; O'Donovan, L.; Carr, M.; Carty, M. P.; Aldabbagh, F. Eur. J. Med. Chem. 2010, 45, 1873-1879.
(127) Alekseenko, A. L.; Popkov, S. V. Chem Heterocycl Compd 2007, 43, 769-775.
(128) Bowman, W. R.; Fletcher, A. J.; Pedersen, J. M.; Lovell, P. J.; Elsegood, M.
R. J.; Hernández López, E.; McKee, V.; Potts, G. B. S. Tetrahedron 2007, 63, 191203.
(129) Verboom, W.; Orlemans, E. O. H.; Berga, H. J.; Scheltinga, H. W.; Reinhoudt, D. N. Tetrahedron 1986, 42, 5053-5064.
(130) Artis, D. R.; Cho, I.-S.; Jaime-Figueroa, S.; Muchowski, J. M. J. Org. Chem. 1994, 59, 2456-2466.
(131) Katritzky, A. R.; Lang, H.; Lan, X. Tetrahedron 1993, 49, 2829-2838.
(132) Benson, S. C.; Li, J. H.; Snyder, J. K. J. Org. Chem. 1992, 57, 5285-5287.
(133) Kaarsholm, N. C.; Madsen, P.; Schlein, M.; Olsen, H. B.; Havelund, S.; Steensgaard, D. B.; Ludvigsen, S.; Jakobsen, P.; Petersen, A. K.; Schluckebier, G.; pharmaceutical compositions comprising insulin and legends of insulin hexamer, Google Patents: 2004.
(134) Pang, Y.-P.; Miller, J. L.; Kollman, P. A. J. Am.Chem.Soc. 1999, 121, 17171725.
(135) Mosmann, T. J. Immunol. Methods. 1983, 65, 55-63.

Appendix

A. $1 \quad$ X-Ray crystallographic data

Table A.1; X-ray crystallographic data and structure refinement for 1, 1a, 2, 3, 4, 10b-hexahydrocyclopropa[3,4]azepino[1,2-a]indole-10-carbaldehyde (31).

CCDC reference number	936651
Empirical formula	$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}$
Formula weight	225.28
Temperature	297.5 K
Wavelength	0.7107 A
Crystal system	Monoclinic
Space group	P21/n
Unit cell dimensions	$\mathrm{a}=11.524734) \AA \alpha=90.00^{\circ}$
	$12.1937(4)(3) \AA 90.00^{\circ}$
Volume	$1171.82(6) \AA^{3}$
Z	4
Density (calculated)	$1.277 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.080 \mathrm{~mm}^{-1}$
$\mathrm{F}(000)$	480
Crystal size	$0.50 \times 0.40 \times 0.20 \mathrm{~mm}$
Theta range for data collection	2.9534 to $29.0568{ }^{\circ}$.
Index ranges	$-15<=\mathrm{h}<=14 ;-10<=\mathrm{k}<=10 ;-16<=\mathrm{l}<=10$
Reflections collected	2994
Independent reflections	2139 [$\left.\mathrm{R}_{\text {int }}=0.0177\right]$
Reflections observed (>2■)	1885
Data Completeness	0.998
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.00000 and 0.98902
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	1805 / 1/142
Goodness-of-fit on F^{2}	1.071
Final R indices [I>2 \square (I)]	$\mathrm{R}_{1}=0.0428 \quad \mathrm{wR}_{2}=0.0993$
R indices (all data)	$\mathrm{R}_{1}=0.0369 \mathrm{wR}_{2}=0.0988$
Largest diff. peak and hole	0.240 and -0.196 e. \AA^{-3}

Table A.2; X-ray crystallographic data and structure refinement for ethyl 10-cyano-9-phenyl-6,7-dihydropyrido[1,2- a]indole-8-carboxylate (17b).

Table A.3; X-ray crystallographic data and structure refinement for Methyl 10-cyano-
9-propyl-6,7-dihydropyrido[1,2-a]indole-8-carboxylate (17c).

