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Hybrid SPARQL queries: fresh vs. fast results

Jürgen Umbrich, Marcel Karnstedt, Aidan Hogan, and Josiane Xavier Parreira

Digital Enterprise Research Institute, National University of Ireland, Galway
firstname.lastname@deri.org

Abstract. For Linked Data query engines, there are inherent trade-offs
between centralised approaches that can efficiently answer queries over
data cached from parts of the Web, and live decentralised approaches
that can provide fresher results over the entire Web at the cost of slower
response times. Herein, we propose a hybrid query execution approach
that returns fresher results from a broader range of sources vs. the cen-
tralised scenario, while speeding up results vs. the live scenario. We first
compare results from two public SPARQL stores against current versions
of the Linked Data sources they cache; results are often missing or out-
of-date. We thus propose using coherence estimates to split a query into
a sub-query for which the cached data have good fresh coverage, and a
sub-query that should instead be run live. Finally, we evaluate different
hybrid query plans and split positions in a real-world setup. Our results
show that hybrid query execution can improve freshness vs. fully cached
results while reducing the time taken vs. fully live execution.

1 Introduction

As of today, there are an estimated 30 billion facts published on the Web as
Linked Data [3]. Traditional approaches for querying Linked Data rely on op-
timised, centralised RDF stores that cache remote content [2,17,4]. However,
maintaining comprehensive and up-to-date cached data is an impossible task.
First, the coverage of centralised stores is limited by the amount of data that
can be located, retrieved and indexed by local servers. Second, result freshness
is determined by the last time the relevant Web documents were cached, which
can often be measured in days or even months, leading to stale query answers.

Conversely, various authors have proposed techniques to process queries live
and directly over Linked Data [6,20,8,10], bypassing the need for maintaining a
replicated (full) store. In live-querying scenarios, coverage spans the Web, and
the freshness of results depends on live-query latency, which can generally be
measured in terms of minutes or even seconds. However, in live approaches,
retrieving remote content from diverse sources at query-time naturally implies
much slower response times compared to querying centralised stores.

Thus, as shown in Figure 1, there is an inherent trade-off between query
approaches that give fresh results versus approaches that give fast results, rep-
resented at two ends by centralised SPARQL stores and live-query techniques
respectively. Aside from performance, the recall of answers is also crucial to con-
sider. Figure 2 shows how results from a live query approach (L) and results
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from a store of cached Web data (S) may diverge. Some of the results remain
the same (∆∩); when this happens we say that the SPARQL store returned
coherent results. However, the store may return results that live querying does
not (∆S), which may be stale results from sources that have changed, or may be
accurate results from sources that live querying did not consider. Conversely, the
live approach may find answers that the store did not (∆L), either from updates
in remote sources, or from sources not cached/indexed by the store.

Evidently, both centralised and live query engines have their inherent
strengths and weaknesses. We thus propose a hybrid approach that combines
the two. Our hybrid engine can be thought of as a “live-wrapper” for centralised
SPARQL endpoints that splits a query into two, where one part is executed over
the centralised store and the other part is executed using existing live-querying
techniques. By getting the store to quickly service query-patterns for which it
has good up-to-date coverage, and by running the rest of the query live, our
hybrid approach aims to strike a balance between fresh and fast results.

Deciding which parts of the query to run live and which to run centrally
requires knowledge of the coherence of the replicated store wrt. remote data,
which depends on the dynamicity of remote data and coverage of the store.
Consider the hypothetical query What are the current temperatures in
European capital cities? Data about current temperatures are dynamic and
appropriate for live-query techniques (the store would return stale results). Also,
the store may not have indexed data about which continent each city is on; this
part should also be fetched live. Conversely, information about capital cities is
static and well-covered by the store. In our hybrid approach, up-to-date results
about capital cities are quickly retrieved from the store and enriched with results
from the Web about continents and temperatures. Stale results are avoided by
not asking the centralised store about current temperatures.

We continue this paper with background on Linked Data querying (Sec-
tion 2). We then introduce our hybrid query architecture (Section 3). Next, we
propose probing RDF stores to collect coherence estimates, and present exper-
iments for two public SPARQL engines (Section 4). We then detail our hybrid
query-planning component (Section 5). For the two public stores, we evaluate
different hybrid query plans and the extent to which they speed up live querying
while freshening up centralised results (Section 6). We then conclude (Section 7).



