

Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the published version when available.

Title	Whitecaps and the marine atmosphere, report no. 6
Author(s)	Doyle, David M.
Publication Date	1984-06
Publication Information	Doyle, D.M. 1984. Marine aerosol research in the Gulf of Alaska and on the Irish West Coast (Inishmore), U.C.G. Whitecap Report #6, University College, Galway.
Item record	http://hdl.handle.net/10379/4435

Downloaded 2024-03-13T08:42:43Z

Some rights reserved. For more information, please see the item record link above.

WHITECAPS AND THE MARINE ATMOSPHERE REPORT No. 6 by

David M. Doyle

UNIVERSITY COLLEGE,
GALWAY, IRELAND.
JUNE 1984

MARINE AEROSOL RESEARCH IN THE GULF OF ALASKA AND ON THE IRISH WEST COAST (INISHMORE)

by

David M. Doyle B.A. (Nod.), Dubl.

Department of Oceanography
University College
Galway

"Whitecaps and the Marine Atmosphere"

Report No. 6

June 1984

Thesis presented for degree of M. Sc.

Research Supervisor: Dr. E. C. Monahan

ABSTRACT

This study is concerned with the interdependence of 10m elevation wind speed, oceanic whitecap coverage and marine aerosol concentration. The field work is divided into two distinct phases.

On Inishmore Co. Galway aerosol concentrations and ambient meteorological conditions were monitored, at a coastal site, over a two year period. The station is described. The dependence of the concentration of the 'Large' and 'Giant' aerosol components of the marine atmosphere on wind speed, wind direction and other factors is discussed. The relationship of Giant maritime particles to wind speed is $N(2.5+) = 5.34 \times 10^3 \text{U}^{1.39}$.

The STREX experiment took place in the Gulf of Alaska, from mid-October to mid-December 1980. The influence of such factors as 10m elevation wind speed, sea-surface temperature, and atmospheric stability on whitecap coverage and on the concomitant production of marine aerosol particles is evaluated. The degree of oceanic whitecap cover was estimated photographically.

The relationship between oceanic whitecap coverage, W, and wind speed, U, is $W = 6.22 \times 10^3 U^{2.21}$. There is an enhancement of the positive dependence of aerosol concentration upon thitecap cover with increasing droplet radius.

Both the Inishmore and STREX results are compared to previously published data sets. They are also compared to each other. The results of these comparisons are, in general, quite favourable.

ACHOMAIREACHT

Baineann an tráchtas seo leis an gcomhcheangailt atá ann idir luas na gaoithe ag 10m in airde, clúid mhara na gcapall Mananánn agus tiúchan aerósol ar farraige.
Roinntear an obair sheachtrach ina dá chuid éagsúil.

Ar Inis Mór, Co. na Gaillimhe scrúdaíodh go grinn an tiúchan aerósol agus staid mheitéareolaíoch na timpeallachta, ar shuíomh cois farraige, le linn achar dhá bhliain. Pléitear an choi a mbrathann tiúchan na gcáithníní móra agus tiúchan na gcáithníní ollmhóra aerósol in atmaisféar mara ar luas agus ar aird na gaoithe agus ar dúile eile nach iad. Is é an gaol atá idir na cáithníní ollmhóra mara agus luas na gaoithe ná $N(2.5+) = 5.34 \ X 10^3 v^{1.39}$.

Tharla an turgnamh STREX sa Murascaill Alaska, ó lár mí Dheireadh Fómhair go lár mí na Nollag 1980. Meátar tionchar gnéithe áirithe, cur i gcás luas na gaoithe ag 10m in airde, teocht dromchla na farraige agus buanseasmhacht an atmaisféir, ar chlúid na gcapall Mananánn agus ar dhéanamh na gcáithníní aerósol mara dá bharr sin. Rinneadh meastachán ar thoirt chlúid na gcapall Mananánn le cuidiú grianghraf.

Is é an gaol atá idir clúid mhara na gcapall Mhananánn, W, agus luas na gaoithe, U, ná W = $6.22 \times 10^{-3} \, ^{2.21}$. De réir mar a théann ga na ndrioganna i méid bíonn an tiúchan aerosol níos spláiche ar chlúid na gcapall Mananánn.

Cuirtear torthaí Inis Mór agus torthaí STREX i gcomparáid le sonraí foilsithe cheana féin. Cuirtear i gcomparáid lena chéile iad chomh maith. San iomlán, is fabharach go maith iad torthaí na gcomparáidí seo.

Arna aistriú ag Uinsionn Mac Dubhghaill.

ACKNOWLEDGEMENTS

I would like to thank the following:

My supervisor Dr. Ed Monahan for his unfailing help and encouragement,

The staff and students of the Dept of Oceanography U.C.G., especially my good friends Jan Taper and Peter Bowyer,

Dr. M. C. Spillane for his help with computer programming and statistics,

The Fitzpatrick family of Gort na gCapall and all the people of Inishmore Co. Galway, mile buiochas,

Prof. Ken Davidson, Don Spiel, and the officers and crew of the R/V OCEANOGRAPHER for their assistance with my work in the Gulf of Alasksa,

Dr. Tom O'Connor, Mr. Frank Gaffney, and the staff of the Dept. of Physics U.C.G.,

Mr. Gerry Hynes of the Engineering Dept. U.C.G. for his help with our survey on Inishmore.

Whitecap photographs were painstakingly analysed by Brenda Cully, Mary Luibheid, Tom Luibheid, Michael Lyons and Sinead O'Flanagan.

Finally, and most importantly, I would like to thank my parents, Kay and Peter, for their love and tolerance over the years.

This work was supported by the Office of Naval Research, Washington, via grant N00014-78-G0052.

DEDICATION

"To my gal Lilly,

Bunkhouse Billy,

and the boys."

TABLE OF CONTENTS

	Pag	e
Abstract		i
Achomairead	cht ii	i
Acknowledge	ements	V
Dedication	v	i
Table of co	ontents vi	i
Chapter 1	"Introduction"	1
Chapter 2	"Waves, Wave Breaking and the	
	Generation of Marine Aerosol"	3
Chapter 3	"Historical Review" 20	O
Chapter 4	"The Inishmore Field Station" 28	В
Chapter 5	"Results of the Experiments on	
	Inishmore" 43	3
Chapter 6	"The STREX Experiment" 69	5
Chapter 7	"Results From the STREX Experiment 72	2
Chapter 8	"Conclusions" 95	5
Bibliograph	ay 98	3
Appendix 4.	1 109)
Appendix 4.	2	L
Annendiy 5	1	1

"Exultation is the going

Of an inland soul to sea,

Past the houses - past the headlands
Into deep Eternity
Bred as we, among the mountains,

Can the sailor understand

The divine intoxication

Of the first league out from land?"

Emily Dickinson.

CHAPTER 1.

INTRODUCTION

Sources of atmospheric aerosol particles are many and varied, Aitken (1881) has stated, quite simply that "Everything in nature which tends to break up matter will contribute its share". A significant proportion of these aerosol particles have their origin at the sea surface. Oceanic whitecaps or whitehorses effect by far the most important contribution of these marine aerosol particles to the global atmosphere.

This study is concerned both with the generation of oceanic whitecaps and with the nature and influence on the marine environment of the aerosols which they produce.

The outline physics of whitecapping and of the concomitant production of aerosol particles is described in chapter 2. While a brief historical review of the subject is included as chapter 3.

The experimental work of the study has been divided into two distinct phases. Firstly a protracted measuring programme was performed at the U.C.G. island field station on Inishmore Co. Galway. Aerosol measurements have been made at this site over a period of about three years and in a broad range of meteorological conditions in an effort to establish the influence of various environmental factors on

the aerosol concentration. This work is described and discussed in chapters 4 and 5.

The second phase of the experimental work involved an intensive two month series of measurements on board the NOAA research vessel OCEANOGRAPHER during the Storm Transfer and Response Experiment (STREX) which took place in the Gulf of Alaska from mid-October to mid-December 1980. This experiment involved simultaneous measurements of whitecap coverage, aerosol concentration and the appropriate meteorological variables. The collected results significantly augmented the limited data base in this area of investigation. This experiment is described and discussed in chapters 6 and 7.

CHAPTER 2.

WAVES, WAVE BREAKING AND THE GENERATION OF MARINE AEROSOL AT THE SEA SURFACE.

"We are no other than a row
Of magic shadow-shapes that come and go"
Omar Khyyam.

Introduction:

The turbulence and mixing which occur at the oceanic boundary layer make it one of the most dynamically active interfacial zones on earth. Breaking waves and the resulting whitecaps are among the most important direct agents in the promotion of this mixing. Whitecaps occur when unstable waves break at the sea surface thus entraining air in the form of bubbles. The whitecap is in essence the area at the surface of the sea in which the bubbles which have been submerged by the breaking of the wave are re-emerging.

Apart from having a major influence on turbulent mixing in the oceanic boundary layer whitecaps effect the most important contribution of sea-salt aerosol to the marine atmosphere under commonly encountered wind regimes. These aerosol particles play an important role in the initiation of rain i.e. they act as cloud condensation nuclei. But they can also cause severe corrosive damage to man-made marine structures and ships as well as enhancing the levels of heavy metals, bacteria, viruses, etc. in the atmosphere

(Blanchard and Woodcock, 1980). Therefore an understanding of the processes that instigate wave breaking and thus the generation of marine aerosol is desirable.

There are several mechanisms responsible for the breaking of waves. In shallow water the influence of topography can cause breaking by shoaling, refraction, diffraction and deflection. However, in deep water, i.e. when depth of water is greater than about half the wavelength, the interactions of a) wind and wave, b) wave and wave, and c) currents and wave are the dominant mechanisms. In the context of this study the interaction of wind and wave is the most important aspect.

To a lesser degree the occurence and persistence of whitecaps is related to the water temperature and salinity (which control density and viscosity), the air/water temperature difference (thermal stability) and the presence or absence of surfactant material on the water surface.

2.2 The generation of waves by wind:

The generation of waves by wind action is imperfectly understood. The problem has been the subject of scientific debate since at least the last century. Several theories have been advanced over the years but none is entirely satisfactory.

In the mid-nineteenth century Kelvin and Helmholtz considered a theory concerning the interface between two fluids when there is a relative velocity between them. Theoretically waves would begin to form for wind speeds in excess of 6m/s, which is not a very close approximation to reality.

Eater Jefferys (1924, 1925) proposed a "sheltering effect" as a model for the generation of gravity waves. He suggested that wind blowing past small capilliary waves would create eddies on their leeward side, leading to a slight drop in pressure in this area. This implies that more work would be done on the descending particles of the windward side than would be done against the air pressure as the particles ascend on the leeward side (Fig. 2.1). The net result would be the propagation of waves through the transfer of energy from the wind. The theory, however, has not been satisfactorily tested and the minimum velocity of about lm/s for the generation of waves is still larger than is seen in nature.

As a result of the practical considerations associated with the second world war, Sverdrup and Munk (1947) devised a predictive method for the forecasting of wave occurence. They used the physical characteristics of waves as a basis for their calculations but more importantly they introduced the concept of the 'significant wave'. This is a notional wave whose height is equal to the mean height of the highest

third of the waves on a record and whose period is the mean period of this third of the waves. This added a statistical element to forecasting and allowed for the application of mathematical models to the problem. While the theory was used successfully in the 'forties some of the assumptions have since been shown to be without foundation (Kinsman 1965).

In more recent years Banner and Melville (1976) have returned to the Jefferys model. They calculated that air flow separates from the tip of a breaking wave to cause the pressure differentiation which provides the net energy input necessary for the propagation of wind waves. Perhaps the most extensive numerical and experimental work in this area has been done by Longuet-Higgins and others in several papers (discussed later) in which advanced modeling techniques are used to simulate wave structures and origins. However, it is still recognised that the generation of wind waves is imprecisely understood.

2.3 Geometry of a waye:

When wind blows over a calm sea it will quickly produce small wavelets, if the wind persists these capilliary waves increase in dimensions and become larger or gravity waves. Capilliary waves will persist only while the wind is blowing whereas surface gravity waves once formed will continue until some limiting factor comes into play. A steady

non-breaking wave is characterised by three properties, its wavelength (L), the water depth (d), and the wave height (H) (Fig. 2.1). It is the respective ratios and not the absolute values of these quantities which are important in defining any wave.

Once a wave has formed there are limits to the amount energy that it can receive and still of retain stability. These limits were recognised and defined by Stokes (1880) and Michell (1893), (Fig. 2.2). Stokes' theories are based on classical hydrodynamics omitting but taking the boundary conditions friction consideration (Sverdrup 1943). His results indicate that for low-but-finite amplitude waves the speed of propagation (the phase speed) increases with wave height. Thus for an ideal fluid the wave will take the form of a trochoid but as the amplitude increases the shape will increasingly deviate from the trochoid form, (Cokelet, 1977). Studies by Michell (1893) show that the wave .will become unstable if the included angle is less than 120° and that in this instance the ratio of height to length (the steepness) is 1:7.

2.4 Breaking of open-ocean wind waves:

Once a wave has reached its maximum free standing energy, as defined by Stokes and Michell, only a small amount of energy need be applied to initiate breaking. The actual point of breaking is perhaps the least well

understood aspect of the breaking mechanism. This is due to the ephemeral nature of whitecaps which, along with the almost infinite permutation of wave interactions in the open ocean, and scaling and other problems in simulation tanks, makes them difficult to measure.

Now in a non-breaking wave the fluid particles moving forward more slowly than the phase velocity. But as the wave grows higher with respect to its length the particle velocity approaches the phase velocity. The wave has reached its limit of stability when these two velocities are equal. A further increase in wave height will cause the fluid particles to overtake the wave itself and breaking It is interesting to note that as Cokelet will ensue. (1977) has pointed out, the highest wave is not the most energetic. The phase speed, momentum and energy increase, reach maxima and then decrease as the highest wave This suggests that there are two possible wave approached. heights for the same energy level and that a wave might 'jump' from one energy state to the other thus initiating breaking.

In the open ocean there are two main types of breaker, spilling and plunging, (Fig. 2.3).

The spilling breaker is the most common type of breaker in deep water (Banner and Phillips, 1974). The wave profile is characteristically almost symmetric. It tends to break

gently at its crest trapping enough air for the resulting air-water mixture to be significantly lighter than the wave below it, (Longuet-Higgins and Turner, 1974). The wave steepness and included wave angle are close to the limiting values of Stokes and Michell. The wave and whitecap are now separate entities with the whitecap riding down the face of the wave as a distinct turbulent flow under the influence of gravity. The turbulent flow will effect entrainment of water from the wave below and air from the front of the 'white water' plume thus maintaining the density difference. The whitecap will persist as long as it is lighter than the wave below. Cokelet has indicated that "for a 30° surface slope corresponding to the 120° corner flow, the plume [of this type of breaker] must be about 8% air".

The second kind of deep-water breaking wave is the plunging breaker. This type of breaker is much less common than the spilling kind. The profile of a plunging breaker is characterised by a high degree of asymmetry, typically with a well rounded back and a concave front (Fig. 2.3). During breaking the leading edge steepens and quite suddenly the crest is thrown forward and the wave turns over on itself. In the process an oval shaped tube of air is encapsulated creating large numbers of small submerged bubbles which give the familiar white water appearance.

While stating that, "plunging breakers are beyond the of all known analytical approximations" Longuet-Higgins and Cokelet (1976) have produced remarkable mathematical model for their simulation. They tested their model by applying it unsteady waves which had been produced by the application of non-uniform pressure distribution to the surface of a steady progressive wave. It was found that the wave steepened and developed a plunging breaker form. They also suggest that spilling breakers may begin by being similar in form to a plunging breaker but on a smaller scale.

2.5 Bubbles and the generation of marine aerosol:

Blanchard and Woodcock (1957) originally studied mechanisms for the production of bubbles at sea viz: breaking waves, rain, snow and the supersaturation of the sea by spring warming. However, they concluded that the last three would be important only on local а intermittent scale and that the first mechanism was the major one. The volume of air which is entrapped during and subsequent to the collapse of a breaking wave gives rise to a cloud of submerged bubbles. This cloud is carried by turbulence to a depth on the order of the wave height (Donelan, 1978). As previously noted, when these bubbles rise to the surface they form whitecaps. If no slicks or surfactant material are present the bubbles which reach the surface will burst almost immediately.

Work on the size distribution of bubbles beneath the surface has been done by Blanchard and Woodcock (1957). They recognised a spectrum of bubbles from less than $100\,\mu\text{m}$ to several millimeters in diameter. The concentration of all bubbles was about $10^8/\text{m}^3$.

On bursting these bubbles release two types of droplets into the atmosphere, film and jet drops. Film drops are created by the rupturing of the top thin film of the bubble as it drains subsequent to reaching the surface. When this happens the bubble immediately collapses and a vertical column of water is ejected from the cavity. The breakup of this 'jet column' gives rise to jet droplets. The size of the drops produced and the height to which they are ejected is dependent on the bubbles which produce them (Blanchard, 1963).

In certain conditions i.e. when wind speeds exceed about 10m/s, an important extra aerosol component may be due to "the impaction of spray droplets which have been mechanically sheared from the wave crest" (Monahan, 1982), this phenomenon has also been alluded to by Lai and Shemdin (1974) and Wang and Street (1978), (Fig. 2.4).

Stuhlman (1932), as reported by Blanchard (1958), has computed that drops from bubbles of less than 100µm diameter are ejected at speeds in excess of 30m/s. He also observed that the top jet drop will be ejected to a height on the

order of one hundred times the original bubble diameter and its diameter will be about 10% of that of the parent bubble.

2.6 The nature of marine aerosol particles:

Some of these drops will quickly fall back into the sea while others will be borne aloft, the proportions of each being governed by the relative humidity and the degree of turbulence above the ocean. On entering the atmosphere the drops begin to evaporate and the amount of evaporation which occurs will depend on the relative humidity. However, the salt mass will remain the same and the particles are referred to as sea-salt aerosol. This is, perhaps, the largest natural contributer of particulate material to the global atmosphere.

It would appear to be obvious that particles which have their origin in the ocean would have a composition close to that of sea water. However, Blanchard (1963) has pointed out that while this would be correct for the 'giant' particles with radii greater than about 1µm it might not be strictly true for the 'large' particles with radii smaller than this. Indeed Blanchard also notes that "nuclei which originate in the sea come not from the bulk water, but from the surface layer whose chemistry may well be different". Horne (1969) has attributed this difference in composition to "interfacial ion fractionation processes accompanying the breaking of small bubbles at sea".

It is generally recognised that the percentage of the ocean that is covered by whitecaps increases as a function of the wind speed increase. The most extensive work in this area is that of Monahan (1971) and Monahan and O'Muircheartaigh (1980). In agreement with previous work (Blanchard, 1963; and Gatham and Trent, 1968), Monahan found that whitecaps begin to appear for wind speeds of about 3.5m/s. He also presents a power-law expression (eqn. 1) for the W(U) relationship which is applicable for wind speeds between 4 and 10m/s.

$$W = 1.35 \times 10 \quad U$$
 [Eqn. 1.]

In Monahan and O'Muircheartaigh (1980) an extensive review of various whitecap versus wind speed expressions W(U) is presented. Here it is suggested that either:

$$W = 2.95 \times 10 \quad U$$
 [Eqn. 2.]

or

$$W = 3.84 \times 10^{-6}$$
 [Eqn. 3.]

be "adopted for the estimation of the fraction of the ocean surface covered by whitecaps from a measurement of winds at 10m elevation". (Where OLS is ordinary least squares and RBF is robust bi-weight fitting, these being the designations for the statistical methods used in the evolution of the individual expressions).

As noted above the entrainment of air during whitecapping gives rise to large quantities of submerged bubbles. Now it is accepted (Blanchard and Woodcock, 1980) that the most important mechanism for the production of marine aerosol is the bursting of these bubbles.

The relationship of marine aerosol production to wind speed has oft been studied, e.g. Monahan (1968), yet until recently little data were available describing simultaneous sea-salt aerosol concentration and oceanic whitecap coverage. Toba and Chaen (1973) collected such a data set from the western Pacific ocean. These measurements were later augmented by results from the JASIN (Monahan et al., 1982c, 1983, and the present study) experiments.

Toba and Chaen regard the W(U) function as a good "first approximation". Instead of U they prefer to use the dimensionless variable $u^* L/_V$, where u^* is the friction velocity, L is the 'significant' wave length and v is the kinematic viscosity of the air. And it is this quantity which they plot against droplet numbers.

Attempts have been made from these and laboratory studies to estimate the global flux of sea-salt aerosol (Blanchard and Woodcock, 1980; and Monahan et al., 1982a).

Summary:

In summary the Wind - Wave - Whitecap - Bubble -

Aerosol progression is a cause-and-effect sequence, with the production of whitecaps and aerosol particles being primarily dependent on the wind velocity.

Figure 2.1.

Schematic representation of sinusoidal wave characteristics. With wavelength (L), height (H) and speed (c) shown. The wave is moving from left to right. Note the water particle orbit directions and their exponential decay with depth.

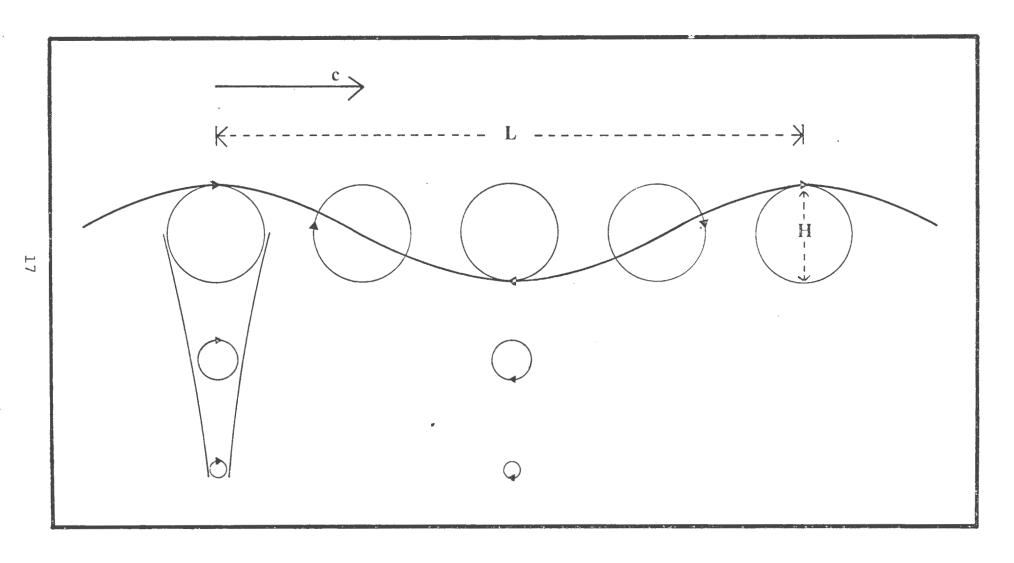


Figure 2.1. Schematic representation of sinusoidal wave characteristics.

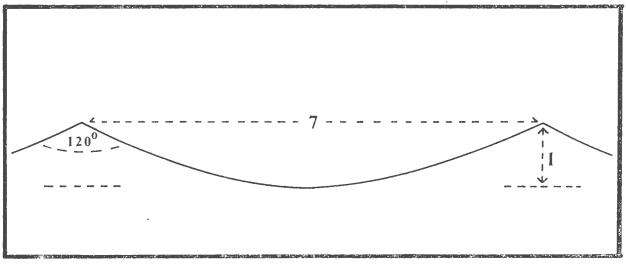
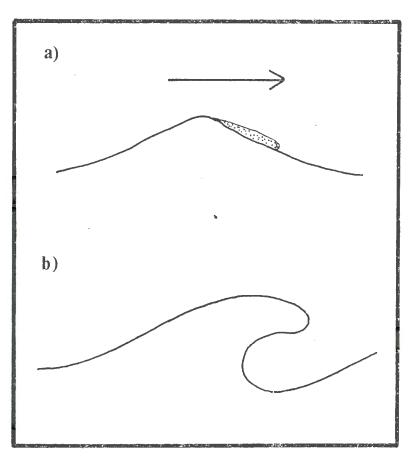



Figure 2.2.

Geometrical limitation of the steepest possible wave of Stokes and Michell. When the minimum included angle is 120° then the maximum steepness (H/L) is 1:7 or 0.142.