CCDC reference number	996099
Empirical formula	$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$
Formula weight	294.34
Temperature	297.8 K
Wavelength	0.71073 A
Crystal system	Triclinic
Space group	P-1
Unit cell dimensions	$\mathrm{a}=9.088(4) \AA$ ¢ $\alpha=101.612(20)^{\circ}$.
	$\mathrm{b}=12.184(3) \AA \quad \beta=90.49(3)^{\circ}$.
	$\mathrm{c}=15.086(3) \AA \quad \gamma=107.47(3)^{\circ}$.
Volume	1556.7(9) \AA^{3}
Z	4
Density (calculated)	$1.256 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.083 \mathrm{~mm}^{-1}$
F(000)	624
Crystal size	$5.00 \times 0.10 \times 0.02 \mathrm{~mm}^{3}$
Theta range for data collection	3.373 to 25.349°.
Index ranges	$-10<=\mathrm{h}<=6,-14<=\mathrm{k}<=14,-18<=1<=18$
Reflections collected	10701
Independent reflections	5638 [R(int) $=0.0866]$
Reflections observed (>2■)	1406
Data Completeness	99.0\%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.00000 and 0.83332
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	5638 / 348 / 401
Goodness-of-fit on F^{2}	0.940
Final R indices [I>2■(I)]	$\mathrm{R}_{1}=0.1188, \mathrm{wR}_{2}=0.1879$
R indices (all data)	$\mathrm{R}_{1}=0.2932, \mathrm{wR}_{2}=0.2696$
Largest diff. peak and hole	0.216 and -0.215 e. $\mathrm{A}^{-}{ }^{3}$

A. 2 NMR for Chapter 3

Methyl 10-cyano-6,7-dihydropyrido[1,2-a]indole-9-carboxylate (12a)
${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

Methyl 10-cyano-6,7-dihydropyrido[1,2-a]indole-9-carboxylate (12a)
${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

Methyl 10-formyl-6,7-dihydropyrido[1,2-a]indole-9-carboxylate (12b)
${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

Methyl 10-formyl-6,7-dihydropyrido[1,2-a]indole-9-carboxylate (12b)
${ }^{13} \mathbf{C}$ NMR, $100 \mathrm{MHz}, \mathbf{C D C l}_{3}$

tert-Butyl 10-cyano-6,7-dihydropyrido[1,2-a]indole-9-carboxylate (12c)
${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

tert-Butyl 10-cyano-6,7-dihydropyrido[1,2-a]indole-9-carboxylate (12c)
${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

Ethyl 10-formyl-6,7-dihydropyrido[1,2-a]indole-9-carboxylate (12d)
${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

Ethyl 10-formyl-6,7-dihydropyrido[1,2-a]indole-9-carboxylate (12d)
${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

Methyl 10-methyl-6,7-dihydropyrido[1,2-a]indole-9-carboxylate (12e)
${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

Methyl 10-methyl-6,7-dihydropyrido[1,2-a]indole-9-carboxylate (12e)
${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

Methyl 10-(pyridine-2-ylthio)-6,7-dihydropyrido[1,2-a]indole-9-carboxylate (13a)
${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

Methyl 10-(pyridine-2-ylthio)-6,7-dihydropyrido[1,2-a]indole-9-carboxylate (13a)
${ }^{13} \mathbf{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

Methyl 11-(pyridin-2-ylthio)-7,8-dihydro-6H-azepino[1,2-a]indole-10-carboxylate (13b)
${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

Methyl 11-(pyridin-2-ylthio)-7,8-dihydro-6H-azepino[1,2-a]indole-10-carboxylate (13b)
${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

9-(Pyridin-2-ylthio)-2,3-dihydro-1 H-pyrrolo[1,2-a]indole (14)
${ }^{\mathbf{1}} \mathrm{H} \mathrm{NMR}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

9-(Pyridin-2-ylthio)-2,3-dihydro-1 H-pyrrolo[1,2-a]indole (14)
${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

Methyl 11-formyl-7,8-dihydro-6H-azepino[1,2-a]indole-10-carboxylate (15)
${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

Methyl 11-formyl-7,8-dihydro-6H-azepino[1,2-a]indole-10-carboxylate (15)
${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

2,3-Dihydro-1H-pyrrolo[1,2-a]indole-9-carbaldehyde (16)
${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

2,3-Dihydro-1H-pyrrolo[1,2-a]indole-9-carbaldehyde (16)

${ }^{13} \mathbf{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

9-Phenyl-6,7-dihydropyrido[1,2-a]indole-10-carbaldehyde (17a)
${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

9-Phenyl-6,7-dihydropyrido[1,2-a]indole-10-carbaldehyde (7a)
${ }^{13} \mathbf{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

