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J Fazzari, Deyou Zheng, Masako Suzuki, John M Greally, The Einstein Center for Epigenomics: studying the
role of epigenomic dysregulation in human disease. Epigenomics. 2009 Oct;1(1):33-8.
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Abstract

The advent of next-generation sequencing (NGS) has fundamentally changed modern genomics re-
search. These sequencers generate terabytes of data and necessitate the use, not only of high-
performance compute (HPC) clusters for data processing and storage, but also of intelligent, scalable
algorithms for pattern discovery and data mining. This thesis details the development of infrastruc-
ture and algorithms which automate much of this data analysis process allowing bench biologists to
remain focused on the scientific questions that drive them, rather than the informatics challenges
associated with these new platforms. We describe WASP, one of the first end-to-end systems to
handle all aspects of NGS data generation, including sample submission, laboratory information
management system (LIMS) functionality, and assay-specific processing pipelines. Furthermore, we
present two machine learning algorithms for the secondary analysis of ChIP-seq data, the first, based
on the use of self-organising maps (SOMs) for improved de novo motif discovery, and the second,
which uses genetic algorithms (GAs) to automatically cluster transcription factor binding motifs.
Finally, we present an application of this infrastructure and these techniques to the study of the
role of the TBX1 transcription factor in 22q11.2 Deletion Syndrome, examining its putative role in
neural development, adult neurogenesis, autism spectrum disorder (ASD), and schizophrenia.



CHAPTER 1

Introduction

1.1 The Digital Genome and the Data Deluge

Since 1995 and the whole-genome shotgun sequencing (WGSS) [1] of the bacterial genome Haemo-

philus influenzae [2], the complete genomes of over four thousand different organisms (including,

in 2001, the human genome [3, 4]) have been sequenced. There are also currently over 33,500

genome sequencing projects listed at the Genomes Online Database1 (GOLD) [5] – this represents

a vast quantity of data, the volume of which has grown exponentially in the past few years with the

increasing adoption of paradigm-shifting massively-parallel sequencing (MPS) technologies or next-

generation sequencers (NGS). These new sequencers operate by generating millions of short genomic

reads in parallel, greatly reducing the cost (Figure 1.1) and time associated with sequencing [6]. They

also however create some interesting challenges for existing computational infrastructure, given that

a single experiment can take days to run and result in terabytes of raw data. The possibilities for

medical science to use all of this data to better understand disease and provide more sophisticated,

perhaps even personalised treatment, depends therefore on the ability to mine this information in

useful ways. This requires making use of advanced statistical techniques and drawing on expertise

from the fields of artificial intelligence (AI) and machine learning (ML). Techniques from these fields

(such as image analysis, pattern recognition, search and optimisation, and probabilistic reasoning)

readily lend themselves to the analysis of large, complex datasets, where researchers are often led to

new insights or new lines of inquiry by previously unlooked-for patterns revealed in the data.

One of the key ways in which this new sequence data is used is in the genome-scale study

of gene regulation. Next-generation sequencers can be used to map, for the the first time in a

high-resolution manner, the genome-wide locations of sites where regulatory mechanisms can act to

influence the expression of a gene or group of genes [7, 8, 9]. In the next section we introduce some

of those regulatory mechanisms and outline their importance in practically all aspects of cellular

1http://www.genomesonline.org
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INTRODUCTION

Figure 1.1: Cost Per Genome During the past decade, the cost to sequence a
genome has exceeded Moore’s Law, dropping from almost $100M in 2001 to under
$10K in 2011. Given this pace, the next few years will likely see the achievement
of the long-sought $1,000 genome. (Raw data provided by National Human Genome
Research Institute and assumes a genome size of 3Gb with 30X coverage using an
Illumina platform with 50–100bp reads. Post 2008, a re-sequencing project with an
appropriate reference genome is assumed.)

functioning.

1.2 Mechanisms of Regulation

Almost every cell in the human body contains the same basic genetic material, the same blueprint

which can be used to generate each of the hundreds of different cell types and thousands of different

proteins which allow us to function as we do. The key difference between cells lies in how the

flow of genetic information within them is managed, or in other terms, which genes are expressed

and which are not. Understanding how gene expression is regulated can provide insights into all

areas of cellular physiology, from developmental biology [10, 11] and cell differentiation [12, 13], to

regulation of metabolism [14], and mechanisms of disease [15, 16] and ageing [17, 18]. In this section

we introduce two layers of regulation – genetic regulation, which we describe in terms of sequence-

specific DNA-binding proteins known as transcription factors (TFs), and epigenetic regulation, which

11



INTRODUCTION

involves various mechanisms including: post-translational modification of histone proteins, chemical

‘tagging’ (methylation) of CG-dinucleotides, and gene silencing via small non-coding RNAs known

as microRNAs (miRNAs).

1.2.1 Genetic Regulation

Figure 1.2: Genetic Regulation The initiation of transcription in eukaryotic
genomes depends on the presence of RNA polymerase II, a number of basal or gen-
eral transcription factors, and the binding of sequence-specific transcription factors to
enhancer, silencer, or insulator sequences called response elements (REs). Additional
proteins functioning as co-activators or co-repressors may also play a role. Shown here
is a methylated insulator region (methylation will be further discussed later in this
chapter) preventing the binding of the CTCF (CCCTC-binding) transcription factor
and thereby allowing transcription to proceed. CTCF plays a diverse role in gene reg-
ulation and is largely responsible for chromatin organisation into loop structures by
binding to itself as a homodimer [19]. (Source: Based on [20].)

The central dogma of molecular biology as outlined by Crick [21, 22] indicates that, in general,

DNA is transcribed to RNA which is then translated into proteins. Since this description assumes

that the transcribed gene encodes a protein, more specifically, the DNA will be transcribed to

messenger RNA, or mRNA. The process of transcription (Figure 1.2) is mediated both by RNA

polymerase and general transcription factors, as well as the previously mentioned sequence-specific
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transcription factors2. In order for transcription to occur in a eukaryotic cell, RNA polymerase

II must, in the presence of these general or basal transcription factors, recognise and bind to a

particular sequence of DNA in the core promoter. This is a region located just upstream of a gene’s

transcription start site (TSS). This complex of general transcription factors and RNA polymerase is

known as the preinitiation complex, and although its binding is sufficient for a gene to be transcribed

at a low level, expression can be greatly modulated by the effect of sequence-specific transcription

factors binding further 5’ of the TSS in what is known as the upstream regulatory, or promoter

region. Since the binding of these factors can introduce conformational changes in the DNA (DNA

looping), distal but functionally relevant binding sites may be located several kilobases away from

the TSS.

Transcription factors are a hugely important group of proteins accounting for approximately 8%

of the genes in the human genome [23]. They are well-conserved across species [24, 25], and in

general, the larger the genome, the more transcription factors it will contain [26]. Transcription

factors can both inhibit the transcription rate of a gene (binding to a silencer element and acting as

a repressor), or increase the rate of transcription (binding to an enhancer element and functioning

as an activator). A single transcription factor can be involved in regulating multiple genes, and

individual genes are usually regulated by groups of transcription factors – these higher-order regu-

latory structures are referred to as cis-regulatory modules (CRMs) [27]. Regulatory modules can

either help to recruit and stabilise the preinitiation complex [28], or inhibit the binding of RNA

polymerase. All transcription factors possess at least one DNA-binding domain (DBD) which allows

them to recognise a specific sequence of DNA in the upstream promoter of a gene; common examples

are the zinc finger (Zn), basic helix-loop-helix (bHLH), winged helix, HMG-Box, and basic leucine

zipper (bZIP) domains (for a more comprehensive list, the reader is directed to [29, 30]). They may

also contain additional DBDs, allowing them to recognise more than one binding sequence, as well

as trans-activating domains (TADs) which allow them to bind other proteins which function as co-

activators or co-repressors – an example of this is the recruitment of either histone acetyltransferases

(HATs) or histone deacetylases (HDACs) which serve to alter the association of DNA with histone

proteins, making it more or less accessible to the transcription machinery [31] (further discussed

in the following section). Transcription factors themselves are of course also subject to regulation,

requiring other transcription factors for their expression, or even regulating their own transcription

in both positive [32] and negative [33] feedback loops. While some transcription factors such as

specificity protein 1 (Sp1) are constitutively active, others require activation before localising to

the nucleus for binding; this can be regulated by external stimuli (examples include nuclear factor

kappa-light-chain-enhancer of activated B cells, NF-KB, and sterol regulatory element-binding pro-

tein 1,SREBP-1), post-translational modification (signal transducer and activator of transcription 1

(STAT1) is activated by phosphorylation), and binding of ligands or other transcription factors to

form heterodimers [34].

2For the remainder of this work the term transcription factor (TF) will refer to the latter unless otherwise stated.
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1.2.2 Epigenetic Regulation

Epigenetics refers to the study of heritable changes in gene expression due to mechanisms which do

not alter the basic DNA sequence of an organism (as does, for example, mutation). These changes

are maintained throughout cell division [35, 36], and transgenerational inheritance of epigenetic

modifications has been observed in a wide variety of organisms [37]. Three main mechanisms of

epigenetic regulation are studied – methylation of CG-dinucleotides, post-translational modification

of histone proteins, and gene silencing by microRNAs.

Histone Modifications

In order to fit the more than 1.8 metres of DNA found in each human cell into the nucleus it must

be tightly packaged. The basic unit of packaging for DNA is the nucleosome, which consists of

147bp of DNA wrapped around a core of histone proteins [38]. This histone core consists of two

H2A-H2B dimers and a H3-H4 tetramer. Nucleosomes are further packaged into higher order chro-

matin structures with the addition of H1 linker proteins. Like all proteins, histones are subject to a

variety of post-translational modifications such as acetylation, phosphorylation, ubiquitination, and

methylation. Modification of specific residues, particularly in the tails (N-termini) of histones H3

and H4, have been shown to effect changes in the structure of chromatin [9, 39, 40], transforming

it from condensed heterochromatin to less tightly packed euchromatin which is more accessible to

the transcription machinery. This has lead to the development of a ‘Histone Code’ [41, 42] which

indicates which modifications in which positions constitute active or repressive marks, correspond-

ing to transcriptionally active or transcriptionally silent genes. Examples of active marks include

mono- and tri-methylation of histone H3, lysine 4 (H3K4me1, H3K4me3) [43, 44], mono-methylation

of histone H4, lysine 20 (H4K20me1) [45], and acetylation of histone H3, lysine 9 (H3K9ac) [44].

Repressive marks include di- and tri-methylation of histone H3, lysine 27 (H3K27me2, H3K27me3)

[45] and di-methylation of histone H3, lysine 9 (H3K9me2) [46]. We have previously mentioned that

the binding of transcription factors can either directly or indirectly effect a change in the acetyla-

tion status of histone tail residues (for example through co-activators such as E1A-binding protein

p300/CREB-binding protein, p300/CBP); recent research has demonstrated that lysine acetylation

in histones represents a mechanism for targeting the recruitment of bromodomain-containing chro-

matin remodellers such as those found in the SWI/SNF family [47, 48]. These chromatin remodellers

specifically bind acetyl-lysine and further open chromatin by either disassembling and reassembling

the nucleosomes, or shifting them along the DNA strand [49] making promoter regions accessible

to the preinitiation complex. Similarly, methyl-lysine residues may serve to attract another class of

chromatin remodellers containing a chromodomain subunit [50, 51].

CG Methylation

Methylation of DNA involves the addition of a methyl (CH3) group to cytosine in a CG-dinucleotide

(or CpG) context, and is regulated through DNA methyltransferases (DNMTs). Some of these
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Figure 1.3: Epigenetic Regulation by Methylation Shown here are the his-
tones with methylated (upper panel) and unmethylated (lower panel) cytosines in CG-
dinucleotide contexts. The upper panel shows the methylation caused by the DNA
methyltransferase enzyme and associated repression of gene expression due to the bind-
ing of methyldomain binding proteins (MBPs).

enzymes are responsible for de novo methylation (DNMT3a and DNMT3b), while others serve to

maintain methylation on newly created strands during DNA replication (DNMT1). DNA methy-

lation plays an important role in many vital cellular processes such as genomic imprinting [52]

and X-chromosome inactivation (XCI) [53]. Because 5-methylcytosine can spontaneously deami-

nate to thymine, an occurrence that can result in a transition mutation [54], CG-dinucleotides tend

to be underrepresented in organisms which methylate their DNA [55]. Although methylation can

be widespread (mammals have been shown to methylate up to 90% of the CGs in their genomes

[56]), an important set of CG-rich regions exist which demonstrate protection from methylation.

These regions, termed ‘CpG islands’, are located in approximately 40% of mammalian promoters

[57] and are defined as regions of greater than 500bp in length with a GC content greater than

55% and an observed to expected CpG ratio of 0.65 [58]. Transcriptionally active genes will usually

have unmethylated CGs in their promoters, while methylated CGs in the promoter region result

in transcriptional repression. Repression may either be due to the fact that transcription factors

cannot bind to the methylated cytosines, or that their binding is blocked as a consequence of methyl-

CpG-binding-domain proteins (MBDs) such as methyl-CpG-binding domain protein 2 (MBD2) or

methyl-CpG-binding protein 2 (MECP2) already being bound (Figure 1.3). MBDs are also known

to recruit co-repressor complexes including histone deacetylases, presenting a further mechanism

for gene silencing [59]. Methylation of CGs can help to protect a cell from the effect of poten-
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tially harmful transcripts such as transposable elements and oncogenes; evidence of this is provided

by studies of methylation patterns in cancer phenotypes which have shown both hypomethylation

of normally-methylated oncogene promoters such as c-Myc (v-myc avian myelocytomatosis viral

oncogene homolog), as well as hypermethylation in normally-unmethylated tumor suppressor gene

promoters, such as tumor protein 53 (p53) [60, 61, 62]. Because these genes encode transcription

factors, their aberrant expression can cause dramatic changes to the expression of all downstream

genes, resulting in severe disruption of the normal phenotype.

MicroRNAs

MicroRNAs (miRNAs) are small (21–25nt) non-coding RNAs which negatively regulate the expres-

sion of their target mRNAs by binding with perfect or near-perfect complementarity to their 3’

UTRs, resulting in either cleavage of the mRNA [63], inhibition of translation [64], or targeting of

the mRNA for degradation through de-adenlyation [65].

They were first discovered in C. elegans by Lee et al. in 1993 [66] and since then have been

shown to have an important role in the regulation of many different functions including develop-

ment [67, 68], cell differentiation [69, 70], apoptosis [71], and metabolism [72]. They have also been

implicated in the pathology of several diseases such as cancer [73, 74, 75], heart disease [76, 77], and

neurological disorders [78, 79]. This evidence, coupled with the fact that miRNAs are evolutionarily

well-conserved [80] and that there are approximately 1,000 miRNAs in the human genome3 target-

ing up to 60% of mRNAs [81], identifies them as an important class of biomarkers and potential

therapeutic targets [82].

MiRNAs can be found in intergenic regions, being independently transcribed, or exist in the

introns (and even exons) of both protein-coding and non-protein coding genes where they are

transcribed along with the host gene [83, 84]. The first step in their synthesis (shown in Figure

1.4) is the transcription of a primary miRNA (pri-miRNA), which may contain multiple precursor-

miRNAs (pre-miRNAs) in the form of stem-loop structures. The pri-miRNA is then processed by

the dsRNA-specific ribonuclease Drosha [85] which releases the pre-miRNA hairpins for export to

the cytoplasm. Once in the cytoplasm, the pre-miRNA is cleaved by the Dicer enzyme, resulting

in an miRNA:miRNA* duplex [86] which then separates into the mature miRNA (or guide strand)

and the second (or passenger) strand. The mature miRNA is incorporated into the RNA-induced

silencing complex (RISC complex) for interaction with its mRNA target, while the second strand is

usually degraded (although this is not always the case [87]). While either strand from the duplex

may become the active miRNA, it is thought that the less stable strand may preferentially associate

with the RISC complex [88].

1.2.3 Regulatory Complexity

While we have provided only a brief overview of some genetic and epigenetic mechanisms of reg-

ulation, it should be clear that the complexity involved in these systems is quite large. Much of

3Mirbase – http://www.mirbase.org/
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Figure 1.4: MicroRNA Processing Shown here are the various steps in the process-
ing of microRNAs from initial transcription through cleavage by Drosha and Dicer and
finally, incorporation into the RISC complex. (Source: Wikimedia Commons, public
domain.)

this complexity stems from the fact that all of these mechanisms are interconnected – transcription

factors can regulate the expression of methyltransferases, miRNAs can target transcription factors,

miRNA promoters may be methylated, transcription factor binding can recruit histone modifying

proteins which may in turn recruit chromatin remodellers, and so on. This connectivity helps to

create the complex regulatory networks necessary to produce the range of cell types and functions

commonly found in multicellular organisms.
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1.3 Thesis Outline

This work focuses on the use of machine learning algorithms, automated pipelines, and high-

performance computing for the analysis of genome-scale regulatory data. In Chapter Two, we

introduce the key concepts of NGS and describe a platform developed to facilitate the automated

processing of data at the recently-created Center for Epigenomics at the Albert Einstein College of

Medicine. This system, the Wiki-based Automated Sequence Processor, or WASP, has been instru-

mental in allowing researchers at Einstein to leverage the power of new sequencing technologies and

provides both infrastructure and algorithms to manage the primary analysis of the most common

sequencing-based assays. By automating the storage, analysis, and return of experimental data gen-

erated from MPS-based experiments, researchers are free to concentrate on the biological question or

hypothesis rather than spending time learning to cope with the massive amounts of raw sequencing

data.

Having covered primary analysis in Chapter Two, in Chapter Three, we describe the application

of two machine learning techniques to the secondary analysis of data related to the genome-wide

study of transcription factors. We introduce some of the various ways in which DNA-binding sites

can be represented and then discuss the problem of de novo motif finding. We outline the previously

published SOMBRERO algorithm [89], which uses the self-organising map (SOM) neural network

(NN) [90] to identify enriched sequence motifs and describe some of its key limitations. We then

provide solutions to some of these limitations based on our modifications to the original algorithm

and present the resulting implementation, ChIPSOM, demonstrating its improved scalability and

application to ChIP-chip data. We further discuss the issue of redundant motif predictions and

show how this limitation may be overcome by a novel secondary clustering approach using a genetic

algorithm (GA) [91, 92]. We demonstrate the effectiveness of our novel algorithm, GMACS, on the

more general problem of the automated construction of familial binding profiles (FBPs).

In Chapter Four, we describe a study to explore the role of the T-Box 1 (TBX1) transcription

factor in postnatal neuronal development and the effect of Tbx1 haploinsufficiency on murine social

behaviour and vocal characteristics. We provide details on the primary and secondary analysis of the

ChIP-seq data using the earlier described WASP, ChIPSOM, and GMACS software. We combine this

genetic analysis with a phenotypic analysis using an entropy-based tool we have developed called

Mumbles, as well as some further statistical machine learning techniques, to determine inherent

structure in strings of mouse vocal calls.

Finally, in Chapter Five, we present a summary of our work and briefly discuss some general

conclusions and potential future directions.
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CHAPTER 2

Automated Primary Analysis of Next Generation

Sequencing Data

The work in this chapter was carried out in collaboration with members of the Computational Ge-

nomics and Epigenomics Groups at the Albert Einstein College of Medicine. The candidate was

involved in the overall design of the WASP system and had specific responsibility for the frontend

development including MediaWiki customisations and extensions, as well as programming of the

AJAX/PHP sample submission forms facilitating the capture of sample data and metadata to the

MySQL database. The candidate also developed code for the system backend, including initial ver-

sions of the ‘watcher’ script responsible for monitoring of run-related folders and invocation of assay-

specific processing pipelines.

2.1 ChIP-seq

In this section we introduce the key concepts of sequencing-based assays. Although there are

many sequencing platforms currently available from vendors such as Roche/454 Life Sciences, Il-

lumina/Solexa, Life Technologies, Oxford Nanopore, and Pacific Bioscience, each with their own

advantages and disadvantages; here, we will focus on the Illumina platform (and in particular the

Genome Analyzer IIx, or GAIIx system) since, at the time of writing it is: 1) currently the most

prevalent platform1, and 2) the workhorse machine of the Einstein Center for Epigenomics, which

will be discussed later in this chapter. We use ChIP-seq as an example NGS assay as it will be further

discussed in terms of secondary analysis in Chapter Three, and its application in basic neuroscience

research is described in Chapter Four.
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Figure 2.1: High-Throughput ChIP Workflows The DNA is first treated with
formaldehyde in order to cross-link transiently-bound proteins and is then sonicated to
produce low molecular weight fragments. Antibodies specific to the protein of interest
(POI) are added to enrich for protein-DNA complexes and unbound DNA is washed
off. The cross-links are then reversed by heating, and in the case of ChIP-chip, the
eluted DNA is purified, amplified, and labelled using fluorescent tags and hybridised
to a microarray. The signal from the fluorescent tags identifies genomic regions corre-
sponding to binding sites. In the case of ChIP-seq, libraries for the NGS platform of
choice are created and the resulting sequence reads are mapped to a reference genome
resulting in location-specific binding peaks. (Source: Wikimedia Commons. Adapted
from [93] and licenced under CC-BY-3.0)
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Introduction

ChIP-seq [94] combines chromatin immunoprecipitation with Massively-Parallel Sequencing (MPS)

in order to produce much higher resolution binding data, with less noise and at greater coverage

than is currently possible with microarray-based approaches [95]. Sequencing offers the advantage

of avoiding all of the complications inherent in array hybridisation such as probes with different

optimal binding temperatures, non-specific hybridisations, DNA secondary structure interfering with

hybridisation, and so on. Massively-parallel sequencing also offers a more cost-effective way to

generate genome-wide biding data than, for example, tiling arrays [96].

The ChIP-seq protocol begins in a manner similar to that of ChIP-chip (Figure 2.1), but instead of

washing labelled DNA over a microarray, both the immunoprecipitate (IP) and input (unprecipitated

DNA used as a control) have adapters ligated which facilitate Illumina’s bridge-amplification and

sequencing-by-synthesis approach (described in Figure 2.2). Illumina offers both single- and paired-

end library preparation and sequencing. In the latter, the DNA molecule is sequenced from both ends

allowing both higher mapping accuracy (including the ability to assemble reads which are mapped

across repetitive regions) and the identification of structural rearrangements such as insertions,

deletions, and inversions [97]. Samples may also be multiplexed using index sequences, allowing

12 samples to be run on one lane, or 96 samples per flowcell – this makes the GAIIx particularly

cost-effective when performing targeted sequencing of specific genomic regions, such as in the case

of exome sequencing.

Although we present the platform in terms of the ChIP-seq assay, the GAIIx system also has

applications in many other areas such as RNA-seq (including sequencing of miRNAs and other

small RNAs), and with read lengths of 150bp now available, is increasingly being used for de novo

sequencing and whole-genome and targeted resequencing. It is also possible to perform genome-wide

epigenetic profiling using any of the many available methylation-based assays such as MeDIP-seq

[98], Bisulfite Sequencing [99], or HELP-tagging [100].

Data Analysis

ChIP-seq primary data analysis consists of three main stages – basecalling, where the images cap-

tured during each cycle are analyzed to determine which nucleotides were incorporated, read map-

ping, where the sequences generated are mapped to a reference genome, and peak calling, where

the clustered reads, or peaks, are identified as significant (corresponding to a likely binding site) or

not. We will focus on the last two stages since the basecalling is now carried out in real-time on

the instrument itself as the flow cycles progress. This real-time processing and discarding of raw

image files is one of the ways in which both manufacturers and institutions have tried to address

the massive storage issues facing sequencing facilities.

Although Illumina provides its own short read mapping algorithm, Eland, as part of its internal

pipeline, there are a variety of other aligners available which usually seek to optimise either speed,

1World Map of High-throughput Sequencers – http://www.pathogenomics.bham.ac.uk/hts/
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Figure 2.2: Sequencing Process An overview of the Illumina GAIIx sequencing
process from library preparation (upper panel), through cluster generation (middle
panel), and nucleotide incorporation and basecalling (lower panel). Once the POI has
been precipitated, the ends of the eluted DNA are blunted and adenolated so that
Illumina adapters (shown in purple and blue) containing a sticky T overhang can be
ligated. Size-selection via gel extraction is then used to isolate fragments in the desired
range (usually 150-250bp). These fragments are run on a flow cell (shown in grey)
which is coated with a lawn of primers. Once bound, millions of copies, or clusters,
are created through repeated extension and denaturation. Finally, in each sequencing
cycle, fluorescently labelled nucleotides are flowed across the cell and when one is in-
corporated, the resulting fluorescence is captured by a high-quality imaging system.
As the sequencing, or flow cycles are repeated, each fragment sequence is extended by
one base, resulting in a sequence of images in which the newest incorporated base in
each cluster is visible. Once the images have been processed (converting fluorescence
to called bases), the resulting reads are mapped back to a reference genome to identify
the locations where the protein of interest was bound in the original sample. (Based
on an image from http://illumina.com)
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accuracy, or memory footprint when mapping reads to a reference genome; below, we provide some

examples.

Maq [101] is an algorithm specifically designed for Illumina/ABI-SOLiD reads that uses a concept

of mapping quality based on the Phred quality score [102]. The mapping quality score provides a

measure of confidence that a read actually comes from the position to which it is aligned in the

target. Maq first indexes all of the reads, then scans through the reference genome several times,

storing the best hits, allowing for a small number of mismatches. It has the ability to perform gapped

alignments for paired-end reads, can handle read lengths of up to 63bp and, depending on coverage,

can call single nucleotide polymorphisms (SNPs). It is however, much slower than Eland, sacrificing

speed for quality. It has also been argued that since Maq does not support gapped alignment for

single-end reads, it is unsuitable for alignment of longer reads where indels may occur frequently

[103].

SHRiMP (the SHort Read Mapping Package) [104] is a tool designed to allow mapping of reads

to highly polymorphic genomes. The algorithm first calculates a hash of all spaced k-mers (or seeds)

in the reads and then scans the genome using a sliding window approach. Reads having multiple

seed matches within the genomic region bounded by the sliding window are then fully aligned using

a fast vectorised Smith-Waterman alignment [105]. When used for analyzing reads generated for the

resequencing of a Ciona savignyi genome, SHRiMP was shown to identify 5-fold more SNPs than

the ABI-SOLiD’s default mapper, while also capturing 70,000 variants.

Bowtie [106] is a popular aligner, which, unlike Maq and SHRiMP, indexes the reference genome

rather than the reads using the Burrows-Wheeler transform [107] as an indexing strategy. This allows

Bowtie to perform exact matches while using a backtracking algorithm to account for mismatches.