Figure 2.3.

Line sketch of a) spilling and b) plunging breakers. Wind direction is indicated by arrow. Note the almost symmetrical profile of the spilling wave and the high degree of asymmetry of the plunging breaker, with its well rounded back and concave front.

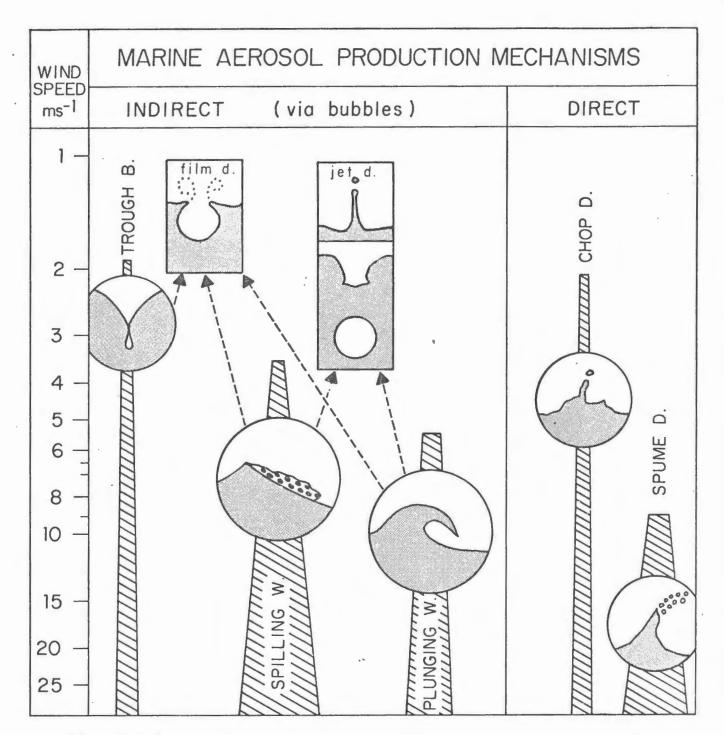


Figure 2.4.

Schematic representation of the relative importance of various marine aerosol production mechanisms. The relative widths of the shaded columns, at any particular wind speed, are meant to indicate the relative significance of the direct and indirect production mechanisms represented by the various columns.

Key: B, bubbles; d, droplets; D, drops; W, waves.

[from Monahan 1982].

CHAPTER 3.

HISTORICAL REVIEW

"Iron sharpens iron, and one man sharpens another." Proverbs.

Introduction:

This chapter is primarily concerned with the development of theories on the nature and origin of marine aerosol particles. The subject is intimately conected with the occurance of oceanic whitecaps which has been discussed in the previous chapter. The production of marine aerosol has for long been of special interest to observers in Ireland so a brief sub-section on the Irish contribution to this field has been included.

3.2 Aerosol research:

A name which is immediately associated with early work in the field of aerosol physics is that of John Aitken. In 1881, (in an elaboration of earlier work by Coulier, 1875) he used a laboratory expansion chamber to demonstrate the importance of atmospheric dust particles in the formation of water droplets from water vapour, thus suggesting a mechanism for the formation of clouds. He also proposed that "In all probability the spray from the ocean, after it is dried and nothing but a fine salt dust left, is perhaps one of the most important sources of cloud producing dust."

He developed a 'nucleus counter' for the purpose of measuring the concentrations of such particles and in later work (1911) he investigated their physical and chemical properties.

Although Wigand (1919) contended that the continents and not the oceans were the main source of cloud condensation nuclei (CCN), the production of aerosol particles from the sea remained as the focus of interest for most researchers (e.g. Owens 1926). Later Findeisen (1937) argued against a significant oceanic contribution, believing that droplets of less than 10µm in radius could not be produced by spraying. This notion was finally refuted by both Owens (1940) and Kohler (1941).

Wright (1940) demonstrated empirically that large amounts of sea-salt aerosol were indeed present in the atmosphere but a satisfactory mechanism for the injection of these particles had yet to be suggested. Wright resurrected the 'Melander effect' from the end of the last century which proposed a liberation of sea-salt particles through the direct evaporation of sea water. This mechanism was finally shown to be incorrect by Lodge et al., in 1954.

However, Stulhman (1932) and Jacobs (1937) had already recognised that the collapse of bubbles at the sea surface could be an important source of cloud condensation nuclei. This mechanism was again suggested by Woodcock (1948).

Intensive work by Boyce (1951) and Woodcock et al., (1953), amongst others, soon uncovered the full importance of the bursting of bubbles in the process of injection of aerosol particles into the atmosphere. This process was confirmed using high-speed film by Kientzler et al., (1954). This work focussed attention on the exact mechanism of bubble collapse.

It was also realised that besides the droplets which are produced by the disintegration of the upward jet of water (jet drops) other smaller drops are produced by the rupturing of the initial thin film on 'top' of the bubble (film drops).

Facy (1951) had already pointed out that the production of particles from isolated bubbles would be insignificant. Blanchard (1963) also concluded that the production rate from single bubbles would be low.

Blanchard and Woodcock (1957) had determined that breaking waves were the predominant mechanism for the production of bubbles. Blanchard (1963) also noted that the nature of the bubble spectra would determine the size and amount of aerosol particles produced by a breaking wave. Since that time a great deal of attention has been paid to bubble spectra e.g. Medwin (1970, 1977) and Johnson and Cooke (1979).

However, some confusion still existed over the nature of cloud condensation nuclei. Blanchard (1963) states that they will probably though not neccessarily have the same composition as that of sea water. Twomey (1971) suggested that because of the organic content of such particles they could not have their origin in the ocean. But as Blanchard (1971) has pointed out the presence of organic material in no way precludes an oceanic origin. He suggests that cloud condensation nuclei could be derived both from the sea and the atmosphere.

Extensive reviews in this area have been produced in recent years by Blanchard and Woodcock (1980) and Podzimek (1980).

Aerosol Research In Ireland:

Investigations into the aerosol content of the air have been carried out in Ireland for more than one hundred years. Over the years a considerable amount of maritime data have been collected from around the country, much of this on the western seaboard. These data provide useful background information for comparison with the measurements taken at the U.C.G. field station on Inishmore, Co. Galway.

Ireland lies in the path of the various westerly air masses which proceed from the North Atlantic ocean. These predominantly maritime winds coupled with the North Atlantic drift currents from the Gulf Stream System give the island its characteristic cool, temperate, oceanic type, climate. O'Connor (1981) notes that, on average, about 150 fronts pass over the country annually. The variability of this regime combined with the comparative absence of artificial sources of contamination is particularly suited to the sampling of the marine component of the natural aerosol.

As early as 1870 Sigerson was taking samples of air in and around the city of Dublin. This was in connection with the health effects of the contents of the atmosphere. At this time Tyndall, Stokes, Joly and others were engaged in the controversy over the "germ theory" of the propagation of disease which neccessitated microscopic analysis of the air. Sigerson also took samples from "the sea breeze" at various

locations around the north and west coasts of Ireland. He found that glass exposed to the sea was quickly tarnished with 'crystals innumerable' which because of "their shape and the circumstances, were recognised as chloride of sodium, or common salt". He also noted that "Comparatively few crystals of sulphate of magnesia" were found.

By the turn of the century McClelland (1903) had begun work on the ionisation of the atmosphere, work that was to set the theme for research into atmospheric electricity in Ireland over the next several decades, e.g. McClelland and Nolan (1912), Nolan and Nolan (1937), Nolan and Doherty (1950), and Keefe et al., (1968).

The brothers J.J. and P.J. Nolan made important contributions to the field of atmospheric ionisation and the cloud condensation nuclei content of the air (Nolan and Guerrini, 1935, and Nolan et al., 1938). This work was eventually to lead to the development and refinement of the portable Nolan/Pollak photo-electric nucleus counter (Nolan and Pollak 1946), an improved version of which is described by Pollak and Murphy (1952).

The standard, 1957 model or Dublin instrument, calibrated by Metnieks and Pollak (1959), is regularly employed as a reference instrument (Hogan, 1981; and Winters et al., 1977), while variations on this model are still used to measure the Aitken component of the natural

aerosol content of the atmosphere (Gras and Ayers, 1983).

increase in aerosol The 'fifties saw an research especially by the members of the School of Cosmic Physics in Dublin under the direction of Prof. L. Quite a lot of attention was paid to maritime measurements, particularly on the west coast (Pollak and Murphy, 1952; O'Connor and Sharkey, 1960; and Metnieks, 1958). Metnieks' sampling locations included a site on Inishmore Co. Galway, while O'Connor sampled extensively at Mace Head which is on the mainland only a few kilometers from the present site of the U.C.G. field station on the island. Several attempts have also been made to relate the aerosol concentration to other meteorological conditions, such as the work of McWilliam and Morgan (1955) and Georgii and Metnieks (1958). Indeed Aitken nuclei concentrations have been measured by the Irish Meteorological Service for over thirty years (O'Connor, 1981).

Research continued through the 'sixties at many centres around the country. O'Connor and others worked on the production of aerosols both in the field and in laboratory experiments (O'Connor and Sharkey, 1960; and O'Connor, 1963; 1966). Subsequently the trend was toward laboratory explorations of aerosol production mechanisms and measurements of electrically charged particles (O'Connor and Roddy, 1966; and Jennings and O'Connor, 1971).

A short review of the Irish contribution to the study of atmospheric aerosols is presented by O'Connor (1981).

CHAPTER 4.

THE INISHMORE FIELD STATION.

"Capaill Mhannáin ag rith i ndiaidh a chéile go dtí an trá." Pádraig Piarais.

Introduction:

sampling field station In 1979 a marine aerosol was established on Inishmore Co. Galway by the Physical Oceanography Unit of the Dept. of Oceanography at University Since that time the station has College Galway (U.C.G.). several monitoring experiments been the site of (see 4.2.), including a co-operative study with Appendix scientists of the Naval Postgraduate School (N.P.S.) in summer of 1980. The field station was also the site of one stage of the Arctic Air Sampling Programme (Rahn, 1981).

A description of the location and makeup of the station follows. Relevant experiments and their instrumentation are also described. The results and conclusions of the various experiments are presented in chapter 5.

4.2 The station:

The field station is located on the windward shore of Inishmore. It is comprised of a fifty foot lattice mast and an adjoining instrument shelter with power being derived from a 2kW LISTER generator. The instrument probes and sensors are mounted on the mast while the chart recorders and data processors are housed in the shelter which also has

seating accommodation for two to three operators. The station is situated in a barren limestone 'field' about 500m from the small village of Gort na gCapall and five kilometers due west of the main population centre and port of Kilronan (Figs 4.1/2/3).

Inishmore is the largest of the Aran Island group which straddle the mouth of Galway Bay. It has an area of 50 sq. kilometers and a population of some 1,100 people. The structure of the island is, geologically, very simple (Langridge, 1973; and Whittow, 1974). It is composed of largely undisturbed Carboniferous limestone dipping gently (0-10°) south-westward toward the Atlantic Ocean. Almost the entire south-west coast is formed of vertical cliffs as much as 100m high in places. Those south of the station rise to about 20m, while immediately to the west is the low-lying cove of Portveeladone.

The area in the vicinity of the station is quite treeless with extensive areas of stepped limestone pavement and an intricate pattern of drystone walls. Despite the outward appearance, however, the ground flora is varied with many exotic ferns and other plants flourishing in the network of grikes which are a feature of the island.

4.3 Survey of field site:

It was felt neccessary to carry out a survey of the environs of the station in order to establish accurately the

position and elevation of the lattice tower and to delineate the physical features which might influence the passage of aerosol particles to the monitoring probes. The survey encompassed an arc from 150-250° (from true north) around the station. Winds from outside this sector would travel some distance overland and so vould not be representative of the open ocean.

Initially it was necessary to 'transfer' a spot-height some two kilometers across country using a level and staff. This was done in order to obtain the base height of the mast. The base figure of 19.20m is accurate to within a few cms (± .02m) which is more than sufficient for our purposes. The position of the tower within the 'field' was then established and a series of six radiating cross-sections were surveyed.

Using these figures and a 'stereo pair' of photographs of the area it was possible to draw an accurately contoured sketch map of the site (Fig. 4.4). The cross section profiles of figure 4.5 were also obtained from these data. They graphically illustrate the topography of the area and they give an indication of the 'flight paths' of aerosols from the ocean to the sensors on the tower.

4.4 Sampling considerations:

In general remote island stations offer many advantages for marine aerosol measurements. Amongst these is the

considerable benefit of a data set collected at a fixed location over an extended period of time (Blanchard and Syzdek, 1972).

Inishmore is very favourably positioned for such measurements lying as it does in a prevailing westerly airflow with a fetch of several thousand kilometers over the north Atlantic Ocean. There are no important sources of anthropogenic contamination on the island and most minor sources, such as houses, are located on the leeshore well downwind of the sampling site.

However, as with all near-to-shore stations (Duce and Woodcock, 1971; and Blanchard and Woodcock, 1980), the Inishmore site suffers occasionally due to the proximity of the shoreline surf zone.

We have noticed that when the sea has a 'large' swell component and winds exceed 7-8m/s spray from the surf zone is visible above the cliffs in the area of the station. When these conditions prevail at high tide south-westerly winds (245-285°) could carry ejected particles upslope to the instruments. For 'southerly' winds this is far less likely to occur due to the increased distance to the foreshore and to the height of the cliffs immediately above the surf zone.

The problem of aerosols produced by the drying of seaweeds, as mentioned for example by O'Connor (1963), is also avoided as the nature of the rocky bottom and the sometimes stormy sea is not conducive to the growth of seaweeds above the low-water mark in this area. The additional problem of aerosols produced by the evaporation of seawater residue at low tide (Pollak and Murphy, 1952) has also been considered but has not been fully investigated.

4.5 Instrumentation on Inishmore:

For aerosol measurements to have any relevance they must be viewed in the context of the meteorological conditions prevailing at the time of their collection. The following meteorological parameters were measured at regular intervals during each collection period at the station: 10m Elevation Wind Speed (U_{10}), Wind Direction (WD), Relative Humidity (RH), and Air Temperature (Ta).

Time of day etc. was also noted, and where appropriate, sea-state, tide level, and local surf zone extent were recorded, either visually or, less commonly, on film. Meso-scale weather conditions were also taken into consideration.

Various aerosol particle measuring devices were used at different times depending on circumstances and availability. However, the standard monitor was a ROYCO aerosol particle counter model 225. This instrument consists of a mainframe

unit which is connected (via a vacuum line, clean-sheath air return and a signal/control cable) to a seperate optical sensor unit model 241. The mainframe instrument is housed in the shelter while the sensor is mounted on the tower in a protective cover. The sample intake hose extends to the six meter level on the tower which is about 25m above the sea.

The optical unit is responsible for the sensing of the particles and the generation of the data signal. An air sample is streamed through a beam of very highly focussed light. Any light scattered by aerosol particles present in this sample is collected in a 'light trap' which effectively acts as a dark-field microscope to screen out any non-scattered light.

The collected light is then focussed onto a photomultiplier tube which generates signal pulses in proportion to the intensity of the illumination falling The amplitude of these signals is a function of the size of the particles, (there may, however, be problems with interpretation of these signals, see Schacher et al., 1981). The pulses are then transmitted to the counter mainframe which contains the processing electronics. they are counted and sorted into two 'channels' on the basis of preset size criteria. At the end of each sampling interval the particle counts and corresponding size are displayed on the plug-in module.

The counter will measure particles of 0.25µm radius and larger in concentrations of up to 3.5 X 10⁹ per cubic meter. At high aerosol counts (much greater than 100,000 counts/minute) co-incidence errors must be taken into account. These errors are easily rectified by means of a simple correction graph. In ccuracies may also occur when sampling particles of over 2.5µm radius in winds of more than a few meters/second, due to problems of non-isokinetic sampling.

For all experiments on Inishmore aerosol concentrations were measured in the size ranges 0.25-2.5µm (N0.25+), and greater than 2.5µm radius (N2.5+). Count intervals were usually of 60s. duration but 30s. and 300s. averages were sometimes taken, depending on the circumstances.

On two occasions during the project aerosol samples were taken using a portable Nolan/Pollak photoelectric nucleus counter, as described by Pollak and Murphy (1952). This is a straightforward device which estimates the number of water droplets which have formed on nuclei in the instrument's sample chamber where an overpressure has been released to form a fog. The principle is that the attenuation of a beam of light through the cloud is a function of the number of nuclei present in the sample. It was intended that these readings should be compared with similar readings taken previously in the same general area with this counter (Pollak and Murphy, 1952; O'Connor and

Sharkey, 1960; and Metnieks 1958).

During the period 23-28th. June 1980 a cooperative experiment was carried out at the field station with scientists from the Naval Postgraduate School The usual meteorological parameters, wind Monterey, Cal. speed etc. were monitored and whitecap coverage and local surf zone state were recorded photographically. At the same time aerosol size spectra obtained were using two Knollenberg counters mounted on the mast.

One of these probes was a Particle Measuring System's (P.M.S.) Classical Scattering Aerosol Spectrometer Probe (CSASP) while the other was a P.M.S. Active Scattering Aerosol Spectrometer Probe (ASASP) which detected droplets with radii between 0.5 to 15µm and 0.1 to 3µm respectively.

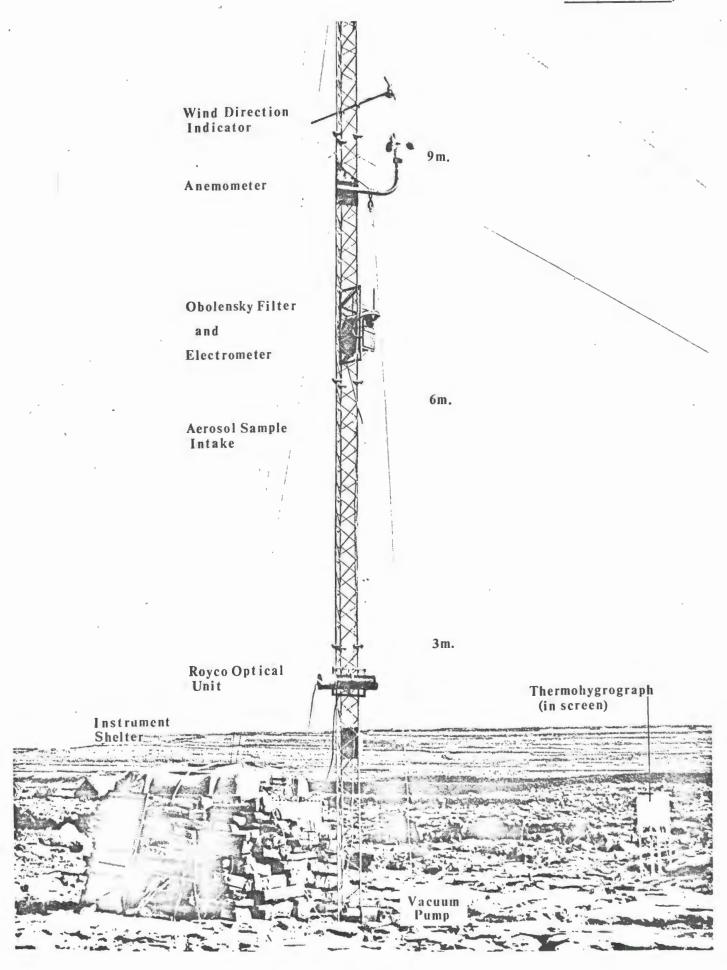
These are sophisticated aerosol measuring devices which operate on the principle that light scattered by a particle within a lasar beam is directly a function of the particle 1981). size (Schacher et al., The two probes cover overlapping size ranges between 0.1µm and 15µm radius have the advantage of providing highly detailed aerosol size spectra for each data averaging period. The signals from these counters were processed by a mini computer conjunction with a data acquisition system. A 'hard copy' of these data were made available on a printer unit. At the same time all of the data were being recorded, along with

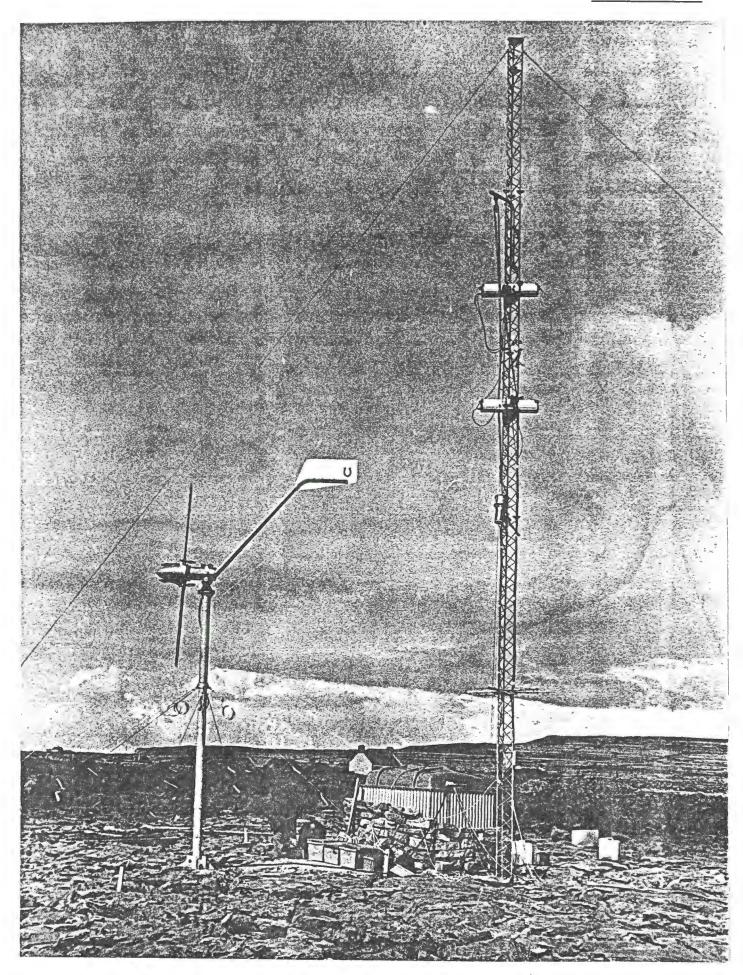
time of day etc, on a KENNEDY incremental tape recorder.

During the experiment a total of sixty-six marine aerosol size spectra were obtained. Unfortunately, for three of the four days on which samples were taken 'north westerly' winds (285-320° from true north) prevailed. This regime presented two problems. Firstly, the probe intake angle which had been fixed at 240°, differed by as much as 80° from the wind direction which would present sampling difficulties, due to the low angle of incidence of the particles to the intake orifices. And secondly, winds from this direction would have passed over the western part of the island and so would be liable to contain terrigenous contamination.

On the last day of sampling (27th. June) the prevailing winds were 'south-westerly' (215-250°). On this day eight aerosol spectra were obtained which are more representative of open ocean conditions. The results from these experiments are presented in the next chapter. All-in-all the experiments have been fruitful. The main problem has been the maintenance of sensitive electronic equipment in a hostile environment.

The specifications of the instruments used in the Inishmore experiments are given in Appendix 4.1.


Outline map of Inishmore showing location of aerosol sampling field station.


