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Abstract 

Over the past few decades, advances in technology, most notably the industrial revolution of the 

late 18th-century, has brought about dramatic improvements in the socioeconomic circumstances 

of developed nations. This has also brought with it rapid change in terms of human population, 

environmental impacts as well as energy consumption. Growth in energy consumption has been 

largely associated with increased use of finite fossil fuels (oil, coal, gas) in industrialized nations. 

However, this growth is unsustainable due to the depletion of these natural resources as well as 

the impact their consumption has on the environment, in terms of carbon dioxide (CO 2) 

emissions. A shift towards renewable fuels (wind, hydro, solar, geothermal, tidal) is currently 

underway, but progress remains slow, and the current reliance on fossil fuels for many existing 

essential technologies (e.g. transport) remains a major barrier to the large-scale transition that is 

required.  

Energy efficiency has the potential to mitigate greenhouse gas emissions (GHG) and provide 

additional scope for the transition to a sustainable renewables-based energy future. Buildings 

account for approximately 40% of global energy consumption. Approximately half of this energy 

requirement stems from space heating and cooling. Studies have shown that savings of up to 

40% are possible through the implementation of energy conservation measures (ECM’s) and 

continuous commissioning (CC).  

Whole building energy simulation tools have the potential to play a significant role in achieving 

this goal. However, their widespread adoption in the AEC (Architecture, Engineering and 

Construction) industry depends on their perceived reliability and the accuracy of their outputs. 

Currently, simulation tools are used primarily in building design with litt le integration or 

comparison to real building operation. It is often found that the actual buildings perform far 

worse than the design simulation initially predicted. This gap between measured and simulated 

data needs to be carefully addressed. This thesis proposes a new methodology for calibrating 

building energy simulation (BES) models to measured data including the incorporation of 

parameter uncertainty into final model predictions and recommendations. 
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Chapter 1: 
 Introduction 

“Anyone who believes in indefinite growth in anything physical, on a physically finite 

planet, is either mad or an economist.”  

– Kenneth E. Boulding, Economist 
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1.1 Introduction 

Globally, the topic of energy is a central concern for many individuals, businesses, 

corporations and governments. An abundance of energy supply to meet demand is of critical 

importance in sustaining life and promoting growth. However, there currently exist a number of 

energy challenges which pose threats to future sustainability of life and economic growth.   This 

chapter will focus on a number of key areas, including: 

 Global challenges: The section deals with the current major challenges faced by 

humanity in the context of energy, including; population growth, urbanisation, fossil 

fuel depletion, security of energy supply, and the threat of climate change; 

 Buildings and Energy: This section examines the building sector in the context of 

energy consumption, focussing in particular on; energy efficiency in buildings, policy 

and legislation relating to buildings, and barriers to energy conservation in the built 

environment; 

 Whole Building Energy Modelling: This section details the potential for the use of 

energy simulation in improving energy efficiency in buildings as well as the current 

issues relating to energy modelling. 

Following this discussion, the topic of this research will be discussed briefly, along with an 

overview of the proposed work and outline of the thesis.  

1.2 Global Challenges 

This section will examine energy consumption in a global context in order to identify the key 

challenges that must be addressed to provide sustainable energy future. These include: 

 Population growth; 

 Urbanisation; 

 Increasing demand for fossil fuels;  

 Security of energy supply;  

 Environmental Issues. 

1.2.1 Population Growth 

The world human population has increased dramatically over the past 12,000 years, with growth 

rates increasing since the early 1800’s (Figure 1-1). The earth has never before sustained such a 
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large human population. This change has naturally created strains on our planet ’s natural 

resources, necessary for sustaining life and growth.  

 

Figure 1-1: World Population Growth, 1800-2050, time to successive billions (Rowe et al. 2004) 

Current world population is in excess of 7 billion people. According to the 2012 revision of the 

official United Nations (U.N.) population estimates and projections (United Nations 2013), this 

figure is projected to increase by almost one billion people within the next twelve years, reaching 

8.1 billion in 2025, and to exceed 9 billion by 2050, with much of this growth coming from non-

OECD countries, primarily India and China. While population growth rate is starting to slow, 

there are new challenges presented by increasing urbanisation of the human population and 

associated increase in energy use intensity (EUI).  

1.2.2 Urbanisation of human population 

As well as population growth, humanity is also experiencing a major shift towards 

urbanisation; that is an increasing percentage of the population living in concentrated urban 

areas. This trend is strongly correlated with industrialisation, and therefore can be seen to be 

highest in modern developed nations. At present, over half of the world’s population live in 

urban areas. By 2050, the population living in urban areas is projected to gain 2.6 billion, 

increasing from 3.6 billion in 2011 to 6.3 billion 2050. Thus, the urban areas of the world are 

expected to absorb all the population growth expected over the next four decades while at the 

same time drawing in some of the rural population. (United Nations 2011)  
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Figure 1-2: Urban and rural population by development regions, 1950, 2011 and 2050 (United Nations 2011) 

This trend is primarily driven by concentration of investment and employment opportunities in 

urban areas. As with population growth trends, India and China are projected to dominate the 

growth of urban population over the next few decades, with up to 98% of population growth in 

China attributed to urban population growth from 2000-2050 (Figure 1-3).   

  

Figure 1-3: Contribution of  demographic and urban growth to urbanization among the ten countries with the largest increase in th eir urban 

population between 2000 and 2050, 1950-2050 (United Nations 2011) 
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While urbanisation presents opportunities for inhabitants, it also presents significant challenges:  

 Urban Heat Island (UHI): This phenomenon of increased temperature rise in 

urban areas, resulting in a “heat island” effect in built up areas  (see Figure 1-4). The 

annual mean air temperature of a city can be 1–3°C warmer than its surroundings. In 

the evening, the difference can be as high as 12°C (Akbari et al. 1992). This results in 

increasing summertime peak energy demand, air conditioning costs (Hassid and 

Santamouris 2000), air pollution and greenhouse gas emissions, as well as heat-related 

illness and mortality.  The prospect of increased climate change will only serve to 

exacerbate the current problems associated with UHI.  

 

Figure 1-4: Urban Heat Island (UHI) Ef f ect (Akbari et al. 1992) 

 Increased Energy Use Intensity (EUI) per Capita : Urbanisation has the added effect 

of increasing energy consumption per capita. This is due to a combination of factors. 

Personal transportation in rural areas generally entails far less energy use than urban 

transportation does (i.e. cars, buses and taxis). Higher density living induces substitutions 

of modern production processes and techniques for more traditional methods (e.g. 

farming, food production and processing, industrial production).  Finally, food must be 

transported longer distances to urban consumers than to rural agricultural customers 

(Jones 1989). This phenomenon has been the focus of numerous studies, with many 

recorded energy use intensities for urban dwellers of the order of 10 times greater than 

their rural counterparts (Crompton and Wu 2005; Dhakal 2009). This is of particular 

concern again in countries such as China which currently has the highest rate of 

urbanisation in the world, at just over 50%, with its urban population expected to reach 

the one billion mark by 2030.  
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1.2.3 Increasing Demand for Fossil Fuels 

As a direct result of increasing population growth, industrialisation and increasing urbanisa tion, 

there has been a dramatic increase in energy demand worldwide, primarily driven by Asian 

countries in recent decades (Figure 1-5). According to the IEA World Energy Outlook, the 

world’s primary energy demand has increased by 58% in 25 years, from about 7.2 billion TOE 

(tonne of oil equivalent) in 1980 to about 11.4 billion TOE in 2005. Current energy demand is 

expected to increase by 55% by 2030 at an average annual rate of 1.8%, if the present energy 

trends continue (IEA 2007). The OECD (Organization for Economic Cooperation and 

Development) countries used to be the centre of energy demand. However, in IEA energy 

projections to 2035 (IEA 2011), the focus for this growth is predicted to shift largely to non-

OECD countries (e.g. China, India), which are projected to account for 90% of demand growth.  

 

Figure 1-5: World primary energy consumption by region, 1966-2012 (British Petroleum (BP) 2012) 

At present, this growth in demand is primarily served by an abundant supply of fossil fuels (coal, 

oil and natural gas), with over 80% of energy being supplied by these sources (see Figure 1-6). 

However, should this growth trend continue, supply and cost of these fuels will become major 

issues within the coming decades, particularly in countries which do not have a domestic fuel 

economy (e.g. Ireland – see section 1.2.4.1). While renewables are growing progressively, it is 

expected they will not reach the levels of growth required to meet the fossil fuel ‘gap’.   
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Figure 1-6: World Energy Consumption by Source (British Petroleum (BP) 2012) 

Currently, the requirement for growth in fossil fuel production to meet predicted demand is 

unsustainable economically, socially and environmentally.  

1.2.3.1  Peak Oil 

There has been much speculation in the past over peak oil, the point in time when the maximum 

rate of global petroleum extraction is reached, after which the rate of production enters terminal 

decline. It is suspected that this point in production has already been reach for conventional oil 

resources. Global oil production has seen weak growth since 2007, with inflation-adjusted price 

back to levels last seen during the 1978 oil crisis (see Figure 1-7).  

 

Figure 1-7: Global Oil Production & Price, 1965-2012 (BP) 
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There have been developments in the area of unconventional resources (i.e. difficult to produce) 

such as shale gas and oil. However, these are currently the subject of debate in terms of 

environmental compatibility (e.g. impact of fracking) and social acceptability. Concerns have 

been raised over air quality, noise pollution, earth tremors, groundwater pollution and land-

surface scarring.  

 

Figure 1-8: Oil & Gas Production, 1930-2050 (Source: Colin Campbell, 2009) 

It is predicted that conventional oil production is already on the verge of decline, with some 

growth in natural gas and unconventional resources (shale oil and gas) helping to meet demand 

growth. However, these are also expected to hit peak production around 2020 (Figure 1-8). Of 

particular interest again is China, which has been increasing production of coal (see Figure 1-9) 

and has embarked on an accelerated programme of building coal-fired power plants, adding net 

capacity of 50GW in 2012 alone (Meade 2013; Muller 2013), and accounted for half of the 

world’s coal consumption in 2013. With predicted population growth and urbanisation rates in 

China, this increasing shift towards coal production creates a worrying scenario in terms of 

growth in greenhouse-gas emissions and associated climate change uncertainty.  

Historic Projected 
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Figure 1-9: China's Energy Consumption by Source (British Petroleum (BP) 2012) 
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1.2.4 Security of Energy Supply 

Security of energy supply is becoming a major issue for many governments, particularly with 

rising competition from emerging economies like India and China, as well as persistent political 

instability in many energy producing regions (e.g. Iraq, Iran). This instability has led to spikes in 

prices for crude oil in the past, severely impacting developed economies which rely on imported 

oil for trade and production (see Figure 1-10). The U.S. has been tackling its import dependency 

through the production of domestic resources such as shale gas and oil and recently moved from 

a net gas importer to a net gas exporter. In the EU, more than half (54.1 %) of the EU-27’s gross 

energy consumption in 2010 came from imported sources. As well as fuel import dependency, 

the European Union (EU) faces additional challenges in the form of a fragmented energy market 

and requirement to reduce GHG emissions and shift to cleaner renewable fuels to combat 

climate change.   

 

Figure 1-10: Crude Oil Price Fluctuation during World Events (British Petroleum (BP) 2012) 

1.2.4.1  Ireland’s Energy Supply 

Currently over 90% of Irish energy requirements are imported. Combined with a peripheral 

location and small market scale, this current reality leaves Ireland highly vulnerable to supply 

disruption and imported price volatility. Security of energy supply is a global issue and the 
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European Union’s growing reliance on energy imports increases Ireland’s overall energy 

vulnerability. 

 

Figure 1-11: Energy Import Dependency in Ireland 

1.2.5 Environmental Issues 

As well as the lack of resources to meet physical demand, there also exists the issue of global 

warming brought on by increased concentrations of greenhouse gases in the earth’s atmosphere. 

It is widely accepted that anthropogenic 

factors are a major contributor to climate 

change (Stern 2006).  The current level of 

greenhouse gases in the atmosphere is 

equivalent to around 430 parts per million 

(ppm) CO2, compared with only 280ppm 

before the Industrial Revolution. This has 

been primarily attributed to the increased 

use of fossil fuels, particularly since the 

industrial revolution (see Figure 1-12). 

In response to growing concerns over this 

issue, the Intergovernmental Panel on Climate Change (IPCC) was established in 1988 tasked 

with examining the influence of human activities on climate change. The Fourth Assessment 

Report of the IPCC estimated that global greenhouse gas (GHG) emissions due to human 

activities rose by 70% between 1970 and 2004 (Metz et al. 2007; Intergovernmental Panel on 

Climate Change 2007).  
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1.2.5.1  Global Temperature Anomalies 

There has already been recorded anomalies in global mean air temperature over the past century 

(Figure 1-13). If global CO2 emissions continue to grow at the current rate the IPCC predicts a 

further increase of global mean temperature during the 21st century of about 0.3 oC per decade. 

  

Figure 1-13: Global Mean Temperature Rise, 1999-2008 

The impact of anthropogenic climate change has already been seen to have had an impact in 

other areas also, which are causing increasing concern: 

1.2.5.2  Ocean Acidification 

The increased concentration of CO2 in the earth’s oceans (Figure 1-14) has become a major 

focus for earth and ocean scientists. This is of particular importance given the sensitivity of many 

ocean species (e.g. Krill) to minor changes in ocean chemistry. (Revelle and Suess 1957; Doney 

et al. 2009). Since Krill are considered an important species in the food chain for a number of 

dependent predators (e.g. whales, seals and penguins), there is a possibility that this single effect 

of global warming could have a devastating impact on our planets ecosystem.  
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Figure 1-14: Concentration of  Carbon Dioxide (CO2) in Ocean, 1960-2010 

1.2.5.3  Arctic Sea Ice Retreat 

The extent of Summer arctic sea ice declined to unprecedentedly low levels in September 2007 

(Stroeve and Serreze 2008), as evidenced in Figure 1-15. This has been attributed to the 

progressive rise in mean air temperature over the past two centuries.  Because of the growing 

extent of open water in recent summers, ice cover in the following spring is increasingly 

dominated by thin first-year ice that is more vulnerable to melting out completely during the 

summer. This thinner ice in spring in turn causes a stronger summer ice albedo feedback through 

earlier formation of open water areas. This process is repeated and reinforced year after year, 

accelerating a transition to a seasonally open Artic ocean (Stroeve et al. 2011). 
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Figure 1-15: Sea ice concentration for September 2007, along with Arctic Ocean median extent f rom 1953 to 2000 (red curve), f rom 

1979 to 2000 (orange curve), and for September 2005 (green curve). September ice extent time series f rom 1953 to 2007 is shown to 

the bottom lef t (Stroeve and Serreze 2008). 

1.2.5.4  Global Response 

The United Nations Framework Convention on Climate Change (UNFCCC) was established in 

1992 to provide a framework for policy making to mitigate climate change. The Kyoto Protocol 

(UNFCCC Secretariat 1997) and its successor, the Copenhagen Accord  (UNFCCC Secretariat 

2009) aimed to establish an international agreement to mitigate GHG emissions, particularly 

amongst the highest contributors. 
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1.3 Buildings and Energy 

The built environment accounts for approximately 40% of global energy consumption and 

around 30-40% of greenhouse gas emissions. In the United States, the world’s second largest 

energy consumer after China, the buildings sector accounted for about 41% of primary energy 

consumption in 2010, compared to 30% by the industrial sector and 29% by the transportation 

sector (see Figure 1-16). This statistic is reflected similarly across most developed nations.  

According to the U.S. Department of Energy, total building primary energy consumption in 

2009 was about 48% higher than consumption in 1980 with space heating, space cooling, and 

lighting the dominant end uses in 2010, accounting for close to half of all energy consumed in 

the buildings sector. 

 

Figure 1-16: Buildings (Residential & Commercial) Energy Consumption (U.S. DOE)  

1.3.1 Energy Efficiency  

The high level of energy consumption and GHG emissions in the buildings sector in Europe and 

the US make it an obvious sector to target to improve energy performance. The justification for 

focussing on efficiency targets can be summarised by a number of arguments from an individual 

and societal point of view: 

 Lower GHG emissions; 

 Reduced energy costs for consumers and avoidance of ‘fuel poverty’ ; 

 Cheaper than investing in increased energy capacity; 

 Improved comfort and indoor air quality (IAQ) for building occupants. 
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Energy efficiency projects also contribute to the objective of sustainable development and 

rehabilitation of older buildings, as well as providing employment to the building energy services 

sector. Efficiency improvements also offer significant potential for improvement in existing 

processes. Currently only 20–35% of the chemical energy of the fuel burned is typically 

transformed to useful energy (see Figure 1-17). This is primarily due to losses in conversion, 

distribution and end-use process efficiency. 

 

Figure 1-17: Schematic of  UK Energy Flow (Wilkinson et al. 2007) 

1.3.2 Policy and Legislation 

The proliferation of energy consumption and CO2 emissions in the built environment has made 

energy efficiency and savings strategies a priority objective for energy policies in most countries 

(Pérez-Lombard et al. 2008). The US and EU have increased efforts to reduce building energy 

consumption through prescriptive approaches by introducing stringent standards and codes of 

practice. The Energy Performance of Buildings Directive (EPBD) in the EU (2002), for 

example, required the obligatory energy certification of new and existing buildings as well as 

display of this certification and other relevant information in public buildings.  In addition, the 

Energy End-use Efficiency and Energy Services Directive (2006) requires member states to draw 

up national action plans to achieve 1% yearly energy savings in the retail, supply and distribution 

of electricity, natural gas, urban heating, and other energy products including transport fuels.  

In June 2000 the EU’s European Commission launched the European Climate Change 

Programme (ECCP). The goal of the ECCP is to identify, develop and implement all the 

necessary elements of an EU strategy to implement the Kyoto Protocol. It was under this 
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programme that the Emissions Trading Scheme was set up whereby countries could purchase 

Carbon credits in order to comply with Kyoto targets. 

At a national level, these EU directives have translated into a number of country-level national 

energy action plans. For example, the “Green Deal” which forms part of Britain’s new Energy 

Bill, aims to revolutionise energy efficiency of British properties. The new framework will enable 

private firms to offer energy efficiency improvements to their homes and businesses at no 

upfront cost, and recoup payments through a charge in instalments on their energy bill. In 

Ireland, the National Energy Efficiency Action Plan (NEEAP) aims to deliver a 20% energy 

saving target by 2020, including a 33% reduction in public sector energy use. Similar to the 

‘Green Deal’, the NEEAP includes a framework for energy performance contracting (EPC)1, 

under a Pay-As-You-Save (PAYS) model. 

Furthermore, in response to the EU EPBD Directive, Ireland have introduced legislation making 

Building Energy Rating (BER) certificates a mandatory requirement for all new buildings 

constructed and all buildings being sold or let after 1st January 2009 (Building Control Authority 

2013). The revised building regulations also provide for the introduction of a methodology for 

building energy performance assessment in the case of new dwellings commencing on or after 1 

July 2006 as required by Articles 3, 4 and 5 and Annex of the EPBD. Building certification can 

help overcome the “first cost” barrier of energy efficiency measures by integrating the 

operational costs of each building into its market value.  

  

                                                 

 

1 Energy (Savings) Performance Contracts (EPC): a contractual agreement between the beneficiary and the provider 

(normally an ESCO) of an energy efficiency improvement measure, where investments in that measure are paid for in 
relation to a contractually agreed level of energy efficiency improvement. An ESCO is a natural or legal person that 

delivers energy services and/or other energy efficiency improvement measures in a user’s facility or premises 
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1.3.3 Barriers to Change 

A number of barriers to the implementation of energy efficiency measures in buildings have 

been identified: (Evander et al. 2004; Deringer et al. 2004; Carbon Trust 2005; Yao et al. 2005; 

Levine et al. 2007; UNEP 2009; DECC 2012).  

Table 1-1: Barriers to adoption of  Energy Conservation Measures (ECM's) 

Category Barrier 

Economic 

Upfront cost of measures. 

Length of time required for measures to pay back. 

Poor ratio of investment cost to value of energy savings.  

Costs or risks that are not captured directly in financial flows (e.g. 
hardware/software incompatibilities, performance risks etc.)  

Political and 
Structural 

Market structures and constraints that prevent a consistent trade-off 
between specific efficiency investment and energy saving benefits 

Structural characteristics of political, economic, energy system which make 
efficiency investment difficult. 

Behavioural and  
Organisational 

Behavioural characteristics of individuals and companies that hinder energy 
efficiency technologies and practices; 

Difficulty in planning and carrying out work 

Information Lack of knowledge and awareness about the benefits. 

While some of these barriers relate to broader market and political factors, there are also barriers 

relating to lack of information, awareness and ability to effectively assess and plan ECM’s. Some 

of these challenges may be addressed by streamlining the process of identifying and analysing 

various energy efficiency, through the use of whole building energy simulation. 

1.4 Whole Building Energy Modelling 

Whole building energy simulation relates to the practice of modelling detailed building processes 

such as heating, cooling, lighting, ventilation and water use. Energy Simulation tools have been 

used since the early 1960’s to analyse the thermal behaviour and energy consumption in 

buildings. Initially, they were primarily used in the design stage to optimise the design of the 

building envelope and HVAC systems. More recently, building energy simulation (BES) models 

have been employed in the post-construction stage of the building life-cycle for a number of 

purposes, such as: 

 Design alternative evaluation (Trčka and Hensen 2010); 

 Design Optimisation (Larsen and Filippín 2008; Attia et al. 2012) 

 Benchmarking of Building Energy Consumption (Bertagnolio and Lebrun 2008); 



Introduction 

  39 

 Continuous Commissioning (Claridge 2004; Liu et al. 2003); 

 Operation Optimisation (Sun & A. Reddy 2005); 

 Simulation-assisted Building Control (Clarke et al. 1993; Coffey et al. 2010); 

 Technical and economical evaluation of Energy Conservation Measures (ECM’s) (Waltz 

2000; Iqbal & Al-Homoud 2007). 

In order for BES models to be used with any degree of confidence, it is necessary that the 

existing model closely represent the actual behaviour of the building under study. Therefore, the 

purpose of model calibration is to reduce the discrepancies between building energy simulation 

(BES) and measured building performance. 

1.4.1 Available Tools 

There are currently a large number of tools available for assessing energy use in buildings. The 

applicability of these tools will, of course, depend on the requirement of the final simulation 

model, as discussed in Section 3.3. A comprehensive list of over 400 software tools for 

evaluating energy efficiency, renewable energy and sustainability in buildings is provided by US 

DOE (2013). These include databases, spreadsheets, component and systems analyses, and 

whole-building energy performance simulation programs. Crawley et al. (2008) presented a 

comparison of the main features and capabilities of the top 20 tools available in 2008. While 

many of these features have since been expanded, the broad comparisons remain applicable.  

1.4.2 Issues with whole building energy simulation. 

According to Tupper et al. (2011), modellers rarely complete accurate, quality calibration of 

energy models for existing buildings due to: 

 The lack of understanding and consistent use of standardized methods; 

 Building energy modelling being an over-specified problem; 

 The expense and time needed to obtain the required hourly sub-metered data, which is 

usually not available; 

 The lack of integrated tools and automated methods that could assist calibration. 

Since the calibration problem is itself over-parameterised and under-determined, it is impossible 

to find an exact, unique solution. As a result, calibration methodologies and results are often not 

discussed in detail in many case studies and an approach in which the analyst tunes, or "fudges" 

(Troncoso 1997), some of the myriad of parameters until the model meets the acceptance criteria 
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is commonly used. ‘Furthermore, when a model is established as being calibrated (i.e., the user 

reports that the accuracy for electricity consumption is ±5% per month), the author does not 

reveal the techniques used other than stating the final result. Hourly and daily values are seldom 

reported. In cases where error estimates are presented, the methods and equations used to obtain 

comparisons are not.’ (Haberl & Bou-Saada 1998). These ad-hoc, subjective approaches are not 

systematic and not explicitly evidence-based. 

1.5 Problem Statement 

Building simulation models provide a means of understanding building operation as well as 

optimising performance and making informed decisions on ECMs (Energy Conservation 

Measures). However, due to the complexity of the built environment and prevalence of large 

numbers of independent interacting variables, there is a great deal of difficulty in achieving an 

accurate representation of a real-world building operation to a reasonable degree of accuracy.  

One means of increasing the accuracy of simulation models is by means of ‘calibration’ using 

actual measured data to verify outputs. However, to date, there is no general consensus as to 

how computer simulation models should be calibrated or how their accuracy can be verified. The 

basic issue is the fact that the calibration problem is over-parameterised and underdetermined, 

i.e. there are vast arrays of input parameters (building system variables, occupancy/load schedule 

variables, environmental factors etc.) and limited monitored data to determine the impact and 

interaction of these parameters in a computer model. Furthermore, the calibration problem is 

under-defined and may be satisfied by countless unique solutions. Currently, a model can be 

considered to be ‘calibrated’ if it achieves output accuracy to within 5% of actual measured 

output data (e.g. monthly energy use, kWh). However, this does not account for inconsistencies 

in hourly and sub-hourly model behaviour, nor does it address potential inaccuracies present in 

model inputs.  

1.6 Research Question 

Can an analytical optimization approach be used to further enhance evidence-based approaches 

to BES model development and calibration? How can model input uncertainty be propagated 

through the modelling process in order to quantify risk during performance evaluation of energy 

conservation measures (ECM’s)? 

1.7 Overview of the Proposed Approach 

The main objective of this thesis is to develop and improve on existing analytical methodologies 

which may be applied to calibration models to achieve a greater degree of real -world correlation, 
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thereby increasing the reliability of the final calibrated model. This will involve an extensive 

review of literature relating to energy use in buildings, energy modelling, and building energy 

model calibration. A calibration methodology which builds on the best available tools and 

applications is proposed. This proposed approach utilises systematic evidence-based model 

development, in conjunction with analytical optimisation procedures to produce accurate reliable 

models capable of simulating real building operational performance. This methodology will be 

applied to an existing building in order to demonstrate its viability.  

1.8 Thesis Outline 

The remaining chapters of the thesis are as follows: 

 Chapter 2 provides an extensive background and literature review on whole building 

energy simulation, including: performance criteria in buildings, energy simulation and 

current approaches to simulation calibration. 

 Chapter 3 describes the proposed BES calibration process, including: model preparation, 

data collection, evidence-based model development and improvement, sensitivity 

analysis, and parametric simulation. 

 Chapter 4 provides an overview of the proposed methodology as applied to a real 

building, including detailed descriptions of the tools and processes employed at each 

stage of the process. 

 Chapter 5 describes the results at each stage of the calibration process as well as a 

summary of the novel visualization techniques employed during the process.  

 Chapter 6 describes the research conclusions as well as ideas for future development.  
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Chapter 2: 
 Literature review 

“If I have seen further it is by standing on the shoulders of Giants.”  

– Isaac Newton, Physicist 
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2.1 Introduction 

This chapter will examine the role of Building Energy Performance Simulation (BEPS) in the 

context of design and operation of buildings, with specific focus on the following:  

 Energy Performance Criteria in Buildings (see Section 2.2);  

 Simulation and the Built Environment (See Section 2.3); 

o Types of Models and Inverse Methods; 

o Building Energy Performance Simulation (BEPS) Tools;  

o Benefits of Calibrated Simulation; 

o Problems with BEPS and Model Calibration; 

o Uncertainty in Building Simulation; 

 Current approaches to BEPS calibration (see Sections 2.4 - 2.6); 

o Manual Approaches; 

o Automated Approaches; 

 Conclusions and Proposed Approach (see Sections 2.7 and 0). 

Buildings represent complex systems with high levels of interdependence on many dynamic 

external sources (weather, occupancy etc.). In addition, the optimisation of building systems 

requires balancing of sometimes contradictory objectives in terms of energy efficiency and 

overall performance. These performance criteria will be examined in detail  in Section 2.2. 

Building Energy Performance Simulation (BEPS) tools provide an efficient means of conducting 

performance-based analysis and optimisation, taking into account the multitude of complex 

model interdependencies, internal and external inputs as well as various performance objectives. 

These tools are compared in more detail in Section 2.3, along with the current problems 

associated with the use of BEPS, primarily model calibration (i.e. minimising discrepancies 

between measured and simulated data). In addition, the importance of risk and uncertainty is 

highlighted, particularly in the context of building simulation and energy conservation measure 

(ECM) evaluation.  

A detailed review of current approaches to model calibration is presented in Section 2.4, 

focussing on the various analytical and mathematical/statistical tools employed by practitioners 

to date. This is followed by a discussion on both the problems and the merits of the presented 
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approaches, along with a recommendation for future procedural approaches to BEPS calibration, 

thus forming a basis for the methodology presented in this thesis.  

2.2 Energy Performance Criteria in Buildings 

There are three main performance criteria which drive energy use in buildings:  

 Thermal Comfort; 

 Ventilation and Indoor Air Quality (IAQ); 

 Visual and Aural Comfort. 

In many respects, the objective of optimising energy performance in buildings is at odds with the 

goal of optimising these performance criteria. For example, increasing thermal comfort (through 

increased HVAC design capacity, operation schedules, set points etc.) may have the effect of 

increasing energy consumption and cost. Conversely, the goal of energy performance 

optimisation is the reduction in energy consumption through the implementation of energy 

conservation measures (ECM’s) which may include measures which have a negative impact on 

thermal comfort. Therefore, it is important to understand the principles which govern these 

metrics in order to strike a balance of satisfactory performance in terms of both comfort and 

energy performance. 

2.2.1 Thermal Comfort 

One of the primary functions of buildings is to create and maintain a comfortable environment 

for its occupants. Thermal comfort is defined as “the condition of mind which expresses satisfaction with 

the thermal environment” (ASHRAE 2004a). It is beyond the scope of this thesis to discuss in depth 

the factors affecting thermal comfort in the built environment. However, there is an extensive 

body of scientific literature which deals specifically with this topic (Fanger 1970; McIntyre 1978; 

McIntyre 1980; Fisk 1981; Nicol and Humphreys 2002; de Dear 2004). For the purpose of this 

review though, it is useful to understand the main factors which affect thermal comfort and how 

they relate to controllable parameters in the built environment. There are six primary factors 

which affect conditions for thermal comfort. These may be split into (1) physical or 

environmental factors and (2) physiological or personal factors (see Table 2-1): 

Table 2-1: Factors af f ecting thermal comfort  

Physical / Environmental Physiological / Personal 

 Air temperature (ta) 

 Relative humidity (h) 

 Mean radiant temperature (tr) 

 Air Velocity (va) 

 Clothing level (clo) 

 Activity level / metabolic rate (met) 
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Initial studies on thermal comfort and formulation of thermal indices began in the 1920’s. The 

Bedford Scale (Bedford 1936) and subsequent thermal sensation scale (ASHRAE 2004a) form 

the basis for today’s subjective/field study comfort studies (Table 2-2).  

Table 2-2: Thermal Sensation Scale 

Thermal Sensation Scale Bedford Scale 

+3 Hot Much too Warm 

+2 Warm Too warm 

+1 Slightly Warm Comfortably warm 

0 Neutral Comfortable 

-1 Slightly cool Comfortably cool 

-2 Cool Too cool 

-3 Cold Much too cold 

While the scale in Table 2-2 represents the subjective opinions of the occupants surveyed, a 

deterministic comfort model has also been devised to approximate these responses based on 

empirical studies carried out in controlled climate chambers. Fanger’s Predicted Mean Vote 

(PMV) approach (Fanger 1970) is the most widely adopted analytical approach today, and forms 

the basis for the international standard, ISO 7730, on the ergonomics of the thermal 

environment (ISO 2005) as well as ASHRAE Standard 55 on thermal environmental conditions 

for human occupancy (ASHRAE 2004a). The PMV is essentially an index that predicts the mean 

value of the votes of a large group of persons on the above 7-point thermal sensation scale (see 

Table 2-2). Since PMV predicts the mean of the comfort votes from a large group, a more 

practical measure for building performance assessment is the Predicted Percentage Dissatisfied 

(PPD) which indicates the fraction of a sample population that will be dissatisfied with the 

thermal environment (i.e. those that would vote >2 or <-2 on the thermal sensation scale).  

PMV can be directly linked with specific design and control parameters (CIBSE 2006a): 

 Temperature: Thermal comfort is influenced by a combination of mean room air 

temperature and radiant temperature. These temperatures are the most influential 

variables affecting comfort.  

 Air Movement and Draught: Air speed, temperature, direction and fluctuation 

influence the perception of draught. This is a particularly important consideration when 

designing naturally ventilated buildings. 
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 Humidity: This is less important in moderate thermal environments where humidity in 

the range of 40-70% is generally acceptable. However, it is an important consideration in 

terms of microbial growth or static electricity. 

2.2.2 Ventilation and Indoor Air Quality (IAQ) 

Indoor air quality (IAQ) is influenced by air infiltration, ventilation efficiency as well as indoor 

and outdoor pollution (dust, contaminants etc.). In normal working environments, fresh air is an 

important requirement to provide air for respiration as well as diluting and removing any 

contaminants which may be present. These contaminants may be naturally occurring (e.g. CO 2 

from human respiration) or artificial (e.g. Smoke, volatile organic compounds (VOC’s) released 

by paints and plastics) (WHO 1983; WHO 1989).  

Natural or mechanical ventilation is an easy way to control IAQ in most buildings, provided the 

outdoor air used for ventilation is acceptable. There are standard recommendations available for 

ventilation rates for different space types where the main contaminants are occupation odours 

and carbon dioxide by-products of respiration (ASHRAE 2004b; CIBSE 2006a; ISO 2007). In 

the absence of accurate systems for measuring occupancy, HVAC systems will often over-

compensate for ventilation requirements, ignoring over-ventilation losses at partial occupancy 

(Doty 2009). This may be controlled more effectively by including procedures for automated 

compensation for reduced occupancy (e.g. CO2 sensors or proportional damper control). 

Ventilation effectiveness is also an important consideration relating to the quality of the air 

supplied to a space, and more specifically, to the occupant. This measure is based on whether the 

air is heated or cooled upon discharge and whether it is discharged at ceiling or floor level.  

2.2.3 Visual and Acoustic Comfort 

Visual comfort relates to the effective use of day-lighting in buildings, characterised primarily by 

the day-lighting factor, defined as “the ratio of the daylight illumination at a given point on a given plane 

due to the light received directly or indirectly from a sky of assumed or known illuminance distribution, to the 

illumination on a horizontal plane due to an unobstructed hemisphere of the sky” (Hopkinson et al. 1966). In 

simple terms, working spaces require sufficient light (defined in terms of illuminance, or lux), 

with adequate brightness. It is also important to consider ‘glare’ (reflection due to direct light 

sources) in the work-space, particularly when designing office spaces which require the use of 

personal computer screens which may be significantly impacted by glare, causing visual 

discomfort and reduced productivity (Abdou 1997; Hua et al. 2011). There are also significant 
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gains to be made, both in terms of visual comfort and energy consumption, through the use of 

daylighting in place of artificial lighting (Bodart and Herde 2002).  

The main requirement for acoustic comfort is the absence of distracting noise which 

detrimentally affects the ability to carry out work. Noise is defined by frequency (hertz, Hz) and 

sound pressure (decibels, dB). Design curves (Noise Rating, NR curves) are available with 

recommended acoustic criteria for various building types (CIBSE 2006b). 

2.2.4 Conclusions 

Buildings are designed to provide an appropriate and comfortable environment for its occupants, 

in terms of thermal, visual and aural comfort. It is also expected to provide safe working 

conditions, free of natural and artificial contaminants, through the use of sufficient ventilation. It 

is important to consider these requirements when designing low-energy buildings or when 

considering energy conservation measures (ECM’s) so that energy efficiency does not come at 

the expense of occupant comfort or safety. In this regard, simulation tools can play a significant 

role. With the aid of expert input, they can be used to effectively find the optimum balance 

between comfort, cost and efficiency. In addition, simulation tools can provide additional insight 

and information to designers considering novel alternative design approaches, where prior 

information may not be readily available.  
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2.3 Simulation and the Built Environment 

In order to understand Building Energy Simulation, it is necessary to understand scientific 

models in general. According to Saltelli et al. (2008), models can be: 

 Diagnostic or Prognostic: Diagnostic models are used to identify the nature or cause of some 

phenomenon. In other words, it may be used to better understand the laws which govern 

a given system. Prognostic models, on the other hand, are used to predict the behaviour 

of a system, given a set of well-defined laws governing that system. 

 Law-Driven or Data-Driven: Law-Driven (or forward) models apply a given set of laws (e.g. 

gravity, heat/mass transfer etc.) which govern a system, in order to predict its behaviour 

given system properties and conditions. Data-Driven (or inverse) models work on the 

opposite approach, using system behaviour as a predictor for system properties. 

Therefore, data-driven models can be used to describe a system with a minimal set of 

adjustable inputs (Young et al. 1996). In contrast, law driven models are often over-

parameterised, in that they require more inputs than available data can support. However, 

the advantage of law-driven models is that they offer the ability to model system 

behaviour given a set of previously unobserved conditions, while data-driven models 

would require prior data in order to model behaviour. A simplified comparison of law-

driven and data driven models is presented in Figure 2-1 (Florita and Henze 2013). 

Law-Driven 

(Forward)  

Data-Driven 

(Inverse) 
 

Figure 2-1: Law-Driven (Forward) models vs. Data-Driven (inverse) models 

Building Energy Simulation (BES) models, as used in building design, can generally be classified 

as prognostic law-driven models in that they are used to predict the behaviour of a complex 

system given a set of well-defined laws (e.g. energy balance, mass balance, conductivity, heat 

transfer, human physiology etc.).  

Conversely, Data-driven (Inverse) approaches, in the context of building energy modelling, refer 

to methods which use monitored data from the building to produce models which are capable of 

accurately predicting system behaviour. Inverse methods for energy use estimation in buildings 

can be broadly classified into three main approaches (Reddy and Andersen 2002): 

Detailed Physical Model Simulated Data

Measured Data Statistical Model(s)
Detailed Physical 

Model
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i. Black-Box: This refers to the use of simple mathematical or statistical models (e.g. 

regression, neural-networks etc.) which relate a set of influential input parameters (e.g. 

occupancy, weather) to measured outputs. Model input coefficients are determined such 

that they produce an algorithm with the ability to predict system behaviour. It is 

important to note that these input coefficients have no relationship with the actual 

physical environment. 

ii. Grey-Box / Parameter Estimation: Grey box approaches differ from black-box 

approaches in that they use certain key or aggregated system parameters identified from a 

physical system model.  

iii. Detailed Model Calibration: The final approach uses a fully-descriptive law-driven 

model of a building system and tunes the various inputs to match the measured data. 

This approach is the primary focus of this research as it provides a number of benefits 

over black and grey-box approaches.  

2.3.1 Building Energy Performance Simulation (BEPS) Tools 

Whole building energy simulation tools allow the detailed calculation of the energy required to 

maintain specified building performance criteria (see Section 2.2), under the influence of external 

inputs such as weather, occupancy and infiltration. Detailed heat-balance calculations are carried 

out at discrete time-steps based on the physical properties of the building and mechanical 

systems as well as these dynamic external inputs (weather, occupancy, lighting and equipment 

loads etc.). These calculations are generally performed over the course of a full year. These tools 

generally fall into the category of prognostic law-driven simulation tools. Some of the main tools 

which will be discussed during the course of this review are:  

 DOE-2 (Winkelmann et al. 1993) is a freeware building energy simulation tool which 

predicts the hourly energy use and energy cost of a building given hourly weather 

information, a building geometric and HVAC description, and utility rate structure. It 

development was funded by the U.S. Department of Energy (DOE), hence the name. 

 EnergyPlus (Crawley and Lawrie 2001) is an advanced whole building energy simulation 

tool, developed on the basis of work carried out on DOE-2. It incorporates the same 

functionality as DOE-2, producing hourly (or sub-hourly) energy costs of a building 

given system input information. It also incorporates many advanced features not 

available in DOE-2, such as multi-zone airflow and extensive HVAC specification 

capabilities.  
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 TRNSYS (Klein et al. 1979) is a transient system simulation program with a modular 

structure which implements a component-based simulation approach. Component may 

be simple systems like pumps or fans, or complex systems such as multi -zone buildings. 

 ESP-r (ESRU 1974) is an integrated modelling tool for the simulation of the thermal, 

visual and acoustic performance of buildings. Similar to EnergyPlus and DOE-2, ESP-r 

requires user-specified information regarding building geometry, HVAC systems, 

components and schedules. It supports explicit energy balance in each zone and at each 

surface as well as incorporating inherent uncertainty and sensitivity analysis capabilities.  

The above four simulation programs represent the most common tools encountered in 

conducting this review. However, many more tools are available, some of which are tailored 

specifically to certain tasks (e.g. HVAC simulation, solar gain, daylighting etc.). Crawley et al. 

(2008) presents a comparison of the main features and capabilities of the top 20 tools available in 

2008. 

2.3.2 Benefits of BEPS 

While the initial focus of BEPS tools was primarily on the design phase, simulation is now 

becoming increasingly relevant in latter post-construction phases of the building life-cycle (BLC), 

such as commissioning and operational management and control (Augenbroe 2002). Since BEPS 

models are based on physical reality, rather than arbitrary mathematical or statistical 

formulations, they have a number of inherent advantages. One of the primary benefits of 

detailed simulation models over statistical models is their ability to predict system behaviour 

given previously unobserved conditions. This allows for analysts to make alterations to the 

building design or operation, while simultaneously monitoring the effect on system behaviour 

and performance. Despite the potential benefits and the significant progress which has been 

made in the development of advanced simulation programmes capable of modelling complex 

systems and environments, there still remain a number of problems which inhibit their 

widespread adoption. 

2.3.3 Problems with BEPS and Model Calibration 

At present, building energy performance simulation models (BEPS) are under-utilised within the 

AEC industry for a number of reasons, some of which were highlighted in a recent Rocky 

Mountain Institute (RMI) study (2011). These can be broadly grouped into two main categories, 

modelling and calibration, as described in Table 2-3. 
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Table 2-3: Model Development and Calibration Issues 

BEPS Modelling Issues  BEPS Calibration Issues 

 Standards: Lack of understanding 

and consistent use of standardized 

methods; 

 Expense: The time, knowledge, 

expertise and cost required to 

develop accurate models of 

building geometry and HVAC 

systems; 

 Integration: Poor integration 

between various 3D modelling 

software packages (such as 

Autodesk Revit and ArchiCAD) 

and BEPS simulation packages 

(such as EnergyPlus, TRNSYS and 

Modelica). 

 Standards: Lack of explicit standards for calibration 

criteria – current guidelines only specify acceptable 

error ranges for yearly whole-building simulation, but 

do not account for input uncertainty, sub-metering 

calibration, or zone-level environmental discrepancies. 

 Expense: The expense and time needed to obtain the 

required hourly sub-metered data, which is usually not 

available; 

 Simplification: Calibration is an over-specified and 

under-determined problem. There are thousands of 

model inputs but relatively few measurable outputs 

with which to assess the model accuracy; 

 Inputs: Lack of high-quality input data required for 

detailed models; 

 Uncertainty: There are currently few studies which 

account for uncertainty in model inputs and 

predictions, thus leading to a lack of confidence in 

BES outputs; 

 Identification: Problems identifying the underlying 

causes of discrepancies been model predications and 

measured data. 

 Automation: Lack of integrated tools and automated 

methods that could assist calibration; 

 

Numerous studies (Karlsson et al. 2007; Turner and Frankel 2008; Scofield 2009) have indicated 

discrepancies, often significant (up to 100% differences), between BEPS model-predicted and 

the actual metered building energy use. This undermines confidence in model predictions and 

curtails adoption of building energy performance tools during design, commissioning and 

operation. In order for BEPS models to be used with any degree of confidence, it is necessary 

that the existing model closely represent the actual behaviour of the building under study. This 

can be achieved through model calibration, the purpose of which is to reduce the discrepancies 

between BEPS prediction and measured building performance. However, the calibration of 

forward building energy performance simulation (BEPS) programs, involving thousands of input 
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parameters, to commonly available building energy data is a  highly under-determined problem 

which yields a non-unique solution (Kaplan, Jones, et al. 1990; Carroll and Hitchcock 1993). As a 

result, calibration methodologies and results are often not discussed in detail in many case 

studies. An approach in which the analyst tunes, or "fudges" (Troncoso 1997), some of the 

myriad of input parameters until the model meets the acceptance criteria is commonly used. This 

is not conducive to the development of reliable building energy simulation models. The current 

approaches to model calibration, as well as their limitations is discussed in further detail in 

Section 2.4-2.7.  

2.3.4 Validation of BEPS  

The validation of building energy simulation models is currently based on compliance with 

published statistical acceptance criteria, as shown in Table 2-4. These criteria vary depending on 

whether models are calibrated to monthly or hourly measured data, and are based on standard 

statistical indices (as discussed in further detail in Section 2.5.4.1): 

 Mean-Bias Error, MBE (%) [Refer to Equation (2.3), Section 2.5.4.1]: MBE is a good 

indicator of the overall bias in the model. It captures the mean difference between 

measured and simulated data points. However, positive bias tends to cancel out negative 

bias (cancellation effect). Hence, a further measure of model error is also required.  

 Coefficient of Variation of Root Mean Square Error, CV RMSE (%) [Refer to Equation 

2.4, Section 2.5.4.1]: This index allows one to determine how well a model fits the data 

by capturing offsetting errors between measured and simulated data.  It does not suffer 

from the cancellation effect. 

Table 2-4: Acceptance criteria for calibration of  BEPS models 

Standard/Guideline 
Monthly criteria Hourly criteria 

MBE CVRMSE(monthly) MBE CVRMSE(hourly) 
ASHRAE Guideline 14 (ASHRAE 2002) 5% 15% 10% 30% 
IPMVP (EVO 2007) 20% - 5% 20% 
FEMP (US DOE 2008) 5% 15% 10% 30% 

Currently, building energy simulation models are generally considered ‘calibrated’ if they meet 

the criteria set out by ASHRAE Guideline 14 (ASHRAE 2002). This means that once there is 

reasonable agreement between measured and simulated data, the model may be deemed 

‘calibrated’ according to current international acceptance criteria for BEPS models.  

However, in order to holistically address the topic of model calibration it is important to also 

consider the issue of model uncertainty, particularly for indeterminate models of complex systems. 
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This is an important issue which is often neglected in BEPS calibration studies published to date 

and is not accounted for by any means in the current BEPS validation criteria. A detailed 

discussion on this topic follows in Section 2.3.5.  

2.3.5 Uncertainty in Building Simulation 

Models of complex systems are notoriously difficult to validate and have been the subject of 

much scientific discussion and debate in terms of quality and uncertainty (Funtowicz and Ravetz 

1990). Much of the reason for this debate stems from the fact that models of complex systems 

represent essential simplifications and simulation constraints. In other words, “the portion of the 

world captured by the model is an arbitrary enclosure of an otherwise open, interconnected 

system” (Rosen 1991). This is particularly true when the purpose of the model is to provide 

some insight into the non-observable parts of the system.  Thus mathematical formalisations of 

partially-observed experiments,  even for well-defined or closed systems, can generate non-

equivalent descriptions of these system (i.e. models whose outputs are compatible with the same 

set of observations but whose structures are not reconcilable with one another) (Saltelli et al. 

2008). This has also been referred to as equifinality (Beven 1993; Aronica et al. 1998) or model 

indeterminacy (Oreskes et al. 1994; Saltelli et al. 2008).  

The built environment in particular presents a complex challenge in terms of energy modelling 

and accurate prediction. Any given building is characterised by a multiplicity of parameters 

including materials properties, occupancy levels, equipment schedules, HVAC and plant 

operation, climate and weather. These represent diverse sources of model parameter uncertainty. 

However, this does not illustrate the entire range of potential uncertainty encapsulated by any 

given building model. Numerous studies have focused on this problem (Macdonald et al. 1999; 

Macdonald and Strachan 2001; de Wit and Augenbroe 2002a; Macdonald 2002; Moon 2005), 

although few published case studies incorporate this work into their analyses. De Wit (de Wit 

and Augenbroe 2002a) classified the various sources of uncertainty in building performance 

simulation as follows:  

 Specification Uncertainty: arising from incomplete or inaccurate specification of the 

building or systems modelled. This may include any exposed model parameters such as; 

geometry, material properties, HVAC specifications, plant and system schedules etc.  

