<table>
<thead>
<tr>
<th>Title</th>
<th>Hot Topics and Schisms in NLP: Community and Trend Analysis with Saffron on ACL and LREC Proceedings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Buitelaar, Paul; Bordea, Georgeta; Coughlan, Barry</td>
</tr>
<tr>
<td>Publication Date</td>
<td>2014</td>
</tr>
<tr>
<td>Publication Information</td>
<td>Buitelaar, Paul; Bordea, Georgeta; Coughlan, Barry (2014) Hot Topics and Schisms in NLP: Community and Trend Analysis with Saffron on ACL and LREC Proceedings 9th Edition of Language Resources and Evaluation Conference (LREC2014)</td>
</tr>
</tbody>
</table>
Hot Topics and Schisms in NLP: Community and Trend Analysis with Saffron
on ACL and LREC Proceedings

Georgeta Bordea, Paul Buitelaar, Barry Coughlan
INSIGHT, National University of Ireland, Galway
georgeta.bordea, paul.buitelaar, barry.coughlan@insight-centre.org

Abstract

In this paper we present a comparative analysis of two series of conferences in the field of Computational Linguistics, the LREC conference and the ACL conference. Conference proceedings were analysed using Saffron by performing term extraction and topical hierarchy construction with the goal of analysing topic trends and research communities. The system aims to provide insight into a research community and to guide publication and participation strategies, especially of novice researchers.

Keywords: trend analysis, term extraction, community analysis

1. Introduction

The Natural Language Processing (NLP) research community is one of the oldest in Computer Science, starting with the first conferences on Computational Linguistics in the 60s. Over time, many research trends and sub-communities within the NLP community developed, changing every few years with topics appearing and disappearing. It is instructive to analyse these developments in order to map out promising trends and community developments in hindsight. Consider for instance, "Statistical Machine Translation" (SMT), which is currently one of the most successful and widely studied topics of research in NLP. An analysis of the occurrence of SMT in the ACL Anthology

1can be seen in the Figure 1.

The nature of conferences is that they bring together a research community. Therefore, different conferences will display a difference in emphasis and distribution of mostly studied research topics, depending on the community or sub-community they represent. Consider for instance a comparison on the most studied research topics in the ACL family of conferences on Computational Linguistics (as represented by the ACL Anthology) vs. the LREC conference on Language Resources and Evaluation. An analysis of this is shown in Figure 2, which lists the top-most 30 research topics occurring in both conference proceedings. "Natural Language Processing" is the most prominent research topic in both conferences, which is to be expected. However, the lists also show the continuing emphasis in LREC on resources and spoken language vs. for instance the strong occurrence of grammar engineering and parsing in older ACL work.

Research topics define by their nature also a community of researchers working on them, as can be analyzed by identifying the experts around a certain topic. Figure 3 below shows the community of top-most experts on the research topic of "language resources" as derived from LREC proceedings through text analysis. Communities are obviously concerned with several related topics, which can be visualized by clustering them as shown in Figure 4 for topics extracted from LREC proceedings.

\[^1\] ACL Anthology corpus: http://aclweb.org/anthology/

\[^2\] Saffron: http://saffron.deri.ie/
term extraction there are few methods that are able to identify general terms or intermediate level terms. Intermediate level terms are specific to a domain but are broad enough to be usable for analytics tasks such as the one described here. Methods that make use of contrastive corpora to select domain specific terms favour the leaves of the hierarchy, and are less sensitive to generic terms that can be used in other domains. Instead, we construct a domain model by identi-
fying upper level terms from a domain corpus. This domain model is further used to measure the coherence of a candidate term within a domain. The underlying assumption is that, top level terms (e.g., resource) can be used to extract intermediate level terms, in our example natural resources and mineral resources. The Saffron method for term extraction by use of a domain model is described in more detail in (Bordea et al., 2013).

2.2. Topical Hierarchy Construction

Saffron takes into consideration the relations between terms for expert search, by automatically constructing a topical hierarchy of a domain, similar to the one displayed in Figure 4. This structure can be used to measure expertise at different levels of granularity, through inexact matches of expertise. Take for example the "speech recognition" subtree, which can be seen in the top-left part of Figure 4. This topical hierarchy identifies the terms "speech synthesis" and "dialogue systems" as subtopics of "speech recognition", providing valuable information for measuring expertise in this field as we will see in Section 2.3.

Topical hierarchies are constructed starting from a list of extracted terms as follows. First, the strength of the relationship between two research terms is measured by counting the number of documents where the two terms are mention together, normalised by the number of documents where each term appears independently. Then, edges are added in a graph where nodes are research terms for all the pairs that appear together in at least three documents. Saffron uses a global generality measure to direct the edges from generic concepts to more specific ones. This step results in a highly dense and noisy directed graph that is further trimmed using an optimal branching algorithm. An optimal branching is a rooted tree where every node but the root has in-degree 1, and that has a maximum overall weight. This yields a tree structure where the root is the most generic term and the leaves are the most specific terms.