Bowtie is one of the fastest alignment algorithms, having been shown to align 35bp reads at a

rate of more than 25 million reads per CPU-hour, more than 35 times faster than Maq under

similar conditions. It also has a small memory footprint, with the indexed human genome taking

up approximately 1.3GB of system memory during alignment.

The fast, lightweight BWA also uses the Burrows-Wheeler transform to perform alignment of

both short [103] and long [108] reads. The short read algorithm performs gapped global alignments

on reads of up to 200bp, while the second algorithm uses a heuristic Smith-Waterman-like alignment

to align longer reads which may contain more sequencing errors. BWA also supports paired-end reads

and provides mapping quality scores.

Mapping millions of short reads to a reference genome is a computationally expensive task; as the

ability to generate a greater number of longer reads per sample increases and sequencing of paired-

end reads becomes standard, high-performance computing resources become increasingly critical for

data analysis. Most read mapping programs therefore either make use of pthreads (or the higher

level abstraction OpenMP) to run on multi-core symmetric multiprocessor architectures (SMPs) or

are explicitly written using MPI for execution on distributed memory compute clusters. Recent

years have also seen the first use of cloud computing for computationally intensive bioinformatics

tasks. Cloudburst [109] is a parallel read mapping algorithm based on RMAP [110]. It uses the

open-source Hadoop implementation of Google’s MapReduce [111] to parallelise execution using
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multiple compute nodes and shows near-linear speedup as the number of processors is increased.

The potential of the cloud to provide scalable storage for massive amounts of data as well as on-

demand, configurable compute clusters is an attractive option for researchers faced with ever-growing

high-performance computing (HPC) resource costs; future algorithms will likely be developed with

this fact in mind and it may well be that much of the bioinformatics analysis carried out in the

coming years will be cloud based.

Once the sequenced reads have been mapped to the reference genome, peaks must be identified

and analyzed to determine their statistical significance. As in the case of alignment tools, there

are a plethora of algorithms available for this task, we will mention only some of the more popular

ones here; for a more comprehensive discussion and comparison of these and other peak calling

algorithms, the reader is directed to [112] and [113].

PeakFinder was first described in [94] where it was used to identify neural-restrictive silencer

factor/RE1-silencing transcription factor (NRSF/REST) binding sites in Jurkat cells based on the

concept of tag clustering. It determined positive binding loci as regions where 13 or more independent

sequence reads occur within a distance of 100bp, having at least five partly overlapping reads and

demonstrating at least a 5-fold enrichment in the IP when compared with the input.

A two-pass approach is adopted by PeakSeq [114] in determining potential binding sites. The

first pass identifies candidate loci by comparison of the IP reads to a simple null background model,

while the second pass determines IP enrichment relative to the control. The reads are first extended

by the average fragment length and a count of the number of overlapping DNA fragments at each

nucleotide position is calculated. The analysis then proceeds on a chromosome by chromosome basis,

using 1Mb segments to capture genomic variability and correcting for mappability based on their

previously determined mappability map. Candidate binding regions are then identified based on a

threshold designed to satisfy a specific false discovery rate (FDR). Before comparing the selected

potential binding regions to the input sample to determine enrichment, a normalisation is carried

out on the input DNA. A linear regression of the tag count from the input is performed against

the IP in 10kb windows along each chromosome and the slope is then used to scale tag counts

in the input. Statistical significance is calculated using the binomial distribution and correction

for multiple hypothesis testing is carried out by applying a Benjamini-Hochberg correction to the

determined p-values.

SISSRs [115] is an algorithm which makes use of the fact that since reads represent the ends

of sequenced DNA fragments, forward and reverse strand reads will cluster in overlapping peaks

on either side of a binding site. SISSRs scans the genome using a sliding window of 20bp width

and subtracts the number of antisense reads within the window from the number of sense reads,

identifying binding sites as the transition points of this count from positive to negative. If a control

sample is available, an FDR is determined as the peak ratio in the IP versus the control. If no

control is present, then a Poisson background model is used.

Another algorithm which takes advantage of this bimodal pattern is MACS [116], which empir-

ically models the shifting size in order to improve the spatial resolution of predicted binding sites.

It employs a window-based scanning approach to detect peaks with an m-fold enrichment and then
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uses 1,000 of these detected peaks to determine the optimal shift size. To capture small tag biases

between different regions in the genome, a dynamic Poisson distribution is used to model a local

background. Peaks with p-values below a user-defined threshold are identified as potential binding

sites. If negative control data are available an FDR is estimated.

CisGenome [117] is a powerful tool, offering both command-line and GUI interfaces and providing

the ability to handle both ChIP-chip and ChIP-seq data as well as providing downstream motif

analysis. For ChIP-seq data, it scans the genome with a sliding window to identify regions with

enriched read counts. FDRs are estimated assuming that the background read occurrence follows a

negative binomial distribution. The authors demonstrate that this type of distribution can provide a

better fit to the real data than the global Poisson distribution. The FDR is determined by calculating

the ratio between the number of peaks expected by the null model at a particular cut-off level and

the observed number of peaks detected at the same level.

Figure 2.3: Peak Shifting Several approaches make use of the bimodal pattern
resulting from reads mapping to forward and reverse strands on either side of the true
binding site. The QuEST algorithm calculates a combined density profile (CDP, shown
here in yellow) based on a peak shift calculated from applying separate Gaussian kernels
to reads on the forward (blue tags) and reverse (red tags) strand.

A slightly different approach is employed by the QuEST [118] algorithm which applies a Gaussian

kernel separately to reads from both strands, then calculates the peak shift to form a combined

density profile (CDP), the local maximum of which corresponds to the predicted binding site (Figure

2.3). To estimate an FDR, QuEST separates the negative control data into two sets, one of which

is used as a pseudo-ChIP sample in which peaks are predicted and the other of which is used as
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a background for this sample, the FDR is then calculated as the ratio of peaks predicted in the

pseudo-ChIP analysis to the number of peaks identified in the real ChIP experiment. A potential

disadvantage of QuEST is that it does not support analyses that do not include control samples.

The Hpeak [119] algorithm provides yet another approach, identifying peaks using a two-state

(binding sites and background) hidden Markov model (HMM). The emission probabilities are de-

scribed by two different Poisson distributions and the significance of enrichment of the peaks is

adjusted using the Bonferroni correction for multiple testing.

2.2 The Challenge for Core Facilities

The previous section provided an overview of the algorithms and compute and storage demands for an

example sequencing-based assay. With improvements to sequencing chemistry, imaging systems, and

associated basecalling algorithms continuously emerging however, NGS platforms are consistently

producing increasing amounts of raw data for the same basic sequencing cost (Figure 2.4). A prime

example of this is Illumina’s recent platform – the HiSeq 2000, which has been promoted as the

first commercially available sequencer to enable researchers to obtain ∼30x coverage of two human

genomes in a single run for under $10,000 per sample2.

Figure 2.4: Illumina Sequencing Platforms Statistics on three different Illumina
platforms give an indication of the processing time and amount of raw reads generated
during paired-end 100bp runs. An almost four-fold increase in throughput is evident
when moving from the GAIIx to the HiSeq2000 platform.

As these sequencing costs decrease and more and more investigators adopt these assays as standard

discovery and diagnostic tools in basic molecular genetics and translational science, sequencing has

ceased to be the remit of a few select dedicated centres and has instead become a service that is being

2http://www.illumina.com
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provided at most research institutions by individual labs or core facilities. This shift necessitates

streamlined bioinformatic support for the analysis, presentation, and integration of the massive

amounts of sequence data generated by these platforms. In the remainder of this chapter, we

present the WASP system which was designed to address these challenges.

2.3 The WASP System

In3 2009, the Epigenomics Shared Facility (ESF) at Einstein was moving to full production mode,

offering sequencing assays to both internal and external researchers. Unfortunately the ability of

the new core to process and analyze massive sequencing datasets was lagging severely behind their

ability to generate them. At that time, raw sequence data were returned to investigators either as

links to an FTP site or on a physical medium, leaving them to rely on their own bioinformatics

experience to fully explore their results, or to enlist the help of either a collaborator, or a dedicated

fee-for-service bioinformatics core. As indicated in [121], the bottleneck in genomic discovery at this

stage becomes not the sequencing itself, but rather the processing and analysis of the generated

data. In order to enable high-throughput automated analysis of the data generated by the core, a

system was needed that provided sample submission, core facility laboratory management, primary

data analysis and return of result to investigators in a user-friendly manner, as well as providing

billing and administrative oversight. Thus the development of the Wiki-based Automated Sequence

Processor, or WASP, system was begun. This system, which makes use of a variety of software

technologies as well as a dedicated HPC cluster has been developed in collaboration with members of

the Computational Genomics and Epigenomics Groups at the Albert Einstein College of Medicine,

and has been deployed since late 2009 as part of the Einstein Center for Epigenomics, where it

currently serves the needs of a large research community employing MPS-based assays for both

genetic and epigenetic experiments. The system processes 4–6 terabytes of raw data per day and

has processed well in excess of 1 petabyte since its initial deployment.

2.3.1 Introduction and Architectural Overview

We describe the WASP system in terms of three main components: 1) User-side interface, which in-

cludes user registration, sample submission and return of processed data, 2) Laboratory information

management system (LIMS)/administrative interface which allows core facility personnel to set up

and track sequencing runs as well as perform billing and administrative functions, and 3) Backend

processing, which details the databases, scripts, and pipelines created to handle each of the distinct

assays which the system can process. An overview of the basic architecture of the WASP system is

shown in Figure 2.5.

3Parts of this section have previously been published in [120] and appear with permission. Unless otherwise
specified, figures are screenshots from the WASP system – http://www.wasp.einstein.yu.edu.
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Figure 2.5: WASP Architecture The WASP system comprises three conceptual
layers: 1) The presentation layer is primarily provided by an instance of MediaWiki, the
popular PHP-based open source wiki package, but also includes a custom-built AJAX
sample submission system, 2) The data layer includes MySQL databases which handle
data persistence for both the MediaWiki instance and the custom-designed core facility
LIMS system as well as an network file system (NFS) disk array for raw and processed
sequencing data, 3) The logical layer is implemented on the main WASP server and
cordinates processing tasks using a variety of programming and scripting tools which
will be discussed in a later section. The main server also functions as a submit node to
a local HPC resource allowing parallelised data processing and analysis. This resource
entails a 1,360-core Rocks cluster running Sun Grid Engine (SGE), a 72 TB write-
optimised RAID-Z disk array for raw data storage and a 42 TB read-optimised RAID-Z
NFS disk array for data processed by the various WASP pipelines. All hosts, scripts,
and databases are regularly backed up and completed sequencing runs are permanently
archived to tape after 3 months. Once an investigator delivers the sample to the core
facility, they interact with the system via the Wiki interface to receive updates on
the various stages of sample processing as well as all sequencing results. The core
facility staff set up run information and provide metadata through the dedicated ESF
LIMS component. The main server is then responsible for submitting analysis jobs to
the HPC cluster and updating the Wiki and MySQL database as necessary. (Source:
[120])
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2.3.2 User Interface

A wiki was chosen as the front end for the WASP system for two main reasons. Firstly, it comprises

an advanced content management system which includes features such as versioning and data in-

tegration (i.e. the ability to easily combine text, images and hyperlinks to external resources in a

wikipage). This combination of features not only provides flexibility in terms of data presentation,

but also enables a user to maintain a timestamped electronic multimedia lab notebook, a useful

concept in terms of validating scientific discoveries relating to intellectual property (IP) claims. Sec-

ondly, the wiki interface provides users with an immediately familiar environment which empowers

them to create, edit, and share information in an intuitive way using simple tools. This has proved

to be invaluable for collaborative wikipages on topics such as protocol design and optimisation.

Figure 2.6: WASP System Registration Users can register as either a new PI,
invoking the creation of a new lab group, or as members of an existing lab to which
they will be added. The WASP system also allows differentiation between internal and
external job submissions for administrative, billing, and reporting purposes.

MediaWiki4 is an open source wiki package written in PHP originally designed for use on the

popular Wikipedia5 project. We have added access control extensions to the base installation which

allow us, in a flexible manner, to control access to individual pages on a user or group basis. This

ability to restrict viewing and editing of pages to an individual investigator or lab group while also

providing access across multiple investigators or groups for collaborative projects is essential for

achieving our design goal of ‘secure collaboration’.

To enable this level of access control, all users of the system are required to register using our

automated registration process. During registration (Figure 2.6), users indicate to which lab they

are affiliated and will only be authorised when the Principal Investigator of that lab clicks a link in

4http://www.mediawiki.org/wiki/MediaWiki
5http://www.wikipedia.org/
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an email which is automatically sent to them in response to the user’s request to be added to the

wiki lab group. Once authorised, login details are emailed to the user and a personal wikipage is

created for them. The user’s wikipage contains links to data and results for all of the projects for

which they have submitted samples as well as a ‘Submit New Sample’ button which moves them to

our custom sample submission system.

Figure 2.7: AJAX Submission Forms Dynamically generating and pre-populating
form elements ensures fast, easy sample submission and greatly reduces costly user
input errors. In this HELP-tagging example: 1) The project selector allows a user to
add this job to an existing project or use the provided link to create a new project, 2)
The assay selected creates a new form section populated with appropriate sequencing
platform choices for this assay, 3) The selected platform results in a new form section
being generated with read-length and paired-end status selectors associated with this
platform, 4) Combining information from the total number of samples as indicated in
the sample setup tab and number of MspI references selected in the sample details
tab, the appropriate number of form fields are generated for providing details on HpaII
samples (including drop-down options for linking samples.)

Given that the core facility can perform a range of different assays on multiple platforms (with
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each assay requiring distinct metadata), we were eager to ensure our sample submission system would

not be overly complicated or confusing for users. We also aimed to keep the time required to submit

sample information to a minimum. We therefore developed an AJAX (asynchronous Javascript plus

XML)-based system which dynamically builds modular submission forms in response to user input.

Depending on details such as whether or not this is a new project, if this project uses a new or

existing grant, platform type, assay type, number of samples and so on, appropriate form elements

will be automatically generated to accept user input (Figure 2.7). Where possible, we also pre-

populate form elements with data retrieved from the database based on previous user submissions

so that commonly used reagents, antibodies and primers can be selected rather than re-inputed.

Most selectors also include a tooltip (indicated as a blue question mark icon to the right of the

drop-down menu), which when hovered over, will provide details and/or advice on selection choices.

This ensures that users can quickly and easily provide details on their specific submission, while

allowing us to capture all of the data and metadata necessary to correctly process their samples. In

order to ensure appropriate QC for sequencing runs, users are required as part of the submission

process to upload either gel images or Bioanalyzer output, as well as PCR primers which core staff

can use to check for enrichment.

Figure 2.8: Job Progress Details Tab This wikipage is automatically updated
in response to different stages of the job workflow being either initiated or completed.
Allowing users to track job progress through their wikipages greatly reduces the number
of inquiries from WASP users and therefore reduces the associated burden on core staff.

Once all appropriate sample metadata has been entered, the PI of the lab is automatically sent an

email with links to either approve or withdraw the submission. If approval is given, a confirmation

email, including an automatically generated quote in PDF format is sent to the job submitter, the

PI, and to a core administrator who then verifies that the account indicated by the grant number

provided as part of the submission contains appropriate funds. Once this has been verified, and the

samples have been submitted to the core, generation of the sequencing libraries can proceed. After

samples are submitted, the user can see, in real-time, the progress of their submission using the ’Job
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Progress Details’ tab in the job wikipage (Figure 2.8). When events such as approval of funding,

creation of libraries, completion of sequencing and beginning and end of analysis occur, the WASP

system automatically updates this progress page with a timestamped record of the event.

When the analysis of submitted samples has been completed, another automated email is sent to

the user with a link to the wikipage under their account which contains the job results. Depending

on the assay performed, different tabs will be included as part of the results page. The first of these

tabs is the Job Description tab (Figure 2.9), which provides a summary of the basic information

associated with the job, such as submitter, project, assay, last update, and so on. Details on the

software tools used in the analysis of the data (including version information) are also provided

– this information is beneficial in ensuring repeatability of analysis and in enabling benchmarking

of different software tools. For more advanced users, who may wish to repeat the entire analysis

themselves or portions thereof, a log of all processing steps applied to data is also available for

download. This log includes parameters used for each of the pipeline applications as well as any

output generated, and can be used for troubleshooting in the event of any errors.

Figure 2.9: Job Description Tab This tab displays the basic information regarding
the submission as well as providing details on the software used to process the data
and the current job status.

In any biological assay, quality control (QC) is of utmost importance if one is to have any degree of

confidence in the results. As sequencing-based assays comprise many different steps and algorithms

applied to the data can be quite complex, the WASP system was designed to provide a wealth of

easy to understand feedback to users on QC relating to each step of the processing pipeline.

The first section of the Sequencing Quality Metrics tab (shown in Figure 2.10) includes basic

sequence statistics such as number of clusters passing the Illumina purity filter, number of sequences

32



AUTOMATED PRIMARY ANALYSIS OF NGS DATA

Figure 2.10: Sequencing Quality Metrics The various sections of this tab display
basic summary information on the generated reads and can be helpful in troubleshoot-
ing. In this example, we see that 86% of the reads pass the Illumina purity filter and
that relatively few of those reads contain ambiguous bases. The PHRED quality scores
show a slight drop after 75bp but are maintained at a value of above 25 (between 99%
and 99.9% accuracy). Almost all of the reads passing filter align to at least one position
on the genome.

containing Ns and their distribution, PHRED scores [122] and alignments statistics. This information

may be helpful, for example, in determining that a lower than expected percentage of sequences
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alinging to the reference genome may be explained by lower quality scores towards the 3’ end of the

read and that read-trimming may be appropriate.

The sequencing chemistry and processing which happens directly on the instrument are also

inherently benchmarkable as Illumina provides guideline ranges for various metrics including: total

yield, raw cluster count, clusters passing filter, percentage of phasing and pre-phasing, as well as

measures of cycle intensity. While the sequencer generates an XML file containing this data which

can be used to generate a table or HTML page, it can be quite difficult to parse in text format given

the amount of information. The WASP system instead takes this XML file, extracts the metrics,

and then presents them to the user in an easy-to-use ‘Googleometer’ format (Figure 2.11) generated

using the Google Graphs6 API. This format provides an immediate visual overview of the sequencing

run allowing users to quickly identify any areas of concern which may need troubleshooting.

Figure 2.11: Run Quality Metrics The WASP system leverages the Google Graphs
API to present data on multiple run metrics (as well as expected guideline ranges for
these metrics) in an intuitive format.

Finally, we also make use of the third party tools FastQC and FastQ Screen from the Babraham

Institute7 to round out the QC information returned to the user. FastQC includes information on

sequence quality, GC content, sequence length distribution, kmer content and any over-represented

sequences, while FastQ screen provides the ability to screen a sample of the sequences generated

against user-defined libraries. This allows a quick determination if sequences are mapping to the

expected organism genome, as well as providing an indication of the presence of any contaminants

(Figure 2.12).

The next tab in the results page is the Sequencing and Alignment Results tab (Figure 2.13). This

section provides links to download raw FASTQ files as well as SAM and BAM [123] alignment files

and BAM index files. These download sections are ordered hierarchically by flow cell ID, sample

name, lane, and multiplex index. In cases where PCR duplicates have been removed by the Picard

6http://developers.google.com/chart
7http://www.bioinformatics.babraham.ac.uk
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Figure 2.12: FastQ Screen Here, the blue bar represents the percentage of reads
mapping only to the current genome while the green bar represents the percentage of
reads mapping to both the current genome and also to at least one other genome in the
set of libraries. For this analysis 1 million reads are randomly selected from the FASTQ
file and are trimmed to 36bp (or 25bp for HELP-tagging or 21bp for miRNA-seq).

Figure 2.13: Sequencing and Alignment and Peak Results Tabs The main
sections of the wikipage for return of ChIP-seq results includes the Sequencing and
Alignment and Peak Results tabs. These tabs provide links to download or display raw
and processed reads as well as the results of any assay-specific downstream analysis
provided by the WASP system.
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Tools8 MarkDuplicates function, a link to this duplicates file is also provided. MD5 checksums are

made available for raw data files for use in submissions to public repositories such as GEO [124] or

the SRA [125]. For ChIP-seq jobs, the final tab contains the results of peak-calling by the MACS

[116] software which is automatically invoked as part of the WASP ChIP-seq pipeline. Raw IP and

input data as well as called peaks can be displayed as wiggle tracks in WASP’s local mirrors of the

both the UCSC genome browser [126] and the Broad’s Integrative Genomics Viewer (IGV) [127].

Peak information and peak model files can be downloaded as Excel and PDF files respectively.

This section has provided an overview of how an end-user interacts with the WASP system, from

registration, through sample submission and return of experimental results. In the next section we

examine the system from the point-of-view of core facility personnel.

2.3.3 Core LIMS

Once a submission has been approved and the samples have been physically deposited to the Epige-

nomics Shared Facility (ESF), core personnel make use of a custom-designed PHP-based LIMS to

access the WASP primary datastore and record metadata linking sample information to a sequencing

library. The LIMS provides options to create, view, and manage users, labs, samples, jobs, libraries,

flow cells, and sequencing runs, as well as perform various billing and administrative functions. In-

formation on core protocols, multiplexing indexes and adaptor sequences can also be accessed. Users

are notified on login of any new jobs which have been submitted and not yet processed, and can opt

to filter jobs displayed based on new, active, complete, or withdrawn status.

Figure 2.14: ESF Jobs Page In this example we see two ChIP-seq jobs submitted
on the same day by a single user, one of which has already been approved by the lab
PI. Both jobs are currently awaiting funding confirmation based on the grant number
provided. The option to provide additional feedback to the user via the WASP system
on decisions to accept, reject, or withdraw the job is shown, as are the buttons to view
the full job and sample details.

8http://picard.sourceforge.net
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The standard job view page (Figure 2.14) provides information on job name, assay type, platform,

job submitter, PI, and grant funding status and contains links to view the job as a text file or a

wikipage. An option is also available to display the automatically generated quote for the job. To

the right of each job in the list is a button which moves the user to a more detailed view of the job

information or a display of all of the sample metadata associated with this job.

Figure 2.15: ESF Library View Note that, in this example, the sequencing run for
the flow cell with which this library is associated is already complete and so a warning
is shown beside the option to add this library to a flow cell.

Figure 2.16: ESF Flow Cell View This view shows a physical layout of the flow
cell with libraries assigned to specific lanes according to sample multiplexing design.
Links are available to job information for each library. In this example, the flow cell has
already been run and information regarding the number of clusters passing the purity
filter is shown in green. This is another QC step to allow core staff to quickly identify
issues with any individual library.

When users submit samples to the facility, they have the option to either allow core staff to gen-

erate the necessary sequencing libraries for them for an additional cost, or alternatively to generate

their own. Figure 2.15 shows details for a user-supplied library generated using the HELP-tagging

single-end protocol, and includes information on library size, 3’ adaptor sequence, and multiplex-
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ing index used. The functions included in this LIMS view allow core personnel to either modify a

user-supplied library, or add this library to an existing flow cell.

The flow cell overview page (not shown) allows users to manage existing flow cells or create new

flow cells for any of the supported sequencing platforms, defining parameters such as read length

and end-type. An option is also provided to move to a detailed view of the flow cell which displays

a lane-by-lane layout and provides information on any libraries assigned to each of the lanes. Figure

2.16 shows an example of this (for readability, only the first four lanes are displayed). We see that

this flow cell is designed for a 100bp single-end run and that the first two lanes show multiplexed

ChIP-seq samples as well as PhiX spike-in controls.

At this stage in the processing, user, project, job, sample, library, and flow cell information have

been linked in the system and all that remains is to link the flow cell ID to a sequencing run. A

unique identifier is automatically created for each run in the WASP system by combining run date,

machine ID, and flow cell ID. This chain of links from project through to run is shown in Figure

2.17 which provides a partial view of some of the over 40 tables in WASP’s main MySQL database

used in capturing all of the data and metadata associated with a sequencing job.
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Figure 2.17: WASP Database Shown here are some of the main tables used to capture information about a sequencing
run. Each project can consist of multiple jobs, allowing users to logically group related assays. The ‘job-sample’ table is a
join table, used to break the many-to-many relationship between the ‘job’ and ‘sample’ tables which arises from the fact that,
while a job may have many samples, the same sample can also appear in many jobs. Each sample is related to (potentially)
multiple libraries which can be placed on multiple lanes, and a flow cell consists of multiple lanes and is used in a single
sequencing run (flow cell stripping and re-use is technically possible but is not practised as part of core standard operating
procedures).
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From here, the flowcell can be placed in an instrument and sequencing can commence. As soon as

the run is complete, the flow of data processing shifts to the backend modules of the WASP system

which are described in the next section.

2.3.4 Backend Processing

Figure 2.18: WASP Processing Overview Core staff enter information about each
sequencing run using a custom built facility LIMS. Once a run is completed, the WASP
pipeline controller is automatically invoked and the data is passed to the appropriate
assay-specific pipeline for processing. These pipelines, which use community accepted
third party tools, also generate appropriate run statistics and update the user wiki
page associated with the job with analysis results as they become available. Once the
analysis has been completed, the investigator is sent an email with a link to their Wiki
page in order to view the sequencing results. (Source: [120])

Once sequencing is complete, raw data files are automatically copied from the instrument to a

HPC storage location where the WASP processing scripts can access them (Figure 2.18). These

data folders are constantly monitored by a daemonised ‘watcher’ script, whose job it is to invoke
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an instance of the WASP pipeline on any newly-generated data. The watcher script first parses the

run name to extract the flow cell ID and then adds information to the sequence run table in the

database indicating the path to the data. A list of job IDs associated with this flow cell is then

pulled from the database and each job is passed to an instance of the pipeline controller script. The

main WASP backend processing is handled by a set of assay-specific Perl modules, although several

additional programming and scripting languages (including Python, AWK, R, and C++) are used

for certain tasks as necessary. With common functionality being derived from inherited base classes,

these Perl modules are largely self-contained making them easily modifiable. The pipeline controller

script uses the job information provided to ascertain the type of assay for a particular job and then

calls the appropriate assay module to further process the data. Currently, ChIP-seq, RNA-seq,

microRNA-seq, and HELP-tagging are supported, and an overview of the processing performed by

each of their associated modules is given in Figure 2.19.

41



Figure 2.19: WASP Pipelines Overview Processing steps are shown for the four main assays supported by the WASP
system. The end result of all pipelines (including any non-pipeline compatible jobs) is the writing of the results wikipage
and automated email to the end user informing them that their analysis is complete. (Source: [120])
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As previously stated, WASP was initially designed to work with the Illumina platform requiring

that the first step in post-processing be to convert the proprietary QSEQ format files to Sanger

FASTQ format, demultiplexing as necessary. In the case of ChIP-seq jobs, FASTQ files are then

aligned to the reference genome specified during sample submission to produce SAM and BAM [123]

format files, after which peaks are called. The WASP system makes use of standard community-

accepted third party tools for sample processing, examples of which include the previously mentioned

BWA [103] or Bowtie [106] for alignment, MACS [116] for ChIP-seq peak-calling, and Tophat [128]

and Cufflinks [129] for processing of RNA-seq data9. The modular design of the system facilitates

the relative ease of swapping these tools as desired.