 Modelling Uncertainty: simplifications and assumptions of complex physical 

processes. These assumptions may be explicit to the modeller (zoning, stochastic process 

scheduling) or hidden by the tool (calculation algorithms).  
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 Numerical Uncertainty: errors introduced in the discretisation and simulation of the 

model.  

 Scenario Uncertainty: external conditions imposed on the building, including outdoor 

climate conditions and occupant behaviour. 

It is important that these sources of uncertainty are identified and quantified when assessing 

model predicted performance.  This is particularly important given the ‘equifinality’ of simulation 

models (i.e. multiple disparate models may provide the same results). Depending on the 

application of the BEPS model, it is important to know the degree of uncertainty associated with 

particular elements of the model or underlying mathematical formulation. This thesis deals 

primarily with ‘specification’ and ‘modelling’ uncertainty and how this can be systematically 

propagated throughout the simulation model development process. 
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2.4 Current Approaches to BEPS Calibration: 

The main approaches to building energy performance simulation (BEPS) model calibration were 

first classified by Clarke et al. (1993) and adopted in a later literature review of calibration 

programs, tools and techniques by Reddy (2006). The four classes proposed are: 

i. Calibration based on manual, iterative and pragmatic intervention;  

ii. Calibration based on a suite of informative graphical comparative displays; 

iii. Calibration based on special tests and analytical procedures; 

iv. Analytical/mathematical methods of calibration. 

These classifications have been further extended in this review.  In general, it was found that 

approaches to the tuning of simulation models to measured data can be more broadly defined as 

either manual or automated. 

1. Manual – these approaches predominantly rely on iterative pragmatic intervention by 

the modeller. These include any methods which employs no form of automated 

calibration through mathematical/statistical methods or otherwise.  

2. Automated – automated approaches may be described as having some form of 

automated (i.e. not user driven) process to assist or complete model calibration.  

Both manual and automated approaches may employ specific analytical tools or techniques to assist 

in the calibration process (see Section 2.4.1), while automated approaches employ mathematical 

and statistical techniques to reach their goal (see Section 0).  

2.4.1 Analytical Tools and Techniques 

These can be broadly classified as manual user-driven techniques, but may also be employed as 

part of an automated calibration process. A list of the main calibration tools and techniques has 

been compiled following an extensive review of methodologies and applications over the past 

three decades. For clarity, these are divided into four main categories and presented alongside 

the relevant key publications in Table 2-5: 

 Characterization Techniques: techniques based on the characterisation of the physical 

and operational characteristics of the building being modelled; 

 Advanced Graphical Methods: the use of graphical representations of building data 

or statistical indices; 
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 Model Simplification Techniques: techniques which aim to reduce the complexity of 

simulation models by reducing or aggregating the number of simulation variables; 

 Procedural Extensions: the use of standard processes or techniques to improve the 

simulation and/or model calibration process. 

An exhaustive list of the papers mentioned in Table 2-5 is available in Appendix D.1. 

Table 2-5: Analytical Tools & Techniques 

Acronym Name Description Key Papers 

Characterisation Techniques 

AUDIT Detailed audit 

Detailed audits are often conducted prior to building 

model development in order to gain a better knowledge 

of the building systems and characteristics (Geometry, 

HVAC systems, Lighting, Equipment, and Occupancy 

Schedules). 

(Waltz 1992; Shapiro 

2009) 

EXPERT 

Expert 

Knowledge / 

Templates / 

Model Database 

Approaches which utilise: 

 Expert knowledge or judgement as a key element 

of the process 

 Prior definition of typical building templates 

 Database of typical building parameters and 

components in order to reduce the requirement 

for user inputs during model development. 

(Lebot 1987; 

Hitchcock et al. 1991; 

Reddy et al. 2007a; 

Reddy et al. 2007b) 

INT Intrusive Testing 

Intrusive techniques require some intervention in the 

operation of the actual building, such approach is ‘Blink 

Tests’ where-by groups of end-use loads (e.g. plugs 

loads, lighting etc.) are turned on and off in a controlled 

sequence in order to determine their overall impact on 

the baseline building load. 

(Soebarto 1997) 

HIGH High-Res Data 

Data is recorded at hourly (or sub-hourly) levels as 

opposed to utilising daily load profiles or monthly 

utility bill data. 

(Clarke et al. 1993; 

Haberl and Bou-

Saada 1998; Raftery, 

Keane and Costa 

2011; Coakley et al. 

2012) 

STEM 

Short-Term 

Energy 

Monitoring 

Metering equipment is used to record on-site 

measurements for a short period of time (>2 weeks). 

This may be used in identifying typical energy end-use 

profiles and/or base-loads. 

(Subbarao 1988; 

Manke et al. 1996; 

Lunneberg 1999) 
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Acronym Name Description Key Papers 

Advanced Graphical Methods 

3D 

3D-Graphical 

Comparison 

Techniques 

Three-dimensional graphs are used to aid comparison 

and/or calibration of measured and simulated data. 

This technique allows users to visualise large quantities 

of data, compared to traditional 2-D scatter plots etc. 

which are overwhelmed when analysing large quantities 

of data points. 

(Haberl and Bou-

Saada 1998). 

 

SIG 

Signature 

Analysis 

Methods 

Signature analyses techniques are a specific type of 

graphical analysis technique, typically used by HVAC 

simulation engineers to identify faulty parameters in 

Air-Handling Unit (AHU) simulation. They may also be 

used to develop optimised operation and control 

schedules. Signature analysis methods are commonly 

used for the calibration of models based on the 

simplified energy analysis procedure (SEAP) 

(Liu et al. 2003; Liu 

and Liu 2011) 

STAT 
Statistical 

Displays 

This refers to the graphical representation of statistical 

indices and comparisons for easier interpretation. This 

includes data comparison techniques such as carpet 

plots, box-whisker mean (BWM) plots and monthly 

percent difference time-series graphs. 

(Haberl and Bou-

Saada 1998). 

Model Simplification Techniques 

BASE 
Base-Case 

Modelling 

The base-case model refers to the use of measured 

base-loads to calibrate the building model. Base-loads 

refer to minimum, or weather independent, electrical 

and gas energy consumption. Calibration is carried out 

during the base-case when heating and cooling loads 

are minimal and the building is dominated by internal 

loads, thus minimising impact of weather dependent 

variables. 

(Yoon and Lee 1999; 

Yoon et al. 2003) 

MPE 

Model 

Parameter 

Estimation 

Deduction of overall aggregate (or lumped) parameters 

(such as U-values) using non-intrusive measured data. 
(Reddy et al. 1999) 

PARRED 
Parameter 

Reduction 

This involves reducing the requirement for detailed 

input for variable schedules (e.g. plug loads, lighting, 

occupancy, equipment etc.). Day-Typing is one such 

approach which works by analysing long-term data and 

reducing this to manageable typical day-type schedules 

(e.g. weekday’s vs. weekends, winter vs. summer). 

Zone-Typing may also be used to reduce large models 

into similar thermal zones (e.g. Core, Perimeter, 

Offices, Unoccupied spaces etc.) 

(Kaplan, McFerran, et 

al. 1990; Bronson et 

al. 1992; Hadley 1993; 

Raftery, Keane, 

O’Donnell, et al. 

2011) 

DISSAG 
Data 

Disaggregation 

Data disaggregation refers to the application of non-

intrusive techniques to de-couple multiple measured 

data streams (e.g. energy end-use data from whole-

building electrical energy consumption) 

(Akbari et al. 1988; 

Akbari 1995; Akbari 

and Konopacki 1998) 
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Acronym Name Description Key Papers 

Procedural Extensions 

EVIDENCE 

Evidence-Based 

Model 

Development 

For the purpose of this review, evidence-based 

approaches may be described as those that implement a 

procedural approach to model development, making 

changes according to source evidence rather than ad-

hoc intervention. Strictly, this approach should account 

for adjustments to model parameters in a structured 

fashion (e.g. using version control software). 

(Bou-Saada and 

Haberl 1995; Raftery, 

Keane, O’Donnell, et 

al. 2011; Raftery, 

Keane and Costa 

2011) 

SA 
Sensitivity 

Analysis 

Sensitivity analysis procedures may be employed in 

some studies to assess the influence of input 

parameters on model predictions. This information may 

be used to identify important parameters for 

measurement or detailed investigation. 

(Lomas and Eppel 

1992; Lam and Hui 

1996; Saltelli et al. 

2004; Westphal and 

Lamberts 2005; 

Eisenhower and 

O’Neill 2012) 

UQ 
Uncertainty 

Quantification 

This refers to assessment of parameter uncertainty as 

part of the calibration process. This information may be 

used to directly assist in model calibration or provide a 

basis for risk quantification within the results (e.g. 

uncertainty related risk quantification in ECM analysis). 

 

(Macdonald et al. 

1999; Macdonald 

2002; de Wit and 

Augenbroe 2002a; 

O’Neill et al. 2012; 

Heo, R Choudhary, et 

al. 2012) 

 

2.4.2 Mathematical/Statistical Techniques  

Modern mathematical and statistical methods are increasingly being employed to assist the 

calibration process. Applications which employ one or more of these techniques at any stage in 

the process, have been classified as automated approaches within this framework. Some of the 

mathematical/statistical approaches employed in calibration studies to date are summarised in 

Table 2-6, under the following two main categories: 

 Optimisation Techniques: This covers the general methods used to optimise prediction 

performance of any type of model; 

 Alternative Modelling Techniques: This section covers alternatives to detailed model 

calibration, described as black-box or grey-box approaches.  
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Table 2-6: Mathematical and Statistical Calibration Techniques 

Acronym Name Description Key Papers 

Optimisation Techniques 

BAYES 
Bayesian 

Calibration 

Bayesian calibration is an alternative statistical 

approach to model calibration. The approach offers 

the advantage of naturally accounting for uncertainty 

in model prediction through the use of prior input 

distributions. 

(MacKay 1994; 

Kennedy and 

O’Hagan 2001; 

O’Hagan 2006; Booth 

et al. 2013)  

OBJECT / 

PENALTY 

Objective/Penalty 

Function 

Most mathematical techniques employ some form of 

optimisation function to reduce the difference between 

measured and simulated data. An objective function 

may be used to set a target of minimising, for example, 

the mean square error between measure and simulated 

data. Conversely, a penalty function may also be 

employed to reduce the likelihood to deviating too far 

from the base-case.  

(Carroll and 

Hitchcock 1993; Sun 

and Reddy 2006; 

Reddy et al. 2007a)  

Alternative Modelling Techniques 

ANN 
Artificial Neural 

Networks 

Neural networks are computational models consisting 

of an interconnected group of artificial neurons. They 

are used for modelling complex relationships between 

inputs and outputs or for finding patterns in data 

(Kalogirou and Bojic 

2000; Mihalakakou et 

al. 2002; Karatasou et 

al. 2006; Neto and 

Fiorelli 2008)  

PSTAR 

Primary and 

Secondary Term 

Analysis and Re-

normalisation 

Calibration procedure based on analysis of data from 

special STEM tests applied to decomposed primary 

and secondary building energy flows. 

(Subbarao 1988; 

Burch et al. 1990; 

Balcomb et al. 1993) 

META Meta Modelling 

 The use of computationally efficient analytical 

surrogate models which emulate the performance 

prediction of their complex engineering-based 

counterparts.  

(Eisenhower, O’Neill, 

Narayanan, et al. 2012; 

Manfren et al. 2013)  

SEAP 

Simplified Energy 

Analysis 

Procedure 

The simplified energy analysis procedure refers to the 

use of simplified engineering models to represent the 

building. This may be accomplished by dramatically 

reducing the number of zones or AHU's in the model 

by grouping them together. 

(Knebel 1983; 

Katipamula and 

Claridge 1993; Liu and 

Claridge 1998) 

SYS 
Systems 

Identification 

This technique refers to the process of constructing 

models based only on the observed behaviour of the 

system (outputs) and a set of external variables 

(inputs), instead of constructing a detailed model based 

on ‘first principles’ of well-known physical variables. 

(Goodwin and Payne 

1977; Ljung 1987; Liu 

and Henze 2005) 

 
 

  



Literature Review 

60 

2.5 Summary of Manual Calibration Developments 

Over the past three decades, many procedures have been proposed for the calibration of whole 

building energy performance simulation models. This section examines manual calibration 

procedures, chronologically highlighting the new techniques employed by various authors as well 

as where these techniques have been adapted and advanced. 

2.5.1 Characterisation Techniques 

Waltz (1992) claims that the single most important factor in developing accurate computer 

models of existing buildings is developing an intimate knowledge of the physical and operational 

characteristics of the building being modelled. This section of the review covers techniques 

which have been used to develop an understanding of these characteristics.. 

2.5.1.1  Building and Site Audits 

An energy audit can be defined as a process to evaluate where a building or plant uses energy, 

and identifies opportunities to reduce consumption. There is an existing consensus on the 

definition of three typical levels of building audit (Thumann and Younger 2008): 

 Level 1 – Walkthrough: This generally implies a tour of the facility and visual inspection 

of energy using systems. This also includes an evaluation of energy consumption data to 

analyse energy use quantities and pattern, as well as providing comparisons to industry 

averages or benchmarks.  

 Level 2 – Standard Audit: Energy uses and losses are quantified through a more 

detailed review and analysis of equipment, systems and operational characteristics. On-

site measurements may be used to quantify and assess efficiency of energy end-users. 

This audit also includes an economic analysis of energy conservation measures (ECM’s) . 

 Level 3 - Investment Grade: This includes a more detailed review of energy use by 

function as well as a comprehensive evaluation of energy-use patterns. Energy simulation 

software is employed to predict year-round energy use, accounting for weather and 

system variables. The method also accounts for system interactions to prevent over-

estimation of savings.  

A summary of the main deliverables for the three levels of energy audits is presented in Figure 

2-2 (ASHRAE 2011). 
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Figure 2-2: Deliverables for Energy Audit Levels 1, 2 and 3 (ASHRAE 2011) 

Lyberg (1987) provides a comprehensive handbook on energy auditing procedures, defining the 

auditing process as “a series of actions, aiming at breaking down into component parts and quantifying the 

energy used in a building, analysing the applicability, cost and value of measures to reduce energy consumption, and 

recommending what measures to take”. Lyberg proposes a staged audit process: 

1. Building Rating – assessing potential high-potential buildings for audit. 

2. Disaggregation of energy consumption (Refer 2.5.3.4). 

3. ECO (Energy Conservation Opportunity) identification. 

4. ECO (Energy Conservation Opportunity) evaluation. 

5. Post Implementation Performance Analysis (PIPA). 

An extensive collection of necessary audit templates are also provided in Volume II of the audit 

handbook (Lyberg 1987), categorised under the following 4 headings: (1) Audit Procedures, (2) 

Measurement Techniques, (3) Analysis Techniques and (4) Reference Values.  

Waltz (1992) suggests two types of survey: (1) observational; and (2) electrical load survey (see 

Section 2.5.1.2). The observational survey refers to the actual functioning of the buildings 

control systems as opposed to relying on documentation and as-built drawings. Oftentimes, 

controls may not be installed as per the design documentation, or operational controls may have 

been overridden, or have simply failed. The authors also suggest a “late-night” tour of the facility 

and its HVAC systems to determine ‘actual’ operating schedules, which often differ from those 

prescribed in operation & maintenance (O&M) documentation. 

CEC (2000) provides a comprehensive guide for reporting investment grade audits of various 

types of facilities and project types (e.g. Lighting, HVAC, Cogeneration). The guide also includes 

a copy of sample field data sheets for recording site specific information such as building data, 

occupancy schedules, lighting and equipment surveys as well as HVAC equipment data. 

Ganji and Gilleland (2002) provide assessment of investment grade energy audits and a review of 

typical cases, identifying several major shortcomings including lack of consistency in auditing, 

reporting and over-estimation of savings. These shortcomings stem from a number of 

Level 1

• Rough Costs and Savings for                       
ECM's

• Identify Capital Projects

Level 2

• End-Use Breakdown

• Detailed Analysis

• Cost and Savings for ECM's

• O&M Changes

Level 3

• Refined Analysis

• Additional Measurements

• Hourly Simulation
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deficiencies including a lack of expertise and fundamental engineering knowledge on the part of 

the surveyor. A lack of training in advanced energy simulation software was also identified as an 

issue, resulting in incorrect outputs in many cases.  

Shapiro (2009) also identifies shortcomings in the current approaches to commercial building 

audits, including a lack of clearly defined boundaries and limitations of simple building audits 

(Level 1 and Level 2). Shapiro proposes a comprehensive building audit on a room-by-room 

basis, capturing room-specific opportunities and documenting recommendations in the audit 

report. Improvements should focus not only on efficiency, but ensuring that the equipment 

meets the load requirements for the space. An example of a comprehensive lighting audit is 

given to illustrate how the proposed approach differs from standard walkthrough audits. The 

author identifies overlit areas and recommends multiple improvements (delamping, occupancy 

sensors and control changes). In contrast, a typical walthrough audit would record existing 

equipment but may miss energy reduction recommendations. The proposed comprehensive 

audit approach is also applied to a case-study office building, identifying 46% potential energy 

savings, compared with 7% identifiied through a standard walkthrough audit.  

To date, a number of standard auditing and energy assessment procedures have been proposed 

for different industries and applications (CASCADE Consortium 2012): 

 AuditAC: Developed as part of a European project “Field Benchmarking and market 

Development for Audit Methods in Air Conditioning”. The project focused on 

providing tools and information for air-conditioning engineers to identify energy savings 

in HVAC systems. (Adnot 2007) 

 IEA Annex 11: Comprehensive handbook on energy auditing procedures developed in 

conjunction with the International Energy Agency (IEA) (Lyberg 1987). 

 AS/NZS 3598:2000: Standard developed by Australia and New Zealand energy 

authorities, targeting the commercial and industrial sector. The standard sets out 

minimum requirements for commissioning and conducting energy audits which identify 

cost effective opportunities to improve efficiency and effectiveness in the use of energy. 

(Standards Australia 2000). 

 RP-351 Energy Audit Input Procedures and Forms: General ASHRAE procedures for 

energy auditing including an assessment of existing audit procedures. (ASHRAE 1983). 
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 ASHRAE Procedures for Commercial Building Energy Audits: Standard for energy 

companies conducting energy audits of commercial buildings, including definitions of 

Level 1, 2 and 3 audits (ASHRAE 2011). 

 EINSTEIN Audit Methodology: The EINSTEIN (Expert-system for an Intelligent 

Supply of Thermal Energy in Industry) audit methodology focuses on large scale 

consumers with high thermal energy (heating and cooling) demand in a low and medium 

temperature ranges up to 400°C (e.g. manufacturing industry, desalination plants, district 

heating and cooling networks). (EnergyXperts 2012). 

2.5.1.2  Short-Term End-Use Monitoring (STEM) 

STEM refers to the application of specialized software and hardware tools to systematically 

gather and analyse data typically over a short (typically two week) period to evaluate the 

performance of building energy systems, such as HVAC, controls, and lighting. Diagnostics 

based on short-term monitoring can clarify how the systems in a building actually perform,  as 

well as highlighting key energy end-users.  

A study by the Tishman Research Corporation (TRC 1984) on the calibraton of a DOE-2 office 

model to measured data was the first identifiable study which incorporated short-term end use 

monitoring to increase the accuracy of model inputs. Measurement errors for sensors were also 

accounted for in the study, showing an acceptance of potential uncertainties in the measured 

end-use values as opposed to solely model inputs.  

Waltz (1992) suggests measuring instantaneous power draw for every electrical panel or piece of 

equipment using a hand-held power factor meter. This is particularly  important when high levels 

of accuracy are required, for example in high-rise multi-zone office builings. Kaplan et al. (1990; 

1990) suggest calibrating models to short typical periods as opposed to full year data, for 

example one month during a heating and cooling season. The authors incorporate short-term 

energy monitoring during these periods to assist calibration. Statistical analysis is applied to these 

short-term monitored end-uses to generate manageable DOE-2 schedules for lighting, 

equipment, occupancy setpoints etc. In this regards, monitored data is used to generate DOE-2 

inputs and validate outputs. A similar approach is adopted by Soebarto (1997) for calibrating 

models to utility bill data using only two to four weeks measured data. The procedure requires 

the use of STEM in order to develop a set of energy end-use profiles, including; electrical energy, 

heat energy and, indoor temperatures. The author also proposes the use of intrusive blink-tests 

(see 2.5.1.4). Short-term monitoring has since been used in a number of studies to assist in 

identifying input parameters (Lunneberg 1999; Coakley et al. 2012).   
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2.5.1.3  High-Resolution Data 

Clark et al. (1993) investigated the use of calibrated ESP-r simulation to investigate the 

performance of passive solar components (PASSYS). The study was differentiated by its use of 

high-quality, high-resolution data and empirical evidence for model calibration and validation. 

First, a sensitivity analysis (SA) is carried out to quantify uncertainty bands associated with model 

predictions and associated parameter sensitivities. This information is used to design an 

experiment to capture a high-quality data set with which to quantify model residuals and identify 

their cause. The authors also highlight the importance of uncertainties when extrapolating from 

test-cell scenarios to full-scale application.  

A study by Norford et al. (1994) investigated the two-fold differences between a simulation 

model at design stage and actual operation for a low-energy office building. Focus was placed on 

high levels of instrumentation (100 sensors polled 200-300 times an hour) to provide hourly 

averages of ambient and interior conditions as well as energy consumption of HVAC and tenant 

equipment. The study conluded that differences were mainly due to unanticipated tenant energy 

consumption (64%), increased HVAC operation beyond design schedule (24%) and specification 

errors in HVAC equipment, building fabric and infiltration (12%). This highlights the 

importance of occupant behaviour in determining model performance as well as the need for 

sufficient instrumentation to monitor this behaviour if it is a significant factor in determining 

building performance. 

2.5.1.4  Intrusive Testing  

An approach has been developed for determining characteristic building parameters using 

controlled heating and cooling tests over short periods of 3-5 days (Subbarao 1988; Manke et al. 

1996). This test consists of a period of co-heating to determine an estimate for the building heat-

loss co-efficient, and cool-down to provide an estimate for the effective thermal time constant of 

the building. 

Soebarto (1997) presents an approach for calibrating models to utility bill data using only two to 

four weeks measured data. A series of ‘on-off tests’ (or Blink Tests) were utilised to determine 

lighting and plug loads. In these tests, all electrical loads were turned off for a short period, and 

back on again. This equipment ‘on-off’ cycling is carried out in a predetermined pattern while 

recording electrical energy use on a data logger, in order to accurately determine the load profile 

for various equipment end-users without the need for individual sub-metering. This method 

resulted in an hourly calibration accuracy of 6.7% CV (RMSE) for whole building electricity and 

1% for chilled water energy use. 
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2.5.2 Advanced Graphical Approaches 

In the past, graphical techniques were confined to simple time-series plots (Hunn et al. 1992). 

With the increasing availability of detailed measured data and requirement to better understand 

this information, there has been extensive work carried out in the area of graphical data 

representations. 

2.5.2.1  3-D Comparitive Plots 

Bronson et al (1992) proposed a means of calibrating hourly building energy models to non-

weather dependent (or scheduled) loads using novel comparitive three-dimensional graphics 

which allowed hourly differences to be viewed for the entire simulation period. Day-typing was 

also used to assist in the calibration process. The authors reported that the availability of 

comparative three-dimensional surface plots significantly improved the ability to view small 

differences between the simulated and measured data, which allowed for the creation of a 

"super-tuned" DOE-2 simulation that matched the electricity use within 1%. The process of 

identifying and fixing unknown "misfits" between the simulation and the measured data was 

significantly enhanced by the use of the plots. 

Bou-Saada and Haberl (1995) propose the use of 3D surface plots (see Figure 2-3) and statistical 

indices (Refer Section 2.5.2.2 ) to provide a global view of the differences between measured and 

computed hourly values in order to help identify time-dependent patterns in discrepancies 

between measured and simulated data. 

  

Figure 2-3: Comparative three-dimensional plots (Month, Hour, kWh/h) showing (a) measured data, (b) simulated data (DOE-2), (c) 

simulated (DOE-2) - measured data, (d) measured – simulated (DOE-2) data (Haberl and Bou-Saada 1998) 

McCray et al. (1995) propose another graphical method to calibrate a DOE2.1 model to one year 

of 15-minute interval data for whole-building energy use. The Visual Data Analysis (VDA) 
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method allows the modeler to quickly review the simulation results and make iterative changes to 

the models. 

A number of later studies focused on further developing this approach by means of visual 

comparitive displays (Bronson et al. 1992; Haberl et al. 1993; Bou-Saada and Haberl 1995; 

Haberl et al. 1996; Haberl and Abbas 1998a; Haberl and Bou-Saada 1998; Haberl and Abbas 

1998b).  

Christensen (Christensen 1984) originally proposed the use of colour contour plots (or Energy 

Maps, EMAPS) to help display hourly data from a commercial building.  Haberl et al. (1996) 

adopted this technique in developing graphical compartive displays with time-sequenced contour 

plots. Raftery and Keane (2011) proposed the use of carpet contour plots (see Figure 2-4) as a 

means of speeding up the identification of major discrepancies between modelled and simulated 

data as well as a useful tool for fault detection. 

 

Figure 2-4: Mean percentage error between measured and simulated HVAC electricity consumption against hour of  day and day of  week 

for 2007. From lef t to right: a) model uses lighting and plug load schedules for a typical of f ice, b) model updated to use measured lighting 

and plug load data in the model, c) the f inal model. (Raftery and Keane 2011) 

2.5.2.2  Graphical Statistical Indices 

Graphical Statistical Indices refer to the graphical representation of statistical indices through the 

use of graphical techniques. One such approach is binned box-whisker mean plots (Abbas 1993; 
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Bou-Saada and Haberl 1995) which display maximum, minimum, mean, median, 10 th, 25th, 75th 

and 90th percentile points for each data bin given a period of data. These plots eliminate data 

overlap and allow for more informative statistical characterisation of the dense cloud of data 

points. The authors also proposed the use of temperature bin analysis, 24-hour weather day-type 

analysis and 52-week bin analysis. Further examples can be found in a number of more recent 

case studies illustrating the importance of effectively conveying statistical information behind 

calibration studies (Yoon et al. 2003; Wilde and Tian 2009; Raftery and Keane 2011; Raftery, 

Keane and Costa 2011; Wang et al. 2012). 

 

Figure 2-5: Weekday temperature bin calibration plots. The f igure shows the measured and simulated hourly weekday data as scatter 

plots against temperature in the upper plots and as binned box-whisker-mean plots in the lower plots (Haberl and Bou-Saada 1998) 

2.5.2.3  Signature Analysis 

One of the major issues in tackling building energy calibration is the issue of accurately 

modelling heating and cooling energy consumption. Katipamula and Claridge (1993) proposed 

an approach for developing simplified system models for retrofit analysis, based on the work of 

Knebel (1983) on the Simplified Energy Analysis Procedure (SEAP) (see Section 2.6.2.4). This 

was later extended to account for calibration and devlopment of optimised control strategies (Liu 

and Claridge 1998). Based on this work, a process was devloped to include graphical signatures 

of heating and cooling energy consumption (Wei et al. 1998; Liu et al. 1998; Yu and Chan 2005). 

These graphic signatures would allow simulation engineers to identify the impacts of different 

input parameters (weather, occupancy, outside air intake, system type etc.) on an AHU’s heating 
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and cooling energy consumption. In addition, the technique may be used by commissioning 

engineers to identify faulty parameters, and develop optimised operation and control schedules.  

 

Figure 2-6: Sample Hot-Water (HW) energy use calibration signature, showing HW(%) vs. outside dry -bulb temperature (Tdb) (Liu 

et al. 2003) 

Liu et al. (2003) propose a step-by-step procedure for the manual calibration of simulation 

models, based on the definition of two characteristic signatures: 

 Calibration Signature: normalized plot of the difference between measured energy 

consumption values and the corresponding simulated values as a function of outdoor air 

temperature. For a given system type and climate, the graph of this difference has a 

characteristic shape that depends on the reason for the difference.  

 𝐶𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛  𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 =
−𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑  𝑒𝑛𝑒𝑟𝑔𝑦
 𝑥 100% (2.1)  

 Characteristic Signature: By simulating the building with one value for an input parameter 

(the “baseline” run), then changing that input parameter by a given amount and 

rerunning the simulation, the “residuals” between these two simulations can be 

calculated, normalized, and plotted versus outdoor air temperature, producing a 

characteristic signature. By matching the observed signature with the published 

characteristic signature, the analyst is given clues to the factors that may be contributing 

to the errors he or she is observing. 

 𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐 𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 =
𝐶ℎ𝑎𝑛𝑔𝑒  𝑖𝑛 𝑒𝑛𝑒𝑟𝑔𝑦  𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛

𝑀𝑎𝑥𝑖𝑚𝑢𝑚  𝑒𝑛𝑒𝑟𝑔𝑦  𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛
 𝑥 100%  (2.2)  

The study provides charateristic signatures for a number of standard systems including single -

duct constant-air-volume (SDCV), single-duct variable-air-volume (SDVAV), dual-duct 

constant-air-volume (DDCV) and dual-duct variable-air-volume (DDVAV) air handling Units 

(AHUs) and three representative climates in California: Pasadena, Sacramento and Oakland.  
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G. Liu and Mingsheng Liu (2011) provide a rapid two-stage calibration procedure for simplified 

energy models (Refer 2.6.2.4), based on the use of calibration signatures. A simplified model of a 

high-rise office building is developed and calibrated to two weeks worth of measured data. This 

model is then used to simulate the hourly heating and cooling energy consumption for the 

building. Calibration signatures are then used to compared measured and simulated data in order 

to give an indication of which parameters should be changed and the corresonding magnitude of 

change required. A second stage of calibration requires the fine-tuning of these parameters to 

obtain a better overall fit of the model to measured data. Comparison of the results of this 

simulation with the measured data gave monthly CV(RMSE) values of 10.3% and 3.7%, and 

NMBE values of 2.2% and 1.4%, for cooling and heating respectively. These are within the 

ASHRAE criteria for model calibration (ASHRAE 2002). However, hourly comparisons gave 

monthly CV(RMSE) values of 31.0% and 28.0%, and NMBE values of 1% and 0.6%, for 

cooling and heating respectively. Even with detailed field measurements, these results for hourly 

calibration are outside the tolerances specified by ASHRAE Guideline 14-2002.  

The authors conclude that this is a simplified example, but serves to highlight a number of issues 

with the calibration process. Firstly, this type of parameter tuning is typical of the general 

approach to model calibration, and while it may serve to produce a model which demonstrates 

sufficient overall accuracy when compared to measured data, it  is probably not a good 

representation of the actual building being analysed. It is also highly dependent on analyst 

knowledge and skill, data availability, and allowed time-frame. The authors also point out that the 

satisfaction of hourly ASHRAE calibration criteria is quite difficult, even when high levels of 

measured data are available. It is also questionable as to whether it is even useful (or appropriate) 

to fine-tune a model to a very high degree of accuracy when employing generalised model 

assumptions and typical operation profiles. 

In summary, advanced graphical techniques are an essential part of the calibration toolkit, but are 

not sufficiently robust to be used in isolation. Therefore, it is necessary to use a selection of tools 

instead.  

2.5.3 Model Simplification Techniques 

The methods described below rely on some form of model simplification to reduce simulation 

complexity or calibration requirements. 

2.5.3.1  Base-Case Modelling  

This process relies on the key concept of a detailed base-load energy consumption determination 

(Yoon and Lee 1999; Yoon et al. 2003) using the swing-season base load analysis 
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recommendation by Lyberg (1987), where the term ‘base load’ refers to the minimum (or 

weather-independent) electricity or gas consumption. The swing-season calibration then fine-

tunes simulation inputs when heating and cooling loads are minimal and building behaviour is 

dominated by internal loads. This provides a unique way to calibrate non-weather dependent 

data. Yoon et al. (2003) illustrate how this step-wise base-case modelling and swing-case 

calibration has been applied to a 83,212m2 commercial building in Seoul, Korea. The final 

simulation gave an annual NMBE of 2.3% and CV (RMSE) of 3.6% for monthly data. 

2.5.3.2  Model Parameter Estimation 

The process of macro-parameter estimation refers to the process of deducing overall values 

for aggregated individual building parameters using non-intrusive monitored data, as opposed to 

intrusive tests described in section 2.5.1.4. Reddy et al. (1999) propose the use of an inverse 

method for estimating building and ventilation parameters through non-intrusive monitoring of 

heating and cooling energy use in large commercial buildings. As discussed in a later review 

paper by Reddy (2006), the procedure involves deducing the loads of an ideal one-zone building 

from the monitored data and then, in the framework of a mechanistic macro-model, using a 

multistep linear regression approach to determine the regression coefficients (along with the ir 

standard errors), which can finally be translated into estimates of the physical parameters. This 

procedure is applied to two different building geometries at two different climatic locations, to 

estimate six physical parameter values, including the overall building heat loss coefficient. The 

approach has been found to yield very accurate results (regression R2 coefficients of 0.97-0.99), 

particularly when combined with daily data over an entire year.  

2.5.3.3  Parameter Reduction (Day-Typing and Zone-Typing) 

The process of parameter reduction or simplification relies on the statistical characterisation of 

complex inputs in order to reduce the number of inputs in a model. One approach which has 

been used extensively is day-typing, in which building energy use is characterised on a daily 

profile, rather than on an hourly basis. This approach allows for the definition of typical days 

(e.g. weekdays, weekends, and holidays) which can be used to characterise building energy use, 

thus condensing a large quantity of complex measured building data into relatively few input 

points or schedules. 

Kaplan et al. (1990; 1990) use day-typing to group days with reasonable uniform non-HVAC 

load shapes. Zone-Typing (i.e. grouping similar zones) is used to further apply these day-types 

across multiple zones. Bronson et al. (1992) uses day-typing routines (for occupancy and 

equipment scheduling) to calibrate a DOE-2 simulation model. Hadley (1993) uses a 



Literature Review 

71 

combination of principal component analysis and cluster analysis to identify distinctive weather 

day types (which represent repeatable weather conditions that typically occur at each site) from 

one year of National Weather Service (NWS) station data. HVAC system energy consumption 

data for each day are then grouped by these weather day types, and daily total and hourly load 

profiles were developed for each day type.  

Raftery et al. (2011; 2011) incorporate zone-typing to separate thermal zones in such a way as 

to minimise inaccuracies incurred by representing multiple actual thermal zones in a building 

with a single large zone in the model. This is achieved by assigning thermal zones in the model 

based on four major criteria (see Figure 2-7): (1) space function, (2) position relative to exterior, 

(3) available measured data, and (4) space conditioning method.  

 

Figure 2-7: Zone Typing (Raftery, Keane, O’Donnell, et al. 2011) 

2.5.3.4  Data disaggregation  

Disaggregation is the splitting up of the total building energy consumption into its component 

parts. There are a number of reasons as to why this is done, i.e., to focus on specific energy flows 

and identify areas for retrofit and conservation. Lyberg (1987) proposes data disaggregation as 

part of a staged audit process as a means of focussing attention on high-importance areas. This 

can help limit subsequent auditing to the areas where the most productive retrofits could be 
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carried out. This step will directly assist in the identification of energy-conservation opportunities 

(ECO’s). 

Akbari (1988; 1995) developed an algorithm to disaggregate short-interval (hourly) whole 

building electrical load into major end-uses. The End-Use Disaggregation (EDA) algorithm 

utilises statistical characteristics of measured hourly, whole-building load and its inferred 

dependence on temperature to produce hourly load profiles for air-conditioning, lighting, fans, 

pumps and miscellaneous loads. Regression models are developed for each hour of the day for 

major day types (see 2.5.3.3) between measured building energy use and outdoor dry-bulb 

temperature. Since the temperature dependency of the building may change with season, the 

author suggests using two season specific (summer and winter) sets of temperature regression 

coefficients. The regression constant for these models are assumed to provide an indication of 

the weather-independent energy use, while the slope represents weather-dependent behaviour. 

Since the regression models provide no information about the breakdown of the temperature-

independent load, it is simply pro-rated against loads predicted by simulation as well as on-site 

measurements.  The approach is applied to numerous retail and commercial facilities. (Akbari et 

al. 1988; Akbari 1995; Akbari and Konopacki 1998). The authors conclude that this is a useful 

approach for buildings in which the whole-building temperature dependent load is primarily due 

to the HVAC system (i.e. only the HVAC load is sensitive to outdoor temperature). This 

assumption may be applied to large offices and commercial buildings, but not to buildings 

characterised by non-HVAC end-uses such as refrigeration (which is weather dependent).  

2.5.4 Procedural Extensions 

The following section describes procedural tools and techniques used to assist in improving the 

overall calibration process. 

2.5.4.1  Improved Statistical Comparisons 

In the early years of building simulation, simple precent difference calculations had been the 

primary means of comparing measured and simulated data (Diamond and Hunn 1981; Kaplan, 

McFerran, et al. 1990; Bronson et al. 1992). However, as noted by Diamond & Hunn (1981) this 

often led to a compensation effect, whereby over-estimations cancelled out under-estimations. 

Bou-Saada and Haberl (1995) proposed the adoption of standardised statistical indices which 

better represent the performance of a model (J. Kreider and Haberl 1994; J. F. Kreider and 

Haberl 1994; Bou-Saada and Haberl 1995):  

 Mean Bias Error (MBE) (%): This is a non-dimensional bias measure (i.e. sum of errors), 

between measured and simulated data for each hour. 
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Where; 𝑚𝑖 and 𝑠𝑖 are the respective measured and simulated data points for each model 

instance ‘i’ and 𝑁𝑝 is the number of data points at interval ‘p’ (i.e. Nmonthly=12, 

Nhourly=8760). 

 Root Mean Square Error (RMSE) (%): The root mean square error is a measure of the 

variability of the data. For every hour, the error, or difference in paired data points is 

calculated and squared. The sum of squares errors (SSE) are then added for each month 

and for the total periods and divided by their respective number of points yielding the 

mean squared error (MSE); whether for each month or the total period. A square root of 

the result is then reported as the root mean squared error (RMSE).  

 Coefficient of Variation of Root Mean Square Error CV(RMSE) (%): This is essentially 

the root mean squared error divided by the measured mean of the data. CV(RMSE) 

allows one to determine how well a model fits the data; the lower the CV(RMSE), the 

better the calibration. 
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Where; 𝑚𝑖 and 𝑠𝑖 are the respective measured and simulated data points for each model 

instance ‘i’; 𝑁𝑝 is the number of data points at interval ‘p’ (i.e. Nmonthly=12, Nhourly=8760) 

and �̅� is the average of the measured data points. 

2.5.4.2  Evidence-based development 

Manual approaches to model calibration generally rely on manual pragmatic user intervention to 

‘fine-tune’ individual parameters to achieve a calibrated solution. However, these changes are 

often not tracked or recorded, and are rarely reported. This results in a situation whereby the 

calibration process relies heavily on user knowledge, past experience, statistical expertise, 

engineering judgement, and an abundance of trial and error (Bou-Saada and Haberl 1995). In 

order to improve the reliability and reproducibility of the calibration process it is necessary to 

keep a history of the decisions made along with the evidence on which these decisions were 

based (Bou-Saada and Haberl 1995; Raftery, Keane, O’Donnell, et al. 2011) . This allows future 

users to review the entire calibration process and the evidence on which the model is based. In 
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addition, changes to the input parameters should only be made according to available evidence 

and clearly defined priorities (Raftery, Keane, O’Donnell, et al. 2011).  

A number of studies incorporate systematic evidence-based model development at the core of 

the calibration process (Bou-Saada and Haberl 1995; Yoon and Lee 1999; Yoon et al. 2003; 

Monfet et al. 2009; Parker et al. 2012) 

2.5.4.3  Sensitivity Analysis (SA) 

Sensitivity analysis has been employed in recent calibration efforts to identify parameters of 

greatest influence on energy end-use in a building. There are a number of available techniques 

available for conducting sensitivity analyses, depending on the particular requirements and 

application (e.g. single vs. multiple parameters). For detailed descriptions of tools and techniques, 

refer in particular to the work of Saltelli et al. (2002; 2005) on this particular subject.  

Clarke et al. (1993) used two sensitivity analysis techniques to determine uncertainty bands 

associated with ESP-r predictions. Differential Sensitivity Analysis (DSA) was used to determine 

total uncertainty band as the root mean squared summation of individual uncertainties due to 

each input parameter. Monte-Carlo Sensitivity Analysis (MCSA) was used to determine the total 

uncertainty band by perturbing all the input parameters simultaneously. These sensitivity 

methods have been incorporated into ESP-r simulation software (ESRU 1974; Macdonald et al. 

1999) for the purpose of uncertainty analysis.  

Westphal and Lamberts (Westphal and Lamberts 2005) present a calibration study of a 26,264m2 

public office building, combining a building energy audit, model sensitivity analysis and manual 

tuning of influential parameters. The study concludes with an electricity consumption prediction 

within 1% of the measured values within four iterations of the base case model.  

2.5.4.4  Uncertainty Quantification  

As identified by Carroll and Hitchcock (1993), there may exist multiple solutions which may 

produce good overall agreement with measured data even though individual parameters are 

incorrectly defined. Hence, if using these inputs to infer any sort of meaning (e.g. for ECM 

analysis), it is important to account for uncertainty in these inputs.  Reddy (2006), states that 

uncertainties in building simulation generally arise from four main sources: 

i. Improper input parameters; 

ii. Improper model assumptions; 

iii. Lack of robust and accurate numerical algorithms; 

iv. Error in writing simulation code. 
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While sources (ii)-(iv) deal directly with the simulation program and internal algorithms and 

assumptions, source (i) depends on the accuracy (and uncertainty) of the available input 

information. Since the validation of model algorithms is covered extensively in other studies 

(Neymark et al. 2002; Henninger et al. 2004; Ryan and Sanquist 2012), this review will focus on 

contributions to the identification of error and uncertainty in model input parameters, and how 

this has been applied to model calibration. 

As discussed in the previous section 2.5.4.3, Clarke et al. (1993) used sensitivity analysis to 

determine uncertainty bands associated with ESP-r predictions of internal air-temperature in his 

PASSYS test-cell experiments. In this case, uncertainty bands were quite narrow, reflecting the 

level of control of the experiments in terms of ESP-r input parameters. It was shown, however, 

that uncertainty bands were largely temperature-dependent, due primarily to the uncertainty in 

conservatory air temperature prediction. This was due to instrument accuracy for solar radiation 

measurement (varying by as much as ±3%).  

Lomas and Eppel (Lomas and Eppel 1992) discuss the application of three sensitivity analysis 

techniques (DSA, MCSA, SSA) to determining the relative sensitivities, in both hourly and daily 

average model  predictions (using ESP-r, HTB2 and SERI-RES), due to the uncertainties in over 

70 input parameters. Lomas et al. (1997) conducted an extensive review of dynamic thermal 

simulation programs (DSPs) comparing measurements with predictions and accounting for 

experimental uncertainty. The authors state that total model uncertainty has two components: (1) 

measurement errors, as above – which are easy to identify; and (2) uncertainties in program input 

data – which is more difficult to calculate. This difficulty is due to the large number of inputs 

which require quantification of associated uncertainty, as well as the propagation of this 

uncertainty through the DSP to determine the overall prediction uncertainty.  

De Witt and Augenbroe (2002) address uncertainties in building performance evaluations and 

their potential on design decisions. The authors examine uncertainties in material properties as 

well as those stemming from model simplifications. They suggest a statistical screening technique 

(using Monte-Carlo Analysis) to determine which sources have dominant effects on the outcome 

of the simulation. The procedure is illustrated for a simple building envelope and considered 

parameters such as wind speed, indoor air distribution, and envelope material and heat transfer 

coefficients. 

Reddy et al. (2007a; 2007b) identified the necessity for uncertainty analysis, which had been 

over-looked in many calibration studies, particularly in ECM analysis applications. In this work, 

uncertainty is addressed by assigning ranges of variation to influential input parameters and a 
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Latin-hypercube Monte-Carlo (LHMC) simulation is carried out to produce multiple possible 

solutions. The author selects the top 20 solutions, rather than selecting a single solution, to 

produce a range of values for the predicted performance of ECM’s (rather than a single value) . 

Overall, the authors found the relative uncertainty (or fractional difference) between actual and 

predicted values to be in the range of 25-50%. However, in most cases, the actual savings are 

usually contained in the range predicted. In conclusion, the authors suggest that one should not 

rely on calibrated simulations which predict savings of less than 10% (as associated uncertainty 

could account for up to 50% of this value).  
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2.6 Summary of Automated Calibration Developments 

The following summarises the major developments in automated calibration of building 

energy performance simulation models over the last three decades.  

2.6.1 Optimisation Techniques 

2.6.1.1  Objective Function 

The first automated calibration technique called RESEM (Renewable Energy Savings Estimation 

Method) was used for evaluation of ECM’s using pre-retrofit and  post-retrofit data. (Carroll et 

al. 1989; Hitchcock et al. 1991; Pal et al. 2002). The tool is based on a previously developed set 

of knowledge-based expert rules designed to bridge simulation models with measured utility bill data 

(Lebot 1987). RESEM (Retrofit Energy Savings Estimation Model) uses a self-contained energy 

simulation program similar to DOE-2, called RESegy. The goal of the project was to provide a 

simple cost-effective solution for ECM analysis by staff with little or no energy simulation 

expertise. As such, it relied on a database of expert knowledge for the development of building 

prototypes and parameter defaults based on minimal information from the user. The tool was 

benchmarked against DOE-2 using a simple base-case building. Comparisons of monthly 

heating and cooling loads (including peak loads) as well as electrical and gas energy consumption, 

as computed by DOE-2.1E and RESEM, were performed.  

Lavigne (2009) implemented a similar DOE-2 based assisted calibration process using built-in 

engineering rules as well as optimization algorithms based on a Maquardt-Levenberg non-linear 

least squares method. Two real case studies are presented and calibrated to monthly utility bill 

data by tuning a set of user-defined parameters until acceptable limits are reached. In the 

presented case studies, this was acheieved in 2-3 iterations, achieving a monthly and annual 

difference in measured and simulated energy consumption of 10.9% and -1.1% respectively.  

2.6.1.2  Penalty Function 

Based on their original experience with RESEM, Carroll and Hitchcock (1993) introduced a 

more generic approach to systematically adjusting (“tuning”) the parameters of a simulatable 

building description in order to match simulated performance to metered utility data. The 

underlying method is based on the minimisation of differential terms between measured and 

simulated data. In addition, the approach incorporates a weighting function to describe the 

relative importance of any single term within the minimisation function, thus maintaining 

reasonable parameter values during the calibration process. The paper also addresses two other 

important issues: 



Literature Review 

78 

 Existence – it may not be possible to find an exact match between measured and 

simulated performance (i.e. the simulation model does not represent exactly what 

happens in the real building). Therefore, rather than identify an exact solution, the 

authors suggest finding a minimum quantity based on the normalized difference between 

predicted and actual consumption. 

 Uniqueness – there may be many solutions which match the defined minimization 

criteria. This can be addressed by providing additional matching constraints in the 

minimization function, thus reducing the number of possible solutions. The authors 

suggest the use of a penalty function term which increases quadratically with the 

difference between each input parameter and its corresponding preferred value. 

The approach utilises a prototype building generator to assist in the creation of the initial 

building model. The tuning process relies on some knowledge of the building to decide on 

parameters for adjustment, based on associated uncertainties classified during a building audit.  

More recently, a methodology has been developed for the systematic calibration of energy 

models that includes both parameter estimation and determination of uncertainty in the 

calibration simulation  (Sun and Reddy 2006; Reddy et al. 2007a). Based on the building type, the 

user must heuristically define a set of influential parameters and schedules which correspond to 

defined input parameters in the building model. These parameters are then assigned ‘best -guess 

estimates’ and ‘ranges of variation’ in order to generate an uncertainty-based search space. A 

coarse search of this space is carried out using a Monte-Carlo (MC) simulation approach to 

identify strong and weak parameters. This is achieved by coupling a blind Latin-Hypercube 

Monte-Carlo (LHMC) search with a Regional Sensitivity Analysis (RSA). This allows the analyst 

to fix weak parameters and specify narrower bounds of variability for influential parameters to 

further refine the search space and the corresponding promising vector solutions. By adopting 

this multi-solution approach, predictions may be made about the effect of changes to a building 

(ECM analysis) while providing an associated uncertainty of these predictions. This approach is 

applied to three case study office buildings using the DOE-2 software and calibrating to monthly 

utility bills (Reddy et al. 2007b).  