1-[2-(Pyridin-2-ylthio)ethyl]-1H-indole-3-carbaldehyde (18a)
${ }^{1} \mathbf{H} \mathbf{N M R}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

1-[2-(Pyridin-2-ylthio)ethyl]-1H-indole-3-carbaldehyde (18a)
${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

Ethyl 10-cyano-9-phenyl-6,7-dihydropyrido[1,2-a]indole-8-carboxylate (17b)
${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

Ethyl 10-cyano-9-phenyl-6,7-dihydropyrido[1,2-a]indole-8-carboxylate (17b)
${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

1-[2-(Pyridin-2-ylthio)ethyl]-1H-indole-3-carbonitrile (18b)
${ }^{1} \mathrm{H} \mathrm{NMR}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

1-[2-(Pyridin-2-ylthio)ethyl]-1H-indole-3-carbonitrile (18b)
${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

Methyl 10-cyano-9-propyl-6,7-dihydropyrido[1,2-a]indole-8-carboxylate (17c)
${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

Methyl 10-cyano-9-propyl-6,7-dihydropyrido[1,2-a]indole-8-carboxylate (17c)
${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

A.3.1 MTT assay cell viability graphs

Pleurotin

Viability of normal human skin fibroblast (GM00637) (\uparrow), prostate cancer (DU145) (\bullet) and breast cancer (MCF7) ($\boldsymbol{\Delta}$) cell lines determined using the MTT assay following treatment with pleurotin under aerobic conditions for 72 h at $37^{\circ} \mathrm{C}$. Each data point is the mean of at least three independent experiments. The lines shown are trend lines.

1,3-Diphenylbenzo $[e][1,2,4]$ triazin-7(1H)-one (19a)

Viability of normal human skin fibroblast (GM00637) (\uparrow), prostate cancer (DU145) (\bullet) and breast cancer (MCF7) ($\boldsymbol{\Delta}$) cell lines determined using the MTT assay following treatment with 1,3 -diphenylbenzo $[e][1,2,4]$ triazin-7(1H)-one (19a) under aerobic conditions for 72 h at $37^{\circ} \mathrm{C}$. Each data point is the mean of at least three independent experiments. The lines shown are trend lines.

Viability of normal human skin fibroblast (GM00637) (\downarrow) and prostate cancer (DU145) (\bullet) cell lines determined using the MTT assay following treatment with 6-amino-1,3-diphenylbenzo[$e][1,2,4]$ triazin- $7(1 H)$-one (19b) under aerobic conditions for 72 h at $37^{\circ} \mathrm{C}$. Each data point is the mean of at least three independent experiments. The lines shown are trend lines.

Viability of normal human skin fibroblast (GM00637) (\uparrow) and prostate cancer (DU145) (\bullet) cell lines determined using the MTT assay following treatment with 6-(methylamino)-1,3-diphenylbenzo $[e][1,2,4]$ triazin- $7(1 \mathrm{H})$-one (19c) under aerobic conditions for 72 h at $37^{\circ} \mathrm{C}$. Each data point is the mean of at least three independent experiments. The lines shown are trend lines.

Viability of normal human skin fibroblast (GM00637) (\uparrow), prostate cancer (DU145) (\bullet) and breast cancer (MCF7) ($\boldsymbol{\Delta}$) cell lines determined using the MTT assay following treatment with 6-(ethylamino)-1,3-diphenylbenzo $[e][1,2,4]$ triazin- $7(1 \mathrm{H})$ one (19d) under aerobic conditions for 72 h at $37^{\circ} \mathrm{C}$. Each data point is the mean of at least three independent experiments. The lines shown are trend lines.

6-(Diethylamino)-1,3-diphenylbenzo[e][1,2,4]triazin-7(1H)-one (19e)

Viability of normal human skin fibroblast (GM00637) (\uparrow), prostate cancer (DU145) (\bullet) and breast cancer (MCF7) ($\boldsymbol{\Delta}$) cell lines determined using the MTT assay following treatment with 6 -(diethylamino)-1,3-diphenylbenzo $[e][1,2,4]$ triazin- $7(1 \mathrm{H})$ one (19e) under aerobic conditions for 72 h at $37^{\circ} \mathrm{C}$. Each data point is the mean of at least three independent experiments. The lines shown are trend lines.