2 Background

Centralised Linked Data stores execute SPARQL queries over a local copy of
Web documents. Some endpoints, like FactForge [2], index selected subsets of
Linked Data. Other systems, like OpenLink’s LOD cache1 and the Sindice [17]
SPARQL endpoint2 (both powered by Virtuoso [4]) aim to have broad coverage
of Linked Data. However, as we show in Section 4, constantly maintaining a
broad, fresh coverage of remote data is unfeasible in such setups.

Recently, various authors have proposed methods for performing live query-
ing, accessing remote data in situ and at runtime. Ladwig and Tran [8] cate-
gorise these approaches as: (i) top-down, (ii) bottom-up, and (iii) mixed strategy.
Top-down evaluation determines remote, query-relevant sources using a source-
selection index : a local repository summarising information about sources that
can vary from inverted-index structures [17,10], to query-routing indexes [16],
schema-level indexes [15], or hash-based summaries [20]. The bottom-up query
evaluation strategy discovers relevant sources on-the-fly during the evaluation of
queries by selectively and recursively following links starting from a “seed set” of
URIs taken from the query [6]. The third strategy uses (in a top-down fashion)
some knowledge about sources to generate the seed list, then discovering addi-
tional relevant sources using a bottom-up approach [8]. These three approaches
rely on time-consuming remote lookups, but conversely offer fresh results.

In this paper, we use the bottom-up approach proposed by Hartig et al. [6],
called link-traversal based query execution (LTBQE), to provide live results. LT-
BQE uses dereferenceable URIs in a query to find remote documents relevant
to that query. During query execution, dereferenceable links that match query
patterns are followed to discover further relevant data. We choose LTBQE for
live querying as it requires no local knowledge and thus, in the hybrid scenario,
can find sources that the store may not even be aware of. An inherent weakness
of LTBQE is its dependence on the availability of dereferenceable URIs. How-
ever, as the uptake of Linked Data principles continues, we expect the ratio of
dereferenceable data on the Web to increase. We refer the reader to our previous
work which analyses the prevalence of dereferenceable URIs and the ratio of
information about RDF resources that is dereferenceable on the Web [19].

While the above approaches access data directly, an orthogonal approach to
live querying is that of federated SPARQL, where queries are executed over a
group of possibly remote endpoints [12,13,1]. Given the recent proliferation of
SPARQL endpoints on the Web of Data [3], federation is a timely topic that
enjoys increasing attention [5]. Our approach could also use live federated tech-
niques, though we would need to ascertain the freshness of remote endpoints.

Like us, various authors have discussed the combination of local (central) and
remote (live) querying techniques on a theoretical, optimisation, engineering and
social level (e.g., [9,22]). However, to the best of our knowledge, no-one has tack-
led the question of deciding which parts of a query are suitable for local/remote
execution; here, we propose making such a split based on dynamicity estimates.

1 http://lod.openlinksw.com/sparql
2 http://sparql.sindice.com/

http://lod.openlinksw.com/sparql
http://sparql.sindice.com/


In this light, our approach relates to the broad field of research on (Web) caching
and the problem of guaranteeing cache coherence [11], as well as semantic caching
in, e.g., mediator systems [7]. However, instead of splitting queries, such systems
often apply an all-or-nothing approach, either relying solely on locally cached
data or going entirely live. More recently, various authors have discussed inval-
idation of SPARQL caches [23] but rely on monitoring inserts within the local
system, and are not concerned with the dynamics of remote data.

The work in hand is based on the idea of hybrid SPARQL queries originally
proposed by us in [22]. In [21], we discussed a wide range of general strategies
to implement the proposed hybrid query planning and processing approach. The
current paper is based on the conclusions drawn therein and proposes a first
concrete instantiation of an according query engine including a comprehensive
experimental evaluation over real datasets.

3 Architecture of a Hybrid Query Engine

Our proposed hybrid query engine has the following targets: T1 fast response
times close to those of centralised queries; T2 coherence of results close to
those of live query processing such that we retrieve fresh answers; T3 system
independence, i.e., being compatible with any SPARQL-enabled store or live-
query processor; and T4 lightweight implementation with low resource re-
quirements, particularly regarding main memory.

As previously discussed, T1 and T2 are antagonist targets: thus, the main
component in the architecture is the query planner which tries to find an
overall “optimal” trade-off for a given request, deciding what parts of the query
to delegate to the live engine and to the store. With regards to T3 , we can ini-
tialise our architecture with an index query interface and a live query
interface as black-box components; both consume SPARQL queries and pro-
duce SPARQL results, but the former interfaces with a central store, whereas
the latter interfaces with the Web. Finally, to help find that trade-off, the co-
herence monitor collects high-level empirical statistics (see Section 4) about
the store’s coverage of data for different query patterns compared with the Web.
These compact estimates have (relatively) low maintenance costs (as per T4).
The resulting architecture is illustrated in Figure 3.