2.3. Expert Finding

Expert finding is the task of identifying the most knowledgeable person for a given topic. In this task, several competent people have to be ranked based on their relative expertise on a topic. Documents written by a person can be
used as an indirect evidence of expertise, assuming that an expert often mentions his areas of interest. Saffron considers various measures of expertise to rank individuals including the relevance of a term for a person, their experience in a domain, as well as their area coverage (i.e., knowledge of sub-topics in a domain).

First, we consider the standard measure of relevance TF-IDF to measure the relevance of a given term for a person. Each person is represented by an aggregated document that is constructed by concatenating all the documents authored by a person. Therefore, the relevance score $R(i,t)$ that measures the interest of an individual i for a given topic t is defined as:

$$R(i,t) = \text{tfidf}(t,i)$$ (1)

Expertise is closely related to the notion of experience, assuming that the more a person works on a topic, the more knowledgeable they are. This performance indicator is similar to the frequency indicator mentioned in (Paquette, 2007). We estimate the experience of a person based on the number of documents that they wrote about a topic. It is only those documents for which a term is extracted as a top ranked keyphrase that are considered. Let $D_{i,t}$ be the set of documents authored by the individual i, that have the term t as a keyphrase. Then, the experience score $E(i,t)$ is defined as:

$$E(i,t) = |D_{i,t}|$$ (2)

where $|D_{i,t}|$ is the cardinality, or the total number of documents, in the set of documents $D_{i,t}$.

Both the relevance score and the experience score rely on query occurrences alone, but the relations between topics, as identified in a topical hierarchy, can provide valuable information for further improving expert finding results. A topical hierarchy, such as the one constructed in Section 2.2., can provide valuable information for improving expert finding results. When the subtopics of a term are known, we can evaluate the expertise of a person based on their knowledge of specialised fields.

A previous study showed that experts have increased knowledge at more specific category levels than novices (Tanaka and Taylor, 1991). We introduce a novel measure for expertise called Area Coverage that measures whether an expert has in depth knowledge of a term. Let $\text{Desc}(t)$ be the set of descendants of a node t, then the Area Coverage score $C(i,t)$ is defined as:

$$C(i,t) = \frac{|\{t' \in \text{Desc}(t) : t \in p(i)\}|}{|\text{Desc}(t)|}$$ (3)

where $p(i)$ is the profile of an individual i constructed using the method presented in the following section. In other words, Area Coverage is defined as the proportion of descendants of a query that appear in the profile of a person. Area coverage is larger than zero only for topics that have more than one descendant, therefore this measure does not contribute to finding experts for specialised topics that appear as leaves in a topical hierarchy.

Finally, the score $REC(i,t)$ used to rank people for expert finding is defined as follows:

$$REC(i,t) = R(i,t) \cdot E(i,t) \cdot C(i,t)$$ (4)

This score combines different performance indicators, measuring the expertise of a person based on the relevance of a term, the number of documents about the given topic, as well as his depth of knowledge of the field, also called Area Coverage.

2.4. Expert Profiling

We define a topical profile of a candidate as a vector of terms along with scores that measure the expertise of that
candidate. The expert profile \(p \) of an individual \(i \) is defined as:

\[
p(i) = \{S(i, t_1), S(i, t_2), ..., S(i, t_n)\}
\] (5)

where \(t_1, t_2, ..., t_n \) are the expertise topics extracted from a domain-specific corpus.

A first step in constructing expertise profiles is to identify terms that are appropriate descriptors of expertise. A large number of terms can be extracted for each document, but only the top ranked ones are considered for expert profiling. These are assigned to documents by combining the overall termhood rank of a candidate term and the relevance for each document, as described in the previous paragraph. Once a list of terms is identified, we proceed to the second step of expert profiling, the assignment of scores to each term for a given expert. We rely on the notion of relevance, effectively used for document retrieval, to associated terms with researchers. A researchers interests and expertise are inferred based on their publications. Each term mentioned in one of these publications is assigned to their expertise profile using an adaptation of the standard information retrieval measure TF-IDF. The set of documents authored by a researcher is aggregated in a virtual document, allowing us to compute the relevance of a term over this virtual document.

A term is added to the expert profile of a person using the following scoring function:

\[
S(i, t) = \text{termhood}(t) \cdot \text{tfidf}(t, i)
\] (6)

Where \(S(i, t) \) represents the score for an expertise topic \(t \) and an individual \(i \), \(\text{termhood}(t) \) represents the rank computed in Section 2.1. for the topic \(t \) and \(\text{tfidf}(t, i) \) stands for the TF-IDF measure for the topic \(t \) on the aggregated document of an individual \(i \). In this way, we construct profiles with terms that are representative for the domain as well as highly relevant for a given individual.