Figure 2.20: File Naming For paired-end status: ‘P0’ indicates unpaired, ‘P1’
indicates first mate, and ‘P2’ indicates second mate. Multiplexed index of ‘0’ indicates
sample is not being multiplexed. (Source: [120])

We have previously mentioned the naming convention of ‘date-machine-flowcell’ for individual

sequencing runs. WASP also uses a naming convention for results files generated by the various

processing pipelines. These human readable names are designed to be both informative and easily

parsed by pipeline scripts, and consist of: sample name, flowcell ID, lane ID, paired-end status, index

used for multiplexing, reference genome, filetype, and file extension. An example of this is shown

in Figure 2.20. The WASP system also maintains a strict hierarchical directory structure for these

results files, with each job belonging to a particular project, each project belonging to an individual

WASP user, and each user belonging to a labspace defined by the WASP ID of the lab’s PI (as

indicated during registration). Within a job folder, files are further divided into ‘raw’, ‘processed’,

and ‘analysed’ results folders with data organised accordingly.

2.4 Discussion

Related Tools

At the time the WASP system was being developed (2009-2010), several other solutions to the infor-

matics challenges of NGS were also in the early stages of development. The LIMS component was

9The HELP-tagging assay was designed in-house necessitating a custom-built pipeline.
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being addressed by both open source efforts such as The Genome Analysis Centre’s MISO (Man-

aging Information for Sequencing Operations)10, as well as commercial ventures such as Bioteam’s

WikiLIMS11, a MediaWiki instance with semantic extensions. Workflow engines such as Taverna

[130] and Conveyor [131] were providing flexible ways to define, execute, and share analysis pipelines,

making use of third party tools available through REST- and SOAP-based web services, while other

platforms such as geWorkbench [132], KNIME [133], and Galaxy [134] focussed on providing a suite

of data processing, analysis, and integration tools. Notably however, none of these efforts at that

time provided the integrated sample submission, LIMS functionality, automated analysis pipelines,

and visualisation capabilities which were included as part of WASP’s end-to-end design.

The WASP System

Once WASP was in full production mode, the system was presented at various national and inter-

national meetings, garnering widespread interest from other institutions where sequencing facilities

were being established. These new centers were struggling with some of same fundamental issues

which had initially led to the development of the WASP system, and were eager for a turn-key

solution to their data-capture, -management, and -analysis problems. The issue however, was that

the WASP system had been developed specifically to meet the needs of the Einstein Center for

Epigenomics and was therefore not readily customisable to the requirements or infrastructure of

other institutions, or indeed to other sequencing platforms, having been primarily developed with

Illumina technologies in mind. The system was also only modularised to a certain extent, having

grown somewhat organically during early development in response to both frequent changes in Illu-

mina’s algorithms, and file formats, as well as to demand for quickly supporting an increasing range

of sequencing assays. It was therefore decided to re-implement WASP in a highly modular and

extensible way, leveraging mature, enterprise-level technologies to produce a system that could be

easily configured by any interested institution or facility to their own specific requirements. This new

flexible design also aimed to provide individual researchers with greater control over the analytical

pipelines, allowing them to choose tools and parameters to suit their own needs.

The programming paradigm for this new system, termed ‘The WASP System’ (as opposed to

the original ‘WASP’), is based around the Java/J2EE Spring framework. This application frame-

work, developed by SpringSource12 contains multiple Spring Projects, each of which provides sup-

port for different aspects of an enterprise-level infrastructure. The core Spring framework supports

(amongst others): an inversion of control (IoC) programming model (via dependency injection)

which allows abstraction of application logic into decoupled, re-usable modules, transaction man-

agement and aspect-oriented programming (AOP), web applications using the model-view-controller

(MVC) approach, data access and object-relational mapping (ORM) using Java Database Connec-

tivity (JDBC) and integration with ORM libraries such as Hibernate, message passing via the Java

Messaging Service (JMS), and unit and integration testing using, for example, the popular JUnit

10http://www.tgac.ac.uk/miso
11http://bioteam.net
12http://spring.io
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module. Examples of WASP re-development using Spring-based technologies includes: 1) the AJAX

submission forms being replaced by a combination of Java Server Pages (JSP) and Spring Web Flow

(SWF), which dynamically build sections of a web page according to XML-based flow definition

files, 2) MediaWiki access extensions and custom-written Perl scripts being replaced by the much

more powerful Spring Security, which allows highly-customisable authentication and role-based ac-

cess definitions, protecting against vulnerabilities such as session hijacking and clickjacking, and 3)

Spring Batch replacing the complex scripted controllers for the assay-specific pipelines. Spring Batch

was designed to simplify the management and life-cycle of high-volume batch jobs or workflows and

provides functionality and application programming interfaces (APIs) to start, stop, and gracefully

restart jobs on interruption. It also includes job tracking and statistics as well as web-based job

management capabilities.

To further increase the modularity in the system, each of the components (database, web front-

end, security, pipelines, and so on) are deployed as a separate Spring application bundle on an

Eclipse Virgo OSGi13 server. The OSGi model is designed for module-based Java applications and

provides a more robust production environment in which each of the components can be developed,

updated, and, if necessary, shutdown independently, while allowing the other component to continue

functioning.

In addition to streamlining and modularising the existing functionality of WASP, the new WASP

System has two further key design goals (as shown in Figure 2.21). The first of these stems not only

from the desire to create an extensible system, capable of integrating diverse datasets and facilitat-

ing a systems approach, but also from the recognition that no one institution will likely be able to

develop a solution to all of the sequencing and analytical challenges faced by the genomics and epige-

nomics communities. To that end, a ‘nurtured open-source distributed development environment’

was envisaged, with the aim to both encourage adoption of the new system, and, more importantly,

to dramatically increase the number of programmers actively participating in the development pro-

cess. The WASP System therefore comprises two components – the first is the core system, which,

for stability purposes, has a restricted codebase which will continue to be developed by a small group

of key programmers. This core however includes a plugin-handler which hosts the second system

component – a collection of third-party plugins developed by programmers from geographically di-

verse institutions. The idea behind this design is that, while development of some plugins may serve

specific individual institutional needs and be integrated only into local installations of the WASP

System, other plugins will likely address challenges shared by many of the participating institutions

and will be made available to the entire WASP System community as part of the shared plugin

collection resource. In order to ensure that any plugins developed are compatible with the core sys-

tem (including any current pre-release versions), plugin developers will be provided with template

plugins and documentation, and will have access to the continuous integration and testing servers

currently hosted at Einstein. It is important to note that these plugins are not solely limited to

genomic or epigenomic data – proteomic, metabolomic, and any other form of data can be handled

13http://www.eclipse.org/virgo/
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provided that the appropriate Spring Web Flows for dynamic metadata capture, JSP pages for data

display, and Spring Batch XML definition files detailing appropriate processing steps are defined.

Figure 2.21: The WASP System This figure shows the main components of the
new design, incorporating all of the functionalitiy of the original WASP, as well as new
functionality relating to data integration and the system’s role as middleware for grid-
and cloud-based HPC resources. (Source: [120])

The second new design goal addresses the fact that, as well as having different software ecosys-

tems, different institutions will likely have access to vastly different hardware and HPC resources.

Many facilities may not have bespoke local compute clusters and may instead rely on grid or cloud-

based resources to provide scalable, on-demand computing for handling their sequencing data. With

compute and storage costs in the cloud decreasing, this option may be particularly attractive to

smaller institutions or core facilities who may prefer not to have the overhead associated with sourc-

ing, maintaining, upgrading, and replacing expensive HPC systems and hiring personnel specifically

for their administration. The desire to increase the system’s flexibility in this regard also coincided

with Einstein’s increased interaction with the NSF-funded XSEDE14 (Extreme Science and Engi-

neering Discovery Environment) national grid resource in the form of the Einstein Genome Gateway

– an XSEDE-supported portal for providing shared access to grid-enabled genomics and epigenomics

tools. The WASP System therefore leverage’s existing software such as Cloud tools15 and the Crux

14http://www.xsede.org
15http://code.google.com/p/cloudtools/
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Toolkit16 to enable it to act as middleware for cloud and grid resources [135, 136].

The new WASP System is, at the time of writing, currently being tested and customised at

three partner institutions – Memorial Sloan-Kettering Cancer Center, New York University, and the

University of California San Diego. Once this first phase of testing has been completed, it will be

rolled out to up to twenty further national and international academic and commercial partners,

including the newly-established New York Genome Center17 in a project dubbed the ‘WASP Swarm’.

16http://confluence.globus.org
17http://www.nygenome.org
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CHAPTER 3

Secondary Analysis of ChIP-Seq Data

The ChIP-chip datasets used in this chapter to test the ChIPSOM algorithm were generated in

the labs of Prof. Jonathan Licht, Northwestern University (WT1 dataset) and Dr. Anton Krumm,

University of Washington (CTCF dataset). All algorithm development and testing was carried out

by the candidate.

3.1 The Motif Finding Problem

A common task in the analysis of genomic sequence is the identification of short, recurring patterns,

known as motifs, which, due to their over-representation, are assumed to have some biological

significance [137]. While sequence motifs can be used to model, for example, restriction enzyme

recognition sites, ribosome binding sites, splice sites, and miRNA binding sites, in this section we

focus on the use of motifs for modelling transcription factor binding sites (TFBSs). Motif discovery is

an important step in the secondary analysis of ChIP-seq data for several reasons. Firstly, it confirms

the presence of a bone fide binding site within a ChIP-seq peak adding confidence to the called

peak. Secondly, despite the fact that binding sites are quite small, ChIP-seq peaks can range in the

order of hundreds of base pairs; motif identification can therefore help to increase the resolution of

the binding site annotation. Thirdly, not all binding sites are created equal – variations in binding

site sequence can result in a spectrum of binding affinities, potentially modulating the regulatory

effect of the associated transcription factor. Using de novo motif discovery can help to uncover the

different modalities of a binding site and show any divergence from known canonical motifs. In this

section we discuss the different ways in which TFBS motifs can be represented and describe some

common approaches to their de novo identification.
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3.1.1 Motif Representation

The response elements (REs) to which transcription factors bind are short, degenerate sequences,

usually in the order of 6–32bp in length [138]. The sequence degeneracy reflects the fact that

the interaction between protein and DNA is highly dependent on structure, and nucleotides not

involved in binding are generally not subject to the same selective pressures as those that are

[139]. Transcription factors may therefore recognise and bind to non-functional elements located

throughout the genome (spurious binding), creating a need for increased protein production and

placing extra demands for energy expenditure on a cell. While one may think that such spurious

sites should therefore be under purifying selection, recent research suggests that conserved chromatin

context can play a role in relaxing selection against these sites [140]. It has also been suggested that

the clustering of functional binding sites into regulatory modules helps to target binding to functional

elements thereby reducing the effects of spurious binding [141].

Figure 3.1: IUPAC Codes IUPAC codes for representing consensus sequences are
shown. Each symbol represents the bases which can occur in any given position within
a consensus sequence.

By aligning multiple experimentally-derived binding sites into a motif, we can capture the general

binding preference of a particular transcription factor. One simple way to do this is through the

use of a consensus sequence. Consensus representation usually takes one of two formats. The first

format involves the use of regular expressions using the standard DNA alphabet (b ε {A,C,G,T});
an example of this is a sequence such as A{G}CC[CG]T, where a single letter represents a fully

conserved base, {G} indicates any base but G can occupy this position, and [CG] indicates that
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either a C or a G occur in the sequence. The second method extends this alphabet with IUPAC1

codes, adding letters which represent the possibility of two, three, or any of the four nucleotides

occurring in each position in the motif (Figure 3.1). While consensus sequence representations are

relatively straightforward, they do however result in loss of information – there is no way to tell, for

example, if one of the nucleotides in a two-base consensus occurs more frequently than the other.

A more comprehensive approach which does not suffer from this problem is the use of a position

specific scoring matrix (PSSM). A PSSM is a raw count of the number of times each nucleotide

occurs in each position in the motif, this results in a 4 x ` matrix, where ` is the motif length.

Normalizing for the number of sites used to create the matrix produces a position specific frequency

matrix (PSFM), in which fbi is the probability of observing nucleotide b in position i and
∑
b

fbi = 1 (i

ε {1,2,...,`}). Extending this representation to incorporate background frequencies (thus allowing for

consideration of different nucleotide frequencies in different organisms being studied [137]) produces

a position weight matrix or PWM. Here, Wbi is the log-odds for base b in position i of the motif,

and pb represents the probability of base b occurring in a background model:

Wbi = log2(
fbi
pb

). (3.1)

While providing a more powerful way to capture motif information, matrix-based approaches do

have some associated problems. The first of these is that, when constructing matrices from a small

number of samples, there is a possibility that a particular nucleotide may not occur in the input

sequences. This results in an undefined log-odds value (log2(fbi/pb) = log2(0)). In order to correct

for this occurrence, small pseudocounts are usually added to the frequency count at each position in

the motif [142]. A further limitation of this type of representation is the assumption that all positions

in the motif are independent, which is not the case. This has been demonstrated by, for example,

Bulyk et al. [143], who use a microarray-based approach to show that the binding affinities for

mutant and wild-type early growth response 1 (EGR-1) zinc finger transcription factors are highly

dependent on inter-nucleotide effects. PSSMs and their derivatives also do not accommodate gaps,

which are found in some motifs which consist of half-sites separated by variable length spacer regions

[144]. There are several approaches which aim to address these issues either using simple pairwise

nucleotide dependencies [145], or by employing more advanced models. The authors in [146], for

example, use permuted variable length Markov models (PVLMMs) to capture dependencies among

nucleotide positions and demonstrate the application of these models to the detection of both splice

sites and transcription factor binding sites. More complex models such as these, however, usually

require more biological knowledge for their construction and offer only marginal improvement in

specificity; for this reason, matrix-based approaches are still the currently preferred method for

modelling binding site motifs.

A graphical motif representation was developed in [147]. These ‘sequence logos’ show each column

1IUPAC – http://www.iupac.org/
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of the PSSM as a stack of letters, and characterises the conservation of the individual nucleotides at

each position in a motif in terms of information content; each letter’s height in the logo is proportional

to its observed frequency (see Figure 3.2). They can be constructed using the following equation:

ICi = 2 +
∑
b

fbi log2(fbi), (3.2)

where, as before, fbi is the probability of observing nucleotide b in position i, b ε {A,C,G,T}. Perfectly

conserved positions in this model will contain 2 bits of information, two-base degeneracies will convey

1 bit of information, and positions where all four nucleotides can occur are non-informative. It has

been shown that a motif’s information content is directly related to both its expected frequency in

a random DNA sequence [137] and the average binding energy of all sites used in its construction

[148]. Note that equation (3.2) assumes equal nucleotide probabilities, this model can be generalised

in the same way as a PWM by using the relative entropy of the observed nucleotide frequencies with

respect to background composition of different organisms:

ICi = −
∑
b

fbi log2(
fbi
pb

). (3.3)

An example showing the different motif representations discussed above for a set of four short

sequences is shown in Figure 3.2.

Once we have a representation of a motif, we can use it to scan the promoter region of our gene(s)

of interest to determine whether or not a particular transcription factor is likely to bind there. If

we have not identified our own motif ab initio (a topic which we will address in the next section),

there exist many databases of previously determined binding motifs which can be used for this task.

TRANSFAC [149] and JASPAR [150], for example, contain PSSMs for many eukaryotic organisms,

while PRODORIC [151] holds binding data for prokaryotes. Species-specific motif databases also

exist, examples being SCPD [152] and RegulonDB [153], which contain information on S. cerevisiae

and E. coli TFs respectively. Programs such as MatInspector [154] use PWMs from these databases

to search for binding sites in promoters by sliding a weight matrix along an input sequence and

scoring the similarity between the motif and sequence at each starting position using an equation

such as:

Sx =
∑
b

∑
i

xbiWbi, (3.4)

where xbi is equal to 1 if base b occurs at position i in the motif and is equal to 0 if it does not.
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Figure 3.2: Motif Representation The topmost panel shows the multiple align-
ment for a set of four binding sites. The PSSM represents the raw counts of the
individual bases within this alignment while the PSFM is simply the normalised count
matrix. The consensus sequence uses IUPAC codes from Figure 3.1 to represent the
alignment but results in loss of informaition – notice that the last base in the consensus,
R, gives no indication as to the relative frequency of G to A in this position, despite
the fact that the occurence of a G is much more likely. The PWM is calculated as the
log2 ratio of the observed to background frequencies, and in this case assumes equal
background nucleotide frequencies (0.25). Finally, the sequence logo for the alignment
is a graphical representation of the conservation at each position with each letter scaled
based on its frequency.

Positions which score above a certain threshold are tagged as the start of likely binding sites. This

pattern matching approach to identifying binding sites can, however, suffer from large numbers

of false positives, and considerable effort must be dedicated to optimizing thresholds in order to

minimise these [155]. One approach used in [156] is to simultaneously optimise both the weight

matrix and threshold so that all known binding sites are identified with as few other sites included

as possible.
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Before we can use motifs in this type of pattern matching, we first need a way to derive the

binding model from appropriate input sequences. The original motivation for de novo motif-finding

problem was expressed in terms of DNA microarrays used for measuring gene expression levels. The

rationale is that after clustering the expression profiles, genes which are potentially co-regulated

(and therefore likely bound by the same transcription factor) are grouped together. By searching for

statistically overrepresented sequences in the promoter regions of these gene clusters, it is possible

to identify novel motifs. Because of the nature of TF binding sites, the motif discovery process must

attempt to address several difficult issues. Firstly, there is no way to know a priori what length the

motif is. Similarly, there is no way to know if a given transcription factor binds only once in each

promoter (or not at all), or if some of the promoters contain multiple instances of the same site. It

is also likely, as previously mentioned, that a promoter region will contain binding sites for many

different transcription factors which act in a coordinated manner to regulate expression. The next

section looks at some of the different ways in which this problem can be tackled.

3.1.2 Traditional Approaches to de novo Motif Finding

Perhaps the simplest approach to determining over-representation is the use of enumerative or word-

counting methods like that of YMF [157]. With this approach all `-mers, or subsequences of a

particular length, `, are enumerated, and the frequency of their occurrences in the input sequences

are calculated. Over-representation is then measured by comparing observed to expected frequency,

with the expected frequency of a sequence Seq = b1, b2 ,..., b` calculated as either:

Pr(Seq) =
∏̀
i=1

pbi , (3.5)

where pb is the probability of finding base b in the input sequences, or by using a Markov chain of

order m, where a base’s probability is calculated based on the previous m bases

Pr(Bn = bn | Bn−1 = bn−1, Bn−2 = bn−2 , ..., B1 = b1) =

Pr(Bn = bn | Bn−1 = bn−1, Bn−2 = bn−2 , ..., Bn−m = bn−m) , (n > m).
(3.6)

Markov models are a useful tool for sequence analysis since they can capture more subtle char-

acteristics of nucleotide frequency than independent nucleotide counts [158]. While an exhaustive

search is guaranteed to find existing motifs, an obvious disadvantage of this approach is that for

each motif length `, there are 4` candidate strings to evaluate resulting in exponential increases in

search time as the motif length increases [159]. The search becomes further complicated depending

on the number of mismatches allowed when comparing to the consensus sequence, and whether or

not gaps are permitted. Some variants on this approach try to circumvent these limitations and
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improve compute-time using either suffix trees to pre-index the input sequences (Weeder [160]), or

by using dictionary-based search such as MobyDick [161].

While early motif discovery tools used enumerative methods, most modern techniques are based

on probabilistic approaches. One of the most popular of these is the expectation maximisation (EM)

[162] approach used by MEME [163]. MEME uses expectation maximisation to fit a two-component

mixture model to sequence data, where component one represents the motif and component two is

the background. The E-step uses a PWM generated from random initial positions to calculate the

expected log-likelihood over the latent variable (whether a sub-sequence has been generated from

the motif or background model), while the M-step is used to compute parameters which maximise

the expected log-likelihood from the E-step (i.e. finding the locations in each sequence which align

maximally to the current motif). These parameters are then used in the next E-step, and the algo-

rithm proceeds in this iterative manner until convergence. By probabilistically masking sequences

for previously found motifs, MEME can identify multiple distinct motifs within a single data set.

While MEME may represent an improvement over näıve word-based approaches, it does suffer from

problems of its own. Like all motif-finders there are many associated parameters (probable motif

length, number of expected occurrences per sequence and so on), but more importantly, this ap-

proach can suffer from dependence on initial conditions with no guarantee that it will converge to a

global rather than local maximum.

Gibbs sampling [164] is another popular probabilistic approach used by tools such as AlignACE

[165], info-gibbs [166], and Motif Sampler [167]. It is similar to MEME given that it uses a combi-

nation of EM and simulated annealing, but is less likely to converge to a local maximum due to its

leave-one-out sampling strategy (although this is still not guaranteed). With this approach a PWM

is initially constructed from random starting positions in each of the input sequences except one

(Sx). During each iteration, all sub-sequences of Sx are scored using the PWM to determine the

most likely binding site; this position is then used in the construction a new motif, while another

sequence, Sx′ , is removed and scored. This process is repeated until the positions in each sequence

do not change. One clear disadvantage of this approach is that a model of one motif per sequence

is assumed.

While some tools, such as MDScan [168], aim to combine the advantages of both word enu-

meration and PWM-based approaches, seeking a balance between exhaustive search and rigorous

statistical modelling, others such as ConSite [169], rVista [170], and TOUCAN [171] use phylogenetic

information to bias the search toward evolutionary conserved regions which may be more likely to

contain functional binding sites. This may seem reasonable given that several studies have previously

shown that the occurrence of mutations in binding sites happens at a rate two to three times lower

than that expected for functionally neutral mutations [172, 139], many other studies, however, have

shown evidence for widespread turnover of transcription factor binding sites [173]. Some studies, for

example, indicate up to 94% conservation in binding sites for individual proteins between primates

[174], while others report that 32-40% of human functional sites are not functional in rodents [173],

or demonstrate highly divergent binding profiles even across closely related species of yeast [175].

This apparent contradiction may stem from the fact that regulatory sequences can be shuffled and
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re-ordered yet still remain functional, making detection of conservation difficult. We must also con-

sider that not all conserved sites may actually be functionally active. The benefits of incorporating

phylogenetic information on binding sites are therefore somewhat difficult to assess – while possibly

helpful in reducing the ‘noise’ inherent in motif finding and focusing the search, it may not only

disregard functionally important sites, but also overestimate the importance of non-relevant ones as

well. A more promising approach may be to make use of the fact that functional binding sites are

usually clustered into cis-regulatory modules (CRMs).

There are two classes of CRM detection algorithm. The first class starts with individual binding

sites and then attempts to build higher order structures and patterns. The second aims for fully de

novo module prediction based on hierarchical mixture models and Bayesian inference to maximise

the joint probability distribution associated with multiple TF binding [176]. Algorithms of both class

may seek to exploit prior information on TF binding – the Ahab tool [177], for example, was used with

binding motifs known to be involved in Drosophila segmentation to predict 146 regulatory modules.

Sinha et al. [178] also exploit prior knowledge of Drosophila TFs which are known to co-locate, and

use a hidden Markov model (HMM) coupled with EM for parameter estimation. With this approach,

different states in the Markov model can be used to represent different motif models (or a background

model), emitting nucleotides with probabilities corresponding to the observed frequencies in the input

sequences. The distances between motifs within a module as well as the expected module length

can then be captured by the state transition probabilities. Acquiring prior biological knowledge

of positionally correlated motifs is unfortunately however not always straightforward; while some

CRMs have strict rules about the order and spacing or binding sites [179], others are less stringent

resulting in a combinatorial problem of a much higher order [180]. Several algorithms also exist

which combine phylogenetic information with CRM detection; ModuleSearcher [181], for example,

biases its search for CRMs towards regions which are conserved between human and mouse; we have,

however, already commented on the potential problems with such approaches.

Since different motif finders may sometimes produce different results, perhaps the most promising

approach is that of pipelines such as TAMO [182], which executes a combined analysis using the

AlignACE, MDScan, MEME, and Weeder programs, performs statistical testing on the output of

each, and then clusters the significant motifs. This type of consensus approach, by combining the

best hits from several motif finders (and several different approaches to motif finding), is far more

likely to succeed in identifying high confidence sites while simultaneously minimizing false positives

than any one motif finder alone. An extension of this approach, WebMOTIFS [183], combines

TAMO with Bayesian analysis, incorporating prior knowledge about likely motifs.

Finally, it is worth mentioning that one potential limitation of all of these approaches to both

individual motif and CRM detection is that, even when incorporating phylogenetic information and

accounting for the clustering of TFBSs in regulatory regions, neither protein-protein interactions nor

chromatin structure are considered. We have already indicated both a), that many transcription

factors bind as heterodimers and that the binding of one TF may serve to recruit or stabilise the

binding of another, and b), that local chromatin context (including DNA looping) plays an important

role in regulation; it remains to be seen if any algorithms can successfully integrate this kind of prior
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knowledge to improve the discovery process. In the next section we discuss an alternative approach

to de novo motif finding based on the Self-Organizing Map.

3.2 ChIPSOM

The self-organizing map (SOM) [184, 90] is a neural network architecture commonly used in ex-

ploratory data analysis to perform unsupervised clustering and visualisation of high-dimensional

data. Since its initial description by Kohonen [184], it has been cited thousands of times [185, 186],

having been applied to a wide range of problems including datamining [187], image compression

[188], and machine vision [189], as well as being used for the identification of patterns in data from

fields as diverse as geography [190], finance [191], and biology [192]. In this section we detail the

operation of the SOM, outline some related techniques, and describe the SOMBRERO motif find-

ing algorithm previously developed in our lab. We then outline some of the limitations with the

original algorithm, provide details on ChIPSOM, a modified version designed to allow processing

and visualisation of genome-wide data and then introduce the more fundamental problem of motif

redundancy which required the development of a novel post-processing algorithm.