2.6.1.3  Bayesian Calibration 

It is important to consider prediction and uncertainty analysis for systems which are 

approximated using complex mathematical models. Bayesian calibration methods (MacKay 1994; 

Kennedy and O’Hagan 2001) can be used to naturally incorporate these uncertainties in the 

calibration process, , including the remaining uncertainty over the fitted parameters. These 
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uncertainties may be propagated through the model using probabilistic sensitivity analysis 

(Lomas and Eppel 1992). Bayesian calibration methods also attempt to correct for any 

inadequacy of the model which is revealed by a discrepancy between the observed data and the 

model predictions from even the best-fitting parameter values. In addition Bayesian methods 

have the ability to combine multiple sources of information at varying scales and reliabilities 

(Booth et al. 2013). 

Kennedy and O’Hagan (2001) present a generic approach for the Bayesian calibration of 

computer models. The method is illustrated by using data from a nuclear radiation release at 

Tomsk-7 chemical plant, and from a more complex simulated nuclear accident exercise. 

Booth et al. (2013) suggest a hierarchical framework in which a top-down (macro-level) statistical 

model is used to infer energy consumption for (micro-level) representative individual dwellings 

from publically available energy consumption statistics. In this approach, a Bayesian regression 

method is employed for the top-down statistical model in order to account for uncertainties in 

the macro-level data.  

2.6.2 Alternative Modelling Techniques 

2.6.2.1  Artificial Neural Networks (ANN) 

While not strictly used to calibrate energy models, artificial neural networks (ANN) have been 

proposed as a prediction method for building energy consumption. Neto & Fiorelli (2008) 

compared the use of EnergyPlus and artificial neural networks (ANN) in simulating energy 

consumption for an administration building at the University of Sao Paulo, Brazil. The results 

showed that EnergyPlus consumption forecasts had an error range of ±13% for 80% of the 

tested database. The authors concluded that the major source of uncertainties in the detailed 

model predictions are related to proper evaluation of lighting, equipment and occupancy. An 

adequate evaluation of the coefficient of performance (COP) for the unitary air conditioners 

serving the space also plays a very significant role in the prediction of the energy consumption of 

a building. The ANN models, based on simple (temperature-only input) and complex 

(temperature/ relative humidity/solar radiation inputs) neural networks showed a fair agreement 

between measured and predicted energy consumption forecasts and actual values, with an 

average error of about 10%. While the ANN model required less manual input, it  can only 

predict energy consumption based on past performance and therefore requires a large historic set 

of training data for adequate performance. Therefore, any operation changes or retrofit measures 

would require re-training using a new data set. Finally, the ANN model cannot provide the same 

insights as a detailed energy model as it is not based on physical input parameters. However, the 
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authors conclude that there is merit in further investigating the potential for using ANN to 

improve methodologies for evaluation of energy consumption in air-conditioned buildings (e.g. 

as an substitute for complex schedule input in detailed energy models).  

2.6.2.2  PSTAR 

The PSTAR (Primary and Secondary Term Analysis and Re-normalisation) method, originally 

proposed by Subbarao et al. (1988) and later refined and extended by Burch et al (1990), and 

Balcomb et al (1993),  utilises data from a short-term energy monitoring (STEM) test (Refer to 

2.5.1.2). In this approach, adjustments are made to major energy flows rather than to individual 

input parameters. This is achieved by identifying all the heat flows relevant for the building using 

a three stage STEM testing procedure: 

1. Steady-state heat loss during constant heat input (Night) 

2. Thermal mass using cool-down test (Night) 

3. Effective solar gain by analysing change in heating/cooling load (Day) 

A re-normalisation procedure (using a linear least squares method) is used to define the primary 

flows and subsequently compute secondary term flows thus enabling the definition of a dynamic 

energy balance representation of the building system. The process of data analysis and calibration 

from a set of defined STEM data can be automated, and is reported to yield reasonable results. 

However, it is dependent upon measurement accuracy. Infiltration heat loss is the major source 

of uncertainty and may require continuous tracer gas measurements.  

2.6.2.3  Meta-Modelling 

Currently, building energy simulation models are primarily used at the building design stage, 

usually for the purpose of energy code compliance certification (e.g. LEED, BREEAM). As 

building energy models become more accurate and numerically efficient, model-based 

optimization of building design and operation is becoming more practical. This model-based 

optimisation generally requires the combination of a whole-building energy simulation model 

with an optimisation tool. However, this tends to be time consuming due to the simulation and 

analysis time required for each model iteration. It also often leads to suboptimal results because 

of the detail and physical complexity of the energy model.  

Eisenhower et al. (2012) present an approach which aims to cut the complexity of the 

optimisation problem, by reducing the detailed simulation model to a simple mathematical meta -

model. The method begins by sampling the parameter space of the building model around the 

baseline values. This is done by applying a uniform distribution and a corresponding range 
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(±20%) of the baseline parameter value, and then using quasi-Monte Carlo (deterministic) 

sampling approach to provide samples within this distribution. Numerous simulations (~3000) 

are performed using this sample data, and an analytical meta-model is then fit to the output data. 

Once this process is complete, optimization can be performed using different optimization cost 

functions or optimization algorithms with very little computational effort. Uncertainty and 

sensitivity analysis is also performed to identify the most influential parameters for the 

optimization. A case study is explored using an EnergyPlus model of an existing building which 

contains over 1000 parameters. When using a cost function that penalizes thermal comfort and 

energy, 45% annual energy reduction is achieved while simultaneously increasing thermal 

comfort by a factor of two. 

Manfren (2013) proposes an approach for calibration and uncertainty analysis in building 

simulation models based on the use of ‘grey-box’ meta-modelling techniques, combining data-

driven ‘black-box’ models with detailed law-driven ‘white-box’ simulation models. This approach 

is applied to a real case-study office building for the verification and control of energy saving 

measures results. In addition, the approach is used to create a validated building simulation 

model for design and operational optimisation. The proposed methodology employs three 

models to achieve this goal: (1) simple piece-wise regression model trained on real data, (2) a 

Gaussian process meta-model trained on computer simulation data and calibrated with respect to 

piece-wise regression data, and (3) a detailed simulation model directly fitted to real data. The 

authors propose the development of the ‘black-box’ Gaussian meta-model which allows 

performing optimisation, uncertainty and sensitivity analysis in an easier and more 

computationally efficient manner compared with the original ‘white-box’ simulation model, while 

maintaining comparable results. This meta-model is also used for calibrating the detailed model 

input variables with respect to normalised observed data (outputs). Since this approach uses 

computationally-efficient black-box models, it can be easily integrated with multivariate real 

measured data. It may also be extended to incorporate highly multivariate inputs and multiple 

outputs within a real-time simulation environment. The paper concludes that this approach of 

combining data-driven and law-driven procedures has the potential to increase the potential 

usefulness, transparency and applications of models for simulation-based design and 

optimisation of buildings.  

2.6.2.4  Simplified Energy Analysis Procedure (SEAP) 

In the early years of commercial building energy performance simulation, many solutions were 

quite complex and required specialists and main frame computers to run. Detailed physical 

models (e.g. DOE-2, EnergyPlus) also tend to be over-parameterized and can often require 
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significant effort, experience and time to provide an accurate representation of the building. In 

response, simplification procedures were proposed to increase computational efficiency.  

Turiel et al. (1984) also proposed a simplified method of commercial building energy analysis 

utilizing a database of previous DOE 2.1A simulations to predict the outcome of other 

simulations. This approach is applied to an office building with very accurate results for heating, 

cooling and total energy use. 

Knebel (1983) proposed the Simplified Energy Analysis procedure (SEAP) in order to reduce 

model complexity and calibration effort. This simplification is achieved in several ways:  

 The building is assumed to have only two zones (one core and one perimeter); 

 Average daily data and steady-state models are used for simulation and analysis;  

 One large air-handling unit (AHU) is substituted for numerous smaller ones for each 

zone. This is only done with similar types of AHUs. 

This has been successfully applied to a number of campus and commercial buildings with great 

success (Katipamula and Claridge 1993; Liu and Claridge 1995; Liu and Claridge 1998; Liu et al. 

2004). This approach has since been combined with the use of signature analysis techniques (see 

2.5.2.3 ) to help minimise the expertise needed to calibrate such a model (Liu et al. 2003; Liu and 

Liu 2011). 

2.6.2.5  Systems Identification  

This technique refers to the process of constructing models based only on the observed 

behaviour of the system (outputs) and a set of external variables (inputs), instead of constructing 

a detailed model based on "first principles" of well-known physical variables. Systems 

identification is based on work first started by Goodwin and Payne (1977). However, the first 

systematic procedure using computation tools was developed by Lennart Ljung (1987). Typically, 

the objective is to build a so called "black box" or "grey box" model in situations where a very 

detailed model would be costly and overly complex. Systems identification methods are very 

effective when significant amounts of data are available, as is the case with modern IT systems 

and advanced HVAC controls. This approach also involves an iterative procedure aimed at 

finding the best fit solution for model inputs.  

Liu and Henze (2005) applied system identification techniques to find best-tuned input settings 

of detailed building energy performance simulation models. This is based on a two-stage 

calibration process which aims to minimise the root-mean square error (RMSE) between real and 

simulated data. However, instead of manually adjusting the identified tuning parameters, 
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optimisation algorithms are applied instead. Nielsen and Madsen (2006) present a grey-box 

approach for modelling the heat consumption in district heating systems. Their approach utilises 

theoretical based identification of an overall model structure, followed by data -based modelling 

which is used to identify details of the model. 
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2.7 Conclusions 

Buildings represent complex systems with high levels of interdependence on many external 

sources. The design, analysis and optimisation of modern building systems may benefit greatly 

from the implementation of Building Energy Performance Simulation (BEPS) tools at all stages 

of the building life-cycle (BLC). However, studies have found discrepancies between modelled 

and measured energy use in many cases where BEPS has been used to model real buildings. This 

undermines confidence in building simulation tools and inhibits widespread adoption.  

Calibration aims to minimise discrepancies between measured and simulated data. However, due 

to the sheer number of inputs required for detailed building energy simulation and the limited 

number of measured outputs, calibration will always remain an indeterminate problem which 

yields a non-unique solution. Numerous approaches to model calibration have been suggested 

employing various combinations of analytical and/or mathematical and statistical techniques. 

However, no consensus has been reached on standard calibration procedures and methods that 

can be used generically on a wide variety of buildings. In addition, many of the current 

approaches to model calibration rely heavily on user knowledge, past experience, statistical 

expertise, engineering judgement, and an abundance of trial and error. Furthermore, when a 

model is established as being calibrated, the author often does not reveal the techniques used, 

other than stating the final result.  

2.7.1 Deficiencies in current approach to model calibration 

In summary, the issues with calibrated simulation can be broken down into seven main areas, as 

previously mentioned in Table 2-3: 

 Standards: the lack of a consensus standard on simulation calibration. There are 

guidelines which specify broad ranges of allowable error for building energy models. 

However, these are over-simplified, in that they do not account for issues such as input 

uncertainty / inaccuracy or the model fit to zone-level environmental data. In addition, 

there are no standard guidelines for model development, which leads to fragmentation of 

the practice of energy modelling; 

 Expense: Due to the fragmentation of the energy modelling process, it tends to require 

significant effort for both model development as well as model calibration. There is no 

integrated standard tool-chains or file formats at present, and building data required for 

modelling is often unavailable. Therefore, significant expense can be incurred in building 

auditing, metering and model development; 
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 Simplification: One of the problems with detailed building energy simulation is the fact 

that they require thousands of inputs for model definition. In practice, many of these 

inputs are simply un-attainable or may not be practicably measureable. In addition, the 

data on which these models are validated is limited, generally confined to single 

measurements for whole building heat energy and electrical loads. Therefore, it is said 

that the calibration problem, as it relates to detailed models, is over-specified (i.e. too 

many inputs) and under-determined (i.e. too few validation points). This is a difficult 

problem to address, as it requires the simplification of detailed models while maintaining 

accuracy; 

 Inputs: In any modelling environment, the quality of outputs are only as good as the 

inputs available (Garbage-in, Garbage-out). In the case of building energy modelling, the 

sheer number of inputs required makes it impossible to obtain accurate measurements 

for all parameters. In such cases, it is necessary to find ways of quantifying these 

parameters to a reasonable degree of accuracy without compromising model output 

quality; 

 Uncertainty: Since, building energy modelling requires a degree of approximation and 

simplification, it is important to account for this when presenting model outputs. As 

shown in Section 3, there are many sources of uncertainty in building energy modelling. 

One of the primary sources of model uncertainty is parameter spcification uncertainty, 

which relates to the degree of uncertainty around each input parameter. This is often 

disregarded in BEPS calibration case studies, leading to questions over the accuracy of 

the model outputs;  

 Identification: The calibration process, at present, can often be described as an ad-hoc 

procedure requiring numerous iterations of manual pragmatic user intervention based on 

knowledge or expert judgement. Generally, this procedure is not well defined, in that the 

analyst decides on model changes based on personal jusgement as opposed to 

quantifyable evidence. This is often difficult to define, though some studies in the 

literature have attempted to provide procedures for identifyaing and correcting 

calibration issues; 

 Automation: With the level of manual pragmatic user intervention required during all 

steps of the calibration process, it is clear that any degree of automation would greatly aid 

this process. However, since many procedures require human knowledge or input, this 

can be difficult. 
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2.7.2 Addressing calibration deficiencies 

Table 2-7 below highlights the main calibration techniques described in this review and how each 

provides a basis for addressing some of these issues (Coakley et al. 2014). 

Table 2-7: Addressing model calibration issues 

Category Classification Approach 

Calibration Issues 
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Characterisation 
Techniques 

AUDIT X     X       

EXPERT     X X       

INT       X       

HIGH       X       

STEM       X       

Advanced 
Graphical 
Methods 

3D           X   

SIG     X     X   

STAT X             

Model 
Simplification 
Techniques 

BASE       X       

MPE     X X       

PARRED     X X       

DISSAG     X X       

Procedural 
Extensions 

EVIDENCE X     X    X    

SA X     X   X   

UQ         X     

A
u

to
m

a
te

d
 

Optimisation 
Techniques 

BAYES   X     X   X 

OBJECT X             

Alternative 
Modelling 

Techniques 

ANN   X X       X 

PSTAR     X         

META   X X         

SEAP   X X         

SYS     X X       

Based on the above extensive literature review, it is evident that the current approach to 

calibrating a model is at best based on an optimisation process used to identify multiple solutions 

within a parameter space identified from a knowledge-base of templates of influential parameters 

(Reddy et al. 2007a). At worst, it is based on an ad-hoc approach in which the analyst manually 

tunes the myriad of parameters until a solution is obtained.  

Furthermore, there is a lack of accounting for uncertainty in many of the calibration studies to 

date. This is a fundamental problem which needs to be addressed in order to provide a robust 

solution which accounts for the fact that there are uncertainties associated with all model input 

parameters. This can only be addressed by accepting that the calibration problem may be 

satisfied by multiple solutions within the parameter uncertainty space. By improving the accuracy  
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of parameter measurement and definition, it is possible to reduce this uncertainty, be never 

eliminate it completely. Therefore, in order to satisfy full transparency of scientific outputs, this 

uncertainty should also be conveyed in the end result of the calibration process. 

The methodology proposed by Reddy et al. (2007a; 2007b) uses building and HVAC templates, 

and thus, does not account for the fact that each building is unique. In addition, it does not 

provide the analyst with a comparison between measured and simulated building performance at 

a detailed level (e.g., energy consumption at a sub-utilities level). Thus, it is not an acceptable 

approach if the aim is to obtain detailed results to drive the development of simulation tools and 

best practice modelling techniques. Despite its limitations, this study provides an excellent basis 

for further work on analytical optimisation of the calibration process.  

2.8 Proposed Approach 

Based on the review of existing scientific 

literature on model calibration as well as 

numerous case studies, an approach has 

been developed which aims to promote a 

formalised approach to BEPS model 

calibration. The proposed calibration 

methodology incorporates a number of 

the more effective techniques highlighted 

in the literature review (see Figure 2-8).  

In terms of building and site 

characterisation techniques, the adoption 

of a detailed investment grade audit was 

deemed to be very important. A number 

of studies have illustrated that this not 

only provides the analyst with a greater 

degree of information and familiarity with 

the building (Waltz 1992), but also may reveal valuable energy conservation opportunities which 

may not be apparent from the building simulation (e.g. excessive lighting, staff habits and 

training etc.) (Raftery 2009; Shapiro 2009). If available, short-term end-use monitoring (STEM) 

can also provide a greater degree of granularity in measured end-use data, particularly in cases 

where sub-metering is not available or is not an option. The use of STEM allows for the 

disaggregation of end-use data (e.g. lighting, plug loads, major equipment), providing an 

•Detailed Site and Building Audit
•Short-term End Use monitoring

•High Resolution Data

Characterisation 
Techniques

•Data-disaggregation
•Day-Typing

•Zone-Typing (where appropriate)

Simplification 
Techniques

•3-D Comparitive Plots
•Graphical Statistical Indices

Advanced 
Graphical 

Techniques

•Objective Function
•Penalty Function

Optimisation 
Techniques

•Evidence-based Approach

•Sensitivity Analysis

•Uncerta inty Quantification

Procedural 
Extensions

Figure 2-8: Techniques incorporated in proposed approach to model 

calibration 
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invaluable input for detailed energy simulation tools in addition to detailed electrical equipment 

audits. It also provides information relating to end-use energy consumption profiles which may 

not be evident at a whole-building metering level. Finally, the use of high-resolution quality data 

has been identified as a necessity for reliable BEPS model calibration.  

Clearly, any high-resolution model requires some simplifications in order to be manageable. 

Therfore, the use of day-typing and zone-typing present useful means of simplifying dynamic 

load schedules and complex thermal zone combinations. 

Advanced graphical techniques are another useful tool in any approach to model calibration, 

allowing for quick intuitive visualisation of detailed building data and comparisons between 

measured and simulated data. Therefore, the use of 3-D comparitive plots (e.g. carpet plots) and 

graphical statistical indices willl be included in the proposed calibration methodology where 

deemed useful or necessary. 

It must be understood that it will never be possible to accurately assemble all the information 

required to satisfy a law-driven model of any complex system. Therefore, assumptions, 

approximations and simplifications are required. However, while these approximations and 

simplifications are required, it is important that they are evident when presenting any results or 

recommendations. For this reason, the evidence-based calibration approach (Raftery, Keane, 

O’Donnell, et al. 2011) is deemed the most appropriate framework for carrying out any BEPS 

calibration study. Model inputs are explicity linked to source evidence and documentation, thus 

delivering a more transparent and reliable final product to the client.  

It is important that any approach to model calibration also account for uncertainty. Therefore, 

each model input will be assigned a range of variation based on the uncertainty of the source 

evidence for that parameter. In the absence of a detailed knowledge base of parameter 

uncertainty in buildings, this is the best available approach. These uncertainties are propogated 

through the building energy model by sampling multiple inputs within the bands of uncertainty 

about the baseline value. The result of this process is the ability to deliver a model that can also 

represent risk in the context of performance predictions and decision-making.  

Finally, it is clear from the literature review that the production of accurate building energy 

simulation models is a costly and time-consuming process. However, uncertainty weightings and 

optimisation approaches can be leveraged to reduce some of this time requirement. By 

quantifying acceptable model performance in terms of statistical goodness-of-fit as well as 

acceptable uncertainty, it is possible to identify approporiate solutions at a much earlier stage in 
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the calibration process without unneccessarily exceeding the required criteria with negligible 

gains.  

By adopting these techniques, the proposed methodology promises to address a number of the 

deficiencies outlined in Table 2-3 and Section 2.7.1: 

 Standards: the proposed approach follows an iterative evidence-based methodology, 

minimising reliance on analyst knowledge and subjective interpretation. This is achieved 

by defining steps which need to be followed throughout the methodology, based on 

mathematical and statistical processes as opposed to subjective interpreattion where  

possible; 

 Expense: the proposed methodology aims to reduce the time and expense required to 

calibrate detailed energy models by prescribing the steps that need to be followed at each 

stage, and promoting a statistical optimisation approach in combination with manual 

iterative model improvement; 

 Simplification: the proposed methodology aims to provide the modeller with an insight 

into the important model input variables which influence model output. By concentrating 

on measurement and identification of these variables, less time is wasted on less 

important model inputs, which may not have a large influence on final model 

uncertainty. While it is not possible to simplify the physical processes being modelled, 

this procedure aims to simplify the identification of the important variables which define 

those physical processes; 

 Inputs: inputs are assigned best-guess estimates based on information gathered from 

detailed audits, surveys or building documentation. For each source of model inputs, 

there is an associated uncertainty; 

 Uncertainty: model input uncertainty is accounted for in the proposed methodology by 

assigning ranges of variation to each input parameter. This uncertainty is propogated 

through the calibration process, resulting in multiple solutions which capture the 

associated input uncertainty;  

 Identification: the proposed approach uses a number of mathematical and graphical 

procedures to help identify sources of model error throughout the calibration process; 

 Automation: it is currently not possible to fully automate the calibration of building 

energy models due to the unique nature of each building, and subsequent requirement 
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for manual iterative development at  early stages of the model development process. 

Howeer, by incorporating mathematical and statistical methods, it is possible to improve 

the efficiency of the calibration procedure. This approach incorporates sensitivity analysis 

and mathematical optimisation to imporve calibration efficiency;  

The proposed approach integrates a number of unique features into a streamlined process: 

 Each model input requires the definition of source evidence and associated reliability;  

 Parameter uncertainty is incorporated during model development through the definition 

of baseline values as well as standard deviations; 

 Reliabilities are applied to source information in order to quantify this uncertainty;  

 Sensitivity analysis is used to identify influential model parameters by leveraging 

associated uncertainty and Monte Carlo simulations; 

 Multiple solutions are generated as opposed to a single solution in order to propagate 

and capture inherent model parameter uncertainties. 
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Chapter 3: 
 Methodology 

“It can scarcely be denied that the supreme goal of all theory is to make the irreducible 

basic elements as simple and as few as possible without having to surrender the 

adequate representation of a single datum of experience.”  

– Albert Einstein, Physicist 
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3.1 Introduction 

This chapter describes the proposed analytical optimisation approach for the calibration of 

detailed Building Energy Simulation (BES) models. In order to avoid an over-reliance on analyst 

knowledge and judgement, this methodology follows a clear evidence-based structure and 

proven statistical methods. This can be broken down into the following steps:  

1. Preparation; 

2. Data Collection and Classification (incl. Uncertainty Quantification); 

3. Evidence-based BES model development; 

4. Sensitivity Analysis (Optional); 

5. Iterative Model Improvement; 

6. Latin Hypercube Monte-Carlo (LHMC) Sampling; 

Figure 3-1 provides a generic overview of the entire process. A detailed description of each step 

is provided in more comprehensive detail in the following sections.  

Data Collection & 
Classification

Model 
Development

Sensitivity Analysis
Iterative Model 
Improvement

LHMC SamplingCalibrated Model(s)

Process

Start/End 
Point

Optional

Preparation
Uncertainty 

Quantification (UQ)

 

Figure 3-1: General Calibration Methodology Overview 

3.2 Methodology Overview 

This thesis presents a methodology pertaining to the calibration of detailed building energy 

simulation models to measured data. Data pertaining to the building construction, systems and 

operating schedules is collected and prepared for analysis. This data is used to develop an initial 

Building Energy Simulation (BES) model. This model is iteratively refined and updated using 

gathered information. Model evolution is tracked using version control software. This process 

continues until all relevant sources of building information have been fully utilised or 

incorporated in the model. Uncertainties are then applied to model parameters, based on the 

reliability of source information, and used to generate a set of random Monte-Carlo (MC) 
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simulation trials. A sensitivity analysis may be carried out to determine the most influential 

parameters. The results of this analysis provide a basis for further parameter investigation and 

model refinement. Finally, a batch of MC simulation trials is performed and uncertainty analysis 

is carried out on the results of these trials. 

The following sections provides a detailed overview of each element of the process:  

 Section 3.3 (Preparation) details how initial preparations are carried out before beginning 

the calibration process. 

 Section 3.4 (Data Collection) describes the data required for this methodology as well as 

how this data is stored, prepared and classified. 

 Section 3.5 (Evidence-Based BES Model Development) outlines the recommended steps in 

carrying out an evidence-based BES model development. 

 Section 3.6 (Regional Sensitivity Analysis) details the criteria for performing a sensitivity 

analysis on model inputs in order to determine the most influential parameters.  

 Section 3.7 (Iterative Model Improvement) describes how the BES model is further refined by 

obtaining additional information for highly influential or uncertain parameters.  

 Section 3.8 (Latin-hypercube Monte-Carlo (LHMC) Search) outlines the process of generating 

sets of random simulation trials within the model/parameter uncertainty space. The final 

models are then validated against the initial acceptance criteria and their inherent uncertainty 

is quantified. 
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Figure 3-2: Detailed calibration methodology f lowchart  
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3.3 Preparation 

In any Building Energy Simulation project, preparation and organisation are key to the project’s 

success. Following these preparation guidelines will enable a more logical workflow through the 

iterative simulation process and increase the quality and reliability of the results.  

3.3.1 Modelling strategy  

It is vital to consider the purpose of the model and available resources at the initial preparation 

stage as this will be a major influence on the chosen modelling strategy and acceptance criteria. 

For example, if the purpose of the model is to benchmark the building in terms of ideal 

performance against similar buildings, then a simplified modelling strategy may be adopted. In 

the case of a more comprehensive retrofit analysis, this may not be appropriate and more 

detailed survey and assessment will be required. When deciding on a modelling strategy, the 

following information should be considered: 

 Purpose of the Model: What are the requirements for the model (i.e. benchmarking, 

ECM analysis, fault detection, commissioning etc.) 

 Resources Available: What resources are available to commit to the project (time, 

finance, people, computation) 

 Acceptance Criteria: At what stage is a model deemed acceptable. At present, models are 

considered ‘calibrated’ when they meet standard statistical acceptance criteria (ASHRAE 

2002; EVO 2007). However, the client or analyst may choose to adopt different 

acceptance criteria depending on the purpose of the model. These criteria should be 

decided upon at the outset as they will be used to validate the model during 

development. 

3.3.2 Source Control Management (SCM) 

It is good practice to use version control software to track and manage the iterative changes 

throughout the calibration process. Changes are then identified by ‘revision numbers’ and can 

easily be identified at any future point in the process. This is useful for a number of reasons:  

 Model Reliability – each change can be tracked to a particular point and associated 

comment or source of evidence 

 Backup of Model and Revision history – model revisions can be managed on a remote 

location (e.g. secure server) to enable backup security.  
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 Multiple users – multiple people can work on the same model without damaging project 

integrity. 

 Improvement tracking – changes to the model results can be explicitly linked to specific 

changes to the model inputs.  

Virtually any version control software can be used, however, there are several essential 

capabilities that are required (Raftery 2009): (1) Maintain a change log or revision history of the 

entire project; (2) Allow for comment entry to the change log with each revision; (3) No 

limitations on file sizes or file types; (4) No limitation on total project size; (5) Allow nested 

folders (to facilitate evidence storage); (6) Remote access  allowing multiple analysts to work on 

the same project simultaneously. 

There are several tools available that enable source control management (SCM). The suitability 

of any particular model will depend on the requirements and resources of the project. There are 

a number of key properties of SCM systems which should be considered when choosing a 

suitable system for a project: 

1. Repository Model: this describes the link between the working copy of a file and the 

source repository. There are two types of system, each with its’ own advantages and 

disadvantages: 

o Client-server: A central (server) repository hosts the source project. Clients 

(users) must push/pull files from the server whenever modifications are made in 

order to propagate the most up-to-date version. 

o Distributed: Every user has a complete copy of the repository stored locally. 

Changes can be made to the local repository but there is no specified 

centralised/canonical copy of the repository.  

2. Performance: the speed and reliability of the system 

3. Access: user requirements in accessing and modify the repository 

4. Size: the disk-space requirement for the repository. This may be of particular concern in 

large projects. 
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5. Branch Handling: Branching refers to 

the duplication of the source repository 

such that modifications can happen in 

parallel. For example, in the case where 

one wants to test the viability of the 

implementation of a particular 

modification to the building model (i.e. 

implementation of an ECM) without 

affecting the ongoing source model 

development. Branches can later be 

merged back into the ‘central’ repository.  

6. Concurrency Handling: This describes 

how modifications are managed by the 

version control software to prevent 

conflicts during simultaneous 

/concurrent editing: 

o Lock -  users must check out or 

‘lock’ a file for editing before 

they are allowed to make any 

changes 

o Merge – users may make changes 

but are informed of possible conflicts when committing their changes to the 

repository. 

7. Platform: This refers to the supported operating systems. 

  

Figure 3-3: Branching in SCM Sof tware 
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Table 3-1: Comparison of  f eatures in SVN / GIT repositories 

Software SVN GIT 

Model Client-Server Based Distributed 

Performance Slower since network traffic is 

required to execute operations (Diff 

check, Commit, Merge etc.).  

Reliability may be an issue if server 

connection is unavailable. 

Fast, since all operations (except push 

and fetch) are executed locally. Reliable 

since repository is stored locally an 

individual user machines, thus acting as 

a natural backup. 

Access Users require full commit access to 

the repository 

Users do not need commit access to 

view/access a GIT repository. 

Repository owner controls the source 

which means users have version 

control of their own work 

Size Repositories can be quite large since 

an SVN working directory contains 

two copies of each file, one working 

copy and another hidden in .svn to 

aid SVN operations 

Small - GIT working directories only 

contain one index file and single copies 

of all files 

Branch 

Handling 

Integrated in core functionality of 

GIT 

Can be cumbersome and confusing 

Concurrency 

Model 

Merge or Lock Merge 

Platform Unix, Windows, Mac OS Unix, Windows, Mac OS 
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3.3.2.1  Source repository structure 

Once a version control repository has been chosen and installed, the next step is to create and 

structure the source repository. This will vary from project to project. However, a suggested 

structure is provided in Figure 3-5 which is open to adaptation. A calibration toolkit (Figure 3-4), 

linked to a version control repository, has been proposed to streamline this process. This is 

currently under development (Refer to Appendix D.2). 

 

Figure 3-4: Calibration toolkit mock-up 

This source repository should be used to store all files associated with the model calibration 

process, including input files (txt, idf, dwg, pdf, xls etc.) and output files (csv, xls, png etc.). All 

files are tracked with a version number once they are loaded into the file repository. Any 

modifications to these files will be tracked, and new version number issued. This applies to both 

text-based and binary file-types. 
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Figure 3-5: Source Repository Structure 
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3.3.2.2  Building Information Model 

A Building Information Models (BIM) is a data-model for a particular building, which contains 

multi-disciplinary data (e.g. mechanical, electrical, structural data) specific to that building. It 

includes a specification for the relationships and inheritances for each of the properties of the 

building components it describes (walls, floors, roof etc.).  

A BIM can provide a useful starting point for the creation of a building energy model. 

However, they can often contain redundant information which may add to the complexity of the 

final model, thus increasing run time or causing the model to crash if not amended. O’Donnell et 

al. (2013) provide a detailed discussion on transforming BIM to BEM, focussing on the 

generation of basic building geometry for the NASA Ames Sustainability Base. This study serves 

to highlight the complexity of the transformation process, even for a well-defined BIM model. 

For this reason, the scope of this research does not extend to the BIM to BEM transformation 

process, as this area of research is still at a relatively early stage, and requires significant effort 

and collaboration within industry to define the robust standards required to make the link a 

reality. Recent work on standardisation of BIM models has resulted in the formation of IFC2 and 

gbXML3 industry standards for building data representation. 

It should be noted that an accurate BIM model, if available, may provide an invaluable source 

of detailed model information. However, the complexities involved in translating these models 

to building energy models means that it is often easier to recreate the BEM from scratch in order 

to avoid potential errors.  

  

                                                 

 

2 http://www.buildingsmart.org/standards/ifc 

3 http://www.gbxml.org/ 
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3.4 Data Collection 

This section describes the process of collecting the input data required to initiate model 

development and calibration. The data required can be divided into  

(1) Model Input data – this is the data required to specify input parameters within the 

simulation environment 

(2) Model Calibration data – this is the data which will be used to calibrate and validate the 

results of the simulation model. This may also be referred to as the ‘training data’.  

In order to ensure the validity of this data, we carry out ‘Data proofing and classification’. This 

step is described in further detail in Section 3.4.3 

Data Proofing & 
Classification

Measured 
Weather 

Data

Measured 
Energy Use 
Data (BMS)

BIM 
Model

Building 
Drawings

Documentation

Site/System 
Audit

Heat Meter
Electrical 

Meter

Process

Data

Sensor

Archived 
Data

Building 
Description Data

 

Figure 3-6: Data Collection for Model Calibration 
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3.4.1 Model Input Data 

This section describes the process of collecting the input data required to initiate model 

development and calibration.  

3.4.1.1  Building Description Data 

In order to create an accurate representation of the chosen building within the BES software, it 

is necessary to first gather and record detailed information pertaining to the building, systems, 

environment and occupants. Sources of this information may include, but are not limited to, the 

following: 

 Building Information Model (BIM); 

 As-Built Drawings; 

 Commissioning Documents; 

 Operation & Maintenance (O&M) Manuals; 

 Spot measurements (as recorded by clamp-on meters, hand-held sensors etc.) 

 Site Survey; 

o Photographs; 

o Interviews (Building Manager, Staff, Occupants); 

o Nameplates (HVAC Systems, Sensors, Supply Systems);  

o Shading/Exposure; 

3.4.1.2  Site Survey 

The site survey is an important step as it will allow for first-hand verification of the validity of 

stock information. In the case of missing documentation, site surveys may also provide the only 

source of information. Some important steps for the initial site survey are outlined below: 

 Check that the as-built drawings conform to the actual building layout and function;  

 Check the O&M manuals against equipment on site as these may have been modified, 

upgraded or decommissioned; 

 Check that the required data monitoring and recording systems are in place and are 

operational; 

 Interview operators and occupants to confirm operating schedules for systems and 

equipment and identify operating problems or special conditions which should be 

replicated by the calibrated model; 
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 Conduct spot/short-term measurements (Refer to Table 3-2); 

 Perform additional building audits as necessary to account for any changes to building or 

system specification. 

Further regular audits, during different times of the day, week or year may also be required to 

determine actual occupancy and equipment load schedules as these may be time-dependent. 

Once data has been collected over a number of days/weeks at selected intervals, typical values 

may be assigned to the schedules for different time periods.  A summary of survey information is 

presented in Figure 3-7. 

 

Figure 3-7: Survey information (adapted f rom ASHRAE Guideline 14, 2002) 

Spot measurements may provide a useful means of gathering information about specific systems 

or building properties without the need for expensive metering or installations. Table 3-2 lists 

some valuable tests which may be carried out to gather additional input information for the 

model. 

  

•Dimensions and layout;
•Orientation of external 
surfaces;

•Thermal Resistance of 
external/interzonal surfaces;

•Construction materials;
•Shading/Exposure.

Building Envelope

•Device types, count, location;
•Nameplate information;

•Schedule (weekday, weekend, 
holiday);

•Any high-capacity 
systems/equipment (lifts, 
server equipment etc.).

Electrical/Plug Loads

•Fixture type;
•Fixture count and location;

•Nameplate data, if available;
•Schedules (Weekday, 
weekend, holidays).

Lighting Loads

•Fan sizes and types;
•Motor sizes and efficiencies;

•Flow rates and static 
pressures;

•Types of duct systems;

•System zoning.

HVAC Equipment -
Secondary (AHUs, 

terminal boxes)

•Quantity, capacity and 
Operating characteristics;

•Schedules (weekday, weekend 
and holiday);

•Part-load performance curves.

HVAC Equipment -
Primary (e.g. Boilers, 

Chillers)

•Population counts;
•Activity levels (seated, 
working etc.);

•Schedules (weekday, weekend, 
holiday);

•Assignments to thermal zones.

Occupants
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Table 3-2: In-situ / spot measurements (adapted f rom ASHRAE Guideline 14, 2002) 

Category Test  Equipment 

Lighting 
 Fixture power; 

 Operating Schedule. 

 Clamp-on electrical meter – take 

short-term (<1 week) 

measurements for lighting circuit. 

Electrical/Plug 

Loads 

 Fixture power; 

 Operating Schedule; 

 Baseline Load. 

 Clamp-on electrical meter – take 

short-term (<1 week) 

measurements for electrical circuit. 

HVAC Systems 

 Space temperature and humidity; 

 Air/Water flows; 

 Static pressures; 

 Duct temperatures; 

 Motor power; 

 Duct leakage. 

 Hand-held Temperature/RH 

meter; 

 Flow/Air velocity meter; 

 Differential Pressure sensor. 

Building 

Ventilation and 

Infiltration 

 Air flow through outside ducts. 
 Building Pressure Test; 

 Tracer gas test. 

3.4.1.3  Weather Data 

Accurate weather data for the calibration period is required to simulate building response to 

external conditions. Ideally, this data should be measured at a local weather station. Where onsite 

measurement is not available, data from local weather stations that are no more than 10km away, 

without a significant change in elevation, can be used. The weather station should maintain a 

historical record of environmental variables measured in hourly intervals (or more frequently) for 

the calibration period. This information is outlined below (with desired accuracy in parentheses): 

 Dry-bulb temperature (± 0.1˚C); 

 Wet-bulb temperature (± 0.1˚C) or relative humidity (± 2%);  

 Wind speed (±0.1ms-1 (0.5 – 10ms-1); ± 1% ( 10 - 50ms-1); ± 2% (> 50ms-1)); 

 Wind direction (± 5˚); 

 Total global solar radiation (± 2.5%); 

 Barometric pressure (± 50Pa). 
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There are other potentially useful variables to measure, depending on the climate and type of 

systems installed in the building. For example: 

 Rainfall; 

 Snow presence and depth; 

 Direct solar radiation. 

3.4.2 Model Calibration Data 

The ‘model calibration data’ is the data that will be used to verify the result of the simulation 

model. The accuracy of simulation models is usually assessed on the basis of their correlation 

with metered whole building energy consumption data (heating, cooling and electrical energy). 

Depending on the model requirements (ECM assessment, Benchmarking etc.), varying degrees 

of stringency may be applied to these calibration criteria. For the purpose of this thesis, we 

assume that a detailed model is required, calibrated to hourly measured data.  

As part of the site survey, the analyst should ensure that the required data is collected at the 

frequency and accuracy required (Refer Section 3.3.1). At a minimum, the following should be 

recorded for any model calibration:  

 Heating energy consumption, kWh, if applicable (Monthly) 

 Cooling energy consumption, kWh, if applicable (Monthly) 

 Electrical energy consumption, kWh (Monthly) 
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3.4.3 Data Proofing and Classification:  

Using visual or statistical screening methods, check that the measured data coming from the 

BMS and monitoring devices is of the required standard for final hourly calibration as per 

ASHRAE Guideline 14-2002. Install any extra equipment/sensors where necessary.  

Data should be classified according its source 

(Figure 3-8). These classifications are used to 

assign ranges of uncertainty, where explicit 

accuracies are unavailable, in the later stages of 

the methodology. It is useful to represent this 

information in tabular format with the 

following fields (see Appendix C.1): 

 Input Data (e.g. Lighting Schedule); 

 Classification (e.g. Spot-measurements); 

  Comments (e.g. Date of measurement, 

times, equipment used and associated accuracy).     

 

Table 3-3 lists some of the recommended 

categories for the source hierarchy. Each category 

also has an associated ranking (class) and range of 

variation (ROV, %):  

 

𝑅𝑂𝑉

=
3. 𝜎

𝜇
  

(3.1)  

This ROV represents the total heuristically 

estimated deviation (𝜎) from the mean value (𝜇). 

These are currently preliminary estimations based 

on prior experience. However, in the absence of 

any more detailed database of building parameter 

uncertainties, this provides an adequate means of 

generating an initial assumption. 

Table 3-3: Data Categories 

SOURCE CLASS 
ROV 

(%) 

BMS/Sensor Data 1 2 

Spot-Measured Data 2 5 

Physically Verified Data 2 5 

As-Built Drawings 3 10 

O&M Manuals 3 10 

Commissioning Documents 3 10 

Design Documents 4 15 

Guides & Standards 5 30 

Reference Manual / Default 

Values 

6 40 

No Available Information 7 50 
 

 

 

BMS/Sensor Data

Spot Measured Data / 
Physical Verification

As-Built Drawings/ O&M 
Manuals / Commissioning 

Documentation

Design Documents

Guides & Standards

No Information / Defaults

Figure 3-8: Hierarchy of  source information 
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There are essentially two types of data source: 

 Qualitative sources (e.g. drawings, guides, standards etc.): Data captured from such 

sources are assigned mean values and ranges of variation according to their type (e.g. 

discrete, continuous or multi-dimensional variables). 

 Quantitative sources (e.g. sensor, BMS and spot-measured data): This data also has an 

associated measurement accuracy, which may need to be factored into the uncertainty 

quantification. In addition, there is an associated time-dependent variation (i.e. 

measurements will vary depending on the time, frequency and duration of their 

measurement). Therefore, this time-dependency and instrument accuracy will need to be 

combined in order to compute the associated uncertainty for quantitative data sources. 

A detailed discussion on uncertainty combinations may be found in Appendix B-5 of the 

IPMVP: Concepts and Options for Determining Energy and Water Savings Volume 1 

(Efficiency Valuation Organisation (EVO) 2010)  

Continuous Variables are assigned a range of variation based on the ranking assigned to the 

source information for that input variable. For example, Figure 3-9 shows the probability density 

function (pdf) for a typical building material. In this case, the material has a mean conductivity of 

0.04 W/m.K with a 30% range of variation as this information was sourced from standard tables 

of material properties (Guides & Standards). 

 

Figure 3-9: Batt insulation conductivity probability density function (pdf )  
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Discrete Variables may be characterised by assigning low, high and base-case estimates for each 

discrete input parameter, with a bias towards the base-case value. This bias can be achieved in 

practice by taking a similar approach to that used for continuous parameters and adopting a 

discrete value based on the sample point on the pdf curve (see Figure 3-10).  

 

Figure 3-10: Batt insulation roughness pdf  and associated discrete steps 

 

Multi-Dimensional Variables such as 

lighting, infiltration and occupancy 

schedules may be sampled by splitting the 

schedule into discrete subsections and 

then sampling the relevant probability 

density function at each discrete time 

segment (see Figure 3-11). Further 

discussion on the discretisation of 

continuous and multi-dimensional 

variables can be found in Burhenne et al. 

(2010; 2011) and Reddy et al. (2007a) 

 

Figure 3-11: Schedule for combined zone inf iltration and ventilation 

(Burhenne et al. 2010) 
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3.5 Evidence-Based BES Model Development 

This methodology calls for an iterative evidence-based development of the Building Energy 

Simulation (BES) model. This process is outlined in Figure 3-12 and described in further detail in 

the following sections. 

 

Iteratively 
improving 

model

Obtain 
measurements 

and update 
model

Identify model 
parameters for 
improvement

Review 
outputs for 

discrepancies

Model acceptance 
criteria met?

Initial Model

Geometry

Constructions

Zone Typing

HVAC & Plant

Internal Loads

Version 
Control

Rev 1

Run Energy 
Simulation

Is further 
information 
available?

NO

NO

Rev n

Calibrated Model(s) LHMC Sampling

Model 
Input Data

Model 
Calibration 

Data

Process

Data

Start/End 
Point

Archived 
Data

YES

Error Check

Sensitivity Analysis

YES

DATA 
TRANSFER

Optional

Preparation

Data Proofing and Classification

 

Figure 3-12: Adapted Evidence-based BES model development methodology (Raftery, Keane, O’Donnell, et al. 2011) 
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3.5.1 Initial Model 

The first step in this section of the process is to create the initial Building Energy Simulation 

model. This can be completed using any of the model development tools described in Section 

4.3.1 (e.g. EnergyPlus, TRNSYS, ESP-r). Using the initial information gathered in 3.4.1 (Model 

Input Data), create the initial model in the building energy simulation environment. Once 

complete, this model should be committed to the Version Control repository as ‘Revision 1’. 

3.5.2 Update Model 

The next step is an update of the initial model to include detailed information about the building, 

its systems and operation. Each iterative improvement should be committed to the version 

control repository with a comment, identifying the modification to the initial model  and the 

source of evidence associated with this modification. By linking modifications to clearly defined 

sources within the evidence hierarchy, it will be possible to later quantify the inherent model 

uncertainty and perform a more robust sensitivity analysis to identify the most influential 

parameters which merit further investigation. 

3.5.2.1  Geometry 

If using an existing model (architectural or engineering BIM), it is essential to check that the 

model conforms to the actual building, as layout or function may have changed since the original 

model was developed. If a site survey has been carried out as per section 3.4.1.2, check that the 

building measurements match with those in the as-built layout or design model. Where there are 

inconsistencies, update the BES model geometry to reflect these discrepancies, referencing the 

source survey or documentation. 

3.5.2.1  Environment 

As discussed in section 3.4.1.3, accurate weather data is essential to simulating building 

performance, particularly for highly weather-dependent building types (e.g. offices, schools etc.). 

These building are generally more susceptible to outside weather conditions due to the nature of 

their design and operation, compared to factories or other industrial-type facilities which may 

tend to be dominated more by internal loads. Ideally, the model should use weather data 

collected locally, if available. Otherwise, data from the closest available weather station should be 

used instead. 

3.5.2.2  Constructions and Materials 

External and internal surface constructions and materials are added according to as-built 

construction drawings, if available. Again, survey information is useful here as the building may 

have been retrofitted or upgraded in the past.  
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Material information is also required for each construction type. This can be obtained from 

product specification sheets, if supplied. However, this information is not typically available for 

older buildings. Therefore, guides and standards may be used to acquire this data (CIBSE 2007; 

ASHRAE 2009). Alternatively, there are a number of useful software packages which may be 

used to obtain manufacturer-supplied material information for their products. Tools such as 

BuildDesk U (BuildDesk Ltd 2013) provide information relating to typical building constructions 

and material properties for the UK and Republic of Ireland. 

 

Figure 3-13: Screenshot f rom BuildDesk U (BuildDesk Ltd 2013) 

It should be noted that not all properties are supplied by the manufacturer. Some values are 

taken from building regulations or standards, or defined manually by BuildDesk sta ff. However, 

the tool provides a ‘source rating’ system similar to the source hierarchy defined in the proposed 

methodology. Table 3-4 highlights the categories of source information quality defined by 

BuildDesk U.  
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Table 3-4: Source quality categories def ined by BuildDesk U (BuildDesk Ltd 2013) 

Class Description 

A 
Data is entered and validated by the manufacturer or supplier. Data is 

continuously tested by 3rd party. 

B 
Data is entered and validated by the manufacturer or supplier. Data is certified 

by 3rd party. 

C Data is entered and validated by the manufacturer or supplier.  

D 
Information is entered by BuildDesk without special agreement with the 

manufacturer, supplier or others. 

E 
Information is entered by the user of the BuildDesk software without special 

agreement with the manufacturer, supplier or others. 

3.5.2.3  Zone Typing 

In order to maintain reasonable computational time, certain model simplifications are required. 

Since models depend on the definition of distinct zones in order to perform heat-balance 

calculations, a simplified representation of the real building is likely to be required here. 

Depending on the building under study, the analyst will need to decide on a suitable zoning 

strategy. A zoning strategy helps to simplify the model by aggregating similar thermal zones 

within the model. Numerous strategies have been proposed to handle this task (Souza and 

Alsaadani 2012): 

 Zoning based on different spatial activities, spatial performance or building usage;  

 Zoning based on different HVAC requirements and/or controls;  

 Zoning based on different solar gains; 

 Zoning based on temperature stratification; 

 Zoning based on a combination of the above (Raftery, Keane, O’Donnell, et al. 2011). 

Many of these strategies are described in considerable detail in relevant simulation reference 

documentation (CIBSE 1998; iSBEM 2006; DesignBuilder Software Ltd 2011; US Department 

of Energy 2011b). The determination of the best practice for defining a zoning strategy for 

typical buildings is outside the scope of this study. Furthermore, the most suitable zoning 

strategy is highly dependent on the requirements on (1) the function and size of the building, (2) 

the requirement of the BES model (benchmarking, ECM analysis, fault detection, etc.) and (3) 

the computational and time resources available. 
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3.5.2.4  HVAC and Plant Information 

The next step is to update the plant and heating, ventilation and air-conditioning (HVAC) 

equipment in the model. This element of the process deserves careful consideration as it is likely 

to have a significant impact on the performance of the model. Information collected from as-

built drawings, mechanical layouts and site visits should be collated and assessed for accuracy. 