1,3-Diphenyl-6-(pyrrolidin-1-yl)-benzo[e][1,2,4]triazin-7(1H)-one (19f)

Viability of normal human skin fibroblast (GM00637) (\uparrow) and prostate cancer (DU145) (\bullet) cell lines determined using the MTT assay following treatment with 1,3-diphenyl-6-(pyrrolidin-1-yl)-benzo $e \mathrm{e}[1,2,4]$ triazin- $7(1 H)$-one (19f) under aerobic conditions for 72 h at $37^{\circ} \mathrm{C}$. Each data point is the mean of at least three independent experiments. The lines shown are trend lines.

1,3-Diphenyl-6-(piperidin-1-yl)-benzo[e][1,2,4]triazin-7(1H)-one (19g)

Viability of normal human skin fibroblast (GM00637) (\uparrow), prostate cancer (DU145) (\bullet) and breast cancer (MCF7) ($\boldsymbol{\Delta}$) cell lines determined using the MTT assay following treatment with 1,3-diphenyl-6-(piperidin-1-yl)-benzo[e][1,2,4]triazin$7(1 \mathrm{H})$-one $(\mathbf{1 9 g})$ under aerobic conditions for 72 h at $37^{\circ} \mathrm{C}$. Each data point is the mean of at least three independent experiments. The lines shown are trend lines.

Viability of normal human skin fibroblast (GM00637) (\uparrow), prostate cancer (DU145) (\bullet) and breast cancer (MCF7) ($\boldsymbol{\Delta}$) cell lines determined using the MTT assay following treatment with 6 -morpholino-1,3-diphenylbenzo $[e][1,2,4]$ triazin- $7(1 \mathrm{H})$-one $\mathbf{(1 9 h})$ under aerobic conditions for 72 h at $37^{\circ} \mathrm{C}$. Each data point is the mean of at least three independent experiments. The lines shown are trend lines.

6-Thiomorpholino-1,3-diphenylbenzo $[e][1,2,4]$ triazin-7(1H)-one (19i)

Viability of normal human skin fibroblast (GM00637) (\uparrow) and prostate cancer (DU145) (\bullet) cell lines determined using the MTT assay following treatment with 6-thiomorpholino-1,3-diphenylbenzo $e \mathrm{e}][1,2,4]$ triazin- $7(1 H)$-one (19i) under aerobic conditions for 72 h at $37^{\circ} \mathrm{C}$. Each data point is the mean of at least three independent experiments. The lines shown are trend lines.

Viability of normal human skin fibroblast (GM00637) (\uparrow), prostate cancer (DU145) (\bullet) and breast cancer (MCF7) (\triangle) cell lines determined using the MTT assay following treatment with N-(7-oxo-1,3-diphenyl-1,7-dihydrobenzo[e][1,2,4]triazin-6yl) acetamide ($\mathbf{1 9 j}$) under aerobic conditions for 72 h at $37^{\circ} \mathrm{C}$. Each data point is the mean of at least three independent experiments. The lines shown are trend lines.

Viability of normal human skin fibroblast (GM00637) (\uparrow), prostate cancer (DU145) (\bullet) and breast cancer (MCF7) ($\boldsymbol{\Delta}$) cell lines determined using the MTT assay following treatment with 6 -methoxy-1,3-diphenylbenzo $[e][1,2,4]$ triazin- $7(1 H)$-one ($\mathbf{1 9 k}$) under aerobic conditions for 72 h at $37^{\circ} \mathrm{C}$. Each data point is the mean of at least three independent experiments. The lines shown are trend lines.

Viability of normal human skin fibroblast (GM00637) (\uparrow) and prostate cancer (DU145) (\bullet) cell lines determined using the MTT assay following treatment with 6-ethoxy-1,3-diphenylbenzo $[e][1,2,4]$ triazin- $7(1 H)$-one (191) under aerobic conditions for 72 h at $37^{\circ} \mathrm{C}$. Each data point is the mean of at least three independent experiments. The lines shown are trend lines.

1-Phenyl-3-(trifluoromethyl)-benzo[e][1,2,4]triazin-7(1H)-one (20)

Viability of normal human skin fibroblast (GM00637) (\uparrow), prostate cancer (DU145) (\bullet) and breast cancer (MCF7) ($\boldsymbol{\Delta}$) cell lines determined using the MTT assay following treatment with 1-phenyl-3-(trifluoromethyl)-benzo $[e][1,2,4]$ triazin- $7(1 \mathrm{H})$ one (20) under aerobic conditions for 72 h at $37^{\circ} \mathrm{C}$. Each data point is the mean of at least three independent experiments. The lines shown are trend lines.