3. A Comparative Analysis of ACL and LREC

We used the Saffron system described above for a comparative analysis of the leading NLP conferences, "ACL" (including ACL, ANLP, COLING, EACL, HLT) and "LREC". We restricted the analysis to the years 2000 to 2006 as the ACL Anthology data is restricted to this date range. On the other hand, given the biannual nature of LREC we analyzed both data sets only for the years that LREC took place. Our analysis is concerned with the identification of research topics that are more or less prominent in these conferences. For instance, as we discussed already before, the topic of "language resources" is very prominent in LREC and less so in ACL. However, as can be seen from the first graph on the left in Figure 5 this topic is becoming more prominent in ACL over time as well. The graphs were constructed by selecting two sets of topics that are either widely (Figure 5) or sparsely (Figure 6) mentioned in both data sets. The figures show the number of documents, which mention the particular topic for each year. Note that the scale for widely mentioned topics is much larger than that of the graphs on sparsely mentioned topics.

As may be expected, topics such as "language resources", "minority language" and "sign language" are well represented in LREC, whereas a topic such as "machine learning" is represented more strongly in ACL. In fact, there seems to be no research reported on "minority language" and "sign language" at all at ACL conferences for the years 2004 to 2006. Other topics such as "information retrieval" are represented equally well in ACL and LREC. Interestingly, a topic such as "term extraction", which should be of equal relevance to both communities, is nevertheless more clearly represented at LREC.

Our analysis seems to indicate that the two communities have a complementary research agenda, with ACL focusing on algorithmic approaches to NLP tasks using methods from machine learning, information retrieval etc. whereas LREC has a focus on resource development to be used in combination with such approaches.

4. Evaluation

Several data sets for evaluating expert search systems are publicly available (Bailey et al., 2007; Balog et al., 2007; Soboroff et al., 2007), providing gold standard assignments of expertise that are gathered through self-assessment or by asking the opinion of co-workers. These evaluation datasets have multiple limitations, as self-assessed expert profiles are subjective and incomplete, and the opinions of colleagues are biased towards their social and geographical network. To address these challenges, a more recent dataset (Bordea et al., 2012) exploits the information about program committees from different workshops in Computer Science. In our experiments we make use of a subset of this dataset which covers 340 workshops in Computational Linguistics. In average there are almost 25 program committee members associated with each workshop. These experts are associated with 4,660 unique topics manually extracted from each call for papers.

Evaluation measures initially proposed for document retrieval can be used to evaluate the expert finding and the expert profiling tasks. These tasks are evaluated based on the quality of ranked lists of topics and experts, respectively, which is not different from evaluating a ranked list of documents. The most basic evaluation measures used in information retrieval are precision and recall. In our experiments we make use of the following measures of effectiveness:

- **Precision at N (P@N)** This is the precision computed when \(N \) results are retrieved, which is usually used to report early precision at top 5, 10, or 20 results.
- **Average Precision (AP)** Precision is calculated for every retrieved relevant result and then averaged across all the results.
- **Reciprocal Rank (RR)** This is the reciprocal of the first retrieved relevant document, which is defined as 0 when the output does not contain any relevant documents.

To get a more stable measurement of performance, these measures are commonly averaged over the number of
queries. In our experiments, we report the values for the Mean Average Precision (MAP), and Mean Reciprocal Rank (MRR). In this setting, recall is less important than achieving a high precision for the top ranked results. It is more important to recommend true experts than to find all experts in a field.

The approach proposed in this paper are evaluated against two information retrieval methods for expert finding. Both methods model documents and expertise topics as bags of words and take a generative probabilistic approach (Balog et al., 2009).

<table>
<thead>
<tr>
<th>Measure</th>
<th>LM1</th>
<th>LM2</th>
<th>Saffron</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAP</td>
<td>0.0071</td>
<td>0.0056</td>
<td>0.0340</td>
</tr>
<tr>
<td>MRR</td>
<td>0.0631</td>
<td>0.0562</td>
<td>0.2754</td>
</tr>
<tr>
<td>P@5</td>
<td>0.0202</td>
<td>0.0173</td>
<td>0.1347</td>
</tr>
</tbody>
</table>

Table 1: Expert finding results for the language modelling approach (LM) and Saffron

The results of our experiments are shown in Table 1. The language modelling approaches fail to identify experts because a much larger number of topics is available in our dataset than previously considered (Balog et al., 2009). The Saffron approach, which makes use of a topical hierarchy, consistently achieves higher results based on all the considered evaluation measures.

5. Conclusion

The analysis methods and tools provided by our approach enable us to do a comparative study of topic occurrence in the two data sets, as shown above. However, combining this with the community and topical hierarchy analysis discussed above as well, we will be able to draw even broader conclusions about the community and research agenda development. Finally, we would argue that such studies will provide more insight into both NLP communities and will help to guide publication and participation strategies, especially of novice researchers in the field.

It can be argued that it is not only the number of documents that indicates expertise, but the quality of those documents as well. For example, in a peer-review setting, the impact of a publication measured using citation counts is often used as an indicator of publication quality. Similarly, page rank can be used as a quality indicator for web pages, the number of comments for blogs, the number of retweets for tweets, the number of followers for users. But each of these indicators is specific to content type and have to be investigated separately depending on the domain, therefore we leave the integration of document quality measures for future work.

6. Acknowledgements

This work has been funded in part by a research grant from Science Foundation Ireland (SFI) under Grant Number SFI/12/RC/2289 (INSIGHT).

7. References