Systems will need to be defined for each zone served. Information pertaining to the system 

components will also be required, including (Raftery 2009): 

 Fans: Type, maximum airflow, pressure, operating efficiency, part load curve;  

 Coils: Type, heating/cooling capacity, air/water on/off design temperatures, maximum 

air/water flow-rates, operating set-point(s); 

 Motors: Type, maximum power, operating efficiency; 

 Pumps: Type, maximum flow rate and head, part load curve, operating set-point(s); 

 Boilers: Type, capacity, thermal efficiency, water flow rate and temperature, parasitic 

electrical consumption, part load curve, operating set-point(s); 

 Chillers: Type, capacity, nominal coefficient of performance, design fluid temperature 

and flow rate conditions, capacity ratio curve, part load curve, operating set-point(s); 

 Cooling towers: Type, capacity, fan power, design fluid temperature and flow rate 

conditions, part load curve (for variable speed cooling towers), operating set-point(s); 

3.5.2.5  Internal Loads 

The final step in this phase of model preparation is the addition of internal loads to the model. 

This will include the following: 

 Lighting Loads – the lighting intensity level for the building (defined in Watts or 

Watts/area) and associated operation schedule. If lighting the lighting circuit is not sub-

metered, this data can be obtained from design documents or verified by a lighting audit 

as part of the site visit. Base-loads may also be attained by sampling the electrical energy 

consumption for the lighting circuit at different times of the day/week/year.  

 Electrical/Plug Loads – this incorporates all of the equipment loads (defined in Watts or 

Watts/area) for the building (computers, displays, printers, etc.) as well their operating 

schedule. As with the lighting schedule, if the electrical circuit is not sub-metered, an 

‘equipment audit’ will be necessary (see section 4.4.1.2 (b)). Base-loads values may also be 
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attained by sampling the electrical energy consumption for the plug/equipment circuit at 

different times of the day/week/year. 

 Occupancy – this is the occupancy level (defined as number of people, or people/area) 

for the building. This is frequently the most difficult parameter to accurately assess. 

However, valuable information may be obtained from other aggregated data sources 

(temperature profiles, CO2 profiles, security/access information, RFID trackers, PIR 

sensors, PC usage, Wi-Fi network traffic etc.). 

3.5.3 Error Check 

At each stage in the model iteration, an error check should be carried out to verify  the validity of 

results. Similar to the proofing of measured building data in 3.4.3, visually checking the outputs 

after each iteration can provide valuable feedback in identifying next steps for model 

improvement. Some features to look out for include: 

 Anomalous Data: Abnormal peaks/dips in heat/electrical energy consumption data 

which may point to problems with the weather file or a possible scheduling defect.  

 Load profiles: visually check the load profiles for heat/electrical energy consumption as 

well as zone temperatures to see how they compare to expected benchmarks or actual 

building data. It is useful to compare these profiles for:  

i. Hour of Day 

ii. Day of Week 

iii. Month of Year 

This is useful in determining where scheduling faults are present, for example during 

holiday periods or weekends. Factors of difference in these profiles may point to a more 

fundamental scaling error. Ensure you check the unit measurements in the model input 

file. 

 Surface/Construction warnings or errors: These can occur where model geometry has 

been adapted from a previously created model or software version. It is important that 

these errors are identified and corrected to ensure model consistency.  

 Weather Profiles: Check the input weather data for errors, specifically in relation to 

outside air temperature, humidity and direct/diffuse solar radiation.  
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3.5.4 Test for acceptance 

Once the error check is complete and any modelling faults have been corrected, the analyst 

should test for correlation to the measured data set. This involves the calculation of the 

following dimensionless indices for the current model (ASHRAE 14 2002): 

 𝑁𝑀𝐵𝐸(%) = 
∑ (𝑚𝑖 − 𝑠𝑖)

𝑁𝑝

𝑖=1

∑ (𝑚𝑖)
𝑁𝑝

𝑖=1

 (3.2)  

Where; 𝑚𝑖 and 𝑠𝑖 are the respective measured and simulated data points for each model 

instance ‘i’ and 𝑁𝑝 is the number of data points at interval ‘p’ (i.e. Nmonthly=12, 

Nhourly=8760). 

 

𝐶𝑉 𝑅𝑀𝑆𝐸(%) = 

√
∑ (𝑚𝑖 − 𝑠𝑖)

2𝑁𝑝

𝑖=1

𝑁𝑝

�̅�
 

(3.3)  

Where; 𝑚𝑖 and 𝑠𝑖 are the respective measured and simulated data points for each model 

instance ‘i’; 𝑁𝑝 is the number of data points at interval ‘p’ (i.e. Nmonthly=12, Nhourly=8760) 

and �̅� is the average of the measured data points. 

This check should be performed at each model iteration (revision) and changes tracked on 

commitment to the version control repository.  

If the model meets the acceptance criteria, then the model is considered calibrated and the 

analyst may proceed to 3.8.5 (Uncertainty ). If the model fails to meet the acceptance criteria, then 

further iterative improvement is required. In order to identify areas for improvement, it may be 

useful to carry out a sensitivity analysis at this point. This will help to identify the most influential 

model parameters and those with the highest associated uncertainty bands. 

3.6 Regional Sensitivity Analysis (Optional) 

Sensitivity analysis evaluates the effect of changes in input values or assumptions on a model's 

results. Uncertainty analysis investigates the effects of lack of knowledge and other potential 

sources of error in the model. When conducted in combination, sensitivity and uncertainty 

analysis allow model users to be more informed about the confidence that can be placed in 

model results. (CREP 2009). It is recommended that a test for statistical significance be carried 

out to determine the factors of greatest influence on the model output. The analyst may then 

further investigate these variables within the BES model and revise their respective ranges of 
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variation, if necessary. There are a number of sensitivity analysis methods available to the analyst 

(Tian 2013): 

 Step-wise Linear Regression (Tian and de Wilde 2011; Wright et al. 2012; Hygh et al. 

2012; Yildiz et al. 2012) 

 Screening-based methods (Morris Method) (de Wit and Augenbroe 2002b; Hyun et al. 

2008; Heiselberg et al. 2009; Moon 2010; Heo, R. Choudhary, et al. 2012; Garcia Sanchez 

et al. 2014) 

 Variance-based methods (Mechri et al. 2010; Spitz et al. 2012; Shen and Tzempelikos 

2013) 

 Meta-model based methods (de Wilde and Tian 2010; Tian and de Wilde 2011; 

Eisenhower, O’Neill, Fonoberov, et al. 2012; Tian and Choudhary 2012)  

In this case, I will focus on variance-based methods, as these methods can account for both 

input uncertainty and the contribution of the interaction between uncertain factors (Saltelli et al. 

2010). The most widely used methods are Sobol, FAST, Random Balance Design, and the Monte 

Carlo method. Using a variance-based global sensitivity analysis (GSA) (Saltelli et al. 2004; Saltelli 

et al. 2008) the fractional contribution of each input factor to the variance of the model output 

(Y) is calculated. Interaction terms are also accounted for. In variance-based methods, the output 

variance V(Y) can be decomposed to the sum of a ‘top-marginal variance’ and ‘bottom-marginal 

variance’ (Grasman and Straten 1994; Ratto et al. 2001). Specifically, 

 𝑉(𝑌) = 𝑉[𝐸(𝑌|𝑈)]+ 𝐸[𝑉(𝑌|𝑈)] (3.4)  

Where; U is a group of one or more input factors (Xi), E[.] and V[.] denote expected value and 

variance, respectively. E[Y|U] and V[Y|U] denote the conditional expected value and 

conditional variance, respectively, of the output, given the input factor(s) U; 

The top marginal variance from U is the expected reduction of the variance of Y in the case 

where U is known and fixed at nominal values. The bottom marginal variance is the expected 

value of the variance of Y where all inputs but U are known and U remains variable. The first 

order sensitivity index Si, representing the average output variance reduction that can be 

achieved when Xi becomes known or is fixed, can then be defined: 

 𝑆𝑖 = 
𝑉[𝐸(𝑌|𝑋𝑖)]

𝑉(𝑌)
 (3.5)  
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Where the subset U is reduced to a single factor Xi, V[.] denotes variance and E[Y|Xi] denotes 

the conditional variance of the output, given the input Xi. 

Higher order (interaction) effects can also be computed with relatively low computational 

expense, by employing total sensitivity indices. The total sensitivity index, STi for each input factor Xi 

collects in one single term all the interactions involving Xi. It is defined as the average output 

variance that would remain as long as Xi remains un-fixed. 

 𝑆𝑇𝑖 = 
𝐸[𝑉(𝑌|𝑋−𝑖 = 𝑥−𝑖

∗ )

𝑉(𝑌)
 (3.6)  

Where E[.] and V[.] denote expected value and variance, respectively. 𝑉(𝑌|𝑋−𝑖) denotes the 

conditional variance of the output, given the input factor 𝑋𝑖 , and, 𝑋−𝑖  indicates all factors but 𝑋𝑖 . 

By estimating both the sensitivity index (Si) and total sensitivity index (STi), it is possible to 

estimate the direct impact of each input factor Xi on the output variance V(Y) as well as the 

overall impact through interactions with other input factors.  

By narrowing the ranges of variation of influential variables and freezing weak parameters, the 

analyst may perform a more robust search of the refined parameter space. The test for 

acceptance (3.5.4) is repeated to determine the goodness-of-fit (GOF) of the refined solutions. 

However, it is unclear at this time whether a sensitivity analysis will produce significant 

improvements in model accuracy. In addition, high-dimensional model sensitivity analysis 

requires the application of advanced techniques to account for their complex interaction 

structure. Hence, this discussion on the subject is limited to the above provided reference.  

3.7 Iterative Model Improvement 

At this stage, the analyst must go through a process of iteratively improving the model by 

adjusting parameter estimates and constraining uncertainty ranges based on higher quality 

information (i.e. information from more reliable sources). Based on a sensitivity analysis (Section 

3.6) or expert judgement, the analyst should identify parameters for improvement. Following, 

this identification process, sources of further information relating to these parameters must be 

identified (e.g. spot measurements, additional audits, improved metering etc.). Version control 

software tracks each model revision. A description of the revision and evidence is provided for 

each change.  
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3.8 Latin-Hypercube Monte-Carlo (LHMC) Search 

This stage of the statistical calibration methodology involves fixing the ranges of variability of 

continuous parameters to reduce the dimensionality of the search space. This is followed by a 

random sampling Latin-Hypercube Monte-Carlo (LHMC) method to identify promising regions 

of local optima. This requires the following steps: 

1) Define best-guess estimates for input parameters 

2) Assign ranges-of variation (ROV, %) 

3) Generate sample matrix 

4) Carry out parametric simulation 

5) Uncertainty Analysis 

3.8.1 Define best-guess estimates for input parameters 

Once, the iterative model improvement process is complete, there now exists a building model 

which has assigned input values verified by source evidence, where available, and best-guess 

approximations where no further measurements are available or possible.  

3.8.2 Assign ranges of variation  

 In this step, the analyst should define ranges of variation for uncertain or unknown input 

variables based on the hierarchy defined in section 3.4.3. For continuous parameters, ranges of 

variation are characterised by probability density functions (pdf) bounded by upper 95th and 

lower 5th probability threshold values. Discrete variables are characterized by minimum, 

maximum and base-case values. The analyst must also account for multi-dimensional variables, 

such as occupancy schedules which are dependent on time of day, day of week as well as time of 

year. Such parameters may be discretized for specified periods and assigned ranges of variation 

based on available information. 

3.8.3 Generate sample matrix 

In a Monte Carlo analysis, a large number of evaluations of the model are performed with 

randomly sampled model inputs (Saltelli et al. 2008). Using the Monte-Carlo approach produces 

an input sample such as; 



Methodology 

120 

 𝑀 =  

[
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(𝑁)       ⋯  𝑧𝑟
(𝑁)

]
 
 
 
 
 
 

 (3.7)  

Where; z represents the input variables; N the sample size and M the corresponding vector 

solution matrix.  

The number of samples generated will depend on a number of factors:  

 Model complexity: number of model input parameters and degree of associated 

uncertainty; 

 Resources: time and computation resources available to conduct sampling. A larger 

samples size, and increased computation time, will most likely result in a better-fitting 

model. However, this is subject to the law of diminishing returns, in that the final model 

fit does not follow a direct linear relationship with the number of samples generated.  

As an initial approximation of number of samples that can be conducted, it is useful to check the 

time required to run a single model, and dividing this into the total time available to run the 

random search. For example,  

Time Available: 3 days = 3*24*60*60 = 259200s 

Time required (per model) = 80s 

Total Samples = Time Available / Time Required = 3240  

It should be noted that due to the law of diminishing returns, it may be more economical to run 

fewer models, with iterative refinement, as opposed to one large sample run. This decision will 

ultimately be dependent on the model complexity, resources available and level of calibration 

required (Refer section 3.3.1).  

3.8.4 Parametric Simulation 

In this step, sample trials are run using a batch simulation tool (Wetter 2001; Zhang and Korolija 

2010; Yi Zhang et al. 2012).  This generates the desired output vector, Y, for each row of input 

matrix: 
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 𝑌 = 

[
 
 
 
 

𝑦1

𝑦2

⋯
𝑦𝑁−1

𝑦𝑁 ]
 
 
 
 

 (3.8)  

3.8.5 Uncertainty Characterisation of Results 

Since calibration is a highly underdetermined problem, more than one solution may satisfy the 

objective function. In addition, it is erroneous to assume that a solution that satisfies the 

objective function is therefore implicitly correct. This is due to the many degrees of freedom that 

may produce good calibration overall even though the individual parameters may be incorrectly 

identified. As such, it is important to convey these uncertainties, as propagated throughout the 

above model development process, to the client or decision-maker. A detailed discussion on 

expression of uncertainty relating to energy savings predictions can be found in the IPMVP 

Guidelines: Volume 1 (Efficiency Valuation Organisation (EVO) 2010)  

Using the set of parametric simulations generated in the previous step (Section 3.8.4), it is 

possible to illustrate the accuracy and variation of model output predictions. This requires the 

ranking each solution based on statistical goodness-of-fit (GOF) criteria which are calculated 

using the statistical indices described in section 3.5.4 (ASHRAE 2002). 

 GOFA = [
(𝑤𝑘𝑊ℎ
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2 + 𝑤𝑘𝑊ℎ(𝐻)
2 )

]

1
2

 (3.9)  

 GOFB =  [
(𝑤𝑘𝑊ℎ

2 B𝑘𝑊ℎ
2 + 𝑤𝑑𝑒𝑔

2 𝐵𝑑𝑒𝑔
2 + 𝑤𝑘𝑊ℎ(𝐻)

2 B𝑘𝑊ℎ(𝐻)
2 )

(𝑤𝑘𝑊ℎ
2  + 𝑤𝑑𝑒𝑔

2 + 𝑤𝑘𝑊ℎ(𝐻)
2 )

]

1
2

 (3.10)  

Where; ‘A’ represents Coefficient of Variation of the Root Mean Square Error (CV RMSE); ‘B’ 

represents Normalised Mean Bias Error (NMBE); wkWh and  wkWh(H) are weighted ratios which 

represent the ratio of the annual cost of electricity and hot water use, respectively, in kWh 

divided by the total annual utility cost; wdeg  is a weighted ratio which represents the mean zone 

air temperature (average room temperature weighted by room volume where multiple room 

temperature sensors are present)  in oC and (wkWh+wkWh(H) +wdeg=1). The weighting applied to 

wdeg is at the discretion of the analyst. A higher weighting will bias the model calibration towards 

agreement with internal zone temperatures as opposed to energy consumption and vice versa. A 

default value of 0.2 is recommended in order to focus the model fit towards accuracy of energy 

consumption data, while filtering out highly unrepresentative models in terms of actual building 
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operation. The inclusion of wdeg in the calibration criteria therefore reduces the risk of choosing a 

less representative BES model.  

Since, the ‘best solution’ will depend on the weighting assigned to the CV and NMBE indices; 

we therefore introduce a consolidated index as follows: 

 GOFTOTAL = [
(𝑤𝐶𝑉

2 𝐺𝑂𝐹𝐶𝑉
2 + 𝑤𝑁𝑀𝐵𝐸

2 𝐺𝑂𝐹𝑁𝑀𝐵𝐸
2 )

(𝑤𝐶𝑉
2 + 𝑤𝑁𝑀𝐵𝐸

2 )
]

1/2

 (3.11)  

Where (wCV + wNMBE = 1).  

In practice, it is likely that building energy managers would prefer the calibration to capture the 

overall mean energy consumption more accurately that the daily or monthly variation (as 

described by the CV value) (Reddy et al. 2007a). This is reflected in the ASHRAE Guideline 14-

2002 (ASHRAE 2002) recommendation for a 1:3 weight for wCV:wNMBE. These weights may be 

adapted depending on the model purpose (see Section 3.3.1). Using these indices, it is possible to 

filter out parameter vectors that result in high GOF numbers. Simulation trials with lower GOF 

numbers represent parameter vectors that provide a closer match to measured utility data.  

Depending on the results of this characterisation, the analyst may perform a further refinement 

of the search space. Section 5.4.2.4 of the ASHRAE-14 document (ASHRAE 14 2002) stipulates 

that the calibrated computer simulation model should be accurate to within 10% for the NMBE 

and 30% for CV(RMSE) relative to hourly measured data (see Table 2-4). In case a calibration 

run yields relatively few solutions (<0.1% of total) meeting these criteria, the analyst should 

consider re-evaluating the stipulated ranges of variation of some of the influential parameters. 

This entails performing a Regional Sensitivity Analysis (see Section 3.6) to determine the 

influential variables that require re-evaluation. 

3.9 Conclusions 

This chapter presents a novel methodology for the calibration of detailed buildings energy 

simulation models, based on an analytical optimisation approach. The approach differs from 

existing approaches to model calibration in a number of ways:  

 Structured evidence based approach: the methodology endorses the principle of 

evidence-based model development and iterative improvement, thus increasing the 

reproducibility and reliability of the final models; 
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 Systematic development: Version control techniques are employed to systematically 

capture changes made during model development. This also improves the reproducibility 

and reliability of results; 

 Sensitivity Analysis: The methodology includes a means of capturing the most influential 

model input variables in order to guide the iterative model improvement process. Input 

variables with a combination of high a sensitivity index and high uncertainty are targeted 

for further investigation; 

 Parametric Analysis: The calibration process includes a bounded parametric study based 

on input parameter uncertainty. This allows for the capture of a range of results for 

calibrated simulation models as opposed to the single output provided by existing 

approaches; 

 Uncertainty Characterisation: The methodology includes a measure of parameter 

uncertainty based on source evidence, which is propagated through the model 

development process to enable risk and uncertainty quantification of final model 

predictions. Other sources of uncertainty (e.g. measurement accuracy, modelling 

uncertainty) are currently not captured within this approach, and deserve further 

consideration for future work (see Section 6.3.1). 

The following chapter demonstrates the application of this methodology to a demonstrator 

building in order to evaluate the viability and potential pitfalls of such an approach. 
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Chapter 4: 
 Case Study 

“It is a capital mistake to theorize before one has data. Insensibly one begins  to twist 

facts to suit theories, instead of theories to suit facts.”  

– Arthur Conan Doyle, Physicist and Writer 
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4.1 Chapter Introduction 

This chapter describes the calibration of a detailed whole-building energy simulation model of a 

mixed-mode building to hourly measured data.  This demonstrates the application of an 

evidence-based analytical optimisation approach described in a previous chapter. The 

methodology is applied to a mixed-mode library building at the National University of Ireland, 

Galway. 

A detailed simulation model is developed and calibrated to measured building data for heating 

and electrical energy consumption as well as zone temperatures. This is achieved by assigning 

probability distribution functions to continuous model parameters, generating simulation trials 

based on random sampling of these distributions and ranking solutions based on a calculated 

goodness-of-fit. The chapter concludes with a discussion of the key findings and difficulties 

encountered during this study. 

4.2 Case Study: Nursing Library 

This section will cover background information relating to the case study building, in 

particular: 

 Building Description; 

 HVAC Systems; 

 Stock Information and Measured Data; 

 Building Management System (BMS). 

4.2.1 Building Description 

The Nursing Library is a newly constructed building at the National University of Ireland, 

Galway located in Galway, Ireland. The 3-storey building contains a library and study areas, as 

well as a computer room on the ground floor. Completed in 2009, the building has a gross floor 

area of approximately 700m2. A set of floor plan layouts are available in Appendix B.3. Also, it 

should be noted that the location of the building ensures easy access for site surveys and further 

measurement. 
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Key Facts 

Year 2009 

Area 700m2 

HVAC 
Mixed – 
Mechanical/ 
Natural Vent 

Data 
Heat, Electrical, 
Temperature, CO2 

Documentation 
As-Built 
Drawings, O&Ms 

Figure 4-1: NUI, Galway Nursing Library 

The building is currently a focus of research in areas such as whole building energy simulation, 

energy performance of earth tube systems, and calibrated CFD modelling of naturally ventilated 

spaces. 

4.2.2 HVAC systems 

This mixed mode building has a dedicated outside air system (DOAS) for ventilation and both 

automatically and manually operated windows for natural ventilation. The DOAS draws air 

through an earth tube system (Figure 4-2) to moderate the air temperature in the winter and 

summer months. Stand-alone direct exchange units (Figure 4-3) cool the computer room on the 

ground floor. Convective hot water baseboard heaters maintain indoor temperatures outside of 

the summer months. Campus-wide district hot water supplies all of the heating systems in the 

building. 

Figure 4-3: Direct electrical heat-exchangers Figure 4-2: Earth Tube / Earth-Air Heat Exchanger 
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4.2.3 Stock information and measured data  

The quality of stock information about the building is very high due to its recent construction, 

and the attention paid to the building during commissioning by researchers at the University. 

High quality as-built drawings and detailed information on materials and constructions are 

available. In addition, O&M information and detailed design criteria is available for all the 

HVAC equipment.  

The existing building management system (BMS) monitors a significant number of points in this 

building. These include: 

 Space temperature (oC); 

 Space CO2 levels (ppm); 

 Electrical Energy Consumption (kWh); 

 Heat Energy Consumption (kWh). 

The electrical panel also explicitly separates electricity consumption by end-use (e.g. HVAC, 

lighting and plug loads), although these are not logged independently.  

4.2.4 Building Management System 

The building is monitored and controlled by means of a central building management system 

(BMS). Access to the Building Management System was obtained through the Building and 

Estates Office at NUI Galway, via a secured remote desktop connection. This enabled logging 

and archiving of BMS Data. Initially the data was not archived for a sufficient period to be of use 

in annual calibration of whole building energy models. The BMS was modified in April 2011 to 

allow for archiving of long-term data.  

This was achieved using an automated historian service included in the BMS software (See 

Figure 4-4 and Figure 4-5). Scheduled data archiving was carried out on a weekly basis, 

commencing at 4:00 a.m. At the time of writing, the only available archive file format was 

individual comma separated value (csv) files. These files were downloaded on a weekly basis and 

loaded into a MySQL database for ease of access and analysis (see Appendix A.2 and A.3).  
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Figure 4-4: Screenshot of  BMS Interface (Cylon) 

 

Figure 4-5: Cylon Automated Reporting Sof tware 
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4.3 Preparation 

At the outset of this project, it was decided that the primary function of this study would be to 

demonstrate the efficacy of the proposed calibration methodology, as well as highlighting the 

challenges associated with the calibration of detailed BES models in typical office buildings.  

4.3.1 Simulation Tool Selection 

In order to help identify which piece of software or software combination would be most 

suitable, a list of requirements was prepared; 

 Function: capable of modelling the thermal response of a building given a set of physical 

building parameters and system inputs.   

 Accuracy: The accuracy of the product is essential as we plan to use some of the 

response outputs to compile response algorithms through mathematical regression.  

 Flexibility: We need to be able to model real-world data and systems as accurately as 

possible. Therefore, data entry flexibility is essential.  

 Clarity: Results of analysis should be presented clearly and concisely in a usable format. 

This includes transparency of calculations used during simulation.  

 Usability: We require software which is user-friendly and will not require in-depth 

knowledge for effective use. 

 Integration: Ideally, it would be useful if we could use the software with other 

mainstream products such as AutoCAD and Microsoft Excel formats. 

 Adaptability: Where the software does not match our requirements exactly, it will be 

necessary to adapt the program for our use. For example, the use of real-world data may 

not be supported on all commercial applications. However, such an allowance may be 

built-in if the product is open-source. 

 Support: It is essential that product support is readily available. Detailed documentation 

of product features and user-guide are essential. Support for software bugs is also a 

necessity should problems arise with the software in the future.  

Based on the above requirements, a number of mainstream simulation tools were shortlisted (see 

Table 4-1): 
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Table 4-1: Comparison of  sof tware tools based on def ined requirements 
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EnergyPlus (Version 7.0) 5 5 4 5 3 4 4 4 34 

ESP-r 5 5 4 5 3 4 4 3 33 

IES-VE 4 4 3 3 5 4 1 4 28 

TRNSYS 3 3 3 5 3 4 4 3 28 

eQuest (DOE-2.2) 2 4 2 4 3 3 3 2 23 

ECOTECT (Autodesk) 2 3 1 3 4 4 2 3 22 

The tool that provided the closest match to our requirements were EnergyPlus (Crawley and 

Lawrie 2001) and ESP-r (Strachan 2000). Further investigation was required to identify the most 

suitable tool given the anticipated requirements of our chosen case study (Refer 3.3.1). Maile el 

al. (2010) provide a comparison of BEPS tools based on the requirements for use during 

building operation. Based on these requirements, as well as availability of local expertise, 

EnergyPlus was deemed to be the most appropriate tool for the task, and was selected for use in 

the presented case study. 

4.3.2 Modelling Strategy 

Given the available resources, in terms of computing power, measurement data, and available 

time and requirements, a simplified modelling strategy was adopted. This approach called for a 

single-zone model of the existing building, for the following reasons: 

 Metered energy-use data was only available at the whole-building level; 

 The heating system in the building was implemented on a simple North/South circuit, 

metered at the whole-building level. Given the control strategy, which utilizes aggregated 

mean space temperatures, it was decided that a simple zoning strategy would be more 

suitable to replicate this system; 

 The methodology requires parametric simulation involving thousands of simulation trials. 

Therefore, it is necessary to reduce model complexity, where possible. A refined model 

may include more detail at increased computational cost.  

Zone-typing was not used in this case as there was insufficient zone-level data available to justify 

its inclusion in this study. In addition, much of the building is mixed-function, in that the 

majority of the building spaces serve as general open-plan study and meeting areas. There are a 

number of offices and a computer lab on the ground floor. However, as these spaces were all 
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served by the same heating system, and their operating schedules were largely similar to the rest 

of the spaces in the building, it was decided to maintain a single zone model for the sake of 

simplicity.  

4.3.3 Source Control Management 

In order to track model development and allow consistent access to information, a file repository 

(see section 3.3.2) was established on a local server. This was used to archive evidence data such 

as building drawings, audits, photographs and manuals. A source control repository was also 

established to track changes to certain files throughout the project (e.g. model geometry).  This 

was achieved through the use of TortoiseSVN (TortoiseSVN Core Development Team 2011). 

The subversion (SVN) repository is used to track iterative model revisions, as well as keeping a 

record of associated source evidence (see Figure 4-6).  

 

Figure 4-6: SVN source control management  
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4.4 Data Collection 

One of the most important aspects of producing an accurate model of an existing building, is 

collecting accurate data to inform model inputs and provide sufficient accurate measured data 

for final model calibration and validation. As per Figure 3-6 in section 3.4.1, this is split into two 

phases of data collection; Model Input Data, and Model Calibration Data. 

4.4.1 Model Input Data 

As a Building Information Model (BIM) was not available for this building, it was necessary to 

collect data from other sources in order to compile sufficient information pertaining to the 

building, systems, environment and occupants. A set of as-built drawings for structural, 

mechanical and electrical layouts were obtained from the Buildings and Estates Office at NUI, 

Galway. In some cases, these drawings were often only made available in pdf format as opposed 

to their native CAD format (.dwg or .dwf). Mechanical and Electrical Operation and 

Maintenance (O&M) manuals were also provided for the building. These proved to be a valuable 

resource in attaining accurate specifications for building and HVAC system components.  

4.4.1.1  Occupancy 

A site survey is an extremely useful method for gathering detailed information about a 

building. From an initial visit to the building, it was determined that a number of factors would 

require further investigation. Firstly, due to the building function as an office/study area, it has  a 

dynamic occupancy profile, with occupancy levels varying widely depending on time of day, day 

of week and time of year (summer vs. Academic Year). Occupancy is one of the major factors 

influencing energy use in buildings, particularly in office buildings. In such buildings, occupants 

are the main driver of heating/cooling energy demand as well as electrical energy consumption, 

in contrast to large commercial or manufacturing facilities which are dominated by predictable 

mechanical or equipment loads. Therefore, it is essential that occupancy is accurately determined 

when modelling office buildings. Unfortunately, this is often quite difficult to monitor in office 

buildings.  

A number of possibilities were investigated but were ruled out due to limitations relating to 

resources, functionality, or, implementation restrictions: 

 Directional People Counter: Since the building only had a single point of entry and 

exit, a dual-direction infra-red sensor would allow accurate tracking of the number of 

people present in the building at any given time. However, the cost of this 

instrumentation proved to be prohibitive for this project.  
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Figure 4-7: Sample conf iguration of  dual-direction people counter 

 Single-beam counter: Access to a uni-directional infra-red (IR) sensor was acquired. 

However, this is only capable of logging intermittent breaks in the IR beam, and does 

not account for people entering or leaving the building. For this reason, the device is 

more useful for monitoring foot traffic through an area, rather than actual occupancy; 

 Camera monitoring: A camera system was proposed to monitor the main open-plan 

areas in the building (study areas, computer lab). However, this solution was 

unavailable due to restrictions relating to individual data privacy; 

 Carbon dioxide correlation: It was noted that the level of carbon dioxide in each space 

was highly correlated with occupancy levels, but is also heavily influenced by levels of 

outdoor background CO2, wind speed and infiltration rate. With further investigation 

this may provide some useful for occupancy inference. However, this was outside of 

the scope of this project. 

As an alternative, audits were conducted in order to determine occupancy levels as well as da ily 

and weekly occupancy profiles. These audits were conducted over the course of a week at 

functionally different times of the year (i.e. academic and summer periods). As part of this 

survey, the following information was collected at regular intervals throughout the day, for each 

day of the week (Refer to Appendix C.2): 

 Date and Time; 

 Number of people present in each area; 

 Number of windows open; 

 Number of laptops in use; 

 Counter recording (uni-directional people counter). 
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This data was collected for occupied spaces within the buildings, allowing for the creation of 

simplified occupancy schedules corresponding to specific times of year (see Table 4-2). There is a 

clear difference between academic and summer-time occupancy, thus justifying the need for 

separate schedules for these periods (see Figure 4-8 and Figure 4-9). 

 

Figure 4-8: Average space occupancy (spring) 

 

Figure 4-9: Average space occupancy (summer) 

Table 4-2: Average space occupancy by room and time of  year 

Term Basement 

Open 

Plan 

Basement 

Computer 

Lab  

Ground 

Floor Open 

Plan 

First Floor 

Open Plan 

First Floor 

PC Room 

First Floor 

Study 

Room 6 

First Floor 

Study 

Room 8 

Academic 12.55 10.14 8.91 17.59 3.82 1.43 1.33 

Summer 4.00 2.39 2.22 0.89 0.50 0.39 0.39 
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This data was then used to plot the overall daily average occupancy profile based on hour of day, 

for use in the EnergyPlus occupancy schedules (see Figure 4-10). 

 

Figure 4-10: Average occupancy by hour of  day (spring vs. summer) 

As can be seen from the graph, the occupancy level differs greatly between summer and 

academic year. However, it is difficult to determine a consistent occupancy profile due to the 

large variations present in the data. This can be explained by:  

 Lack of sufficient data: Due to resource and time constraints, it was only possible to 

conduct a limited number of occupancy audits during the course of this study. In light of 

the fact that detailed occupancy information may not be available for many buildings, it 

was decided to accept this limitation rather than assign unfeasible levels of resources to 

carry out more detailed analysis; 

 Functional variation: As mentioned in the introduction, this building functions as an 

office space, a study, as well as a computer lab. For this reason, occupancy levels can vary 

widely depending on the time of year due to scheduling of events, classes or exams. At 

present, these schedules may vary between one semester and the next. In addition, one-

off events, such as training courses and exams may skew occupancy levels.  

Since occupancy has a large impact on this particular case study, it was decided to explore 

alternative sources of data, which may help to improve our knowledge of occupancy profiles for 

the building. Further examination revealed two more potential sources of detailed occupancy 

data. 
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Firstly, as mentioned above, scheduling of classes and events plays a large part in determining 

space occupancy. Therefore, it would be beneficial to tap into the scheduling resource to extract 

usable information relating to the date, time and number of people scheduled for particular 

events. It has been shown that such data can play a valuable role in minimising cost and 

maximising performance, particularly in dynamic office and educational spaces (Curry et al. 

2013). Following interviews with staff, this information was found to be logged through a 

proprietary web-based scheduling service, which is currently not open to data extraction.  

A second novel data source related to the usage statistics for the PC’s in the compute r 

laboratory. This is currently tracked by Information Solutions and Services (ISS) as part of the IT 

infrastructure and provision of services, using a management tool called LabStats (Labstats LLC 

2013). LabStats tracks user activity for each PC on campus, recording details such as:  

 Login Time and Logoff Time; 

 Computer Name and IP address (giving accurate positional information);  

 Duration. 

Table 4-3: Sample of  Computer Login History (December 2011) 

Login time Logout time ID Computer 
name 

IP address Duration (hrs.) 

13/12/2011 13:24 13/12/2011 13:44 3509 NLDA05 10.210.12.193 0.34 

13/12/2011 13:11 13/12/2011 13:14 3509 NLDA05 10.210.12.193 0.06 

13/12/2011 13:05 13/12/2011 13:43 3512 NLDA19 10.210.12.176 0.63 

13/12/2011 13:00 13/12/2011 13:06 3509 NLDA05 10.210.12.193 0.11 

13/12/2011 12:58 13/12/2011 13:21 3531 NLDB05 10.210.12.161 0.38 

Snapshot data is also recorded at 10-minute intervals, giving an overview of the total number of 

PC’s in use at each interval.  

Table 4-4: Sample snapshot data (December 2011) 

Lab Name Snapshot Time Total 
Computers 

Computers In 
Use 

Computers 
Offline 

Nursing Library Dept. 13/12/2011 13:40 29 9 0 

Nursing Library Dept. 13/12/2011 13:30 29 11 0 

Nursing Library Dept. 13/12/2011 13:20 29 12 0 

Nursing Library Dept. 13/12/2011 13:10 29 13 0 

Nursing Library Dept. 13/12/2011 13:00 29 14 0 

Nursing Library Dept. 13/12/2011 12:50 29 12 0 

Nursing Library Dept. 13/12/2011 12:40 29 10 0 

Nursing Library Dept. 13/12/2011 12:30 29 12 0 
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This information yields two valuable statistics: (1) Equipment usage profile, and (2) Inferred 

occupancy profile (see Figure 4-11). While this information only applies to the PC labs in 

particular, it does present an opportunity to collect detailed measured data where no information 

was previously readily available. As well as occupancy, the data provides trends which may be 

used to determine electrical load profiles also, as computers and personal laptops make up a 

significant proportion of the dynamic electrical load in the building.  

 

Figure 4-11: Daily PC usage prof ile (LabStats) 
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It is also useful to examine how the profile differs between weekdays and weekends (see Figure 

4-12 and Figure 4-13). Here it is possible to identify key trends in PC usage, in terms of peak 

usage times and average number of PC’s in use at various time during the day.  

 

 

Figure 4-12: PC usage during summer period 

 

Figure 4-13: PC usage during Academic Term 
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4.4.1.2  Electrical Loads 

At present, electrical energy consumption is only metered at the whole building level. There is no 

sub-metering of individual end-uses (e.g. lighting, plug loads, HVAC). Therefore, it would be 

difficult to disaggregate these manually, to provide inputs to a detailed energy simulation model. 

Furthermore, instrumenting the building to gather this level of data would be costly to 

implement. At the main electrical incomer (see Figure 4-14), a three-phase (R/S/T) power 

supply provides power to the building, split into three categories: 

 Lighting; 

 Power4 (e.g. AC units, security systems and door locks etc.);  

 General Services (all plug sockets); 

 Sub-Distribution (e.g. MCC for plant room, Lift, fire alarm). 

Services are also further split by floor (Basement, Ground and First).  

 

1 – Basement 
2 – Ground Floor 
3 – First Floor 

 ORANGE – General Services 

 GREEN - Lighting 

Figure 4-14: Electrical distribution board 

                                                 

 

4 Not visible in this photograph as this split is contained in a separate part of the electrical cabinet.  

2 1 3 
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It is therefore possible to use a process of 

short-term end-use monitoring (see section 

2.5.1.2 ) to gather high-fidelity data for these 

end-uses. For this purpose, an e-Tracker 

energy monitor was used to monitor the 

incoming power supply over the course of 

two weeks from 25 August 2011 to 8 

September 2011. This period was chosen to 

provide data for both the summer period as 

well as the start of the 2011-12 academic term.  

The e-Tracker is capable of monitoring current across three phases, meaning it is only possible 

to measure one split across all three phases (R, S and T). An initial check was carried out by 

measuring the instantaneous power consumption across each phase for all splits, by connecting 

the device across each split in turn. This audit was conducted during a period of low-occupancy 

in order to provide a representation of baseline power consumption.  

Table 4-5: Surveyed Power Consumption (all phases) 

Panel Phase Power (kW) 
Total Power 

(kW) 

   R S T R S T   

Lighting  7.70 10.70 9.00 1.77 2.47 2.09 6.33 

Power  0.10 0.40 1.20 0.02 0.09 0.28 0.39 

General Services 2.10 3.00 2.40 0.48 0.69 0.56 1.73 

Sub-Distribution           1.39 

MCC (Plant Room) 1.10 3.10 1.00 0.25 0.72 0.23 1.20 

Lift  0.30 0.20 0.20 0.07 0.05 0.05 0.16 

Fire Alarm 0.10 0.00 0.00 0.02 0.00 0.00 0.02 

TOTAL  11.40 17.40 13.80 2.62 4.02 3.20 9.84 

This provides an initial breakdown of the 

main energy end-users in the building 

(see Figure 4-16). Lighting is the biggest 

energy consumer, accounting for 

approximately 64% of the total power 

consumption at the time of auditing. 

General services account for around 

18%. However, it should be noted that 

this audit was conducted during a period 

Figure 4-15: e-Tracker energy monitor 
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Power Breakdown

Lighting

Power
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Figure 4-16: Power distribution breakdown 



Case Study 

141 

of low occupancy, with relatively few computers or laptops in use. Sub-distribution, which 

includes always-on systems such as fire alarms, plant room power and emergency lift, accounted 

for 14%. Finally the power split, which includes air-conditioning units in the PC rooms, security 

systems and automated door locks, accounted for just 4% of the total power consumption. 

While lighting accounts for the most dominant distribution load, it is also relative ly consistent. 

Room lighting is always-on once the building is open, while emergency lighting remains on 24/7. 

Sub-distribution and power loads, by their nature, are always consistent throughout operation. In 

contrast, general services is highly dependent on occupancy, and thus the most variable. 

Therefore, it was decided to monitor the general services split for a two-week period, to evaluate 

variation.  

(a) Short-term energy monitoring 

The e-Tracker energy monitoring system was 

installed on 25 August 2011 to monitor individual 

plug loads (general services circuit) for the Nursing 

library. Clamp-on meters are connected across each 

phase (R, S and T) of the plug circuits (as per 

Figure 4-17) and the unit is set to log the current (I) 

across each phase at 5-minute intervals. Reference 

voltages (V) across each phase are also measured in 

order to convert logged current to power (P) using Equation 4.1. 

 𝑃 = 𝐼𝑉 (4.1) ) 

The results of this audit are summarised in Figure 4-18 below.  

 

Figure 4-18: Plug load power consumption (weekday vs. weekend) 
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It is clear that there is very little variation in plug loads over the surveyed weekends, with only a 

slight increase (<5%) over baseline values. This is due to a significant difference between 

weekend and weekday occupancy, as evidenced in section 4.4.1.1  

(b) Equipment Audit 

An equipment audit was also conducted to gather detailed information about the internal loads 

in the building (see Table 4-6).  The following information was logged for each piece of 

equipment in the building: 

 Number of Units; 

 Description (incl. model numbers, if applicable); 

 Location; 

 Rated unit power consumption (W). 

Table 4-6: Equipment Audit 

No. 
Units 

Description Location 
Unit 

Power   
[W] 

Total 
Power 

[W] 

Max 
Power 

[W] 

22 Dell Optiplex 760 PC Room - Downstairs 255 5610  

22 E190Sb Monitors PC Room - Downstairs 19 418  

1 HP P4015x PC Room - Downstairs 20 20 840 

5 Dell Optiplex 760 Group PC Room 255 1275  
5 E190Sb Monitors Group PC Room 19 95  

1 Dell Optiplex 760 Group Study Room 1 255 255  

1 E190Sb Monitors Group Study Room 1 19 19  

1 Dell Optiplex 760 Group Study Room 2 255 255  

1 E190Sb Monitors Group Study Room 2 19 19  

1 Elevator NA 2000 2000  

2 SyncMaster 930XT First Floor 20 40  

1 Dell Optiplex 760 First Floor 255 255  

1 E190Sb Monitors First Floor 19 19  

1 Mitsubishi LDT421V First Floor 230 230  

1 3M Touch Check-In First Floor 20 20  

1 Dell Optiplex 760 Print Station 255 255  

1 E190Sb Monitors Print Station 19 19  

1 HP P4015x Print Station 20 20 840 

1 Konica 7222 Print Station 200 200 1500 

   TOTAL 11024  

4.4.1.3  Lighting 

An extensive lighting audit was carried out in order to determine the exact level of lighting 

fixtures in the building. Most of the study and office spaces are equipped with 36W T8 

fluorescent lamps, while hallways and stairwells utilise smaller 18W quad-tube PL lamps.  
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Figure 4-19: Typical lighting f ixture and close-up of  T8 f ittings (inset) 

Table 4-7: Lighting Audit Information 

Floor Location Type No. 
Lighting 
Fixtures 

No. 
Fittings 

Rated 
Power (W) 

Total 
Power 

(W) 

Basement PC Room  T5 12 2 36 864 

  Open-Plan T5 16 2 36 1152 
Ground Floor Office T5 2 2 36 144 

  Print Room T5 2 2 36 144 
  Open-Plan T5 26 2 36 1872 

First Floor Study Room 1 T5 8 2 36 576 
  Study Room 2 T5 4 2 36 288 

  Study Room 3 T5 4 2 36 288 

  Open-Plan T5 22 2 36 1584 
All Floors Hallways PL 10 2 18 360 

(Emergency) Stairwells PL 7 2 18 252 
         Sub-Total 7524 

         Emergency 612 

The lighting schedule coincides with the building opening hours, activating approximately one 

hour before opening and switching off one hour after closing. Emergency lighting remains active 

24 hours a day. The building and lighting schedule are as follows:  

Table 4-8: Lighting Schedule 

Day Building Schedule Lighting Schedule 
Open Close On Off 

Monday-Friday 8:30:00 AM 10:00:00 PM 7:00:00 AM 11:00:00 PM 
Saturday 8:30:00 AM 5:30:00 PM 8:00:00 AM 6:00:00 PM 

Sunday 10:00:00 AM 5:30:00 PM 8:00:00 AM 6:00:00 PM 
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4.4.1.4  HVAC Operation 

The operation schedule for the heating, ventilation and air-conditioning (HVAC) system for 

the building, is controlled by a central building management system (BMS). This provided an 

accurate source of schedule information pertaining to the operation of these systems (see Figure 

4-20) 

 

Figure 4-20: HVAC operation schedule for basement computer lab and study space 

The HVAC system in the building typically operates on a standard schedule of 09:00-17:00 

daily (Monday-Sunday). Exceptions may be added using the ‘Exception Schedule’ in order to 

account for holidays or study periods. 

4.4.1.5  Natural Ventilation 

The building is mixed-mode, meaning that it uses a combination of natural and mechanical 

ventilation. While the mechanical ventilation is operated automatically by the BMS controllers, 

the natural ventilation strategy uses a combination on manual and automated windows. 

Automated windows are controlled by the BMS using window actuators to open/close windows 

based on ventilation demand. However, this automated procedure was de-activated for the 

duration of the calibration period due to security issues due to problems controlling operation. 
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Instead, occupants had control over manually-operable windows in each space. In order to 

capture the level of natural ventilation, window positions (W) were recorded during site audits at 

various times of the day and at different times during the year (see Appendix C.2). In the absence 

of any other information pertaining to levels of natural ventilation in the building, this provided 

some indication as to the level of ventilation at different times of day: 

 

Figure 4-21: Windows open vs. Time of  Day (Refer Occupancy Audit - Appendix C.2.) 

While the occupancy audit provided some very useful information pertaining to occupancy 

patterns, it proved difficult to provide any deterministic pattern to the human-controlled natural 

ventilation strategy in the building. There are a number of reasons for this:  

 Human behaviour in response to their thermal environment is a complex issue, 

dependent on a number of personal and environmental criteria (see section 2.2.1), in 

addition of personal psychological and behavioural characteristics of the individual;  

 The level of natural ventilation, even with accurate values for number of windows 

open is also notoriously difficult to predict, as it will vary depending on: wind speed, 

shading and orientation, angle and direction of wind, angle of window opening etc.; 

Due to the relative complexity of this issue, it was deemed to be outside of the scope of this 

study. However, there a number of research papers which attempt to quantify levels of natural 

ventilation under such uncertainty, which provide an excellent basis for a follow-up study in this 

area (Brager et al. 2004; Hyun et al. 2008; Haldi and Robinson 2011). Further discussion on this 

topic can be found in the future work section of this thesis (see Section 6.3.5). 
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4.4.1.6  Weather Data 

In order to accurately simulate the building response to external conditions, it was necessary to 

gather detailed weather data for the full simulation period. Weather data from the campus 

weather station5 was used for this purpose. This measures the following (to the specified 

accuracy, in parentheses): 

 Dry-bulb temperature (± 0.5˚C); 

 Relative humidity (± 2%); 

 Barometric pressure (± 50Pa); 

 Wind speed [±0.1ms-1 (0.3 – 10ms-1); ± 1% 

( 10 - 55ms-1); ± 2% (> 55ms-1)]; 

 Wind speed -3s gust [(±0.1ms-1 (0.3 – 10ms-1); 

± 1% ( 10 - 55ms-1); ± 2% (> 55ms-1)]; 

 Wind direction [± 2% (>5ms-1)]; 

 Global solar irradiance (<5%); 

 Diffuse solar radiation (<15%); 

 Barometric pressure (± 50Pa). 

All data is logged at one-minute intervals, with the exception of rainfall data, which is logged at 

hourly intervals. This is logged to a remote server and downloaded via FTP (File Transfer 

Protocol) on a weekly basis (see Appendix A.1.1). This data is then transferred to a MySQL 

database, by means of SQL script for analysis (see Appendix A.1.2 and A.1.3). Weather data is 

then converted to EPW format using the EnergyPlus ‘Weather Converter’ software (US 

Department of Energy 2011a). This software uses input data to compute missing values for:  

 Dew Point Temperature (oC); 

 Direct Normal Radiation (Wh/m2); 

 Illuminance (lux); 

 Sky Cover. 

                                                 

 

5 NUIG weather station, See http://weather.nuigalway.ie.  

Figure 4-22: NUIG weather station 
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The entire weather data conversion process is summarized in Figure 4-23. 

 

Figure 4-23: Weather Data conversion process 

At present, this process requires a significant degree of data transformation from source to 

simulation, as is the case with much of the model input and calibration data outlined in this 

study. However, as part of this thesis, this process has been automated as much as possible 

through the use of batch scripts (executable as scheduled tasks in Windows OS). In addition, a 

number of checks for data consistency have been included in the MySQL script, prior to 

conversion to EPW (EnergyPlus Weather) format.  