3.2.1 Introduction to SOMs

A SOM consists of a lattice of output nodes onto which the input data is mapped; these nodes

are usually arranged in a two-dimensional rectangular or hexagonal shape, although neither the

dimensionality nor the shape of the lattice are restricted [193]. Each node i in the lattice contains

a parametric model vector (or weight vector) of length n, where n is the number of dimensions in

the input space (mi = [µ1 , ..., µn]T ε <n). These models can either be randomly initialised, or can

be based on for example, the eigenvectors from a principal components analysis (PCA) of the data,

with the latter approach resulting in reduced training time. During training (depicted in Figure

3.3), vector quantisation is performed in a two-step process. In the competition phase, an input

vector x = [ξ1 , ..., ξn]T ε <n is selected from the training set and the node model it most closely

matches is determined. In the learning phase, the matching node previously identified, as well as its

neighbours (discussed further in the next section), are updated so that they becomes more similar to

the input vector. This process is repeated for each training sample over many iterations eventually

producing a similarity graph where the nodes provide a discrete approximation of the distribution

of training samples. Note that although we describe the operation of the SOM here in terms of

vectors, it is equally possible to use any non-vectorial data (symbol strings for example), provided

a suitable metric for comparison (such as edit distance) is used [194].

Determining the best matching unit (BMU) or ‘winning’ node requires some measure of distance

between the input and model vectors, commonly chosen metrics include the Euclidean distance,

dot product, Minkowski metric, and Mahalanobis distance [90]. Here we’ll assume the Euclidean

distance, given by:
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d(x,m) = || x−m ||=

√√√√ n∑
i=1

(ξi − µi)2. (3.7)

The winning node, c, is then selected according to:

c = arg min
i
{d(x,mi)}. (3.8)

A distinguishing feature of the SOM’s training process is the preservation of topological properties

through the use of a neighbourhood function. By updating not only the winning node, but also its

neighbours, spatial relationships in the input data are recapitulated in the map via a process of

global ordering (self-organisation). The SOM can therefore be seen as producing an ordered non-

linear projection of data onto a lower-dimensional space, providing a generalisation of the PCA

approach. The learning equation in the SOM is defined as:

mi(t+ 1) = mi(t) + α(t)hci[x(t)−mi(t)], (3.9)

where t represents time, α(t), termed the ‘learning rate’, is a measure of the change effected in the

model by the update (0 < α(t) < 1), and hci defines a neighbourhood function for the winning node

c. One simple choice for the neighbourhood function is based on determining Ncr(t), a set of nodes

encompassed by a radius r which is a function of time t. At any given time, if a node is within

this radius (mi ε Ncr(t)), hci returns a value of 1, otherwise a value of 0 is returned. A smoother

neighbourhood kernel is provided by use of the Gaussian function

hci = exp

(
−|| rc − ri ||

2

2σ2(t)

)
, (3.10)

where σ(t) defines the width of the kernel at time t in a manner similar to Ncr(t), and rc and ri

are the locations on the lattice of vectors c and i respectively. Here, rather than a binary function

of inclusion for update or not, a node’s distance to the winning node dictates the magnitude of

the change effected in the model, with closer nodes being subject to larger changes. The choice

of learning rate and neighbourhood functions are important considerations in the design of a SOM

(as discussed in [90]); both α(t) and the neighbourhood kernel width should decrease monotonically

with time, and in order for convergence to occur it is necessary that hci → 0 as t → ∞. We can

therefore split the training of the SOM into two broad stages based on these values; during the initial

global ordering phase, α(t) is set to unity and the neighbourhood is quite large (usually greater than

half of the lattice size), while in the convergence phase, the neighbourhood is much smaller and

adjustments to the node weights are minor.

Visualisation of a trained SOM is commonly achieved by use of a U-matrix [195], a grey-scale
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image where each node’s value is determined by the average distance between it and its closest

neighbours. Also, since the learning process may produce different maps depending on the initialisa-

tion and the sequence in which the training vectors are presented, it is useful to be able to compare

the quality of learning in each case in order to determine an optimal mapping. A commonly used

performance measure is the quantisation error (|| x −mc ||), which indicates how similar an input

vector is to its BMU. Another popular metric is the topographic error, which is calculated based on

the proportion of all training vectors for which the first and second BMUs are not adjacent. This

provides an indication of the ‘orderedness’ of the map.

Figure 3.3: Training a Self-Organizing Map The first figure indicates the input
vector in white and the BMU or winning node and its neighbourhood in yellow. The
second figure shows how, after the learning phase, both the winning node and its
neighbours are now closer in value to the training sample. At the end of the training
process the SOM provides a good approximation of the input space with neighbouring
nodes responding to vectors from similar spatial locations in the training set. (Source:
Wikimedia Commons (C) Mcld. Licensed under CC-BY-SA-3.0)

The process described above is based on the original incremental learning SOM. It has been

shown that a ‘batch map’ approach can also be used which greatly reduces computational time, as

well as protects against any bias introduced by the order in which the training samples are presented

to the map. In a batch learning scheme, the winning node for each vector in the competition phase

is recorded, but the update procedure is not carried out until all samples have been considered. The

update is then based on both the count and the mean of the subset of training samples clustered at

each node j located within the neighbourhood of node i

mi =

∑
j

njhjix̄j∑
j

njhji
, (3.11)

where hji is the neighbourhood function, nj is the number of input vectors mapped to node j, and

x̄j is the mean of those vectors.
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3.2.2 SOMBRERO’s Approach to de novo Motif Finding

SOMBRERO [89, 196] recasts motif finding as a clustering problem, where short subsequences from

the input set (`-mers, where ` is the length of the motif we are searching for), are grouped by

sequence similarity. Using a SOM in this way represents a completely unbiased approach to motif

finding, and is an incredibly powerful technique, allowing the simultaneous characterisation of all

motifs of length ` present in the training set. By training individual maps for multiple `-mer lengths

(8–32bp inclusive), it is possible to capture motifs of any length. SOMBRERO’s architecture consists

of an MxN lattice where the model at each node is a PWM constructed from the set of sequences

clustered there. Each node also retains the PSSM fbi
z used to derive its PWM in order to simplify

the learning process; the PSSM is defined as:

fbi
z =

cbi
z + βpb
nz + β

, (3.12)

where z = (z1, z2) indicates the coordinates of the node on the lattice, cbi
z is a count of the oc-

currences of base b at position i in the `-mers used to construct this PSSM, nz =
∑
b

cbi
z, pb is

the background frequency of nucleotide b, and β is a scale-factor used to control the pseudocount.

During training, which follows the batch map mode discussed in the previous section, the learning

function allows each node’s PWM to evolve in order to better portray a feature of the input space.

The first step in training is to segment the training sequences into overlapping strings of length

`, and to assign each string xj to its best matching node according to the log-likelihood scoring

function described by equation 1.4. After clustering all of the input samples, the raw base counts at

each node are updated, including the contributions from neighbouring nodes

∑
z′

Θ(| z − z′ |)cbiz
′
+ βpb∑

b′

∑
z′

Θ(| z − z′ |)cbiz′ + β
, (3.13)

where Θ(| z − z′ |) defines a neighbourhood function which will determine the proportion of base

counts that a node will contribute to another node that is a distance | z − z′ | away on the lattice.

The neighbourhood function used by SOMBRERO is Gaussian

Θ(| z − z′ |) = e−[(z1−z
′
1)

2+(z2−z′2)
2]/γ , (3.14)

with the γ term (γ = [1/log(δ)]) controlling the contributions of the neighbourhood. Adjacent nodes

will contribute 1/δ of their counts to each other, with δ ranging from 4 to 15 during training. This

ensures that initial influence from neighbouring nodes is strong but fades accordingly as training

progresses. The adjusted counts are then used to generate an updated PWM and the next iteration

begins. Once training has been completed (based either on a convergence criterion or a predefined
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number of cycles), each substring xj from the input sequence is assigned to its most similar node and

overlaps in sequence space are resolved by only keeping the substring with the highest similarity score

to the model. In order to determine which of the motifs are significant, an appropriate background

model must be constructed from which statistical over-representation can be calculated. A dataset

R consisting of random sequences of the same length as the input sequences is therefore generated

using a Markov model of order m, with m usually equal to 3. This Markov model is based on

the nucleotide frequencies in the intergenic regions of the specific organism being studied. Each

substring of these sequences is then clustered at the most similar node in the trained map. This

process is repeated for 100 random datasets, and a Z-score is then used to determine significance

zscore =
xobs − xexp

σx
, (3.15)

where xobs is the number of sequences from the input set clustered at a node, xexp is the number

of sequences from the random dataset clustered there, and σx is the standard deviation across all

nodes. In order to disregard any simple repeats, a complexity filter with a threshold of 0.15 is

employed

C(z) = (
1

4
)`
∏
b

 `∑̀
i=1

fbi
z


∑̀
i=1

fbi
z

. (3.16)

The SOMBRERO algorithm is computationally costly with training time generally of the order

O(L(MN) + (MN)
2
) for an M × N map with an input set of length L. In order to reduce this

time cost, several optimisation steps were added to the implementation. When using a Gaussian

neighbourhood function the contributions from distant nodes can be quite insignificant. Calculating

these values is computationally wasteful; we can instead define a radius r within which the node

contributions are above some threshold (such as 10−10 times the value of the centre) and only

consider those nodes in the update function. This radius can then be decreased in line with the

decrease in σ(t) as training progresses. The second optimisation uses an updated winning node

search function, in which the search for the current winning node starts with the previous winning

node and its immediate neighbours. When used after an initial phase of traditional search, say,

20% of training time (by which stage the map should be somewhat ordered), this updated search

function should find winning nodes more quickly. The traditional search method can then be used

every tenth training cycle or so to smooth any local maxima. Finally, training set parallelisation

was implemented using the Message Passing Interface (MPI) to allow the algorithm to be run on a

compute cluster. Each processing node maintains a local copy of the SOM and is trained on 1/n

of the training set, where n is the number of processors available. After each training iteration the

SOM copies are synchronised. The model updates as well as the mapping of random DNA are also
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parallelised.

3.2.3 Limitations and Solutions

While SOMBRERO has been shown to perform as well if not better than currently preferred motif

finders such as MEME and AlignACE in both simulated and real datasets [89], there are some issues

with its original implementation, which, if addressed, could improve its usefulness. The first of these

issues relates to visualizing binding sites on a genome scale. Figure 3.4 displays the output of the

SOMView Perl script which currently provides graphical feedback to the user after a SOMBRERO

run. It displays both the trained node map (upper panel), with the nodes colour-coded by Z-score

and the hits for a particular motif model in the input sequences (lower panel). The node map,

while interesting from a computational point of view provides no real additional information to

a biologist without further processing and also provides no indication as to the distribution and

overlap in sequence space of the predicted sites associated with each of the different motif models.

This approach is also clearly only amenable to a small number of short input sequences and is not

suitable for genome-scale data.

Given that data from ChIP-seq experiments will include genomic locations, we modified the

code to read in and keep track of these loci so that hits from all significant motif models can be

then combined in sequence space. In this way, we generate peaks in a manner similar to ChIP-seq

reads being mapped to a reference genome. As previously indicated, motif signals will be sampled

at multiple map lengths, resulting in greater clustering depth at those loci corresponding to high

confidence sites. A second pass of a peak-calling algorithm such as MACS can identify a subset of

signal-rich loci, which can then be exported for visualisation in, for example, the UCSC’s genome

browser [126], or the Broad’s IGV [127]. Alternatively, as we demonstrate in [197], a power law

model (Figure 3.5) can be used to determine a cut-off of significant read cluster depth to distinguish

high and low confidence sites (Figure 3.6).
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Figure 3.4: SOM Viewer A Perl script was included with the original SOMBRERO
download for visualizing the trained node map and motif hits. Nodes in the map are
coloured by Z-score, and clicking on a node will present the list of sequences clustered
there.
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Figure 3.5: Power Law This plot shows the distribution of read frequency vs.
cluster depth for all reads from the significant ChIPSOM motif models from a ChIP-
chip study of CTCF binding. At lower read depths this distribution follows a standard
power law; it deviaties however once a read depth of ten is reached. This read depth was
therefore chosen as a cut-off to segregate peaks into low- and high-confidence subsets,
as shown in Figure 3.6. (Source: This figure has previously been published in [197] and
appears with permission.)
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Figure 3.6: ChIPSOM Peak Segregation Here, the central black segment represents the original MACS-called peak
for all mapped reads, while the red segments above it indicate the locations within this MACS peak at which sequences
were matched to one of the significant ChIPSOM motif models. As can be seen, the combination of motif hits into subpeaks
(green) and subsequent power law segregation into low- (pink) and high-confidence (purple) subsets can potentially result
in much more specific binding site locations in the range of tens of bases as opposed to hundreds of bases.



SECONDARY ANALYSIS OF CHIP-SEQ DATA

We also sought to address the determination of a more reliable cut-off for identification of sig-

nificant motifs. SOMBRERO’s calculation of Z-scores provides a ranked list of nodes but leaves

the user to decide on a suitable threshold for this score without any guidance. While it may be

tempting to simply take any scores greater than a certain number of deviations from the mean, we

believe that a more rigorous approach is to first convert the resultant Z-scores to p-values, and then

to correct these p-values for the multiple testing which arises based on the fact that each individual

node score represents a single statistical test of significance and the use of uncorrected values may

result in a large number of Type I errors.

Figure 3.7: Scaling The runtime (measured in log10(sec)) is shown for both SOM-
BRERO and ChIPSOM on datasets of increasing size. While a dramatic decrease is
not evident at the lower end of the input size range, for the more realistic genome-size
datasets, the SOMBRERO algorithm takes ∼3 (1Mbp) to ∼27 (10Mbp) times that of
ChIPSOM to run to completion. All runtimes are averages of three replicated runs
using 8 processing cores of an AMD Opteron 2.2GHz cpu.

Even with the previously described steps to reduce computational cost, SOMBRERO was only

ever used effectively on a limited number of promoter region sequences. There are two main reasons

for this. Firstly, like all parallel algorithms, SOMBRERO is subject to Amdahl’s law [198]. Generally

speaking, this law describes the expected speedup in algorithm execution time as the number of

processors is increased. As N , the number of processors tends to infinity, so the maximum speedup

tends to 1/(1−P ), where P is the percentage of the program that can be parallelised. In simple terms,

this means that the speedup will be dictated by the serial portion of the program. SOMBRERO

includes a serial step in the post-processing phase which utilises only the master node to re-scan

the input sequences to ensure that all sites matching each of the final motif models are tagged as

belonging to that motif. We have removed this step based on the argument that due to the use of

multiple maps, even if a single motif instance is missed on any one map, bone fide motif instances

will be shown as associated with a statistically significant PWM at more than one l-mer length and
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thus will appear on multiple maps (further discussed in the next section). In order to assess the

speedup in execution time gained by these modifications we carried out a series of timing experiments

comparing the original SOMBRERO algorithm and the newly implemented ChIPSOM on datasets

of increasing size (Figure 3.7).

Figure 3.8: GAL4 and WT1 Sequence Logos Upper panel demonstrates that
motifs returned for the GAL4 yeast promoter dataset from the original SOMBRERO
algorithm and the modified ChIPSOM version are identical, supporting the elimination
of the single-process functionality which results in the speedups seen in Figure 3.7. The
lower panel shows the sequence logos from the WT1 ChIP-chip dataset as determined
by the ChIPSOM, MEME, and AlignACE algorithms; all three motif finders produce
G-rich motifs which match the canonical WT1 binding site.

While allowing us to operate on larger datasets within a more reasonable timeframe, it was

essential to verify that the results of the modified algorithm were also still comparable to the original

in terms of motif models returned. We therefore analyzed the GAL4 benchmark dataset which was

previously used to test SOMBRERO [89] and confirmed that the returned motif models are identical
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despite the changes (Figure 3.8 upper panel). We also sought to test the algorithm in terms of motifs

identified when compared with results from field-leading algorithms on large datasets. Our work

with collaborators in the Licht lab at Northwestern University on the genome-wide binding of the

Wilms tumor 1 (WT1) transcription factor in a CCG99-11 Wilms’ tumor cell line [199] provided

such an opportunity. Shown in Figure 3.8 (lower panel) are the sequence logos from the application

of the ChIPSOM, MEME, and AlignACE algorithms to the WT1 ChIP-chip dataset – all three

motif finders returned G-rich motifs which showed strong matches to the canonical WT1 motif in

both the TRANSFAC and JASPAR databases.

An important concern which we have been unable to resolve is the inefficiency of the frequentist

approach used by SOMBRERO for ranking the constructed motif models. Calculating Z-scores

requires generating and clustering 100 random datasets of equal size to the input dataset. If we

were to consider a modest ChIP-seq dataset in which the binding protein being studied binds to

several thousand loci genome-wide, with each called peak spanning several hundred base pairs, the

training set size increases to a point where such an analysis becomes infeasibly time-consuming.

There is also no statistical basis for this choice of 100 random datasets, providing no guarantee that

true positive motif models will actually be tagged as significant. For these reasons, a probabilistic

approach to determining significance may be better suited to genome-scale motif finding. It is

worth noting however, that probabilistic motif finders themselves can also struggle with genome-

scale datasets – MEME’s runtime, for example, is cubic with respect to the number of sequences

examined and quadratic with respect to dataset size in basepairs. The authors recommend that even

with the parallel version (which can scale well to 128 processors), only a subset of ChIP-seq peaks

(<1000) should be used for motif discovery and that expected number of occurrences should be

limited to zero or one motif per sequence2. This restriction severely limits one of the important and

more interesting aspects of secondary analysis of ChIP-seq peaks – that of finding non-canonical

binding sites. One attempt to overcome this limitation (as demonstrated in Chapter Four) is to

leverage General Purpose Graphic Processing Units (GP-GPUs). We have however also previously

demonstrated that by first using ChIPSOM to coarsely segregate the entire dataset from a ChIP-

chip or ChIP-seq experiment into subsets of high and low signal content, we can effectively pre-filter

or enrich the data, allowing the subsequent use of more traditional motif finders (such as MEME)

which can then operate on the entirety of the reduced dataset [197, 199].

A summary of the major differences between the previously demonstrated SOMBRERO algo-

rithm and newly-described ChIPSOM implementation is shown in Figure 3.9.

2MEME user forum – http://www.nbcr.net/forum
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Figure 3.9: Algorithm Comparison The major differences between the SOM-
BRERO and ChIPSOM algorithms are highlighted. The new ChIPSOM implementa-
tion removes the re-sample step from the post-training stage. This operation (carried
out on a single core) presents a significant bottleneck and its removal greatly reduces
overall runtime while producing results comparable to the original implementation. The
Z-score calculation step has been replaced by a more robust corrected p-value calcula-
tion making the identification of significant nodes easier. We have replaced the Perl-
based node map and sequence visualisation with a more scalable BED/WIG-format
peak visualisation suitable for modern genome browsers. Finally, we have included a
subsequent peak segregation step which uses a power law approach to identify high-
confidence peaks.
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3.2.4 Motif Redundancy

As previously alluded to, a serious issue in the SOMBRERO/ChIPSOM approach to motif finding

is the redundancy associated with training multiple maps of different `-mer length on the same

input set. By using this approach, we are essentially sampling from the same binding signal at

different resolutions, resulting in a situation where motif models tagged as significant on different

maps will likely represent the same core binding site with varying levels of less informative flanking

sequence. This can lead to a much higher number of motif models being predicted than actually exist

in the training set, reducing the usefulness of the algorithm. In order to address this problem, we

propose a novel post-processing algorithm which performs a second-order clustering of the significant

motif models. We present this clustering problem as an optimisation task with regard to a suitable

clustering metric, and outline how a genetic algorithm (GA) approach can be used to implement

this.

3.3 GMACS

In this section we look at a more general formulation of the problem of motif model clustering –

that of determining familial binding profiles. We briefly discuss current state-of-the-art approaches

to this problem and then introduce the concept of genetic algorithms (GAs). We provide details

on the implementation of our proposed solution, GMACS, and demonstrate its performance on

widely-adopted benchmark datasets.

3.3.1 Familial Binding Profiles and Current Approaches

Although SOMBRERO’s inherent redundancy provided the impetus to study this motif clustering

problem, more recently the concept of combining multiple motif models was discussed in [200],

where the authors use this approach to determine the average binding specificity for a group of

structurally related proteins. In this case, the authors manually constructed 11 profiles they term

‘familial binding profiles’ (FBPs) from 71 non-zinc-finger motifs taken from the JASPAR database

[201]. An example FBP is shown in Figure 3.10.

FBPs are an important tool in regulatory genomics and serve a multitude of purposes: i) they

can be used as informative priors for motif discovery algorithms, either biasing the search to TFs

from a particular structural family, or providing a way to filter out spurious patterns and thereby

increasing sensitivity [200, 202], ii) they can be used to classify novel binding proteins based on their

similarity to the binding affinities of known structural families [203, 204], iii) they can be used to

reduce redundancy in motif databases where minor variations or sub-motifs from the same binding

site are incorrectly labelled as separate motifs; this redundancy reduction can also be applied to

motif finding algorithms, either to merge similar motif predictions from a single algorithm or to

combine results from multiple algorithms [205, 206], and iv) they can be used to analyze binding

site turnover and provide insights into how DNA-binding mechanisms have evolved over time [207].
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While [200] described the manual creation of FBPs, there have since been numerous studies which

have examined metrics appropriate for motif comparison and methods for their automated clustering.

Determination of motif similarity can be broadly classified into two approaches: alignment-based

and alignment-free. Alignment-based methods rely on column-by-column scoring metrics such as

sum squared distance (SSD), Pearson’s correlation coefficient (PCC), and average Kullback-Leibler

(AKL) distance. The usefulness of these metrics, amongst others, were explored in detail in [206]

and expanded upon in [202]. A method for alignment-free motif comparison was provided by [208],

in which the authors develop a tool (MoSta) which uses the asymptotic covariance of overlapping

word sets between two motifs to determine similarity. A similar approach is taken by [209], who

first convert each PSSM to a K-mer frequency vector (KFV), a 4k-dimensional vector comprising

the likelihood of each possible k-mer in a given motif, and then determine similarity using a number

of distance metrics including PCC, Euclidean distance, and Cosine distance.

Figure 3.10: Familial Binding Profile Sample FBP for four transcription factors
from the basic helix-loop-helix (bHLH) structural family. Columns which have low
information content (IC) or are only present in a small number of the individual motifs
are typically excluded from the FBP.

Currently, one of the most popular tools for motif clustering (as evidenced by its inclusion in the

JASPAR website) is the STAMP platform [202, 210]. It offers a choice of column comparison metrics

and performs pairwise gapped or ungapped local [105], or global [211] alignment, with progressive

multiple alignment being performed using a UPGMA [212] guide tree. A known problem associated
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this type of agglomerative approach is that it can suffer from so-called frozen subalignments [213],

where a motif seemingly well-clustered early on in the tree building process is later found to better

match another cluster. STAMP therefore also provides an option for iterative refinement, although

this can take much longer given that each motif from the initially constructed tree must be removed

and re-aligned to the remaining motifs. Ideally, we would like an approach which would allow motifs

to move freely between clusters at any stage in the clustering process, thereby reducing the likelihood

of convergence to a local rather than a global minimum, and obviating the need for post-clustering

iterative refinement. A partitional clustering technique such as k-means [214] would provide such

an approach, but is known to be highly sensitive to the effects of outliers. We therefore explore the

use of the k-medoids algorithm [215] which, rather than calculating a group mean, uses one of the

cluster members as the group reference. The algorithm begins with a build phase in which it selects

k initial objects as the cluster medoids and then assigns each remaining non-selected object to its

closest reference. In the swap phase, it interchanges selected and non-selected objects, keeping the

swap if it decreases the overall sum of the dissimilarities between all objects and their corresponding

cluster reference. This dissimilarity measure is termed the objective function, and the swap phase

will continue until it can no longer be decreased (at which stage the best set of cluster medoids has

been identified). This approach not only has the advantage of being resistant to outlier effects, but

also provides the additional benefit of not having to repeatedly calculate a multiple alignment for

each cluster as would a k-means approach. The k-medoids algorithm does however have two major

associated problems of its own: i) like k-means, it can be sensitive to initial conditions, converging

on different solutions depending on the randomly chosen starting medoids, ii) it performs a local

search only, providing solutions exclusively for the given value of k; in order to fully automate the

process of clustering, our approach will need to determine the optimal number of clusters for any

dataset provided. To address these two issues, we propose the use of a genetic algorithm (GA).

3.3.2 Introduction to Genetic Algorithms

Genetic algorithms, based on early work by Fraser [92] and later popularised by Holland [216] and

Goldberg [91, 217], are a stochastic optimisation technique making use of a population of candidate

solutions. These candidate solutions, commonly encoded as binary strings (although representation

as integers and floating-point numbers and are also popular), are iteratively evaluated for their

effectiveness, or ‘fitness’, for a given function or problem domain, often termed a ‘fitness landscape’

or ‘search space’, and then combined through the use of evolutionarily inspired genetic operators

such as selection, mutation, and crossover to form the next generation of candidates (Figure 3.11).

A more detailed explanation of some common GA terms can be found in Table 3.1.

The parallel search capabilities of GAs (simultaneous sampling of multiple points in the fitness

landscape) coupled with their ability to potentially ‘escape’ local minima (through the introduction

of novelty via mutation) make them ideally suited to complex, noisy problem domains and their use

in multiple sequence alignment [218, 219] and motif discovery [220, 221] has been well established.
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GA term Explanation
Fitness Landscape Objective function (also known in optimisation terms as the ‘prob-

lem domain’ or ‘search space’).
Chromosome/Individual/Genotype An array of values encoding a candidate solution to the objective

function.
Gene Subunit of a Chromosome encoding a particular parameter of the

objective function.
Fitness A measure of the ‘goodness’ of a candidate solution.
Fitness Function Process which assigns a Fitness score to a candidate solution.
Generation A single iteration of the genetic algorithm.
Population A collection of candidate solutions during a specific Generation.
Evolutionary Process Process of creating new candidate solutions from the current Pop-

ulation of solutions through the use of evolutionary operators such
as Selection and Crossover.

Parents Candidate solutions chosen for reproduction as part of the Evolu-
tionary Process.

Offspring Candidate solutions generated as part of the Evolutionary Process
through combination of Parent Genotypes.

Selection Process of choosing Parent candidate solutions based on their
Fitness relative to the current Population.

Crossover Process of combining Parent candidate solution Genes to generate
novel Genotypes (Offspring)

Mutation Process of adding variation to a Genotype which can help the GA
to escape local optima.

Table 3.1: GA Terminology Explanation of some common genetic algorithm terms.
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Figure 3.11: Genetic Algorithm Overview After the population is initialised, the
algorithm iterates between evaluating the solutions from the current population and
generating new solutions from selected candidates through various evolutionary opera-
tors. Termination usually occurs after a specified number of iterations (‘generations’)
have elapsed, when an acceptable solution (such as within an allowable error threshold)
has been found, or, after a fixed period during which the fitness has remained relatively
constant.