A.3.2 DTP NCI-60 mean growth percent graphs

A.3.2.1 One dose testing for 1,3-Diphenylbenzo[e][1,2,4]triazin-7(1H)-one (19a)

A.3.2.2 Five dose testing for 1,3-Diphenylbenzo[e][1,2,4]triazin-7(1H)-one (19a)

A.3.3 COMPARE correlations

Correlation of compound 19a to pleurotin

Correlation of compound 19a to NSC668844

Correlation of pleurotin to NSC668844

Correlation of compound 19a to MAPK14

Correlation of compound 19a to HMGA2

Correlation of pleurotin to MAPK14

Correlation of pleurotin to HMGA2

Correlation of NSC S668844 to MAPK14

Correlation of NSC S668844 to HMGA2

Correlation of compound 19a to TXNRD1

Correlation of pleurotin to TXNRD1

Correlation of NSC S668844 to TXNRD1

Conference Proceedings and Peer Reviewed Publications

Conference Proceedings

"Intramolecular Aromatic Substitution of Cyclopropyl Radicals Generated using Barton Esters" R. Coyle. 2011 Eli Lilly Postgraduate Chemistry Symposium National University of Ireland, Galway, September 2011. Oral Communication.

2011 Eli Lilly Postgraduate Chemistry Symposium

"Barton Esters for Initiator-Free Radical Cyclisation with Heteroaromatic Substitution" R. Coyle, K. Fahey, P. McArdle and F. Aldabbagh. $21^{\text {st }}$ Grasmere Heterocyclic Symposium, May 2013. Poster Communication.

R \int Advancing the Chemical Sciences

"Barton Esters for Initiator-Free Radical Cyclisation with Heteroaromatic Substitution" R. Coyle. $65^{\text {th }}$ Irish Universities Chemistry Research Colloquium, June 2013. Oral Communication.

2011 Eli Lilly Postgraduate Prize in Chemistry Symposium, NUI Galway, Ireland
 Presenter: Robert Coyle
 Supervisor: Dr. Fawaz Aldabbagh

Title of Presentation: Intramolecular Aromatic Substitution of Cyclopropyl Radicals Generated using Barton Esters: Access to Potent Anti-Tumour Agents

Abstract

There are scant reports of three-membered ring radicals undergoing aromatic substitution, and reported yields of aromatic substitution products are low. ${ }^{1,2}$ Cyclopropane fused onto pyrrolo[1,2-a]indole, and pyrrolo[1,2-a]benzimidazole form the skeleton of highly potent bioreductive anti-tumour agents. ${ }^{3,4}$ Their reported syntheses follow well-established cycloaddition protocols. In this presentation an alternative radical route is described, involving 1,2 -conjugate additions of cyclopropyl radicals onto the 2 -position of indole-3carbaldehyde and benzimidazole with subsequent rearomatisation of the adduct radical to give cyclopropane fused onto five-to-seven membered rings in moderate to high yields. The synthesis involves an efficient formation of Barton esters, and a new annulation protocol.

Relevance to Irish Chemical and Biopharamceutical Industry: Many synthetic radical transformations in academia and industry rely on the use of $\mathrm{Bu}_{3} \mathrm{SnH}$ and azo-initiator, which are toxic, give waste disposal issues and can be hazardous. Further it is a challenge to get "oxidized" aromatic product in the presence of the "reductant" $\mathrm{Bu}_{3} \mathrm{SnH}^{5,6}$ This new protocol avoids the use of chemical initiators to establish an efficient homolytic aromatic substitution. The heterocyclic products are potent bioreductive anti-tumour agents of great pharmaceutical interest.