The index query interface can be a (possibly remote) public SPARQL
store or any data warehousing approach that offers the SPARQL protocol
(e.g., an intranet database). The live query interface also accepts SPARQL
queries and could be based on, for instance, a bottom-up link-traversal engine [6]
or a top-down source selection index [20], or some combination thereof. Here we
instantiate the live query processor with a bottom-up, link-traversal based query
execution approach (LTBQE) as originally proposed by Hartig et al. [6].

The coherence monitor collects information about the coverage and fresh-
ness of different triple patterns and sources. The coherence estimates of individ-
ual patterns is used by the query planner component to split a given query
into two sub-queries—a central and a live sub-query. Eventually, the query pro-
cessor forwards the central part to the index query interface and the live part
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Fig. 3. Architecture of a hybrid query-engine

is processed over the relevant Web sources in situ. We see this conceptually
straightforward architecture as a first step towards freshening up centralised
results: topics such as adaptive coherence estimates and more fine-grained in-
teraction between the central and remote query processors are left to future
work.

Note that since the central SPARQL store is treated as a black-box (as per
T3), we cannot influence the design of the physical plan for the static sub-query:
we delegate generating the final sub-query plan to the engine, which we assume
implements, e.g., local selectivity estimates to organise optimal execution. In the
general case, a similar situation exists for the live query processor.

In the following sections, we elaborate further on the coherence monitor
component (Section 4) and the query planner component (Section 5).

4 Coherence Estimation

Given the scope [3] and dynamicity [18] of Linked Data, results returned by a
centralised endpoint are inherently limited by its coverage of the Web and by
the freshness of its local index. The coherence monitor computes and stores
the coherence estimates of query patterns for a centralised endpoint in contrast
to the fresh results given by live query execution.

For a given endpoint, we issue the same set of queries against both the store
and the live engine and compare the results, identifying data predicate–source
combinations that are likely to be stale. For testing, we chose the two aforemen-
tioned SPARQL stores covering a broad range of Linked Data: “the Semantic
Web Index” hosted by Sindice, and the “LOD Cache” hosted by OpenLink. We
randomly sampled 12,000 URIs from the 2011 Billion Triple Challenge dataset3,
which covers around 8 million RDF Web documents.4 For each URI, we gener-
ated the following query.

3 http://challenge.semanticweb.org/
4 We considered using the SPARQL 1.1 SAMPLE keyword, but Virtuoso does not sup-

port SPARQL 1.1 (though it does support similar custom syntax). Further, SAMPLE
makes no guarantees about the randomness of results.

http://challenge.semanticweb.org/


SELECT ?sIn, ?pIn, ?oOut, ?pOut

WHERE { ?sIn ?pIn <entityURI> . <entityURI> ?pOut ?oOut . }

This query returns all values of RDF triples in which the given entity URI
appears in either the subject or object position. We then compare the set of
store results (S) to the set of live results (L). We view results as consisting of
sets of sets of variable bindings (i.e., S, L, ∆∗ ⊂ 2V×UL reusing common notation
for the set of all query variables, URIs and literals resp.); we exclude answers
that involve blank nodes to avoid issues of scoping and inconsistent labelling.

We reuse notation outlined in Figure 2. ∆∩ := L∩S refers to the set of results
in both L and S, i.e., results for which the store is up-to-date. ∆L := L \ S refers
to the set of results returned by the Web that are not returned by the store.
∆S := S \ L indicates results returned only by the store. We add subscripts to
indicate results for a certain query, e.g., ∆L

q . We denote results for a predicate p

as, e.g., ∆L
q(p) := {r ∈ ∆L

q : (?pIn, p) ∈ r ∨ (?pOut, p) ∈ r}, and say p ∈ ∆L
q iff

∆L
q(p) 6= ∅.