FIGURE 4.2:

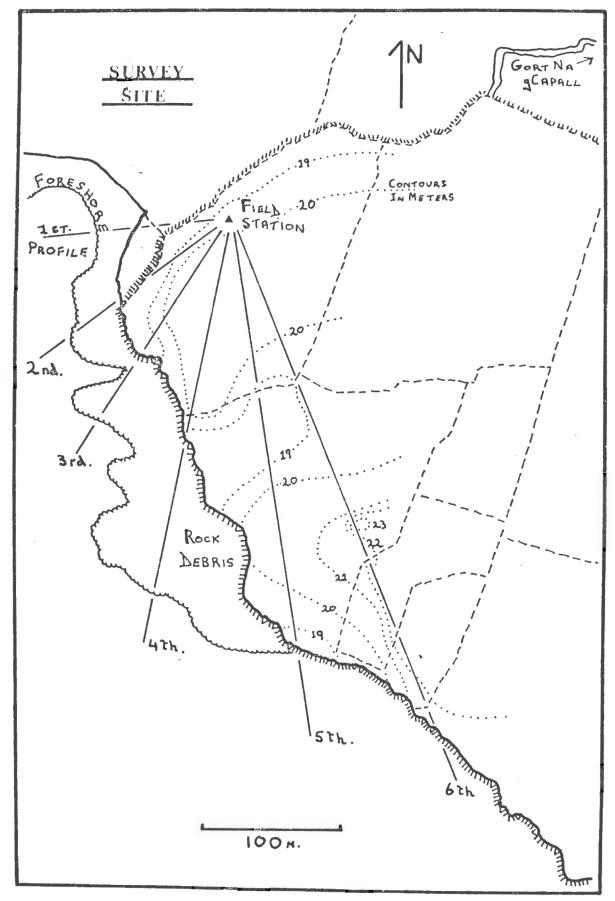

Photograph of the field station on Inishmore showing a typical instrument array. Instruments mounted on the tower are as follows: at 10m the wind direction indicator and MUNRO cup anemometer, at 7m are the KEITHLEY 602 portable electrometer connected to an Oblensky filter which is itself directly connected to a vacuum pump at the base of the tower. The ROYCO aerosol particle measuring system optical unit is at 3m while the intake hose extends to an elevation of 6m. The instrument shelter is on the left with sensor cables passing through the cable-port. The screen containing the CASELLA thermohygrograph can be seen on the right.

FIGURE 4.3:

Instrument array on tower during U.C.G./N.P.S. co-operative experiment. The Classical Scattering Aerosol Spectrometer is at 11m, the CASELLA anemometer is at 9m, the Active Scattering probe is at 8m, and the temperature/humidity probe is at 6m. An experimental installation of the AEROWATT wind generator is in the left foreground.

FIGURE 4.4:

Sketch map of the environs of the field station on Inishmore. Numbered lines correspond to profiles illustrated in Fig. 4.5. Contour lines are shown at Im intervals along with prominent field boundaries.

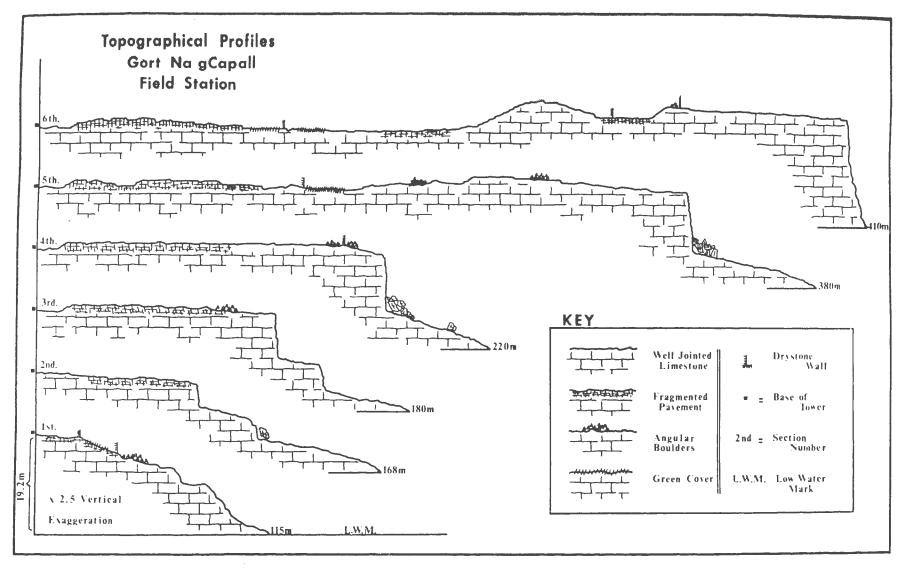


FIGURE 4.5:

Topographical sections through field station site. All profiles have their origin at the base of the tower (19.2m above O.D.) and radiate toward the foreshore.

CHAPTER 5.

RESULTS OF THE EXPERIMENTS ON INISHMORE

"To explore an island is to court obsession."

T. D. Robinson.

Introduction:

During two years of sampling on Inishmore a large body of aerosol and associated data was collected. In this chapter the aerosol data are analysed with respect to the dependence of particle concentration on variations in such factors as wind speed and direction and with regard to the origin of the aerosol particles. The data are compared to previously collected sets of broadly similar measurements, and as many of these earlier measurements were carried out at sea the factors influencing shoreline-, as opposed to noted. The comparative shipboard-, measurements are relationships of "smaller" to "larger" particles are also investigated.

5.2 The data:

On Inishmore aerosol measurements were made primarily with the ROYCO device. As stated in Chapter 4 aerosol concentrations were measured in two size ranges, the "larger" particles which include all those with radius greater than 2.5µm, (N2.5+) and the "smaller" particles with radii between 0.25 and 2.5µm, (0.25+). These ranges, which encompass the bulk of the atmospheric aerosol mass of marine origin, correspond closely to the so-called Giant and Large

particles respectively (Roll, 1965) and, for convenience, will henceforth be referred to as such.

5.3 Aerosol dependence on wind direction:

In addition to a classification based on their size aerosols can be further categorised according to their origin i.e. according to the type and source of the "air mass" in which they are contained. A classification of the principle air mass types, as defined by McIntosh and Thom (1969), is presented in Table 5.1., and a schematic diagram of the various air masses which affect Ireland is shown as figure 5.1.

In order to categorise satisfactorily the Inishmore in this fashion air mass movements and the resulting wind trajectories were extrapolated backward over several This was done using standard Royal Meteorological days. Society (R.M.S.) charts as well as "wind history" records derived from the measurements taken at the meteorological station at Belmullet, which is situated about sixty miles north of Inishmore. Figure 5.2. shows two examples of computer simulated wind history events for a six day period prior to measurements being taken. The straightforward track of the westerly airflow can be viewed with some The track of the easterly airflow is more confidence. complicated with the passage of a high pressure system being represented by the "loop" over the Celtic Sea. Because of such complications the simulations are accepted as

accurate only for a period of fourty-eight hours. Further insights into the origins of the air mass are based on the examination of the movement of frontal systems etc. using the R.M.S. charts.

Two main types of atmospheric aerosol are present station, continental particles which have their origins on land and oceanic particles which are derived primarily from the breaking of whitecap bubbles on the sea surface. The sampling situation on Inishmore is complicated by the small but active local surf zone. presence of Contamination from this zone limits the number of oceanic measurements which can be truely recognised as Therefore, it has been assumed that three, rather than two, categories of aerosol have been sampled at the station depending on the direction of approach of the air mass which the aerosol are contained.

The first class of aerosol is the maritime category which includes those particles whose flight path carries them directly across the open ocean to the instruments i.e. They approach from a broadly southwesterly (135-285°) direction. This is the predominant wind direction on Inishmore (the few trees on the West of the island have their growth stunted in this direction).

The second category includes those particles which approach from a "north to north-easterly" direction i.e. 315 through 360 to 105, these are the land particles. Particles derived from the local surf-zone (285-315° to the west and 105-135° to the east) make up the third division. When the surf is particularly agitated, during high winds at high tide, these particles can have a considerable influence on aerosol counts. Also, as the waters in this area are particularly nutrient rich (as is apparent from the deep green colour), particle concentration may be increased due to the accumulation of organic surfactant material which can several layers thick in such zones (Duce and Woodcock, 1972) i.e. the aerosol concentration will be much higher than on the open ocean. A synopsis of all data is contained in Table 5.2. The air-mass types follow the classification McIntosh and Thom (1969) and a further sub-category is added according to the direction of approach to the instruments: Sea (S); Land (L); Surf Zone (Z).

5.4 Aerosol dependence on wind speed:

It is to be expected from previous work (Monahan <u>et</u> <u>al.</u>, 1982 and Latham <u>et al.</u>, 1982) that the strongest influence on the production of the larger marine aerosol particles will be the instantaneous wind speed. For the Inishmore data the relationships between the number concentration of the Large and Giant particles (N) and the wind speed (U) are shown in figures 5.3. and 5.4.

respectively. A regression line is fitted to the continental and maritime data within each size category using Ordinary Least Squares techniques. For each plot the aerosols have been sorted into wind speed increments and the mean and standard deviation calculated. The slopes and intercepts for the relationships appear in Table 5.3.

As can be seen from figure 5.3. there is but a weak to negative relationship between the Large continental and maritime particles and wind speed. This is to be expected, for aerosol particles with sub-micron radii tend to have residence times measured in hours or days rather than minutes (Prospero et al., 1983).

There is, however, a strong positive relationship between the Giant, whitecap derived, maritime particles and the instantaneous wind (Fig 5.4) with a slope for the regression line of 1.39. The fit for the Giant continental particles versus the wind is less strong.

5.5 Other effects on particle concentration:

Apart from the dominant influence of wind speed the two meteorological parameters which would be expected to have an effect on particle concentration are relative humidity and turbulence (Toba, 1965).

During measurements on Inishmore the relative humidity varied from a minimum of 66% to a maximum of 96% with mean values of around 80%, indeed for most of the time values remained within about 10% of this mean figure. In analysing the aerosol results no direct allowence has been made for relative humidity fluctuations. However, because of the limited range and the comparitively few occasions when values exceeded about 90% it is safe to assume that relative humidity changes would have no significant effect on particle concentration (Latham et al., 1982).

It would also be possible for diffusivity due to increasing turbulence with increasing wind velocity to negatively effect the particle concentration (Tennekes and Lumley, 1972). Latham et al., (1982) have examined the effects of both mechanical and convective turbulence on the depth of the boundary layer. They concluded that, for maritime air, when wind speed related particle production rates are taken into account "a strong inverse relationship exists between the number concentration of large particles and mixing height". It is also noted here, however, that the changes in mixing depth and relative humidity are "small compared with the overriding effect of windspeed".

5.6 Comparison of results with similar data sets:

When considering the Inishmore measurements it has been assumed that they would be representative of results obtained at sea under broadly similar conditions. To a

certain degree of course, this is not the case. Island measurements may differ from open ocean measurements for Blanchard and Woodcock several reasons. (1980)have indicated that winds on the open ocean may be about than those crossing the windward shore of, even a higher small nearby island. The proximity of the surf-zone to the station on Inishmore has already been much alluded to. noted by Duce and Woodcock (1970), surf contamination may influence both the concentration and composition of the particles reaching downwind instruments. On a local scale the station topographical roughness (see chapter 4) may lead to turbulence and eddies which could affect wind speed measurements to an unknown degree. On some shore stations anthropogenic pollution could be a problem but this is not so for Inishmore. It is neccessary to bear this information in mind when comparing the Inishmore results with other data sets, especially those collected on the open ocean.

STREX 1980.

The Storm Transfer and Response Experiment (STREX) took place in the Gulf of Alaska in the winter of 1980. The experiment and its results are set out in chapters 6 and 7 of this study. Because of the failure of the ASASP probe during the STREX experiment no data are available on the contribution of the smaller particles to the atmospheric aerosol spectrum. However, for larger particles it is possible to compare the STREX and Aran data directly. The

Giant particle concentration on Inishmore can be compared to the calculated quantity N(2.5+), which is defined as the number of aerosol particles with radii greater than $2.5 \, \text{um}$, per cubic metre of air, as measured during STREX.

In order to calculate the quantity N(2.5+) from the STREX data-set a power-law fit for dN/dr, the number of aerosol particles per unit increment droplet radius, versus droplet radius, r, was assumed.

Now, if
$$dN/dr = Ar$$
 then $N > r = \frac{A \cdot r_0}{(1-b)}$ [eqn 1]

so
$$N(2.5+) = A 2.5$$
 [eqn 2]

but V(r)dN/dr = dV/dr. So we must divide dV/dr, the fraction of the marine air volume filled by aerosol droplets, per unit increment droplet radius, by the volume of the droplet of appropriate aerosol radius to obtain dN/dr. Three dV/dr sets are available from the STREX data for droplet radii of (2,5, and 15 μ m). A straight line is then fitted to a graph of log dN/dr versus log r to find the equation: log dN/d = C+b log r or $dN/dr = 10^C$ r b . The quantities C and b are then substituted into equation 1, (where A = 10^C).

When N(2.5+) is plotted against U for STREX a slope of 1.40 is obtained and when N(2.5+), which is equivalent to the Giant particle range, is plotted against U for the Aran data a slope of 1.37 results. If the Aran winds are

averaged over twenty minute to make them directly comparable with the STREX data a slope of 1.39 is obtained from a N(2.5+) versus U plot (Fig. 7.5).

It can be concluded that although they were collected under different circumstances there is significant agreement between the STREX and Inishmore results.

Lovett (1978).

Another set of broadly comparable readings were obtained by Lovett (1978) on board "stationary" weather vessels in the eastern-North Atlantic Ocean. Lovett was concerned not with number concentrations but with the 'total salt load' of the air as a function of wind speed. He used an expression of the form

 $\ln \theta = aU + b$ [eqn 3]

(Where θ is the sea-salt concentration in $\mu g/m^3$) to represent the relationship of θ to U. He concluded that a slope (a) of 0.16 with a standard deviation of ± 0.06 was the best-fit to his data, i.e. it was the mean slope of the various regression lines which he fitted to the data set.

This fit is compared to previous studies of the same parameters by Woodcock (1953), at cloudbase near Hawaii, and by Toba (1965), aboard ship in the Pacific Ocean. These studies yielded slopes of 0.16 and 0.12 respectively. More recently Latham et al., (1982) report a value of 0.17 for a slope derived from shore based measurements of tained on the

island of South Uist in The Western Isles of Scotland. Prodi et al., (1983) report a best-fit for the 0 versus U relationship of $\ln c = 0.13U+1.77$ for data obtained on a cruise from the Mediterranean Sea to the Indian Ocean. Gras and Ayers, (1983) collected data at 94m elevation on the west coast of the island of Tasmania. They present an expression $\log v = 0.015U$ -11.9 as the best-fit for v, the salt volume, as a function of the wind speed in km/hr. When the Inishmore data are expressed in similar terms a slope of 0.027 is obtained.

On first sight it would not seem that the results outlined above would be comparable to the number concentration versus wind speed relationships as obtained on Inishmore. However if some simple assumptions are made useful comparisons can be drawn.

It must first be assumed that the quantity N(2.5+) is proportional to the mass concentration of whitecap derived sea salt particles on Inishmore. An examination of figure 5.6a. (the volume spectrum of aerosols on the island) will show this to be correct. There are two distinct maxima present on this curve. The most prominent occurs amongst the particles with radii in the sub-micron range. But the importance of this component is diminished for two important reasons. Firstly, a large proportion of the particles present in this 'bulge' are continental, non-sodium chloride, particles, and secondly, because of the protracted

residence times of the sub-micron particles, their concentration would have little or no correlation with immediate wind speed (Fig. 5.4).

There is a second bulge on this diagram representing an increase in aerosol numbers with radii above about $2\mu m$. This bulge corresponds to the whitecap derived particles which make up the bulk of the sea-salt load in the atmosphere. From this we can conclude that the quantity N(2.5+) will be essentially proportional to the total salt load and hence that the slope (a) of θ versus U should be directly comparable to that of N(2.5+) versus U.

When the aerosol results from Inishmore are expressed in a form similar to equation 5.3., i.e. $\ln N = aU + b$, the following relationship is found,

$$ln N(2.5+) = 0.21U + 9.55$$
 [eqn 4]

This result is well within the standard deviation range set by Lovett and almost exactly matches the sample figure which he presents. A diagram of ln N(2.5+) versus U for the Inishmore data appears as figure 5.5. It may also be noted that the slope of 0.21 compares quite favourably with the quoted results of Woodcock (1953), Toba (1965), Latham et al. (1982), Prodi et al. (1983) and Gras and Ayers (1983).

5.7 The U.C.G./N.P.S. co-operative experiment:

This experiment lasted for four days during the summer of 1980. The instrumentation and methods are fully

described in Chapter 4. A total of 66 aerosol size spectra were obtained using two Knollenberg aerosol probes with overlapping size ranges capable of measuring both the background and newly generated aerosol components. A full suite of ambient meteorological parameters were also recorded during the experiment.

Weather conditions for three of the four days were less than favourable. During this period a north-westerly air flow was carrying a polar maritime air mass over the western part of the island, and perhaps, even across Slyne Head on the mainland, before reaching the instruments. On the fourth day of sampling eight good size spectra of 'clean' maritime air were obtained before rain prevented further sampling.

Wind speeds throughout the sampling periods were very constant with a usual range of from about 6 - 10m/s. It is hard to assess aerosol concentration wind dependence from measurements made over such a limited wind range. Despite the drawbacks of the unfavourable wind conditions the aerosol spectra contain many interesting features.

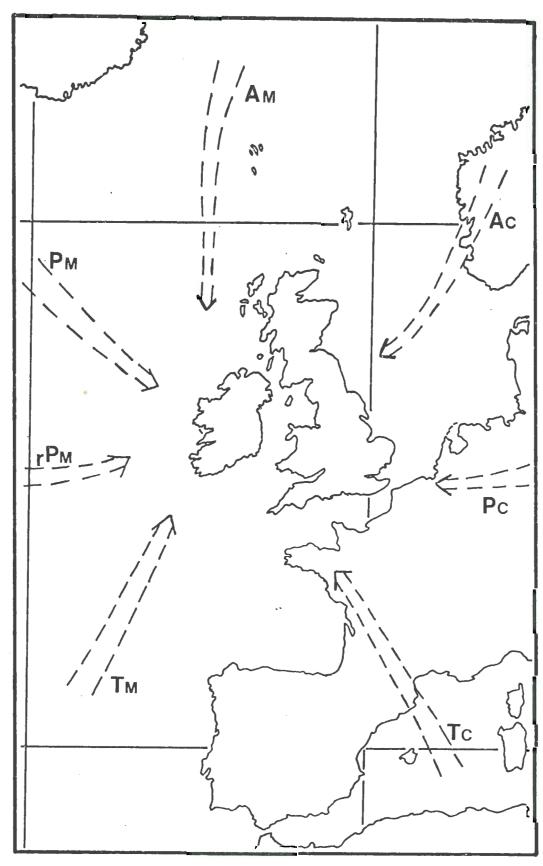
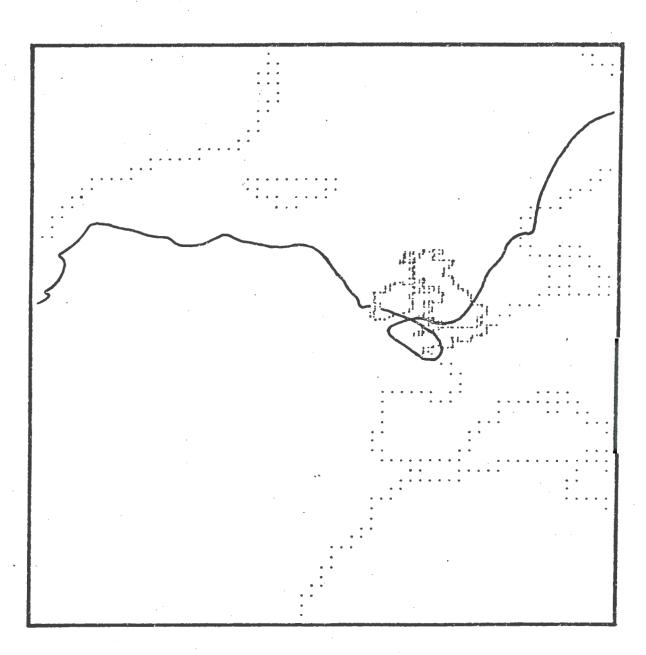
The curve shown as figure 5.6a (27/6/80) represents a typical size distribution spectrum for maritime air (250°). The bulge to the left indicates the residual, or background, level of the sub-micron radius range of particles, with residence times of up to several days. The bulge to the

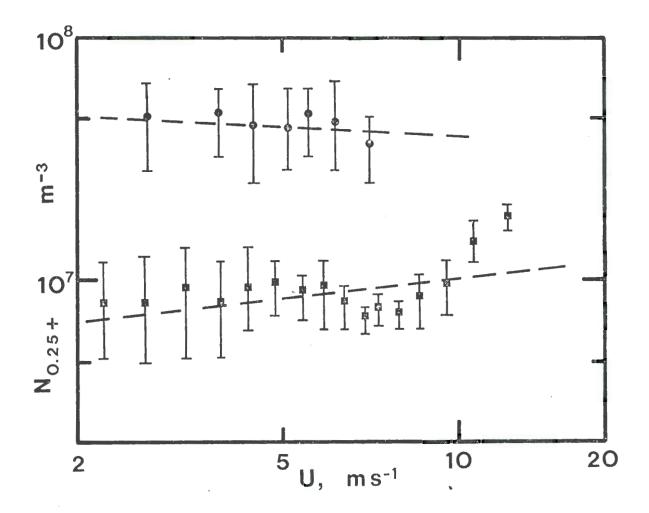
right represents Giant particles as derived from the bursting of bubbles caused by whitecapping at the sea surface.

Figure 5.6b (26/6/80) shows a spectrum for air which has been blowing across the island for several hours (320°). The most significant feature of this curve is the depletion of particles with radii greater than one micron as compared to the maritime air of 5.6a. This can be explained by the fallout of Large particles, with the island acting as a sink, but also may be partially due to the low angle of incidence of particles to the probe intakes. Nevertheless the presence of a discernable, if diminished, bulge shows that the spectrum represents modified maritime, rather than continental, air.

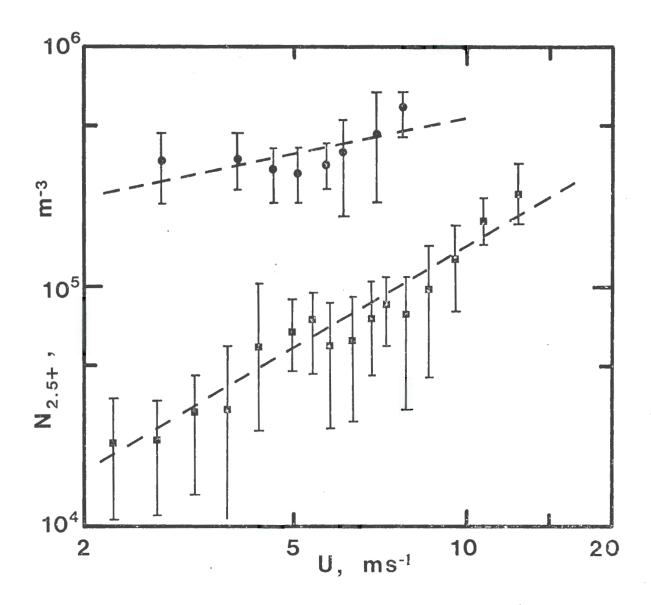
Figure 5.6c (24/4/80) shows a size spectrum for air which has been blowing fairly constantly across the surf-zone (305°). The enhancement of the bulge on the left in comparison to figures 5.6a and b. is indicative of the increased contribution of particles derived from bursting surf and foam bubbles in this zone.

This phenomena is also reflected in the diagram representing the respective number spectra for these data (Fig. 5.7). It is here indicated by the conspicuous bulge in the dashed surf zone curve which is more or less absent in the other two instances.