DAT

•Raw Data Format
•Data format output by weather station data logger;

•Contains Unneccessary Comments, Units and Headings;

MySQL

•MySQL WorkBench

•Import DAT file;

•Process complex queries - Combine Data, Compute Hourly Averages, Insert NULL Values for 
Missing Dates

•Output to CSV

CSV

•Comma Separated Value (csv) Format File 

•Compatible with EnergyPlus Weather Converter

EPW

•EnergyPlus Weather Format
•Compatible with EnergyPlus Simulation Engine
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4.4.2 Model Calibration Data 

Model calibration data incorporates any data which will be used to calibrate and validate the final 

Building Energy Simulation (BES) model. In this case, since we are attempting to validate a 

detailed calibration methodology, the model will be calibrated to high fidelity data for: 

 Heat Energy Consumption, kWh (Daily); 

 Electrical Energy Consumption, kWh (Hourly); 

 Zone Temperature, oC (Hourly). 

This data is attained from the Building Management System (BMS). This data is recorded daily 

on a remote BMS server archive. Each individual sensor data point is stored in a separate 

comma-separated value (.csv) file with a unique identifier. Data is recorded using the following 

format: 

T1, j, u1,1, u1,2, …, u1,j 

T2, j, u2,1, u2,2, …, u2,j 

… … … 

Ti, j, ui,1, ui,2, …, ui,j 

Where: 

𝑇𝑖 ,  Timestamp at row i, interval 1; 

𝑗,  Number of samples = 1024; 

𝑢𝑖,𝑗,  Sensor value at row i, interval j; 

With over 60 individual sensors for this building recording 1024 values daily to separate csv files, 

this resulted in approximately 22 million data points over the course of 12 months, with 

approximately 90% of this information duplicated due to overlapping time periods. A C-script 

program was written for initial pre-processing and loading this data into a MySQL database (see 

Figure 4-24). This program reads the data from each csv file and uploaded this data to the 

MySQL database, removing any duplicate values in the process. Once the data was loaded into a 

database, it was then possible to carry out further pre-processing and data consistency checks. 

Further detail on this process can be found in Appendix A.3.  
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Figure 4-24: Building Management Data Loader 

Before comparing measured and simulated data, it is first necessary to proof the data and 

perform any necessary pre-processing steps. Measured data commonly contains one or more of 

the following deficiencies; unnecessary fields, inconsistent data, missing time periods, and, 

missing information. As a general rule, where data is missing or incorrect for short time-periods 

(<6 hours), simple interpolation was used to generate missing values. Where long-term data is 

missing, these periods were excluded from final goodness-of-fit (GOF) calculations (i.e. no 

comparisons are carried out for these periods). 

4.4.2.1  Heat Energy Consumption 

Measured heat energy consumption from the low-pressure hot-water (LPHW) meter is recorded 

using cumulative daily, weekly and monthly totals as well as current rates. Unfortunately, heat 

energy consumption is only recorded on the heat meter in increments of 40kWh. This means 

that it is impossible to compare hourly averages from EnergyPlus with measured heat energy 

consumption. Thus, for the purpose of this study, daily totals for heat energy consumption were 

used in place of hourly values. While this resolution is sufficient for the purpose of the 

demonstration of this methodology, it may be outside the bounds of acceptable error for the 

reporting of potential savings in the case of ECM evaluation (see section 6.3.1). 
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4.4.2.2  Electrical Energy Consumption 

Measured electrical data from the Building Management System is similarly recorded using 

cumulative daily (kWh), weekly (kWh) and monthly (kWh) totals as well as current rates (kW). 

Data from the ‘present electrical use’ sensor was taken and averaged to compute an hourly 

power consumption (kWh). Simulated electrical data in EnergyPlus is output in Watt-hours. This 

was also converted to hourly average power consumption (kWh). 

4.4.2.3  Zone Temperatures 

Since this study uses a single-zone BES 

model, it was necessary to compute a 

single averaged zone temperature from 

the measured room temperatures in the 

building. It was decided that the best 

approach here was to use a floor area 

weighted average. Areas such as storage 

rooms, hallways and stairwells are 

excluded from this list as they are not 

currently monitored or controlled by the 

building management system (BMS). A 

summary of these weightings is 

presented in Table 4-9. 

4.4.3 Data Proofing and Assessment 

The next step involves checking the quality of the measured data which will be used for the 

purpose of model calibration, as well as classifying the various data sources. It is important that 

this data is consistent as it will be used to test the validity of the final model. This step is also 

useful in familiarising oneself with the building and its load profile.  

4.4.3.1  Heat Energy Consumption 

The first check is heat energy (kWh) consumption. As mentioned in 4.4.2.1 , this output is 

recorded in 40kWh increments on the BMS. In this case, it would be inaccurate to use an hourly 

rate as the data resolution is insufficient.  Therefore, daily heat energy consumption was used 

instead. An initial audit of the heat meter data from the BMS revealed some discrepancies in the 

logged flow and return temperature for the low-pressure hot water supply. During the evening, 

the meter was recording temperature spikes of up to 105oC (see Figure 4-25).  

Room Area (m2) Weighting 

Basement Computer Room 56.44 0.1284 

Basement Open Plan 78.63 0.1788 

Basement Comms Room 5.47 0.0124 

GFlr North Library 77.45 0.1761 

GFlr South Library 46.49 0.1057 

GFlr Copy Room 7.35 0.0167 

GFlr Office 18.13 0.0412 

FFlr PC Room 15.86 0.0361 

FFlr Study Rm 6 10.80 0.0246 

FFlr Study Rm 8 16.00 0.0364 

FFlr Open Plan 107.07 0.2435 

Total Floor Area 439.69 1.0000 

Table 4-9: Room weightings 
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Figure 4-25: Anomaly in f low vs. return temperature for LPHW meter 

Further inquiries to the buildings and estates office revealed two issues: 

 Heat Meter Calibration: The heat meter had not been calibrated after installation, 

meaning some of the readings may have been inaccurate. Calibration was completed 

on 15 December 2011; 

 Stuck Flow Valve: The building was serviced by a three-way valve supplying hot water 

to the adjacent main library building. However, this valve had seized causing excess 

hot water to be supplied to the nursing library during periods of low demand.  

Following calibration, the data from the heat meter was examined again. In addition, wired 

thermo-couples (HOBO sensors) were used to measure the temperature at the surface of the 

flow and return headers. This data was used to verify the output from the ca librated heat meter. 

Figure 4-26 and Figure 4-27 present the total cumulative daily heat energy consumption for the 

building for the period 01/01/2012 – 31/12/2012. The high level of correlation between heat 

energy consumption and outside air temperature is clearly evident here.  
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Figure 4-26: Daily heat energy consumption 

 

Figure 4-27: Correlation between heat energy consumption and outside air temperature 

4.4.3.2  Electrical Energy consumption 

This section will examine the overall trends in measured electrical energy consumption (kW). 

This check is also useful in determining the buildings electrical baseload, the load profile and also 

electrical equipment schedules. It is useful to examine the recorded daily average electrical energy 

consumption to identify unexpected dips/peaks. Figure 4-28and Figure 4-29 present a summary 

of this data. 
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Figure 4-28: Daily average electrical power consumption (kW) 

 

Figure 4-29: Average Electrical Energy Consumption by Day of  Week 

On inspection, the following details became evident: 

 Overall electrical load profile remained largely consistent throughout the year with a 

slight drop during the summer months (Jun/Jul/Aug) when most students are on 

holidays; 

 Since occupant presence has not had a significant impact on the yearly load profile, it was 

inferred that other electrical consumers (lighting and equipment) are the most influential 

factors. An earlier site visit revealed that the main variable electrical load are laptops and 

mobile phone chargers used by students; 

 There was a significant dip in late December. However, this was expected as the building 

was closed on these dates; 
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 From examination of individual weeks in more detail, a more variable electrical load 

profile above the building baseload is evident. Peaks tend to occur on Mondays with 

lowest demand occurring on Friday. However, the relative difference is minimal. There is 

also a 30-40% drop in electrical demand at weekends, with lowest dips (2-3kW) occurring 

on Sunday (see Figure 4-29). 

Figure 4-30 and Figure 4-31 compare weekday and weekend electrical energy consumption, for 

academic (01/01 to 31/05, 01/09 to 31/12) and summer (01/06 to 31/08) terms respectively.  

 

Figure 4-30: Hourly electrical energy consumption (kW) prof ile – academic term 

 

Figure 4-31: Hourly electrical energy consumption (kW) prof ile - summer 
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From the above graphs, the difference between academic and summer-time electrical load 

patterns is clearly evident. Summer-time peak loads are approximately 20% lower that the 

equivalent academic term peaks. In addition, weekend loads are far lower, peaking at just over 

20-30% above baseline energy consumption. The Summer-time load pattern is also less defined, 

with gradual growth and decline, compared with a distinct rise and drop in consumption during 

the academic term.  

4.4.3.3  Scheduling 

A carpet plot is useful to help identify or confirm electrical equipment schedules as well as 

providing a useful tool for fault detection (i.e. equipment scheduling faults).  Figure 4-32 

provides an excellent visual summary of this information. It is possible to identify the on/off 

times for the main building equipment (07:00 – 23:00 on weekdays, 08:00-18:00 on Saturdays, 

10:00-18:00 on Sundays). Periods with anomalous data are also clearly visible (as highlighted in 

red). 

 

Figure 4-32: Carpet plot of  measured electrical power (kW) consumption 

4.4.3.4  Zone Temperatures 

The final check is yearly temperature data. This is recorded at 15-minute intervals and 

averaged over each hour. An initial area plot of the daily average room temperature highlights 

two distinct dips in average room temperature in August/September.  
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Figure 4-33: Plot of  Average Measured Room Temperature (deg C) 

Further investigation, by means of a Box-whisker mean plot provides a more revealing statistical 

summary of the data. It is now clear that there are anomalous outliers in the months of March, 

August and September. It should be noted that the BWM plot does not provide any insight as to 

the exact timing of these anomalies. 

 

Figure 4-34: Monthly statistics for Measured Room Temperature (BWM Plot)  

A final check is carried out by means of a carpet plot (or heat map). Average Room Temperature 

is plotted against ‘Hour of Day’ and ‘Month of Year’. This provides the most intuitive graphical 

representation of the measured temperature data. The anomalous data points are immediately 

identifiable, as highlighted by the red markers in Figure 4-35. 
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Figure 4-35: Heat Map of  Measured Average Room Temperature 

4.4.4 Data Collection Discussion 

This case study highlighted a number of important points in relation to data collection for 

detailed BES model development and calibration. Firstly, in relation to data quality, it is evident 

from this that there may often be errors in measured data. These errors may be present due to a 

combination of the following; 

 Sensor accuracy: In some cases, sensors may not record data to the level of detail 

required for model calibration. For example, in this building, the heat meter was only 

capable of logging heat energy consumption at increments of 40kWh. 

 Sensor Calibration: Sensor ‘drift’, or degradation of measurement accuracy, is a 

common problem in buildings, requiring the regular calibration of sensing equipment in 

order to maintain optimum performance, in terms of sensor accuracy. However, in many 

cases, this sensor calibration is not carried out regularly, leading to inaccurate values 

being logged. 

 Mis-mapping of Data: Building management systems (BMS) provide an efficient means 

of automatically maintaining defined conditions within buildings. However, the 

specification of BMS operation strategies requires a high level of knowledge and 

expertise, particularly in complex buildings. In some cases, sensors may be mapped 

incorrectly, or have incorrect measurement units specified during initial set-up. This may 

be difficult to diagnose, as it may not be initially evident from the BMS data.  
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Secondly, in relation to data collection and transformation, this study has highlighted a number 

of issues with this process in terms of gathering the high level of data required for BES 

calibration: 

 Lack of available information: Detailed BES tool, such as EnergyPlus, require high 

levels of information relating to all aspects of building design and operation. However, 

due to high levels of fragmentation in the process of building design, construction and 

commissioning, this information is often lost or not sufficiently documented.  

 Data format: Building data is typically recorded in systems or software using proprietary 

data formats. Therefore, access to this data relies on users having access to the systems as 

well as the expertise required for their operation; 

 Data archiving: Building data is typically only used for operation, and is therefore not 

archived for long periods, unless specified by the client. Since BES models require a 

minimum of 12 months data for calibration, it is often not feasible to employ them if an 

immediate assessment is required; 

 Data Transformation: Finally, transformation of data to formats suitable for model 

calibration requires significant levels of effort and knowledge. Figure 4-41 and Figure 

4-42 at the end of this chapter specify the main elements of the BES calibration tool-

chain, highlighting the level of complexity and sheer number of steps required to 

complete this process. 

4.5 Evidence Based Model Development 

This methodology follows an iterative evidence-based model development process. This section 

covers the major milestones at each stage of development as well as the changes or processes 

required at each stage. 

4.5.1 Initial Model 

An initial model is constructed to form the basis for future iterations. This was constructed using 

basic information regarding the building location, geometry and orientation, as gathered from as-

built drawings and on-site measurement surveys (Refer 4.4.1). As discussed in 4.3.2, it was 

decided to take a simplified modelling approach in order to reduce computational expense 

during the Monte-Carlo simulation stage. In addition, there was no long-term detailed sub-

metering available for the building. The initial single-zone model (see Figure 4-36) was developed 

using Google SketchUp and OpenStudio Plugin for EnergyPlus.  
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Figure 4-36: Initial SketchUp Model (Note: Three f loors are shown, but building is modelled as one zone)  

Basic zone information and HVAC details are also added to the model. In this case, 

HVACGenerator (Raftery et al. 2012) was used to assign HVAC and system variables to the 

building. This tool outputs macro-format simulation files compatible with EnergyPlus V7.0.  

4.5.2 Update Model 

The initial model is updated based on currently available information, as per the process outline 

in section 3.5.2. This update process ensures that all available information is accounted for 

within the model. Any discrepancies been on-site measurements and as-built drawings was 

reflected in the updated model, and referenced in the version control repository.  

4.5.2.1  Geometry 

Model geometry was attained from as-built drawings procured from the Buildings and Estates 

office. These drawings were checked for accuracy by means of on-site measurements and spot-

checks.  

4.5.2.2  Construction & Materials 

Construction and material information is often difficult to ascertain to a high level of 

confidence. However, due to the recent construction of the Nursing Library, and relatively high 

level of available documentation, it was possible to define most construction and material classes 

with a high level of confidence. Where no data was available for certain materials (e.g. roof 

cladding, floor covering etc.), properties were derived from standards (British Standards 

Institution 2000; CIBSE 2007).  
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4.5.2.3  HVAC and Plant Information  

Information pertaining the heating, ventilation and air-conditioning (HVAC) systems was 

obtained from Operation & Maintenance manuals, commissioning documents and interviews 

with the Building Manager. This information was added using HVACGenerator (Raftery 2009; 

Raftery et al. 2012), an excel-based VBA program used to generate all the necessary EnergyPlus 

objects required to run a simulation (See Figure 4-37). 

 

Figure 4-37: HVACGenerator Interface 

4.5.2.4  Infiltration and Natural Ventilation 

There are two sources of air-changes in buildings: 

 Infiltration: unwanted air exchange through leaks and cracks in the building envelope;  

 Ventilation: air-changes required or induced by the occupant or building management 

system (BMS) through vents or windows; 

Both of these sources may be modelled in EnergyPlus. In this case study, infiltration was 

modelled using a simple infiltration schedule specifying the base-line air-changes per hour based 

on the assumed air-tightness of the building.  

Ventilation may be modelled in two ways in EnergyPlus: 

 The Zone Airflow group objects provide a simplified method of modeling ventilation 

based on user-defined assumptions (e.g. flow rate per person (m3/s/person), flow rate 

per zone floor area (m3/s/m2), air-changes per hour (ach)). 
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 Airflow Network provides more detailed modelling of airflow through windows, cracks, 

etc. based on temperature differences, wind speeds & pressures, etc.  

At the initial preparation stage, it was assumed that the ground heat exchanger would be 

operational during the course of study, and would therefore need to be modelled. At that time, 

the ground heat exchange module within EnergyPlus was not compatible with the ‘Airflow 

Network’ module, so the decision was taken to use the Zone Airflow method instead. An airflow 

was specified using the ‘Flow/Person’ method, specifying approximately 10 l/s/per person, as 

per the recommended thermal comfort criteria for University/Office spaces (CIBSE 2006b). 

4.5.2.5  Ground Heat Exchanger 

There is an earth tube (ground) heat exchanger present in this building (see section 4.2.2), which 

was to be modelled using the GroundHeatExchanger object in EnergyPlus. However, in the 

winter of 2010, during a period of extreme frost, the fluid in the heat exchanger froze, causing 

the pipes to rupture. The heat exchanger was sealed off and the building continued to operate 

using mixed-mode ventilation. Therefore, the ground heat exchanger was not included in the 

final building model, and is not subject to discussion in the research. 

4.5.2.6  Internal Loads 

Internal loads were approximated using information gathered through site visits, audits and 

spot checks (Refer Appendix 0).  

 Occupancy was defined for summer and academic terms, utilising information 

gathered from detailed occupancy audits (Appendix C.2) and PC usage data (Refer 

section 4.4.1.1). 

 Infiltration loads were initially added based on standard guidelines for offices and 

university buildings (CIBSE 2005) as no additional information was available.  

Lighting and Equipment loads were applied to the model based on information gathered during 

the initial site survey and lighting equipment audit (see sections 4.4.1.2 and 4.4.1.3).  
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4.5.3 Error Check 

The next step is to perform an error check to verify the validity of the current version of the 

BES model. After the initial model was created, at Revision 1, the IDF file was processed using 

the EnergyPlus EP-Launch program to check for warnings or severe errors. A number of 

problems were identified and rectified at this stage: 

 Report Variables: Added correct report variables for comparison with measured energy 

use data (Heating Load, Electrical Load) as well as Average Zone Temperature Output; 

 Removed Unnecessary Objects: Unused material and constructions remaining in 

model idf file were removed; 

 Fixed incorrect AHU scheduling: An error in idf input caused the simulation to 

maintain a fixed zone temperature setpoint all day.  

4.5.4 Test for Acceptance 

In this step, the results of the simulation model are compared with the measured utility data 

using the pre-defined acceptance criteria. Models are assessed using two main statistical indices; 

cumulative variation of root mean squared error (CV RMSE) and the normalized mean bias error 

(NMBE), as well as a dimensionless goodness-of-fit (GOF) index (see section 3.8.5). These 

indices are computed for hourly values for the following utility level measurements: 

 Whole Building Electrical Energy Consumption (kWh); 

 Whole Building Heat Energy Consumption (kWh); 

 Average Zone Temperature (oC). 

It should be noted that this test for acceptance should also account for measurement uncertainty, 

as discussed in section 6.3.1. This is not accounted for within the scope of this study. However, 

in order to provide a more accurate picture of the confidence associated with simulation outputs, 

measurement uncertainty should also be accounted for in these calculations. A possible approach 

for dealing with this uncertainty is described in section 6.3.1. Further details can be found in the 

IPMVP guidelines (Efficiency Valuation Organisation (EVO) 2010) for evaluation of energy and 

water savings. 

4.6 Iterative Model Improvement 

If the model fails to meet the acceptance criteria, then further iterative improvements are 

required until the defined acceptance criteria are met. In this case, acceptance criteria were not 
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met at the first iteration, thus validating the requirement for further model improvement. The 

BES model was iteratively updated to reflect new information collected during continuous data 

gathering. Additional information was gathered, where possible, for highly uncertain or 

influential variables. In this case, these variables were identified manually. However, an 

automated procedure based on the use of sensitivity indices has also been defined in Section 3.6. 

A sample of these revisions is catalogued in Table 4-10. Each revision was tracked and linked to 

source information using version control software (TortoiseSVN Core Development Team 

2011) as shown in Figure 4-38.  

Table 4-10: Examples of  revisions during iterative model improvement process 

Rev Description 

2 

The simulated heat energy consumption was significantly lower than measured heat energy 
consumption, particularly in the winter period. Initial simulations had been carried out using the 
default weather file (tmy file) for Shannon Airport, Ireland. However, given the high level of 
correlation between outside air temperature and heat energy consumption (Figure 4-27), it was 
deemed a necessity to use actual local weather measurements for the calibration period.  

4 
Initial model used default constructions and materials for Irish office buildings. These were 
later modified using more reliable sources of evidence (e.g. Manufacturer specification sheets, 
as-built drawings). 

11 

During initial scoping and simulation, occupancy was identified as a highly uncertain and 
influential variable. This is due to the nature of the building, which serves primarily as a study 
and office space. Therefore, occupancy patterns can be highly irregular, depending on time of 
year, day of week and time of day. Initial assumptions for occupancy patterns were updated in 
Rev. 11 to account for findings gathered during occupancy audits (see section 4.4.1.1). 

24 

A discrepancy between measured and simulated heating energy consumption profiles was 
identified during the iterative model development process. This was attributed to a modelling 
error in specifying the HVAC system schedule. This was corrected according to information 
pertaining to HVAC schedules attained from interviews with the building manager as well as 
measured BMS data.  
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Figure 4-38: Sample revisions tracked using Tortoise SVN version control sof tware 

4.7 Latin-Hypercube Monte-Carlo (LHMC) Search 

Following the iterative update process, the model is subject to a LHMC (latin hypercube monte-

carlo) search. The purpose of this process is to further refine the model parameters by simulating 

the model within a defined search space. This search space is derived from the prescribed mean 

values and uncertainty ranges for model input parameters.  

4.7.1 Define best-guess estimates for input parameters 

 The final output of the iterative model development phase is a building model which has 

assigned input values corroborated with source evidence, where available, and best -guess 

approximations where no further measurements are available or possible. In this case, an 

evidence sheet was prepared to track this information (see Table 4-11). A more 

comprehensive version of this worksheet is presented in Appendix C.3. This sheet 

provides a complete list of every object in our EnergyPlus model, grouped according to 

EnergyPlus Input/Out Reference Class. Each field value is recorded in this sheet and 

linked to source evidence. A drop-down menu allows the user to select the ‘class’ of 

source evidence based on a hierarchy (see      
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Table 3-3 lists some of the recommended 

categories for the source hierarchy. Each category 

also has an associated ranking (class) and range of 

variation (ROV, %):  

 

𝑅𝑂𝑉

=
3. 𝜎

𝜇
  

(7.1)  

This ROV represents the total heuristically 

estimated deviation (𝜎) from the mean value (𝜇). 

These are currently preliminary estimations based 

on prior experience. However, in the absence of 

any more detailed database of building parameter 

uncertainties, this provides an adequate means of 

generating an initial assumption. 

Table 3-3: Data Categories 

SOURCE CLASS 
ROV 

(%) 

BMS/Sensor Data 1 2 

Spot-Measured Data 2 5 

Physically Verified Data 2 5 

As-Built Drawings 3 10 

O&M Manuals 3 10 

Commissioning Documents 3 10 

Design Documents 4 15 

Guides & Standards 5 30 

Reference Manual / Default 

Values 

6 40 

No Available Information 7 50 
 

).  

Table 4-11: Sample Parameters and Information Classif ication 

OBJECT FIELD 
INITIAL 

VALUE 
FURTHER INFORMATION CLASS 

ROV 

(%) 

STD 

DEV 

Schedule:Compact Field 3 145 EnergyPlus I/O Reference 6 40 19.33 

Material 1 - Insulation Conductivity {W/m-K} 0.04 Approved Document L1 

Conservation of fuel and 

power in dwellings (2002) 

5 30 0.004 

Material 1 - Insulation Specific Heat {J/kg-K} 1450 BS EN 12524 5 30 145 

Material 2 - Concrete Conductivity {W/m-K} 2.5 BS EN 12524 5 30 1 

Material 2 - Concrete Specific Heat {J/kg-K} 1000 BS EN 12524 5 30 100 

WindowMaterial:Glazing Thickness (m) 0.003 Drawings / 0517-GEA-001 3 10 0.0001 

WindowMaterial:Glazing Conductivity {W/m-K} 0.9 Default Value 6 40 0.12 

Lights Lighting Level {W} 13100 Lighting Audit 03/03/2011 2 5 3000 

ElectricEquipment Watts per Zone Floor Area 7 Electrical Audit 04/03/2011 2 5 2 

Fan:VariableVolume Fan Efficiency 0.74 Mechanical O&M Manual 3 10 0.05 
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4.7.2 Assign ranges of variation  

Ranges of variation are automatically assigned to each parameter based on the ‘class’ of source 

evidence. This range of variation is linked to the prescribed uncertainty associated with each 

source of evidence.  

 For continuous parameters, ranges of variation (ROV) are characterised by probability 

density functions bounded by upper 95th and lower 5th probability threshold values (see 

Figure 4-39). The ROV (%) is used to calculate a standard deviation for continuous 

parameters using the following equation: 

 𝜎 =
𝜇 ∗ 𝑅𝑂𝑉

3
 (7.2)  

 Discrete variables are characterized by minimum, maximum and base-case values; 

 Multi-dimensional variables, such as occupancy schedules are discretized for specified 

periods (academic weekday, academic weekend, summer weekday, and summer weekend) 

and assigned ranges of variation based on available information.  

4.7.3 Generate sample matrix 

Using the mean values for each parameter and assigned ranges of variation, a sample input 

matrix is generated using an automated R-script (Refer to Appendix A.2). This matrix is 

generated by sampling inputs randomly from the defined ranges, assuming parameters are 

normally distributed (see Figure 4-39). Alternative distributions (e.g. uniform, triangular etc.) may 

also be specified. However, these are less common, and were not included within the scope of 

this thesis. 

 

Figure 4-39: Probability density function (PDF) for Insulation conductivity  
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This step results in the creation of a job matrix in the form: 

𝑀 = 

[
 
 
 
 
 
  𝑧1

(1)
 𝑧2

(1)       ⋯  𝑧𝑟
(1)

 𝑧1

(2)
 𝑧2

(2)
      ⋯   𝑧𝑟

(2)

⋯     ⋯          ⋯    ⋯

 𝑧1

(𝑁−1)
 𝑧2

(𝑁−1)   ⋯  𝑧𝑟
(𝑁−1)

 𝑧1

(𝑁)
 𝑧2

(𝑁)       ⋯  𝑧𝑟
(𝑁)

]
 
 
 
 
 
 

 

Where; z represents the input variables; N the sample size and M the corresponding 

vector input matrix.  

4.7.4 Parametric Simulation 

In this step, the sampled job file from 4.7.3 is processed using a batch simulation tool, jEPlus (Yi 

Zhang et al. 2012). This is used to compute and compile simulation outputs.  jEPlus was chosen 

in this case for the following reasons: 

 Custom job import: jEPlus allows the user to import custom job files, meaning that 

sampling can be customized based on user requirements. In this case, it was necessary to 

randomly sample hundreds of input parameters prior to running each simulation. This 

strategy differs to typical batch simulations tools which focus on design optimization; 

 Parallel simulations: jEPlus allows the user to run many simulations in parallel, utilizing 

all available computing cores on the computers central processing unit (CPU). This was 

critical as it allowed us to run many more simulations, thus increasing the robustness of 

the bounded grid search; 

 Flexible support for non-numeric parameters: Since jEPlus uses string values (in the 

form @@parameter@@) to identify which parameters are variable, it is possible to 

change any type of parameter within the model input file; 

 File handling: jEPlus is fully customizable to allow for retention or deletion of files 

created during the simulation process (e.g. input.idf, outputs.eso etc.). This is useful 

when file storage limits are an issue, or there is a requirement to keep some element of 

the simulation process for future reference; 

 Job indexing: jEPlus automatically indexes all completed jobs, along with a record of 

warnings, errors and simulation outputs. A problem was encountered when dealing with 

large batch simulations (>10,000 runs) whereby this index would fail to compile. An 

indexing script was created in Java to construct this indexing file; 
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 Manual post-processing: It is possible to define customized process functions for 

handling results of the simulation process. At the time of writing, this function was not 

implemented, but was due for inclusion in the next release of jEPlus (v.1.3).  

Using a template simulation file with strings in place of parameter values, jEPlus enables the 

automatic processing of large arrays of simulation trials. An initial template file was created by 

inserting unique strings in place of parameter values in HVACGenerator and setting this as a 

simulation file within the jEPlus GUI (Zhang and Korolija 2010). 

The first step is to create the Parameter Tree. Since optimisation problems often contain 

multiple dependent parameters, a tree structure is used to represent the hierarchal structure of 

parameters. However, for the purpose of this case study, we are specifying independent 

continuous parameters. In order to validate this project in jEPlus, it is still necessary to create a 

multi-layered parameter tree as shown in Table 4-12: 

Table 4-12: Sample parameter tree (jEPlus) 

 

Where; μ = Mean, σ = Standard Deviation, and, n = Number of Samples 

In the above example, it is easy to see how the parameters sample space can quickly become 

unmanageable when utilising a full factorial (i.e. Design of Experiments) approach. Taking 3 

unique samples from 10 continuous parameters will require 59,049 simulations to compute the 

entire parameter space (Full Factorial Experiment: 310 = 59,049). For this reason, a pseudo-

random sampling approach is used to generate a sample matrix of jobs. This sampling process is 

currently executed externally using R (see section 4.7.3). Once this sample file has been created, 

jEPlus is used to process the simulations and generate the results (see Figure 4-40). 

ID Object Name Description μ σ n

P1 Fan:VariableVolume Fan:VariableVolume Fan Efficiency 0.74 0.098667 3

P2 Schedule:Compact Schedule:Activity Field 3 145 19.3333 3

P3 Material N_Lib_Batt_Insulation_01 Conductivity {W/m-K} 0.04 0.004 3

P4 Material N_Lib_Batt_Insulation_01 Specific Heat {J/kg-K} 1450 145 3

P5 Material N_Lib_Struct_Concrete_01 Conductivity {W/m-K} 2.5 0.25 3

P6 Material N_Lib_Struct_Concrete_01 Specific Heat {J/kg-K} 1000 100 3

P7 WindowMaterial:Glazing Clear 3mm Thickness (m) 0.003 0.0001 3

P8 WindowMaterial:Glazing Clear 3mm Conductivity {W/m-K} 0.9 0.12 3

P9 Lights Lighting Lighting Level {W} 13100 1746.667 3

P10 ElectricEquipment Equipment Watts per Zone Floor Area (W) 7 0.933333 3

Total Number of Jobs 59049
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Figure 4-40: jEPlus simulation interface 
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Once the job file has been processed, this generates the desired output vector, Y, for each row of 

input matrix: 

𝑌 = 

[
 
 
 
 

𝑦1

𝑦2

⋯
𝑦𝑁−1

𝑦𝑁 ]
 
 
 
 

 

These results are collected and transferred to a MySQL database for analysis.  

4.8 Post-Processing Data 

In order to compare our measured and simulated data directly, it is first necessary to perform 

some post-processing of the data. This is carried out within MySQL, using automated scripts 

developed specifically for this case study (see Table 4-13). 

Table 4-13: Data post-processing ref erences 

Data Type Measured Simulated 

Zone Temperature (oC) Refer Appendix A.7 Refer Appendix A.10 

Electrical Energy (kWh) Refer Appendix A.8 Refer Appendix A.10 

Heat Energy (kWh) Refer Appendix A.8 Refer Appendix A.10 

4.9 Uncertainty Characterisation of Results 

The final step in this process is to recalculate the Goodness-of-Fit (GOF) for each of the 

simulated models, using the equations outlined in 4.5.4. These outputs are then ranked according 

to the best-fitting models, thus giving us a set of refined models. Based on these models, it is 

possible to plot the predicted simulation values (i.e. heat, electrical energy consumption) along 

their associated prediction uncertainty, based on the uncertainty of the input values which have 

now been propagated through the model.  

4.10 Conclusions 

In this section I have discussed how the proposed methodology is applied to a case study 

building, including the software and analyses used throughout the entire process.  

 Section 4.2 give a brief background of the building, its location and the HVAC and 

plant systems; 

 Section 4.3 presents the modelling strategy and source control management (SCM) 

architecture; 
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 Section 4.4 discusses the various sources of building information, for both model 

development and calibration. Data visualisation techniques are used to distil useful 

information from the vast quantitates of accessible building data. A discussion of the 

common problems with data collection for detailed model calibration is also presented, 

with particular emphasis on: data quality, uncertainty and transformation;  

 Section 4.5 discusses the implementation of the evidence-based model development 

process; 

 Section 4.6 discusses the iterative model improvement process and the tracking of 

changes using SCM software. Sensitivity Analysis was not incorporated as part of this 

demonstration due to time constraints in implementation. However, a combined 

Sensitivity and Uncertainty analysis will be the subject of further investigation (see 

Section 6.3.7); 

 Section 4.7 illustrates how the parametric study is conducted. Inputs are sampled based 

on the associated uncertainty of source information, thus allowing for the generation 

of a LHMC search space, within which all possible (plausible) solutions lie; 

 Section 4.8 discusses how this data is post-processed. Given the vast quantities of data 

generated using this approach, it is necessary to give special attention to how this data 

is handled and analysed in an effective manner; 

 Section 4.9 illustrates how the generated models are assessed for accuracy, using a 

goodness-of-fit (GOF) approach.  

This entire process currently requires a number of software tools and iterative data 

transformations. To clarify any ambiguous elements of this process, a summary of the tools and 

techniques used in the model development and parametric study are presented in Figure 4-41 

and Figure 4-42 respectively. 
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Figure 4-41: Model Development Tool Chain 
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Figure 4-42: Parametric Model Development and Analysis Toolchain
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Chapter 5: 
Results 

“Prediction is very difficult, especially about the future .”  

– Neils Bohr, Physicist 
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5.1 Chapter introduction 

This chapter will focus on the results of the calibration effort, taking into account the 

modifications at each stage of the calibration process. A summary of the data analysis techniques 

is presented in section 5.2.  This is followed by a discussion of the results of following elements 

of the proposed methodology, as applied to the demonstrator building presented in Chapter 4: 

 Evidence-based model development; 

 Iterative model improvement; 

 Bounded grid search; 

In addition, a comprehensive overview of data visualization techniques is presented in section 

5.4, covering intuitive methods for presenting the high volume of information generated during 

the model simulation and calibration process. The chapter concludes with a discussion of the 

final results of the process. 

5.2 Data analysis techniques 

The comparison of simulated data with measured data requires the use of a number of data 

analysis techniques, which are described in this section. As previously noted in section 4.5.4, the 

model performance is assessed based on the prediction accuracy for three primary building 

metrics: 

 Whole Building Electrical Energy Consumption (kWh); 

 Whole Building Heat Energy Consumption (kWh); 

 Average Zone Temperature (oC). 

Measured and simulated data is compared on an hourly basis for the entire year in order to 

compute a single set of statistical indices which describe the model accuracy. These statistical 

indices include; NMBE (Normalised Mean Bias Error), CVRMSE (Cumulative Variation of Root 

mean Square Error) and GOF (Goodness-of-Fit), as described in section 3.5.3.  

In addition, a number of other data comparison techniques are employed in order to assess the 

simulation model at each model iteration. Firstly, a Biased Percentage Error (%) is calculated for 

each hour: 

 Biased Percentage Error (%) =  
𝑀𝑖 − 𝑆𝑖

𝑀𝑖

 (6.1)  
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Where 𝑀𝑖 and Si refer to the measured and simulated value at any instance i respectively. This 

value is used to indicate the relative difference between measured and simulated values, where a 

negative difference implies over-estimation, and vice-versa. However, due to the presence of 

negative values, this metric may suffer from compensation effects when average over any time-

period (i.e. negative errors cancel out positive errors). Therefore, it is also necessary to calculate 

an absolute difference in order to give a non-biased estimation of error at each time-step. 

 Absolute Percentage Error = √(
Mi − Si

Mi

)
2

 (6.2)  

This gives an absolute difference between measured and simulated variables, and thus is a better 

indicator of actual model performance when averaged over a particular period.  

5.3 Evidence-Based Model Development 

The evidence-based model development process allows for the systematic improvement of the 

initial model through a combination of statistical analysis and advanced visualisation techniques. 

The model results following the ‘Model Update’ phase of this process are presented in Figure 

5-1. The first bar-chart indicates the current performance of the model using the three statistical 

indices (NMBE, CVRMSE and GOF) calculated for each of the primary building metrics (Heat 

Energy Consumption, Electrical Energy Consumption, and Average Zone Temperature). The 

second chart indicates the relative change in % error for each performance index over the 

previous model revision. This is useful in tracking the relative impact of modifications made 

during the iterative model development process, providing a clear indicator when a change has 

had a significant positive/negative impact on the model performance.  Finally, the third chart 

graphs the performance of each model revision. This can be correlated to changes made at each 

stage in the development process (see Table 5-1).  
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Figure 5-1: Model Results for Revision 17 following completion of  Model Update Process  
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At the end of the model update process, a number of discrepancies were still evident, particularly 

in the building heat energy consumption (CVRMSE > 90%) and electrical energy consumption 

(CVRMSE >30%). These issues are addressed in the ‘iterative model improvement’ phase .  

5.4 Iterative Model Improvement 

For the purpose of succinctness, this section will focus on the process of iterative improvement 

process for one model parameter, as this sufficiently demonstrates the step-by-step process 

involved. As above, a perceivable discrepancy between measured and simulated electrical energy 

consumption has been identified following the model update process. Having exhausted all 

currently available measured data and documentation, it is now necessary to perform a more in-

depth model analysis. This is achieved by using statistical comparison techniques in combination 

with automated data visualisation.  

5.4.1 Data Visualisation 

When examining raw simulation data, and comparing it to measured building data, it is often 

difficult to understand the reason behind discrepancies between these values. For example, in the 

case of comparing measured and predicted electrical energy consumption data, it becomes 

impossible to derive any conclusions as to the root-cause of issues when comparing the entire 

un-processed data set (see Figure 5-2). 

 

Figure 5-2: Hourly Electrical Energy Consumption (Raw Data) 
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Conversely, it is also difficult to root-cause issues when data is over-summarised, or presented in 

a manner which may be confusing or lead to incorrect conclusions.  

 

Figure 5-3: Hourly Electrical Energy Consumption, Binned Analysis 
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Other useful considerations may include holidays, or class timetables to indicate whether the 

building is highly occupied. When this information is used to break down the model further, a 

definite pattern begins to form: 

 

Figure 5-4: Electrical Energy Consumption - Absolute % Error (Weekday vs Weekend) 

Looking at Figure 5-4, it is clear that weekends account for a significant proportion of the errors 

>90%. Furthermore, by attaching bins/groups to this data set, it is possible to begin to filter 

through the data set in order to gather more insight into the issue.  

 

Figure 5-5:  Electrical Energy Consumption - Absolute % Error (Summer Weekday vs. Weekend) 
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Powerview, Pivot charts and Pivot tables) are a useful means of performing this analysis by 

drilling down into large data sets to infer meaning. However, as has been demonstrated, it is 

important to remain cognisant of the potential pitfalls of inferring the incorrect conclusions 

through the use of statistical indices (mean bias error vs. absolute error) or over-summarisation 

of results. 

This still leaves the issue of analysing data in an efficient structured manner. While Pivot Charts 

and Tables provide an efficient means of pre-assessing large data sets and inferring knowledge 

from this data, it is also a time-consuming process to filter through numerous graphs and models 

for each simulation assessment. Fortunately, there exist more advanced data analysis techniques, 

such as surface plots, which allow the 3-D visualisation of data, thus increasing the amount of 

information which can be interpreted from a single graphic.  

 

Figure 5-6: Electrical Energy Consumption - Absolute % Error (Surface Plot) – Rev. 17 
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evening, November, December). While visually appealing and easier to interpret, one downside 

of this form of visualisation is that is can sometimes be difficult to read effectively given the 

limits of display perspective. It is often necessary to rotate the display in order to examine areas 

hidden behind peaks in the chart. An alternative is the use of carpet contour plots, which display 

the same information on a 2-D surface using colours to differentiate the levels in the response 

variable (z-axis).  

 

Figure 5-7: Absolute % Error (Electrical Energy  Consumption) – Rev. 17 

 

 

Figure 5-8: Absolute % Error (Electrical Energy  Consumption) carpet plot – Rev. 17 
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as a more effective tool for identifying model discrepancies. From a cursory examination of the 

plot, the following model characteristics are identifiable:  

 Major discrepancies (~100% abs. error) exist in September and October at 06:00; 

 Major discrepancies (70-90% abs. error) exist in November and December at 23:00; 

 The model performs better during operational hours (10:00-17:00); 

 There is a higher percentage error (~40%) for operational hours primarily during the 

summer months (Jun-Aug/Sep); 

 There is a higher model discrepancy in the evenings (18:00-21:00); 

 The fit overnight is reasonably good (0-20% abs. error) apart from the period Oct-Dec 

when errors increase to the 20-40% range. 

A final plot which can prove extremely useful is Absolute Error against month and date (See 

Figure 5-9). This is useful in identifying particular dates which display high levels of error, for 

example in the case of holidays or scheduled closures. In Figure 5-9, it is possible to clearly 

identify a number of dates which merit further investigation (May 2, May 29, Aug. 1, Sep. 2 -4, 

Oct. 31, Dec 16, and Dec. 19-23).  

 

Figure 5-9: Electrical Energy Consumption - Absolute Error (%) by Month and Date – Rev. 17 

  

Day of Month 
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5.4.2 Visual Summary 

In order to allow convenient assessment of model iterations in a uniform manner, statistical 

summary data is calculated automatically and presented visually, in accordance with the generic 

post-processing script which has been developed (see Appendix A.9). An example of this 

visualisation is presented in Figure 5-10 to Figure 5-12. This one-page summary presents a 

significant amount of data relating to model performance in the context of electrical energy 

consumption. From the graphs, it is possible to identify:  

i. Monthly summary of absolute error (%) by day of week and hour of day; 

ii. Overall summary of absolute error (%) by day of week and hour of day; 

iii. Overall summary of absolute error (%) by month and hour of day. 

This makes it possible to quickly identify problem areas which need to be addressed.  

Table 5-2: Model issues identif ied using carpet plot data visualisation 

Graph Description 

1 

 Weekend operational profile (Jul, Aug, Sep) 

 Evening consumption (18:00-22:00) for all months. 

 Morning consumption (7:00) in August, September and October 

 Night-time consumption (23:00) in November 

 Evening consumption for Monday, Tuesday in December 

2 

 Evening consumption (18:00-22:00) 

 Morning consumption (06:00-09:00) 

 Mondays – check for incorrect holiday, special day scheduling 

3 

 Evening consumption (18:00-22:00) 

 Morning consumption (06:00-09:00) – particularly Sept – Oct. 

 Night-time consumption (23:00) in Nov – Dec. 

Therefore, it is evident that the use of carpet plots, as opposed to standard line and bar charts, 

makes it possible to convey more information in a single graphic, and thus diagnose issues more 

effectively. 
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Figure 5-10: Absolute Electrical Error (%) – Rev. 17 
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Figure 5-11: Summary of  Bias % Error by Day type and Term – Rev. 17 



Results 

188 

 

Figure 5-12: Summary of  Bias % Error by Term and Month – Rev. 17 
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By combining the contour plots from Figure 5-10 with the statistical summary charts in Figure 

5-11 and Figure 5-12, it is possible to effectively diagnose the main issues affecting model 

performance. This technique of visual interpretation is extremely efficient is diagnosing issues, in 

addition to highlighting other potential problems such as poor correlations between measured 

and simulated trends during particular periods. Such problems may be overlooked if utilising 

statistical methods as the sole means of diagnosing model performance.  

5.4.3 Sensitivity Analysis 

While the visual summary approach provides an excellent means of diagnosing issues with the 

model throughout the iterative improvement process, it also suffers from a heavy reliance on 

analyst knowledge and an ability to read and interpret such visual summaries. Therefore, 

mathematical and statistical indicators can provide a useful counter-balance, and add further to 

the information available to the analyst with which to make a judgement. An (optional) 

sensitivity analysis procedure has been proposed, but not implemented, in the prescribed 

methodology. Unfortunately, due to time constraints, it was not possible to include a 

comprehensive SA within the scope of the case study. However, a framework for its inclusion is 

outlined in 3.6 and a discussion on how this may be improved in future work is described in 

section 6.3.7. 

5.4.4 Final Results of Model Update Process 

Despite an intensive building audit, high levels of measured data and a detailed systematic mode l 

improvement process, there are still discrepancies evident in the simulated model (see Figure 

5-13 to Figure 5-19). This serves to highlight the level of detail required to model a building to a 

sufficient degree of accuracy as well as the need for an approach to addressing the uncertainty of 

individual input factors. 

 

Figure 5-13: Residual errors (%) af ter model update process 

Heat Elec Temp Heat Elec Temp A B Total

CVRMSE NMBE GOF

Results 77.29 24.1 17.49 49.06 8.57 15.65 40.38 23.1 29.51
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Figure 5-14: Summary of  model errors (%) - Rev 25 
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Figure 5-15: Absolute % Error (Electrical) - Rev 25 
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Figure 5-16: Bias % Error (Electrical) - Rev 25 
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Figure 5-17: Absolute % Error (Temperature) - Rev 25 
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Figure 5-18: Hourly Absolute % error by day type and term (Electrical) - Rev 25 
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Figure 5-19: Hourly Absolute % error by term and month (Electrical) - Rev 25 
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5.4.5 Results Discussion 

It should be noted that some error is unavoidable without compromising the representative 

nature of the model. For example, some discrepancies are due to volatile fluctuations in energy 

consumption throughout particular periods during the year. It is possible to modify the model to 

capture these fluctuations (e.g. by increasing the resolution of lighting and equipment schedules, 

and further segregation of time periods), but this would yield a highly over-specified model. In 

such a case, the model may represent the particular data set to a high degree of accuracy, but 

would be of little practical use in modelling generic predicted building performance.  

 

Figure 5-20: Remaining Model discrepancies af ter Iterative Model Update - Rev. 23 

In this case, further refinement of the model would require interpolation from existing measured 

building data in order to obtain a better fit. It is theoretically possible to generate individual 

schedules for each day of the year and using the difference between measured and simulated data 

in order to compute the ‘correct’ input at each hour. However, as discussed previously, this 

would yield an over-specified solution. Therefore, the challenge is to develop a model which 

captures major characteristics in building energy consumption trends, while maintaining a 

reasonable level of input detail. Another issue which may result in discrepancies is the granularity 

of available measured and simulated data (see Figure 5-21). In this case study, the building 

metering was capable of capturing average electrical energy use to the nearest kW for each hour, 

which simulated data may be generated at any frequency or detail level.  
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Figure 5-21: Measured vs. Simulated Electrical Energy Consumption (Dec 17 2011)  

As evidenced in Figure 5-21, this granularity in data can have a significant impact on relative 

error values, particularly in a building with relatively low levels of energy consumption. Measured 

values are only logged to the nearest whole number, meaning that relative error may increase by 

up to 33% depending on the value recorded on a particular instance.  

5.5 Latin Hypercube Monte-Carlo (LHMC) Search 

At this stage, the input uncertainty specified during to model development stage is propagated 

through the model and used to generate the range of potential predictions. The top 10 ranking 

predictions, in terms of overall goodness-of-fit are automatically generated by comparing each of 

the randomly-generated simulation outputs with the measured building data. At present, these 

predictions only account for uncertainty within a limited number of model parameters, including: 

 Occupancy schedules; 

 Lighting and equipment Schedules; 

 Material properties; 

 HVAC equipment parameters. 

By varying the inputs for each of these parameters randomly within the defined uncertainty 

ranges, it is possible to propagate this input uncertainty through to the model predictions. This 

process can be used to find the model (and associated inputs) which best represents the 
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calibration problem, or can simply be used as a means of quantifying the risk and uncertainty 

associated with individual model predictions.  

5.5.1 Calibrating model inputs 

This approach can be used as a means of calibrating individual model inputs by fine-tuning their 

values around the best-guess estimate, within the defined ranges of uncertainty, and bounded by 

realistic maximum and minimum values. By ranking the best-fitting models according to 

goodness-of-fit (GOF) criteria (see section 3.8.5), it is possible to filter the models with the most 

likely values for individual parameters (see Table 5-3).  