To ensure lightweight statistics with broad applicability, our notion of coher-
ence for query patterns centres around predicates. This restricts our approach
to triple patterns with a constant in the predicate position; other patterns are
assigned a default estimate. We ran our experiments in early March 2012 and
gathered coherence information for 2,550 predicates for OpenLink and 1,627
predicates for Sindice.5 To quantify the coherence of individual predicates based
on the results, we define the result-based coherence measure, which computes
the ratio of missing results for a predicate p. For the full set of queries Q, let
Mr(p) denote the count of all live results involving the predicate p that were
missed by the store, summated across all queries (Mr(p) =

∑
q∈Q |∆L

q(p)|). Let

Lr(p) denote the count of all results involving p retrieved from the live engine
(Lr(p) =

∑
q∈Q |Lq(p)|). Result-based coherence is then:

cohr(p) = 1− Mr(p)

Lr(p)
.

There are other alternatives to measure coherence for a store [21]. Since we
could not empirically observe significant differences among the different measures
discussed in [21], we use the result-based coherence measure in this paper.

For the two stores under analysis, Figure 4(a) illustrates the number of pred-
icates that fall into different intervals of coherence values; the y-axis is in loga-
rithmic scale, and the linear x-axis intervals represent the coherence measures as
percentages (the right of the graph indicates increasingly coherent predicates).
The figure shows that the OpenLink endpoint is more in sync with current
Web data than Sindice; we believe that OpenLink was extensively updated in
Feb. 2012. We measured that 67% of the tested predicates in the OpenLink in-
dex are entirely up-to-date (cohr(p) = 1), versus 30% of the predicates for the

5 The statistics took over a week to collect politely (5 s delay). Maintaining coherence
statistics is non-trivial, but out of scope. Discussion can rather be found in [21, § 4].
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Fig. 4. Distribution of predicate coherence values and variation across PLDs

Sindice endpoint. In contrast, information for 14% of the tested predicates in the
OpenLink index are entirely missing or out-of-date (cohr(p) = 0), versus 40%
for Sindice; these high percentages are due to partial coverage of Web sources,
outdated data-dumps in the index, and predicates with dynamic values.

In more detail, Table 1 shows the top 5 predicates where cohr(p) = 0 for both
stores, ordered by the number of queries in which they featured as a result. First,
we see a mix of dynamic time-stamp predicates that change for every access or
modification of a document (swivt:creationDate, swivt:wikiPageModifica-
tionDate and aims:hasDateCreated). Second, we see predicates not covered by
the index. For Sindice, the incoherent *:doi predicates are due to a lack of cov-
erage of the dx.doi.org domain and the high incoherency of skos: predicates
is due to bulk changes in the esd-toolkit.eu, esd.org.uk and bio2rdf.org

domains; for OpenLink, the incoherency of vitro:mostSpecificType relates to
data on the cornell.edu domain.

We further analysed the correlation for coherence estimates of the same pred-
icates across the two stores. We used Kendall’s τ , which measures the agreement
in ordering for two measures in a range of [−1, 1], where −1 indicates perfectly
inverted ordering and 1 indicates the exact same ordering. The τ -score across the
two stores was 0.16, with a negligible p-value, indicating a weak, significant and
positive correlation between the coherence of predicates for the two stores. The
low correlation highlights the store-specific nature of these measures, which are
as much about index coverage than about the dynamicity of values. As such, our
approach tackles both the global problem of dynamicity and the central problem
of store coverage.

Finally, we looked at the correlation between the selectivity of predicates
(i.e., how often they occur) and their coherence, which may have potential con-
sequences for query planning. Specifically, for each store, we compared the num-
ber of (Web) results generated for each predicate across all queries and their
cohr(p) value. The τ -value for OpenLink was 0.1, indicating that less selective
patterns tend to have slightly lower coherence; the analogous τ -value for Sindice
was −0.03, indicating a very slight correlation in the opposite direction. Though



Table 1. Most dynamic and prevalent predicates

№
OpenLink Sindice

pred. queries pred. queries

1 swivt:creationDate 510 swivt:creationDate 118
2 vitro:mostSpecificType 104 skos:narrower 48
3 swivt:wikiPageModificationDate 45 skos:historyNote 43
4 aims:hasDateCreated 42 bibo:doi 34
5 madsrdf:hasCloseExternalAuthority 31 prism21:doi 34

limited, we take this as anecdotal evidence to suggest that correlation between
the selectivity and coherence of predicates is weak, if any.