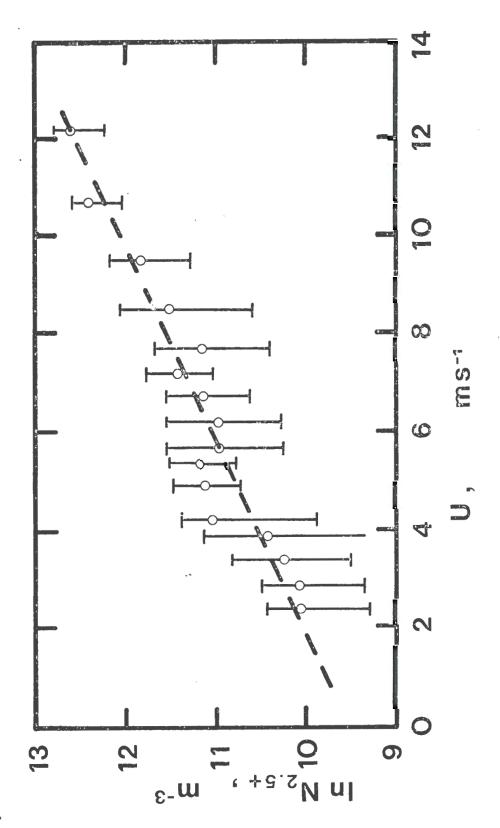




FIGURE 5.1:

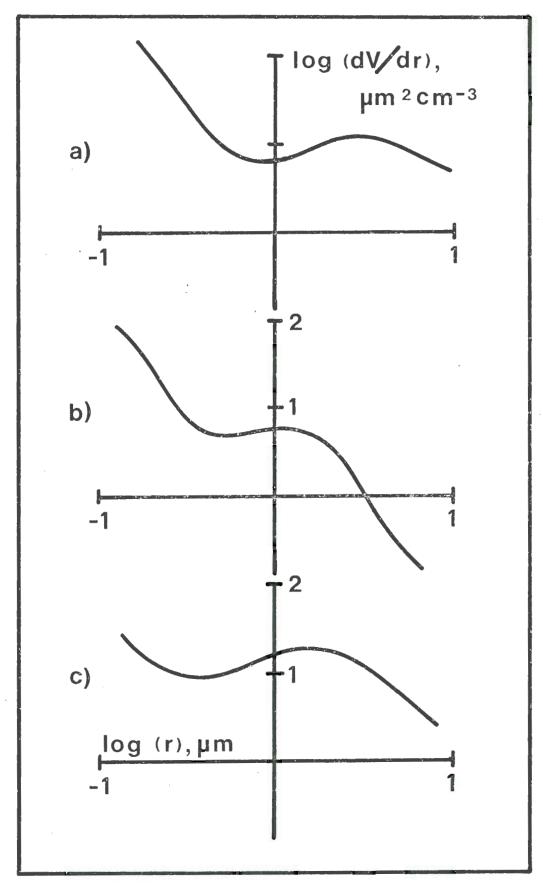
Schematic representation of principle air mass types affecting Ireland [from McIntosh and Thom, 1969]. The air mass classifications are defined in Table 5.1.


FIGURE 5.2:

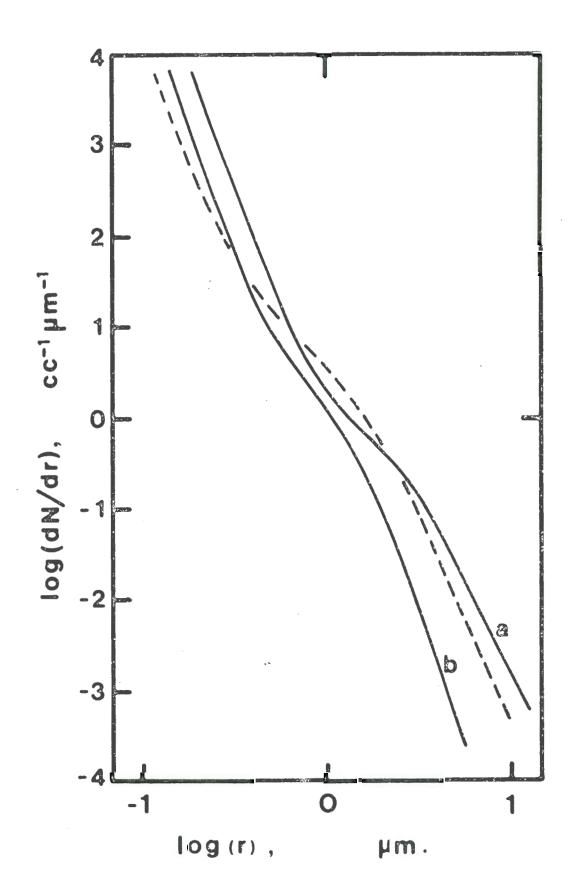
Computer simulation of two sample six-day wind history records.


FIGURE 5.3:

The concentration of aerosol particles with radii greater than $0.25\mu m$, N(0.25+), versus the wind speed (U). Circles: continental air. Dashed line: $N(0.25+)=\frac{7}{4.07\times10^{\circ}}$ Squares: maritime air. Dashed line: $N(0.25+)=\frac{6}{5.75\times10^{\circ}}$ Both expressions based on the best 0.1.8. fits to the data.


FIGURE 5.4:

The concentration of aerosol particles with radii greater than 2.5 μ m, N(2.5+), versus wind speed (U). Circles: continental air. Dashed line: N(2.5+) = 1.45 \times 10⁵ \times 10.45. Squares: maritime air. Dashed line: N(2.5+) = 5.37 \times 10³ \times 10.39. Both expressions based on the best 0.L.S. fits to the data.


FIGURE 5.5:

The concentration of 'Giant' maritime aerosol particles, (N2.5+), versus wind speed, (U). Dashed fit has a slope of 0.21, for comparison with plots of Lovett (1978) and others, see text for details.

FIGURE 5.6:

Aerosol size distribution spectra as obtained during the U.C.G./N.P.S co-operative experiment on Inishmore. a) represents 'clean' maritime air; b) maritime air which has blown over land for several hours; c) maritime air which has been modified by the influence of the surf-zone.

FIGURE 5.7:

Aerosol number spectra corresponding to the size distribution spectra of fig. 5.6. Note the rapid fall-off of concentration with increasing size.

TABLE 5.1.

CLASSIFICATION OF PRINCIPLE AIR MASS TYPES

Air Mass	Source Region	Properties At Source
	m Oceans In Latitudes > 50°	Cool, rather moist; unstable.
	c Continents Close To Arctic Circle	Cold, dry, stable.
Arctic A	The Arctic Basin	Very cold and dry; very stable.
	c Sub Tropical Oceans	Warm, moist and unstable at surface.
	m Deserts In Low Latitudes	Hot and dry; unstable

[from McIntosh and Thom, 1969]

TABLE 5.2. SYNOPSIS OF INISHMORE DATA

OBS #	DATE d, m, y,	U m/s	W.D.	Air Mass	No. INT	N(0.25+) m-3	N(2.5+) m ⁻³
1	14, 2, 81	4.9	100°	Tc(1)	182	3.31E 7	2.69E 5
2	6, 3, 181	3.6	230°	Pc(s)	120	2.43E 7	6.10E 5
3	14, 5, 81	5.1	190°	rPm(s)	156	8.36E 6	2.96E 4
4/5	15, 5, 81	6.1	105°	Tc(1)	7 I	2.05E 7	3.41E 5
6	16, 7, 81	10.2	305°	Pm(z)	79	5.14E 6	2.98E 4
7	17, 7, 81	10.1	315°	Pm(z)	100	1.07E 7	2.31E 4
8	3, 9, 181	6.3	190°	Tm(s)	200	7.98E 6	8.19E 4
9	5,11,181	6.7	125°	Tm(1)	30	9.74E 6	5.40E 4
11	19, 3, 182	11.5	300°	rPm(z)	25	3.81E 7	1.49E 5
12	21, 3, 82	4.8	285°	Pm(z)	32	6.54E 7	5.93E 5
13	15,11,'82	10.5	230°	Pm(s)	80	1.01E 7	1.68E 5

Wind speed (U), wind direction (W.D.), and aerosol concentration (N) values are averages for each observation period. The number of measurement intervals in each period is denoted by No. Int.

TABLE 5.3. EXPRESSIONS FOR N(U).

	Mari log C	time Y	Contin log C	nental Y
N(0.25+)	6.76	0.24	7.61	-0.21
N(2.5+)	3.73	1.39	5.16	0.45

CHAPTER 6

THE STREX EXPERIMENT

"It's all about the adventures of A bold young Irish tar Who sailed as a man before the mast Of the Oceanographer."

Anon.

Introduction:

The Storm Transfer and Response Experiment (STREX) took place in the Gulf of Alaska from mid-October to mid-December 1980. The overall objectives of STREX were "to understand the physical processes of the boundary layers of the atmosphere and the ocean in mid-latitude storms, the interaction of the two boundary layers, and the interaction with larger scale phenomena" (Miyake, 1980).

The field phase of the experiment involved intensive and detailed meteorological and physical oceanographic observations from a number of ships, aircraft and satellites. These observations were co-ordinated from the central STREX office in Seattle, Washington.

The main shipboard work of the project was performed aboard the National Oceanic and Atmospheric Administration (NOAA) vessel R.V. Oceanographer. Investigations were conducted in two legs, the first from 3 to 24 November and the second from 28 November to 15 December 1980. The U.C.G. experiment spanned both of these stages.

The U.C.G. group were involved in STREX for the purpose of obtaining additional photographic data for the estimation of oceanic whitecap coverage. It was also intended to relate these data to aerosol spectra and ambient meteorological measurements as obtained from the allied experiment of the Environmen al Physics Group of the Naval Postgradute School (N.P.S.).

The simultaneous measurement of whitecap coverage and aerosol concentration has previously been reported on only two occasions viz: on board the R.V. Hakuho Maru in the East China Sea (Chaen, 1973; Toba and Chaen, 1973) and on board the R.R.S. Challenger during the JASIN experiment in the eastern North Atlantic Ocean (Monahan et al., 1982b). Consequently the informations collected during STREX have resulted in a significant extension of both the size and the meteorological range of the data base in this subject area.

6.2 Photographic Observations:

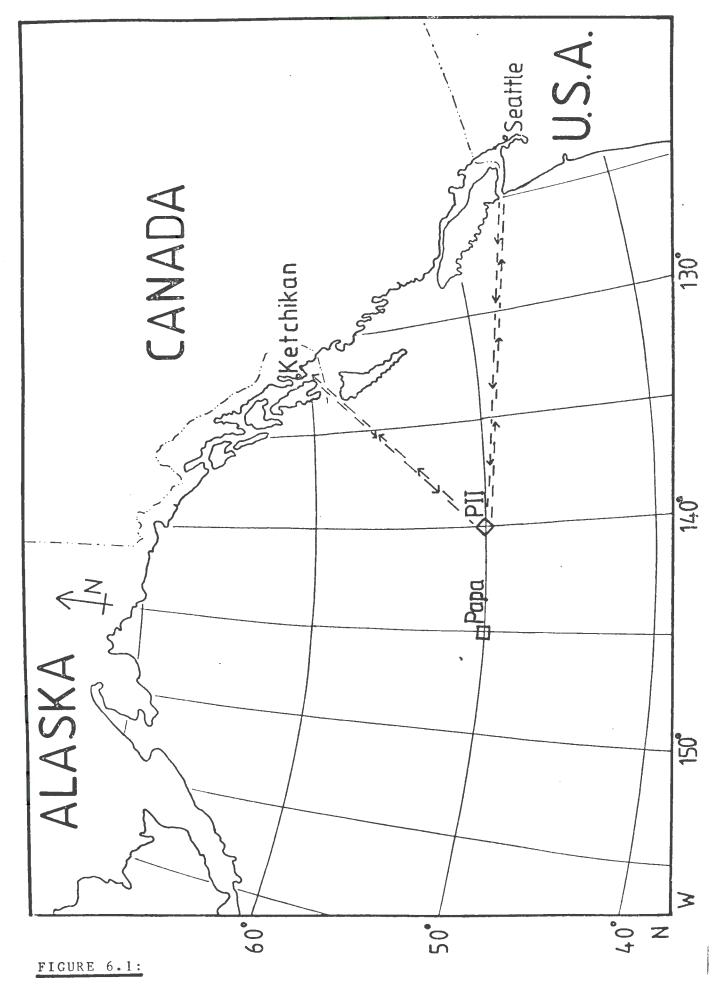
On the Oceanographer photographic observations were made from the forward watch space located on the flying bridge of the vessel at a height of 14.5m above the water line (Fig. 6.1). This vantage point, while partially protected from the wind, provided an unobstructed forward view of the sea and convenient sighting of the forward wind direction indicator. The camera was tilted so that it took in a field of view spanning about a 45° arc downward from a point just above the horizon.

All photographs were taken with BEATTIE Varitron automatic sequence cameras using Ektachrome type 5256 film. Each camera was fitted with an automatic data recording back which recorded an individual number and time of exposure on each frame. For each observation interval a series of thirty frames (ten at each of three f-stop settings) were exposed over a period of approximately three minutes. Sets of photographs were taken at hourly intervals where possible and synchronised with the thirty minute long measuring sequences of the N.P.S. group.

6.3 Aerosol and Meteorological Measurements:

Measurement of aerosol spectra and meteorological factors during STREX were performed by the N.P.S. group (Spiel 1981). It had been intended to measure aerosol spectra from 1 to 150 microns radius using three Particle Measuring Systems aerosol spectrometer probes overlapping detection limits, the active scattering probe (model ASASP-300) with a detection range of droplet radii from 0.1 to 3µm, the classical scattering probe (model CSASP-100) with a detection range from 0.5 to 15µm and the optical array probe (model OAP-230X) with a detection range from 10 to 150 µm. However, adverse operating conditions disabled two of the probes (ASASP and OAP) and restricted the detection range to that of the CSASP i.e. 0.5 to radius.

The aerosol probes were mounted on a fixed platform on the foremast at a height of 22m above the water line. The various sensors for wind speed, wind direction, relative humidity, and wind speed fluctuations were also mounted on the foremast at a height of 28m above the water line. The sea surface temperature probe was suspended from a 4m boom on the starboard side.


Processing equipment for the data from all sensors was housed in the plot room (Fig. 6.2). Both aerosol and meteorological data were averaged over thirty minute intervals using a Hewlett-Packard computer (model 9825s) in conjunction with a DAS-32. Accurate time (local and G.M.T.) and a satellite fix of position were available from the ships computer a D.E.C./P.D.P. 11/34.

6.4 Data Analysis:

The photographic data from STREX were analysed using the manual technique of Monahan (1969), a method is quite similar to that adopted by Toba and Chaen (1973). Briefly, for each observation interval, this involves the selection for analysis of the exposure group which shows the best contrast. Each frame is then projected onto a sheet of paper and the outlines of the whitecaps are traced. The whitecap silhouettes are then exacted and weighed. As the density and analysed area of paper are also determined for each frame the fractional whitecap coverage can be easily obtained. The average whitecap cover and standard deviation

over all frames in the interval is then calculated. Each interval is analysed by at least three analysts. The final values for whitecap coverage and standard deviation is the mean of the returns of all analysts.

A hard copy of the aerosol data was provided by D.E. Spiel of the N.P.S., the appropriate extracts for each observation interval appear as Table 7.2. The results obtained from these data are presented in the following chapter.

Cruise track of the R.V. OCEANOGRAPHER, in the Gulf of Alaska, during STREX, 3 November - 15 December 1980.

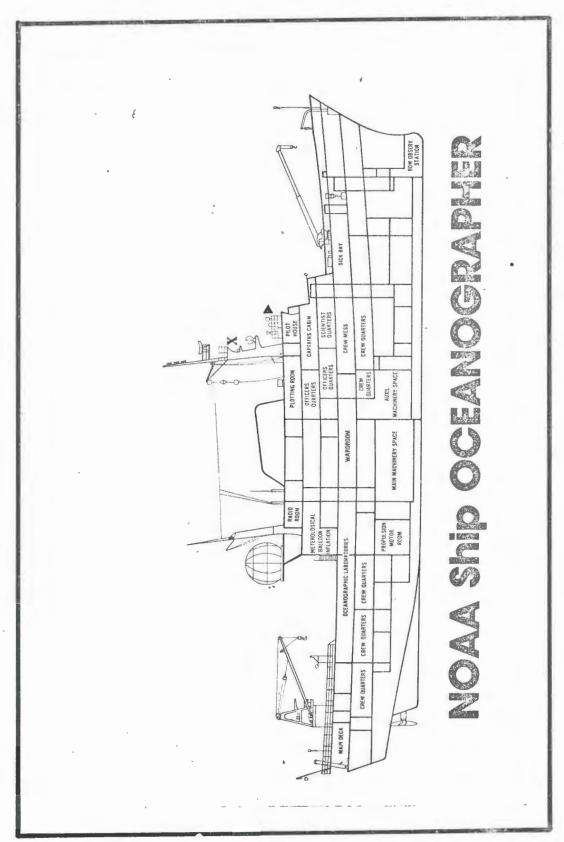


FIGURE 6.2:

Layout plan of the R.V. Oceanographer showing location of instruments(x) and position of photographic observation point(>).

CHAPTER 7.

RESULTS FROM THE STREX EXPERIMENT

"I dreamed I heard a fiddle play
Or maybe that's a notion
And I dreamed I saw whitehorses dance
Upon that other ocean."
Ralph McTell.

Introduction:

In this chapter the final listings of the STREX data are tabulated. The relationships of whitecap coverage (W) to the ten-meter elevation wind speed (U) and aerosol concentration, as well as the influence of such factors as thermal stability and sea surface temperature are assessed. The results are also compared with previously published data sets.

STREX data set comprises 87 observations coverage, aerosol concentration, and ambient whitecap meteorological conditions (Table 7.1). Two intervals 514) were found to be too poorly exposed for reliable analysis. In a further five intervals (486,508,518,539, 559) no aerosol data were available while nine intervals (494,95,99,503,05,09,27,44,61) associated with were unreliable aerosol statistics. In addition, because of the statistical methods involved, zero values of W are omitted, this occurs in only one case (548). Overall this limits the analysis of the various aerosol relationships intervals (Table 7.2).

Previous to the STREX experiment only two sets of data had been published which contained simultaneous observations of whitecap coverage, aerosol concentration, and ambient meteorological conditions. These were collected on board the Hakuho Maru in the East China Sea (Toba and Chaen, 1973) and on board the Challenger in the eastern North Atlantic during the JASIN experiment (Monahan et al., 1983), henceforth referred to as TC73 and JASIN respectively. In addition Monahan (1971) collected whitecap and relevant meteorological data in the west Atlantic and Caribbean mainly during the BOMEX experiment, which set will be referred to as MON71.

This composite data set comprises 262 cases. However, when W values of less than 0.008% are disregarded (16 from MON71, 12 from TC73, 2 from JASIN, and 1 from STREX), a total of just 231 "non-zero" intervals remain. This data-set is summarised in Tables 7.5. and 7.6. and is classified in accordance with the criteria outlined below.

For the descriptive purposes the following classifications of the data have been established:

Thermal Stable
$$\Delta T < -0.4 \text{ C}$$
Neutral $-0.4 < \Delta T < 0.6 \text{ C}$
Unstable $\Delta T > 0.6 \text{ C}$
Wind Speed High $U > 9.0 \text{m/s}$

and further for comparison with previously published results the following classification is made:

The 'Thermal Stability' (AT), which has been adopted as a measure of the stability of the air column above the sea surface is defined to be equal to the sea surface temperature(Tw) minus the air temperature(Ta). All wind speeds have been corrected to the standard height of ten meters using the method of Roll (1965). The sea-surface temperature categories have been established intuitively at distinct breaks in the overall data set. It is to be noted that the STREX results fall entirely within the cold category for water temperature and that a majority of the thermal stability designations for STREX are unstable (54 cases).

In the analysis of the STREX results the statistical method of ordinary least squares (O.L.S.) is employed for all relationships, curves having been fitted using the 'MLAB' package of The National Institute of Health, Bethesda, MD. Due to the high degree of scatter which is common in environmental data of this kind techniques which reduce the influence of "outlying" points might be useful. One such method, that of Robust Biweight Fitting (Gaver,

1979), has been employed by Monahan et al., (1983) in the analysis of the TC73 and JASIN results and is here applied to some of the STREX relationships for comparison. As both of these methods involve linear regression in log-log space 'zero' values of W must be excluded.

7.2 The dependance of whitecap coverage on wind speed:

It has been established from previous work (Blanchard and Woodcock, 1980) that the major influence on whitecap coverage (W) is that of wind speed (U). Now this relationship can be expressed in the form of a power-law

thus
$$W = \alpha U^{\lambda}$$
 Eqn. 1.

Such a W(U) relationship for the STREX data is shown graphically in figure 7.1. The dashed line represents an O.L.S. fit to the data expressed by W% = $6.22 \times 10^{-3} \, \mathrm{U}^{2.21}$, with an error on the exponent of \pm 0.41. The equivalent fit using R.B.F. techniques yield a λ value of 1.84 (see table 7.3). The λ values for the STREX W(U) relationship approximate to a quadratic form as opposed to the near cubic forms as obtained for previous data sets (Wu, 1979; Monahan and O'Muircheartaigh, 1980; and Monahan \underline{et} \underline{al} ., 1983).

It has been suggested (Toba and Chaen, 1973) that the wind friction velocity (U*) may be a more appropriate factor for scaling the degree of whitecap coverage. Toba and Chaen employed U* as one element of a dimensionless variable U* L/ν (where L is the significant wave height and ν is the kinematic viscosity of air) which they used as the

independent variable for scaling W. When STREX W values are plotted against the corresponding U* values as obtained from stability dependent aerodynamic formulae (Monahan and Davidson, 1979) and using equation 1 a λ value of 2.14 was obtained.

It was also felt that the instantaneous wind speed might not be a good scalar for W, especially for a well developed sea. So it was decided to plot W against U6, the wind speed averaged over the six hour period prior to each data collection interval. In this case a λ value of 2.22 was obtained. Both of these exponents are well within the error margin for the straightforward W(U) relationship.

While recognising the primary effect of the wind speed the whitecap coverage it must be remembered that other factors such as sea surface temperature and thermal stability may influence W significantly. Miyake and Abe (1948) presented experimental evidence that water temperature had a strong "influence on the life but little effect on the amount" of foam formed. They showed that as water temperature was raised from 0°C to 10°C the "life" of foam was reduced by about one half. In a simple sense such a relationship is evident from the STREX data. When all dependence on U is neglected and W is plotted against Tw using a power law of the form of equation l a λ value of -1.22 is obtained. This shows a generally negative relationship between W and Tw.

A division of the STREX data alone on the basis of sea surface temperature (SST) does not seem desirable as a sample of this size is unlikely to be statistically reliable. However, when the overall data set of 231 cases is analysed on the basis of SST subdivisions there is a definite trend with temperature as follows:

The mean squared error (MSE) for this piecewise fit is 7.76×10^{-3} which is about a 10% improvement on the best single fit to the data which is given by W(U) = 2.692×10^{-3} U^{2.265}, MSE = 8.56×10^{-3} .

When a piecewise fit is determined on the basis of thermal stability categories a poorer combined MSE of 8.37 X 10^{-3} results. On this evidance Tw has a stronger influence than T on W(U).

7.3 Aerosol concentration on whitecap coverage:

For the relationship of dV/dr, the fraction of the marine air occupied by droplets within a given radius interval, to V, the whitecap coverage, a power law of the form:

 $dV/dr = CW^{\gamma}$

)

Egn. 2.

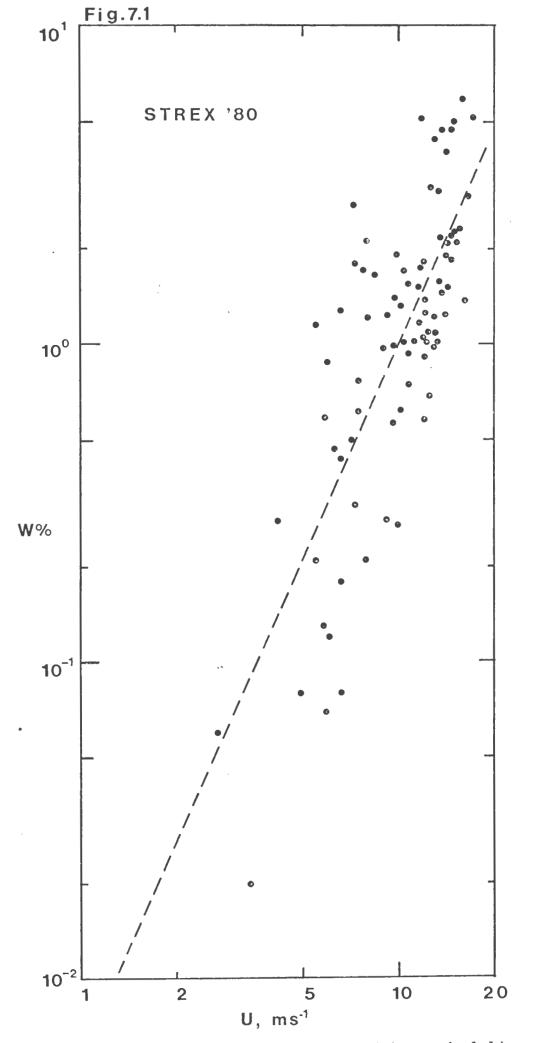
has been assumed.

several panels of figure 7.2. show the relationship of dV/dr to W at three different droplet radii intervals. It is to be noted that the positive dependence of aerosol concentration on the whitecap coverage increases with increasing droplet radius. The $\, C \,$ and $\, \gamma \,$ values for these relationships are presented in Table 7.4. The values compare very favourably with those presented by Monahan et al., (1983) for the combined TC73 and JASIN data sets (see also table 7.4). The STREX aerosol data were collected at a height of 22m above the water line as compared to 6m and 14m reaspectively for the TC73 and JASIN sets. Also the STREX data set has a more limited measurement range due to the failure of the ASASP probe and this precludes examination of the sub-micron portion of the aerosol spectra.