By embedding the k-medoids algorithm within a GA framework and choosing a suitable ‘fitness

function’ to evaluate candidates, we can leverage the local search capabilities of the k-medoids

algorithm while using the GA to both perform global search for the optimal number of clusters,

and to provide multiple initialisations for the k-medoids algorithm, reducing the potential impact

of poorly chosen starting medoids. This type of genetic-k-medoids approach has previously been

successfully applied to a number of clustering problems [222, 223].

3.3.3 GMACS Implementation

Initialisation

The first step in our algorithm is to create a matrix of pairwise distances between the motifs in

our dataset. We calculate the information content (IC) for each motif position using the following

equation:

IC = 2 +
∑
ij

pij · log2(pij) (3.17)

(where pij is the probability of observing nucleotide j in position i of the motif) and trim the motifs

based on a user-defined threshold (default 0.3) to remove less informative edge columns. While

trimming, we ensure that motifs are not shortened below a minimum length of four nucleotides.

Next, we create KFVs for each of the trimmed motifs. A value of four was chosen for k based on the

results reported in [209], where the authors explored various combinations of k-values and distance

metrics. The choice of k=4 is also congruent with the fact that tetranucleotide frequencies have

previously been shown to convey considerable genomic information [224]. We define each element,
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Lx,m, in a KFV as:

Lx,m =

n−k+1∑
i=1

k∏
j=1

(Nx)Tj ·
mi+j−1

|mi+j−1|
(3.18)

That is, the normalised likelihood of a k-mer, x, in a given motif, m, of length n. Here, N is a

binary-encoded matrix indicating a particular nucleotide at each position in the k-mer. Once we

have created our KFVs, we use the cosine distance, dcos, to populate our distance matrix, where:

dcos(a, b) = 1− a · b
‖a‖‖b‖

= 1−

n∑
i=1

ai × bi√
n∑
i=1

(ai)2 ×
√

n∑
i=1

(bi)2

(3.19)

and motifs with a dcos close to zero are regarded as highly similar. In contrast to an agglomerative

approach, these pairwise distances remain unchanged and do not need to be re-calculated as the

clustering progresses and motifs are merged.

Fitness calculation

Each candidate solution in the GA population encodes K, the number of clusters in the solution,

and a vector m, of length K, which holds the medoids for each of the clusters. During initialisation,

the value of K for each solution is randomly chosen from the range {2 . . . N − 1}, where N is the

number of motifs in the input dataset. This range is chosen as the K = 1 solution provides no real

benefit since all motifs are clustered together regardless of similarity, conversely, the K = N solution

places each motif in its own singleton cluster and is of little use for reducing redundancy. Once K

is set, the K motifs chosen as medoids which make up vector m are also randomly chosen. Once all

of the candidate solutions are initialised, we proceed to calculate the fitness for each member of the

population.

We first perform one round of the k-medoids algorithm as outlined in Algorithm 1. This local

search step will choose ‘good’ medoids based on the current value of K, and greatly speeds up the

convergence of the GA towards promising solutions. Carrying out only one round of the k-medoids

algorithm provides us with the benefit of improved current solutions through local search, without

the computational overhead of a full k-medoids approach, which typically runs until no further

updates to the medoids can be made to lower the total cost of the cluster configuration. As the goal

of our GA is to both determine the optimal number of clusters and their membership, the fitness

function will necessarily also include some measure of how well the data are clustered. Two methods

commonly used are the Gap statistic [225] which calculates the difference between successive values

of K for the test data and a bootstrapped reference dataset, and the CH-metric [226], which provides

a ratio of intra- and inter-cluster distance. The authors in [207] found that a log-based equivalent
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Algorithm 1 Fitness Calculation

1: input : pop[p] . member p of the current population
2: for x in 1 to motif count do . k-medoids
3: assign to medoids(x)
4: end for
5: curr ← get cost
6: for i in 1 to num clusters(pop[p]) do . swap step
7: for j in 1 to num clusters(pop[p]) do
8: if non medoid(j) then
9: swap(i, j)

10: new ← get cost
11: if new < curr then
12: update medoids(i, j)
13: for x in 1 to num clusters(pop[p]) do . re-assign
14: assign to medoids(x)
15: end for
16: end if
17: end if
18: end for
19: end for
20: fit← get silhouette(pop(p))
21: returnfit

of the CH-metric (CHlog) was preferable to the standard metric and this log-based version was also

used by [209]. Here however, we use the Silhouette metric [227], which is well-suited to partitional

approaches and is defined as follows:

s(i) =
b(i)− a(i)

max{a(i), b(i)}
(3.20)

In this metric, a(i) is the average dissimilarity of motif i to all other motifs in its own cluster, and

b(i), is the average dissimilarity of motif i to all motifs in its nearest neighbouring cluster. s(i) is

therefore an indication of whether or not an individual motif is well-placed in the clustering, or if

it would be clustered more appropriately elsewhere. By creating an average s(i) from each motif in

the dataset, we have an overall measure of cluster ‘goodness’.

Evolutionary process

Once fitness values have been assigned to each solution, they are ranked in preparation for the

evolutionary process. GMACS implements a linear ranking system incorporating a selective pressure

parameter, ps, which can be used to adjust the strength of the selective bias towards fitter individuals.

Linear ranking is commonly used as opposed to direct fitness values in order to avoid situations

where a small number of disproportionately successful solutions leads to the premature convergence

of the population. We follow an incremental or steady-state GA (SSGA) replace-worst strategy,
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such that, in each generation, the bottom 5% of the parent population will be replaced by newly-

created offspring. This represents a more gradual progression towards fitter solutions in contrast to

a more aggressive generational strategy where the entire population is replaced at each iteration and

relatively fit solutions may be lost over time due to the stochastic nature of the algorithm.

We use roulette wheel, or fitness proportionate selection, to choose the two parent solutions

when generating offspring for replacement. In this form of selection (depicted in Figure 3.12), each

individual in the population is assigned a ‘slice’ of an imaginary roulette wheel which is proportionate

to its fitness within the context of the current population. The wheel is ‘spun’, and solutions or

individuals which have larger slices of the wheel will have a greater probability of being selected for

recombination. Weaker solutions will, of course, still have a small chance for selection, and this is

in keeping with part of the fundamental theory of genetic algorithms, namely that part of a less fit

solution’s genotype may still be beneficial at a later stage when combined with genes from another

solution.

Figure 3.12: Roulette Wheel Selection Individuals are assigned a section of
the roulette wheel based on their relative fitness. Here we show a sample population
with only five individual solutions. Following the fitness calculation step, each of the
solutions is assigned a portion of the roulette wheel corresponding to its relative fitness
in the group. As larger solutions have a larger slice of the wheel, they have a higher
probability of being selected to reproduce. Weaker solutions may still be selected for
crossover albeit with a much lower probability.

The medoid vector representation and the effects of the crossover and mutation operators on

those encodings are shown in Figure 3.13. Two parents are shown at the top of the figure, one

shaded and one unshaded. Both have five clusters (a point we will return to shortly), and the

index of the motif currently assigned as the medoid for each of these clusters is shown as an integer

value. The form of crossover we use is termed ‘uniform crossover’, meaning that each separate

gene in an offspring’s genotype has an equal chance of coming from either parent. This type of

crossover, while less common than single- or multi-point crossover, arguably produces a wider range

of genotypes, exploring more of the search space. In order to explore solutions with different numbers

of clusters (particularly those which may not arise as part of the random initialisation), the mutation
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operator functions by perturbing the K-value for a given solution, either adding a cluster by copying

the existing medoids and choosing at random an additional medoid from the remaining motifs, or

removing a cluster (provided K > 2), by randomly choosing a medoid to delete. The probability of

a mutation occurring is typically kept quite low (lest the GA risk becoming a totally random walk),

and here, the rate is set at 5%.

Figure 3.13: Crossover and Mutation Depiction of crossover and mutation in
GMACS. The upper section shows the medoid vector representation of two selected
parents, one wholly-shaded and one wholly-unshaded. Shown below them are the two
offspring resulting from their uniform crossover. The lower section demonstrates the
two modes of K-value mutation: addition or removal of a randomly selected cluster,
shown as shaded.

As individuals in the population may have different K-values, special consideration must be

given when carrying out the selection step. During the k-medoids phase of the fitness calculation,

the current set of medoids is updated to a partially-optimised state. Crossover of medoids between

solutions containing different numbers of clusters would result in a disruption to this improvement. If

the algorithm were carrying out a full k-medoids implementation this would not present any problem

since the medoids would be optimised on the next pass of the fitness function, since however, only

one pass through the medoids occur, crossover is constrained to individual sharing the same number

of clusters. Figure 3.14 shows the modified selection process to account for this fact. Once the

first parent is selected, a check is made to see if there are any other individuals in the population

with the same number of clusters – if there are, then the second mate is selected from within that

subpopulation and crossover occurs as normal. If the individual, however, is the only member of

the population with that specific value of K, then no valid mate exists and the crossover step is

skipped. This figure also show two additional features of the algorithm design. The first of these is
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Figure 3.14: Modified Selection Process This modified selection process is de-
signed to only allow the recombination of individuals sharing the same K-value. In
cases where no suitable mate exists, or where the pre-determined diversity threshold
has been exceed, mutation will occur (with the standard probability) without crossover.

the concept of population diversity, expressed as the proportion of the population with the same K-

value. When this value is greater than a pre-defined threshold (default: 0.8), it gives an indication

that the population has largely converged on a solution with a specific number of clusters and

mutation is increased to maintain diversity and encourage further exploration of cluster space. The

second feature is the offspring validity check which is necessary after crossover and/or mutation to

ensure that there are no duplicate medoids as a result of the recombination or mutation.

3.3.4 Results

Motif Comparison Methods

Our first dataset consists of 355 motifs from the six largest structural families in the TRANSFAC

[228] database and has previously been used by [208, 229, 209], and [207] to benchmark retrieval
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accuracy, or the ability of different metrics to distinguish between motifs of different structural

classes. The accuracy is based on the number of times the closest match returned from the database

was of the same structural class as the query motif. GMACS and the KFV approach achieves the

highest average retrieval accuracy of 0.90, compared to 0.87 for the word covariance approach of

MoSta, 0.87 for the STAMP platform when using PCC and ungapped local alignment, and 0.86 for

Bayesian approach outlined by the authors in [229] in which they construct a multi-class classifier

with feature selection by applying sparse multinomial logistic regression (SMLR) to feature vectors

of length 1390 incorporating measures such as various nucleotide frequencies, presence of palindromic

features, and previously published submotifs (Table 3.2).

GMACS STAMP MoSta Bayesian
bZIP (93) 0.92 0.94 0.90 (0.94) 0.92
C2H2 (74) 0.82 0.76 0.76 (0.72) 0.77
C4 (52) 0.98 0.98 0.98 (0.94) 0.91
Homeo (50) 0.88 0.82 0.82 (0.92) 0.85
Forkhead (49) 0.92 0.90 0.92 (0.86) 0.83
bHLH (37) 0.89 0.81 0.92 (0.73) 0.88
Total (355) 0.90 0.87 0.88 (0.86) 0.86

Table 3.2: Retrieval Accuracy The ability of the KFV metric to distinguish dif-
ferent structural classes of motif is compared to three alternative approaches using the
TRANSFAC benchmark dataset. GMACS scores the overall highest average accuracy
and does particularly well on the complex C2H2 zinc-finger family which causes prob-
lems for some of the other approaches. MoSta scores are Smax (Ssum) which represent
the log-odds ratio of the independent and overlap probabilities of hits from two motifs
on a given DNA sequence.

Genetic-k-Medoids Clustering

We demonstrate the clustering performance of our algorithm on 79 motifs from the JASPAR

database. This dataset comprises the 71 motifs used by [200] in their initial manual creation of

FBPs, plus a further eight zinc-finger proteins, four from the DOF zinc finger protein (DOF) family,

and four from the GATA binding protein (GATA) family. We compare our results to those reported

by the authors of STAMP [207] and MoSta [208] who use the same dataset to benchmark their

approaches. We report the results both in terms of number of clusters defined, and structural homo-

geneity of the created clusters. The ability to create structurally homogeneous clusters is key to the

generation of biologically meaningful FBPs, and as we show in the next section, GMACS performs

very well in this regard, successfully segregating even distinct subtypes within certain structural

families. For STAMP, PCC was used with ungapped local alignment and a UPGMA guide tree (de-

fault settings). The authors of MoSta provide their own clustering approach whereby they select and

merge motifs based on their word covariance similarity metric. GMACS settings for this experiment

were: population size equal to 100 and number of generations for which to evolve the population
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equal to 300. The default mutation rate of 0.05 and information content threshold of 0.3 were used

– this trim threshold was consistent with the same parameter setting in the STAMP algorithm.

GMACS STAMP MoSta
Homogeneous 13 9 11
Heterogeneous 5 7 3

Singletons 0 2 12
Total 18 18 26

Table 3.3: Cluster Summary Number and type of clusters automatically deter-
mined by GMACS, STAMP and MoSta for the 79 motif JASPAR dataset originally
grouped into 11 FBPs manually by Sandelin and Wasserman.

Figure 3.15: Cluster Overlap A Venn diagram displays the overlap in terms of
shared homogeneous clusters between the three motif clustering algorithms.

We first provide an overall view of the solutions provided by each algorithm before examining

some of the differences in detail. In total, MoSta produces eleven homogeneous and three mixed

clusters, containing 67 of the 79 motifs. STAMP estimates the number of clusters at eighteen,

producing nine homogeneous, seven mixed and two singleton clusters (Table 3.3). GMACS also

produces eighteen clusters, but thirteen of these are homogeneous, while the remaining five contain

motifs from different structural families. The twelve singletons produced by MoSta can be attributed

to the inclusion of a similarity threshold in their clustering approach which prevents the merging of

motifs if an FBP becomes too heterogeneous as a result of the merge. The homogeneous clusters
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shared by each of the algorithms are depicted in Figure 3.15.

Figure 3.16: bHLH Motif Family The bHLH familty of motifs from the JAPAR
dataset comprises three distinct binding subtypes. GMACS correctly classifies the
motifs into these three subtypes, the core subtype containing six motifs (ARNT,
AHR-ARNT, MAX, MYC-MAX, USF, n-MYC), and MYF (MYF, NHLH1) and TCF
(HAND1, TAL1) subtypes, each containing two motifs.

We begin our detailed examination of the results with the ten members of the bHLH family which

form three distinct subgroups (as shown in Figure 3.16). STAMP creates two homogeneous clusters

with six and two members respectively. Of the remaining members, one is clustered with the GATA1

zinc-finger (GATA1) and forkhead box L1 (FOXL1) motifs, while the other is clustered with the E26

transformation-specific (ETS) family motifs. MoSta groups the motifs as a cluster of five and three.

The larger cluster is, rather surprisingly, missing the aryl hydrocarbon receptor-aryl hydrocarbon

receptor nuclear translocator (AHR-ARNT) motif which contains the strong consensus ‘CACGTG’

sequence associated with that subgroup, while the smaller cluster includes the T-cell acute lym-

phocytic leukemia 1-transcription factor 3 (TAL1-TCF3), nescient helix-loop-helix 1 (NHLH1), and

myogenic factor (MYF) motifs, mixing the remaining subtypes. GMACS provides the only approach

to create three homogeneous clusters. The first cluster is the same six-member group created by

STAMP, the second contains the NHLH1 and MYF motifs (MYF subgroup), while the final cluster

groups the TCF subgroup motifs TAL1 and heart and neural crest derivatives expressed 1 (HAND1)
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together. All three of the algorithms separate the four bZIP cAMP response element-binding protein

(CREB) subgroup motifs into a homogeneous group as well as clustering seven of the eight nuclear

receptor motifs together. The remaining androgen receptor (AR) motif is classed as one of two

singletons by STAMP while GMACS clusters this motif with the two homeobox motifs, engrailed

homeobox 1 (EN-1) and paired box 4 (PAX4). It is possible that the length and complexity of the

AR and PAX4 motifs play a role in this particular grouping, affecting the number of shared k-mers

between the two.

Figure 3.17: TRP Motif Family The TRP family of motifs comprises two binding
subtypes. The first of these is the MYB group which includes three motifs (GAMYB,
c-MYB, and MYB.PH3), while the second subgroup is made up of IRF1 and IRF2
(trimmed here for display purposes). Both STAMP and MoSta include a DOF family
motif (an example of which is shown here) with the IRF subgroup based on a strong
‘AAAG’ signal.

The TRP group of motifs contains two distinct subfamilies. The first of these, the v-myb avian

myeloblastosis viral oncogene homolog (MYB) group, are recognised by STAMP and GMACS as

a homogeneous cluster of three motifs, GAMYB, a gibberellin- and abscisic acid-regulated MYB
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Figure 3.18: GATA Motif Family The four GATA motifs include the canonical
‘GATA’ consensus and are group together by GMACS. STAMP mis-clusters one of
these with the TAL1 and FOXL1 motifs, while MoSta classifies two of the four as
singletons.

found in maize, c-MYB, and MYB.Ph3 (found in Petunia hybrida). MoSta, on the other hand, only

recognises two of these motifs as belonging together, excluding MYB.Ph3 from this cluster. The

second TRP subfamily is comprised of the interferon regulatory factor 1 and 2 (IRF1 and IRF2)

motifs. While both STAMP and MoSta group these two motifs with the four DOF zinc-finger motifs

as a single heterogeneous cluster, GMACS instead creates two homogeneous clusters. The clustering

by STAMP and MoSta in this case is reasonable however, given the strong ‘AAAG’ DOF family

motif signal which is easily mistaken for a submotif of the IRF family (Figure 3.17). Both MoSta

and GMACS cluster all of the ETS and v-rel avian reticuloendotheliosis viral oncogene homolog

(REL) family motifs separately as homogeneous groups. The STAMP ETS cluster however, also

includes the HAND1-TCF3 bHLH motif making this group heterogeneous, while its REL group con-

tains the bZIP CCAAT-enhancer-binding protein (cEBP) subgroup motif cEBP homologous protein

(CHOP-cEBP). This cEBP subgroup is split into two clusters by GMACS, one is homogeneous and

contains the cEBP and CHOP-cEBP motifs, while the other contains the nuclear factor, interleukin

3 regulated (NFIL3) and hepatic leukemia factor (HLF) cEBP motifs as well as the forkhead motif

FOXC1. GMACS also incorrectly clusters a single forkhead motif, FOXL1 with the five members

of the MADS-box family whereas STAMP and MoSta maintain the MADS group as a homoge-

neous cluster. This inclusion of FOXL1 with the MADS-box family may be explained by the shared

‘TATTTAT’ sequence.

The clustering of the four highly-conserved zinc-finger GATA family motifs (Figure 3.18) shows
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considerable variation among the three algorithms. MoSta does poorly, clustering only two of the

four motifs together. STAMP clusters three of the four while the remaining member is, as previously

indicated, clustered with TAL1 and FOXL1. GMACS however, creates a homogeneous cluster from

the four motifs. Our final set of motifs includes members from the homeobox, high-mobility group

box (HMG) and forkhead families. Firstly, all three approaches cluster five of the seven homeobox

motifs into one homogeneous cluster. STAMP clusters PBX with the four Sry-related HMG box

motifs, SOX17, SOX19, SOX5 and SRY, and creates a single combined HMG/homeobox/forkhead

cluster comprising both these motifs and six motifs from the forkhead family. STAMP also creates

a HMG/forkhead group containing HMG-1 and FOXC1, and a HMG/homeobox group containing

HMG-IY and PAX4. MoSta clusters the four HMG motifs with the six forkhead motifs as in the case

of STAMP, but does not include the PBX Homeo motif. It also creates a HMG/homeobox group

but in this case containing HMG-1 and EN-1. GMACS, like STAMP, clusters the PBX homeobox

motif with the four HMG motifs, but as a separate cluster from the six forkhead motifs, which are

instead clustered with another set of HMG motifs: HMG-IY and HMG-1.

FBP Construction and Stability

Once we have clustered the motifs, we must generate the FBP for each of the defined clusters. This

can be achieved through any of the standard multiple alignment methods, although it has previously

been shown that a local Smith-Waterman alignment may be preferred for binding motifs which are

typically short ungapped sequences [207]. The membership and FBPs for each of the clusters derived

by GMACS for the JASPAR dataset are shown in Figure 3.19. In order to assess the stability of

the FBPs in our solution, we perform a leave-one-out cross-validation (LOOCV) as carried out in

[207, 208]. Each motif in turn is removed from its cluster, the cluster FBP is re-calculated minus

the contribution of the test motif, and then the motif is re-aligned to each of the FBPs. If it is

re-assigned to its original cluster, we consider the classification a success. The LOOCV rate for the

79 JASPAR motifs is 96% for GMACS, compared to 91% for STAMP. The improved classification

rate for our approach is unsurprising given that more of the clusters elucidated are structurally

homogeneous and therefore FBPs are less likely to be affected by the removal of any individual

motif. The authors in [208] successfully manage to re-cluster all of their 67 clustered motifs to their

original FBPs, which, again, is unsurprising given the high number of singletons in their solution.

3.4 Discussion

ChIPSOM and GMACS

In this chapter we have presented ChIPSOM and GMACS, tools for the automated discovery and

clustering of binding motifs in high-throughput ChIP data. ChIPSOM addresses many of the limi-

tations of the original SOMBRERO algorithm, allowing it to scale to larger, genome-scale datasets.
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Figure 3.19: Final Cluster Composition Cluster membership and FBPs for the
eighteen clusters identified by our method in the test dataset of 79 JASPAR motifs.
Clusters marked with an asterisk are structurally homogeneous.
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We have demonstrated its improved visualisation capabilities and compute time, as well as its ap-

plication to ChIP-chip datasets. In Chapter Five we will demonstrate its application to data from

a ChIP-seq experiment.

GMACS was designed to address the problem of motif redundancy inherent in the use of multiple

maps during motif discovery. It also attempts to circumvent the problem of frozen sub-alignments

associated with tree-based FBP techniques. Our results demonstrate the K-mer Frequency Vector

to be a suitable metric for comparing motifs in an effort to establish common binding affinities

based on structural family, and have also provided evidence that a genetic-k-medoids approach may

be used to both determine cluster number and membership. We must however recognise some

weaknesses arising from our approach. A common concern with genetic algorithms is that they can

be computationally costly, with the most compute-intensive task usually being the evaluation of the

fitness function. The k-medoids algorithm is also computationally intensive given that the swap

stage typically progresses until no further exchanges can be made to decrease the overall cost of the

cluster configuration. While the complexity of the standard algorithm is O(k(n − k)2) (where k is

the number of medoids and n is the number of objects to be clustered), we have shown that a single

round of local search using the k-medoids as part of the fitness evaluation function is enough to

greatly reduce the number of generations necessary for the GA to converge on good solutions. The

silhouette component of the fitness function however requires an all-to all comparison adding a O(n2)

term to GMACS’ overall complexity. This indicates that while increases in other parameters such as

number of generations and population size will invariably increase the runtime, the rate-limiting step

will inevitably be the number of motifs in the input dataset. For the relatively small test dataset of

79 JASPAR motifs, and setting a population size of 100 and generations for which to evolve equal

to 300, the average time to completion on a 2.6 GHz Intel Xeon processor calculated over 100 runs

was 7.97 seconds. Future work will aim to improve on this through further optimisations of the code

and parallelisation using OpenMP.

While GMACS aims to convergence to a global rather than a local minimum, like all GAs,

it is a stochastic algorithm and there are therefore no guarantees that it will in fact achieve this

goal. In order to test its convergence properties, we ran the test dataset of 79 JASPAR motifs

10,000 times to ascertain the number of times which the algorithm would converge on any particular

solution. The K=18 solution (fitness: 0.469) which we have presented here accounts for ∼90.5%

of the solutions returned. The second most common solution, accounting for a further 5% of the

explored cluster configurations, is a K=19 (fitness: 0.465) solution in which the FOXC1 motif is

classified as a singleton, resulting in the NFIL3 and HLF cEBP motifs becoming a homogeneous

cluster. The third most common solution occurs in ∼1.2% of the runs and is another K=19 solution,

also involving a FOXC1 singleton. This time however, the forkhead group becomes homogeneous

and the two HMG motifs from the previous HMG/forkhead group are re-clustered elsewhere. The

fitness for this third solution is in fact slightly higher (0.471) than that of the K=18 solution, raising

several important points. Firstly, it illustrates the fact that the GA will quickly converge on good

but not necessarily optimal solutions. This result also points to the difficulty, not only for GAs but

also for most algorithms operating in complex problem domains, of appropriate parameter selection.
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The trim threshold, mutation rate, population size and number of generations, for example, will all

play a role in the type of solutions returned. One promising approach to addressing this issue, and

deserving of further examination, is the use of adaptive GAs, where the parameters themselves can

evolve as the algorithm progresses. Finally, the higher fitness of the K=19 solution may also be an

indication that a modified or alternative fitness function and/or set of evolutionary operators could

help us to move the GA towards these less commonly explored regions of the solution space.

While being cognisant of these issues raised, we still posit that our algorithm is a useful and

effective alternative to current standard approaches. The most common clustering solution provided

by GMACS for the benchmark dataset is both consistent and biologically meaningful, comprising a

larger number of structurally homogeneous clusters than either STAMP or MoSta, without the need

for a large number of singleton clusters in order to achieve this.

SOM Variants and Related Neural Networks

The batch map used in SOMBRERO is just one of a multitude of variants on the original SOM

algorithm which exist. Here, we consider some of these variants, as well as discuss potentially

useful alternative neural network architectures which address some fundamental issues in the SOM

algorithm.

The hierarchical, or multilayer SOM (e.g. [230],[231]), is an extension to the architecture which

uses successive layers of SOMs in a pyramid shape. The first, or top-layer SOM is trained on the

entire input set, while SOMs at subsequent layers are trained on the subset of samples clustered

at a single node (or within a cluster of nodes) from the layer above. This progressive filtering of

vectors both allows a user to explore the data in a multilayered way (showing global ordering within

the data as well as subtle relationships among identified subclasses), and reduces the computational

cost associated with training the map.

A common concern when training SOMs is the issue of choosing a suitable map size. If a map

is too small, overcrowding at the nodes can occur, resulting in a loss of performance in terms of

cluster separation. Conversely, starting with a map larger than needed, or running multiple maps

to ascertain the optimal mapping can be computationally wasteful. One approach which seeks to

address this problem involves the use of growing SOMs. This is a class of SOM algorithm which

supports the dynamic expansion (or contraction) of the lattice during training, based on perceived

need. Two main types of growing SOM exist – those that grow on a fixed grid and those that

grow freely. The Growing Grid [232], for example, maintains a rectangular topology and grows in

the following manner. First, the most active node on the lattice q is determined – this is the node

that has been identified as the BMU most often. Each neighbouring node of q is then examined

to determine which of them has the most divergent model from it, the selected node is labelled f .