Above, we näıvely assume a single coherence value for predicates in all cases,
ignoring subject or object URIs: keeping information for each subject/object
would have a high overhead. However, we can generalise subject/object values
into pay-level-domains (PLD)6 and then track coherence for predicate–domain
pairs. Thus, we mapped the entity URIs of the queries to their PLDs (581 PLDs
with a maximum of 74 queries per domain) and resolved the coherence of pred-
icates for individual PLDs. Focussing on the coherence measure, we divided the
scores into eleven intervals as per the x-axis of Figure 4(b), and for each predi-
cate, count how many intervals it falls into for different PLDs. We observe that
the subject and object URIs can be ignored for roughly 40% of the OpenLink
and roughly 15% for the Sindice predicates. However, we see the importance of
tracking coherence for predicate–domain pairs for the remaining predicates. The
plurality of predicates (∼40%) show two intervals of coherence values.

5 Query Planner

Our hybrid engine combines centralised and decentralised/live query execution
to obtain a balance between fresh and fast results. The query planner is
responsible for splitting the query into a part for execution against the centralised
store and a part for live execution. We focus on evaluating conjunctive queries
(i.e., SPARQL BGPs). Other SPARQL features—except OPTIONAL (and MINUS

& [NOT] EXISTS in SPARQL 1.1) for which LTBQE is ill-suited since it (typically)
does not operate over a pre-defined dataset—can be layered on top.

As indicated before, we argue for a single split of the query plan into one
“central” (executed by the store) and one live part. While in theory it would
also be possible to use multiple splits, the resulting intertwined dependencies
between the central and live parts would lead to very complex query planning,
and would require shipping bindings back and forth between the two engines.
Thus, advanced splitting approaches are better suited to controlled environments
(i.e., not public endpoints). We discuss this issue in more detail in [21].

Given the focus on a split into (at most) two parts, the results of the first
part serve as input bindings for the second part. We must then decide whether

6 A pay-level-domain is the domain name one has to register and pay for.



the central part is processed first (i.e., at the bottom of the query plan) or
last (i.e., at the top of the plan). As previously discussed in [21], there are
constraints inherent to live SPARQL query execution methods, such as the need
for dereferenceable URIs in some of the query patterns. By running the central
part first, we do not only obtain the store’s results more quickly, but also provide
additional dereferenceable URI bindings for the live querying phase (passed to
the live engine using the VALUES [previously BINDINGS] clause in SPARQL 1.1).

As per traditional database query-planning approaches, we must then decide
the execution order of (commutative) join patterns. However, instead of only
optimising for speed, we now also wish to optimise for freshness. An intuitive
approach, which we call coherence-based ordering, is to build a query plan
with the most coherent patterns at the bottom for central execution, and the
most incoherent patterns at the top for live execution. This increases the likeli-
hood that the final result set is fresh and it limits the number of patterns executed
live. However, the most coherent patterns may also be the least selective (i.e.,
return the most bindings) thus inflating the number of intermediate results to
process. Consequently, this can increase the number of bindings for the patterns
executed live, potentially hurting the performance. Because of this and backed
by the absence of correlation between coherence and selectivity, we also consider
another approach following traditional selectivity-based reordering, where
the most restrictive patterns are executed first reducing intermediate results.

After selecting an ordering, we must also select a split pattern. The split pat-
tern is the position in the query plan in which the query is divided into the two
parts. Everything below the split is executed centrally, and everything above
and including the split pattern is executed live. Following the same intuition of
executing low-coherence patterns live, one option is to choose the most inco-
herent triple pattern as the split. However, the central store may still receive
highly incoherent patterns (below the max) for which it will return incoherent
results. Another approach is to define a constant value indicating a threshold
of incoherence, where the lowest pattern breaching the threshold becomes the
split pattern; this ensures that the store does not receive patterns that are highly
incoherent. A further option is to split by a fixed position n, whereby the n
bottom patterns are executed by the store and the rest are run live. Choosing be-
tween the different split options affects the core trade-off of fresh vs. fast results,
and thus could be parameterised for individual user needs.

Figure 5 depicts examples of hybrid query plans, including our two different
choices of ordering, as well as some possible split choices. In the selectivity-based
ordering, we see that different types of coherence thresholds may lead to more
patterns being run live than when explicitly ordered by coherence. Conversely, at
the base of the plan for the coherence-based ordering, we see that tp4 will return
a lot of intermediate bindings (since it has a low selectivity) and does not share
a join variable with tp1 on the right-hand side of the join. In general, one may
expect that the selectivity-based operator order would provide low answer times
by minimising intermediate bindings, but would return less fresh results since
low coherence patterns can appear below the split. However, this ordering also
ends up pushing more patterns live since patterns with low selectivity and high
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coherence are often above the split. Conversely, a coherence-based ordering will
lead to more intermediate results, but will run more patterns centrally. Thus, a
general conclusion about which ordering is preferable is not possible; we instead
compare combinations of orderings and splits on an empirical basis in Section 6.