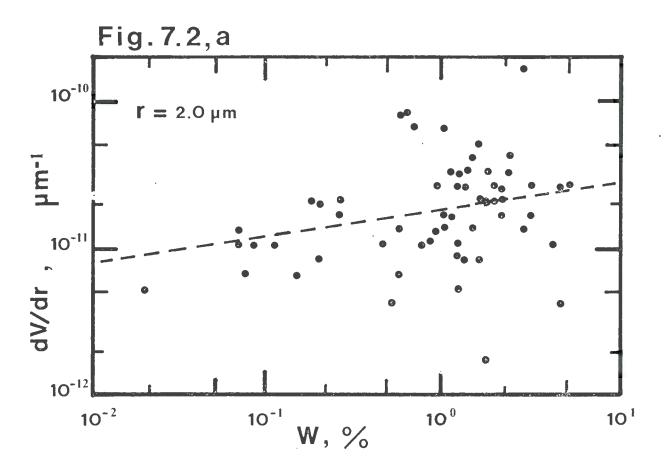
The enhancement of the positive dependence of aerosol concentration on wind speed with increasing droplet radius was noticed also by Monahan et al. (1983). They explained the phenomenon in terms of a slowly altering background resevoir of small particles due to the relatively large numbers of small droplets injected into the atmosphere during 'high-wind' events, coupled with slow settling rates for such particles, as compared to a rapidly altering resevoir of large particles due to 'low' injection numbers

and 'fast' settling rates for these larger particles.

Toba and Chaen (1973) defined a quantity (0) which was subsequently referred to as N(8+) and redefined by Monahan et al., (1983), as the number of aerosol particles per unit volume of air with radii, at 80% relative humidity, greater than 7.9um. This quantity has been determined for the STREX data and is plotted against W in figure 7.3. Assuming a power law dependance similar to equation 2 of the form:


$$N(8+) = CW^{\gamma}$$
 Eqn. 3.

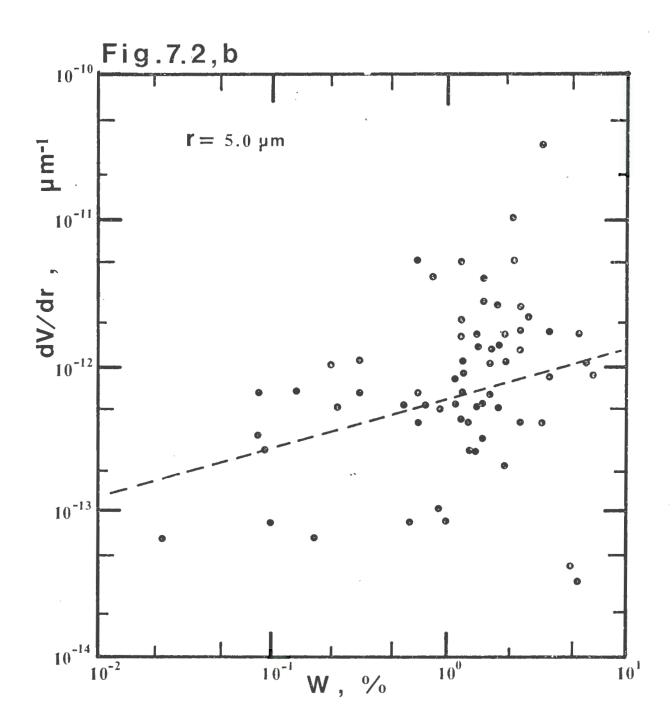
and again using an OLS fitting technique a Y value of 0.71 was obtained. This figure compares favourably with a value of 0.66 as obtained for the combined TC73 and JASIN data set also using OLS.

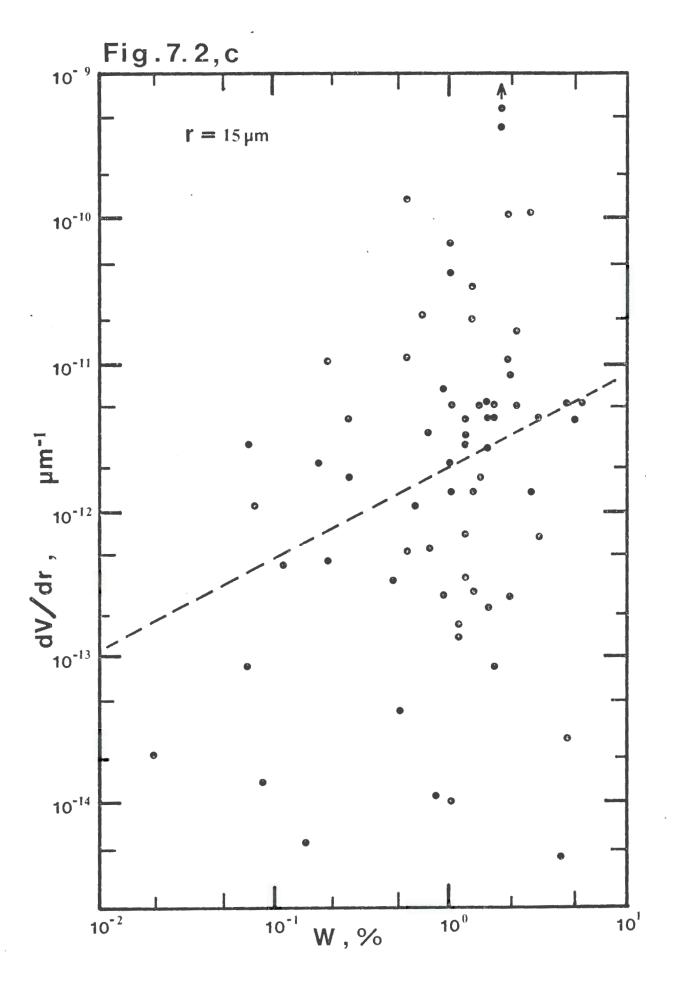

Having explored the dependance of aerosol concentration on whitecap cover and of whitecap cover on wind speed it is, perhaps, illustrative to examine the dependance of aerosol concentration on wind speed. Bearing in mind the argument for a more positive dependence of larger particle concentration on instantaneous whitecap coverage and using N(8+) as a measure of the concentration of these particles N(8+) has been plotted against U in figure 7.4. The dashed line corresponds to the best fit power law expression $N(8+) = 0.13 \times 10^2 \text{U}^{2.270}$. There is thus a marked similarity between the W(U) and N(8+) (U) relationships.

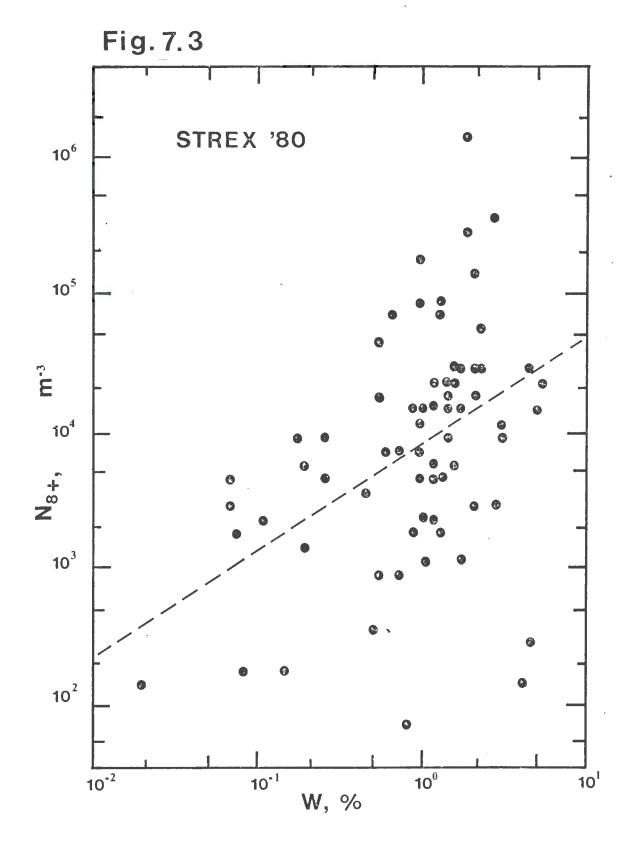
A comparison of the STREX aerosol data with the aerosol data which was collected on Inishmore has been included in the previous chapter (section 5.6). The dependence of the calculated quantity N(2.5+) on the wind speed for the STREX data is shown graphically in figure 7.5. N(2.5+) is defined as the number of aerosol particles per cubic metre of air with radii greater than 2.5 μ m. The dashed line represents the best-fit to these data which corresponds to the expression N(2.5+) = 7.41 X $10^3 \text{U}^{1.41}$. The data which appear as figure 5.5 are also plotted on this diagram for comparison. The dashed line for the Inishmore (Aran) data corresponds to the expression N(2.5+) = 5.37 X $10^3 \text{U}^{1.39}$ which is the best fit to these data using OLS techniques. The similarity between these two expressions is striking.

In conclusion we see that the exponent (λ) values for the various STREX W(U) expressions approximate to a quadratic form rather than the near cubic forms obtained by previous authors. This discrepency is explained, to a large extent, by the trend of the exponent to increase with increasing sea-surface temperature. The results obtained for the inter-relationship of the aerosol concentration to whitecap coverage and wind speed show good agreement with those obtained by other authors for the same, or similar, relationships. And finally there is strong agreement between the Inishmore and Strex results.

Whitecap coverage (W%), v wind speed (U). Dashed line: $W = 6.22 \times 10^{-3} U^{2.21}$, best OLS fit to these data.



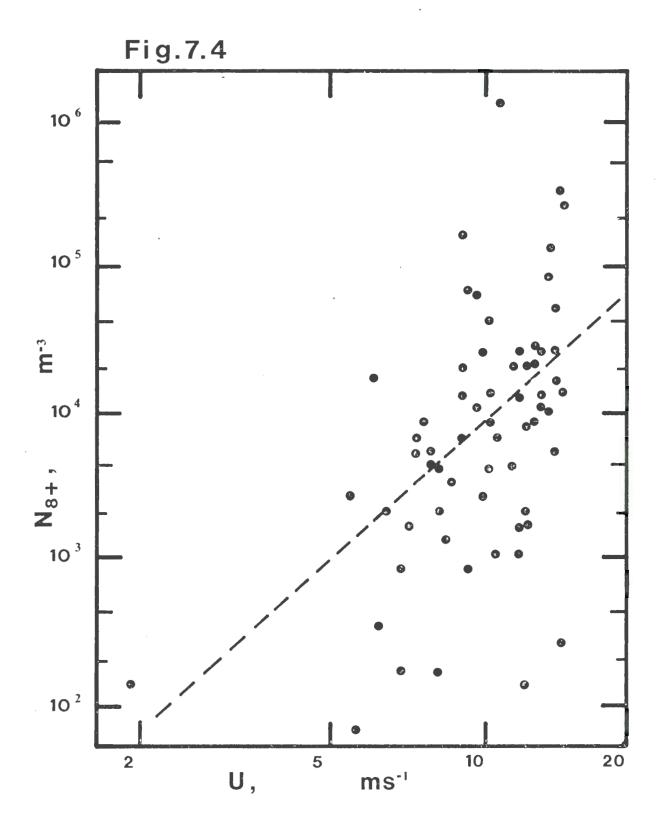

FIGURE 7.2a, b, c:

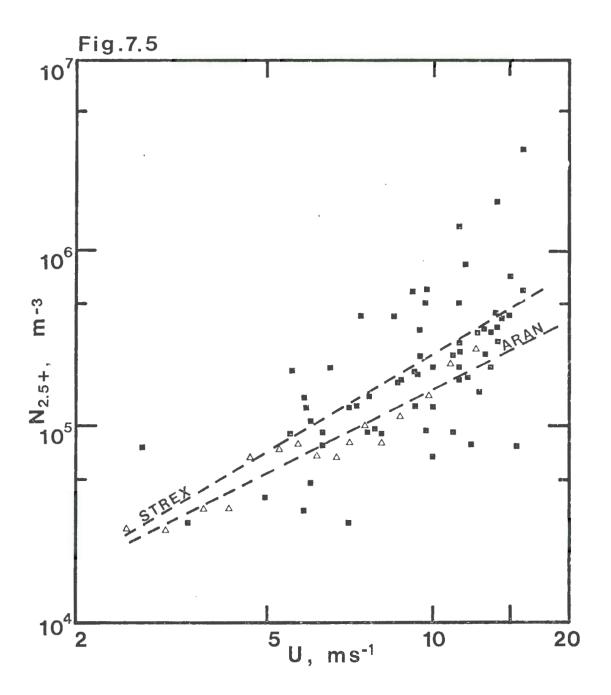

The fraction of the marine air volume filled by aerosol droplets per unit increment droplet radius (dV/dr), v percentage whitecap coverage (W%). Dashed lines:

a)
$$dV/dr = 1.66 \times 10^{-11} = 0.15$$

b) $dV/dr = 8.13 \times 10^{-12} = 0.36$
c) $dV/dr = 1.91 \times 10^{-12} = 0.72$
c) $dV/dr = 1.91 \times 10^{-11} = 0.72$

which represent the best OLS fit to these data.




FIGURE 7.3:

The concentration of aerosol particles with radii, at 80% relative humidity, greater than 7.9 μ m, (N8+), v percentage whitecap coverage (N%). Dashed line: N(8+) = 7.76 X 10^3 W^{0.71}, which represents the best OLS fit to these data.

FIGURE 7.4:

The concentration of aerosol particles with radii greater than 7.9 μ m (N8+), v six-hour averaged wind speed (U). Dashed line: N(8+) = 8.55 U^{2.91}, which represents the best OLS fit to these data.

The concentration of aerosol particles with radii greater than 2.5 μ m (N2.5+), v wind speed (U). Squares: STREX. Triangles: Inishmore. Dashed lines:

STREX
$$N(2.5+) = 7.41 \times 10^{3} \text{ U}^{1.41}$$

Inishmore $N(2.5+) = 5.37 \times 10^{3} \text{ U}^{1.39}$

which represent the best OLS fits to these data.

TABLE 7.1.
STREX, LEG 1.

	OBS #	Date	Time PST	Number of Photos.	U m/s	Ta °C	Tw °C	°C	TS	W %	Std. Dev.
	480	11/06	1307	10, 9,10	9.1	9.36	9.86	0.50	N	0.28	0.12
-	481	11/07	0933	8, 8, 8	16.2		10.11	1.45	U	1.39	0.55
1	482	11/07	1056	7, 8, 9	15.4		10.12	1.42	U	2.36	0.69
١	483	11/07	1237	9,10, 9	14.3 11.9	7.40	11.11 10.5	3.65 3.0	U U	1.90 1.52	0.35
1	484 485	11/07 11/08	1520 1056	10,10,10	9.8		10.3	3.37	U	0.99	0.22
1	486	11/08	1307	10,10,10 7, 8, 8	9.0	7.8	9.9	2.1	U	1.29	0.78
1	487	11/08	1450	8,10,10	9.8		10.17	4.35	U	1.40	0.56
1	488	11/08	1555	10,10,10	9.7		10.17	3.27	U	0.56	0.18
1	489	11/00	1039	9,10,10	10.4		10.24	3.00	U	1.04	0.24
1	490	11/10	1010	10,10,10	6.3	6.96	9.83	2.87	U	0.47	0.24
	491	11/10	1118	9, 9,10	5.9	6.99	9.81	2.82	U	0.07	0.09
1	492	11/10	1407	11,10, 6	2.7	6.99	9.78	2.79	U	0.07	0.06
-	493	11/11	1053	10,10,10	5.5	8.78	9.78	1.00	U	0.21	0.25
-[494	11/12	0950	9,10,10	4.2	7.89	9.83	1.94	Ū	0.29	0.17
١	495	11/12	1054	8,10,10	6.3	8.89	9.81	0.92	U	1.28	0.23
1	496	11/12	1135	9,10,10	6.0	8.55	9.82	1.27	U	0.87	0.22
1	497	11/12	1435	6, 6, 5	10.8	8.74	9.77	1.03	U	0.74	0.36
1	498	11/13	1035	10,10,10	5.9	7.08	9.60	2.52	U	0.59	0.31
١	499	11/13	1135	10,10,10	7.5	8.26	9.66	1.40	U	0.62	0.21
	501	11/14	1017	9, 8, 8	12.0	9.92	9.56	-0.36	N	1.39	0.36
	502	11/14	1126	5, 5, 5	12.2	10.20	9.41	~ 0.79	S	0.92	0.80
ł	503	11/14	1235	8,10,10	11.5	10.22	9.36	-0.86	S	1.53	0.62
-	504	11/14	1402	8, 8, 8	12.5	10.14		-0.76	S	1.08	0.20
-1	505	11/15	1540	10,10,10	11.1	6.23	9.17	2.94	U	1.02	0.24
-	506	11/16	1106	10,10,10	5.8	6.65	9.19	2.54	U	0.15	0.09
-	507	11/16	1407	10,10, 8	6.0	7.76	9.20	1.44	U	0.12	0.06
-	508	11/17	1058	8, 8, 8	17.2	9.3	9.3	0.0	N	5.17	1.04
1	509	11/17	1300	10, 9, 7	14.5	8.14	9.13	0.99	U	4.79	1.16
- [510	11/17	1407	10,10,10	13.9	8.43	9.2	0.80	U	4.76	0.81
- 1	511	11/18	0944	10,10,10	11.9	8.18	9.09	0.91	U	5.12	0.85
- [512	11/18	1210	8, 7, 6	7.3	7.60	9.05	1.45	U	1.83	0.43
-1	513	11/18	1335	9, 9, 9	7.9	8.07	8.93	0.86	U	2.13	0.50 0.05
-1	515	11/18		10,10,10	4.9	8.7	9.2	0.5	N	0.09	0.03
ı	516	11/19	1010	10,10,10	10.3	8.09	8.92	0.84	U	1.69 1.71	0.60
	517	11/19	1120	10,10,10	7.7	8.51	8.92 9.1	0.41	N N	0.45	0.14
-1	518	11/19	1300	10,10,10 10,10,10	6.6	8.7 8.13	8.95	0.82	U	0.18	0.14
1	519	11/19	1522 1040	7, 7, 7	6.6 10.7	7.17	8.92	1.75	U	1.55	0.25
-	520 521	11/20 11/20	1133	10,10,10	7.2	7.20	8.91	1.71	U	2.75	0.54
١	522	11/20	1340	10,10,10	9.0	7.33	8.89	1.56	U	0.98	0.27
	523	11/20	1415	9, 9, 9	5.5	6.82	8.96	2.14	U	1.28	0.36
1	524	11/20	1520	9, 9, 9	7.5	7.10	8.93	1.83	U	0.77	0.22
- [525	11/20	1607	10, 9,10	7.9	7.09	8.89	1.80	U	0.21	0.09
-	526	11/21	1015	10,10,10	3.4	6.92	8.92	2.00	U	0.02	0.04
	527	11/21	1255	10,10,10	7.3	7.42	8.96	1.54	U	0.31	0.09
Í	528	11/21	1611	10,10,10	7.1	7.46	8.85	1.39	U	0.50	0.13
- [_								-		<u>, , , , , , , , , , , , , , , , , , , </u>
pi-				-							

TABLE 7.1 (cont.), STREX, LEG 2.

OBS #	Date	Time PST	Number of Photos.	Ŭ m/s	Ta °C	Tw °C	°C	TS	W %	Std. Dev.
529	11/29	1112	10,10,10	15.7	5.79	7.35	1.56	U	5.86	1.24
530	11/29	1218	9, 9, 9	13.5	5.88	7.41	1.53	U	1.56	0.36
531	11/29	1335	10,10,10	13.4	5.78	7.37	1.59	U	3.03	0.65
532	11/29	1505	9, 9, 9	13.6	5.46	7.39	1.93	U	2.17	0.38
533	11/29	1612	9, 9, 9	13.8	5.47	7.38	1.91	U U	1.50 1.22	0.50
534 535	11/30	1234 1515	10,10,10	8.0 8.4	5.26 4.79	7.01 7.06	1.75 2.27	U	1.66	0.41
536	11/30 12/01	1445	10,10,10	10.8	3.77	7.39	3.62	U	0.93	0.18
537	12/01	1125	10,10,10	12.8	3.54	7.21	3.67	U	1.23	0.24
538	12/02	1230	8, 8, 8	14.3	3.72	7.18	3.46	U	2.11	0.36
539	12/02	1615	10,10, 9	14.5	4.7	7.1	2.4	U	2.21.	0.58
540	12/02	1655	9, 9, 9	15.1	5.16	7.25	2.09	Ŭ	2.10	0.65
541	12/02	1050	10,10,10	13.3	5.47		-0.10	N	1.03	0.20
542	12/03	1120	8,8,8,9	12.2	5.65		- 0.15	N	1.01	0.33
543	12/03	1230	8,10, 8	12.1	5.50	5.63	0.13	N	1.00	0.60
544	12/03	1330	9, 9, 9	12.0	5.45	5.60	0.15	N	1.84	0.36
545	12/04	1455	9, 9, 9	10.1	5.09	5.74	0.65	U	0.62	0.18
546	12/04	1550	10,10,10	10.2	5.30	5.72	0.42	N	1.34	0.42
547	12/05	1110	10,10,10	6.3	4.51	6.08	1.57	U	0.08	0.06
548	12/05	1615	10,10,10	3.3	4.72	5.84	1.12	U	0.00	0.00
549	12/06	1025	10,10,10	12.9	6.5	7.2	0.7	U	0.98	0.22
550	12/06	1057	10,10,10	12.1	6.36	5.74	-0.62	S	1.26	0.25
551	12/06	1157	9, 9, 9	12.5	6.57	5.71	-0.86	S	0.69	0.21
552	12/06	1308	10,10,10	12.2	6.90	7.19	0.29	N	0.58	0.15
553	12/07	1450	8, 8, 8	11.7	7.38		-1.41	S	1.76	0.35
554	12/07	1550	9, 9, 9	9.8	7.44		~1.65	S	1.94	0.32
555	12/08	1040	7, 8, 9	14.2	8.48		-2.52	S	1.51	0.20
556	12/08	1200	9, 8, 9	12.6	8.89		-2.95	S	3.16	1.83
557	12/08	1307	8, 8, 8	14.0	8.94		-3.04	S	1.25	0.28
558	12/08	1428	7, 8, 8	14.5			-2.93	S	1.87	0.39
559	12/08	1605	9, 9,10	12.9	8.6	6.0	-2.6	S	1.08	0.22
560	12/11	1203	8, 8, 9	13.0	7.07		-1.93	S	4.42	0.69
561	12/11	1303	5, 6, 5	14.8	7.20		-2.01	S	5.09	1.03
562	12/11	1403	4, 4, 4	14.2	7.36		-2.25	S	4.07	0.82
563	12/11	1507	7, 7, 7	11.6	7.42		÷2.12	S	1.16	0.26
564	12/11	1617	5, 5, 6	9.9	7.35		-1.97	S	0.27	0.22
565	12/12	1125	6, 6, 5	15.0	9.21	7.39		S S	2.30	0.82
566	12/12	1510	5, 5, 6	16.5	9.21	7.39	-1.82	5	2.90	0.47

OBS # : Observation Interval Number.

Time : Pacific Standard (PST = GMT - 8hrs).

Photos: Number of photographs analysed by each operator in each interval.

U : 10m elevation wind speed.

The Thermal Stability ("S) is expressed by the quantity ΔT , the difference between the sea and air temperatures (Tw-Ta). U: Unstable N: Near Neutral S: Stable.

Near Neutral defined as $-0.4 < \Delta T < 0.6$ °C.

TABLE 7.2.