Table 5-3: Top 10 best-f itting simulation runs 

Job 
CVRMSE NMBE GOF 

Heat Elec Temp Heat Elec Temp A B Total 

915 69.936 8.671 15.114 53.081 7.707 14.683 31.949 24.545 29.867 

515 69.938 9.993 15.148 53.045 9.179 14.728 32.251 24.923 30.186 

659 71.409 9.374 14.522 54.525 8.493 14.172 32.727 25.347 30.646 

706 71.212 9.759 14.578 54.345 8.929 14.266 32.731 25.39 30.66 

489 72.903 7.917 14.563 55.63 6.855 14.227 33.068 25.429 30.919 

7 72.362 8.911 14.229 55.452 7.984 13.887 33.031 25.606 30.937 

369 72.405 9.06 14.49 55.803 8.14 13.944 33.083 25.794 31.023 

627 73.107 8.236 14.1 56.263 7.212 13.709 33.213 25.771 31.113 

766 72.337 10.07 14.99 55.057 9.258 14.516 33.287 25.782 31.171 

64 73.416 8.488 14.277 56.35 7.502 13.831 33.397 25.874 31.276 

 

Figure 5-22: Best-f itting model results (Job Ref . 915) 

Figure 5-22 presents the results of the best-fitting model, according to overall goodness-of-fit 

(GOF) criteria. The model represents the optimal values for the model ‘tuning’ parameters. This 
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does not guarantee that the adjustments are correct. However, since the calibration problem is 

undetermined, it will never be possible to accurately define every input parameter. Therefore, 

this method simply provides a means of automatically tuning these values within acceptable 

ranges, in order to provide a better match to measured data.  

Table 5-4: Model input parameter adjustments 

ID Name Description Search String Mean StdDev Final 
% 

change 

P1098 

Surface 

Construction 
Elements 

Thickness &&GeoThi1098&& 0.1 
3.33E-

03 
0.1028 2.84 

P1099 
Surface 

Construction 
Elements 

Conductivity &&GeoCon1099&& 0.04 0.004 0.0435 8.74 

P1100 

Surface 

Construction 
Elements 

Density &&GeoDen1100&& 15 1.5 14.8857 -0.76 

P1101 
Surface 

Construction 
Elements 

Specific 
Heat 

&&GeoSpe1101&& 1450 145 1503.7886 3.71 

P2101 
Internal 

Gains 

Lighting 

Level 
&&ZonLig2101&& 7524 125.4 7560.7690 0.49 

P2119 
Internal 

Gains 

Watts per 
Zone Floor 

Area 
&&ZonWat2119&& 13 0.21666 13.2702 2.08 

P2084 Airflow 
Air Changes 

per Hour 
&&ZonAir2084&& 2.5 0.33333 3.3729 34.92 

P2103 Airflow 
Flow Rate 

per Person 
&&ZonFlo2103&& 0.00236 

3.15E-

04 
0.0024 0.79 

P2331 Fans 
Fan 

Efficiency 
&&ZonFan2331&& 0.74 0.037 0.6994 -5.49 

P2332 Fans 
Pressure 

Rise 
&&ZonPre2332&& 750 37.5 791.4427 5.53 

P2337 Fans 
Motor 

Efficiency 
&&ZonMot2337&& 0.9 0.045 0.8548 -5.02 

5.5.2 Quantifying risk and uncertainty 

Figure 5-23 illustrates how the methodology can be used to incorporate input uncertainty into 

predicted results. By allowing the input parameters to vary within the bounds of uncertainty, a 

range of predictions is generated. The graph shows the average predicted values as well as the 

maximum and minimum prediction within these uncertainty limits.  
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Figure 5-23: Uncertainty-based predicted plant-loop heating demand 

The advantage of producing a range of possible results as such is that it clearly indicates the level 

of inherent uncertainty present in the model predictions, as opposed to a single model 

prediction. This is beneficial in cases such as retrofit assessment and ECM evaluation where the 

analyst needs a means of quantifying the risks of under-performance of these measures. 

This data can also be represented as a cumulative probability plot, as shown in Figure 5-24. From 

this graph, we can say that the best estimate of average heat energy consumption for this day is 

15.18kW (point estimate) with a 90% probability that the true value falls roughly within ±20% of 

this value. This is determined from the distributions of the simulated (predicted) heat energy 

consumption. In actuality, the measured daily heat energy consumption for 1 st November was 

300kWh, representing an hourly average value of 12.5kW, or around 8.7% cumulative probability 

(see Figure 5-25). However, it should be noted that due to the resolution of the heat energy 

measurement available, the true value could also be up to 340kWh (since the measurement 

resolution is 40kWh). This would represent an hourly average heat energy consumption of 

14.167kW or around 30% cumulative probability. Therefore, it is important to also consider the 

measurement resolution of the metered data. 
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Figure 5-24: Cumulative probability graph for heat energy consumption 

 

 

Figure 5-25: actual vs predicted heat energy consumption for 1st November, represented on cumulative probability graph  
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The above data for heat energy consumption still has a relatively high degree of uncertainty 

associated with predictions, due largely to the fact that there is still a high degree of uncertainty 

pertaining to the model input parameters. While this is not ideal, it does serve to demonstrate the 

level of detail required to reduce model uncertainty, as well as the potential performance range 

associated with building energy simulation model predictions.  This is in line with findings from 

a US Green Building Council report comparing LEED building performance with baseline 

energy use predictions (Turner and Frankel 2008). This also further serves to highlight the need 

for high quality data in order to achieve accurate model predictions, as well as the need to 

express uncertainty along with model predictions. 

5.6 Conclusions 

This chapter presents the results of the application of the proposed evidence-based analytical 

optimisation approach to a mixed-mode University building. The results indicate that this is a 

viable approach to model development and calibration incorporating parameter uncertainty 

quantification. There are a number of novel aspects to the presented results:  

 Measured and simulated data are automatically compared statistically at each model 

iteration in order to guide the development process. This process has been streamlined as 

much as is practically possible in order to aid the model calibration process; 

 A novel set of statistical summary graphs have been developed which provide an 

overview of the current performance of each model simulation, as well as a means of 

tracking progress; 

 Results are automatically archived to a source control repository for later retrieval, if 

required; 

 A parametric study (LHMC search) is carried out based on model input uncertainty, and 

results are ranked according to goodness-of-fit (GOF) values for heating and electrical 

energy consumption, as well as zone temperatures; 

 The results of the ranking process may be used to fine-tune individual model parameters 

based on analysis of the best-fitting models. This may be achieved by performing a 

frequency distribution analysis of input parameters for best fitting models (see further 

discussion in section 6.3.8); 
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 The process also enables risk and uncertainty quantification for final calibrated models, 

which is useful in assessing the performance risks associated with the implementation of 

energy conservation measures (ECM’s); 

There are still a number of improvements required in order to streamline this process, which 

currently requires significant manual effort at various stages of the process. This will be 

addressed in the future work section (see section 6.3)
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Chapter 6: 
Conclusions and Future Work 

“Research is to see what everybody else has seen, and to think what nobody else has 

thought.”  

– Albert Szent-Gyorgyi, Physiologist 
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6.1  Chapter Overview 

This section will present the overall conclusions and recommendations of this work, focussing 

specifically on the novel aspects of each of the main thesis chapters: 

 Literature Review; 

 Methodology; 

 Case Study; 

 Results. 

6.1.1 Literature Review 

The presented literature review provides a comprehensive overview of existing approaches to 

model calibration, covering both manual and automated approaches. Numerous approaches to 

model calibration have been suggested. However, no consensus standards exist . In addition, 

many of the current approaches to model calibration rely heavily on user knowledge, past 

experience, statistical expertise, engineering judgement, and an abundance of trial and error. 

Furthermore, when a model is established as being calibrated, the author often does not reveal 

the techniques used, other than stating the final result. 

A systematic approach to model calibration is proposed, utilising the most promising 

mathematical, statistical and visualisation techniques identified during the literature review 

process. The proposed approach relies on a combination of:  

1. Detailed site characterisation methods; 

2. Model simplification techniques;  

3. Advanced graphical techniques; 

4. Optimisation techniques; 

5. Evidence-based procedure; 

6. Sensitivity Analysis; 

7. Uncertainty quantification. 

These techniques are adapted, extended and incorporated into a comprehensive sytematic 

evidence-based analytical optimisation approach for model calibration. 
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6.1.2 Methodology 

This thesis proposes a new methodology for the calibration of detailed simulation models to 

measured data using a systematic, evidence-based approach. The proposed approach differs 

from existing approaches to model calibration in a number of ways:  

 Detailed model development: The proposed approach uses detailed building and HVAC 

system information, as opposed to building templates, to create an accurate initial 

representation of the building; 

 Structured evidence based approach: the proposed approach follows a systematic model 

evolution process, whereby each model input is updated according to a source of 

evidence. Each model update is logged and referenced using version control software; 

 Source classification and uncertainty: Sources are assigned to a hierarchy depending on 

their expected level of accuracy, and used to classify parameter values and associated 

distributions; 

 Sensitivity Analysis (SA): parameters which merit further investigation are automatically 

identified using an (optional) SA approach, combining source reliability classification and 

sensitivity indices; 

 Parametric Analysis: since the calibration problem is under-determined, it is possible for 

many unique solutions to exist. Therefore, the proposed approach included a parametric 

grid search whereby a range of possible solutions are identified, as opposed to a single 

solution. This ; 

 Uncertainty Characterisation: The methodology includes a measure of parameter 

uncertainty based on source evidence, which is propagated through the model 

development process to enable risk and uncertainty quantification of final model 

predictions. 

6.1.3 Case Study 

The presented case study highlights a number of important points: 

 Data visualisation methods: the chapter presents an overview of various means of 

representing the high volume of data available in the building domain. Automated 

methods for producing these visual displays are also developed. 

 Data transformation and tool-chain: the chapter also highlights the complexity of the 

data transformation process required for model calibration, primarily due to the use of 
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proprietary software and systems in the AEC (Architecture , Engineering & 

Construction) domain, as well as a fragmentation of the building design, commissioning 

and operation processes. 

 Automated processing: the process employed in the presented case study is automated as 

far as practically possible given the time and resource limitations. Scripts and scheduled 

tasks are used at various stages in the model development and calibration process. These 

are presented in Figure 4-41 and Figure 4-42, and included in the thesis appendices. 

6.1.4 Results 

The results of the calibration process highlight the potential benefits of the proposed 

methodology in terms of systematically identifying model improvements, tracking changes and 

visualising the final results. There are a number of important points relating to the presented 

results: 

 A summary of model error is automatically generated after each model iteration in order 

provide an overview of the current performance, as well as a means of tracking progress;  

 Statistical summary graphs are used in conjunction with more modern colour carpet 

contour plots in order to effectively identify potential sources of model error; 

 The results of the ranking process may be used to fine-tune individual model parameters 

based on analysis of the best-fitting models; 

 An illustration of the uncertainty-based model predictions is also presented. This enables 

risk and uncertainty quantification for final calibrated models, which is useful in assessing 

the performance risks associated with the implementation of energy conservation 

measures (ECM’s); 

6.2 Discussion 

This research has illustrated a number of key findings in relation to the realities of calibration of 

BES models to detailed measured data. The author concludes that the following merit 

discussion: 

i. Data Acquisition and data quality 

ii. Uncertainty in Building energy simulation models 

iii. Statistical performance metrics 
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6.2.1 Data Quality and Accuracy 

The reliability and accuracy of ‘calibrated’ BES models depends  on the quality of the measured 

data used to create the model, as well as the accuracy and limitations of the tools used to 

simulate the building and its’ systems.  

Throughout the course of this study, it has been found that it is very difficult to obtain the level 

of data required for detailed calibration, even in modern buildings with relatively large quantities 

of data readily available. In addition, Building Management Systems are often not configured to 

collect and archive monitored data points. Since data storage and archiving incurs additional 

cost, it is typically up to the client to explicitly request this service from the BMS installers.  

Limitations of simulation tools also influence the results and thus impact simulated performance 

data significantly. These limitations are either embedded in the simulation tool or caused by the 

particular use of a tool and are then included in input data (Maile 2010). 

6.2.2 Uncertainty in BES Models 

As highlighted by (Kaplan, McFerran, et al. 1990)), it will never be possible to identify the exact 

solution to the calibration problem. Due to its’ highly underdetermined nature, it will always 

yield a non-unique solution (Carroll and Hitchcock 1993). This case study serves to highlight the 

level of uncertainty associated with individual model input parameters and, consequently, the 

final calibrated model. 

This uncertainty creates a vast multi-dimensional solution space. The calibration approach 

outlined in this paper recognises this problem and uses random sampling techniques in an 

attempt to identify a selection of optimum solutions rather than just one.  

Therefore, rather than using only one plausible calibrated solution to make predictions about the 

effect of intended energy conservation measures (ECMs), we use a small number of the most 

plausible solutions. Not only does this make it more likely to obtain a more robust prediction of 

the energy and demand reductions, but this will also allow us to determine the associated 

prediction uncertainty for each solution (Reddy et al. 2007a). 

6.2.3 Hourly vs. Monthly Calibration 

Currently, most studies analyse model error using monthly data (Reddy 2006). However, this 

approach may hide inaccuracies which only appear at hourly or daily resolutions (Raftery, Keane 

and Costa 2011). Therefore, this methodology attempts to reconcile detailed hourly 

measurements with simulated data to provide a model which accurately represents actual 
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building design and operation, while also accounting for realistic value ranges and parameter 

uncertainty. 

6.3 Future Work 

This work forms the basis for an automated systematic approach to model calibration. However, 

in order to enable more widespread adoption of building energy models, it is necessary to first 

tackle some of the barriers to model calibration. This section provides a sample of some of the 

future work required to further streamline this process and help to increase the adoption and 

reliability of energy simulation models in the AEC industry.  

6.3.1 Measurement Uncertainty 

According to the IPMVP guidelines (Efficiency Valuation Organisation (EVO) 2010), 

uncertainty can arise from three sources: modelling, sampling and measurement:  

 Modelling: errors in mathematical modelling of system; 

 Sampling: sampling errors arise when a portion of a population of actual values is 

measured, or a biased sampling approach is used (e.g. occupancy in the presented case 

study was sampled at random intervals, but it was infeasible to continuously monitor 

occupancy. Therefore, sampling bias is introduced.); 

 Measurement: accuracy of sensors, data tracking errors, sensor drift, imprecise 

measurements etc. can all lead to increased measurement uncertainty. This is important, 

as the model is being calibrated to these measurements, so they are assumed to be 100% 

accurate, which is not correct. 

In this thesis, I have discussed how to address modelling uncertainty (see section 2.3.5), 

particularly specification uncertainty (i.e. the uncertainty associated with model input 

parameters). However, it is important to also consider the uncertainty on the other side of the 

equation – measurement uncertainty. This can arise from: 

 Poor meter precision, or insufficient resolution of data;  

 Poor placement of metering equipment, so it does not capture a representative 

measurement; 

 Data telemetry or communication errors. 

Errors associated with measurement uncertainty should be incorporated when using calibrated 

models as a baseline for predicting energy savings, as the confidence of the model predictions 
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may be affected by this uncertainty. The IPMVP guidelines (Efficiency Valuation Organisation 

(EVO) 2010) provide a rough guideline as to acceptable uncertainty pertaining to savings 

predictions for energy conservation measures (ECM’s). Specifically, the savings need to be larger 

than twice the standard error of the baseline value. If the variance of the baseline data is excessive, the 

unexplained random behaviour in energy use of the facility or system is high, and any single 

savings determination is unreliable. Where you cannot meet this criterion, consider using:  

 more precise measurement equipment; 

 more independent variables in any mathematical model; 

 larger sample sizes, or; 

 an IPMVP Option that is less affected by unknown variables.  

This guidance provides a reasonable starting point for inclusion of a formal procedure for 

capturing measurement uncertainty within the proposed calibration methodology.  

6.3.2 BIM to BES 

Building Information Modelling (BIM) represents a significant step towards the aggregation of 

the type of detailed information required for the construction of building energy simulation 

(BES) models. However, BIM models are typically built on modelling software using proprietary 

data formats (e.g. ArchiCAD, AutoDesk AutoCAD). These formats require transformation in 

order to become compatible with building energy simulation tools (such as EnergyPlus). A 

number of open building information transfer protocols (e.g. ifc, gbXML) have been developed 

specifically to tackle the problem of building data storage and transformation. However, the 

conversion of proprietary building models to open formats (such as ifc) often results in data 

corruption or loss of information. Therefore, at present, building energy models are often 

constructed after BIM models on separate modelling tools. This is both inefficient (due to 

duplication of work) and detrimental to the quality of the final model (due to potential failure to 

transfer elements of the BIM model to the BES model). This issue requires coherent industry 

engagement in order to increase compatibility between BIM and BES tools.  

6.3.3 Automated Schedule Generation 

One of the most time consuming elements of model development is the creation of detailed 

schedules for building parameters, such as occupancy, infiltration, lighting and equipment loads. 

Part of the problem is the effort required to characterise a building such that the model captures 

past trends, while remaining sufficiently generic so as to be capable of also predicting future 
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performance (i.e. not over-specified). This can be a difficult task to perform manually, requiring 

creation and adjustment of detailed building schedules for each characteristic period (e.g. 

weekdays, weekends, holidays, half-days etc.). However, it is possible to use measured building 

data as a ‘training set’ which may be used to identify the main characteristic time -periods, and 

automatically construct appropriate schedules for these time-periods.  

6.3.4 Occupancy Profiles 

Occupancy tends to be one of the more difficult parameters to capture in buildings without 

expensive sensing equipment or security systems. It is also one of the most influential variables 

relating to energy-use and efficient building control. Therefore, it would be useful to devise 

strategies for using existing building and environmental data in order to infer human presence in 

spaces. It was noted during this study that there was a strong correlation between Carbon 

dioxide correlation and human presence. : However, CO 2 concentration is also heavily 

influenced by levels of outdoor background CO2, wind speed and infiltration rate. With further 

investigation though this may provide some useful for occupancy inference, particularly if 

combined with other corollary sources of information. For example, the PC usage trends 

presented in 4.4.1.1 are a useful source of data which are not currently captured within the 

building management system. Other sources of data may include, but are not limited to, 

temperature data, Wi-Fi usage patterns, security systems (IR sensors), cell-phone radio 

connections, GPS data, social media (and automated social check-in applications – e.g. 

Facebook, FourSquare, Google Android Location tracking). 

6.3.5 Occupant-driven Natural Ventilation 

Occupant-driven natural ventilation, in terms of air-changes per hour (ACH), can be notoriously 

difficult to predict due to the following (Hyun et al. 2008): 

 Stochastic nature of weather: Natural air- flows have two driving forces: buoyancy and 

wind. Since wind speed and direction change rapidly and the temperature difference 

between indoor and outdoor also fluctuates diurnally as well as annually, it is difficult to 

quantify such influences on natural ventilation. Hajdukiewicz et al. (2013) present a 

methodology for calibrating a CFD model of a naturally-ventilated space to measured 

data using a range of field measurements (e.g. air temperature, air velocity etc.). While 

this methodology is focussed on the design of naturally ventilated buildings, it provides 

an insight into the complex inter-relationships between factors which affect infiltration 

and ventilation rates in naturally ventilated buildings.  
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 Occupant’s behaviour: An occupant’s schedule in opening/closing windows and doors 

has a significant role in controlling the natural airflow rate.  This behaviour is the result 

of a combination of human thermal comfort characteristics (personal and environmental 

factors) as well as individual psychological characteristics. These behavioural influences 

have not been measured extensively in field research. Coakley et al. (2013) presents a 

study of human response to thermal conditions, based on the work of P.O. Fanger 

(Fanger 1970; de Dear 2004). However, further study is required in order to develop a 

reliable method of correlating natural ventilation rates with these environmental and 

behavioural characteristics, to within a reasonable degree to accuracy in the absence of 

direct measurement. Simply assuming that natural ventilation occurs only through crack 

infiltration (when all the doors and windows are closed) is not realistic and measures only 

the minimum airflow rate. This has been the subject of a number of recent academic 

publications in the field of building energy research. (Bourgeois et al. 2006; Tanimoto et 

al. 2008; Hoes et al. 2009; Yun et al. 2009; Antretter et al. 2011; Haldi and Robinson 

2011; Robinson and Haldi 2012; Dar et al. 2012; Fabi et al. 2013) 

 Building components: Each building in unique in terms of its construction (quality of 

workmanship, air-tightness) and components (e.g. doors, windows, ventilation ducts, 

etc.) In addition, each dwelling has a different local environment, such as the 

natural/urban surroundings, orientation, distance from the ground, shading etc. . 

 Uncertainties in simulation parameters: Simulation parameters such as discharge 

coefficient, flow coefficient, etc., used to simulate airflow phenomena inside and around 

the building cannot be predicted accurately. 

It is therefore infeasible to fully address this topic within the scope of this research. However, it 

will form the focus of future investigative studies, particularly in the area of thermal comfort and 

occupant behaviour field studies, following on from the work presented in Coakley et al. (2013). 

6.3.6 Artificial Neural Networks 

Traditional whole building energy simulation requires a large number of detailed inputs and 

simplifications, particularly in relation to annual scheduling of variable input parameters. In the 

presented case study, occupancy and infiltration were major influencing factors in determining 

building performance. However, due to the high level of uncertainty and variability associated 

with these parameters, it is impossible to reduce them to standard yearly schedules without 

compromising model quality. 
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A preferable approach may involve the use of machine learning algorithms, or Artificial Neural 

Networks (ANN) which can help predict occupancy and infiltration based on a set of training 

data. This ANN model may then be substituted for the existing deterministic model schedules. 

Alternatively, the ANN model may be used to generate these deterministic model schedules to a 

greater degree of accuracy. There is active research in this area (Edwards et al. 2012; Edwards 

2013; Sterling et al. 2014), which has the potential to significantly reduce the dimensionality of 

the model input space, while allowing for better representation of variable model inputs. 

6.3.7 Combined Sensitivity/Uncertainty Analysis 

Uncertainty analysis (UA) may be used to identify how the uncertainty in an output can be 

allocated to uncertainty in the input parameters of a process or model, while sensi tivity analysis 

(SA) can be used to identify the input parameters which exhibit a high degree of influence on the 

model output. These procedures are often performed in conjunction with one another, and their 

combination is particularly conducive to the LHMC approach presented in this thesis. There is a 

case for further investigation of how parameter uncertainty and sensitivity indices may be 

combined in order to further improve the iterative model development process, as well as the 

final LHMC search. For example, a simple approach may be to combine the input uncertainty 

(Ui) and the input sensitivity (S i) to provide an overall parameter index that could be used to 

guide further investigation of individual parameters which exhibit a large degree of influence  

over the model outputs, or have a high degree of uncertainty, or a combination of both. There 

are a number of academic papers which focus on the application of formal UA and SA 

procedures to building energy modelling (V. Corrado and Mechri 2009; Hopfe 2009; Struck and 

Kotek 2009; Vincenzo Corrado and Mechri 2009; Zhao et al. 2011; Eisenhower and O’Neill 

2012; Spitz et al. 2012). 

6.3.8 Input parameter frequency distribution 

While a combined SA/UA procedure can provide guidance as to which input parameters require 

further investigation, it does not provide any guidance as to the optimal value for these 

parameters. Therefore, it may be useful to carry out a frequency analysis of the distribution of 

the sampled input parameters from the LHMC search (Section 3.8), and compare the values 

found in the top-ranking solutions to the specified probability density function. This may help 

highlight major discrepancies between assumed input distributions and optimal values. Such 

discrepancies may indicate an error in specification of the mean or distribution type for the 

parameter. Such an analysis may also be automated, by specifying acceptable ranges for 
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discrepancies between specified and optimal probability density functions (e.g. mean, µ±20% 

and standard deviation, σ±30%).  

6.3.9 Short-term weather forecast integration 

In order to use energy simulation models for the purpose of model-predictive control (MPC), it 

is essential to have accurate up-to-date weather and climate information for the region of 

interest. In this respect, predicted weather data, for a period of at least 3 days, will allow accurate 

simulation of predicted building performance, thus enable improved response.  

This type of control has the ability to reverse the current building control dynamic, from 

reactive, to pro-active. In other words, the building is no longer a passive observer of external 

conditions, but rather is able to actively respond to changing external influences. This may also 

include variables such as occupancy and external economic influences. There are a number of 

websites which provide local weather forecasting services. However, we are particularly 

interested in those services which also allow interaction with their data through open API's, such 

as that provided by forecast.io (see Appendix A.12).

http://forecast.io/
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A.1 Weather Data 

A.1.1 Download Weather Data (Batch FTP Script) 

 

open weather.nuigalway.ie 

nuigweather 

readonly 

!:--- FTP commands below here --- 

binary 

get "CR1000_Minute_Table.dat" 

get "CR1000_Hourly_Table.dat" 

pause 

disconnect 

pause 

bye 

 

 

A.1.2 Import and Aggregate in MySQL Database (SQL) 

 

#---------------------------------------------------------------------# 

# DESCRIPTION 

/* This script was created to automate the process of collecting weather 

data from the NUIG weather station. Data is collected in two (.dat) 

files, containing both hourly and minute interval data. This data is 

transferred to temporary tables and merged to a single weather data 

table. Missing dates, where present, are inserted with NULL values */ 

# AUTHOR - Daniel Coakley (daniel.coakley@nuigalway.ie) 

# DATE - January 2013 

#---------------------------------------------------------------------# 

 

#Insert all Data from Archive/Server to temporary Tables in SQL Database 

 

#HOURLY DATA 

DROP TABLE IF EXISTS temp.Weather1; 

CREATE TABLE temp.Weather1 ( 

    Date DateTime Primary Key, 

    Rainfall Double (5 , 3 ) 

); 

LOAD DATA LOCAL INFILE 'C:\\Users\\Daniel\\Google Drive\\PhD\\Weather 

Data\\Raw Data\\CR1000_Hourly_Table.dat'  

INTO TABLE temp.Weather1 

FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"' 

LINES TERMINATED BY '\n' 

IGNORE 4 LINES 

(Date, @dummy, Rainfall, @dummy); 

 

#MINUTE DATA 

DROP TABLE IF EXISTS temp.Weather2; 

CREATE TABLE temp.Weather2 ( 

    Date DateTime Primary Key, 

    AirTemp Double (5 , 3 ), 

    RH Double, 

    WindSpeed Double (10 , 5 ), 

    WindDir Double (10 , 5 ), 

    WindGust Double (10 , 5 ), 

    BP INT(11), 

    SlrTot Double (10 , 5 ), 
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    SlrDiff Double (10 , 5 ) 

); 

LOAD DATA LOCAL INFILE 'C:\\Users\\Daniel\\Google Drive\\PhD\\Weather 

Data\\Raw Data\\CR1000_Minute_Table.dat'  

INTO TABLE temp.Weather2 

FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"' 

LINES TERMINATED BY '\n' 

IGNORE 4 LINES 

(Date,@dummy,@dummy,@dummy,AirTemp,RH,@dummy,@dummy,WindSpeed,WindDir,Win

dGust,BP,SlrTot,SlrDiff); 

 

#MERGING TEMPORARY TABLES 

DROP TABLE IF EXISTS temp.WeatherTot; 

CREATE TABLE temp.WeatherTot ( 

    Date DateTime Primary Key, 

    AirTemp Double, 

    RH Double, 

    WindSpeed Double (10 , 5 ), 

    WindDir Double (10 , 5 ), 

    WindGust Double (10 , 5 ), 

    BP INT(11), 

    SlrTot Double (10 , 3 ), 

    SlrDiff Double (10 , 3 ), 

    Rainfall Double (4 , 2 ) 

); 

INSERT INTO temp.WeatherTot 

SELECT 

DATE,avg(AirTemp),avg(RH),avg(WindSpeed),avg(WindDir),avg(WindGust),avg(B

P),avg(SlrTot),avg(SlrDiff),avg(Rainfall) 

FROM temp.Weather2 

INNER JOIN temp.Weather1 

USING(Date) 

GROUP BY hour(Date),day(Date),month(Date),year(Date) 

ORDER BY Date; 

 

#INSERT MISSING DATES 

DROP TABLE IF EXISTS temp.WeatherTotDate; 

CREATE TABLE temp.WeatherTotDate ( 

    Date DateTime Primary Key, 

    AirTemp Double, 

    RH Double, 

    WindSpeed Double (10 , 5 ), 

    WindDir Double (10 , 5 ), 

    WindGust Double (10 , 5 ), 

    BP INT(11), 

    SlrTot Double (10 , 3 ), 

    SlrDiff Double (10 , 3 ), 

    Rainfall Double (4 , 2 ) 

); 

INSERT INTO temp.WeatherTotDate 

(Date,AirTemp,RH,WindSpeed,WindDir,WindGust,BP,SlrTot,SlrDiff,Rainfall) 

SELECT * 

FROM data.datelist 

LEFT JOIN temp.WeatherTot 

USING(Date) 

GROUP BY hour(Date),day(Date),month(Date),year(Date) 

ORDER BY Date; 

 

DROP TABLE temp.Weather1; 

DROP TABLE temp.Weather2; 

CREATE VIEW temp.weatherdata2012 AS 
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    SELECT  

        DATE, 

        avg(AirTemp), 

        avg(RH), 

        avg(WindSpeed), 

        avg(WindDir), 

        avg(BP), 

        avg(SlrTot), 

        avg(SlrDiff), 

        avg(Rainfall) 

    FROM 

        temp.WeatherTotDate 

    WHERE 

        DATE >= '2012-01-01 00:00' 

            AND DATE < '2013-01-01 00:00' 

    GROUP BY hour(Date) , day(Date) , month(Date) , year(Date) 

    ORDER BY Date; 

 

 

 

A.1.3 Export Weather Data for Conversion (SQL) 

 

SELECT  

Date_Format(DATE, '%Y-%m-%d'),Date_Format(Date,'%H:%i'), AirTemp, 

RH, WindSpeed, WindDir, BP, SlrTot, SlrDiff, Rainfall 

FROM temp.WeatherTotDate 

INTO OUTFILE 'C:\\Users\\Daniel\\Google Drive\\PhD\\Weather Data\\EPW 

Conversion\\EPW_Weather_Data1.csv' 

FIELDS TERMINATED BY ',' 

ENCLOSED BY ''; 
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A.2 Loading Archived BMS Data (MS SQL) 

Pre-Requisites: 

 BuildingManagment Program  

 Set up IIS Server on local machine (Refer: http://www.iis.net/) 

 Set up Microsoft SQL Server 2008 R2 

(http://www.microsoft.com/download/en/details.aspx?id=23650) 

Server Details 

Currently set up as ‘localhost’ server on local machine only  

Mixed mode SQL server Authentication 

 Username: sa 

 Password: ………… 

 

Restoring the BMS SQL Database 

1. Launch SQL Server Management Studio 

2. Right-click ‘Databases’ in Object Explorer Window 

3. Click ‘Restore Database…’  

 To Database: SQL Database Name (buildingmanagement2) 

 From Device: File: buildingmanagement2.bak 

Loading Data to BMS SQL Database  

1. Download current ARCHIVE folder from BMS server 

2. Copy ARCHIVE Folder to Building Management/ARCHIVE 

3. Create ‘processed’ folder at Building Management/ARCHIVE/processed 

 If you are running the program for the second or subsequent time, ensure the 

processed folder is empty as this may lead to DataHandlingException errors during 

loading 

4. Open BuildingManagement.exe 

5. Input Required Fields 

http://www.iis.net/
http://www.microsoft.com/download/en/details.aspx?id=23650
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 Database Directory: ARCHIVE folder location (e.g. C:\Building 

Management\ARCHIVE\) 

 Database Server: SQL server name (e.g. localhost) 

 Database Name: SQL database name (BuildingManagement2) 

6. Click ‘Load Files’ 

WARNING: This procedure may take a few hours to complete due to the number of 

cells to be checked and duplicate data contained in each csv file. Please allow up to 6 

hours to transfer one year’s data. 

 

A.3 Extracting BMS Data from MS SQL Database 

A.3.1 Export MS SQL Express Server Data (SQL) 

 

/****** Script for SelectTopNRows command from SSMS  ******/ 

SELECT TOP 10000000000 [SensorId] 

      ,[TimeOfEvent] 

      ,[Value] 

  FROM [buildingmanagement2].[dbo].[SensorData] 

  WHERE TimeOfEvent >= '2011-05-01 00:00' 

 

 

A.3.2 Import MS SQL Data to MySQL (SQL) 

 

DROP TABLE IF EXISTS buildingmanagement.sensordata; 

CREATE TABLE buildingmanagement.sensordata ( 

    SensorID Varchar(8) Not Null, 

    TimeofEvent DateTime Not Null, 

    Value Float Null, 

    idkey INT(11) AUTO_INCREMENT PRIMARY KEY 

); 

LOAD DATA LOCAL INFILE 'C:\\Users\\Daniel\\Documents\\PhD\\BES Model\\BMS 

Data\\SQL Import Data\\SensorData.csv'  

INTO TABLE buildingmanagement.sensordata 

FIELDS TERMINATED BY ',' 

LINES TERMINATED BY '\r\n' 

IGNORE 1 LINES; 
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A.4 Exporting Parametric Job Files (VB-script) 

 

 Sub ParameterList() 

' This subroutine writes a list of the variable parameters to the 

ParameterList.csv file. 

    ' This file will only contain those parameters which have not been 

specified as 'fixed' on the worksheet 

     

    ' Refresh this cell so that it automatically recalculates the current 

filepath & name of the sheet 

    Range("FullName").FormulaR1C1 = "=MyFullName()" 

     

    ' open writepath for the files 

    writepath = Range("FilePath").Value & "Input Files\Parametric\" & 

Range("FileName1").Value 

    Open writepath For Output As #1 

     

    'Print Headings 

    Print #1, "#" & "This is a list of variable model parameter fo input into 

jEPlus" 

    Print #1, "#" & "ID" & "," & "Name" & "," & "ParameterType" & "," & 

"Description" & "," & "SearchString" & "," & "ValueType" & "," & "ValueString" 

& "," & "ValueIndex" 

     

     

    'Count all global variables 

    NoVariables = 

Worksheets("Variables").Range("E7:E9999").SpecialCells(xlCellTypeConstants, 

xlTextValues).Cells.Count 

     

     'prints all global variables 

    Dim currentVarID As String 

    Dim currentVarName As String 

    Dim currentVarParType As String 

    Dim currentVarDescription As String 

    Dim currentVarSearchString As String 

    Dim currentVarValueType As String 

    Dim currentVarValueString As String 

    Dim currentVarValueIndex As String 

    Dim currentrow As Integer 

    Dim c As String 

  '  c = Range("L:L").Value 

   

    'For Each c In Range("L:L") 

    For currentrow = 1 To NoVariables - 1 

        currentVarID = Range("ID").Offset(currentrow, 0).Value 

        currentVarName = Range("ID").Offset(currentrow, 1).Value 

        currentVarParType = 0 

        currentVarDescription = Range("ID").Offset(currentrow, 4).Value 

        currentVarSearchString = Range("String").Offset(currentrow, 0).Value 

        currentVarValueType = Range("VariableType").Offset(currentrow, 

0).Value 

        currentVarValueString = Range("ID").Offset(currentrow, 5).Value 

        currentVarValueIndex = 0 

      '  c = Range("L:L").Offset(currentrow, 0).Value 

         

        If Range("ID").Offset(currentrow, 9).Value = "N" And 

Range("ID").Offset(currentrow, 10).Value = "Y" Then 
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            Print #1, "P" & currentVarID & "," & currentVarName & "," & 

currentVarParType & "," & currentVarDescription & "," & currentVarSearchString 

& "," & currentVarValueType & "," & "{" & currentVarValueString & "}" & "," & 

currentVarValueIndex 

        End If 

    Next 

    Close #1 

     

    ' open writepath for the Parameter Values 

    writepath = Range("FilePath").Value & "Input Files\Parametric\" & 

Range("FileName2").Value 

    Open writepath For Output As #2 

     

    'Print Headings 

    Print #2, "ID" & "," & "Name" & "," & "ParameterType" & "," & 

"Description" & "," & "SearchString" & "," & "ValueType" & "," & "ValueString" 

& "," & "ValueStdDev" & "," & "ValueIndex" 

     

     

    'Count all global variables 

    NoVariables = 

Worksheets("Variables").Range("E7:E9999").SpecialCells(xlCellTypeConstants, 

xlTextValues).Cells.Count 

     

     'prints all global variables 

 

    Dim currentVarValueStdDev As String 

   

    'For Each c In Range("L:L") 

    For currentrow = 1 To NoVariables - 1 

        currentVarID = Range("ID").Offset(currentrow, 0).Value 

        currentVarName = Range("ID").Offset(currentrow, 1).Value 

        currentVarParType = 0 

        currentVarDescription = Range("ID").Offset(currentrow, 4).Value 

        currentVarSearchString = Range("String").Offset(currentrow, 0).Value 

        currentVarValueType = Range("VariableType").Offset(currentrow, 

0).Value 

        currentVarValueString = Range("ID").Offset(currentrow, 5).Value 

        currentVarValueStdDev = Range("StdDev").Offset(currentrow, 0).Value 

        currentVarValueIndex = 0 

      '  c = Range("L:L").Offset(currentrow, 0).Value 

         

        If Range("ID").Offset(currentrow, 9).Value = "N" And 

Range("ID").Offset(currentrow, 10).Value = "Y" Then 

            Print #2, "P" & currentVarID & "," & currentVarName & "," & 

currentVarParType & "," & currentVarDescription & "," & currentVarSearchString 

& "," & currentVarValueType & "," & currentVarValueString & "," & 

currentVarValueStdDev & "," & currentVarValueIndex 

        End If 

    Next 

    Close #2 

    Dim ret As String 

    ret = "E:\Dropbox\PhD\Model\Analysis\Model\Parametric\Input 

Files\Parametric\CreateParametricBatch.bat" 

    Shell ret 

    End 

     

End Sub 
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A.5 Generating sample matrix (R-script) 

#======================================================================== 

# 

# CREATE A JOB IMPORT FILE FOR JEPLUS 

# 

#======================================================================== 

# 

# Read in the Parameter Data file 

# 

#setwd("C:/Users/Daniel/Google Drive/PhD/BES Model/Parametric Study/Input 

Files/Parametric") 

params <- read.csv(file="ParameterValues.csv",header=TRUE,sep=",") 

 

# for each row i in the Data file, we calculate a random parameter value 

# based on the specified mean and sd values. 

 

# Step 1: Specify Number of Simulations, s 

# This section creates a Simulation Index matrix  

 

s=10 # Number of simulations 

Job=1:s # Job Reference 

JobIndex=0 # Index Value for jEPlus, leave at 0 

WthrIndex=0 # Weather Index Value for jEPlus, leave at 0 

m<-matrix(Job) 

m<-cbind(m,JobIndex) #cbind is used to add additional columns to a matrix 

m<-cbind(m,WthrIndex) 

 

# c combines data into a vector matrix form, e.g, data<-c(1:10) 

# t may be used to transpose a vector, if required, e.g. t(data) 

# A for loop is initiated to add columns containing parameter values  

# (rnorm is used to generate a random normal distribution) 

 

for (i in 1:NROW(params)){ 

u<-c(rnorm(s,params$ValueString[i],params$ValueStdDev[i])) 

m<-cbind(m,u)} 

 

# The job file is output in csv format to the working directory. 

 

write.table(m,"JobFile.csv", sep =",", row.names = FALSE, col.names = 

FALSE) 

 

#======================================================================== 

# 

# ISSUES 

# 1.  Script generates Out of Range values which cause EnergyPlus to 

#crash occasionally. Needs to be addessed in Parametric Study sheet 

#(Define Ranges for all Params) 

#========================================================================

==================== 

 

#======================================================================== 

# 

# CHANGELOG 

#  

#======================================================================== 
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A.6 Aggregating Results (Java) 

In order to post-process the simulation results, it is necessary to compile the generated outputs 

and export them to the MySQL database. The current version of jEPlus (v.1.3) does not natively 

support this process.  As this process requires the generation of results for up to 500,000 

simulations, I ran into difficulty when outputting a summary of simulation results. jEPlus uses a 

‘for loop’ to read simulation results from the results directory, adds these to a large Data array 

and finally outputs a summary table to the Parent directory. However, due to the sheer size of 

the array, there is a problem with allocation of Virtual memory within the Java application. 

Therefore, it was necessary to write an external program in java to complete this step.  

The requirements for this package are as follows: 

 Loop through eplusout.csv files in simulation sub-folders in Results folder 

 Append ‘Job ID’ to first column of eplusout.csv file 

 Add entire file to SimResults.csv summary file 

This process loops through each Simulation result file, collecting the EnergyPlus outputs and 

exporting them to a single csv file or to a MySQL database. The following Java program was 

developed for this purpose: 

 

package com.resultscollector; 

 

import java.io.BufferedReader; 

import java.io.FileReader; 

import java.io.IOException; 

import java.util.ArrayList; 

import java.util.List; 

 

public class FileArray { 

 

    public String[] readLines(String filename) throws IOException { 

        FileReader fileReader = new FileReader(filename); 

        BufferedReader bufferedReader = new BufferedReader(fileReader); 

        List<String> lines = new ArrayList<String>(); 

        String line = null; 

        while ((line = bufferedReader.readLine()) != null) { 

            lines.add(line); 

        } 

        bufferedReader.close(); 

        return lines.toArray(new String[lines.size()]); 

    } 

} 

 

 

package com.resultscollector; 

 

import java.io.*;   

import com.resultscollector.FileArray; 
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public class ListFiles {   

           

    public static void main(String[] args) {   

        // eg java ListFiles c:\   

            try {   

                listFiles(new File("Output Files/jEPlus"));   

            } catch (Exception e) {   

                e.printStackTrace();   

            }   

    }  

     

    //TODO Need to change the code below to make it work using relative paths 

    // i.e. place jar in directory and execute.  

     

    //TODO Add other functions to program -  

    //Call jePlus and Start parsing files once jEPlus simulation process is 

complete 

    //Call MySQLImport to export results file to Database (see JDBC) 

     

    public static void listFiles(File dir) throws Exception {  

     boolean append = true; 

     File f1 = new File("Output Files/jEPlus/SimResults.csv"); 

     f1.delete(); 

        File[] files = dir.listFiles();  

        FileArray SimResults = new FileArray(); 

        FileWriter list = new FileWriter("Output Files/jEPlus/SimResults.csv", 

append); 

        for (int i = 0; i < files.length; i++) { 

          

         String fileName = files[i].getName(); 

          

            // put in your filter here   

            if (fileName.endsWith("eplusout.csv")) { 

              

                if (files[i].isFile()) { 

                 String Dir = files[i].getParentFile().getName(); 

                 String Path = files[i].getPath(); 

                 String[] lines = SimResults.readLines(Path); 

                  

                 for (String line : lines) { 

                  list.append(Dir + "," + line + "\n"); 

                 } 

            

                }   

            }   

            if (files[i].isDirectory()) {   

                listFiles(files[i]);   

            }   

        }   

       list.close();  

    }   

       

}   

 

//TODO Create .jar file to be executed as part of Simulation process (require 

relative path) 
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A.7 Pre-Processing: Temperature Data (SQL) 

 

#-----------------------------------------------------------------------# 

# DESCRIPTION - Aveage Zone Temperature Data (degC) 

# AUTHOR - Daniel Coakley (daniel.coakley@nuigalway.ie) 

# DATE - January 2013 

#-----------------------------------------------------------------------# 

 

DROP TABLE IF EXISTS temp_bms.RawRoomtemperature; 

CREATE TABLE temp_bms.RawRoomtemperature ( 

    Date DateTime Primary Key NULL, 

    D0010201 Double (5 , 3 ), 

    D0010202 Double (5 , 3 ), 

    D0010203 Double (5 , 3 ), 

    D0010204 Double (5 , 3 ), 

    D0010206 Double (5 , 3 ), 

    D0010207 Double (5 , 3 ), 

    D0010301 Double (5 , 3 ), 

    D0010302 Double (5 , 3 ), 

    D0010303 Double (5 , 3 ), 

    D0010304 Double (5 , 3 ), 

    D0010401 Double (5 , 3 ) 

); 

INSERT INTO temp_bms.RawRoomtemperature (Date,  

        D0010201, D0010202, D0010203, D0010204, D0010206, D0010207,  

        D0010301, D0010302, D0010303, D0010304, D0010401)  

SELECT TimeofEvent 

     , MAX(CASE WHEN SensorID = 'D0010201' THEN value END) 

     , MAX(CASE WHEN SensorID = 'D0010202' THEN value END) 

     , MAX(CASE WHEN SensorID = 'D0010203' THEN value END) 

     , MAX(CASE WHEN SensorID = 'D0010204' THEN value END) 

     , MAX(CASE WHEN SensorID = 'D0010206' THEN value END) 

     , MAX(CASE WHEN SensorID = 'D0010207' THEN value END) 

     , MAX(CASE WHEN SensorID = 'D0010301' THEN value END) 

     , MAX(CASE WHEN SensorID = 'D0010302' THEN value END) 

     , MAX(CASE WHEN SensorID = 'D0010303' THEN value END) 

     , MAX(CASE WHEN SensorID = 'D0010304' THEN value END) 

     , MAX(CASE WHEN SensorID = 'D0010401' THEN value END) 

  FROM buildingmanagement.sensordata 

GROUP BY TimeofEvent 

ORDER BY TimeofEvent; 

 

DROP TABLE IF EXISTS temp_bms.AverageRoomtemperature; 

CREATE TABLE temp_bms.AverageRoomtemperature ( 

    Date DateTime Primary Key NULL, 

    D0010201 Double (5 , 3 ), 

    D0010202 Double (5 , 3 ), 

    D0010203 Double (5 , 3 ), 

    D0010204 Double (5 , 3 ), 

    D0010206 Double (5 , 3 ), 

    D0010207 Double (5 , 3 ), 

    D0010301 Double (5 , 3 ), 

    D0010302 Double (5 , 3 ), 

    D0010303 Double (5 , 3 ), 

    D0010304 Double (5 , 3 ), 

    D0010401 Double (5 , 3 ) 

); 

INSERT INTO temp_bms.AverageRoomtemperature (Date,  
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        D0010201, D0010202, D0010203, D0010204, D0010206, 

        D0010207, D0010301, D0010302, D0010303, D0010304, 

        D0010401) 

SELECT Date,  

        avg(D0010201), avg(D0010202), avg(D0010203), avg(D0010204), 

avg(D0010206), 

        avg(D0010207), avg(D0010301), avg(D0010302), avg(D0010303), 

avg(D0010304),  

        avg(D0010401) 

FROM temp_bms.RawRoomtemperature 

GROUP BY hour(Date),day(Date),month(Date),year(Date) 

 

ORDER BY Date; 

DROP TABLE IF EXISTS buildingmanagement.zonetempaverage; 

CREATE TABLE buildingmanagement.zonetempaverage ( 

    Date DateTime Primary Key NULL, 

    ZoneTemp Double (5 , 3 ), 

    D0010201 Double (5 , 3 ), 

    D0010202 Double (5 , 3 ), 

    D0010203 Double (5 , 3 ), 

    D0010204 Double (5 , 3 ), 

    D0010206 Double (5 , 3 ), 

    D0010207 Double (5 , 3 ), 

    D0010301 Double (5 , 3 ), 

    D0010302 Double (5 , 3 ), 

    D0010303 Double (5 , 3 ), 

    D0010304 Double (5 , 3 ), 

    D0010401 Double (5 , 3 ) 

); 

INSERT INTO buildingmanagement.zonetempaverage (Date, ZoneTemp, D0010201, 

D0010202, D0010203, D0010204, D0010206, D0010207, D0010301, D0010302, 

D0010303, D0010304, D0010401) 

 

SELECT Date,  

((D0010201*0.1284)+(D0010202*0.1788)+(D0010203*0.0124)+(D0010204*0.1761)+         

(D0010206*0.1057)+(D0010207*0.0167)+(D0010301*0.0412)+(D0010302*0.0361)+         

(D0010303*0.0246)+(D0010304*0.0364)+(D0010401*0.2435)), D0010201, 

D0010202, D0010203, D0010204, D0010206, D0010207, D0010301, D0010302, 

D0010303, D0010304, D0010401 

         

FROM temp_bms.AverageRoomtemperature 

GROUP BY hour(Date),day(Date),month(Date),year(Date) 

ORDER BY Date; 

 

DROP TABLE IF EXISTS temp_bms.AverageRoomtemperature; 

CREATE TABLE temp_bms.AverageRoomtemperature ( 

    Date DateTime Primary Key NULL, 

    D0010201 Double (5 , 3 ), 

    D0010202 Double (5 , 3 ), 

    D0010203 Double (5 , 3 ), 

    D0010204 Double (5 , 3 ), 

    D0010206 Double (5 , 3 ), 

    D0010207 Double (5 , 3 ), 

    D0010301 Double (5 , 3 ), 

    D0010302 Double (5 , 3 ), 

    D0010303 Double (5 , 3 ), 

    D0010304 Double (5 , 3 ), 

    D0010401 Double (5 , 3 ) 

); 

INSERT INTO temp_bms.AverageRoomtemperature (Date,  

        D0010201, D0010202, D0010203, D0010204, D0010206, 
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        D0010207, D0010301, D0010302, D0010303, D0010304, 

        D0010401) 

SELECT Date,  

        avg(D0010201), avg(D0010202), avg(D0010203), avg(D0010204), 

avg(D0010206), 

        avg(D0010207), avg(D0010301), avg(D0010302), avg(D0010303), 

avg(D0010304),  

        avg(D0010401) 

FROM temp_bms.RawRoomtemperature 

GROUP BY hour(Date),day(Date),month(Date),year(Date) 

 

ORDER BY Date; 

DROP TABLE IF EXISTS buildingmanagement.zonetempaverage; 

CREATE TABLE buildingmanagement.zonetempaverage ( 

    Date DateTime Primary Key NULL, 

    ZoneTemp Double (5 , 3 ), 

    D0010201 Double (5 , 3 ), 

    D0010202 Double (5 , 3 ), 

    D0010203 Double (5 , 3 ), 

    D0010204 Double (5 , 3 ), 

    D0010206 Double (5 , 3 ), 

    D0010207 Double (5 , 3 ), 

    D0010301 Double (5 , 3 ), 

    D0010302 Double (5 , 3 ), 

    D0010303 Double (5 , 3 ), 

    D0010304 Double (5 , 3 ), 

    D0010401 Double (5 , 3 ) 

); 

INSERT INTO buildingmanagement.zonetempaverage (Date, ZoneTemp, D0010201, 

D0010202, D0010203, D0010204, D0010206, D0010207, D0010301, D0010302, 

D0010303, D0010304, D0010401) 

 

SELECT Date,  

((D0010201*0.1284)+(D0010202*0.1788)+(D0010203*0.0124)+(D0010204*0.1761)+         

(D0010206*0.1057)+(D0010207*0.0167)+(D0010301*0.0412)+(D0010302*0.0361)+         

(D0010303*0.0246)+(D0010304*0.0364)+(D0010401*0.2435)), D0010201, 

D0010202, D0010203, D0010204, D0010206, D0010207, D0010301, D0010302, 

D0010303, D0010304, D0010401 

         

FROM temp_bms.AverageRoomtemperature 

GROUP BY hour(Date),day(Date),month(Date),year(Date) 

ORDER BY Date; 
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A.8 Pre-Processing: Electrical & Heat Energy Consumption Data (SQL) 

 

 

 

  

 

#-----------------------------------------------------------------------# 

# DESCRIPTION - Aveage Hourly Electrical Energy Consumption (kWh) 

# AUTHOR - Daniel Coakley (daniel.coakley@nuigalway.ie) 

# DATE - January 2013 

#-----------------------------------------------------------------------# 

 

DROP TABLE IF EXISTS buildingmanagement.AverageElectrical; 

 

CREATE TABLE buildingmanagement.AverageElectrical ( 

    Date DateTime Primary Key NULL, 

    D0010225 Double (5 , 3 ) 

); 

 

INSERT INTO buildingmanagement.AverageElectrical (Date, D0010225) 

SELECT TimeofEvent, avg(Value) 

FROM buildingmanagement.sensordata 

WHERE SensorID='D0010225' 

GROUP BY 

hour(TimeofEvent),day(TimeofEvent),month(TimeofEvent),year(TimeofEvent) 

ORDER BY TimeofEvent; 

 

#-----------------------------------------------------------------------# 

# DESCRIPTION - Aveage Daily Heat Energy Consumption (kWh) 

# AUTHOR - Daniel Coakley (daniel.coakley@nuigalway.ie) 

# DATE - January 2013 

#-----------------------------------------------------------------------# 

 

DROP TABLE IF EXISTS buildingmanagement.DailyHeat; 

 

CREATE TABLE buildingmanagement.DailyHeat ( 

    Date DateTime Primary Key NULL, 

    D0010117 Double (5 , 3 ) 

); 

 

INSERT INTO buildingmanagement.DailyHeat (Date, D0010117) 

SELECT TimeofEvent, sum(Value) 

FROM buildingmanagement.sensordata 

WHERE SensorID='D0010117' 

GROUP BY day(TimeofEvent),month(TimeofEvent),year(TimeofEvent) 

ORDER BY TimeofEvent; 



Appendices 

247 

A.9 Post-Processing: Simulation Data (R) 

#-----------------------------------------------------------------------# 

# DESCRIPTION -  Simulation Results Post-Processing Script 

# AUTHOR - Daniel Coakley (daniel.coakley@nuigalway.ie) 

# DATE - January 2013 

#-----------------------------------------------------------------------# 

 

 

Simulation Results (Sample) 

======================================================== 

The following page presents a summary of current model simulation 

results, illustrating simulation error by type, where: 

* GOFT = Goodness-of-Fit (Total) 

  * GOFA = Goodness-of-Fit (CVRMSE) 

  * GOFB = Goodness-of-Fit (NMBE) 

* Heat = Heating Energy Consumption (kWh) 

* Elec = Electrical Energy Consumption (kWh) 

* Temp = Average Zone Temperature (degC) 

 

Further detailed visualisations are available for each simulation run, 

showing absolute error for various facets (hour, weekday, month). 