In practice, for selectivity ordering, we create our hybrid SPARQL query plan
using ARQ based on a “variable counting” technique [14], which estimates the
selectivity of different triple patterns based on rules involving the number and
position of variables it contains. This could be replaced with cost-based planning
using empirical selectivity estimates, but we would need statistics about the un-
derlying data. Thus, following a rule-based approach is more in line with targets
T3 system independence, and T4 lightweight implementation (cf. Section 3). A
coherence-based operator order is supported by reordering the triple patterns in
the query plan produced by ARQ based on their coherence values.

In fact, since we consider the store and the live-query component as black
boxes, both sub-queries will be reordered by the respective engines, thus mitigat-
ing some of the performance penalty associated with the possibly näıve ordering
used to decide the split in the hybrid query plan. For example, referring back
to the coherence-ordered plan of Figure 5, if the lowest coherence split rule is
applied, the store may internally decide to run tp1, tp2 and then tp4 in that
order, avoiding the (huge) expense of running tp4 first.

6 Evaluation

We now evaluate our proposed hybrid query execution. Our concrete goals are
as follows: (i) to prove concept in a realistic setting and show that with the
correct plan, hybrid query execution can extend and freshen up central results
while speeding up live results; (ii) to evaluate different query plan strategies by
comparing (iia) selectivity- and coherence-based ordering and (iib) different split
strategies for the query planning. In parallel, we are interested to see how useful
our coherence estimates are for the hybrid-query planning phase.

To do so, our evaluation is run against the two selected public endpoints:
Sindice and OpenLink. For this, we require a set of evaluation queries that
are answerable by a Linked Data query engine. We would like these queries to



have broad coverage of diverse Web sources in order to properly test coherence
estimates and hybrid splits. Hence, we generate queries from the Billion Triple
Challenge 2011 dataset, which covers a broad range of Web documents. We
apply a random walk technique on the dataset, selecting random paths between
dereferenceable URIs in the data to produce queries that will give non-empty
results if executed with the LTBQE live query interface (see [19] for more
details). Using this method, we produce 200 SPARQL SELECT queries of different
shapes (star, path, mixed), with varying numbers of patterns (2–6), randomly
assigned distinguished variables, and at least one pattern above and below a
coherence threshold of 0.5 (i.e., suitable for hybrid execution). After filtering
out queries that produce empty results (e.g., due to offline sources) or result
in endpoint errors (like timeouts), we obtained a set of 98 stable queries for
the OpenLink store and 91 stable queries for the Sindice store. We reran all
experiments four times over a period of eight days to verify repeatability.

To evaluate different orders and different cut-off positions, we created hy-
brid query plans for each query using both the selectivity- and coherence-based
reordering strategies. Each query plan is then run entirely live, entirely by the
store, and also run for every possible split position in both orders where part
goes live and part goes to the store. We execute all split positions for simple
convenience: we can then later compare different a priori strategies for picking a
single split by looking up the corresponding results (and not rerunning queries).

In terms of the repeatability of results, for each configuration, we measured
deviations for recall of results and query time across the four runs vs. the best
approach (highest recall, lowest time). We then calculated the mean of these
absolute deviations across all queries. For the live (LTBQE) execution, we mea-
sured a recall deviation of 3% and a time deviation of 2.7%. For the various other
configurations, the recall deviation varied between 0–5% for OpenLink and be-
tween 0–2% for Sindice. Although the recall of the stores was very stable, we
observed average time deviations of up to 36% for OpenLink and 17% for Sindice,
indicating variable query response times. Acknowledging that public endpoints
and remote data sources can be unstable, we wish to factor out this instability to
derive comparable results across different hybrid strategies (we wish to compare
different hybrid query plans, not the performance of public SPARQL endpoints).
Thus, to avoid outliers, for each query and each configuration, we only select the
best run in terms of recall, and in case two runs have the same recall, we select
the one with the lower query time.