References: ${ }^{1}$ Ziegler, F. E.; Belema, M. J. Org. Chem. 1994, 59, 7962-7967; ${ }^{2}$ Ziegler, F. E.; Belema, M. J. Org. Chem. 1997, 62, 1083-1094; ${ }^{3}$ Cotterill, A. S.; Moody, C. J. Mortimer, R. J.; Norton, C. L.; O’Sullivan, N.; Stephens, M. A.; Stradiotto, N. R.; Swann, E.; Stratford, I. J. J. Med. Chem. 1994, 37, 3834-3843; ${ }^{4}$ Lynch, M.; Hehir, S.; Kavanagh, P.; Leech, D.; O’Shaughnessy, J.; Carty, M. P.; Aldabbagh, F. Chem. Eur. J. 2007, 13, 3218-3226. ${ }^{5}$ Bowman, W. R.; Storey, J. M. D. Chem. Soc. Rev. 2007, 36, 1803-1822; ${ }^{6}$ Fagan, V.; Bonham, S.; Carty, M. P.; Aldabbagh, F. Org. Biomol. Chem. 2010, 8, 3149-3156.

Barton Esters for Initiator-Free Radical Cyclisation with Heteroaromatic Substitution ${ }{ }^{\prime}$

Robert Coyle, Karen Fahey, Patrick McArdle and Fawaz Aldabbagh*
School of Chemistry, National University of Ireland Galway, Ireland
NUI Galway
OÉ Gaillimh

Introduction

Trialkylmetal hydrides such as $\mathrm{Bu}_{3} \mathrm{SnH}$ with an azoinitiator are now routinely used in organic synthesis to perform intramolecular homolytic aromatic substitutions. Since effectively a hydrogen atom (H°) is lost, it is well documented that difficulties exist in forming "oxidised" aromatic substitution product in the presence of the "reductant" $\mathrm{Bu}_{3} \mathrm{SnH}$. We now present initiator-free alkyl and cyclopropyl radical intramolecular aromatic substitutions onto the 2 position of indoles and benzimidazoles formed via the decomposition of Barton esters. The Barton esters were formed using HOTT; S-(1-oxido-2-pyridinyl)-1,1,3,3-tetramethylthiouronium hexafluorophosphate.

Used for the formation of Barton esters from hindered carboxylic acids.
P. Garner et al, J. Org. Chem. 1998; 63, 5732-5733

Radical Precursors

Radical precursors were readily accessed using a straight forward two-step synthesis involving N-alkylation and saponification of resultant ester. The use of carboxylic acids is advantageous due to their robustness, unlike many conventional more labile radical cyclisation precursors.

Alkyl Radical Cyclisations

	$\xrightarrow[\text { ii. Heat, } h v]{\text { i. } \mathrm{HOTT}, \mathrm{Et}_{3} \mathrm{~N}}$		
$\mathrm{X}=\mathrm{N}, \quad n=1$:		$(38 \%)^{\text {ab }}$	(39\%)
$\mathrm{X}=\mathrm{C}(\mathrm{CN}), \quad n=1$:		(78\%)	(00\%)
$\mathrm{X}=\mathrm{CH}, \quad n=2$:		(00\%)	(76\%)
$\mathrm{X}=\mathrm{C}(\mathrm{CHO}), n=2$:		(79\%)	(00\%)
$\mathrm{X}=\mathrm{N}, \quad n=2$:		$(77 \%)^{\text {a }}$	(00\%)
$\mathrm{X}=\mathrm{C}(\mathrm{CN}), \quad n=2$:		(82\%)	(00\%)
$\mathrm{X}=\mathrm{N}, \quad n=3:$		$(37 \%)^{\text {ab }}$	(39\%)
$\mathrm{X}=\mathrm{C}(\mathrm{CN}), \quad n=3$:		(61\%)	(21\%)
${ }^{\text {a }}$ DMAP required, ${ }^{b} \mathrm{CS}$	A required		

Cyclopropyl Radical Cyclisations

i. HOTT (1.5 equiv), $E t_{3} \mathrm{~N}$ (3 equiv), THF-MeCN (3:1) 0.1 M , rt, dark, 40 min
i. $\mathrm{MOT}\left(1.5\right.$ equiv), $E t_{3} \mathrm{~N}(3$ equiv), THF-M
ii. $\mathrm{MeCN}(0.01 \mathrm{M})$, reflux, $2 \times 100 \mathrm{~W}, 6 \mathrm{~h}$

Barton Ester Formation \& Cyclopropyl Radical Cyclisation

Due to Barton ester sensitivity, their formation is carried out under aphotic conditions.
Cyclisation of nucleophilic radicals requires activation at the heterocyclic 3 -position. In the case of indoles an EWG (CN, CHO) is required and for benzimidazoles quaternisation using camphorsulfonic acid (CSA) is required for more difficult cyclisations. Five and seven membered cyclisations onto indole-3-carbonitrile were more facile than onto indole-3carbaldehyde or benzimidazole.
The skeleton of the anti-cancer agent cyclopropamitosene, expanded and
diazole analogues is thus readily accessed directly from carboxylic acids.