 

## Initial set-up 

 

Set working directory and load libraries. 

```{r init.parameters, echo=TRUE, 

warning=FALSE,error=FALSE,message=FALSE} 

setwd("E:/Dropbox/PhD/Model/Analysis") 

library(ggplot2) 

library(lattice) 

library(latticeExtra) 

library(reshape) 

require(grid) 

require(gridExtra) 

``` 

 

Read in data: weather data, measured building data and simulation data. 

```{r Reading Data - Measured, 

echo=TRUE,cache=TRUE,error=FALSE,message=FALSE,warning=FALSE} 

weather <- read.csv("Model\\Calibration Data\\WeatherData2011.csv") 

hourly  <- read.csv("Model\\Calibration Data\\HourlyData2011.csv") 

hourly  <- na.omit(hourly) 

heat    <- read.csv("Model\\Calibration Data\\DailyHeat2011.csv") 

``` 

 

Read in data: weather data, measured building data and simulation data. 

```{r Reading Data - Simulated, 

echo=TRUE,cache=FALSE,error=FALSE,message=FALSE,warning=FALSE} 

#sim     <- read.csv("Model\\Current Model\\BaseModel.csv") 

sim     <- read.csv("Model\\Current 

Model\\SimulationFileAndResults\\SimulationFile.csv") 

 

``` 

 

Read in results of previous runs, and determine whether this is a first 

run. 
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```{r Reading Last Run, 

echo=TRUE,error=FALSE,warning=FALSE,message=FALSE,results='asis',eval=TRU

E} 

models  <- read.csv("Results.csv") 

try(i<- max(models$Revision)) 

if (i==-Inf || i=="") { 

  n=1 

} else { 

  n=i+1 

} 

``` 

 

Set weightings for various statistical indices and measurements in order 

to determine goodness-of-fit (GOF) 

```{r GOF, echo=TRUE,cache=TRUE,error=FALSE,message=FALSE,warning=FALSE} 

WHeat   <-  0.3   #Heating energy consumption (kWh) 

WElec   <-  0.6   #Electrical energy consumption (kWh) 

WTemp   <-  0.1   #Average Temperature (degC) 

WCV     <-  0.4   #CVRMSE weighting 

WNMBE   <-  0.6   #NMBE weighting 

``` 

 

Multiplot function (for use with ggplot) 

```{r Multiplot Function,eval=TRUE,cache=TRUE,echo=TRUE} 

# Multiple plot function 

# 

# ggplot objects can be passed in ..., or to plotlist (as a list of 

ggplot objects) 

# - cols:   Number of columns in layout 

# - layout: A matrix specifying the layout. If present, 'cols' is 

ignored. 

# 

# If the layout is something like matrix(c(1,2,3,3), nrow=2, byrow=TRUE), 

# then plot 1 will go in the upper left, 2 will go in the upper right, 

and 

# 3 will go all the way across the bottom. 

# 

multiplot <- function(..., plotlist=NULL, file, cols=1, layout=NULL) { 

  require(grid) 

 

  # Make a list from the ... arguments and plotlist 

  plots <- c(list(...), plotlist) 

 

  numPlots = length(plots) 

 

  # If layout is NULL, then use 'cols' to determine layout 

  if (is.null(layout)) { 

    # Make the panel 

    # ncol: Number of columns of plots 

    # nrow: Number of rows needed, calculated from # of cols 

    layout <- matrix(seq(1, cols * ceiling(numPlots/cols)), 

                    ncol = cols, nrow = ceiling(numPlots/cols)) 

  } 

 

 if (numPlots==1) { 

    print(plots[[1]]) 

 

  } else { 

    # Set up the page 

    grid.newpage() 
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    pushViewport(viewport(layout = grid.layout(nrow(layout), 

ncol(layout)))) 

 

    # Make each plot, in the correct location 

    for (i in 1:numPlots) { 

      # Get the i,j matrix positions of the regions that contain this 

subplot 

      matchidx <- as.data.frame(which(layout == i, arr.ind = TRUE)) 

 

      print(plots[[i]], vp = viewport(layout.pos.row = matchidx$row, 

                                      layout.pos.col = matchidx$col)) 

    } 

  } 

} 

``` 

 

 

## Pre-Processing 

 

Tidy up simulation file: Change column headers, fix timestamp format 

```{r cleaning, echo=TRUE, warning=FALSE,error=FALSE,message=FALSE} 

names(sim)[1] <- "Date" 

heat$Date<-strftime(heat$Date,"%d/%m/%Y %H:%M") 

sim$Date<-strftime(strptime(sim$Date," %m/%d  %H:%M:%Y"),"%d/%m/2011 

%H:%M") 

``` 

 

Next, merge the data in one single data frame 

```{r Merging, echo=TRUE, warning=FALSE,error=FALSE,message=FALSE} 

HourlyTotal <- merge(hourly,sim,by=c("Date"),all.x=TRUE) 

DailyTotal  <- merge(heat,HourlyTotal,by=c("Date"),all.x=TRUE) 

DailyTotal  <- DailyTotal[order(as.Date(DailyTotal$Date, 

format="%d/%m/%Y")),] 

``` 

 

Assign variable names 

```{r Assign Variable Names, echo=TRUE, 

warning=FALSE,error=FALSE,message=FALSE} 

try(names(HourlyTotal)[names(HourlyTotal) == 

"HW_DISTRICT_HEATING.District.Heating.Rate..W..Hourly."] <- "Sim.Heat") 

try(names(DailyTotal)[names(DailyTotal) == 

"HW_DISTRICT_HEATING.District.Heating.Rate..W..Hourly."] <- "Sim.Heat") 

try(names(DailyTotal)[names(DailyTotal) == 

"HW_PLANT_LOOP.Plant.Loop.Heating.Demand..W..Daily."] <- "Sim.Heat") 

try(names(HourlyTotal)[names(HourlyTotal) == 

"CHW_DISTRICT_COOLING.District.Cooling.Rate..W..Hourly."] <- "Sim.Cool") 

try(names(HourlyTotal)[names(HourlyTotal) == 

"Whole.Building.Total.HVAC.Electric.Demand..W..Hourly."] <- "Sim.HVAC") 

try(names(HourlyTotal)[names(HourlyTotal) == 

"Whole.Building.Total.Electric.Demand..W..Hourly."] <- "Sim.Elec") 

#try(names(HourlyTotal)[names(HourlyTotal) == 

"Whole.Building.Total.Building.Electric.Demand..W..Hourly."] <- 

"Sim.Elec") 

try(names(HourlyTotal)[names(HourlyTotal) == 

"NLIB_ZONE_01.Zone.Mean.Air.Temperature..C..Hourly."] <- "Sim.Temp") 

 

try(names(DailyTotal)[names(DailyTotal) == "D0010117"] <- "Meas.Heat") 

try(names(HourlyTotal)[names(HourlyTotal) == ""] <- "Meas.Cool") 

try(names(HourlyTotal)[names(HourlyTotal) == ""] <- "Meas.HVAC") 

try(names(HourlyTotal)[names(HourlyTotal) == "ZoneElectric"] <- 

"Meas.Elec") 
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try(names(HourlyTotal)[names(HourlyTotal) == "ZoneTemp"] <- "Meas.Temp") 

 

try(names(HourlyTotal)[names(HourlyTotal) == 

"Environment.Outdoor.Dry.Bulb..C..Hourly."] <- "Meas.DryBlb") 

try(names(HourlyTotal)[names(HourlyTotal) == 

"Environment.Outdoor.Wet.Bulb..C..Hourly."] <- "Meas.WetBlb") 

try(names(HourlyTotal)[names(HourlyTotal) == 

"Environment.Direct.Solar..W.m2..Hourly"] <- "Meas.DirSol") 

try(names(HourlyTotal)[names(HourlyTotal) == 

"Environment.DayType.Index....Hourly."] <- "Meas.DayTyp") 

 

try(HourlyTotal$Sim.Elec<-HourlyTotal$Sim.Elec/1000) # Convert W to kWhr 

(as measured) 

try(DailyTotal$Sim.Heat<-DailyTotal$Sim.Heat*(24/1000)) # Convert W to 

kWhr (as measured) 

``` 

 

Define factors and levels 

```{r Define factors, echo=TRUE, warning=FALSE,error=FALSE,message=FALSE} 

daylevels=c("Sun","Mon","Tue","Wed","Thu","Fri","Sat") 

daytypelevels=c("Weekend","Weekday","Weekday","Weekday","Weekday","Weekda

y","Weekend") 

monthlevels=c("May","Jun","Jul","Aug","Sep","Oct","Nov","Dec") 

#monthlevels=c("Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct

","Nov","Dec") 

monthtypelevels=c("Academic","Academic","Academic","Academic","Academic",

"Summer","Summer","Summer","Academic","Academic","Academic","Academic") 

 

HourlyTotal$weekdaynum<-as.POSIXlt(HourlyTotal$Date)$wday+1 

HourlyTotal$hour<-as.numeric(format(strptime(HourlyTotal$Date, 

format='%d/%m/%Y %H:%M'), format="%H"))  

HourlyTotal$monthnum<-format(strptime(HourlyTotal$Date, format='%d/%m/%Y 

%H:%M'), format="%b") 

 

DailyTotal$weekdaynum<-weekdays(as.Date(DailyTotal$Date,'%d/%m/%Y 

%H:%M')) 

DailyTotal$hour<-as.numeric(format(strptime(DailyTotal$Date, 

format='%d/%m/%Y %H:%M'), format="%H"))  

DailyTotal$monthnum<-format(strptime(DailyTotal$Date, format='%d/%m/%Y 

%H:%M'), format="%b") 

 

HourlyTotal <- HourlyTotal[order(as.Date(HourlyTotal$Date, 

format="%d/%m/%Y %H:%M")),] 

DailyTotal <- DailyTotal[order(as.Date(DailyTotal$Date, format="%d/%m/%Y 

%H:%M")),] 

#DailyTotal <- DailyTotal[complete.cases(DailyTotal),] 

 

DailyTotal$month <- as.factor(DailyTotal$monthnum) 

HourlyTotal$month <- as.factor(HourlyTotal$monthnum) 

DailyTotal$weekday <- as.factor(DailyTotal$weekdaynum) 

HourlyTotal$weekday <- as.factor(HourlyTotal$weekdaynum) 

 

HourlyTotal$month <- ordered(HourlyTotal$month, levels = monthlevels) 

HourlyTotal$weekday <- ordered(HourlyTotal$weekday, labels = daylevels) 

HourlyTotal$daytype<-factor(HourlyTotal$weekdaynum) 

levels(HourlyTotal$daytype)=daytypelevels 

HourlyTotal$monthtype<-factor(HourlyTotal$month, levels = monthlevels) 

levels(HourlyTotal$monthtype)=monthtypelevels 

 

DailyTotal$month <- ordered(DailyTotal$month, levels = monthlevels) 

DailyTotal$weekday <- ordered(DailyTotal$weekday, labels = daylevels) 
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``` 

 

## Post-processing 

 

Define error calculation methods 

```{r Errors, echo=TRUE, warning=FALSE,error=FALSE,message=FALSE} 

 

## Relative absolute error (RAE) ------------------ 

 

ABSerror <- function(x,y,na.rm=TRUE) { 

  ifelse (x == 0 | y == 0,  

          ABS <- "NA",  

          ABS <- abs((((((x-y)/y)*100)^2)^0.5)) 

          ) 

} 

 

BiasError <- function(x,y,na.rm=TRUE) { 

  ifelse (x == 0 | y == 0,  

          ABS <- "NA",  

          ABS <- ((x-y)/y)*100) 

} 

 

## Absolute error (MAE) ------------------ 

MAerror <- function(x,y,na.rm=TRUE) {  

  MAE <- abs(x-y) 

} 

``` 

 

Calculate error values 

```{r Results, echo=TRUE, warning=FALSE,error=FALSE,message=FALSE} 

try(HourlyTotal$ABStemp <- 

as.numeric(ABSerror(HourlyTotal$Sim.Temp,HourlyTotal$Meas.Temp))) 

try(HourlyTotal$ABSelec <- 

as.numeric(ABSerror(HourlyTotal$Sim.Elec,HourlyTotal$Meas.Elec))) 

try(HourlyTotal$Errorelec <- 

as.numeric(BiasError(HourlyTotal$Sim.Elec,HourlyTotal$Meas.Elec))) 

try(DailyTotal$ABSheat <-  

as.numeric(ABSerror(DailyTotal$Sim.Heat,DailyTotal$Meas.Heat))) 

try(DailyTotal$MAEheat <-  

as.numeric(MAerror(DailyTotal$Sim.Heat,DailyTotal$Meas.Heat))) 

 

 

vars1<-c("month","Sim.Elec","Meas.Elec") 

MonthlyTotalElec<-HourlyTotal[vars1] 

colnames(MonthlyTotalElec)<-vars1 

MonthlyTotalElec<-aggregate(. ~ month, data = MonthlyTotalElec, sum) 

 

vars2<-c("month","Sim.Temp","Meas.Temp") 

MonthlyTotalTemp<-HourlyTotal[vars2] 

colnames(MonthlyTotalTemp)<-vars2 

MonthlyTotalTemp<-aggregate(. ~ month, data = MonthlyTotalTemp, mean) 

 

vars3<-c("month","Sim.Heat","Meas.Heat") 

MonthlyTotalHeat<-DailyTotal[vars3] 

colnames(MonthlyTotalHeat)<-vars3 

MonthlyTotalHeat<-aggregate(. ~ month, data = MonthlyTotalHeat, sum) 

 

MonthlyTotal<-cbind(MonthlyTotalHeat,MonthlyTotalElec,MonthlyTotalTemp) 
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``` 

 

 

## Result Visualisation 

```{r Plotting Loop,eval=FALSE,echo=FALSE} 

# summarydata <- 

as.data.frame(cbind(HourlyTotal$ABStemp,HourlyTotal$weekday,HourlyTotal$m

onth,HourlyTotal$hour,HourlyTotal$DryBlb)) 

# write.csv(summarydata,"Model\\SummaryData.csv") 

# summarydata <- read.csv("Model\\SummaryData.csv") 

# DailyTotal$weekday <- as.factor(DailyTotal$weekday) 

# summarydata$weekday <- as.factor(HourlyTotal$weekday) 

# summarydata$month <- ordered(HourlyTotal$month, levels = monthlevels) 

# summarydata$weekday <- ordered(HourlyTotal$weekday, labels = daylevels) 

``` 

 

### Temperature Data  

```{r Plotting - 

Hourly,echo=TRUE,warning=FALSE,error=FALSE,message=FALSE} 

dftemp<-with(HourlyTotal, tapply(ABStemp, list(hour, weekday, month), 

mean,na.rm=T)) 

dftemp2<-with(HourlyTotal, tapply(ABStemp, list(hour, weekday), 

mean,na.rm=T)) 

dftemp3<-with(HourlyTotal, tapply(ABStemp, list(hour, month), 

mean,na.rm=T)) 

 

max <- max(dftemp,na.rm=T) 

min <- 0 

seq <- seq(min,max,max/200) 

 

plot1<-contourplot(ABStemp ~ hour * weekday | month, 

                   data = HourlyTotal, 

                   cuts = 200, 

                   labels=TRUE, 

                   contour=FALSE, 

                   drop.unused.levels = 

lattice.getOption("drop.unused.levels"), 

                   region = TRUE, 

                   pretty=FALSE, 

                   xscale.components = xscale.components.subticks, 

                   at=seq, 

                   xlab = "", 

                   ylab = "Day of Week", 

                   

col.regions=colorRampPalette(c("blue","yellow","red")), 

                   main = "Absolute % Error (Temperature)", 

                   layout=c(2,4), 

                   as.table= TRUE 

) 

 

plot2<-contourplot(dftemp2, 

                   aspect=0.3, 

                   cuts = 200, 

                   contour=FALSE, 

                   region = TRUE, 

                   pretty=FALSE, 

                   xscale.components = xscale.components.subticks, 

                   at=seq, 

                   xlab = "Hour of Day", 

                   ylab = "Day of Week", 
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col.regions=colorRampPalette(c("blue","yellow","red")), 

) 

 

plot3<-contourplot(dftemp3,  

                   aspect=0.3, 

                   cuts = 200, 

                   #labels=TRUE, 

                   contour=FALSE, 

                   region = TRUE, 

                   pretty=FALSE, 

                   xscale.components = xscale.components.subticks, 

                   at=seq, 

                   xlab = "Hour of Day", 

                   ylab = "Month of Year", 

                   col.regions=colorRampPalette(c("blue","yellow","red")) 

) 

 

png('Results\\Current\\Temperature.png', width = 3600, height = 5000, 

units = "px", res = 400)  

print(plot1, position = c(0,.5,1,1), more=TRUE) 

print(plot2, position = c(0,.25,1,.5), more=TRUE) 

print(plot3, position = c(0,0,1,.25), more=FALSE) 

dev.off() 

``` 

 

### Electrical Data 

```{r Plotting - 

Electrical,echo=TRUE,warning=FALSE,error=FALSE,message=FALSE} 

dfelec<-with(HourlyTotal, tapply(ABSelec, list(hour, month), mean, 

na.rm=T)) 

dfelec2<-with(HourlyTotal, tapply(ABSelec, list(hour, weekday), mean, 

na.rm=T)) 

 

max <- max(dfelec,na.rm=T) 

seq <- seq(min,max,max/200) 

 

plot4<-contourplot(ABSelec ~ hour * weekday | month, 

                   data = HourlyTotal, 

                   cuts = 200, 

                   labels=TRUE, 

                   contour=FALSE, 

                   drop.unused.levels = 

lattice.getOption("drop.unused.levels"), 

                   region = TRUE, 

                   pretty=FALSE, 

                   xscale.components = xscale.components.subticks, 

                   at=seq, 

                   xlab = "", 

                   ylab = "Day of Week", 

                   

col.regions=colorRampPalette(c("blue","yellow","red")), 

                   main = "Absolute % Error (Electrical)", 

                   layout=c(2,4), 

                   as.table= TRUE) 

 

# plot5<-contourplot(ABSelec ~ hour * weekday, 

#                    aspect=0.3, 

#                    data = HourlyTotal, 

#                    cuts = 200, 

#                    #labels=TRUE, 
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#                    contour=FALSE, 

#                    region = TRUE, 

#                    pretty=FALSE, 

#                    xscale.components = xscale.components.subticks, 

#                    at=seq, 

#                    xlab = "Hour of Day", 

#                    ylab = "Day of Week", 

#                    

col.regions=colorRampPalette(c("blue","yellow","red")) 

# ) 

 

 

plot5<-contourplot(dfelec2, 

                   aspect=0.3, 

                   cuts = 200, 

                   #labels=TRUE, 

                   contour=FALSE, 

                   region = TRUE, 

                   pretty=FALSE, 

                   xscale.components = xscale.components.subticks, 

                   at=seq, 

                   xlab = "Hour of Day", 

                   ylab = "Day of Week", 

                   col.regions=colorRampPalette(c("blue","yellow","red")) 

) 

 

 

# plot6<-contourplot(ABSelec ~ hour * month,  

#                    aspect=0.3, 

#                    data = HourlyTotal, 

#                    cuts = 200, 

#                    #labels=TRUE, 

#                    contour=FALSE, 

#                    region = TRUE, 

#                    pretty=FALSE, 

#                    xscale.components = xscale.components.subticks, 

#                    at=seq, 

#                    xlab = "Hour of Day", 

#                    ylab = "Month of Year", 

#                    

col.regions=colorRampPalette(c("blue","yellow","red")) 

# ) 

 

plot6<-contourplot(dfelec,  

                   aspect=0.3, 

                   cuts = 200, 

                   #labels=TRUE, 

                   contour=FALSE, 

                   region = TRUE, 

                   pretty=FALSE, 

                   xscale.components = xscale.components.subticks, 

                   at=seq, 

                   xlab = "Hour of Day", 

                   ylab = "Month of Year", 

                   col.regions=colorRampPalette(c("blue","yellow","red")) 

) 

 

png('Results\\Current\\ABSElectrical.png', width = 3600, height = 5000, 

units = "px", res = 400)  

print(plot4, position = c(0,.5,1,1), more=TRUE) 

print(plot5, position = c(0,.25,1,.5), more=TRUE) 
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print(plot6, position = c(0,0,1,.25), more=FALSE) 

dev.off() 

```` 

 

 

### Electrical Data - Error (%) 

```{r Plotting - 

Electrical2,echo=TRUE,warning=FALSE,error=FALSE,message=FALSE} 

dfelec2<-with(HourlyTotal, tapply(Errorelec, list(hour, month), mean, 

na.rm=T)) 

dfelec<-with(HourlyTotal, tapply(Errorelec, list(hour, weekday), mean, 

na.rm=T)) 

 

max2 <- max(dfelec2,na.rm=T) 

min2 <- min(dfelec2,na.rm=T) 

seq2 <- seq(min2,max2,max2/200) 

 

plot10<-contourplot(Errorelec ~ hour * weekday | month, 

                   data = HourlyTotal, 

                   cuts = 200, 

                   labels=TRUE, 

                   contour=FALSE, 

                   drop.unused.levels = 

lattice.getOption("drop.unused.levels"), 

                   region = TRUE, 

                   pretty=FALSE, 

                   xscale.components = xscale.components.subticks, 

                   at=seq2, 

                   xlab = "", 

                   ylab = "Day of Week", 

                   

col.regions=colorRampPalette(c("blue","yellow","red")), 

                   main = "Bias % Error (Electrical)", 

                   layout=c(2,4), 

                   as.table= TRUE) 

 

plot11<-contourplot(dfelec, 

                   aspect=0.3, 

                   cuts = 200, 

                   #labels=TRUE, 

                   contour=FALSE, 

                   region = TRUE, 

                   pretty=FALSE, 

                   xscale.components = xscale.components.subticks, 

                   at=seq2, 

                   xlab = "Hour of Day", 

                   ylab = "Day of Week", 

                   col.regions=colorRampPalette(c("blue","yellow","red")) 

) 

 

 

plot12<-contourplot(dfelec2,  

                   aspect=0.3, 

                   cuts = 200, 

                   #labels=TRUE, 

                   contour=FALSE, 

                   region = TRUE, 

                   pretty=FALSE, 

                   xscale.components = xscale.components.subticks, 

                   at=seq2, 

                   xlab = "Hour of Day", 
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                   ylab = "Month of Year", 

                   col.regions=colorRampPalette(c("blue","yellow","red")) 

) 

 

 

png('Results\\Current\\Electrical.png', width = 3600, height = 5000, 

units = "px", res = 400)  

print(plot10, position = c(0,.5,1,1), more=TRUE) 

print(plot11, position = c(0,.25,1,.5), more=TRUE) 

print(plot12, position = c(0,0,1,.25), more=FALSE) 

dev.off() 

```` 

 

### Electrical Data - Statistical Difference 

```{r Plotting - 

Electrical3,echo=TRUE,warning=FALSE,error=FALSE,message=FALSE} 

dfelec2<-with(HourlyTotal, tapply(Errorelec, list(hour, month), mean)) 

max2 <- max(dfelec2,na.rm=T) 

min2 <- min(dfelec2,na.rm=T) 

seq2 <- seq(min2,max2,max2/200) 

 

plot13<-ggplot(HourlyTotal, aes(x=factor(hour), 

y=Errorelec,fill=daytype,xlab="Hour"),na.rm=T) +  

              stat_summary(fun.y = "mean", geom = 

"bar",position=position_dodge(0.95),na.rm=T) + 

              xlab("Hour") + ylab("Error (%)") + ggtitle("Hourly Absolute 

% Error (Electrical) by Daytype and Term") 

   

plot14<- plot13 + facet_grid(monthtype ~ .) + ggtitle("") 

 

             

plot15<-ggplot(HourlyTotal, aes(x=factor(hour), 

y=Errorelec,fill=monthtype,xlab="Hour"),na.rm=T) +  

              stat_summary(fun.y = "mean", geom = 

"bar",position=position_dodge(0.95),na.rm=T) + 

              xlab("Hour") + ylab("Error (%)")+ ggtitle("Hourly Absolute 

% Error (Electrical) by Term and Month") 

             

             

plot16<- plot13 + facet_grid(month ~ .) + ggtitle("") 

 

 

 

png('Results\\Current\\Electrical4.png', width = 3600, height = 5000, 

units = "px", res = 400)  

grid.arrange(plot15,plot16,heights=1:2,ncol=1) 

dev.off() 

png('Results\\Current\\Electrical3.png', width = 3600, height = 5000, 

units = "px", res = 400)  

grid.arrange(plot13,plot14,heights=1:2,ncol=1) 

dev.off() 

```` 

 

 

### Heating Data 

```{r Plotting - 

Heating,echo=TRUE,warning=FALSE,error=FALSE,message=FALSE} 

dfheat<-with(DailyTotal, tapply(MAEheat, list(weekday, month), mean)) 

max <- max(dfheat,na.rm=T) 

seq <- seq(min,max,max/200) 
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plot7<-contourplot(MAEheat ~ weekday * month, 

                   data = DailyTotal, 

                   cuts = 200, 

                   labels=TRUE, 

                   contour=FALSE, 

                   drop.unused.levels = 

lattice.getOption("drop.unused.levels"), 

                   region = TRUE, 

                   pretty=FALSE, 

                   at=seq, 

                   xlab = "", 

                   ylab = "Day of Week", 

                   

col.regions=colorRampPalette(c("blue","yellow","red")), 

                   main = "Absolute Error (Heat)",, 

                   as.table= TRUE) 

 

plot8 <- bwplot(MAEheat~weekday,data=DailyTotal,as.table= TRUE) 

plot9 <- bwplot(MAEheat~month,data=DailyTotal,as.table= TRUE) 

 

png('Results\\Current\\Heat.png', width = 3600, height = 5000, units = 

"px", res = 400)  

print(plot7, split=c(1,1,1,3), more=TRUE) 

print(plot8, split=c(1,2,1,3), more=TRUE) 

print(plot9, split=c(1,3,1,3), more=FALSE) 

#print(plot10, split=c(1,4,1,4), more=FALSE) 

dev.off() 

``` 

 

Plot to screen 

```{r Plotting - Hourly Temperature, 

echo=TRUE,warning=FALSE,error=FALSE,message=FALSE,eval=FALSE} 

## Temperature Error Plots 

print(plot1) 

print(plot2, width = 3600, height = 1500, units = "px", res = 400) 

print(plot3, width = 3600, height = 1500, units = "px", res = 400) 

``` 

 

```{r Plotting - Hourly Electrical, 

echo=TRUE,warning=FALSE,error=FALSE,message=FALSE,eval=FALSE} 

## Electrical Error Plots 

print(plot4) 

print(plot5) 

print(plot6) 

``` 

 

```{r Plotting - Daily Heat, 

echo=TRUE,warning=FALSE,error=FALSE,message=FALSE,eval=FALSE} 

## Heating Error Plots 

print(plot7) 

print(plot8) 

print(plot9) 

``` 

 

```{r 

Stats,eval=FALSE,echo=FALSE,warning=FALSE,error=FALSE,message=FALSE} 

#qplot(ABStemp,hour,data=HourlyTotal,facets=month~.,binwidth=2) 

#qplot(ABStemp,data=HourlyTotal,facets=month~.,binwidth=2) 

#qplot(ABStemp,data=HourlyTotal,facets=weekday~.,binwidth=2) 

``` 
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## Statistical summary 

 

Calculate the overally Mean Bias Error (MBE) and CV root mean square 

error (CVRMSE) for model 

```{r Goodness-of-Fit Calcs, 

echo=TRUE,warning=FALSE,error=FALSE,message=FALSE} 

 

MBError <-function (Qobs, Qsim)    

{  

  Qsim <- Qsim[!is.na(Qobs)]  

  Qobs <- Qobs[!is.na(Qobs)]  

  Qobs <- Qobs[!is.na(Qsim)]  

  Qsim <- Qsim[!is.na(Qsim)]  

  if (length(Qobs) == 0 || length(Qsim) == 0)  

    return(NA)  

  MB <- abs(((sum(Qsim) - sum(Qobs))/sum(Qobs))) 

  return(MB)  

} 

 

CVRMSError <-function (Qobs, Qsim)    

{  

  Qsim <- Qsim[!is.na(Qobs)]  

  Qobs <- Qobs[!is.na(Qobs)]  

  Qobs <- Qobs[!is.na(Qsim)]  

  Qsim <- Qsim[!is.na(Qsim)]  

  if (length(Qobs) == 0 || length(Qsim) == 0)  

    return(NA)  

  CVRMSE <- (sqrt((sum((Qsim-Qobs)^2)/length(Qobs)))/mean(Qobs))    

  return(CVRMSE)  

}  

 

try(MBelec<-MBError(HourlyTotal$Meas.Elec,HourlyTotal$Sim.Elec)) 

try(MBheat<-MBError(DailyTotal$Meas.Heat,DailyTotal$Sim.Heat)) 

try(MBtemp<-MBError(HourlyTotal$Meas.Temp,HourlyTotal$Sim.Temp)) 

 

try(CVelec<-CVRMSError(HourlyTotal$Meas.Elec,HourlyTotal$Sim.Elec)) 

try(CVheat<-CVRMSError(DailyTotal$Meas.Heat,DailyTotal$Sim.Heat)) 

try(CVtemp<-CVRMSError(HourlyTotal$Meas.Temp,HourlyTotal$Sim.Temp)) 

 

try(Monthly_MBelec<-

MBError(MonthlyTotal$Meas.Elec,MonthlyTotal$Sim.Elec)) 

try(Monthly_MBheat<-

MBError(MonthlyTotal$Meas.Heat,MonthlyTotal$Sim.Heat)) 

try(Monthly_MBtemp<-

MBError(MonthlyTotal$Meas.Temp,MonthlyTotal$Sim.Temp)) 

 

try(Monthly_CVelec<-

CVRMSError(MonthlyTotal$Meas.Elec,MonthlyTotal$Sim.Elec)) 

try(Monthly_CVheat<-

CVRMSError(MonthlyTotal$Meas.Heat,MonthlyTotal$Sim.Heat)) 

try(Monthly_CVtemp<-

CVRMSError(MonthlyTotal$Meas.Temp,MonthlyTotal$Sim.Temp)) 

 

try(GOFA<- 

((((WHeat^2)*(CVheat^2))+((WElec^2)*(CVelec^2))+((WTemp^2)*(CVtemp^2)))/(

(WHeat^2)+(WElec^2)+(WTemp^2)))^(0.5)) 

try(GOFB<- 

((((WHeat^2)*(MBheat^2))+((WElec^2)*(MBelec^2))+((WTemp^2)*(MBtemp^2)))/(

(WHeat^2)+(WElec^2)+(WTemp^2)))^(0.5)) 

try(GOFT<- 

(((((WCV^2)*(GOFA^2))+((WNMBE^2)*(GOFB^2)))/((WCV^2)+(WNMBE^2)))^(0.5))) 
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``` 

 

Summary of model performance, and change from previous models. 

```{r Summary Plots,echo=TRUE,warning=FALSE,error=FALSE,message=FALSE} 

Measlevels=c("GOF","CVRMSE","NMBE") 

Typelevels=c("GOFT","GOFA","GOFB","Heat","Elec","Temp") 

 

StatsPerc<-data.frame(Measure = 

factor(c("GOF","GOF","GOF","CVRMSE","CVRMSE","CVRMSE","NMBE","NMBE","NMBE

"),levels=Measlevels,ordered=TRUE),Type = 

factor(c("GOFT","GOFA","GOFB","Heat","Elec","Temp","Heat","Elec","Temp"),

levels=Typelevels,ordered=TRUE),Error = 

round(c(GOFT,GOFA,GOFB,CVheat,CVelec,CVtemp,MBheat,MBelec,MBtemp)*100,2)) 

 

current = 

data.frame(round(cbind(GOFT,GOFA,GOFB,CVheat,CVelec,CVtemp,MBheat,MBelec,

MBtemp)*100,2)) 

current2 = 

data.frame(round(cbind(GOFT,GOFA,GOFB,CVheat,CVelec,CVtemp,MBheat,MBelec,

MBtemp,Monthly_CVheat,Monthly_CVelec,Monthly_CVtemp,Monthly_MBheat,Monthl

y_MBelec,Monthly_MBtemp)*100,2)) 

 

if (n>1) { 

# Change in Error 

mdata   <- melt(models[,2:11], id=c("Revision")) 

colnames(mdata)<-c("Revision","Type","Error") 

last=models[i,3:11] 

change<-((current-last)/last)*100 

 

StatsChange<-data.frame(Measure = 

factor(c("GOF","GOF","GOF","CVRMSE","CVRMSE","CVRMSE","NMBE","NMBE","NMBE

"),levels=Measlevels,ordered=TRUE),Type = 

factor(c("GOFT","GOFA","GOFB","Heat","Elec","Temp","Heat","Elec","Temp"),

levels=Typelevels,ordered=TRUE),Error = 

round(c(change$GOFT,change$GOFA,change$GOFB,change$CVheat,change$CVelec,c

hange$CVtemp,change$MBheat,change$MBelec,change$MBtemp),2)) 

 

# Summary Plots 

 

summary1<-ggplot(StatsPerc, aes(x=Measure, y=Error, fill=Type)) + 

  geom_bar(stat="identity", position="dodge") + 

  labs(title="Simulation Error (%) by Type",x = "Measurement Index", y = 

"Error (%)") + 

  geom_text(aes(label=Error), vjust=1.5, 

colour="white",position=position_dodge(.9), size=3) 

 

summary2<-ggplot(StatsChange, aes(x=Measure, y=Error, fill=Type)) + 

  geom_bar(stat="identity", position="dodge") + 

  labs(title="Change in Simulation Error (%)",x = "Measurement Index", y 

= "Error (%)") + 

  geom_text(aes(label=Error), vjust=1.5, 

colour="white",position=position_dodge(.9), size=3) 

 

# Adding new data to data frame for Revision Plot 

 

cdata<-data.frame(Revision = n,Type = 

factor(c("GOFT","GOFA","GOFB","CVheat","CVelec","CVtemp","MBheat","MBelec

","MBtemp")), Error = StatsPerc$Error) 

newmodel<-rbind(mdata,cdata) 
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summary3<-ggplot(newmodel, aes(x=factor(Revision),y=Error, colour=Type, 

group=Type)) + geom_line() + geom_point() + 

 labs(title="Simulation Error (%) by Revision",x = "Revision Number", y = 

"Error (%)") 

 

print(StatsPerc) 

png('Results\\Current\\Summary.png', width = 3600, height = 5000, units = 

"px", res = 400)  

multiplot(summary1, summary2,summary3,cols=1) 

dev.off() 

 

multiplot(summary1, summary2,summary3,cols=1) 

} else { 

 

# Summary Plot for first model 

 

summary1<-ggplot(StatsPerc, aes(x=Measure, y=Error, fill=Type)) + 

  geom_bar(stat="identity", position="dodge") + 

  labs(title="Simulation Error (%) by Type",x = "Measurement Index", y = 

"Error (%)") + 

  geom_text(aes(label=Error), vjust=1.5, 

colour="white",position=position_dodge(.9), size=3) 

 

png('Results\\Current\\Summary.png', width = 3600, height = 2000, units = 

"px", res = 400)  

plot(summary1) 

dev.off() 

 

print(StatsPerc) 

plot(summary1) 

} 

   

 

``` 

 

Archiving of results 

```{r Archiving, 

echo=TRUE,results='hide',warning=FALSE,error=FALSE,message=FALSE,prompt=T

RUE} 

 

write.csv(HourlyTotal, "Results\\Current\\HourlyData.csv") 

write.csv(DailyTotal, "Results\\Current\\DailyData.csv") 

continue<-readline("Would you like to commit this revision to Archive? 

(y/n)") 

 

if(continue=="y"){ 

  #Append to file 

  comment<-readline("Provide some information about this simulation? ") 

  summary<-c(n,current2,comment) 

  FF <- as.matrix(t(summary)) 

  write.table(FF, file = "Results.csv", sep = ",",  

              col.names = FALSE, append=TRUE) 

  print(paste("Complete - results added to summary sheet as Revision",n)) 

   

  #Make a copy of the model 

  flist <- list.files("Model\\Current Model", full.names = TRUE) 

  dir.create(paste("Model\\Simulation Data\\Rev",n)) 

  file.copy(flist, paste("Model\\Simulation Data\\Rev",n)) 

   

  flist <- list.files("Model\\Current Model\\SimulationFileAndResults", 

full.names = TRUE) 
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  dir.create(paste("Model\\Simulation Data\\Rev 

",n,"\\SimulationFileAndResults", sep="")) 

  file.copy(flist, paste("Model\\Simulation Data\\Rev 

",n,"\\SimulationFileAndResults", sep="")) 

 

  #Make a copy of the results 

  flist <- list.files("Results\\Current", full.names = TRUE) 

  dir.create(paste("Results\\Rev",n)) 

  file.copy(flist, paste("Results\\Rev",n)) 

   

} else { 

  print("Complete - no results have been added to analysis summary") 

} 

``` 
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A.10 Post-Processing: Simulation Data (SQL) 

A.10.1 Import Simulation Data 

# Turn off Strict Trans Table Mode to Allow for Non-Default Table values 

 

SET SESSION sql_mode=''; 

 

/* First, we import the raw EnergyPlus Output data using the 

auto_inrement Integer  

as the Primary Key. 

Import Values for Date, Hourly Hot Water Plant (kWh), Hourly Electric  

Consumption (kWh) and Mean Air Temperature (degC) */ 

 

DROP TABLE IF EXISTS temp_bes.eplusout; 

CREATE TABLE temp_bes.eplusout ( 

    idkey INT(11) PRIMARY KEY, 

    Job INT(11) Not Null, 

    Date Varchar(20) Not Null, 

    HWPlant Double Not Null, 

    Electric Double, 

    MeanAir Double 

); 

 

LOAD DATA LOCAL INFILE 'C:\\Users\\Daniel\\Google Drive\\PhD\\BES 

Model\\Parametric Study\\jEPlus\\output\\SimResults.csv'  

INTO TABLE temp_bes.eplusout 

FIELDS TERMINATED BY ',' 

LINES TERMINATED BY '\n' 

IGNORE 1 LINES; 

 

A.10.2 Run Hourly Comparisons 

 

# Turn off Strict Trans Table Mode to Allow for Non-Default Table values 

 

SET SESSION sql_mode=''; 

 

/* First, we import the raw EnergyPlus Output data using the 

auto_inrement Integer  

as the Primary Key. 