We first focus on ordering. To initially prove concept, we want to show that, in
practice, hybrid query execution can potentially improve the freshness of results
vs. the store while reducing query time vs. live querying. Table 2 presents such
an analysis for both stores, where we see the potential percentage of queries that
can be improved using our hybrid approach for both orders assuming (for the
moment) that the best possible split position is picked (i.e., given the results, we
select the split position that gave the highest recall and if tied, the lowest time;
we evaluate split-selection strategies later). Recall is measured relative to the
live results, which we know to be fresh. For OpenLink, we see that the recall of
the store can only be improved for roughly half of the queries; however, the recall



Table 2. For both stores, the percentage of queries that can potentially be improved
for each order assuming the best split position is picked

improvement
OpenLink Sindice
sel coh sel coh

Better Than Centralised Recall: 43% 53% 87% 91%
Better Than or Equal Centralised Recall: 97% 100% 99% 97%

Better Than Live Time: 92% 45% 16% 3%
Better Than Centralised Recall & Live Time 39% 13% 8% 1%

Better Than Or Equal Centralised Recall & Live Time: 92% 45% 16% 3%

of the store is already 1 in many cases and cannot be improved, only equalled.
Equal ties in time are much more rare. In terms of improving the time for live
results, the sel ordering seems much more beneficial for OpenLink than coh,
likely due to fewer intermediate results being generated in the former ordering:
sel improves or equals the store’s recall while improving the live time in 92%
of the queries. For Sindice, we found that the store often returned no query
results: 84% of the queries ran entirely live as a fallback. Thus, the recall of
many queries can be improved outright, but few queries are faster than the live
approach. Since only 16% of the queries for Sindice are run in a truly hybrid
fashion, we henceforth focus on OpenLink—all hybrid query results for Sindice
were very close to the live approach. Table 2 shows that, in an ideal case, the
hybrid approach can indeed improve result freshness while reducing the time
required to process queries. Furthermore, the chosen ordering strategy seems to
have a clear impact on freshness and query time.

We now compare concrete split strategies that a priori select a split based
on the query and coherence/selectivity estimates (i.e., as would be required for
hybrid query planning in reality, where an ordering and a split strategy are
sufficient to generate a plan). We also look at the degree to which central recall
is improved and live querying is sped up. To compare different splits and ordering
combinations, we first filter out queries that, across the four runs, did not provide
results for all possible split positions and orderings for one or more of the setups.
We also removed queries with only two patterns, for which the choice of split is
trivial. This results in a final set of 43 queries.7

For each ordering and for a variety of different split strategies, Figure 6 plots
the aggregate speed up and recall ratio versus live querying. Specifically, to
calculate speed up, the total time taken by the live approach to run all queries
is divided by the total time taken for each individual approach; e.g., a speed up
of 6 indicates that the approach in question was 6× faster than live querying.
Conversely, recall is measured by taking live querying as the gold standard. Live
querying is thus placed at (1, 1). Orderings are intuitively represented by sel-*

and coh-*. The best split approaches are represented by *-best; these splits
cannot be determined before query execution, but rather represent the ideal
case. Splitting at the most incoherent pattern is indicated by *-incoh. Using a
coherence threshold of 0.5 to perform the split is indicated by *-thr. A random

7 Queries are available online at the following address: http://code.google.com/p/
lidaq/source/browse/queries/iswc-2012.tar.gz

http://code.google.com/p/lidaq/source/browse/queries/iswc-2012.tar.gz
http://code.google.com/p/lidaq/source/browse/queries/iswc-2012.tar.gz
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split (i.e., a guess) is indicated by *-rnd. Fixed split positions are indicated by
*-1 and *-2 for n = 1, 2. Note that the threshold strategies *-incoh/*-thr
can go fully live or fully central depending on the coherence values found for the
query, whereas *-best, *-rnd, *-1 and *-2 must split the query. Figure 7 shows
the same analysis, but for varying coherence threshold values.

In fact, both plots offer an empirical version of the trade-off introduced in
Figure 1, where our hybrid strategies sit between live querying and the store.
For both graphs, we see that the store is the fastest, and about 12× faster than
the live approach; however, recall is poor. Perhaps the best hybrid approach is
coh-thr=0.75 in Figure 7, which maintains an almost perfect recall but offers a
speed up of more than 6× live querying, slightly beating the ideal of coh-best
(which must split the query). Interestingly, some fixed-position split strategies—
particularly coh-2 in Figure 6, which is ∼ 5× faster than live, but maintains an
almost perfect recall—can approach the ideal of coh-best quite closely.