AEROSOL CONCENTRATIONS, STREX LEG 1.

OBS #	dV/dr , μm r=2.0μm	dV/dr_1 , μm r=5.0μm	dV/dr_1 ,μm r=15μm	N(8+)_3
480 481 482 483 484 485 487 488 489 491 493 496 501 502 504 507 511 512 513 515 517 517 517 517 517 517 517 517 517	1.72E-11 2.95E-11 2.87E-11 2.67E-11 1.25E-11 1.49E-11 2.91E-11 1.41E-11 9.85E-12 1.18E-11 9.92E-12 1.82E-11 1.07E-11 6.45E-12 2.82E-11 1.07E-11 6.45E-12 2.82E-11 2.73E-11 3.38E-11 6.91E-12 9.66E-12 4.02E-12 2.30E-11 1.44E-11 2.27E-11 9.59E-12 5.09E-11 1.16E-11 1.36E-11 1.36E-11 1.36E-11 1.36E-11 1.36E-11 1.36E-11 1.36E-11 1.36E-11 1.36E-11 1.36E-11 1.36E-11 1.36E-11 1.36E-11 1.36E-11 1.36E-11 1.36E-11 1.36E-11 3.38E-12 3.94E-12	7.26E-12 2.84E-11 2.12E-11 1.06E-11 1.06E-11 1.05E-11 4.53E-11 6.72E-12 6.08E-11 5.36E-12 7.60E-12 3.84E-12 9.53E-13 1.21E-12 4.42E-12 6.05E-12 7.3E-12 4.06E-12 6.95E-13 6.34E-12 3.10E-13 1.12E-11 2.19E-12 4.70E-12 8.33E-13 2.54E-11 1.54E-11 1.04E-11 6.59E-12 4.63E-12 9.78E-12 3.01E-12 7.77E-13 8.26E-13	1.60E-12 3.91E-11 1.57E-11 4.37E-10 5.93E-12 1.22E-12 2.25E-11 5.43E-13 4.30E-11 3.74E-13 2.91E-12 8.37E-14 1.11E-11 1.12E-14 5.53E-13 1.01E-11 3.01E-13 2.42E-13 1.22E-13 4.81E-15 3.83E-13 2.89E-14 4.28E-12 8.75E-14 2.64E-13 1.34E-14 3.91E-12 2.73E-12 1.52E-12 1.52E-12 1.52E-12 1.52E-12 1.52E-13 3.70E-12 4.19E-13 2.12E-14 3.94E-14	4.33E 03 8.78E 04 5.96E 04 2.74E 05 1.48E 04 1.14E 04 6.50E 04 9.14E 02 1.64E 03 1.28E 03 6.09E 01 9.14E 02 1.71E 04 1.64E 03 1.58E 03 1.16E 03 1.58E 03 1.16E 03 1.47E 04 1.58E 03 1.47E 04 1.64E 03 1.83E 02 2.25E 03 3.05E 02 1.47E 04 1.83E 02 2.25E 03 3.05E 02 1.47E 04 1.83E 02 2.25E 03 3.05E 02 1.47E 04 1.83E 02 2.25E 03 3.05E 02 1.47E 04 1.04E 03 2.74E 03 1.83E 02 2.72E 03 3.72E 03 3.72E 03 3.72E 02 3.72E 02

TABLE 7.2 (cont.)

AEROSOL CONCENTRATIONS, STREX LEG 2.

OBS #	dV/dr ₋₁ ,μm r=2.0μm	dV/dr_1 ,µm r=5.0µm	dV/dr ₋₁ ,μm r=15μm	N(8+)-3
529 530 531 533 533 533 533 533 533 534 542 543 546 547 555 555 555 556 562 563 565 565 565 565 565 565 565 565 565	1.59E-12 1.82E-11 1.47E-11 2.15E-11 1.19E-11 7.94E-12 8.64E-12 1.36E-11 5.13E-12 1.69E-11 2.86E-11 1.43E-11 1.57E-11 1.74E-11 8.83E-12 1.85E-12 6.83E-12 1.17E-11 2.42E-11 5.71E-11 7.41E-11 2.14E-11 2.14E-11 2.14E-11 2.14E-11 3.90E-11 3.90E-11 3.90E-11 3.90E-11 3.90E-11 3.90E-11 3.90E-11 3.90E-11 3.90E-11 3.90E-11 3.90E-11 3.90E-11	9.88E-12 1.42E-11 1.68E-11 1.90E-11 1.15E-11 5.67E-12 5.30E-12 9.36E-12 3.11E-12 1.49E-11 7.10E-12 1.44E-11 1.93E-11 7.10E-12 1.14E-11 1.93E-11 5.24E-12 3.72E-12 2.81E-12 4.44E-12 1.56E-11 4.64E-11 5.55E-11 1.17E-11 1.13E-10 1.55E-11 1.77E-11 4.88E-13 2.54E-12 1.16E-11 2.15E-11	5.71E-12 5.76E-12 4.01E-12 9.75E-12 5.58E-12 7.16E-13 1.95E-13 6.21E-12 2.71E-12 1.08E-10 2.10E-12 5.22E-12 7.32E-11 1.17E-12 1.46E-12 1.14E-12 1.14E-14 3.16E-12 2.33E-11 1.44E-10 5.81E-12 2.33E-11 1.44E-10 5.81E-12 2.64E-08 5.98E-12 7.04E-13 4.88E-12 3.66E-15 1.58E-13 4.78E-12 3.66E-15 1.58E-13 4.78E-12 1.23E-10	2.05E 04 2.25E 04 1.07E 04 1.86E 04 1.74E 04 4.63E 03 6.03E 03 1.52E 04 4.93E 04 1.29E 05 1.18E 04 1.49E 04 8.89E 04 6.64E 03 4.63E 03 1.71E 03 4.03E 03 1.71E 03 4.16E 04 1.48E 04 4.16E 04 1.48E 04 1.53E 06 2.36E 04 9.62E 03 2.29E 04 2.94E 04 2.80E 04 1.24E 02 2.13E 03 8.22E 03 3.05E 04 3.71E 05
566	1.80E-10	4.01E-10	1.20.110	0.00

TABLE 7.3. EXPRESSIONS FOR W(U)

		$_{lpha}$ STR	EΧ	TC73+JASIN log α λ			
	W(U)	-2.21	2.21	-3.59	3.47		
O.L.S.	W(U6)	-2.24	2.22				
	W(U*)	0.91	2.14				
R.B.F.	W(U)	-1.81	1.84	-3.35	3.31		

TABLE 7.4. EXPRESSIONS FOR dV/dr(W)

	STR	EX	TC73+JASIN			
Droplet Radius	log C	Υ	Joa C	Υ		
2.0µm	-10.78	0.15				
5.0μm	-11.09	0.36	-10.21 (-10.32)	0.36 (0.34)		
15µm	-11.72	0.72	-9.56 (-9.16)	0.86 (1.43)		

EXPRESSIONS FOR N(8+)(W) AND N(8+)(U)

	STR log C	EΧ	TC73+J log C	ASIN Y
N(8+)(W)	3.89	0.71	(3.56)	0.66 (0.71)
N(8+)(U)	1.12	2.70	(0.81)	3.19 (3.23)
N(8+)(U6)	0.93	2.91		

(Values derived: OLS, bracketed values: RBF).

TABLE 7.5:

Comparison of conditions during STREX with those during previous whitecap observation experiments.

	TEN÷METE	R WIND SPEI	ED U (m/s)	
DATASET	MEAN	STD DEV	MINIMUM	MAXIMUM
MON71 TC73 JASIN STREX	6.92 6.89 6.03 10.47	3.00 3.38 2.81 3.51	0.66 2.40 2.50 2.70	17.40 16.60 15.30 17.20
	SEA SURF	ACE TEMPERA	ATURE Tw (°C)
DATASET	ME AN	STD DEV	MINIMUM	MAXIMUM
MON71 TC73 JASIN STREX	26.58 24.48 13.24 8.07	3.82 2.62 0.41 1.71	17.40 20.90 12.50 5.11	30.55 29.00 14.00 11.11
	SEA/AIR T	EMPERATURE	DIFFERENCE Z	ΔT (°C)
DATASET	11E AN	STD DEV	MINIMUM	MUMIXAM
MON71 TC73 JASIN STREX	0.216 -0.937 0.835 0.854	1.135 2.245 0.911 1.772	-2.40 -6.40 -1.80 -3.04	3 · 1 5 1 · 6 0 3 · 2 0 4 · 3 5
	PERCEN	TAGE WHITE	CAP COVERAGE	N%
DATASET	MEAN	STD DEV	MINIMUM	MAXIMUM
MON71 TC73 JASIN STREX	0.5 0.7 0.6 1.5	0 · 1 0 0 · 1 4 0 · 1 3 0 · 1 3	0 • 0 0 • 0 0 • 0 0 • 0	0.76 0.73 0.81 0.59

TABLE 7.6:

Distribution of overall whitecap dataset following classification of seamsurface temperature, thermal stability and wind speed as defined in the text.

		LOW	WIN	D SPI	EED	HIG	H WI	ND SI	PEED	OVER	ALL	DATA	SET
THERMAL	STAB.	U	N	S	TOTAL	U	N	S	TOTAL	U	N	S	TOTAL
awa aya	COLD	25	3	0	28	29	. 9	19	5 7	5 4	1 2	19	8 5
	MOD.	35	1 4	6	5 5	7	3	1	11	42	17	7	66
TEMP.	WARM	29	35	26	90	4	5	12	21	33	40	38	111
TOTALS	:	89	5 2	3 2	173	40	17	3 2	89	129	69	64	262

CHAPTER 8.

CONCLUSIONS

Whitecaps are formed at the sea surface when waves reach their limit of stability and are forced to break in order to dissipate excess energy. The ultimate source of this energy is the wind blowing across the ocean.

The area of the ocean surface which is covered by whitecaps is a function of the wind speed. Under commonly encountered wind regimes whitecaps effect the most important contribution of sea-salt aerosol particles to the marine atmosphere. Consequently the concentration of sea-salt aerosol particles can be assumed to be a function of the wind speed.

During the STREX experiment meteorological, aerosol concentration and, whitecap coverage data were collected which significantly augmented the size and meteorological range of the data base in this subject area. For the results obtained during the STREX experiment the best fit to the W(U), whitecap coverage versus wind speed, relationship is expressed by: W% = $6.22 \times 10^{-3} \text{U}^{2.21}$. When a similar expression is calculated for the combined data sets of Toba and Chaen (1973) and Monahan et at. (1983) a value of 3.47 is obtained for the exponent. The discrepancy can be, at least partially, explained by the comparitive coolness of

the sea surface during STREX.

The importance of the sea surface temperature effect on whitecap coverage is illustrated in chapter 7, section 7.2, where the exponent is seen to increase with increasing water temperature.

In relating the aerosol concentration to whitecap coverage there occurs an increasing dependence, with increasing droplet radius, of dV/dr on W, (figure 7.2). A similar trend was noted by Monahan et al., (1983).

The calculated quantity N(2.5+) is defined as the concentration of aerosol particles, with radii greater than $2.5\,\mu\text{m}$, per cubic meter of air. When this quantity is plotted against wind speed, U, for the STREX data the following best fit relationship occurs:

 $N(2.5+) = 7.41 \times 10^3 U^{1.41}$, and for the Inishmore data the best fit relationship is: $N(2.5+) = 5.37 \times 10^3 U^{1.39}$, both using OLS techniques. The similarity between these two expressions is encouraging.

The Inishmore results also compare quite favourably with those obtained on other island stations (Latham et al., 1982).

The STREX results have been useful in adding to our understanding of the W(U) relationship, of the further dependence of W on sea surface temperature and to a lesser

degree on atmospheric stability. From table 7.6 we see a need for further investigations in high winds, especially with warmer water temperatures and in stable atmospheric conditions.

BIBLIOGRAPHY.

- Aitken, J., 1881: On dust fogs and clouds. Trans. Roy. Soc. Edinburgh. 30, 337-368.
- Aitken, J., 1911: On some nuclei of cloudy condensation. Proc. Roy. Soc. Edinburgh. 31, 478-498.
- Alofs, D.J., and J. Podzimek, 1974: A review of Laktionov's isothermal cloud nucleus counter. J. Appl. Meteor., 13, 511-512.
- Banner, M. L., and W. K. Melville, 1976: On the separation of air flow over water waves. J. Fluid Mech., 77, 825-842.
- Banner, M. L. and O. M. Phillips, 1974: On the incipient breaking of small scale waves.

 J. Fluid Mech., 65, 647-656.
- Blanchard, D. C., 1958: Eletrically charged drops from bubbles in sea water and their meteorological significance.

 J. Meteor., 15, 383-396.
- Blanchard, D. C., 1963: The eletrification of the atmosphere by particles from bubbles in the sea.

 Progress in Oceanography., Vol. 1, 71-202.

 Pergamon Press, New York.
- Blanchard, D. C., 1969: The oceanic production rate of cloud nuclei.
 J. Rech. Atmos., IV, 1-6.
- Blanchard, D. C., 1971: Whitecaps at sea. J. Atmos. Sci., 28, 645.
- Blanchard, D. C., 1971: The oceanic production rate of volatile cloud nuclei.
 J. Atmos. Sci., 28, 811-812.
- Blanchard, D. C., and L. Syzdek, 1972: Variations in Aitken and giant nuclei in marine air. J. Phys. Oceanogr., 2, 255-262.
- Blanchard, D. C., and A. H. Woodcock, 1957: Bubble formation and modification in the sea and its meteorological significance.
 Tellus, 9, 145-158.

- Blanchard, D. C., and A. H. Woodcock, 1980: The production, concentration, and vertical distribution of the sea-salt aerosol.

 Ann. New York Acad. Sci., 338, 330-347.
- Boyce, S. G., 1951: Source of atmospheric salts. Science, 113, 620.
- Chaen, M., 1973: Studies on the production of sea-salt particles on the sea surface.

 Mem. Fac. Fish. Kagoshima Univ. 22, 49-107.
- Cipriano, R. J., and D. C. Blanchard, 1981: Bubble and aerosol spectra produced by a laboratory 'breaking wave'.

 J. Geophys. Res., 86, 8085-8092.
- Cokelet, E. D., 1977: Breaking waves. Nature, 267 (5614), 769-774.
- De Leonibus, P. S., 1971: Momentum flux and wave spectra observations from an ocean tower.

 J. Geophys. Res. 76, 6506-6527.
- Donelan, M. A., 1978: Whitecaps and momentum transfer.
 In 'Turbulent fluxes through the sea surface,
 wave dynamics and prediction.'
 Eds. Favre and Hasslemann.
 NATO Conference Series: V, Air-sea Interactions,
 Vol. 1, 677pp, Plenum.
- Duce, R. A., and A. H. Woodcock, 1971: Chemical composition of atmospheric sea salt. Tellus, 23, 427-435.
- Fairall, C. W., K. L. Davidson, and G. E. Schacher, 1982: An analysis of the surface producion of sea-salt aerosol. Tellus, (In press).
- Fitzgerald, J. W., and R. E. Ruskin., 1976: A marine aerosol model for the north Atlantic.

 Naval Research Laboratory, Washington, D. C.,
 Manuscript Report, pp 1-8.
- Georgii, H. W., and A. L. Metnieks, 1958: An investigation into the properties of atmospheric freezing nuclei and sea-salt nuclei under marine conditions at the West coast of Ireland.

- Geofis. Pufa Appl. 41, 159-176.
- Hogan, A. W., 1981: Meteorological variation of aerosols. in Proceedings Ninth International Conference on Atmospheric Aerosols, Condensation and Ice Nuclei,
 Galway University Press, 1981, 532pp.
- Horne, R. A., 1969(a): Marine Chemistry. Interscience, New York, 568pp.
- Horne, R. A., 1972: Structure of sea water and its role in chemical mass transport between the sea and the atmosphere.

 J. Geophys. Res., 77, 5170-5176.
- Hudson, J., and P. Squires, 1973: Evaluation of a recording continuous cloud nucleus counter. J. Appl. Meteor., 12, 175-183.
- Jacobs, W. C., 1937: Preliminary report on the study of atmospheric chlorides.

 Mon. Weather Rev., 65, 147-151.
- Jefferys, H., 1924: On the formation of water waves by wind.
 Proc. Roy. Soc. (A), 107, 189-206.
- Jefferys, H., 1925: On the formation of water waves by wind.

 Proc. Roy. Soc. (A), 110, 241-247.
- Jennings, S. G., and T. C. O'Connor, 1971: Diffusion coefficients of electrically charged particles.

 Proc. 7th. Conf. on Condensation Nuclei, Prague, pl46.
- Johnson, B. D., and R. C. Cooke, 1979: Bubble populations
 and spectra in coastal waters: A photographic
 approach.
 J. Geophys. Res., 84, 3761-3766.
- Keefe, D., P. J. Nolan, and J. A. Scott, 1968: Influence of Coulomb and image forces on combinations in aerosols. Proc. Roy. Irish Acad. 66, 17.
- Kientzler, C. F., A. B. Arons, D. C. Blanchard, and A. H. Woodcock, 1954: Photographic investigation of the

- projection of droplets by bubbles bursting at a
 water surface.
 Tellus, 6, 1-7.
- Kinsman, B., 1965: Wind Waves Their generation and propagation on the ocean surface. Prentice-Hall, 676pp.
- Kjeldsen, S. P., T. Vinje, D. Myrhaug, P. Brevig, 1980:
 Kinematics of deep water breaking waves.
 Paper presented at Offshore Technology Conference in Houston, Texas, 1980.
- Knelman, F., N. Dombrowski, and D. M. Newitt. 1954:
 Mechanism of the bursting of bubbles.
 Nature, 173, 261.
- Kohler, H., 1941: An experimental investigation on sea water nuclei. Nova Acta Regiae Soc. Sci. Upsaliensis, 4, 12, 55pp.
- Lai, R. J., and O. H. Shemdin., 1974: Laboratory study of the generation of spray over water. J. Geophys. Res., 79, 3055-3063.
- Landsberg, H., 1938: Atmospheric condensation nuclei. Ergeb. Kosmischen Physik, 3, 155-252.
- Langridge, D., 1973: Limestone pavement patterns on the island of Inishmore, Co. Galway. Irish Geog., 6, 282-293.
- Latham, J., H. J. Exton., M. H. Smith, and C. Pounder, 1982: Production of maritime aerosol. Final Report to U.K. Minestry of Defence. UMIST, Manchester.
- Lodge, J. P., J. E. McDonald, F. Baer, 1954: An investigation of the Melander effect.
 J. Meteor., 11, 318-322.
- Longuet-Higgins, M. S., and E. D. Cokelet, 1976:
 The deformation of steep surface waves on water.
 I: A numerical method of computation.
 Proc. Roy. Soc. London, A350, 1-26.
- Longuet-Higgins, M. S., and M. J. H. Fox, 1977: Theory of the almost highest wave: The inner solution. J. Fluid Mech., 80, 721-741.
- Longuet-Higgins, M. S., and J. S. Turner, 1974: 'An ent-

- raining plume' model of a spilling breaker. J. Fluid Mech., 63, 1-20.
- Lovett, R. F., 1978: Quantitative measurement of airborne sea-salt in the North Atlantic. Tellus, 30, 358-364.
- Mason, B. J., 1957(a): The nuclei of atmospheric condensation. Geofis. Pura Appl., 36, 9-20.
- Mason, B. J., 1957(b): The oceans as source of cloud forming nuclei.

 Geofis. Pura Appl., 36, 148-155.
- McClelland, J. A., and J. J. Nolan, 1912: The electric charge on rain.

 Proc. Roy. Irish Acad., 29, 81.
- McIntosh, D. H., and A. S. Thom, 1969: Essentials of Meteorology. Wykam Pub. London.
- McWilliams, S., and W. A. Morgan, 1955: The relation between the concentration of atmospheric condensation nuclei and other meteorological elements at Valentia Observatory.

 Geofis. Pura Appl., 31, 129-146.
- Medwin, H. 1970: In situ acoustic measurements of microbubbles at sea. J. Acoustical Soc. America, 56, 1100-1104.
- Metnieks, A. L., 1958: The size spectra of large and giant sea-salt nuclei under marine conditions. Geophys. Bull., 15, 1-45. Dublin Inst. Advan. Studies.
- Metnieks, A. L., and L. W. Pollak, 1959: Instruction for use of photoelectric consdensation nucleus counters.

 Geophys. Bull., 16, Dublin Inst. Advn. Studies.
- Michell, J. H., 1893: The highest waves in water. Phil. Mag., 36(222), 430-437.
- Miyake, M., 1980: STREX, storm transfer and response experiment; Operational plan.
 PMEL, NOAA, Seattle, Wa., 9lpp.

- Miyake, Y., and T. Abe, 1948: A study of the foaming of sea water, Part 1.
 J. Marine Res., 7, 67-73.
- Monahan, E. C., 1968: Sea spray as a function of low elevation wind speed.
 J. Geophys. Res., 73, 1127-1137.
- Monahan, E. C., 1969: Fresh water whitecaps. J. Atmos. Sci., 26, 1127-1137.
- Monahan, E. C., 1971: Oceanic whitecaps. J. Phys. Oceanogr., 1, 139-144.
- Monahan, E. C., 1979: The influence of whitecaps on the marine atmosphere.

 1st. Tech. Rep. to ONR. Univ. College Galway.
- Monahan, E. C., 1982: Whitecapping a manifestion of airsea interaction with implications for remote sensing.

 ppl13-131, in 'Processes in marine remote sensing'. J. Vernberg and F. Diemer, Eds.

 Belle W. Baruch Library of Marine Science, 12, University of South Carolina Press.
- Monahan, E. C., 1982: Sea surface aerosol generation model No. 4.

 Report prepared for Naval Environmental Prediction Facility. University of Maine.
- Monahan, E. C., P. A. Bowyer, D. M. Doyle, M. P. Fitz-Gerald, I. G. O'Muircheartaigh, M. C. Spillane, and J. J. Taper, 1981: Whitecaps and the marine atmosphere.

 Tech. Rep., 3, 125pp., Univ. College Galway.
- Monahan, E. C., and K. L. Davidson, 1979: Preliminary intercomparisons of JASIN wind, whitecap, and aerosol observations.

 A separate, ppl-ll, and poster paper from JASIN Data Display meeting, 1975, Wood's Hole Oceanographic Institute.
- Monahan, E. C., K. L. Davidson, and D. E. Spiel., 1982a: Whitecap aerosol productivity deduced from simulation tank experiments.

 J. Geophys. Res., 87, 8898-8904.
- Monahan, E. C., C. W. Fairall, K. L. Davidson, P. J. Jones-Boyle, 1983: Observed inter-relationships amongst ten-meter elevation winds, oceanic whitecaps, and marine aerosols.

- Q. J. Roy. Meteor. Soc., 109, 379-392.
- Monahan, E. C., and I. O'Muircheartaigh, 1980: Optimal power-law description of oceanic whitecap coverage on wind speed.
 J. Phys. Oceanog., 10, 2094-2099.
- Monahan, E. C., I. O'Muircheartaigh, and M. P. FitzGerald, 1982: Determination of surface wind speed from remotely measured whitecap coverage, a feasability assessment.

 Proc. EARSeL-ESA Symp. Voss, Norway, 1981, 103-109.
- Monahan, E. C., B. D. O'Regan, D. M. Doyle, 1980: The influence of whitecaps on the marine atmosphere. 2nd. Rep. to ONR. 123pp., University College Galway.
- Monahan, E. C., M. C. Spillane, P. A. Bowyer, D. M. Doyle, and J. J. Taper, 1982c: Whitecaps and the marine atmosphere.

 Tech. Rep. 4, 75pp. University College Galway.
- Monahan, E. C., M. C. Spillane, P. A. Bowyer, D. M. Doyle, and P. J. Stabeno, 1983: Whitecaps and the marine atmosphere.

 Tech. Rep. No. 5, 93pp. University College Galway.
- Moore, D. J., and B. J. Mason, 1954: The concentration, size distribution and production rate of large salt nuclei over the oceans.