Finally, either a row or column of nodes (depending on the location of f) is inserted between q and

f ; the reference vectors for these new nodes are interpolated from their neighbours. The underlying

assumption here is that f indicates a direction with high variance in the input data, and adding

the extra nodes will better distribute the signals resulting in an improved separation of the distinct
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clusters. An important subclass of constrained growing SOMs for bioinformatics are algorithms such

as the Competitive Neural Net [233], self-organizing tree [234], and self-organizing tree algorithm

(SOTA) [235]. These algorithms provide a way of limiting a SOM’s growth to a binary tree format

and therefore have applications in evolutionary analysis and phylogenetic reconstruction. Examples

of unconstrained growing SOMs include the growing cell structure (GCS) [236] and growing neural

gas (GNG) [237, 238]. The GCS uses k-dimensional hypertetrahedons as basic building blocks for

the network – lines for k = 1, triangles for k = 2 etc. The vertices of the tetrahedrons are the neurons

and the edges represent neighbourhood relations. Key differences from Kohonen’s algorithm include

the fact the neighbourhood width around the BMU is kept constant, and only the BMU and its

direct neighbours are updated. Node insertion is carried out after a predefined number of adaption

steps and is based on a concept of ‘resource’. In a manner similar to the Growing Grid, the node

which receives the highest number of input vectors is selected and a new node is inserted between

it and its neighbour with the most dissimilar model. Nodes which do not receive many hits can be

deleted during the growth phase, sometimes resulting in the creation of several smaller subnets which

continue to grow and split independently. Each of these subnets represents a distinct cluster in the

input space, and Fritzke has demonstrated [239] that this can lead to a better characterisation of the

subtleties of the underlying input data. While disjointed and dynamic-topology SOMs have been

described, Kohonen points out that the original SOM was “conceived for non-parametric regression

whereupon it was considered more important to find the main dimensions . . . in the signal space”.

There are also many algorithms that, while not directly extending the SOM, are highly related.

Learning vector quantization (LVQ) is one such algorithm (also proposed by Kohonen [90]), which

can be used to perform supervised vector quantisation or classification. With LVQ, class labels

are associated with each input vector x, and the learning rule is updated to take advantage of this

information as follows:

mi(t+ 1) = mi(t) + α(t)s(t)δci[x(t)−mi(t)]. (3.21)

Here, s(t) has a value of +1 if x and mc belong to the same class (form part of the same Voronoi

set) and a value of −1 otherwise. The Kronecker delta δci has a value of 1 if c = i and a value of 0

otherwise. The key differences from the SOM algorithm are therefore i) only the BMU is updated,

there is no update of neighbouring nodes, ii) model, or codebook vectors are only moved closer to

the clustered input vectors if they share the same class label (i.e. the training inputs are correctly

classified), and iii) codebook vectors are made less similar to clustered input vectors if they do not

share the same class label (i.e. the inputs are misclassified).

A problem associated with competitive learning is the notion that patterns learned early on in

the training process may not persist if similar data are not seen at a later stage. The question then

becomes how to implement a system which can preserve previously learned knowledge yet still retain

the ability to learn new patterns – this is known as the stability-plasticity dilemma, and was posed

by Carpenter and Grossberg who went on to detail a neural network solution to this problem they
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call adaptive resonance theory (ART) [240]. Although many variations of the ART algorithm have

been produced [241, 242, 243], here, we will focus on the initial binary design, ART1.

Figure 3.20: Adaptive Resonance Theory (ART1) A simplified architecture for
the ART1 neural network depicting the F1 and F2 layers, forward (Wf ) and backward
(Wb) weights, and reset module R, with vigilance parameter P. Gain controls not shown.
(Source: Wikimedia Commons (C) Christoph Mller. Adapted and licensed under CC-
BY-SA-3.0)

An ART1 network (Figure 3.20) consists of two layers of neurons – F1, the comparison layer,

and F2, the recognition layer, containing the class templates, or previously-learned categories. The

network also incorporates two gain controls, G1 and G2, and a Reset module. All neurons in the F1

and F2 layers are connected by weights which multiply the signals in the continuous-valued forward

(Wf ) and binary-valued backward (Wb) long term memory (LTM) functions. In the recognition, or

bottom-up phase, the neurons in the F2 layer integrate the signals from the F1 layer in a winner-

takes-all competition, with the winning neuron inhibiting signals from the other nodes through

lateral inhibition. In the comparison, or top-down phase, every node in the F1 layer receives three

input signals: the input vector, a feedback signal (Wb) from the winning F2 neuron containing the

matching class template, and a gain (G1) signal. Only those neurons which have high input signals
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from two of the three sources are activated (the ‘two-thirds rule’). A vigilance test is then applied

using the inner product of the input vector and the feedback signal from F2. If the match is above

a certain threshold (specified by the vigilance parameter P), then a previously-learned category has

been recognised and learning occurs with the weights being updated accordingly. If a mismatch

occurs, the reset mechanism is used to inhibit the signal from the winning F2 neuron (mismatched

category) and the next best-matching neuron is tested. This process is repeated until either the

vigilance test is passed, or all F2 nodes are exhausted. If no matching class template has been

found, then a new node is initialised with the input pattern serving as the new template. It can

be seen that the vigilance parameter controls the granularity of clustering – a low threshold will

result in a small number of large clusters with a higher likelihood of mis-classifications, while a high

threshold will result in a larger number of small specific clusters.

Generative topographic mapping (GTM) was introduced by Bishop et al. [244] in response to

several criticisms of the SOM algorithm. These include: i) SOM parameters such as learning rate,

lattice size, and neighbourhood function being largely heuristic and having no theoretical basis

ii) the SOM not implementing a global optimisation function, nor explicitly defining a probability

density function, and, finally, iii) convergence of the weight vectors not being guaranteed. The GTM

therefore provides a probabilistic approach, using EM to learn the parameters of a latent variable

model, where the latent space is defined as a discrete grid of points (similar to the SOM lattice)

which is assumed to be projected in a non-linear manner into the input space. By assuming Gaussian

noise in the input space, the model becomes a constrained mixture of Gaussians. This approach has

the benefit of an explicitly formulated density model over the data, where convergence is guaranteed

using a well defined probabilistic optimisation technique, and is measurable by an associated cost

function.

It was first argued by Linsker that maximizing the average mutual information represents an

optimal way to extract statistically salient features from an input signal [245]. This idea forms the

basis of work by van Hulle to develop the maximum entropy learning rule, which, when applied to an

input signal, results in the creation of an equiprobabilistic topographic map which can be used for

density estimation [246]. This work was further developed with the introduction of the kernal-based

maximum entropy learning rule (kMER) [247]. In the kMER algorithm, each neuron i, with weight

vector wi is activated by data point V when || v − wi ||< σi, where σi is the radius of neuron i.

This radius defines a hyperspherical region Si which intersects at threshold τi with the Receptive

Field (RF) K, where K is usually defined as a unit-height Gaussian centred at wi. When a data

point falls within Si, the neuron is activated, the weights are updated according to a neighbourhood

function λ, and the threshold is raised, otherwise the threshold is lowered. In this sense, the weights,

as in a SOM, are adapted to produce a topology-preserving map. The equiprobabilistic aspect of

the mapping is then achieved by updating the radii according to the local input density in such

a way that, at convergence, the probability of neuron i being activated is given by ρ
N , where ρ is

a scale factor. The difference from the SOM algorithm can therefore be summarised as follows:

the SOM converges towards a mapping which will minimise the distortion (mean squared error)

associated with quantizing the input space into non-overlapping Voronoi spaces, while the kMER
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algorithm converges towards a mapping which maximises the entropy associated with quantizing

the input space into overlapping receptive fields. The authors in [248] also argue that, since the

kMER algorithm will result in a more equitable weight distribution, it will produce a better density

estimate.

In the next chapter we will apply the infrastructure and algorithms discussed thus far to an appro-

priately ‘difficult’ problem in the domain of neuroscience in order to demonstrate their applicability

and functionality.
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CHAPTER 4

The Role of Tbx1 in Adult Neurogenesis, Schizophrenia, and

a 22q11.2-Associated Mouse Model of Autism Spectrum

Disorder

The Tbx1 ChIP data and ultrasonic mouse vocalisations used in this chapter were provided by the lab

of Dr. Noboru Hiroi, Albert Einstein College of Medicine. All subsequent ChIP-seq, call sequence,

entropy, and classification analyses, as well as all literature and resource mining were carried out by

the candidate.

4.1 Introduction

22q11.2 deletion syndrome (22q11DS), including DiGeorge syndrome (DGS) [249], velocardiofacial

syndrome (VCFS) [250], and conotruncal anomaly face syndrome (CTAF) [251] (amongst others), is

an autosomal dominant disorder with an estimated prevalence of approximately one in 4,000 births

[252] making it the most common microdeletion syndrome in humans [253]. Typically associated

clinical findings of 22q11DS can be broadly separated into two classes. The first of these relates to

structural defects, with the affected structures being derived from the pharyngeal apparatus during

early embryo development; outcomes include congenital heart disease, palatal abnormalities, char-

acteristic facial features, hypocalcemia due to hypoparathyroidism, and T-cell immunodeficiency

as a result of thymic hypoplasia [254, 255, 256]. The second class of findings are more cognitive

in nature and include learning difficulties, developmental delay in both motor skills and language

emergence, and associated problems in working memory, visual-spatial processing, and non-verbal

communication skills [257, 258, 259]. Deletions in the 22q11.2 region have also been linked to a num-

ber of neuro-behavioural and psychiatric illnesses including attention deficit hyperactivity disorder

(ADHD), autism spectrum disorder (ASD), anxiety, depression, bipolar disorder, schizophrenia, and

schizoaffective disorders [260, 261, 262]. In particular, Bassett et al. [263] showed that microdeletions
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in 22q11.2 are associated with a 20- to 30-fold increased risk of schizophrenia, with approximately

25% of cases developing the disease [264]. ASD is also strikingly prevalent – in a study of 98 chil-

dren with a confirmed 22q11.2 deletion, Fine et al. [265] reported ASD symptoms in over 20%

of cases, with ∼14% qualifying for a clinical diagnosis of ASD based on the Autism Diagnostic

Interview-Revised (ADI-R), a structured interview for parents of possible ASD cases carried out

by a specifically trained psychologist. A similar study conducted by the authors in [266] with 60

patients between the ages of 9 and 18 years demonstrated a 50% rate of ASD, with 27 cases being

diagnosed as pervasive development disorder-not otherwise specified (PDD-NOS), one of the autism

spectrum disorders. In total, more than two-thirds of the patients in the study were classified as

having one or more psychiatric disorders according to DSM-IV criteria.

Figure 4.1: 22q11.2 Deletion Syndrome Several microdeletions are associated
with 22q11DS, the most common of which is a 3 Mb typically deleted region (TRD)
present in ∼85% of cases. The second most common deleteion, ocurring in ∼8% of
cases, is a 1.5 Mb region nested within the TDR. Other less common nested deletions
involve regions B-D and C-D. More rarely, distal deletions can also occur. (CEN,
centromere).

As indicated by its name, 22q11.2 deletion syndrome is caused by microdeletions in the q11.2

region of chromosome 22; the most common of these (present in ∼85% of cases) is a 3 Mb deletion

known as the typically deleted region (TDR) which includes 30-45 genes [250], some of which are

shown in Figure 4.1. In 90-95% of cases, these microdeletions occur de novo and are thought to

be caused by non-allelic homologous recombination (NAHR) mediated by the presence of low-copy

repeats (LCRs), or segmental duplications, flanking the TDR [253]. Early work in mouse models

to determine which of the genes in the TDR might be responsible for 22q11DS phenotypes focused

on targeted deletions of a region on mouse chromosome 16 which was shown to be orthologous to
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human 22q11.2 [267, 268]. It was demonstrated that deletion of this region on one copy of mouse

chromosome 16 produced defects similar to those seen in 22q11DS and that the normal phenotype

could be rescued in mice that carried a corresponding duplication on the other chromosome designed

to restore the normal gene dosage [269]. Successive experiments with a partial overlap of this deletion

showed normal cardiac development [270], narrowing the number of implicated genes, and eventually,

individual gene knockout experiments by several independent groups [271, 272] verified that T-box

1 (Tbx1) haploinsufficiency was primarily responsible for the cardiac, conotruncal and parathyroid

defects, and moreover that Tbx1-null mice encompass almost all of the common 22q11DS features

[273]. It was later discovered that some of the variability present in the range of defects and

penetrance associated with Tbx1 haploinsufficiency could be explained by the presence of modifiers

of Tbx1 function such as Crkl (v-crk avian sarcoma virus CT10 oncogene homolog-like) also being

found in the TDR. Guris et al. [274], for example, showed that heterozygosity in both Tbx1 and

Crkl resulted in more severe aortic arch, thymic, and parathyroid defects.

TBX1 is a transcription factor from the evolutionarily conserved T-box family, characterised

based on their homology to the initially described Brachyury (T) protein [275]. T-box proteins play

an important role during embryogenesis with each member of the family showing highly specific

spatiotemporal patterns of expression [276]. TBX1 is expressed in the pharyngeal apparatus [273,

277] where it interacts with members of the fibroblast growth factor (FGF) signalling pathway

[278], specifically FGF8 and FGF10. It has been demonstrated that TBX1, through regulation

of the gastrulation brain homeobox 2 (GBX2) transcription factor [279], controls the migration of

cardiac neural crest cell (cNCCs), a subgroup of multipotent neural crest cells which migrate from the

developing neural tube into the pharyngeal arches during pharyngeal arch artery (PAA) development.

These cNCCs form the smooth muscle wall of the PAAs and are also involved in the formation of

the connective tissue of the thyroid, parathyroid, and thymus glands [280, 281]. TBX1 has also been

linked to other key developmental signalling pathways including retinoic acid (RA) signalling [282]

(which controls HOX gene expression [283] and is essential for vertebrate organogenesis [284, 285]),

and sonic hedgehog (SHH) signalling [286] (also expressed in pharyngeal arches and has been shown

to regulate TBX1 via enhancer binding of intermediary FOX transcription factors [287]).

Aside from the obvious structural defects related to Tbx1 haploinsufficiency, Paylor et al. [288]

have demonstrated that Tbx1 mutant mice show impaired prepulse inhibition (PPI), a behavioural

abnormality associated with several psychiatric disorders including schizophrenia. They also identify

a TBX1 frameshift mutation in a family without the common 22q11.2 microdeletions but who never-

theless present with many of the 22q11DS features, including one member with Asperger syndrome.

Furthermore, our collaborators in the Hiroi lab (Departments of Psychiatry and Behavioral Sciences,

Neuroscience, and Genetics, Albert Einstein College of Medicine) have recently demonstrated that

two month old congenic Tbx1 heterozygous mice display schizophrenia and ASD-related behavioural

phenotypes including the characteristic ASD features of impaired social interaction and communi-

cation [289]. This study provides evidence that frequency and range of ultrasonic vocalisation in

mouse pups emitted as a result of maternal separation showed distinct differences between wildtype

(WT) and heterozygous (HT) mice, with HT mice demonstrating a more limited usage of the range
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of call types studied. The study also indicated that Tbx1, while expressed throughout the brain,

was enriched in postnatally generated cells. Postnatal (or adult) neurogenesis primarily occurs in

both the subventricular zone (SVZ) which lines the lateral ventricles (LVs) and in the subgranular

zone (SGZ) of the dentate gyrus (DG) in the hippocampus (Figure 4.2). In rodents, neuroblasts de-

rived from self-renewing, multipotent, neural stem cell (NSCs) in the SVZ migrate to the olfactory

bulb (OB) via the rostral migratory stream (RMS) (Figure 4.3) where they differentiate to form

inhibitory interneurons essential for the proper integration of new neurons [290].

Figure 4.2: Areas of Adult Neurogenesis The two areas of adult neurogenesis in
the human brain are shown. The subventricular zone lines the lateral ventricles while
the subgranular zone lies in the dentate gyrus of the hippocampus. (Source: Wikimedia
Commons, public domain.)

The existence of a human RMS has been proposed [292] but remains controversial [293] despite

the fact that migration of neuroblasts from the SVZ to the OB has been observed in human infants,

pointing to an important role in synaptic development [290]. It has also been shown that following

injuries such as stroke, SVZ-derived neuroblasts can migrate to areas of injury and neurodegeneration

[294]. In contrast, NSCs and neural progenitor cells (NPCs) in the dentate gyrus produce neuroblasts

which develop into excitatory mature granule cells which are then locally integrated into the granule

cell layer and have been linked to processes involved in learning and episodic memory [295, 296].
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Figure 4.3: Rostral Migratory Stream Main panel shows neuroblasts derived
from the rodent SVZ migrating along the rostral migratory stream (RMS) to the ol-
factory bulb. Insert depicts detailed structure of the rodent subventricular zone (SVZ)
including: neural stem cells (A), astrocytes (B), transit amplifying cells (C, more differ-
entiated than neural stem cells), and ependymal cells (E), which line the ventricles and
produce cerebrospinal fluid (CSF). DG: dentate gyrus; LV: lateral ventricle. (Source:
Wikimedia Commons. Adapted from [291] (C) 2008 Arias-Carrin and licenced under
CC-BY-2.0)

These observations by the Hiroi lab regarding Tbx1 expression in postnatally proliferating cells

and the resulting schizophrenia and ASD-like behavioural phenotypes observed at two months led to

the development of the current study, which comprises two distinct yet complementary parts as will

be described in detail the next two sections. Briefly, the first part of this study aims to investigate

the genome-wide binding of Tbx1 in postnatal neural progenitor cells in order to identify potential

regulatory targets and to examine the role that those targets might play in ASD, schizophrenia,

and adult neurogenesis. The second component of the study aims to further investigate differences

in social communication in Tbx1 knockdown mice (which exhibit the ASD-like phenotype) and

their wildtype counterparts. These two complementary studies therefore aim to link alterations in

gene regulation in the developing brain to phenotypic and behavioural differences, providing initial

insights into potentially responsible genetic mechanisms.

4.2 Genome-Wide Binding of Tbx1 in Postnatal Neural Pro-

genitor Cells

In order to further examine the role of Tbx1 in adult neurogenesis and to explore any links with

schizophrenia and ASD, the first part of this study involved the genome-wide identification of poten-

tial Tbx1 targets in murine postnatal neural progenitor cells. Postnatal day-zero (P0) cells derived

from the dentate gyrus were chosen for several reasons. Firstly, the hippocampal region has been

shown to be involved in both social interaction [297] and PPI [298]. Secondly, day-zero cells were

chosen based on the fact that, 1) expression data from [289] indicates that Tbx1 expression was
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relatively low at embryonic timepoints compared to the period after birth and that Tbx1 was en-

riched in postnatally proliferating cells, and 2) evidence presented by [299] indicates that granule

cells born during P0-2 number significantly higher in the adult dentate gyrus than cells born at later

timepoints. As it is estimated that it takes approximately eight weeks for NPCs to reach maturity

in the dentate gyrus [300], we can expect any effects of their altered proliferation at P0 to become

apparent at around two months of age, which is when distinct behavioural phenotypes were observed

by Hiramoto et al. [289].

4.2.1 Primary Analysis using WASP

Sequencing and Peak Annotation

Neural progenitor cell cultures derived from the hippocampal dentate gyrus of postnatal day-zero

(P0) C57BL/6J pups were first treated with formaldehyde to cross-link DNA and proteins. Samples

were then sonicated to shear chromatin into fragments with an average size of 200-500 bp. Five per-

cent of the pre-immunoprecipitated solution was saved as input DNA, while an antibody specific to

Tbx1 (Abcam) was added to the remainder of the sample. The chromatin-antibody complexes were

precipitated using Invitrogen Dynabeads protein G and the concentration and quality of released

and purified DNA was determined using an Agilent 2100 Bioanalyzer. Enrichment was assessed by

amplifying input and ChIP DNA with primers specific to known positive and negative control loci.

Following QC, Illumina adapters were ligated to both input and IP samples and the resulting li-

braries were sequenced using the GAIIx system. Data generated by the sequencer was automatically

processed by the WASP ChIP-seq analysis pipeline which includes read quality analysis, alignment

to the appropriate reference genome using Bowtie, and peak-calling using MACS with an m-fold

parameter of 10-30 and a p-value cut-off of 1e-05.

Figure 4.4: Read Trimming Initial alignment (upper panel) resulted in less than
half of the generated reads mapping to the reference genome. Following read trimming,
this number increased to over 90% (lower panel).
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Upon initial examination of the MACS ouput for this study we noticed a relatively small number

of called peaks (325). Looking at the quality plots for the run, we identified this issue as stemming

from the fact that less than half of the generated reads (∼47%) were actually aligning to the genome

(Figure 4.4). Further examination of WASP output for assessing read quality and composition

showed an unusual pattern of k-mer enrichment in the end of the reads possibly indicating a problem

with library construction. We therefore used the Sickle1 tool to trim the reads and proceeded to

re-run the ChIP-seq pipeline on these shorter reads. This resulted in both a large increase in the

percentage of aligned reads (∼92%) and in a subsequent increase in the number of MACS-called

peaks (2,374).

In order to assign annotations to the identified ChIP peaks, the GREAT tool [301] was used.

Specifically, a basal regulatory domain of 5kb upstream of TSS and 1kb downstream of TSS was

defined for each anotated gene in the mm9 genome. This regulatory domain is extended in both

directions to provide a distal regulatory domain, with the extension proceeding only as far as the

nearest neighbouring gene’s basal domain, or alternatively, to a predefined maximum of 100kb.

Peaks falling within a gene’s proximal or distal regulatory domain were assigned to that gene, with

the expectation being that they may help to regulate expression of the gene through either promoter

or enhancer binding. Of the 2,374 peaks, 1,587 did not map to the regulatory domain of any gene,

524 mapped to the regulatory domain of one gene, while 263 mapped to the regulatory domain

of two distinct genes (Figure 4.5). The 1,587 peaks not mapping to any gene may still in fact

bind to enhancer elements, but this is difficult to assess given that the analysis does not account for

extremely distal elements being brought into contact with more proximal regulatory regions through

chromatin looping. Figure 4.5 also shows the distance histogram for the 1,050 peak-gene associations

– 53 of these peaks map within 5kb of their associated gene’s transcription start site, 540 map within

50kb, and 457 map within 100kb. In total, accounting for the fact that multiple peaks may map to

the same gene, 407 unique genes are identified as potential Tbx1 targets.

Autism and Schizophrenia Related Genes

In order to ascertain if any of our potential Tbx1 targets are ASD related, we used two publicly

available resources – AutismKB [302] and SFARI2. SFARI is a licensed copy of AutDB [303], a

curated, web-based, resource which includes information on human genes, animal models, protein

interactions, and CNVs, while AutismKB is an evidence-based repository for autism related genes

and CNVs, with data curated from over 616 published studies, including GWAS, expression profiling,

low throughput genetic association, and CNV experiments. Each gene in the AutismKB repository is

assigned a score based on the level of evidence for its association with autism from across the mined

publications, and in total, 99 syndromic genes, 3,050 non-syndromic genes, and more than 4,500

CNVs are included. A high-confidence ‘core’ subset of 171 autism-candidate genes is also defined

based on combined evidence. Similarly, we use two popular schizophrenia resources to define any

1http://github.com/najoshi/sickle/
2http://sfari.org/
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Figure 4.5: Peak Annotation Upper panel shows the number of ChIP-seq peaks
mapping to zero, one, or two gene annotations using the GREAT tool. The lower panel
shows the distribution of distances to TSS for each peak-annotation association.

overlap of our peak list with known or predicted schizophrenia related genes. Szgene [304] contains

1,008 candidate schizophrenia genes derived from over 1700 genetic association studies, while the

Schizophrenia Gene Resource (SZGR) [305] provides a list of 75 prioritised genes derived using a

combined odds ratio (COR) approach [306] on 500 genes mined from over 2,000 association studies.
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Our cohort of 407 Tbx1-bound genes contains a total of 51 genes from AutismKB. Five of

these genes are syndromic, nine are from the high-confidence subset, and six have a Tbx1 peak

within 5kb of their TSS (Table 4.1). Of the nine high-confidence hits, seven (AUTS2, DISC1, EN2,

FBXO33, PTEN, SCN1A, and TBR1) are also matched when comparing our list of peaks to the

SFARI database. Three further genes (DYRK1A, IL1R2, and SLC38A10) are matched to SFARI

candidates with two of these (DYRK1A and IL1R2) being found in the wider list of 51 hits at

AutismKB. Of the seven genes matched by both AutismKB and SFARI, two (DISC1 and PTEN)

appear in SZGene (out of a total of 17 matches), but while DISC1 also appears in SZGR, PTEN does

not. DISC1 is also listed (along with TBR1) at MANGO, the mammalian adult neurogenesis gene

gntology [307]. This ontology lists genes which are important for different stages of hippocampal

neurogenesis, from proliferation, to differentiation, migration, neuritogenesis, and survival. Below,

we provide details on these seven high-confidence hits and further examine their respective roles in

autism, schizophrenia and neurogenesis.

AUTS2 Autism suceptibility candidate 2 (reviewed in [308]) was first linked to autism in

[309] when the authors, studying a pair of monozygotic twins with ASD, identified it as a balanced

t(7;20)(q11.2; p11.2) translocation breakpoint. It has since been linked to schizoaffective [310]

and bipolar disorders [311], delayed language development [312], dyslexia [313], ADHD [314], and

epilepsy[315]. In terms of neurogenesis, its expression has been shown in multiple regions of the brain,

including in the dentate gyrus of human fetal brains at 23 weeks [316]. In [317], the authors more

fully explored AUTS2 expression in the developing mouse brain from E11 to P21. They showed that

it co-localises early in the process with TBR1, which regulates its expression, that it is expressed

at different levels and in different regions throughout the course of brain development, and that

postnatally (P21), it was found to be expressed in the hippocampus throughout the subgranular

zone and granule cell layer.

DISC1 Disrupted in schizophrenia 1 was first identified in 1990 in a Scottish family affected

with a range of psychiatric illnesses including schizophrenia, bipolar disorder, and major depression

[318]. It is part of a balanced t(1;11)(q42.1;q14.3) translocation which also disrupts the DISC2

gene, an antisense noncoding RNA, which may play a role in the regulation of DISC1 [319]. It is

a key regulator of both embryonic and adult neurogenesis [320] playing a role in cell proliferation,

differentiation and migration [321]. In [322], the authors show that it is both highly expressed

in the embryonic subventricular zone and that its knockdown results in decreased proliferation of

adult neural progenitor cells in the dentate gyrus. They identify DISC1’s interaction with the WNT

pathway as a mechanism for this effect, demonstrating that its knockdown results in decreased

levels of β-catenin and disrupts the ability of the int/Wingless family member WNT3A to stimulate

progenitor cell proliferation. DISC1 has been shown to control the tempo of neuronal integration in

the adult hippocampus through regulation of the AKT-mTOR pathway [321] with downregulation

resulting in an acceleration in integration leading to aberrant morphology and mispositioning of

newly generated granule cells in the dentate gyrus [323]. In addition to its role in schizophrenia and
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associated affective disorders, DISC1 has also recently been linked to both autism [324, 325] and

Asperger syndrome [325].