While such an aggregated view presents high-level insights into the overall
performance of the different strategies, we cannot identify the distribution over
the queries in terms of achieved freshness and time. This is supported by Figure 8
and Figure 9, which show the recall for each query and the query time for each
query respectively. We plot the number of queries on the x-axis that achieve
a certain recall or time ratio shown on the y-axis. All 43 queries are sorted
for each approach separately, providing a global view on each performance, but
not supporting a per-query comparison of the strategies. While querying the
store results in the fewest queries with a recall of 1, it also results in the most
queries with a recall between 0 and 1. On the contrary, coh-best and coh-2

are tied for keeping 100% recall across 42 queries and provide 0% only for the
last query. Interestingly, most queries run with any hybrid strategy result in a
recall of either 1 or 0. As expected, Figure 9 shows that query times for the
centralised store are far below all other approaches in most cases. However, it is
in fact slower for 2 anomalous queries that OpenLink struggles with.8 Though
all hybrid strategies were as fast or faster than live querying (y = 1) in all cases,

8 One such example at the time of writing was http://bit.ly/IPRec9.

http://bit.ly/IPRec9
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we see that sel-incoh and sel-thres did not show a time improvement for
around 13 queries, where they were likely run completely live.

Eventually, we are interested in how recall and query times compare for
different approaches on the same queries. Thus, in Figure 10 and Figure 11 we
ordered the queries for each approach identically (using the results of the store
for ordering). This means that in these figures each point on the x-axis presents
the same query for each approach. In this case, plotting the absolute values
would not allow any meaningful insights due to the ups and downs that each plot
would show. Instead, we plot an “evolving average”, whereby the result for query
n indicates the average value for all queries up to and including n. This allows to
compare the degree of increase or decrease in recall and time at each point, i.e.,
for each query. Interestingly, we see that the store can sometimes return better
recall than the hybrid approaches, as happens for query 27, where the interim
bindings returned by OpenLink cannot be dereferenced. However, the recall is
improved by the hybrid approaches for the subsequent queries. It is further
interesting to observe that the hybrid approaches seem to be “grouped”, i.e.,
coh-best, coh-2 and sel-best show very similar performance over all queries,
while coh-incoh first “follows” sel-thr and others, but performs similar to
sel-2 for later queries. The evolving average of the query times in Figure 11
basically confirm the results from Figure 9.

In summary, we found that sending more patterns live with fewer bindings
(as with the selectivity-based ordering) is in parts faster than sending fewer
patterns live with more bindings (coherence-based ordering). Though selectivity
ordering does not consider coherence, a coherence-based split ensures that more
of the query is executed live to compensate. The lower query times suggested by
the coherence-based orderings are often compensated by the low selectivities of
operators in the lower levels of query plans. Still, as a guideline, if the objective
is to maximise recall, one should choose coherence-based ordering, which is still
faster than the live approach. If one is willing to sacrifice some recall for even
faster results, then selectivity-based ordering is a good choice. However, the
performance of the selectivity-based approaches seems to heavily depend on
the actually chosen split strategy. Generally, the question of how to pick the
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split position cannot be ultimately answered without taking the actual query
and other characteristics into account. While the actual value of the coherence
threshold did not have an impact as high as expected, we could show that the
coherence estimates themselves are of great benefit, especially for ordering.

7 Conclusion

Based on an empirical study showing that popular public SPARQL stores strug-
gle to maintain coherent cached indexes of Linked Data, we propose a hybrid
query architecture that aims to combine the best from centralised indexes and
novel live querying approaches. We discussed extracting coherence measures from
centralised endpoints based on probing queries, and showed that they can be
combined with reordering and hybrid-split strategies to design an effective hy-
brid query plan that speeds up live results while freshening up centralised results.

Still, some open questions remain. We have looked at a wide variety of config-
urations, which hint at the potential complexity of hybrid query planning. More
complex cost models—including, e.g., the potential for multiple splits—may re-
veal novel optimisations that we have not considered herein, further pushing
the boundaries of fresh vs. fast results. Furthermore, we can only estimate the
accuracy of store results using coherence estimates; other mechanisms that cross-
check the sources of data (i.e., the named graphs from which the store computes
answers) against their current versions could yield yet more accurate statistics.
Also, we consider the live and centralised query components to be strongly de-
coupled. However, the store may serve as a source selection index to enhance the
live results given by a zero-knowledge approach such as LTBQE.

Given the potential scope and dynamicity of Linked Data, query engines will
need to employ a range of techniques to efficiently offer fresh results with broad
coverage. We believe that our hybrid query approach makes a significant step
in this direction by combining results from centralised and decentralised query
engines. Still, we may only have scratched the surface of what is possible.



References
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