 Q. J. Roy. Meteorol. Soc., 80, 583-590.
- Munk, W. H., 1947: A critical wind speed for air sea boundary processes. J. Marine Res., 6, 203-218.
- Nolan, J., and D. G. Doherty, 1950: Size and charge distribution of atmospheric condensation nuclei. Proc. Roy. Irish Acad., 53, 163-179.
- Nolan, J. J., and V. H. Guerrini, 1935: The diffusion coefficients and velocity of fall in air of atmospheric condensation nuclei.

 Proc. Roy. Irish Acad., 43, 5-24.
- Nolan, J. J., and P. J. Nolan, 1937: Atmospheric electrical conductivity and the current from air to earth.

 Proc. Roy. Irish Acad., 43, 79.
- Nolan, J. J., P. J. Nolan, and P. G. Gormerly, 1938:
 Diffusion and fall of atmospheric condensation

- nuclei. Proc. Roy. Irish Acad. 45, 47-63.
- Nolan, P. J., and L. W. Pollak, 1946: The callibration of Photo-electric nucleus counter.

 Proc. Roy. Irish Acad., 51, 9-31.
- O'Connor, T.C., 1963: On the production of condensation nuclei by gaseous reaction.
 J. Rech. Atmos., 1, 127-133.
- O'Connor, T. C., 1966: Condensation nuclei in maritime air.
 J. Rech. Atmos., 2, 181-184.
- O'Connor, T. C., 1977: Aerosol reserch in Ireland. Proc. 9th. Intrnl. Conf. on Atmospheric Aerosols, Condensation and Ice Nuclei, Galway University Press, 1981, 532pp.
- O'Connor, T. C., and V. P. V. Flanagan, 1961: The measurement of size distributions in Aitken nuclei.

 Geofis. Pura Appl., 50, 60-66.
- O'Connor, T. C., and A. F. Roddy, 1966: The production of condensation nuclei by heated wires.

 J. Rech. Atmos., 2, 239.
- O'Connor, T. C., and W. P. Sharkey, 1960: Ionization equilibrium in maritime air Proc. Roy. Irish Acad., 61(A), 15-27.
- O'Connor, T. C., W. P. Sharkey, and V. P. Flanagan, 1961: Observations on the Aitken nuclei in Atlantic air. Q. J. Roy. Meteorol. Soc. 87, 105-108.
- Owens, J. S., 1926: Condensation of water from the air upon hygroscopic crystals.

 Proc. Roy. Soc. London, Al00, 738-752.
- Owens, J. S., 1940: Sea-salt and condensation nuclei. Quart. J. Roy. Met. Soc., 66, 2.
- Podzimek, J., 1980: Advances in marine aerosol research. J. Rech. Atmos., 14, 35-61.
- Podzimek, J., J. F. Stampfer, and O. Preining, 1977:
 Aerosol study during a seabreeze.
 Proc. 9th Intrnl. Conf. on Atmospheric Aerosols,
 Condensation, and Ice Nuclei.
 Galway University Press, 532pp.

- Pollak, L. W., and T. Murphy, 1952: Sampling of condensation nuclei by means of a mobile photo-eletric counter.

 Archiv Meteor. Geophys. Bioklim., A, V, 100-119.
- Prodi, F., G Santachiara, and F. Oliosi, 1983:
 Characterisation of aerosols in marine environments (Mediterranean, Red Sea, and Indian Ocean).
 J. Geophys. Res. 88, 10,957-968.
- Prospero, J. M., R. J. Charlson, V. Monen, R. Jaenick, A. C. Delany, J. Moyers, W. Zoller, and K. Rahn, 1983: The atmospheric aerosol system: An overview. Rev. Geophys. Space Phys., 21, p1607-29.
- Pruppacher, H. R., and J. D. Klett, 1978: Microphysics of clouds and precipitation.
 Reidel Publ. 714pp.
- Rayleigh, 1876: On waves. Phil. Mag., 1, 257.
- Rahn, K. A., 1981: Relative importances of North America and Eurasia as sources of arctic aerosol.

 Atmospheric Environment, 15, 1447-1455.
- Roll, H. U., 1965: Physics of the marine atmosphere. Academic Press, New York, 425pp.
- Savoie, D. L., and J. M. Prospero, 1977: Aerosol concentration statistics for the northern tropical Atlantic.
 J. Geophys. Res., 82, 5954-5964.
- Schacher, G. E., K. L. Davidson, C. W. Fairall, and D. E. Spiel, 1981: Calculation of optical extinction from aerosol spectra data.

 Applied Optics, 22, 3951-57.
- Sigerson, G., 1870: Micro-atmospheric researches. Proc. Roy. Irish Acad., 1, 13-30.
- Spiel, D. S., 1981: STREX A preliminary report. Internal report, BDM/M-TR-0004-81. BDM. Corp., Monterey, California.
- Spillane, M. C., and D. M. Doyle, 1983: Final listings for STREX and JASIN photo-analysis. in, Monahan, et al., 1983, Tech. Rep., 4. to ONR. University College Galway.
- Stokes, G. G., 1880: On the theory of oscillatory waves. Math. Phys. Papers., 1, 225-228.

- Stokes, G. G., 1847: On the theory of oscillatory waves. Trans. Cambridge Phil. Soc., 8, 441.
- Stuhlman, O., 1932: The mechanics of effervesence. Physics, 2, 457-466.
- Sverdrup, H. U., 1943a: Oceanography for meteorologists Prentice-Hall, New York, 235pp.
- Sverdrup, H. U., and W. H. Munk, 1947: Wind, sea, and swell: Theory of relations for forecasting. U. S. N. D., H. O. Publ., 601, 44pp.
- Tennekes, H., and J. L. Lumley, 1972: A first course in turbulence.
 MIT Press, 300pp.
- Thorpe, S. A., 1982: on the clouds of bubbles formed by breaking wind-waves in deep water and their role in air-sea gas trunsfer.

 Phil. Trans. Roy. Soc. London, A304, 155-204.
- Toba, Y., 1965a: On the giant sea-salt particles in the atmosphere. I. General features of the distribution.
 Tellus, 17, 131-145.
- Toba, Y., 1965b: On the giant sea-salt particles in the atmosphere. II. Theory of the vertical distribution in the the ten-meter layer over the ocean. Tellus, 17, 365-382.
- Toba, Y., 1965c: On the giant sea-salt particles in the atmosphere. III. An estimate of the production and distribution over the world ocean.

 Tellus, 18, 132-145.
- Toba, Y., and M. Chaen, 1973: Quantitative expression of the breaking of wind waves on the sea surface. Rec. Oceanogr. Work. Japan, 12, 1-11.
- Twomey, S., 1977: Atmospheric Aerosols.

 Developments in Atmospheric Science 7.

 Elsevier, 302pp.
- Wang, C. S., and R. L. Street, 1968: Transfers across an air-water interface at high wind speeds: The effect of sprny. J. Geophys. Res., 83, 2959-2969.

- Winters, W., S. Barnard, and A. Hogan, 1977: A portable photo recording Aitken counter.
 J. Appl. Meteorol., 16, 992-996.
- Whittow, J. B., 1974: Geology and scenery in Ireland. Penguin Books, London, 301pp.
- Woodcock, A. H., 1953: Salt nuclei in marine air as a function of altitude and wind force.

 J. Meteor., 10, 362-371.
- Woodcock, A. H., C. F. Kientzler, A. B. Arons, and D. C. Blanchard, 1953: Giant condensation nuclei from bursting bubbles.
 Nature, 172, 1144-1145.
- Wright, H. L., 1940: Atmospheric opacity at Valentia. Q. J. Roy. Meteor. Soc., 66, 66-77.
- Wu, J., 1969: Wind stress and surface roughness at air-sea interface. J. Geophys. Res., 74, 444-455.
- Wu, J., 1979: Oceanic whitecaps and sea states. J. Phys. Oceanogr., 9, 1064-1068.
- Wu, J., 1979: Spray in the atmospheric surface layer: Review and analysis of laboratory and oceanic results. J. Geophys. Res., 84, 1693-1704.
- Wu, J., 1981: Bubble populations and spectra in near-surface ocean: Summary and review of field measurements.
 J. Geophys. Res., 86, 457-463.

APPENDIX 4.1.

INSTRUMENTS

Wind Speed: MUNRO (London) cup generator anemometer IM124.

Wind Speed Indicator: Initially a MUNRO Mark II velocity indicator dial was used but more recently the anemometer has been connected to one channel of a PHILLIPS chart recorder PM8221. The dial is now used as a backup.

<u>Wind Direction:</u> Various visual techniques were used until a 'home made' wind vane was constructed in the lab. This instrument while uncomplicated is sensitive enough for our purposes.

<u>Relative Humidity and Air Temperature:</u> MUNRO sling psychrometer and CASELLA Thermohygrograph (T9154) in a meteorological screen.

<u>Aerosol</u> <u>particle</u> <u>measuring</u> <u>devices</u>: ROYCO particle measuring counter (model 225) with plug-in module (model 519) and optical sensor (model 241).

Space Charge: An Obolensky filter (Monahan et al., 1981) is used. This is an air filter which is connected to a KEITHLEY 602 electrometer. As the air passes through the filter the space charge is 'captured' and a corresponding current is registered on the electrometer.

During the U.C.G/N.P.S co-operative experiment additional instruments were:

Wind Speed: CASELLA sensitive anemometer model 2145C.

Belative Humidity and Air Temperature: LiC1

humidity/temperature probe, HYGRODYNAMICS Ltd. 15-1818W.

<u>Aerosol Counters:</u> P.M.S. Classical Scattering Aerosol Spectrometer Probe (CSASP - 100). P.M.S. Active Scattering Aerosol Spectrometer Probe (ASASP - 300). [P.M.S. = Particle Measuring Systems Ltd.]

Processing Equipment: P.M.S. Data Acquisition System
DAS-32, HEWLETT-PACKARD Computer 9825S, H-P Printer 9871A,
KENNEDY Incremental Tape Recorder 1600/360.

APPENDIX 4.2.

EXPERIMENT LOG

The U.C.G. field station on Inishmore was established in August 1979, however, installation work was not completed until April 1980. Because of the exposed nature of the site and the high-salt content of the air constant maintenance work such as painting and the replacement of stay-wires has been neccessary.

Nevertheless twelve experiments each of several days duration have been performed. There now follows a descriptive log of these experiments.

16th. November 1979; The first aerosol, whitecap and wind data were taken at the station. The Nolan/Pollak counter was used for the aerosol measurements.

23 - 26 April 1980; The instrument tower was extended to its full height of 15M. As part of the Arctic Air Sampling Programme the University of Rhode Island large volume air sampler was installed at a site about 400m east of the station. Preperations were also made for the installation of an experimental wind driven generator.

23 - 28 June 1980; The U.C.G./N.P.S. co-operative experiment was performed at this time. This represented the first comprehensive set of aerosol and meteorological measurements undertaken at the station. Some sixty six

aerosol size spectra were obtained using two Knollenberg counters (see Apdx. 4.1.).

20 July 1980; Strong winds damaged the tail of the 'wind generator', further tests were postponed until repairs could be effected.

- 12 14 February 1981; The first measurements were taken at the station using the ROYCO sampling instrument. This trip was designated GNG01.
- 5 7 March 1981; Data trip GNG02. Over 350 aerosol samples were taken in an eight hour period on the 6th.
- 8 11 April 1981; A topographical survey of the station site and environs was performed (see text).
- 13 16 May 1981; Data trip GNG03/04/05. Over 250 aerosol and meteorological measurements were taken during a two day period.
- 15 18 July 1981; Data trip GNG06/07. Approximately 200 aerosol and meteorological measurements were taken over a period of one and a half days.
- 2 5 September 1981; Data trip GNG08. About 200 aerosol and meteorological measurements were taken in a seven hour sampling period.

- 4 7 November 1981; Data trip GNG09. After only two hours of data collection on the 5th. the ROYCO timing mechanism broke down. This made further sampling impossible.
- 16 24 March 1982; Data trip GNG10. In addition to aerosol concentration and ambient meteorological conditions, space charge density was also monitored for the first time on this trip. These measurements were taken in collaboration with Mr. P. Bowyer of the Oceanography Dept. U.C.G.
- 20 24 July 1982; Data trip GNG11. Several hours of aerosol, space charge and meteorological measurements were taken.
- 13 20 November 1982; Data trip GNG12. From the 15th. to the 18th. several hundred aerosol, electric charge and the usual range of meteorological measurements were taken. The samples were collected in a broad range of conditions in an effort to establish the influence on the results of such phenomena as rain showers, surf-zone spray and non-isokinetic sampling in high wind speeds.

APPENDIX 5.1

Full set of raw meteorological and aerosol concentration data as collected at the field station on Inishmore Co. Galway.

Data trip GNG01, 14th Feb. 1981, 182 intervals.

TIME	U m/s	W.D	RH %	N, m (2.5+)	$\frac{3}{N, m} - 3$ $(0.25+)$
1320 1321 1322 1323 1324 1326 1328 1329 1330	4.0 5.0 4.0 6.0 5.0 7.0 6.0 5.0 4.5 4.0	95 105	68	340432 263446 333016 361268 226719 238373 250027 256737 282516 319243	37681031 30284388 37721643 38554008 29123244 26693246 28884164 27246626 30048840 34581822
1332 1333 1334 1335 1337 1339 1340 1342 1344 1346 1347 1348 1349	5.5 4.0 5.0 5.0 6.0 7.0 6.0 7.0 6.0 7.0	85	72	306177 216831 264506 222128 203765 219656 223541 149380 179398 222128 241551 183989 142670	30632943 24505154 28444144 25730217 23424880 21377340 24998852 19156404 26815435 30762901 29593634 25010152 18675066 26804487
1352 1353 1354 1355 1356 1357 1358 1359 1400 1401 1403 1404 1405 1406	5.0 5.5 4.0 5.5 6.5 6.5 6.5 6.0 6.0 6.0	97		229898 228838 208356 322775 232370 271216 232370 293111 377513 220363 233429 230604 150440 182223	30767139 26419205 24782726 35127785 32139817 37608283 27761866 38691382 63223728 37298574 32676952 30215878 20604656 23929173
1407 1408 1409 1411 1412 1413 1414 1416 1417	6.0 7.0 7.0 6.0 5.0 5.0 5.5	105	68	201999 173394 175866 265918 245789 242258 385635 296642 347495	25307855 24298563 24117753 41360459 36969089 35983811 49483877 37646423 38375669

1418 1419	6.0 5.5			269450 234842	29321006 32239757
1420 1421	6.0			235901 259562	34578290 34570521
1423 1424	5.5			271569 259209	38361543 38220991
1425 1426	5.5 4.5			294170 208709	40728681 27516783
1427 1428	5.5 5.0			280044 286048	34642210 44021061
1429	4.5	100	80	327366 411061	45056485 55208726
1430	5.0	100		286048	38687497
1432	6.0			375041 459089	
1435	4.5			255324 256737	34375231
1437 1438	4.5			278279 331957	48429030
1439	5.0			265565 243317	34014316
1441	5.5			245083 263093	32071307 35293058
1444	4.5 6.0	103	68	266978 194230	33096136 21973097
1447	5.5			263446 248614	40564821 34980524
1449	4.5			230957 289226	32528631 42356331
1451 1453	4.0 3.5			292758 342551	33547104 41019673
1454 1455	5.0 5.0			209062 227426	24498797 24848412
1456 1457	5.0 6.0			241905 234842	
1458 1459	7.0 7.0	100	72	196702 203412	22781095 21214539
1504 1505	6.0 6.0			224247 245436	24458185 35388407
1506 1507	4.0 4.5			342198 331604	46147706 46065423
1508 1509	5.0 6.0			305471 211887	39164244 25067009
1510 1511	6.5 6.0			207649 223541	24061955 27782349
1512 1513	5.5 5.5			226013 262740	28818832 34593122
1514 1515	5.5 7.0			301233 194230	37938474 23923875
151 <i>(</i> 1520	7.0 5.5	105	62	197408 203058	23288213 42059688
1521 1522	5.5 5.0			170569 208356	28317718 31410924

1523 1524 1525 1526 1528 1529 1530 1531 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545	4.5 5.5 6.0 5.5 6.0 6.0 5.0 5.0 6.5 6.0 5.5 6.0 5.5 6.0 5.5 6.0 5.5 6.0 5.5 6.0 5.0 6.0 5.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6	99	64	136314 305118 214712 348908 368331 310062 235195 317125 197408 239079 330191 248261 268744 263800 334782 166331 276513 276513	18651052 34332501 24287969 45224936 46697908 41305368 31722045 40209910 23211580 28140792 39666418 32416684 31334997 32717917 39707030 233331296 35752854 35993699
1547 1548 1549 1550 1553 1555 1556 1557 1558 1559 1600 1601 1603	4.5 6.0 4.5 5.0 4.5 3.5 5.0 4.5 5.0 4.5 5.0 4.5	100	64	341845 382457 275807 161034 217184 246495 224247 185401 167038 182576 179045 234842 162447	27949387 23851127 21140379 21401000 18817384 22793808
1604 1605 1608 1609 1610 1611 1612 1613 1614 1616 1617 1618	4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	100	59	136667	15026362 17783373 20854330 17992788 26091486 28748556 32868710 37925761 20254335 20832788 19985944
1620 1621 1622 1623 1624 1625 1626 1627 1628	4.0 3.0 4.0 3.0 4.0 3.0 5.0	120		309002 354205 372569 259209 299467 284635 208356 263800 406824	41056754 453333352 48823847 32504970 38218166 30039658 22748252 29963025 43675684

1629 1630 1631 1632	4.0 5.5 5.0 5.0			459796 398348 264506 257796	47603374 46399853 32484841 31714276
1633	4.0	105	64	314299	38689969
1634	4.5		-	391992	47235749
1635	4.0			324188	39784015
1636	3.0			318537	37170735
1638	4.0			258149	28734783
1639	4.5			288167	33480359
16.40	4.0			290639 236960	32934396 27479702
1641 1642	3.0 3.0			346436	37077858
1643	3.0	÷		370803	41133033
1644	3.5			309002	36551670
1645	3.0			347848	41575878
1646	4.5			264153	27310899
1647	3.5		64	388460	40293958
1648	4.0	154		352792	39070661
1649	4.0			233782	25326924
1650	3.0			390579	37769318
1651	3.0			502879	54337162
1653	3.5			301586 400820	32454117 39811561
1654 1656	3.5 3.0			472156	49677754
1657	3.5			454145	55685120
1658	3.0			345023	40237808
1659	3.0			412121	38228760
1700	3.5			311121	29406467

Data trip GNG02, 6th. March 1981. 120 intervals.

TIME	U m/s	W.D	RH %	N, m^{-3} (2.5+)	N, m ⁻³ (0.25+)
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1100 1106 1107 1108 1109 1110 1111 1112 1114	4.0 4.5 4.5 4.0 4.0 4.0 2.5 2.5 2.0 2.0 2.0 2.0 2.0 2.0 2.0	236	98	780452 738781 873683 994459 822830 1173504 967973 1109231 1183039 860969 892753 836249 745491 1947600 1465555 2187033 1082039 1079567 917120 936543 1191161 2097334 1862845	28419777 24921513 26396957 27272759 24620279 34029148 26551635 29531834 31820220 25501732 24483965 24815569 24527755 53790492 40994600 59483912 30874848 29737718 28065218 27589178 32629277 52879022 45761365
1117 1118 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1519 1520 1522 1523 1524 1525 1526 1527 1528	2.0 1.8 2.0 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5	268 270	93	1508286 1211290 336194 266978 240139 152205 195642 315712 147968 183282 146555 171628 238020 237314 162447 171982 282869 414593 442491 557970 558676 707351 1086277 444610	37135067 31900384 27359633 19622204 19181831 12289480 17484258 18020687 11386486 12493952 8048550 9407809 13269107 15146431 10993788 13306188 22079041 27125144 29504642 33741687 29349964 30141011 43377629 16616225

1529 1530 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1545 1546 1547 1627 1628 1629 1630 1631 1632 1633 1634 1635 1638 1639	3.8 2.4 4.0 3.8 3.2 3.6 3.8 3.2 3.4 3.2 3.2 3.2 3.3 4.2 3.3 4.2 3.8 3.8 4.2 3.8 4.2 4.0 3.8 4.2 4.0 3.8 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	268	89	448495 1113469 310415 567505 781158 506764 619771 385988 1062616 400820 295936 361621 492991 348201 263446 494404 367271 376453 352792 412121 339020 386341 344670 294876 371862 397995 392345	23361314 46423867 13595061 22739424 42588348 25111505 26734211 16903686 47095197 22921294 18231515 25301498 28151739 15331480 11745636 20133559 14830366 13905830 13774459 15475210 13784701 14685576 13043094 11871002 13654036 15731241 16339359
1640 1641 1642 1643 1644 1645 1647 1648 1649 1650 1651 1652 1653 1654 1656 1657 1658 1659 1700 1701 1702 1703 1705 1707 1708	4.2 3.5 4.0 3.8 3.8 3.5 4.0 3.8 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5	220	90	475334 452026 448142 354205 285695 376100 431191 377513 343257 427306 433663 302999 398348 402939 472156 288873 340432 406117 454145 594697 564680 337607 622243 652260 603173 627540	17654474 18758056 19388421 13605302 13887113 14126899 17926397 32287432

1709	3.0			591166	25647581
1710	3.8			646257	27328203
1711	3.5			691459	29994808
1712	4.0			556911	25774714
1713	4.2			557970	26933739
1714	4.0			501467	23934117
1715	4.0			453086	24694793
1716	4.5			465799	22114708
1717	4.0			439313	24012162
1719	4.2			524774	31724870
1720	4.0			462621	26880414
1721	3.8			649435	35952381
1722	3.8			649788	33729680
1723	3.5			559383	27834967
1725	4.0			704173	37981205
1726	3.5			800581	43582454
1727	3.8	210	94	790340	40721971
1728	4.0			695697	38501036
1729	4.0			905113	43836719
1730	3.8			613767	32589725

Data trip GNG03, 14th. May 1981. 156 intervals.