EN2 Engrailed 2 is a homeobox transcription factor that is important in multiple aspects

of brain development, including the regulation of midbrain and hindbrain development [326] and

pattering of the cerebellum [327]. Postnatally, EN2 is primarily expressed in mature granule cells

in the cerebellum [328], but has also recently been shown to be present at lower levels in the

hippocampus and cerebral cortex [329]. EN2 knockout mice display a reduction in Purkinje cells

(which has also been observed in schizophrenic and bipolar individuals [330]) and changes in social

and motor behaviour similar to ASD [331]. The authors in [332] show a reduction in hippocampal

weight in P21 EN2 null mice, as well as an increased turnover in cells of both the dentate gyrus

and subventricular zone. In humans, two intronic SNPs in EN2 (rs1861972 and rs1861973) have

been shown to be associated with ASD [333] with the AC haplotype overrepresented in affected

individuals. Other studies have confirmed this association [334, 335] and also linked SNPs in EN2

with young-onset Parkinson’s disease [336].

FBXO33 F-Box protein 33, like other F-box proteins is an adaptor protein which can form

part of the Skp-Cullin-F-box (SCF) complex, an E3 ubiquitin ligase. The F-box component of

this complex is responsible for targetting specific protein substrates for ubiquitination and eventual

degradation by the proteasome [337]. A recent publication by Glessner et al. [338] has demonstrated

an association between CNVs involving genes playing a role in the ubiquitin pathway and ASD. One

of the novel CNVs presented in this study includes another F-box protein, FBXO40. FBXO33 itself

also lies in a region (14q21.1) which has been identified in multiple studies as a risk locus for ASD

[339, 340] and developmental delays [341]. Along with NXF, FBXO33 was shown in mouse studies

to be upregulated in the hippocampus one hour after pharmacologically induced seizure [342].

PTEN Phosphatase and tensin homolog is a protein and lipid phosphatase that functions as

a tumor supressor through its regulation of the AKT-mTOR (mammalian target of rapamycin)

pathway via inhibition of phosphoinositide 3-kinase (PI3K) [343]. It has been shown to be mutated

in a large number of cancers including glioblastoma, prostate, and breast cancer [344, 345, 346]

and is also responsible for several multiple hamartoma syndromes including Cowden’s disease [347]

and Bannayan-Riley-Ruvalcaba syndrome [348]. PTEN mutations have also been linked to autism,

developmental delays, and macrocephaly [349, 350, 351]. Kwon et al. [352] have demonstrated that

deletion of PTEN in differentiated neuronal populations of the cerebral cortex and hippocampus

results in abnormal dendritic and axonal growth and an ASD-like social and behavioural phenotype.

PTEN has been shown to play a role in the regulation of both embryonic [353] as well as adult [354]

neural stem cells, and this regulation is evident in both the SVZ and the hippocampus. The authors

in [355], for example, demonstrate that PTEN deletion in postnatal hippocampal NSCs results in

increased proliferation and differentiation leading to macrocephaly with an enlarged dentate gyrus,

early depletion of the NSC pool, and impairment in social interaction.
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SCN1A Sodium channel, voltage-gated, type I (alpha subunit) is another of the syndromic

genes on our high-confidence list. Mutations in this gene are associated with a host of seizure

related disorders (a review of some 60 different frameshift, missense and nonsense mutations can

be found in [356]), ranging from the milder febrile seizures (FS), to the more severe intractable

childhood epilepsy with generalised tonic-clonic seizures (ICE-GTC) [357] and Dravet Syndrome

[358] (also known as severe myoclonic epilepsy in infancy SMEI), or polymorphic myoclonic epilepsy

in infancy (PMEI)). These seizures usually begin within the first year, are characterised as unusually

severe, and in the more serious cases of ICE-GTC and Dravet syndrome, can cause mild to severe

cognitive impairments, developmental delay, behavioural disturbances, and psychomotor dysfunction

[359, 360]. Mutations in SCN1A and its family member SCN2A have also recently been linked to

ASD [361, 362].

TBR1 T-box brain 1, a homolog of Brachyury [363], is a brain-expressed T-box protein which

plays a role in neuronal differentiation [364] and aids in neuronal migration and axon guidance

through regulation of Reln [365], a gene shown to be expressed at decreased levels in individuals

with ASD [366]. It has also been shown to regulate another key candidate gene from our list, AUTS2,

during mouse brain development [317]. A recent study by Roybon et al. has shown that, aside from

its role in early brain development, TBR1 (along with its family member TBR2) is expressed in

a population of NSCs and progenitor cells found in the SVZ-RMS axis, indicating a role for these

transcription factors in adult neurogenesis in the olfactory bulb [367].

Based on Table 4.1, DISC1 and PTEN were selected as initial validation targets as they show

the largest overlap in terms of matches at ASD, schizophrenia, and neurogenesis resources. Our

collaborators in the Hiroi lab have started this validation process and have so far shown using a

luciferase reporter assay coupled with a Tbx1-specific siRNA and qRT-PCR, that Tbx1 does in fact

bind to the upstream promoter region of Pten and drives its expression. At the time of writing,

validation of Disc1 as well as further high-priority targets is currently under way.

While we have thus far focused primarily on seven genes which show the highest overlap between

matches in both autism databases, there are many other genes found in our complete list of Tbx1

peak associations that are not part of this high-confidence subset which nevertheless show strong

associations with both psychiatric illnesses, and more generally with the process of neurogenesis. Two

other genes, for example, listed at MANGO also appear on our peak list – secreted phosphoprotein

1 (SPP1, also matched at SZGene) has been shown to play a role in the migration of neuroblasts

in response to cerebral ischemia [368], while GRIA1, a glutamate receptor, (also listed at SZGene

and AutismKB) has been linked to a number of diseases from schizophrenia [369], to Alzheimers

disease [370], bipolar disorder [371], and epilepsy [372]. Similarly, DDX26, a DEAD box protein has

previously been linked to both autism and schizophrenia [373], with the authors in [374] using it

as one of 14 predictive genes in an SVM-based classifier to segregate subtypes of severely language-

impaired ASD patients from corresponding controls with sensitivity and specificity levels both greater

than 90%.
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Gene Symbol Gene Name Cytoband OMIM ID HC PP SF SG SZ
ACACB acetyl-CoA carboxylase beta 12q24.11
ACP6 acid phosphatase 6, lysophosphatidic 1q21
AMY2B amylase, alpha 2B 1p21
APAF1 apoptotic peptidase activating factor 1 12q23
ARNT aryl hydrocarbon receptor nuclear translocator 1q21
ARRDC4 arrestin domain containing 4 15q26.3
AUTS2 autism susceptibility candidate 2 7q11.22 X X
BRD3 bromodomain containing 3 9q34
COL4A1 collagen, type IV, alpha 1 13q34
CR2 complement component (3d/Epstein Barr virus) receptor 2 1q32
CSDA cold shock domain protein A 12p13.1
CYR61 cysteine-rich, angiogenic inducer, 61 1p22.3
DCX doublecortin Xq22.3-q23 300067 X
DISC1 disrupted in schizophrenia 1 1q42.1 X X X X X
DYRK1A dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A 21q22.13 X
EN2 engrailed homeobox 2 7q36 X X
EPC1 enhancer of polycomb homolog 1 10p11
FAR2 fatty acyl CoA reductase 2 12p11.22
FBXO33 F-box protein 33 14q21.1 X X
FGFR2 fibroblast growth factor receptor 2 10q26 101200 X
GAD2 glutamate decarboxylase 2 10p11.23 X
GC group-specific component 4q12-q13 X
GRIA1 glutamate receptor, ionotropic, AMPA 1 5q33—5q31.1 X
IL1R2 interleukin 1 receptor, type II 2q12 X
ITGA11 integrin, alpha 11 15q23
KLHL8 kelch-like 8 4q22.1
MUM1L1 melanoma associated antigen (mutated) 1-like 1 Xq22.3
MYO5B myosin VB 18q21
MYO7A myosin VIIA 11q13.5
NCALD neurocalcin delta 8q22.2
NGFRAP1 nerve growth factor receptor associated protein 1 Xq22.2
NPFFR2 neuropeptide FF receptor 2 4q21
PDE7B phosphodiesterase 7B 6q23-q24 X
PDIA6 protein disulfide isomerase family A, member 6 2p25.1

continued
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Gene Symbol Gene Name Cytoband OMIM ID HC PP SF SG SZ
PELI3 pellino homolog 3 11q13.2 X
PTEN phosphatase and tensin homolog 10q23.3 601728 X X X X
RASIP1 Ras interacting protein 1 19q13.33 X
RNF135 ring finger protein 135 17q11.2 611358 X X
RORB RAR-related orphan receptor B 9q22 X
RPS29 ribosomal protein S29 14q X
SCN1A sodium channel, voltage-gated, type I 2q24.3 607208 X X
SLC20A2 solute carrier family 20 8p12-p11
SP7 Sp7 transcription factor 12q13.13
SULF1 sulfatase 1 8q13.1
TBC1D23 TBC1 domain family, member 23 3q12.2
TBR1 T-box, brain, 1 2q24 X X
TBX21 T-box 21 17q21.32
TGM3 transglutaminase 3 20q11.2
TNFRSF8 tumor necrosis factor receptor superfamily, member 8 1p36
TRO trophinin Xp11.22-p11.21
WHAMM WAS protein homolog 15q25.2

Table 4.1: AutismKB Genes Genes listed at AutismKB which contain a Tbx1 binding peak. Gene symbols, names and
genomic locations are shown, as are associated syndromes (OMIM IDs), membership of the high-confidence ‘core’ subset at
AutismKB (HC), proximal peak (PP – defined as within 5Kb of TSS), and overlap with SFARI (SF), SZGene (SG), and
SZGR (SZ) resources.
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Autism and Schizophrenia Related CNVs

We were also interested in examining if any of the other 407 potentially Tbx1-bound genes from our

peak list which did not appear in the gene-centric resources mentioned in the previous section might

lie in genomic regions with known structural variants associated with either ASD or schizophrenia –

any genes identified as such may represent novel candidates worth confirmatory study. We therefore

extracted all known genes lying in regions defined by the more than 4,500 CNVs in AutismKB, as

well as those found in 27 schizophrenia related CNVs from a recent publication by Rees et al. [375]

which included a review of 13 previously defined loci as well as providing 12 novel ones. Of the

407 genes identified, 128 had genomic coordinates which placed them in AutismKB listed CNVs.

Of these, 104 (Table 4.3) were not listed as part of the cohort of 51 AutismKB genes shown in

Table 4.1, indicating that this may indeed be a useful approach to identifying currently unverified

candidate genes. Only three genes from our peak list (ACP6, GJA5, BDH1) were identified in the

27 schizophrenia related CNVs (Table 4.2). All three are also present on the Autism CNV list, again

highlighting the genetic links between these two disorders.

Gene Symbol Gene Name Cytoband
ACP6 acid phosphatase 6 1q21.2
GJA5 gap junction membrane channel protein alpha 5 1q21.2
BDH1 3-hydroxybutyrate dehydrogenase 3q29

Table 4.2: Schizophrenia CNV Genes These three potentially Tbx1-bound genes
are found at genomic loci listed by Rees et al. [375] as being associated with schizophre-
nia. ACP6 is also listed as part of the cohort of 51 genes found in AutismKB (Table
4.1), while all three also appear on the list of ASD-related CNVs in Table 4.2.
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Gene Symbol Cytoband Gene Symbol Cytoband Gene Symbol Cytoband Gene Symbol Cytoband
ACADS 12q24.31 DTWD1 15q21.2 MYL7 7p13 SNX19 11q24.3
ADAM7 8p21.2 DUSP21 Xp11.3 NAP1L2 Xq13.2 SP1 12q13.13
ADAMDEC1 8p21.2 EDF1 9q34.3 NAPEPLD 7q22.1 SPOCK1 5q31.2
ADAMTSL3 15q25.2 ERGIC2 12p11.22 NCR1 19q13.42 SPP1 4q22.1
ADCY8 8q24.22 FNIP2 4q32.1 NEK1 4q33 SPPL3 12q24.31
ADD3 10q25.1 FTSJD2 6p21.2 NUDT11 Xp11.22 SSX9 Xp11.23
ANO3 11p14.2 GCK 7p13 NUDT19 19q13.11 TDRD3 13q21.2
ATF7IP2 16p13.2 GJA5 1q21.2 PCDHB8 5q31.3 TINAG 6p12.1
ATP6V0C 16p13.3 GLB1L2 11q25 PCDHB9 5q31.3 TMED1 19p13.2
ATXN1L 16q22.2 GLB1L3 11q25 PGAM2 7p13 TMEM106B 7p21.3
AURKC 19q13.43 GNAL 18p11.21 PLEKHA5 12p12.3 TMPRSS5 11q23.2
BARX2 11q24.3 HOMER2 15q25.2 PLIN1 15q26.1 TMX3 18q22.1
BBX 3q13.12 HSD17B13 4q22.1 POLM 7p13 TOX3 16q12.1
BDH1 3q29 IL22 12q15 PPID 4q32.1 TPD52 8q21.13
BZW2 7p21.1 KIF7 15q26.1 PTCD3 2p11.2 TRAF2 9q34.3
CACNB4 2q23.3 LCE6A 1q21.3 PTPRQ 12q21.31 TRAM1L1 4q26
CCBL1 9q34.11 LRRC23 12p13.31 RAMP3 7p13 TREM1 6p21.1
CCNH 5q14.3 LRRC8A 9q34.11 RAP2A 13q32.1 TSN 2q14.3
CD36 7q21.11 LY75 2q24.2 RDH16 12q13.3 TYK2 19p13.2
CDC37 19p13.2 MAGED2 Xp11.21 RGS9BP 19q13.11 UBE2E3 2q31.3
CHST7 Xp11.23 MALT1 18q21.32 RPAP3 12q13.11 UBE2F 2q37.3
CHSY3 5q23.3 MAML2 11q21 RPL39L 3q27.3 UNC93A 6q27
CORO2B 15q23 MEPE 4q22.1 SETDB1 1q21.3 VPS41 7p14.1
DDX26B Xq26.3 MPPED2 11p14.1 SLC38A1 12q13.11 WDR5 9q34.2
DNM2 19p13.2 MRPS10 6p21.1 SMCP 1q21.3 YES1 18p11.32
DPP9 19p13.3 MRPS31 13q14.11 SMTN 22q12.2 ZSWIM6 5q12.1

Table 4.3: AutismKB CNV Genes Genes which are located in regions containing known CNVs listed as ASD-associated
at AutismKB. Of the 128 genes matched in total, these 104 do not appear in Table 4.1, indicating that they may be as yet
be unconfirmed ASD candidate genes.
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Pathway Analysis

Diseases and Disorders p-value Molecules
Cardiovascular Disease 7.27E-05 – 1.47E-02 16
Immunological Disease 7.27E-05 – 1.47E-02 18
Inflammatory Disease 7.27E-05 – 1.47E-02 18
Cancer 2.16E-04 – 1.79E-02 20
Organismal Injury and Abnormalities 2.16E-04 – 1.75E-02 29

Physiological System Development and Function p-value Molecules
Hematological System Development and Function 6.10E-06 – 1.95E-02 42
Nervous System Development and Function 2.16E-04 – 1.97E-02 21
Tissue Morphology 2.16E-04 – 2.00E-02 18
Connective Tissue Development and Function 4.52E-04 – 2.00E-02 17
Skeletal and Muscular System Development and Function 4.52E-04 – 1.69E-02 16

Table 4.4: Top Biological Functions An IPA analysis of the 407 Tbx1-bound
genes indicates statistically significant enrichment in expected pathways and diseases
including hematological, cardiovascular, and nervous system development.

As well as examining genes on an individual basis, we also performed a pathway analysis of

the 407 Tbx1 target genes using the Ingenuity Pathway Analysis3 (IPA) tool to ascertain if there

was any statistically significant enrichment in known biological process or processes. This anal-

ysis reveals a wide range of molecular activity with pathway and functions tagged as significant

showing concurrence with what we know about Tbx1 interactions and have thus far discussed in

terms of the effects of Tbx1 haploinsufficiency. The top physiological functions, for example, include

hematological, connective tissue, nervous, and skeletal and muscular systems development, while

the top diseases include cardiovascular and immunological diseases, as well as organismal injury

and abnormalities (Table 4.4). Three of the top molecular networks identified were cardiovascular

system development and function, developmental disorder, and organ morphology (data not shown).

4.2.2 Secondary Motif Analysis

As stated in the previous chapter, a secondary analysis of sequences under ChIP-seq identified peaks

is typically carried out to ascertain whether or not a known motif is present or if indeed a novel motif

can be identified. A direct scan of the peaks was first used to search for the consensus T-box half-

site sequences GTGXXA (which occurs 1,698 times) and T(G/C)ACAC (which occurs 211 times).

These are however relatively short motif sequences and many if not most of these occurrences may

be false positives. In order to determine if there was a statistically significant enrichment of this

3http://ingenuity.com
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motif and to potentially identify any variations thereof, both CudaMEME [376] and ChIPSOM were

used to perform a de novo motif analysis.

Figure 4.6: CudaMEME Motifs The motifs returned by CudaMEME did not
show any matches to T-box motifs in either JASPAR or TRANSFAC. Shown here are
the top matches in the JASPAR database, which include bHLH, Forkhead, AP2, and
TEA domain motifs.

CudaMEME is a GPU-enabled version of the standard MEME algorithm designed to offer scal-
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able performance on large sequence datasets by leveraging the power of general purpose GPU (GP-

GPU) cards such as the NVidia Tesla. As discussed in the previous chapter, ChIPSOM is a variation

on the original SOMBRERO algorithm designed to allow the processing of larger datasets in a more

efficient manner. Both algorithms were set to search for motifs in the 6-30bp range, on both the for-

ward and reverse strands. For CudaMEME, the ’anr’ model was used which allows for any number

of motif occurrences per peak. ChIPSOM was run with a map size of 25x50 for 100 iterations. The

motifs returned were then used as input to the STAMP platform to look for the top five matches

to known motif models in both the JASPAR and TRANSFAC motif databases. CudaMEME motifs

showed much higher information content than those returned by ChIPSOM but often consisted of

simple repeats (Figure 4.6). The top hits did not show any matches to T-box related motifs but in-

cluded bHLH, Forkhead, AP2, and TEA domain motifs. ChIPSOM returned 41 motif models which

passed the statistical threshold for enrichment. Post-ChIPSOM clustering of these motifs using both

GMACS and STAMP resulted in 2 main clusters, with one motif outlier and the remaining models

clustering together. Of these 41 models, 14 show T-box motif matches as detailed in Table 4.5. An

example match is shown for motif 22 (Figure 4.7) which was matched to known T-box models in

both the JASPAR and TRANSFAC databases. In total, T-box matched motif instances were found

in 44 of the 407 GREAT-annotated genes (10.8%).

Figure 4.7: ChIPSOM Motif Motif 22 is one of the motif models returned by
ChIPSOM which matched known T-box motifs in both the JASPAR and TRANSFAC
databases.
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Motif Rank E-value DB MATCH MATCH CONSENSUS SEQ
22 1 1.68e-05 TF TBX5 TCACACCTT
27 2 3.71e-04 TF TBX5 TCACACCTT
34 5 1.64e-03 TF TBX5 TCACACCTT
33 3 3.05e-04 TF TBX5 TCACACCTT
38 3 1.25e-04 TF TBX5 TCACACCTT
13 2 4.52e-04 TF TBX5 TCACACCTT
35 4 3.45e-04 TF TBX5 TCACACCTT
39 2 6.98e-04 TF TBX5 TCACACCTT

22 3 5.08e-03 JASP T-box-T TTCACACCTAG
29 2 4.28e-03 JASP T-box-T TTCACACCTAG
31 1 1.41e-02 JASP T-box-T TTCACACCTAG
25 1 3.45e-03 JASP T-box-T TTCACACCTAG
26 3 4.90e-03 JASP T-box-T TTCACACCTAG
11 2 3.20e-03 JASP T-box-T TTCACACCTAG
9 3 3.17e-03 JASP T-box-T TTCACACCTAG

Table 4.5: ChIPSOM T-box Matches Shown in this table are the ChIPSOM
motifs which matched known T-box motif models in the JASPAR and TRANSFAC
databases. Motif indicates the ChIPSOM motif ID, Rank is the position in the match
list (STAMP was set to return the top 5 matches from each of the databases), E-value
indicates the likelihood of such a match by chance, DB is the database matched against
(TF for TRANSFAC, JASP for JASPAR), the Match column details the motif model
matched - all TRANSFAC matches were to the TBX5 model while all JASPAR matches
were to the T (Brachyury) motif model.
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4.3 Vocalisation in Tbx1 Knockdown Mice

The second part of this study aimed to examine in more detail the differences in social communication

in eight different phenotypic groups (MP8WT, MP8HT, FP8WT, FP8HT, MP12WT, MP12HT,

FP12WT, FP12HT) incorporating both male (M) and female (F) congenic Tbx1 wild-type (WT) and

heterozygous (HT) mice at 8 and 12 days postnatally (P8 and P12 respectively). While the previous

study from the Hiroi lab showed in a more limited manner that differences are present in single-

call frequencies at P7-8 [289], here, we provide a more rigorous analysis using more sophisticated

information theory and machine learning techniques with the goal of identifying both differences in

the structure of WT and HT vocalisation patterns, as well as a subset of call sequences which might

enable us to readily distinguish WT from HT mice.

4.3.1 Experimental Design

Figure 4.8: Call Spectrograms Example spectrograms are shown for four of the
call types used in this study. Spectrograms and values for time and frequency ranges
are based on [377]. X-axis represents time in msec, Y-axis is frequency in kHz (data
not shown to scale).

Mouse pups were separated from their mothers at either P8 or P12 and placed onto a plastic

tray with standard cage bedding. This tray was then placed into a Styrofoam box attached with an

Avisoft UltraSoundGate ultrasonic condenser microphone (Avisoft Bioacoustics, Germany) sensitive

to frequencies in the 10-200 kHz range. Recordings were made for 5 minutes at a 300kHz sampling

rate and spectrograms were automatically produced by the Avisoft-SASLab Pro software using a
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fast Fourier transform (FFT). Spectrograms were then interpreted based on 10 distinct call types

as outlined in [377] - these call types are: Cx (Complex), Ha (Harmonics), Ts (Two-syllable), U

(Upward), D (Downward), H (Hump, also known as Chevron), Sh (Shorts), C (Composite), Fs

(Frequency steps), and F (Flat). A cartoon depicting typical examples for some of the spectrograms

associated with these call types is shown in Figure 4.8.

These 5 minute call sequences were then analyzed to determine break points between different

strings or bursts of vocal emissions. For randomly generated WT and HT sequences, a curve of

expected interval frequency was plotted - this curve follows a binomial distribution based on the fact

that we are observing a fixed number of calls within a finite timeframe. The observed distributions

of intervals from the original WT and HT sequences were overlayed on this plot (Figure 4.9) and

the point at which these distributions intersected was taken as the interval length at which to ‘cut’

the 5 minute sequence. Any calls within the sequence separated by more than this length of interval

were considered to represent the ends of two independent call strings.

Figure 4.9: Interval Analysis Distributions for randomly generated and original
call interval frequencies are shown for the male, postnatal day-8 (MP8) subgroup of
mice. The point at which the distributions cross defines the length of the ‘gap’ between
two distinct call strings. (Source: Hiroi Lab)

4.3.2 Unsupervised Analysis using an Information-Theoretic Approach

In order to determine a) if any structure exists within the call strings, b) at what level such structure

might be apparent, and c) if there were any discernible differences in structure between the WT and

HT phenotypes, we employed a Shannon entropy-based [378] approach. This type of entropy-based
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approach to modelling animal vocal calls has previously been applied to mice [379], frogs [380], and

in a more exotic fashion, in the search for extraterrestrial life [381]. The entropy of a signal is a

measure of its information content, or, in terms of a random variable, a measure of its associated

uncertainty. If there is no inherent structure in the vocal call sequences i.e. they are essentially

random noise, we would expect the entropy rate to remain flat. If however, there is some level

of signal embedded in the calls we should see a deviation from this constant. By assessing the

entropy rate using models which incorporate increasing amounts of contextual information about

the relative frequencies of the call type configurations possible, we should be able to determine the

entropy level at which this structure appears. To that end, we developed a command-line application

called Mumbles (manuscript in preparation), which, when given a defined alphabet and a text file

of input call strings, will calculate the zeroth to n-th order entropy scores for the call data where

n is defined by the user. Here, we use Mumbles to calculate up to fourth-order entropy for mice in

each of the eight phenotypic groups with the entropy level cut-off being chosen based on previously

published data [379]. In the zeroth-order model, the entropy (in bits) is simply calculated as the log

of the alphabet size (number of call types, denoted m): H0 = log2m. In the first-order model, each

of the call types are considered statistically independent and the entropy is based on the single call

frequencies:

H1 = −
m∑
i=1

(pi)log2(pi) (4.1)

In the second-order model, conditional probabilities (where pj|i indicates the probability of observ-

ing call type j given that call type i has just been emitted) are incorporated to expand the entropy

calculation to include two-call, or bi-gram, frequencies. This is equivalent to representing the rela-

tionship between two call types as a first-order Markov chain i.e. the probability of an observation

xn+1 is based only on the probability of observing xn as the previous state:

H2 = −
m∑
i=1

(pi)

m∑
j=1

(pj|i)log2(pj|i) (4.2)

Similary, the third-order entropy model includes a second-order Markov chain component pk|j,i, the

conditional probability of observing call type k, given that calls j and i preceded it:

H3 = −
m∑
i=1

(pi)

m∑
j=1

(pj|i)

m∑
k=1

(pk|j,i)log2(pk|j,i) (4.3)

and so on up to the H4 level. Once the entropy values for each of the groups have been calculated

from H0 to H4 (Figure 4.10), we wish to compare the entropy scores at each consecutive order to
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determine if there is a statistical decrease when moving from one entropy level to the next.

Figure 4.10: Entropy 1 Entropy scores at from H0 to H4 are plotted demonstrating
deviation from a ‘flat’ profile and indicating inherent structure in the call sequences.