Conclusions

First reported examples of homolytic aromatic substitution leading to fusion of the cyclopropane ring.

First synthetically useful radical cyclisation onto aromatics using Barton esters.
† R. Coyle, K. Fahey and F. Aldabbagh, Org. Biomol. Chem. 2013; 11, 1672-1682.

Acknowledgements

We thank the College of Science, National University of Ireland Galway, for financial support.
R.covle2@nuigalway.ie; *Fawaz.Aldabbagh@nuigalway.ie

Barton Esters for Initiator-Free Radical Cyclisation with Heteroaromatic Substitution

Robert Coyle, Karen Fahey, Patrick McArdle and Fawaz Aldabbagh*

School of Chemistry, National University of Ireland Galway, Ireland

Email: R.coyle2@nuigalway.ie, *fawaz.aldabbagh@nuigalway.ie
LECTURE - $\mathrm{Bu}_{3} \mathrm{SnH}$ with an azo-initiator is now a commonly used protocol for intramolecular homolytic aromatic substitution. ${ }^{1,2,3}$ It is now accepted that the reaction proceeds via a nonchain reaction, requiring excess amounts of initiator in order to optimise yields of substitution product. Two inherent disadvantages of using $\mathrm{Bu}_{3} \mathrm{SnH}$ are the toxicity of tinwaste generated, and the requirement for slow syringe addition to minimise premature reduction of the cyclising radical. The first synthetically useful radical cyclisations onto aromatics via Barton esters are now presented. ${ }^{4}$ Initiator-free alkyl and cyclopropyl radical cyclisations allow access to five, six and seven-membered [1,2-a] alicyclic-ring fused heterocycles with and without an additional fused cyclopropane using robust carboxylic acids as precursors.

This is part of our broad objectives to discover heterocycles with improved efficacy in comparison to the archetypical bioreductive anti-cancer agent, mitomycin C , its bioactivated form aziridinomitosene and the cyclopropane analogue cyclopropamitosene. ${ }^{5,6,7}$ The lecture ends by describing progress towards initiator free domino radical approaches to ring-expanded aziridinomitosenes via Barton esters.

Aziridinomitosene
$\mathrm{X}=\mathrm{NH}_{2}, \mathrm{Y}=\mathrm{Me}, \mathrm{Z}=\mathrm{NH}$,
Cyclopropamitosene:
$\mathrm{X}=\mathrm{OMe}, \mathrm{Y}=\mathrm{H}, \mathrm{Z}=\mathrm{CH}_{2}$

Benzimidazolequinones $n=1,2$

[^0]
[^0]: ${ }^{1}$ W. R. Bowman, J. M. D. Storey, Chem. Soc. Rev., 2007, 36, 1803-1822.
 ${ }^{2}$ M. Lynch, S. Hehir, P. Kavanagh, D. Leech, J. O'Shaughnessy, M. P. Carty, F. Aldabbagh, Chem. Eur. J., 2007, 13, 3218-3226.
 ${ }^{3}$ V. Fagan, S. Bonham, M. P. Carty, F. Aldabbagh, Org. Biomol. Chem., 2010, 8, 3149-3156.
 ${ }^{4}$ R. Coyle, K. Fahey, F. Aldabbagh, Org. Biomol. Chem., 2013, 11, 1672-1682.
 ${ }^{5}$ S. Bonham, L. O’Donovan, M. P. Carty, F. Aldabbagh, Org. Biomol. Chem., 2011, 9, 6700-6706.
 ${ }^{6}$ V. Fagan, S. Bonham, M. P. Carty, P. Saenz-Méndez, L. A. Eriksson, F. Aldabbagh, Bioorg. Med. Chem., 2012, 20, 3223-3232.
 ${ }^{7}$ A. S. Cotterill, C. J. Moody, R. J. Mortimer, C. L. Norton, N. O’Sullivan, M. A. Stephens, N. R. Stradiotto, E. Swann, I. J. Stratford, J. Med. Chem., 1994, 37, 3834-3843.