TIME	U m/s	W.D	RH %	N, m^{-3} (2.5+)	
1153 1154 1155 1156 1157 1158 1159 1200 1202 1203 1204	6.0 6.0 5.5 5.5 6.0 6.5 6.5	210		12360 13066 31076 24367 27898 14478 16951 18716 14478 20129 13419	8539423 11213798 9928346 8327888 10076668 8133305 11242756 8438423 7552380 12481592 12864402
1204 1205 1206 1207 1208 1209 1211 1212 1221 1222	6.5 7.0 6.0 6.0 5.5 6.0 6.5 5.0	185	59	15538 15185 12713 19069 25073 9888 11653 47674 62506 68157	8569087 5470231 8774971 12540214 12978468 7462681 7348261 10778369 11160473 13012723
1224 1229 1230 1231 1232 1233 1235 1236	5.05.05.55.00.00.05.0 6.65.56.66.66.55.0	185	59	29664 34608 31429 36020 31076 34255 35667 43436 40964 27192 33195 40964 49087	9207928 6756389 7109888 9843238 6235498 7350734 12738329 10390967 9344596 9010167 9485854 9155663 9749654
1242 1243 1246 1247 1249 1250 1251 1253 1254 1255 1256 1257	4.5 4.5 5.0 5.0 5.0 5.5 4.5 5.5 4.5 5.5 5.5 5.5 5.5 5.5 5.5	185		72041 55443 50499 54384 63566 59681 51206 34961 40964 33195 44496 48381 71335	15672619 18397847 8465969 11732216 12724203 8895747 8337423 6520487 5831499 5803248 8753783 9803333 9422994

1259 1300 1301 1302	4.5 5.0 4.5 5.5			55443 50853 50853 38139	9544476 11202850 10731753 7421010
1304 1305 1306 1307 1308	5.0 6.0 5.5 5.5 5.0	185		44143 76632 65685 65332 48027	8057026 17016693 11756936 10692554 8416881
1309 1402 1403 1405	5.0 4.0 4.0 3.5		59	73807 43083 34961 44143	14402000 15857314 7970505 12681472
1406 1407 1408 1412	4.0 3.5 3.5 3.5			36020 42730 43790 56150	12522910 18601965 16377852 11724447
1413 1414 1415 1416	3.0 3.0 3.5 3.5			26132 42024 34608 27192	10737757 13698886 10060776 7312594
1417 1418 1419 1420	3.5 4.0 3.5 3.5	175	58	39905 44849 30723 14125	9875021 10621572 6994762 4729684
1422 1423 1424 1425	3.5 2.5 3.0 3.0			37433 38139 37433 31429	7007476 9371082 10006038 12550808
1427 1428 1429 1430 1431	2.5 2.5 3.0 3.0			30370 25779 21541 8475 20482	12651102 12723850 11000497 3875777 5994300
1432 1434 1435 1436	2.5 2.5 3.0 2.5 3.0	170	58	13419 33902 54031 35667	3814329 9877846 15424357 9444183
1437 1438 1439 1441	3.0 3.0 3.5 4.0			19423 17657 22954 13419	5972758 4961701 8983681 6231261
1442 1443 1444 1445	2.5 2.5 2.5 3.0			18010 27898 25779 8475	7201000 10244059 10456299 4864233
1447 1450 1452 1454	3.0 2.5 3.0 2.0	176	56	22601 22777 12183 16951	8404521 8555491 3442996 4201377
1456 1458 1500	2.5 3.0 2.5			9534 8122 10241	4357998 5244041 5699423

1502 1504 1506 1508 1510 1512 1514 1517 1519 1521 1523 1528 1530 1532 1534 1536 1538 1540	2.5 3.5 3.5 3.5 3.5 4.0 4.5 4.0 4.5 5.5 5.5 6.0	170	56	10947 14832 15714 7769 11653 10064 10064 11124 10064 11653 12536 15008 14125 6533 11477 13419 20659 27015 36550	5547217 4754404 6817660 3643583 3921862 4044228 4173126 4591074 5987767 5750982 4401435 5464051 5662519 5488418 4615618 4181072 5019793 6929783 5957749 10186319
1544 1546 1548 1550 1552 1554 1556 1558	6.2 6.0 6.5 8.5 8.2 7.5 8.0	177	58	32489 33195 30193 21188 32136 33725 29134 40258 18540	6771751 7736369 5548100 4995426 7538784 6392472 8581624 8116531 5885531
1602 1605 1607 1609 1611 1613 1615 1620 1622	6.5 7.0 7.0 7.0 7.0 7.0 7.5 7.0 6.5 7.0	175	58	46262 52089 29311 20482 15538 17304 18893 16068 22424 22248 22071	10086909 10506623 7098058 5736503 4942278 4181072 4704434 6334203 5289067 6482524 8020828
1626 1628 1630 1632 1635 1637 1643 1643 1645 1647 1649 1651	7.0 6.5 7.0 7.0 6.2 7.5 8.0 8.0 7.8 9.5 8.5	163		20305 21718 18540 23307 21895 20835 14655 18363 21365 28075 26485 24190 24896	6832315 5262758 5820905 7014009 6308600 6387704 5869816 6468045 6515543 6332084 6570987 9074969 8409995

1653	8.2	23660	6353802
1655	8.0	30547	6723193
1658	8.0	25779	7179811

Data trip GNG04/05, 15th. May 1981. 105 intervals.

TIME	U m/s	W.D	RH %	N, m ⁻³ (2.5+)	N, m ⁻³ (0.25+)
1157 1158 1200 1202 1203 1204 1205 1206	7.5 7.5 7.0 6.5 6.5 6.0 6.5	108	68	598582 592225 573155 560089 542079 521949 801641 513474	26358464 23732117 20604656 18985835 22152848 17910858 29132426 21028078
1207 1208 1209 1210 1212 1213 1214 1215 1216 1217 1218 1220 1221	7.0 6.0 6.5 8.0 7.5 7.5 7.0 6.5 7.5 7.5 7.5	108	64	494404 943959 767739 642725 479219 428012 413533 613767 527246 678393 630718 407530 433310 400114	16253544 31369959 27379762 25180016 16292743 15578329 14165039 24404507 21956499 23725054 21699762 17587730 19264820 13918190
1223 1224 1225 1227 1228 1229 1230 1231 1234 1236 1237 1238 1239 1240 1241 1243 1245	7.05.05.50.00.05.55.55.55.55.55.55.55.55.	100	63	471096 521243 678746 542079 524068 636015 614474 474628 326660 223894 222835 232370 336548 264153 248261 287813 180457 264506 176219	15357966 16151132 31634112 23711988 19518379 24850884 21624895 17451769 17243766 14961030 15684273 17897439 26652988 17986079 16721463 24121284 12437095 19172649 13097125
1248 1249 1250 1251 1252 1254 1255	5.0 4.5 4.5 4.5 4.5 5.0 4.0	100	65	289579 243317 235548 280044 234488 237667	18609734 15993982 16715812 21244557 19955927 19010908

1256 1257 1258 1259 1300 1403 1404 1405 1406	4.5 4.0 4.0 4.5 3.5 4.5 5.0 5.0	98	64	205530 245083 247202 287460 320656 148674 146908 220363 202705 256383	13792470 15969615 15185278 18346287 19216792 14002945 14857558 25576245 30278738 29360558
1408	5.0			226719	27450744
1409 1411	5.5 5.0			263093 223188	30802100 21055270
1412	4.8			226719	32035286
1413	4.5			229191	29844368
1414	5.0			241905	31597738
1415	5.0			325247	37336007
1416	5.5			290639	22938598
1417	5.5			410708	36482454
1419	5.0			371156	40612143
1422	4.5			273688	31444119
1423	5.0			414593	42092178
1440	-	104	78	428719	25418742
1441	4.5			388107	27483234

Data trip GNG06, 16th. July 1981. 79 intervals.

TIME	U m/s	W.D	RH %	N, m^{-3} (2.5+)	N, m ⁻³ (0.25+)
1424 1425 1426 1427 1428 1430 1431 1432 1433 1434 1435 1436 1437	10.0 8.5 9.0 9.0 9.5 11.0 10.0 10.0 10.0	305		27898 31076 45555 42730 20594 10947 20835 30017 34608 30723 39905 24013 20482 20482	4269182 4332395 5540154 5462462 2912395 2977727 3281432 3804441 4999134 3693554 4772415 4362059 3692494 3557592
1439 1441 1442 1443 1444 1445 1447 1448 1449 1450 1451 1454 1456 1459 1500 1501	11.5 10.0 10.5 10.5 9.0 9.5 9.0 10.0 11.5 11.0 12.5 10.0	300	83	19423 19776 20482 21541 18716 16244 14832 22601 25073 14125 14125 13066 17304 17657 20835 30370 17304	3693907 3887431 3851410 3989843 4049878 3790316 3599970 4042462 4069301 4158294 4054116 3993728 4301671 4264944 4593370 4508968 4367709
1502 1503 1504 1506 1507 1510 1511 1512 1513 1514 1516 1517 1518 1519 1521 1522	9.5 12.0 8.5 9.5 10.5 10.5 10.0 9.5 10.0 9.5 11.0 10.5	300	75	17657 31429 37433 25073 36374 25779 24720 31429 40258 28604 34608 26839 28604 27545 27192 27545	4549226 5050340 5404193 4976886 5114260 5031977 5202193 5060582 5484710 5198309 5646098 5361109 5173235 5024561 5316259 5351927

1523 1524 1525 1528 1529 1531 1533 1534	10.5 11.0 8.0 9.0 8.8 7.5 9.5	298	83	32489 39905 35314 43436 61800 49440 17304 21541	5460696 5675409 5591007 6198418 8373091 7543551 5403840 5172176
1535 1536 1537 1538 1539 1541	9.8 9.0 9.5 11.0 10.5 9.0			28604 46615 34255 33195 22954 28251	5329326 6680816 5984412 6042328 4862820 4997015
1542 1543 1544 1545 1546 1547 1548	10.5 10.0 11.2 10.5 11.5 10.2 11.2	302	79	28251 24720 28604 44496 51559 40964 36374	5354046 5401368 5621378 6591823 7294583 6327316 6136971
1549 1551 1552 1553 1555 1556 1557	9.0 10.0 10.5 9.5 10.0 10.5 9.0			36020 22248 25779 28957 26132 29664 55443	5547923 5492126 5660930 5833618 5807839 6322726 7490226
1558 1559 1600 1602	8.8 12.0 10.0 9.5	310	79	58622 35667 43436 61094	8281273 6342502 6411365 6646560

Data trip GNG07, 17th. July 1981. 100 intervals.

TIME	U m/s	W.D	RH %	N, m ⁻³ (2.5+)	N, m ⁻³ (0.25+)
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1118 1119 1120 1121 1122 1123 1124 1125	9.0 9.5 10.0 11.0 11.0 9.5 11.0 10.0 10.5 9.5 10.0 9.5	312		25779 27545 38846 26132 36020 26839 26132 9888 25073 35314 33548 10241 10594 13066 12006 13419 15891 7062	10863477 11058767 10742701 10674191 10140234 9861248 9896563 10117632 10268779 10345412 9914573 8437364 7765327 8043253 8283392 8409112 8620647 8756255
1127 1128 1129 1130 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141	10.0 9.5 8.0 9.0 8.0 9.5 11.0 10.0 11.5 11.5 10.0 9.5	313		13772 22601 32136 21188 19776 20482 33195 31783 26485 23660 26485 20129 26839 13772 8122	8931415 9357309 9461134 9716812 9948829 10050535 10167426 10060776 10061129 10325282 10500443 9899388 9912101 9704452 10475369
1143 1144 1145 1147 1148 1149 1150 1151 1152 1153 1155 1156 1157	10.2 11.0 11.5 9.5 11.0 11.5 12.0 12.5 10.0 10.5 11.0 9.8 9.5	308	74	17657 27192 21188 31076 16597 15891 13066 31783 19069 11653 12006 15185 22954 37080	11175658 10631460 10304447 10348943 10130699 10302681 9963308 10240880 10086909 9933643 10363422 10255713 10622984 10598970

1159 1200 1201 1202 1204 1205 1206	9.8 10.8 10.5 10.0 11.0 11.5	310	75	37433 11300 13772	10595792 10244765 10692907 10822512 10461597 10307272
1207 1208 1209 1210 1212 1213 1214 1215 1217 1218 1213 1220 1221 1222 1223 1224 1225 1226 1228	10.0 10.0 9.5 10.5 10.0 10.5 11.0 9.5 10.0 8.5 10.0 9.5 11.5 12.0	326	75	25779 31076 28604 24013 13772 9888 23307 38492 24013 30370 31783 20462 16244 23660 22601 25426 43083 19423 34608	11278070 11549993 12186362 12139040 12114320 11853698 11507262
1229 1229 1230 1231 1232 1233 1234 1235 1237 1238 1239 1241 1242 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1255 1256 1257	11.0 9.5 9.0 9.5 8.0 10.0 10.5 9.5 9.0 11.5 11.0 9.8 10.0 9.5 8.0 9.5 10.0 9.5 10.0 9.5 10.0 9.5	316	70	32842 21541 20835 6356 21541 21895 25073 27545 8122 21895 11300 26839 34255 29664 37433 28957 24720 18363 18010 26839 28957 28251 36374 31429 26839	11162591 11564472 11547874 11327157 11330336 11511500 11842398 12524322 11647814 12382358 11877006 12152107 11996016 12464288
1258 1259	10.0	310	70	21541	11682069 11828978

Data trip GNG08, 3rd Sept. 1981. 200 intervals.

TIME	U m/s	W.D	RH %	N, m -3 (2.5+)	3 N, m -3 (0.25+)
1058 1059 1101 1103 1104 1106 1107 1108 1109 1110 1111 1112 1114 1115 1117	5.0 6.0 6.5 5.0 5.5 6.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5	148	82	52618 58975 67097 65332 51912 74160 56503 67804 61800 77692 74513 68510 60741 59328 78045	9434295 9367550 10020870 9235474 10018045 9501746 8595573 9367903 8705402 9446655 10318219 9052191 9334708 8532360 9385208
1117 1118 1119 1120 1121 1123 1124 1125 1126 1127 1128 1129 1131	5.5.5.0.5.0.5.0.5.0.5.5.5.5.5.5.5.5.5.5	158	79	75573 84401 69922 77692 72394 62859 71335 67450 60741 63213 79457 118303	9371,82 9260900 9079736 9881731 9542358 8594514 8525297 9071614 8459612 8687038 9780025 11149172
1132 1133 1134 1135 1136 1137 1138 1140 1141 1142 1144 1145 1146 1147	5.5.0.5.0.5.0.5.5.5.5.5.5.5.5.5.5.5.5.5	162	83	129604 167744 119010 93583 104178 80164 75573 71688 63566 84755 76985 75220 66744 72394	12458990 13027202 10763536 10453121 10407212 9594976 8960726 9087506 9025705 10020517 9808983 9113285 9047953 9828053
1148 1149 1152 1153 1154 1155	5.5 5.0 5.0 5.0 5.5 6.0	166	83	72041 72394 54737 74160 100999 77692	9526819 9939647 9267963 10594733 12016852 10610624

1157 1158 1205 1206 1207 1208 1209 1210 1211 1212 1215 1216 1217	5.0 4.5 5.5 6.0 6.0 5.5 5.5 5.5 6.0 5.5 5.5	167	80	70276 67097 83695 72748 69216 64978 66744 65685 69922 79104 90052 49699 91111 94289	10306212 9599567 9414872 9623581 9764486 8971674 9450540 9956951 10323870 9585795 9692445 11366004 10752589 11237458
1221 1222 1223 1224 1225 1226 1228 1229 1230 1231 1234 1235	5.5 5.0 4.5 4.0 5.5 5.5 5.5 5.5 5.5	167	77	115831 135608 120069 139492 123601 110181 95349 92877 98880 87580 78751 78045 79104	12341393 12865815 11184487 13728197 13183999 11694782 10680900 10136702 11722328 11011798 9838294 8875618 8932828
1237 1238 1424 1425 1426 1427 1428 1429 1431 1432 1433	5.0 5.5 5.5 5.0 5.5 4.5 5.0 5.5 5.0	188	70	88639 97468 52971 55090 72748 78751 88992 75573 80870 77692 60034	10045591 10729988 6473166 6793116 7144143 7764621 7310828 6425844 7098940 6774399 5969580
1434 1435 1436 1438 1439 1440 1444 1445 1446 1447 1448 1449 1450 1452	5.5 5.0 6.0 5.5 6.0 6.5 6.0 6.5 7.0 7.0	194	70	69216 62506 51206 39552 50146 57915 81576 86873 81929 96762 113006 98174 104884 84048	6626078 6034205 5920139 5211728 6090709 6436792 6785347 6562865 7004297 7966620 8343427 6822074 6910007 6574519

1454 1455 1456 1457 1458 1459 1500 1501 1502 1503 1504 1507 1508 1509 1510 1511 1512 1513 1514 1515	7.0 7.0 6.0 6.0 6.0 6.5 5.5 6.0 6.5 6.5 6.5 6.5 7.0	196	70	62506 86873 73101 58269 59328 50146 42730 36727 43790 43436 66038 58622 73101 74160 78398 51912 94643 78045 70276 74866	5918726 7421010 5965342 5515434 5436682 5240686 5245630 4936627 5453633 5752395 6156041 5631266 6532847 7249027 6653623 5673643 7951435 5975583 6025730 6651858
1516 1517 1518 1519 1520 1521 1522 1523 1526 1527 1528 1533 1533 1533 1533 1533 1536 1537 1538 1540 1541 1542 1544 1545 1546 1547 1548 1549 1551 1552 1553	7.0 8.0 6.5 7.0 7.5 7.5 7.5 7.5 7.0 6.5 7.0 7.5	204	74	107709 84401 75220 92171 73454 69569 71335 70982 76632 60741 69569 61447 81223 70982 98880 89699 72041 72394 76279 94289 80164 87580 11240 71335 74513 74866 74513 82636 90758 72041 70276 75220 97468	7424541 5757339 5697304 6879637 5474822 5606545 6063869 5731912 6315663 6120373 6166282 5945919 6773340 6346386 5859045 6822074 6113310 5496717 6548033 6647620 5986884 6883521 6661746 5704014 6252096 6156394 6717896 6003128 6650445 6031733 6092474 6214310 7919652

1554 1555 1556 1557 1558 1559 1600 1601 1602 1603 1605 1606 1607 1608	7.5 7.0 8.0 8.5 8.0 8.0 8.0 8.0 7.5 8.5 7.5	203	68	94996 91111 90758 98174 78045 79104 100646 96762 105943 90405 114066 96762 98880 85108 116185	6902238 6927311 7024427 6165929 6184292 6276110 7003591 6723546 6994056 7010301 7661149 7535076 6923427 7710589 8498105
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1621 1622 1623 1624 1625 1627 1628 1629	7.0 7.0 7.0 6.5 6.5 6.5 7.0 7.0 7.0 7.0 7.0 7.0	203	69	106296 100999 99234 98174 93230 77692 82636 85461 81223 108062 113713 106650 111240 92171 94289 75926 90405 94289	7423835 6651504 7269510 8057379 6562865 6427963 7160388 6964392 7312947 8159085 7417478 7530485 8409112 8364616 7418184 6884934 6847147 7062920
1630 1631	6.5 7.0 7.0 6.5 7.0 6.5 7.0 6.5 7.0 8.0 8.0	204		89699 86520 87933 75573 81929 82636 77692 88639 113713 106296 85461 86167 109828	7728247 6466809 7738488 6763805 6625018 6901179 6646914 7060801 8186630 7116951 6639851 8802870 8643601 7479632

Data trip GNG09, 5th Nov. 1981 30 intervals.

TIME	U m/s	W.D	RH %	$\frac{N, m}{(2.5+)}$	N, m ⁻³ (0.25+)
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1147 1211 1212 1213 1214 1215 1216 1217 1218 1220 1221 1222 1223 1224 1225	6.05.55.000055.57.66.0005.55.57.66.005.55.57.50005.55.57.55.57.55.55.57.55.55.57.55.55.57.55.55	126	80	43 43 6 62 5 0 6 51 9 1 2 53 6 7 8 57 2 0 9 60 0 3 4 52 2 6 5 59 6 8 1 55 0 9 0 55 7 9 7 68 5 1 0 59 6 8 1 58 9 7 5 45 9 0 8 42 7 3 0 61 0 9 4 52 2 6 5 43 43 6 38 4 9 2 55 7 9 7 58 6 2 2 50 8 5 3 54 0 3 1 60 3 8 7 55 4 4 3 46 9 6 8	8981209 8967789 9223820 9354131 9682557 9801567 10066073 10284671 10343293 10300209 10557299 10566128 10530460 9574847 9403571 9557190 9725640 9689973 9544476 9615459 9805805 9739413 9585441 9758130 9881025 9926934 9430410
1226 1227 1229	8.0 7.0 7.5	122	78	54737 52971 . 47321	9546242 9455131 9563193

Data trip GNGll, 19th March 1982. 25 intervals.

TIME	U m/s	W.D	RH %	N, m (2.5+)	N, m (0.25+)
1440	12.0	270	66	279162	42802001
1445	12.5			18504	29642439
1450 1455	12.5	275	66	43436 88922	34735440 44239305
1500	9.0	213	00	139351	49202419
1505	9.5			293252	53218890
1510	10.0	275		252923	46994692
1515	9.0			296501	49910760
1520	8.5	275	78	334076	58705225
1525	9.5		- 4	295441	54495372
1535	11.0	275	74	321574	55879139
1540 1545	10.5	292	82	252287 344387	555 4 3480 60808986
1545	13.0	252	02	64978	27183766
15505	10.8			26839	20267755
1551	10.8			40258	22123890
15515	12.2	295	80	38139	27368108
1552	13.2			37433	21513654
15525	13.6			56503	24078906
1553	14.0			36727	23439006
15535	12.0			35314	21984751
1601 1606	12.0	315	75	82706 61871	34939064 32596435
1639	12.0	300	15	133630	30203486
1644	12.0	300	70	158491	31203486

Data trip GNG12, 21st. March 1982. 32 intervals.

TIME	U m/s	W.D	RH %	N, m^{-3} (2.5+)	N, m^{-3} $(0.25+)$
1315 1320 1325 1330	8.2 7.4 7.8 7.4	275	86	525551 678464 693366 873471	45873665 63747726 63529058 85461332
1355 1405 1410	4.2 3.8 3.6	280	78	557970 588553 579230	66391448 70899710 72268574
1420 1425 1430 1435	3.8 3.8 3.5 3.2		77	561572 596110 672531 725432	68347312 69848182 73892340 81698279
1440 1445 1450	4.6 6.2 6.2	290	76	510154 236042 396794	66696707 36602241 49648372
1455 1500 1336	6.6 6.5 5.8		76 84	410708 401456 725715	51855464 49328987 75352174
1337 1338 1339	6.0 5.4 4.6			63 4 6 0 3 6 7 0 2 7 1 9 1 5 3 5 4	64138023 66512930 84881466
13 40 13 45 13 455 13 46 13 465 13 47 13 475 13 48	4.2 4.0 3.8 3.4 3.2 3.6 3.6 3.5	2.75	82	658264 659676 589047 521243 718298 697816 384222 772683 785396	74401152 74688966 65544604 57155267 80637358 70100893 47858346 83132687 89430693
1349 13495 1350	4.6 4.5 5.5	280		543138 331250 357383	66191567 38814983 37471615

Data trip GNG13, 15th Nov. 1982. 80 intervals.

TIME	U m/s	W.D	RH %	N, m - (2.5+)	$\frac{N, m^{-3}}{(0.25+)}$
1130 1131 1132 1133 1134 1135 1137 1138	8.0 8.5 8.0 8.0 8.0 9.0 9.5	250	08	17304 46262 31429 19423 19423 28251 16244 60034	4873410 8560250 8214170 4926380 4643860 6250680 4873410 8185920
1139 1140 1141 1142 1143 1144 1146 1147 1148 1149 1150 1151	9.5 8.0 9.0 9.5 9.5 9.0 10.0 8.5 10.0 9.5	225	88	130310 174807 199880 156090 200233 180810 134548 96055 124307 82283 90405 97115 82636	12596710 11191190 15139360 11346580 12752100 9884550 9044060 7839840 9019340 7380750 6610890 7190050 7207700
1153 1154 1156 1157 1158 1159 1200	9.5 9.0 9.5 9.5 9.5	240	80	62153 86873 70629 113713 98527 125013 89345	5502010 6180050 5879880 7546730 8969900 10364830 7091170
1210 1215 1220 1225 1230	9.5 .9.0 10.0 9.0 10.0	235 230 235 235 235	80 84 75	127132 114489 197337 155313 120705	7789411 7033255 11928424 9817458 8255705
1235 1240 1245 1250 1255	9.0 10.0 10.0 9.5 10.0	235 235 235 235 235	75 83 81	150298 133418 140552 137726 165342	10468801 9338734 10845466 10217643 11504649
1300 1305 1310 1320 1325	10.0 9.5 11.0 12.0 10.0	240 240 245 240 240	95 93 86	168168 214288 178056 158491 150087	11339871 12713185 11277081 11308511 10374581
1315 1330 1335 1340	10.0 10.5 11.0 11.0	240 240 240 235	81	183353 176219 174877 173818	12713256 12697505 12909393 12532727

1345	10.5	235	83	159480	11755806
1350	11.0	235		159551	11755806
1355	11.5	230	86	191051	13843323
1400	11.5	230		175937	12980022
1405	11.0	230	86	229544	17539561
1410	10.5	225		271922	18677468
1415	12.5	225	86	238797	18081075
1420	13.0	225		214218	16378063
1425	12.5	225	97	249109	19360240
1430	12.0		86	247555	19407279
1440	12.5	220		244800	16527232
1445	12.5	230	94	241975	17202094
1450	12.0	230		261963	18277212
1455	14.5	230	94	241410	16668420
1500	13.0	230		267543	18661788
1505	12.5	230	94	301304	18755937
1510	13.5	230		303069	21965610
1515	12.5	230	97	329202	22711172
1520	12.0	235		364799	26438840
1525	12.5	230	97	275948	21628214
1530	12.5	230		303776	22758282
1535	14.0	230	97	228767	16103457
1540	13.0	230		203765	14941960
1545	12.0	235	97	279126	19124762
1550	12.0	230		263870	17779912
1555	12.0	230	97	301304	20317619
1600	11.0	230		264082	18128114
1605	12.0	230		318537	22444335
1610	12.5	230	97	250521	17759288
1615	11.0	230		116820	15734561
1620	12.0	235	91	82353	13600005
1625	12.5	235		111240	12289480
1630	12.5	230	91	121411	12626876