In order to determine significance, we use the non-parametric two-sample Kolmogorov-Smirnov

(K-S) test to ascertain whether or not the entropy scores at two consecutive levels represent samples

from the same underlying distribution. Moving from H0 to H1, for example, the decrease in entropy

has an associated p-value of 0.0006, indicating that the frequencies of the single call types do not

occur at the level one would expect based solely on the size of the alphabet. While there is a

general decrease in entropy from H1 to H2, this decrease is not significant at a p-value cutoff of

0.05 (p=0.0870). The remaining two entropy level comparisons, while significant (p=0.024 for H2

to H3 and p=0.0186 H3 to H4) also raise an interesting question. From [289], we know that the

HT mice have a more restricted vocabulary (use a more limited number of call types) and should

therefore show lower entropy scores than their WT counterparts. The relationship evident between

HT and WT samples at H1 and H2 is consistent with that model; at H3 and H4 however, WT mice

(particularly in the MP12 and FP12 groups) show much lower entropy scores than expected. Upon

further examination, it was discovered that this issue stems from the fact that, as can be seen in

Figure 4.11, the majority of the call strings used in the analysis are in fact quite short (< 5 calls per

sequence) and cover an extremely limited range of the possible call combinations. The FP8HT group,

for example, has the most sequences out of all of the phenotypic groups (838), but for sequences of

length four, only 6% of the 10,000 possible call combinations are observed, and of those, more than

two thirds appear only once. To examine the effect of this data sparsity, we re-calculated entropy

scores to include all possible combinations of call types, including the addition of a pseudocount to
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avoid log(0) probabilities. Figure 4.12, which shows the effect of adjusting the psuedocount in the

entropy calculations from 1.0 to 0.1, demonstrates a large shift at the H3 and H4 levels indicating

that sparsity of call data at those levels may point towards a lack of credibility in the statistical

determination. The H2 level entropy scores, while modified by the change in pseudocount, are still

statistically drawn from the same distribution (as measured by the K-S test). Taking this combined

stability in the face of adjusted pseudocount values and previously indicated trend towards decreased

entropy scores (Figure 4.10) we therefore determined H2 to be the highest entropy order at which

structure could reasonably be deemed present in the call sequences without additional data.

Figure 4.11: Sequence Length Distributions Histograms showing the distribu-
tions of sequence length amongst the call strings analyzed indicate that i) there is a
great disparity in the number of sequences available for the different phenotype groups,
and ii) the majority of the sequences, regardless of phenotypic group, are quite short.
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Figure 4.12: Entropy 2 Entropy scores at H3 and H4 are disproportionately affected by the addition of a modified
pseudocount (left=1.0, right=0.1) indicating an issue with data sparsity.
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In order to test if the structure identified in the call sequences is truly necessary for eliciting a

maternal response or if the specific frequencies of the different call types are sufficient, 1000 random

permutations of an individual WT string were generated. This permutation process maintains the

interval and duration associated with each of the individual call types in the original sequence but

disrupts the overall structure producing a distribution of entropy values as seen in Figure 4.13.

From this distribution three sequences which fall in the higher tail were chosen to be presented in

a maternal response test. If the mother demonstrates a response to the perturbed sequences then

this will provide evidence that the call frequency alone is sufficient without regard for the higher

level sequence structure. At the time of writing, these experiments are currently being carried out

by collaborators in Japan.

Figure 4.13: Entropy Distribution 1000 permutations of an individual WT se-
quence results in an entropy distribution from which three sequences (shown in blue)
are selected. The sequences selected are those which show the greatest distance from
the entropy of the original sequence (shown in red).

4.3.3 Supervised Analysis of Bi-Grams using Projection to Latent Struc-

tures

Having identified in an unsupervised manner that the call sequences demonstrate structure up to the

second-order level, we then sought to determine in a supervised way which of the bigrams were the

most important for distinguishing WT from HT mice. In order to do this we used PLS, a multiple
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regression technique which was first introduced by Herman Wold [382] for analysis in the social

sciences but which has since become a popular tool in the field of chemometrics. PLS, alternatively

known as partial least squares regression or projection to latent structures, is concerned with relating

two matrices, X, a set of predictors or independent variables, and Y , a set of dependent or response

variables (or, in other words, solving the linear equation Y = XB + E, where E represent the

residuals). Depending on the dataset in question, this type of analysis may be accomplished using

standard multiple linear regression (MLR) and obtaining B from the normal equations ((XTX)B =

XTY ), however oftentimes in the ’omics space we are faced with data where a) the number of

variables is much greater than the number of observations (n << p), and b) multicollinearity exists

among the predictor variables [383], in cases such as these the use of MLR is problematic due to

the XTX matrix being ill-conditioned (defined as having a high condition number, or a high ratio

of relative change or error in X due to potentially much smaller relative changes in B). A principal

components regression (using PCA analysis on X and then performing a regression of Y on the PCs)

can alleviate these problems, but, as it only performs a decomposition on X, we can end up with

features which explain the variation in X well but are not optimal for prediction of Y . PLS instead

combines features of both of these approaches, extracting successive linear combinations of X and

Y called latent variables (also known as factors or scores) such that their covariance is maximised.

This can be also be thought of as similar to doing a PCA analysis separately on X and Y but

including a rotation of the loadings (regression coefficients) in order to maximise their covariance.

More specifically, given an (n×p) matrix X and an (n×q) matrix Y , these matrices are decomposed

as follows:

X = TPT + E (4.4)

Y = UQT + F (4.5)

where T and U are matrices of the extracted score vectors or latent components, chosen for maximal

covariance, P and Q are loading matrices, and E and F are the matrices of residuals. The process to

calculate the decomposition of X and Y can be carried out in a number of ways, one such example

is the popular NIPALS (non-linear iterative partial least squares) [382] algorithm which can be

summarised as follows: randomly initialise u, the vector of Y -scores, then, while not converged,

repeat:

Algorithm 2 NIPALS

1: w = XTu/uTu . estimate X-weights by regressing onto u
2: w := w/||w|| . normalise weights w
3: t = Xw . estimate X-scores
4: c = Y T t/tT t . estimate Y -weights by regressing onto t
5: c := c/||c|| . normalise weights c
6: u = Y c . estimate Y -scores
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Once converged (the difference in t between iteration n and n+1 is less than some value ε), X can be

regressed on t to obtaining loadings (p = XT t/tT t) and b, the regression coefficient used to predict

Y from t can be obtained as b = tTu/tT t. The residuals matrices, E and F , are then calculated

as the deflated X and Y matrices based on the current set of latent variables and their associated

loadings (E = X − tpT , F = Y − uqT ) and the calculated vectors (t, u, w, c, p, and b) are used to

populate their respective matrices. This process is then repeated with X and Y being replaced by

E and F until as many latent variables as are required have been generated. This can be an efficient

approach when dealing with either large datasets where calculating all pairs of latent variables is too

time consuming, or in situations where only the first few latent variable pairs are needed to explain

the majority of the covariance in a dataset. An alternative to the iterative approach of NIPALS

involves the use of singular value decomposition (SVD) to decompose the covariance matrix XTY

into UΣV T , where Σ is a diagonal matrix of singular values and UTU = V TV = I. This approach

can be particularly beneficial if all factors are required, it is however more computationally costly

than NIPALS, which uses iteration to avoid operations directly on the covariance matrix.

While initially proposed for regression analysis, PLS has also been shown to perform well on

classification problems [384, 385, 386]. When applied to cases where Y is a vector of categorical

variables, this approach is termed partial least squares discriminant analysis, or PLS-DA. A sparse

version of PLS is also possible by incorporating an L1 (or lasso) regularisation when computing the

SVD of the covariance matrix. This results in many of the regression coefficients being driven to zero

(automatic variable selection) and may lead to improved model interpretability and prediction accu-

racy. Here, we make use of a combination of these features, applying a sparse PLS-DA (sPLS-DA)

approach (as implemented in [387]) to simultaneously perform classification and variable selection

on a matrix of bi-gram frequencies, with each row in the frequency matrix X being associated with

an entry in the vector of class labels Y . This allows us to identify a subset of vocal calls which

provide the best class separation between WT and HT call sequences and to measure the relative

importance of these features on class prediction.

We began the analysis by first filtering out calls which show near-zero variance. These are calls

which are not likely to be of value as predictors due to their having either only one unique value,

or relatively few unique values with a large ratio in the frequency of the most common value to the

second most common value. The 17 filtered call types are shown in Table 4.6.

In order to identify both a) the optimal number of components needed to explain the Y , and b) the

number of variables to keep in the regression model, (the regularisation parameter λ is automatically

chosen by the algorithm based on these selections), we need to perform a cross-validation to assess

the overall model error rate for each combination. Figure 4.14 shows the results of a leave-one-out

cross validation (LOOCV) which shows the error rate as a function of number of selected calls and

number of components (or latent variables) selected. Note that while combinations of up to 10

components and 50 calls (representing half of the possible call combinations) were tested, the error

rate only increased beyond the values shown in the plot and so these combinations are not shown.
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Call Ratio Unique (%)
U-Ha 70 8.00
C-Ts 71 6.67
Ha-U 70 8.00
C-U 0 1.33
Fs-U 71 6.67
C-H 72 5.33
Ts-C 71 6.67
U-C 73 4.00
D-C 69 9.33
Sh-C 70 8.00
Fs-C 70 8.00
F-C 72 5.33
U-Fs 72 5.33
Sh-Fs 69 9.33
C-Fs 71 6.67
F-Fs 69 9.33
C-F 70 8.00

Table 4.6: Filtered Calls Shown here are the 17 calls filtered from the list of 100 call
combinations for having near-zero variance. Ratio indicates the ratio of the frequency
of the most common value to the frequency of the second most common value while
Unique indicates the percentage of samples which have unique values for this call type.
U-Ha, for example, has only six different frequency values across the 75 mice, one of
these values is zero, which occurs in 70 out of 75 vocal samples. Similarly, the C-U call
type is not observed in any of the vocal samples and so has only one unique value, zero.
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Figure 4.14: Crossvalidation Error rates for the sPLS-DA predictions using a
leave-one-out crossvalidation and selecting different combinations of number of call
types and latent variables. The minimum error rate of 13.3% was achieved selecting 25
calls across two components.

Once the crossvalidation has been carried out we examine the scores and loadings plots for the

sPLS-DA analysis using the selected number of components and call types (Figure 4.15). As in

a PCA analysis, the scores plot provides a summary of the relationship between the samples and

shows their projection into the new space defined by the indicated pair of latent variables, while the

loading plot shows the relationships between the predictor variables and their contribution to this

projection. The WT mice, shown in red, are largely separated from their HT counterparts, shown

in black, along the first component. They demonstrate a much greater variability in vocal calls than

the HT mice, which are tightly clustered in the lower right corner of the plot. This is consistent

with the reduced number of call types used by the HT mice.

The loadings plot (Figure 4.16) is shown as a correlation circle, the further a call sequence is

along a particular axis, the greater the correlation between that call type and the separation of the

samples along that axis as shown in the scores plot. Here, we see that calls such as F-F, Cx-C,

C-CX, Cx-F, Fs-F, and Sh-F all have correlation scores greater than 0.5 indicating that they are the

most important for separating the WT mice from the HT mice. A further demonstration of this can

be seen in the example given in Figure 4.17 which shows a boxplot of the frequencies for the F-F

call type in WT and HT mice. We also applied this sPLS-DA approach to the individual gender and

age subgroups to determine if any particular group or groups showed any other discernible structure
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among the sample types. As shown in Figure 4.18, in each case the HT samples were more tightly

clustered than their WT counterparts and the primary separation along the first latent variable axis

was between WT and HT samples.

Figure 4.15: sPLS-DA Scores This plot shows the projection of the samples into
the space defined by the first two latent variables. WT mice are shown in red and
demonstrate much greater vocal variability, HT mice are shown in black.
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Figure 4.16: sPLS-DA Loadings The correlation circle for the variables (calls) is
shown with the distance of each call type along each axis providing an indication of its
strength of association with scores lying in that direction.
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Figure 4.17: Frequency Boxplot A boxplot showing the frequency of F-F call
type occurences in both WT and HT samples indicates a clear distinction, with an
associated p-value of 0.004.
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Figure 4.18: Subgroup Analysis The individual subgroups (clockwise from upper
left: MP8, MP12, FP8, and FP12) show separation primarily based on phenotype as
well as tighter clustering of the HT samples.
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4.4 Discussion

22q11DS - A Catch-All Syndrome?

This chapter provided an examination of the links between the genetic role of Tbx1 in postnatal

neurogenesis and the social behaviours resulting from Tbx1 haploinsufficiency which mimic several

psychiatric disorders including schizophrenia and ASD. A key long-term goal of this study is not only

to further our understanding of the role of Tbx1 in these disorders, but also to use any insights gained

in that regard to increase our ability to predict clinical phenotypes. As pointed out by Sinderberry

et al. [388] however, 22q11.2 deletion syndrome has over 180 associated characteristics, making such

predictions difficult. In a recent study of 50 children aged 6-17 years they show however, that two

major clinical subtypes with differing degrees of risk for development of psychiatric disorders can

be identified. Statistically significant differences between these two subtypes exist in terms of both

cognitive features such as IQ, mathematical reasoning, verbal reasoning, and interactive sociability,

as well as physical features such temporal cortex and whole brain volume, facial size, and nasal

profile. The authors further show a significant difference in terms of presence of autistic traits

between these two groups and argue that many of the 22q11DS patients in other studies may have

been labelled as ASD based on only a few ASD-like features while not warranting a clinical diagnosis

of ASD. This view is further expressed by Angkustsiri et al. [389] who argue that some studies which

report diagnoses of ASD in 22q11DS cases, do so solely on the basis of the ADI-R. They argue that

the ‘gold standard’ for ASD diagnosis includes both the ADI-R interview with parents as well as

the Autism Diagnostic Observation Schedule, or ADOS, which was first introduced in [390] and

further updated in 2000 [391] and 2009 [392] (the latter being designed to allow testing of younger

children). The ADOS, administered by a trained psychologist, is designed to allow the tester to

observe and evaluate social and communication behaviours in suspected ASD cases in such a way

that it is independent of language development. It is also worth pointing out that while the ADOS-2

was released in 2012, it will likely take quite some time before a sufficient number of clinicians are

trained in its administration and studies carried out to determine the effects of any change in scoring

mechanisms on reported ASD cases in 22q11DS.

Tbx1 ChIP-seq

The WASP system, described in Chapter Two, was used to perform the primary analysis of the

Tbx1 ChIP-seq data in postnatal neural progenitor cells. In particular, we draw attention to the

quality plots which are automatically generated as part of the sequencing pipeline and were used in

this instance to identify a potential problem with the library construction. Despite the successful

trimming and re-alignment of the generated reads resulting in a higher total number of MACS-called

peaks, we still found that the overall agreement between peak lists among the biological replicates

was quite poor. Aside from potential problems during library construction, this issue may also relate

to the fact that a commercial ChIP-grade antibody for Tbx1 is not currently available resulting in

an inconsistent immunoprecipitation. The recent generation of a Tbx1-GFP fusion protein however
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[393] may help to address this issue in future experiments through use of an anti-GFP rather than

anti-Tbx1 antibody. Despite these benchwork issues, the Tbx1 targets identified provide a tantalising

insight into the interactions of this transcription factor with other key regulators of embryonic growth

and development. The genes and CNVs implicated highlight the complicated links, both biological

and clinical, between adult neurogenesis, autism, schizophrenia, and related disorders, and underpin

the need for a better understanding of the role which Tbx1 may potentially play in their etiology.

While some standard ChIP and qPCR validations were carried out on these potential Tbx1

targets, future plans involve a more thorough genome-wide evaluation of expression changes in

Tbx1-deficient mice. Data from an RNA-seq assay could then be integrated with ChIP-seq data

resulting in a clearer overall picture of the functional role of Tbx1.

An unexpected result from this analysis was the retrieval of matches to T-box motifs in both the

JASPAR and TRANSFAC database for ChIPSOM but not for CudaMEME motif models. While

we had assumed that both algorithms would identify T-box motifs, the result is encouraging and

suggests that despite MEME being the de facto standard for motif discovery, ChIPSOM presents a

viable and useful alternative and remains worthy of further development.

Vocal Analysis

The entropy analysis carried out revealed that inherent structure within the call sequences was

present up to the second-order (or bigram) level. While structure may indeed be present beyond this

level, the sparsity of data available for higher-order entropy calculations makes such a determination

problematic. Further analysis on a greater number of longer call sequences will help to resolve this

question.

Mumbles, the command-line utility we developed, while providing a simple entropy-based analysis

of call sequences has nevertheless proven to be a useful tool and its further development as a web

application to allow researchers to easily upload and analyze their data in this manner is currently

under way. Such a tool would be equally applicable to studies comparing vocalisation patterns in

different strains of mice, as well as for comparing mice at different ages, or in different environmental

settings. Alternative approaches to animal vocal analysis, particularly in the case of birdsong, involve

the use of Hidden Markov Models [394], although the structure in a birdsong is much more readily

identifiable in terms of recurrent motifs and therefore potentially more amenable to this type of

analysis.

In terms of algorithms for supervised classification of call sequences, many alternatives are avail-

able, including, for example, Random Forest [395] and Support Vector Machines [396]. A sPLS-DA

approach was chosen however based on its use in some recent work where we have had success in

applying it to metabolic profiles in blood plasma in order to determine a dose-predictive biomarker

signature for radiation induced damage in whole body gamma-irradiated mice (manuscript submit-

ted to International Journal of Radiation Oncology*Biology*Physics).
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CHAPTER 5

Conclusion

Summary & Future Directions

This thesis has provided an overview of the informatics challenges associated with the analysis

of next-generation sequencing data for the genome-wide study of genetic and epigenetic regulatory

mechanisms. In Chapter One we discussed some of these mechanisms and described their importance

in all aspects of biological functioning, as well as the essential role which knowledge of them will

play in the era of personalised medicine. This understanding is currently being expanded by large

scale and consortia-based projects such as The 1000 Genomes, ENCODE, modENCODE, and IHEC

projects (amongst others), which are leading the way to uncovering how these mechanisms differ

between organisms and between individuals, in development and ageing, and in health and disease.

One of the most challenging aspects of these studies relates to the fact that while each individual

has a single genome, they possess many epigenomes. Epigenetic differences not only in different cell

types, but also in response to different environmental stimuli results in a highly dynamic system

of transcriptional regulation, the deciphering of which will require not only an enormous amount

of benchwork but also massive compute and storage resources as well. This will involve reliance

on fast processing storage in the form of solid state drives (SSDs) as well as the increasing use of

specialised hardware such as field programmable gate arrays (FPGAs) and heterogeneous computing

technologies including Nvidia GP-GPUs and co-processor architectures like Intel’s Xeon Phi.

Chapter Two detailed WASP, which provides an end-to-end informatics infrastructure to support

the automated processing and primary analysis of NGS data. Using ChIP-seq as an example, we

demonstrated the various aspects of the system, including sample submission and tracking, core

facility LIMS functionality, and backend processing pipelines. The current phase of this project,

The WASP System and The WASP Swarm, include the redevelopment of the core platform as an

extensible Spring-based plugin architecture and its roll-out to several partner institutions for testing.

Once this test phase has been completed, both the core system and plugin API will be made publicly
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available for download and the process of community development will begin. The configurable

nature of this next evolution of the system means that it can be readily used and expanded not

only for new genomics and epigenomics assays, but also for proteomics, metabolomics, and other

high-throughput work. The current challenge therefore, lies not in the automated primary analysis

of high-throughput biological data, but in the integration of multiple, disparate datasets to create a

systems level understanding of biological processes and to generate new testable hypotheses. This

integration and mining of multiple large datasets will require not only scalable algorithms, but will

also necessitate the development of novel visualisation tools to allow bench researchers to interact

with their data in a more direct and intuitive way. One such example of this is the use of space-

filling curves to transform the 1D representation of locus based information as used in most genome

browsers to a 2D image format which lends itself to standard image processing and manipulation

techniques.

In Chapter Three we proposed the new ChIPSOM and GMACS algorithms for the secondary

analysis of data from CHIP-seq experiments. We have previously demonstrated the successful use

of ChIPSOM on ChIP-chip dataset for the WT1 and CTCF binding factors, and in Chapter Four

have demonstrated its use and favourable comparison to MEME on a ChIP-seq dataset for the

genome-wide binding of Tbx1. Despite its success however, the algorithm remains computationally

costly and future work will seek to improve the runtime either through further code optimisation or

the re-development of the code for use on specialised hardware. Future development will also likely

move from the SOM implementation to the more flexible growing neural gas (GNG) approach which

avoids the problems associated with a fixed node structure and size. Aside from motif discovery in

ChIP-datasets, we have also recently used the ChIPSOM approach for pattern discovery in RNA

aptamer studies where SELEX [397], or systematic evolution of ligands by exponential enrichment,

has been combined with sequencing to determine RNA structures necessary for high-affinity binding

of target ligands.

While initially envisaged solely as part of the ChIPSOM algorithm, GMACS has proven useful in

its own right for the discovery of relationships between structurally similar classes of transcription

factors. We have shown it to be competitive with current field-leading algorithms and will further

develop it as a web application to make it more widely available to the research community. The k-

mer frequency vector (KFV) metric for sequence comparison has also proven effective and combining

it with a GNG trained on sequences from known bacterial species represents a potentially interesting

approach to metagenomic analysis which we are currently investigating.

Chapter Four introduced 22q11.2 Deletion Syndrome and outlined its genetic basis as well as

the importance of the Tbx1 transcription factor in its etiology. We provided results from one of the

first genome-wide studies of Tbx1 binding in postnatal neural progenitor cells and demonstrate the

multiple links the potentially targeted genes show to neural development, adult neurogenesis, ASD,

and schizophrenia. As indicated in that chapter, future work will involve confirmation of further

high-confidence target genes as well as a full transcriptional profiling using RNA-seq to allow us

to link Tbx1 binding to changes in gene expression. The vocal analysis section described the use

of entropy-based analysis and supervised classification to both demonstrate inherent structure and
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differences in the vocal emissions of P8 and P12 WT and HT mouse pups and to enable the potential

phenotyping of mice based on call sequences. The tool we developed, Mumbles, will also be deployed

as a web application and its use is planned for further studies in the analysis of vocal patterns from

different mouse strains. A simple Hidden Markov Model approach is also currently being investigated

which would include a gap or ‘silence’ state, obviating the need to determine sequence cutpoints based

on theoretical distributions.

In summary, the increasing adoption of genome-wide sequencing technologies is both incredibly

exciting and incredibly challenging, bringing us tantalisingly close to the reality of medical treatments

specifically tailored to an individual’s genetic and epigenetic makeup, while also pushing the limits

of current computational approaches. As the use of these technologies continues to expand our

fundamental knowledge of human health and disease, a corresponding fundamental re-imagining of

how we store, process, interpret, and interact with the associated data will also be required, driving

advances in data mining, machine learning, and visualisation and bringing with it new understanding

from amidst great complexity.

Looking Forward - Moving Towards a Systems Approach

Within the broader fields of computer science, neuroscience, genetics and epigenetics, this work

lies primarily at the intersection of machine learning and HPC and relates to their use specifically

in the analysis of next-generation sequencing data and its application to the study of regulatory

mechanisms at a genome scale. While this use is in itself a promising step forward in understanding

the global effects and function of a particular transcription factor, histone modification, or chromatin

conformation, even taking all of this information to the next logical stage of data integration will

still present only a relatively limited and static view of what is, at its core, an inherently dynamic

system. With researchers coming to appreciate the limitations of such a static approach, focus has

begun to shift in recent years to computational systems biology in which attempts are made to

model complex and dynamic interactions between large numbers of individual system components.

One example of this is the increasing utilisation of gene regulatory and protein-protein interaction

(PPI) networks to provide a more holistic view of regulation than is possible when considering

only one individual gene or protein at a time, even when considered at a genome-scale. Using

information from individual experiments to both build and infer relationships between genes and

proteins has resulted in rich regulatory networks which can be mined to provide further biological

insights through, for example, graph-based analysis resulting in the identification of hubs (which may

function as master regulators), sub-networks, or redundant interaction pathways (which may point to

more robust regulatory mechanisms necessary to maintain key biological processes). These networks

can also serve to generate hypotheses for bench validation by predicting regulatory outcomes and

changes in expression based on perturbations to single or multiple nodes within the networks – this

is a key aspect of virtual screening for therapeutic agents which can result in both marked savings

for pharmaceutical companies as well as greatly decreased time to identification of promising lead

compounds.
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This type of systems approach has also been used to create biologically realistic models of both

individual cells as well as multi-cellular systems. CytoSolve1 was one of the first attempts at a large-

scale integrative model to incorporate a wide range of the complex interactions in a whole human

cell, including metabolomic, transcriptomic, and gene regulatory networks. It makes use of systems

biology markup language (SBML) and has been tested and successfully applied to multiple in silico

drug discovery projects [398]. Similarly, a whole cell model of the bacterium Mycoplasma genitalium

was created in 2012 which includes all 525 annotated genes and their interactions, encompassing 28

biological processes and allowing the simulation of the entire life cycle of the bacterium, providing

new insights into previously unobserved cellular behaviours [399]. Naturally, complex models of this

nature rely heavily on HPC resources, and this particular model, when run on a 128-cores, takes

approximately 10 hours to simulate a single cell division. The OpenWorm2 community is currently

pursuing a similar project which aims to produce an accurate in silico model of all 959 cells in C.

elegans.

Neuroscience, and in particular research focusing on the human brain with its vast number of

neurons and myriad inter-connections is another prime example of where this type of systems mod-

elling is helping to uncover new insights. The ambitious Human Brain Project3 with a budget of

almost $1.5 billion aims to construct a full working model of the human brain within the next 10

years. A key challenge this project faces is the inability of current hardware to sufficiently mimic

the asynchronous nature of signalling which occurs in spiking neurons. Digital signals are by de-

sign binary in nature (on/off, high/low); one of the Human Brain Project’s goals therefore is to

advance research is what is termed neuromorphic computing, with the aim of creating integrated

circuits containing electronic analog components (such as neuristors) which more accurately reflect

the non-linear activation of neurons in the biological nervous system. Running simulations for such

a large model would also require inordinate compute resources, in the order of exascale computing.

Researchers at the RIKEN institute in Japan for example, home to the fourth most powerful super-

computer in the world, containing over 700,000 cores and 1.4 million GB RAM, recently managed

to simulate one second of brain activity using a model of approximately 1.7 billion neurons and 10.4

trillion synapses. This sub-model equates to roughly 1% of the total model required to capture the

complexity of the human brain and took more than 40 minutes to run on 82,944 processor cores4.

Given such vast technological requirements, it remains to be seen if such a lofty goal is truly feasible

within this predicted time frame, and if so, how such a model might be realistically used to relate

fundamental signalling processes in distinct brain regions to complex cognitive behaviour.

1http://www.cytosolve.com/
2http://www.openworm.org/
3http://www.humanbrainproject.eu/
4http://www.riken.jp/
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