Import Values for Date, Hourly Hot Water Plant (kWh), Hourly Electric  

Consumption (kWh) and Mean Air Temperature (degC) */ 

 

DROP TABLE IF EXISTS temp_bes.eplusout; 

CREATE TABLE temp_bes.eplusout ( 

    idkey INT(11) PRIMARY KEY auto_increment, 

    Job INT(11) Not Null, 

    Date Varchar(20) Not Null, 

    HWPlant Double Not Null, 

    Electric Double, 

    MeanAir Double 

); 

 

LOAD DATA LOCAL INFILE 'E:\\PhD Archive\\Parametric\\Rev 4\\Output 

Files\\jEPlus\\SimResults.csv'  

INTO TABLE temp_bes.eplusout 

FIELDS TERMINATED BY ',' 

LINES TERMINATED BY '\n' 

IGNORE 1 LINES 
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(Job,Date,HWPlant,Electric,MeanAir); 

 

/* Step 2 - Fix Time Values. EnergyPlus outputs using 24hr format and 

represents 

the last hour of the simulated day as 24:00:00 which is an invalid 

timestamp as this 

is actually 00:00 on the following day. Therefore, we replace 24:00 with 

00:00.*/ 

 

DROP TABLE IF EXISTS temp_bes.eplusouttime; 

CREATE TABLE temp_bes.eplusouttime ( 

    idkey INT(11) Not Null auto_increment PRIMARY KEY, 

    Job INT(11), 

    Date Varchar(20) Not Null, 

    HWPlant Double, 

    Electric Double, 

    MeanAir Double 

); 

 

INSERT INTO temp_bes.eplusouttime (Job,Date,HWPlant,Electric,MeanAir) 

SELECT Job,REPLACE(Date, '24:00:00', '00:00:00'),HWPlant,Electric,MeanAir 

FROM temp_bes.eplusout; 

 

/* Step 3 - Change the Date from String to Date Format*/ 

 

 

DROP TABLE IF EXISTS temp_bes.eplusoutdateformat; 

CREATE TABLE temp_bes.eplusoutdateformat ( 

    idkey INT(11) Not Null auto_increment PRIMARY KEY, 

    Job INT(11), 

    Date Varchar(20) Not Null, 

    HWPlant Double, 

    Electric Double, 

    MeanAir Double 

); 

 

INSERT INTO temp_bes.eplusoutdateformat 

(Job,Date,HWPlant,Electric,MeanAir) 

SELECT Job,STR_TO_DATE(Date,'%m/%d %H:%i:%s'),HWPlant,Electric,MeanAir 

FROM temp_bes.eplusouttime; 

 

/* Step 4 - Add the year*/ 

 

DROP TABLE IF EXISTS temp_bes.eplusoutyear; 

CREATE TABLE temp_bes.eplusoutyear ( 

    idkey INT(11) Not Null auto_increment PRIMARY KEY, 

    Job INT(11), 

    Date DateTime Not Null, 

    HWPlant Double, 

    Electric Double, 

    MeanAir Double 

); 

 

INSERT INTO temp_bes.eplusoutyear (Job,Date,HWPlant,Electric,MeanAir) 

SELECT Job,REPLACE(Date, '0000-', '2011-'),HWPlant,Electric,MeanAir 

FROM temp_bes.eplusoutdateformat; 

 

DROP TABLE IF EXISTS bes.eplusoutdateformat; 

DROP TABLE IF EXISTS bes.eplusouttime; 
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/* Step 5 - Hours 01 to 23 from our Simulated Data now represent Hours 00 

to 22  

from our Measured Data. Hour 00 represents Hour 23. Therefore we will 

Subtract 1 hour from each time period 

between 1 and 23 and add 23 to time period 00*/ 

 

DROP TABLE IF EXISTS temp_bes.eplusouttime1; 

CREATE TABLE temp_bes.eplusouttime1 ( 

    idkey INT(11) Not Null auto_increment PRIMARY KEY, 

    Job INT(11), 

    Date Varchar(20) Not Null, 

    HWPlant Double, 

    Electric Double, 

    MeanAir Double 

); 

 

INSERT INTO temp_bes.eplusouttime1 (Job,Date,HWPlant,Electric,MeanAir) 

SELECT Job,ADDTIME(Date, '23:00:00'), HWPlant, Electric, MeanAir 

FROM temp_bes.eplusoutyear 

WHERE Hour(Date)='0'; 

 

DROP TABLE IF EXISTS temp_bes.eplusouttime2; 

CREATE TABLE temp_bes.eplusouttime2 ( 

    idkey INT(11) Not Null auto_increment PRIMARY KEY, 

    Job INT(11), 

    Date Varchar(20) Not Null, 

    HWPlant Double, 

    Electric Double, 

    MeanAir Double 

); 

 

INSERT INTO temp_bes.eplusouttime2 (Job,Date,HWPlant,Electric,MeanAir) 

SELECT Job,SUBTIME(Date, '1:00:00'), HWPlant, Electric, MeanAir 

FROM temp_bes.eplusoutyear 

WHERE Hour(Date) between '1' and '23'; 

 

# Step 6 - Join both tables 

 

DROP TABLE IF EXISTS temp_bes.eplusouttime3; 

CREATE TABLE temp_bes.eplusouttime3 ( 

    idkey INT(11) Not Null auto_increment PRIMARY KEY, 

    Job INT(11), 

    Date Varchar(20) Not Null, 

    HWPlant Double, 

    Electric Double, 

    MeanAir Double 

); 

 

INSERT INTO temp_bes.eplusouttime3 (Job,Date,HWPlant,Electric,MeanAir) 

SELECT Job,Date,HWPlant,Electric,MeanAir FROM temp_bes.eplusouttime1 

UNION  

SELECT Job,Date,HWPlant,Electric,MeanAir FROM temp_bes.eplusouttime2 

ORDER BY Job, Year(Date), Month(Date), Day(Date), hour(Date); 

 

 

# Step 7 - Move to Complete Table 

 

DROP TABLE IF EXISTS temp_bes.eplusout; 

CREATE TABLE temp_bes.eplusout ( 

    idkey INT(11) Not Null auto_increment PRIMARY KEY, 

    Job INT(11), 
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    Date Varchar(20) Not Null, 

    HWPlant Double, 

    Electric Double, 

    MeanAir Double 

); 

 

INSERT INTO temp_bes.eplusout (Job,Date,HWPlant,Electric,MeanAir) 

SELECT Job,Date,HWPlant,Electric,MeanAir 

FROM temp_bes.eplusouttime3; 

 

# Step 8 - Drop unused temporary transitional tables 

 

DROP TABLE IF EXISTS temp_bes.eplusoutdateformat; 

DROP TABLE IF EXISTS temp_bes.eplusouttime; 

DROP TABLE IF EXISTS temp_bes.eplusouttime1; 

DROP TABLE IF EXISTS temp_bes.eplusouttime2; 

DROP TABLE IF EXISTS temp_bes.eplusouttime3; 

DROP TABLE IF EXISTS temp_bes.eplusoutyear; 

 

 

 

/* In this Query, we will create a table for comparing Hourly Measured 

data to Hourly  

Simulated Data and Computing a GOF for each hour */ 

 

 

# Combine Hourly Measured Data with Hourly Simulated data 

 

DROP TABLE IF EXISTS comparisons.hourly; 

CREATE TABLE comparisons.hourly ( 

    idkey INT(11) auto_increment PRIMARY KEY, 

    Job INT(11) Not Null, 

    Date DateTime Not Null, 

    Sim_ZoneTemp Double (5 , 3 ) Not Null, 

    ZoneTemp Double (5 , 3 ) Not Null, 

    Sim_ZoneElectric Double (5 , 3 ) Not Null, 

    ZoneElectric Double (5 , 3 ) Not Null, 

    ABSe_Temp Double (10 , 5 ), 

    ABSe_Elec Double (10 , 5 ) 

); 

 

# Create an Index of Measured/Simulated Data tables to speed up query 

performance 

 

DROP INDEX index_1 ON temp_bes.eplusout; 

DROP INDEX index_2 ON buildingmanagement.hourlydata; 

 

create index index_1 on temp_bes.eplusout (Date); 

create index index_2 on buildingmanagement.hourlydata (Date); 

 

INSERT INTO comparisons.hourly 

(Job,Date,Sim_ZoneTemp,ZoneTemp,Sim_ZoneElectric, 

ZoneElectric,ABSe_Temp, ABSe_Elec) 

SELECT 

Job, DATE, MeanAir, ZoneTemp, Electric/1000, ZoneElectric,  

ABS(((ZoneTemp-MeanAir)/(MeanAir))*(100)),  

ABS(((ZoneElectric-(Electric/1000))/(ZoneElectric))*(100)) 

FROM temp_bes.eplusout 

#WHERE Date > '2011-05-01' 

INNER JOIN buildingmanagement.hourlydata 

#WHERE Date > '2011-05-01' 
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USING(Date) 

WHERE Date > '2011-05-01'; 

 

 

DROP TABLE IF EXISTS comparisons.daily; 

CREATE TABLE comparisons.daily ( 

    idkey INT(11) auto_increment PRIMARY KEY, 

    Job INT(11) Not Null, 

    Date DateTime Not Null, 

    Sim_Heat Double (6 , 3 ) Not Null, 

    Meas_Heat Double (6 , 3 ) Not Null, 

    ABSe_Heat Double (10 , 5 ) 

); 

 

INSERT INTO comparisons.daily (Job,Date,Sim_Heat,Meas_Heat,ABSe_Heat) 

SELECT 

Job, DATE,(HWPlant*(24/1000)),D0010117,ABS((((HWPlant*(24/1000))-

D0010117)/(D0010117))*(100)) 

FROM temp_bes.eplusout 

INNER JOIN buildingmanagement.dailyheat 

USING(Date) 

WHERE Date > '2011-05-01'; 

 

 

# Calculate NMBE and CVRMSE 

 

# Calculate Measured - Simulated 

 

DROP TABLE IF EXISTS comparisons.GOFcalcs; 

CREATE TABLE comparisons.GOFcalcs ( 

    idkey INT(11) auto_increment PRIMARY KEY, 

    Job INT(11) Not Null, 

    ABSe_Temp Double (10 , 5 ) Not Null, 

    NMBE_Temp Double (10 , 5 ) Not Null, 

    CVRMSE_Temp Double (10 , 5 ) Not Null, 

    ABSe_Elec Double (10 , 5 ) Not Null, 

    NMBE_Elec Double (10 , 5 ) Not Null, 

    CVRMSE_Elec Double (10 , 5 ) Not Null 

); 

 

 

INSERT INTO comparisons.GOFcalcs (Job,ABSe_Temp, NMBE_Temp, CVRMSE_Temp, 

ABSe_Elec, NMBE_Elec, CVRMSE_Elec) 

 

SELECT 

Job,  

ABSe_Temp, 

ABS((SUM(ZoneTemp-Sim_ZoneTemp)/SUM(ZoneTemp))*100), 

(POW((SUM(POW((Sim_ZoneTemp-ZoneTemp),2)/5834)),0.5)/AVG(ZoneTemp))*100, 

ABSe_Elec, 

ABS((SUM(ZoneElectric-Sim_ZoneElectric)/SUM(ZoneElectric))*100), 

(POW((SUM(POW((Sim_ZoneElectric-

ZoneElectric),2)/5834)),0.5)/AVG(ZoneElectric) )*100 

FROM comparisons.hourly 

# WHERE ABSe_Temp is not null and ABSe_Elec is not null 

GROUP BY JOB; 

 

 

DROP TABLE IF EXISTS comparisons.GOFdaily; 

CREATE TABLE comparisons.GOFdaily ( 

    idkey INT(11) auto_increment PRIMARY KEY, 
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    Job INT(11) Not Null, 

    ABSe_Heat Double (10 , 5 ) Not Null, 

    NMBE_Heat Double (10 , 5 ) Not Null, 

    CVRMSE_Heat Double (10 , 5 ) Not Null 

); 

 

 

INSERT INTO comparisons.GOFdaily (Job,ABSe_Heat, NMBE_Heat, CVRMSE_Heat) 

 

SELECT 

Job,  

ABSe_Heat, 

ABS((SUM(Sim_Heat-Meas_Heat)/SUM(Meas_Heat))*100), 

(POW((SUM(POW((Sim_Heat-Meas_Heat),2)/244)),0.5)/AVG(Meas_Heat))*100 

FROM comparisons.daily 

# WHERE ABSe_Temp is not null and ABSe_Elec is not null 

GROUP BY JOB; 

 

# Total Goodness of Fit - Hourly 

 

DROP TABLE IF EXISTS comparisons.GOF; 

CREATE TABLE comparisons.GOF ( 

    idkey INT(11) auto_increment PRIMARY KEY, 

    Job INT(11) Not Null, 

 CVRMSE_Heat Double (10 , 3 ) Not Null, 

 CVRMSE_Elec Double (10 , 3 ) Not Null, 

 CVRMSE_Temp Double (10 , 3 ) Not Null, 

 NMBE_Heat Double (10 , 3 ) Not Null, 

 NMBE_Elec Double (10 , 3 ) Not Null, 

 NMBE_Temp Double (10 , 3 ) Not Null, 

 GOF_Heat Double (10 , 3 ) Not Null, 

 GOF_Elec Double (10 , 3 ) Not Null, 

 GOF_Temp Double (10 , 3 ) Not Null, 

 GOF_A Double (10 , 3 ) Not Null, 

 GOF_B Double (10 , 3 ) Not Null 

); 

 

INSERT INTO comparisons.GOF  

(Job,CVRMSE_Heat, CVRMSE_Elec, CVRMSE_Temp, NMBE_Heat, NMBE_Elec, 

NMBE_Temp, GOF_Heat, GOF_Elec, 

GOF_Temp, GOF_A, GOF_B) 

 

SELECT 

Job, CVRMSE_Heat, CVRMSE_Elec, CVRMSE_Temp, NMBE_Heat, NMBE_Elec, 

NMBE_Temp, 

POW(((POW(0.4,2)*POW(NMBE_Heat,2)) 

+(POW(0.6,2)*POW(CVRMSE_Heat,2))) 

/(POW(0.4,2)+POW(0.6,2)),0.5), 

POW(((POW(0.4,2)*POW(NMBE_Elec,2)) 

+(POW(0.6,2)*POW(CVRMSE_Elec,2))) 

/(POW(0.4,2)+POW(0.6,2)),0.5), 

POW(((POW(0.4,2)*POW(NMBE_Temp,2)) 

+(POW(0.6,2)*POW(CVRMSE_Temp,2))) 

/(POW(0.4,2)+POW(0.6,2)),0.5), 

POW(((POW(0.3,2)*POW(CVRMSE_Heat,2))+(POW(0.6,2)*POW(CVRMSE_Elec,2))+(POW

(0.1,2)*POW(CVRMSE_Temp,2)))/ 

(POW(0.3,2)+POW(0.6,2)+POW(0.1,2)),0.5), 

POW(((POW(0.3,2)*POW(NMBE_Heat,2))+(POW(0.6,2)*POW(NMBE_Elec,2))+(POW(0.1

,2)*POW(NMBE_Temp,2)))/ 

(POW(0.3,2)+POW(0.6,2)+POW(0.1,2)),0.5) 

FROM comparisons.GOFcalcs 
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INNER JOIN comparisons.GOFdaily 

USING (Job); 

 

# Total Goodness of Fit - Final 

 

DROP TABLE IF EXISTS comparisons.GOFTotal; 

CREATE TABLE comparisons.GOFTotal ( 

    idkey INT(11) auto_increment PRIMARY KEY, 

    Job INT(11) Not Null, 

    NMBE_Temp Double (10 , 3 ) Not Null, 

    CVRMSE_Temp Double (10 , 3 ) Not Null, 

    GOF_Temp Double (10 , 3 ) Not Null, 

    NMBE_Elec Double (10 , 3 ) Not Null, 

    CVRMSE_Elec Double (10 , 3 ) Not Null, 

    GOF_Elec Double (10 , 3 ) Not Null, 

    GOF_A Double (10 , 3 ) Not Null, 

    GOF_B Double (10 , 3 ) Not Null, 

    GOF_Total Double (10 , 3 ) Not Null 

); 

 

INSERT INTO comparisons.GOFTotal  

(Job,CVRMSE_Heat, CVRMSE_Elec, CVRMSE_Temp, NMBE_Heat, NMBE_Elec, 

NMBE_Temp, GOF_Heat, GOF_Elec, 

GOF_Temp, GOF_A, GOF_B, GOF_Total) 

 

SELECT 

Job, CVRMSE_Heat, CVRMSE_Elec, CVRMSE_Temp, NMBE_Heat, NMBE_Elec, 

NMBE_Temp, GOF_Heat, GOF_Elec, 

GOF_Temp, GOF_A, GOF_B,  

POW(((POW(0.6,2)*POW(GOF_A,2)) 

+(POW(0.4,2)*POW(GOF_B,2))) 

/(POW(0.6,2)+POW(0.4,2)) 

,0.5) 

FROM comparisons.GOF; 

 

SELECT  

    * 

INTO OUTFILE 'E:\\PhD Archive\\Parametric\\GOF\\Hourly\\GOF_Heat.csv' 

FIELDS TERMINATED BY ',' LINES TERMINATED BY ' 

' FROM 

    comparisons.gof 

ORDER BY GOF_Heat 

LIMIT 10; 

 

SELECT  

    * 

INTO OUTFILE 'E:\\PhD Archive\\Parametric\\GOF\\Hourly\\GOF_Elec.csv' 

FIELDS TERMINATED BY ',' LINES TERMINATED BY ' 

' FROM 

    comparisons.gof 

ORDER BY GOF_Heat 

LIMIT 10; 

 

 

SELECT  

    * 

INTO OUTFILE 'E:\\PhD Archive\\Parametric\\GOF\\Hourly\\GOF_Temp.csv' 

FIELDS TERMINATED BY ',' LINES TERMINATED BY ' 

' FROM 

    comparisons.gof 

ORDER BY GOF_Temp 
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LIMIT 10; 

 

SELECT  

    * 

INTO OUTFILE 'E:\\PhD Archive\\Parametric\\GOF\\Hourly\\GOF_Total.csv' 

FIELDS TERMINATED BY ',' LINES TERMINATED BY ' 

' FROM 

    comparisons.gof 

ORDER BY GOF_Total 

LIMIT 10; 

 

A.10.3 Run Monthly Comparisons 

 

/* In this Query, we will create a table for comparing Monthly Measured 

data to Monthly  

Simulated Data and Computing a GOF for each hour */ 

 

#Step 1: Create a Table of Monthly Measured Data 

 

DROP TABLE IF EXISTS buildingmanagement.monthlydata; 

CREATE TABLE buildingmanagement.monthlydata ( 

    idkey INT(11) auto_increment PRIMARY KEY, 

    Date DateTime Not Null, 

    ZoneTemp Double (5 , 3 ) Not Null, 

    ZoneElectric Double (5 , 3 ) Not Null 

); 

 

INSERT INTO buildingmanagement.monthlydata (Date,ZoneTemp,ZoneElectric) 

SELECT 

DATE, AVG(ZoneTemp), SUM(D0010225) 

FROM buildingmanagement.zonetempaverage 

INNER JOIN buildingmanagement.averageelectrical 

USING(Date) 

WHERE DATE BETWEEN '2011-05-01 00:00:00' AND '2012-01-01 00:00:00' 

GROUP BY Month(Date) 

ORDER BY year(Date), month(Date), Day(Date), Hour(Date) 

limit 10000; 

 

DROP TABLE IF EXISTS buildingmanagement.monthlyheat; 

CREATE TABLE buildingmanagement.monthlyheat ( 

    idkey INT(11) auto_increment PRIMARY KEY, 

    Date DateTime Not Null, 

    Monthly_Heat Double (5 , 3 ) Not Null 

); 

 

INSERT INTO buildingmanagement.monthlyheat (Date,Monthly_Heat) 

SELECT 

DATE,SUM(D0010117) 

FROM buildingmanagement.dailyheat 

WHERE DATE BETWEEN '2011-05-01 00:00:00' AND '2012-01-01 00:00:00' 

GROUP BY Month(Date) 

ORDER BY year(Date), month(Date), Day(Date), Hour(Date) 

limit 10000; 

 

DROP TABLE IF EXISTS buildingmanagement.totalmonthlydata; 

CREATE TABLE buildingmanagement.totalmonthlydata ( 

    idkey INT(11) auto_increment PRIMARY KEY, 

    Date DateTime Not Null, 

    ZoneTemp Double (5 , 3 ) Not Null, 
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    ZoneElec Double (5 , 3 ) Not Null, 

    ZoneHeat Double (5 , 3 ) Not Null 

); 

INSERT INTO buildingmanagement.totalmonthlydata 

(Date,ZoneHeat,ZoneElec,ZoneTemp) 

SELECT 

DATE,Monthly_Heat,ZoneElectric,ZoneTemp 

FROM buildingmanagement.monthlydata 

INNER JOIN buildingmanagement.monthlyheat 

USING(Date) 

GROUP BY Month(Date) 

ORDER BY year(Date), month(Date), Day(Date), Hour(Date) 

limit 10000; 

 

#Step 2: Create a Table of Monthly Simulated Data 

 

DROP TABLE IF EXISTS temp_bes.monthly; 

CREATE TABLE temp_bes.monthly ( 

    idkey INT(11) auto_increment PRIMARY KEY, 

    Job INT(11) Not Null, 

    Date DateTime Not Null, 

    Sim_ZoneHeat Double (5 , 3 ) Not Null, 

    Sim_ZoneElec Double (5 , 3 ) Not Null, 

    Sim_ZoneTemp Double (5 , 3 ) Not Null 

); 

 

INSERT INTO temp_bes.monthly 

(Job,Date,Sim_ZoneHeat,Sim_ZoneElec,Sim_ZoneTemp) 

SELECT 

Job, DATE, SUM(HWPlant/1000),SUM(Electric/1000), AVG(MeanAir) 

FROM temp_bes.eplusout 

GROUP BY Job, Month(Date); 

 

 

#Step 3: Combine Monthly Measured Data with Monthly Simulated data 

 

DROP TABLE IF EXISTS comparisons.monthly; 

CREATE TABLE comparisons.monthly ( 

    idkey INT(11) auto_increment PRIMARY KEY, 

    Job INT(11) Not Null, 

    Date DateTime Not Null, 

    Sim_ZoneHeat Double (5 , 3 ) Not Null, 

    ZoneHeat Double (5 , 3 ) Not Null, 

    Sim_ZoneElec Double (5 , 3 ) Not Null, 

    ZoneElec Double (5 , 3 ) Not Null, 

    Sim_ZoneTemp Double (5 , 3 ) Not Null, 

    ZoneTemp Double (5 , 3 ) Not Null, 

    ABSe_Heat Double (5 , 3 ) Not Null, 

    ABSe_Elec Double (5 , 3 ) Not Null, 

    ABSe_Temp Double (5 , 3 ) Not Null 

); 

 

INSERT INTO comparisons.monthly 

(Job,Date,Sim_ZoneHeat,ZoneHeat,Sim_ZoneElec, 

ZoneElec,Sim_ZoneTemp,ZoneTemp,ABSe_Heat,ABSe_Elec,ABSe_Temp) 

SELECT 

Job, DATE, Sim_ZoneHeat,ZoneHeat,Sim_ZoneElec, 

ZoneElec,Sim_ZoneTemp,ZoneTemp, 

ABS(((ZoneHeat-(Sim_ZoneHeat))/(ZoneHeat))*(100)), 

ABS(((ZoneElec-(Sim_ZoneElec))/(ZoneElec))*(100)), 

ABS(((ZoneTemp-Sim_ZoneTemp)/(ZoneTemp))*(100)) 
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FROM temp_bes.monthly 

INNER JOIN buildingmanagement.totalmonthlydata 

USING(Date); 

 

# Step 4: Calculate NMBE and CVRMSE 

 

 

DROP TABLE IF EXISTS comparisons.GOFcalcs_monthly; 

CREATE TABLE comparisons.GOFcalcs_monthly ( 

    idkey INT(11) auto_increment PRIMARY KEY, 

    Job INT(11) Not Null, 

    ABSe_Heat Double (10 , 5 ) Not Null, 

    NMBE_Heat Double (10 , 5 ) Not Null, 

    CVRMSE_Heat Double (10 , 5 ) Not Null, 

    ABSe_Elec Double (10 , 5 ) Not Null, 

    NMBE_Elec Double (10 , 5 ) Not Null, 

    CVRMSE_Elec Double (10 , 5 ) Not Null, 

    ABSe_Temp Double (10 , 5 ) Not Null, 

    NMBE_Temp Double (10 , 5 ) Not Null, 

    CVRMSE_Temp Double (10 , 5 ) Not Null 

); 

 

INSERT INTO comparisons.GOFcalcs_monthly (Job,ABSe_Heat, NMBE_Heat, 

CVRMSE_Heat,ABSe_Elec, NMBE_Elec, CVRMSE_Elec, 

ABSe_Temp, NMBE_Temp, CVRMSE_Temp) 

 

SELECT 

Job,  

ABSe_Heat, 

ABS((SUM(Sim_ZoneHeat-ZoneHeat)/SUM(ZoneHeat))*100), 

(POW((SUM(POW((ZoneHeat-Sim_ZoneHeat),2)/8)),0.5)/AVG(ZoneHeat))*100, 

ABSe_Elec, 

ABS((SUM(Sim_ZoneElec-ZoneElec)/SUM(ZoneElec))*100), 

(POW((SUM(POW((Sim_ZoneElec-ZoneElec),2)/8)),0.5)/AVG(ZoneElec))*100, 

ABSe_Temp, 

ABS((SUM(Sim_ZoneTemp-ZoneTemp)/SUM(ZoneTemp))*100), 

(POW((SUM(POW((Sim_ZoneTemp-ZoneTemp),2)/8)),0.5)/AVG(ZoneTemp))*100 

FROM comparisons.monthly 

GROUP BY JOB; 

 

 

DROP TABLE IF EXISTS comparisons.GOFmonthly; 

CREATE TABLE comparisons.GOFmonthly ( 

    idkey INT(11) auto_increment PRIMARY KEY, 

    Job INT(11) Not Null, 

    CVRMSE_Heat Double (10 , 3 ) Not Null, 

    CVRMSE_Elec Double (10 , 3 ) Not Null, 

    CVRMSE_Temp Double (10 , 3 ) Not Null, 

    NMBE_Heat Double (10 , 3 ) Not Null, 

    NMBE_Elec Double (10 , 3 ) Not Null, 

    NMBE_Temp Double (10 , 3 ) Not Null, 

    GOF_Heat Double (10 , 3 ) Not Null, 

    GOF_Elec Double (10 , 3 ) Not Null, 

    GOF_Temp Double (10 , 3 ) Not Null, 

    GOF_A Double (10 , 3 ) Not Null, 

    GOF_B Double (10 , 3 ) Not Null 

); 

 

INSERT INTO comparisons.GOFmonthly 

(Job,CVRMSE_Heat,CVRMSE_Elec,CVRMSE_Temp,NMBE_Heat,NMBE_Elec, 

NMBE_Temp,GOF_Heat,GOF_Elec,GOF_Temp,GOF_A,GOF_B) 
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SELECT 

Job,CVRMSE_Heat,CVRMSE_Elec,CVRMSE_Temp,NMBE_Heat,NMBE_Elec,NMBE_Temp, 

POW(((POW(0.4,2)*POW(NMBE_Heat,2)) 

+(POW(0.6,2)*POW(CVRMSE_Heat,2))) 

/(POW(0.4,2)+POW(0.6,2)),0.5), 

POW(((POW(0.4,2)*POW(NMBE_Elec,2)) 

+(POW(0.6,2)*POW(CVRMSE_Elec,2))) 

/(POW(0.4,2)+POW(0.6,2)),0.5), 

POW(((POW(0.4,2)*POW(NMBE_Temp,2)) 

+(POW(0.6,2)*POW(CVRMSE_Temp,2))) 

/(POW(0.4,2)+POW(0.6,2)),0.5), 

POW(((POW(0.3,2)*POW(CVRMSE_Heat,2))+(POW(0.6,2)*POW(CVRMSE_Elec,2))+(POW

(0.1,2)*POW(CVRMSE_Temp,2)))/ 

(POW(0.3,2)+POW(0.6,2)+POW(0.1,2)),0.5), 

POW(((POW(0.3,2)*POW(NMBE_Heat,2))+(POW(0.6,2)*POW(NMBE_Elec,2))+(POW(0.1

,2)*POW(NMBE_Temp,2)))/ 

(POW(0.3,2)+POW(0.6,2)+POW(0.1,2)),0.5) 

FROM comparisons.GOFcalcs_monthly; 

 

# Total Goodness of Fit - Final 

 

DROP TABLE IF EXISTS comparisons.GOFmonthly_Total; 

CREATE TABLE comparisons.GOFmonthly_Total ( 

    idkey INT(11) auto_increment PRIMARY KEY, 

    Job INT(11) Not Null, 

    CVRMSE_Heat Double (10 , 3 ) Not Null, 

    CVRMSE_Elec Double (10 , 3 ) Not Null, 

    CVRMSE_Temp Double (10 , 3 ) Not Null, 

    NMBE_Heat Double (10 , 3 ) Not Null, 

    NMBE_Elec Double (10 , 3 ) Not Null, 

    NMBE_Temp Double (10 , 3 ) Not Null, 

    GOF_Heat Double (10 , 3 ) Not Null, 

    GOF_Elec Double (10 , 3 ) Not Null, 

    GOF_Temp Double (10 , 3 ) Not Null, 

    GOF_A Double (10 , 3 ) Not Null, 

    GOF_B Double (10 , 3 ) Not Null, 

    GOF_Total Double (10 , 3 ) Not Null 

); 

 

INSERT INTO comparisons.GOFmonthly_Total 

(Job,CVRMSE_Heat,CVRMSE_Elec,CVRMSE_Temp,NMBE_Heat,NMBE_Elec, 

NMBE_Temp,GOF_Heat,GOF_Elec,GOF_Temp,GOF_A,GOF_B,GOF_Total) 

 

SELECT 

Job,CVRMSE_Heat,CVRMSE_Elec,CVRMSE_Temp,NMBE_Heat,NMBE_Elec,NMBE_Temp,GOF

_Heat,GOF_Elec,GOF_Temp, 

GOF_A,GOF_B,  

POW(((POW(0.6,2)*POW(GOF_A,2)) 

+(POW(0.4,2)*POW(GOF_B,2))) 

/(POW(0.6,2)+POW(0.4,2)) 

,0.5) 

FROM comparisons.GOFmonthly; 

 

 

SELECT  

    * 

INTO OUTFILE 'E:\\PhD Archive\\Parametric\\GOF\\Monthly\\GOF_Heat.csv' 

FIELDS TERMINATED BY ',' LINES TERMINATED BY ' 

' FROM 

    comparisons.GOFmonthly_Total 
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ORDER BY GOF_Heat 

LIMIT 10; 

 

SELECT  

    * 

INTO OUTFILE 'E:\\PhD Archive\\Parametric\\GOF\\Monthly\\GOF_Elec.csv' 

FIELDS TERMINATED BY ',' LINES TERMINATED BY ' 

' FROM 

    comparisons.GOFmonthly_Total 

ORDER BY GOF_Elec 

LIMIT 10; 

 

SELECT  

    * 

INTO OUTFILE 'E:\\PhD Archive\\Parametric\\GOF\\Monthly\\GOF_Temp.csv' 

FIELDS TERMINATED BY ',' LINES TERMINATED BY ' 

' FROM 

    comparisons.GOFmonthly_Total 

ORDER BY GOF_Temp 

LIMIT 10; 

 

SELECT  

    * 

INTO OUTFILE 'E:\\PhD Archive\\Parametric\\GOF\\Monthly\\GOF_Total.csv' 

FIELDS TERMINATED BY ',' LINES TERMINATED BY ' 

' FROM 

    comparisons.GOFmonthly_Total 

ORDER BY GOF_Total 

LIMIT 10; 
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A.11 Post-Processing: Monthly Simulation Data (SQL) 

/* In this Query, we will create a table for comparing Monthly Measured 

data to Monthly  

Simulated Data and Computing a GOF for each hour */ 

 

#Step 1: Create a Table of Monthly Measured Data 

 

DROP TABLE IF EXISTS buildingmanagement.monthlydata; 

CREATE TABLE buildingmanagement.monthlydata ( 

    idkey INT(11) auto_increment PRIMARY KEY, 

    Date DateTime Not Null, 

    ZoneTemp Double (5 , 3 ) Not Null, 

    ZoneElectric Double (5 , 3 ) Not Null 

); 

 

INSERT INTO buildingmanagement.monthlydata (Date,ZoneTemp,ZoneElectric) 

SELECT 

DATE, AVG(ZoneTemp), SUM(D0010225) 

FROM buildingmanagement.zonetempaverage 

INNER JOIN buildingmanagement.averageelectrical 

USING(Date) 

WHERE DATE BETWEEN '2011-05-01 00:00:00' AND '2012-01-01 00:00:00' 

GROUP BY Month(Date) 

ORDER BY year(Date), month(Date), Day(Date), Hour(Date) 

limit 10000; 

 

DROP TABLE IF EXISTS buildingmanagement.monthlyheat; 

CREATE TABLE buildingmanagement.monthlyheat ( 

    idkey INT(11) auto_increment PRIMARY KEY, 

    Date DateTime Not Null, 

    Monthly_Heat Double (5 , 3 ) Not Null 

); 

 

INSERT INTO buildingmanagement.monthlyheat (Date,Monthly_Heat) 

SELECT 

DATE,SUM(D0010117) 

FROM buildingmanagement.dailyheat 

WHERE DATE BETWEEN '2011-05-01 00:00:00' AND '2012-01-01 00:00:00' 

GROUP BY Month(Date) 

ORDER BY year(Date), month(Date), Day(Date), Hour(Date) 

limit 10000; 

 

DROP TABLE IF EXISTS buildingmanagement.totalmonthlydata; 

CREATE TABLE buildingmanagement.totalmonthlydata ( 

    idkey INT(11) auto_increment PRIMARY KEY, 

    Date DateTime Not Null, 

    ZoneTemp Double (5 , 3 ) Not Null, 

    ZoneElec Double (5 , 3 ) Not Null, 

    ZoneHeat Double (5 , 3 ) Not Null 

); 

INSERT INTO buildingmanagement.totalmonthlydata 

(Date,ZoneHeat,ZoneElec,ZoneTemp) 

SELECT 

DATE,Monthly_Heat,ZoneElectric,ZoneTemp 

FROM buildingmanagement.monthlydata 

INNER JOIN buildingmanagement.monthlyheat 

USING(Date) 

GROUP BY Month(Date) 
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ORDER BY year(Date), month(Date), Day(Date), Hour(Date) 

limit 10000; 

 

#Step 2: Create a Table of Monthly Simulated Data 

 

DROP TABLE IF EXISTS temp_bes.monthly; 

CREATE TABLE temp_bes.monthly ( 

    idkey INT(11) auto_increment PRIMARY KEY, 

    Job INT(11) Not Null, 

    Date DateTime Not Null, 

    Sim_ZoneHeat Double (5 , 3 ) Not Null, 

    Sim_ZoneElec Double (5 , 3 ) Not Null, 

    Sim_ZoneTemp Double (5 , 3 ) Not Null 

); 

 

INSERT INTO temp_bes.monthly 

(Job,Date,Sim_ZoneHeat,Sim_ZoneElec,Sim_ZoneTemp) 

SELECT 

Job, DATE, SUM(HWPlant/1000),SUM(Electric/1000), AVG(MeanAir) 

FROM temp_bes.eplusout 

GROUP BY Job, Month(Date); 

 

 

#Step 3: Combine Monthly Measured Data with Monthly Simulated data 

 

DROP TABLE IF EXISTS comparisons.monthly; 

CREATE TABLE comparisons.monthly ( 

    idkey INT(11) auto_increment PRIMARY KEY, 

    Job INT(11) Not Null, 

    Date DateTime Not Null, 

    Sim_ZoneHeat Double (5 , 3 ) Not Null, 

    ZoneHeat Double (5 , 3 ) Not Null, 

    Sim_ZoneElec Double (5 , 3 ) Not Null, 

    ZoneElec Double (5 , 3 ) Not Null, 

    Sim_ZoneTemp Double (5 , 3 ) Not Null, 

    ZoneTemp Double (5 , 3 ) Not Null, 

    ABSe_Heat Double (5 , 3 ) Not Null, 

    ABSe_Elec Double (5 , 3 ) Not Null, 

    ABSe_Temp Double (5 , 3 ) Not Null 

); 

 

INSERT INTO comparisons.monthly 

(Job,Date,Sim_ZoneHeat,ZoneHeat,Sim_ZoneElec, 

ZoneElec,Sim_ZoneTemp,ZoneTemp,ABSe_Heat,ABSe_Elec,ABSe_Temp) 

SELECT 

Job, DATE, Sim_ZoneHeat,ZoneHeat,Sim_ZoneElec, 

ZoneElec,Sim_ZoneTemp,ZoneTemp, 

ABS(((ZoneHeat-(Sim_ZoneHeat))/(ZoneHeat))*(100)), 

ABS(((ZoneElec-(Sim_ZoneElec))/(ZoneElec))*(100)), 

ABS(((ZoneTemp-Sim_ZoneTemp)/(ZoneTemp))*(100)) 

FROM temp_bes.monthly 

INNER JOIN buildingmanagement.totalmonthlydata 

USING(Date); 

 

# Step 4: Calculate NMBE and CVRMSE 

 

 

DROP TABLE IF EXISTS comparisons.GOFcalcs_monthly; 

CREATE TABLE comparisons.GOFcalcs_monthly ( 

    idkey INT(11) auto_increment PRIMARY KEY, 

    Job INT(11) Not Null, 
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    ABSe_Heat Double (10 , 5 ) Not Null, 

    NMBE_Heat Double (10 , 5 ) Not Null, 

    CVRMSE_Heat Double (10 , 5 ) Not Null, 

    ABSe_Elec Double (10 , 5 ) Not Null, 

    NMBE_Elec Double (10 , 5 ) Not Null, 

    CVRMSE_Elec Double (10 , 5 ) Not Null, 

    ABSe_Temp Double (10 , 5 ) Not Null, 

    NMBE_Temp Double (10 , 5 ) Not Null, 

    CVRMSE_Temp Double (10 , 5 ) Not Null 

); 

 

INSERT INTO comparisons.GOFcalcs_monthly (Job,ABSe_Heat, NMBE_Heat, 

CVRMSE_Heat,ABSe_Elec, NMBE_Elec, CVRMSE_Elec, 

ABSe_Temp, NMBE_Temp, CVRMSE_Temp) 

 

SELECT 

Job,  

ABSe_Heat, 

ABS((SUM(Sim_ZoneHeat-ZoneHeat)/SUM(ZoneHeat))*100), 

(POW((SUM(POW((ZoneHeat-Sim_ZoneHeat),2)/8)),0.5)/AVG(ZoneHeat))*100, 

ABSe_Elec, 

ABS((SUM(Sim_ZoneElec-ZoneElec)/SUM(ZoneElec))*100), 

(POW((SUM(POW((Sim_ZoneElec-ZoneElec),2)/8)),0.5)/AVG(ZoneElec))*100, 

ABSe_Temp, 

ABS((SUM(Sim_ZoneTemp-ZoneTemp)/SUM(ZoneTemp))*100), 

(POW((SUM(POW((Sim_ZoneTemp-ZoneTemp),2)/8)),0.5)/AVG(ZoneTemp))*100 

FROM comparisons.monthly 

GROUP BY JOB; 

 

 

DROP TABLE IF EXISTS comparisons.GOFmonthly; 

CREATE TABLE comparisons.GOFmonthly ( 

    idkey INT(11) auto_increment PRIMARY KEY, 

    Job INT(11) Not Null, 

    CVRMSE_Heat Double (10 , 3 ) Not Null, 

    CVRMSE_Elec Double (10 , 3 ) Not Null, 

    CVRMSE_Temp Double (10 , 3 ) Not Null, 

    NMBE_Heat Double (10 , 3 ) Not Null, 

    NMBE_Elec Double (10 , 3 ) Not Null, 

    NMBE_Temp Double (10 , 3 ) Not Null, 

    GOF_Heat Double (10 , 3 ) Not Null, 

    GOF_Elec Double (10 , 3 ) Not Null, 

    GOF_Temp Double (10 , 3 ) Not Null, 

    GOF_A Double (10 , 3 ) Not Null, 

    GOF_B Double (10 , 3 ) Not Null 

); 

 

INSERT INTO comparisons.GOFmonthly 

(Job,CVRMSE_Heat,CVRMSE_Elec,CVRMSE_Temp,NMBE_Heat,NMBE_Elec, 

NMBE_Temp,GOF_Heat,GOF_Elec,GOF_Temp,GOF_A,GOF_B) 

 

SELECT 

Job,CVRMSE_Heat,CVRMSE_Elec,CVRMSE_Temp,NMBE_Heat,NMBE_Elec,NMBE_Temp, 

POW(((POW(0.4,2)*POW(NMBE_Heat,2)) 

+(POW(0.6,2)*POW(CVRMSE_Heat,2))) 

/(POW(0.4,2)+POW(0.6,2)),0.5), 

POW(((POW(0.4,2)*POW(NMBE_Elec,2)) 

+(POW(0.6,2)*POW(CVRMSE_Elec,2))) 

/(POW(0.4,2)+POW(0.6,2)),0.5), 

POW(((POW(0.4,2)*POW(NMBE_Temp,2)) 

+(POW(0.6,2)*POW(CVRMSE_Temp,2))) 
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/(POW(0.4,2)+POW(0.6,2)),0.5), 

POW(((POW(0.3,2)*POW(CVRMSE_Heat,2))+(POW(0.6,2)*POW(CVRMSE_Elec,2))+(POW

(0.1,2)*POW(CVRMSE_Temp,2)))/ 

(POW(0.3,2)+POW(0.6,2)+POW(0.1,2)),0.5), 

POW(((POW(0.3,2)*POW(NMBE_Heat,2))+(POW(0.6,2)*POW(NMBE_Elec,2))+(POW(0.1

,2)*POW(NMBE_Temp,2)))/ 

(POW(0.3,2)+POW(0.6,2)+POW(0.1,2)),0.5) 

FROM comparisons.GOFcalcs_monthly; 

 

# Total Goodness of Fit - Final 

 

DROP TABLE IF EXISTS comparisons.GOFmonthly_Total; 

CREATE TABLE comparisons.GOFmonthly_Total ( 

    idkey INT(11) auto_increment PRIMARY KEY, 

    Job INT(11) Not Null, 

    CVRMSE_Heat Double (10 , 3 ) Not Null, 

    CVRMSE_Elec Double (10 , 3 ) Not Null, 

    CVRMSE_Temp Double (10 , 3 ) Not Null, 

    NMBE_Heat Double (10 , 3 ) Not Null, 

    NMBE_Elec Double (10 , 3 ) Not Null, 

    NMBE_Temp Double (10 , 3 ) Not Null, 

    GOF_Heat Double (10 , 3 ) Not Null, 

    GOF_Elec Double (10 , 3 ) Not Null, 

    GOF_Temp Double (10 , 3 ) Not Null, 

    GOF_A Double (10 , 3 ) Not Null, 

    GOF_B Double (10 , 3 ) Not Null, 

    GOF_Total Double (10 , 3 ) Not Null 

); 

 

INSERT INTO comparisons.GOFmonthly_Total 

(Job,CVRMSE_Heat,CVRMSE_Elec,CVRMSE_Temp,NMBE_Heat,NMBE_Elec, 

NMBE_Temp,GOF_Heat,GOF_Elec,GOF_Temp,GOF_A,GOF_B,GOF_Total) 

 

SELECT 

Job,CVRMSE_Heat,CVRMSE_Elec,CVRMSE_Temp,NMBE_Heat,NMBE_Elec,NMBE_Temp,GOF

_Heat,GOF_Elec,GOF_Temp, 

GOF_A,GOF_B,  

POW(((POW(0.6,2)*POW(GOF_A,2)) 

+(POW(0.4,2)*POW(GOF_B,2))) 

/(POW(0.6,2)+POW(0.4,2)) 

,0.5) 

FROM comparisons.GOFmonthly; 

 

 

SELECT  

    * 

INTO OUTFILE 'E:\\PhD Archive\\Parametric\\GOF\\Monthly\\GOF_Heat.csv' 

FIELDS TERMINATED BY ',' LINES TERMINATED BY ' 

' FROM 

    comparisons.GOFmonthly_Total 

ORDER BY GOF_Heat 

LIMIT 10; 

 

SELECT  

    * 

INTO OUTFILE 'E:\\PhD Archive\\Parametric\\GOF\\Monthly\\GOF_Elec.csv' 

FIELDS TERMINATED BY ',' LINES TERMINATED BY ' 

' FROM 

    comparisons.GOFmonthly_Total 

ORDER BY GOF_Elec 

LIMIT 10; 
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SELECT  

    * 

INTO OUTFILE 'E:\\PhD Archive\\Parametric\\GOF\\Monthly\\GOF_Temp.csv' 

FIELDS TERMINATED BY ',' LINES TERMINATED BY ' 

' FROM 

    comparisons.GOFmonthly_Total 

ORDER BY GOF_Temp 

LIMIT 10; 

 

SELECT  

    * 

INTO OUTFILE 'E:\\PhD Archive\\Parametric\\GOF\\Monthly\\GOF_Total.csv' 

FIELDS TERMINATED BY ',' LINES TERMINATED BY ' 

' FROM 

    comparisons.GOFmonthly_Total 

ORDER BY GOF_Total 

LIMIT 10; 
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A.12 Weather Forecast Data – Forecast.io (R) 

#-----------------------------------------------------------------------# 

# DESCRIPTION -  Weather Forecasting Access Script 

# AUTHOR - Daniel Coakley (daniel.coakley@nuigalway.ie) 

# DATE - October 2013 

#-----------------------------------------------------------------------# 

 

Weather Forecasting  

======================================================== 

 

In order to use energy simulation models for the purpose of model-

predictive control (MPC), it is essential to have accurate, up-to-date, 

weather and climate information for the region of interest. In this 

respect, predicted weather data, for a period of at least 3 days, will 

allow accurate simulation of predicted building performance, thus enable 

improved response.  

 

This type of control has the ability to reverse the current building 

control dynamic, from reactive, to pro-active. In other words, the 

building is no longer a passive observer of external conditions, but 

rather is able to actively respond to changing external influences. This 

may also include variables such as occupancy and external economic 

influences. 

 

## Available forecast data 

 

There are a number of websites which provide local weather forecasting 

services. However, we are particularly interested in those services which 

also allow interaction with their data through open API's, such as that 

provided by [forecast.io](http://forecast.io). 

 

![Forecast.io provides an open API for developers](Images/forecastio.png) 

 

## Downloading the data 

 

Using forecast.io's open API, it is possible to develop applications to 

read and use forecast data, by means of an **API Key**. You can sign up 

for a devloper account [here](https://developer.forecast.io/), which 

allows you to make up to 1000 calls to this API per day. 

 

Obviously, it is also necessary to programatically access this data in 

order to make use of it for your application. Recently, 

[rud.is](http://rud.is/) developed 

[RForecastIO](http://rud.is/b/2013/09/08/rforecastio-simple-r-package-to-

access-forecast-io-weather-data/), a simple R package which enables users 

to access Forecast.IO data through R. A simple implementation is shown 

below, thanks again to the guide on [rud.is 

blog](http://rud.is/b/2013/09/08/rforecastio-simple-r-package-to-access-

forecast-io-weather-data/).  

 

## Implementation 

 

This is currently a simple implementation, following on from the above 

blog post. However, I will be updating this in the coming months, 

specifically with regard to integrating this data with building energy 

performance simulation data. 

 

First, install and include all necessary R-packages; 
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```{r 

Packages,echo=TRUE,results='hide',warning=FALSE,error=FALSE,message=FALSE

} 

library("devtools") 

library("RJSONIO") 

 

install_github("Rforecastio", "hrbrmstr") 

 

library(Rforecastio) 

library(ggplot2) 

``` 

```{r Directory,echo=FALSE, results='hide',warning=FALSE} 

setwd("E:/Dropbox/PhD/Model/Analysis/Weather") 

``` 

 

Read in necessary parameters: API key, latitude and longitude. I am using 

Galway, Ireland in this example. 

```{r Input Params, echo=TRUE, 

results='hide',warning=FALSE,error=FALSE,message=FALSE} 

 

# NEVER put credentials or api keys in script bodies or github repos!! 

# the "config" file has one thing in it, the api key string on one line 

# this is all it takes to read it in 

 

fio.api.key = readLines("forecast.io") 

my.latitude = "53.2737969" 

my.longitude = "-9.05177989" 

 

fio.list <- fio.forecast(fio.api.key, my.latitude, my.longitude) 

``` 

 

Set up the plot area 

```{r Plot Params, echo=TRUE, results='hide',warning=FALSE} 

forecast.x.min <- ISOdatetime(1970,1,1,0,0,0) + unclass(Sys.time()) 

forecast.x.max <- max(fio.list$hourly.df$time) 

if (forecast.x.min > forecast.x.max) forecast.x.min <- forecast.x.max 

fio.forecast.range.df <- data.frame(xmin=forecast.x.min, 

xmax=forecast.x.max, 

                                    ymin=-Inf, ymax=+Inf) 

``` 

 

## Results 

Finally, we can plot the results. Here, I am just plotting humidity 

(green), temperature (red) and dewpoint (blue) for the next two days.  

 

```{r Plot, echo=TRUE, results='hide',warning=FALSE} 

fio.gg <- ggplot(data=fio.list$hourly.df,aes(x=time, y=temperature)) 

fio.gg <- fio.gg + labs(y="Readings", x="Time") 

fio.gg <- fio.gg + geom_rect(data=fio.forecast.range.df, 

                             aes(xmin=xmin, xmax=xmax, 

                                 ymin=ymin, ymax=ymax),  

                             fill="yellow", alpha=(0.15), 

                             inherit.aes = FALSE) 

fio.gg <- fio.gg + geom_line(aes(y=humidity*100), color="green") 

fio.gg <- fio.gg + geom_line(aes(y=temperature), color="red") 

fio.gg <- fio.gg + geom_line(aes(y=dewPoint), color="blue") 

fio.gg <- fio.gg + theme_bw() 

fio.gg 

``` 
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Appendix B: 
Drawings & Schematics 
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B.1 Cylon BMS - System Architecture 
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B.2 BACnet - System Architecture 
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B.3 Nursing Library - Layouts 

 

Figure 6-1: Basement layout 

 

Figure 6-2: Ground Floor layout 
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Figure 6-3: First Floor Layout 

 

Figure 6-4: Roof  Layout 
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Appendix C: 
Model Development 
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C.1 Source Hierarchy 
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C.2 Occupancy Audit (Excerpt) 
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C.3 Parametric Analysis worksheet 

 

ID Class List Location Object Field Initial ValueUnits Discrete OptFix jEPlusSource Class ROV (%) Std Dev String

1195 Material 1 N_Lib_Screed_01

1196 Surface Construction ElementsGeometry Material Name N_Lib_Screed_01 Discrete N Y Y Not ApplicableNA NA NULL &&GeoNam1196&&

1197 Surface Construction ElementsGeometry Material RoughnessMediumRough Discrete N Y Y Default Value 6 40 NULL &&GeoRou1197&&

1198 Surface Construction ElementsGeometry Material Thickness 0.075 ContinuousN N Y As-Built Drawings 3 10 0.0025 &&GeoThi1198&&

1199 Surface Construction ElementsGeometry Material Conductivity 1.15 ContinuousN N Y Guides & Standards5 30 0.115 &&GeoCon1199&&

1200 Surface Construction ElementsGeometry Material Density 1200 ContinuousN N Y Guides & Standards5 30 120 &&GeoDen1200&&

1201 Surface Construction ElementsGeometry Material Specific Heat 1000 ContinuousN N Y Guides & Standards5 30 100 &&GeoSpe1201&&

1202 Surface Construction ElementsGeometry Material Thermal Absorptance0.9 ContinuousN Y Y Guides & Standards5 30 0 &&GeoThe1202&&

1203 Surface Construction ElementsGeometry Material Solar Absorptance0.73 ContinuousN Y Y Guides & Standards5 30 0 &&GeoSol1203&&

1204 Surface Construction ElementsGeometry Material Visible Absorptance0.73 ContinuousN Y Y Guides & Standards5 30 0 &&GeoVis1204&&

1205 Material 1 N_Lib_Screed_02

1206 Surface Construction ElementsGeometry Material Name N_Lib_Screed_02 Discrete N Y Y Not ApplicableNA NA NULL &&GeoNam1206&&

1207 Surface Construction ElementsGeometry Material RoughnessMediumRough Discrete N Y Y Default Value 6 40 NULL &&GeoRou1207&&

1208 Surface Construction ElementsGeometry Material Thickness 0.05 ContinuousN N Y As-Built Drawings 3 10 0.001667 &&GeoThi1208&&

1209 Surface Construction ElementsGeometry Material Conductivity 1.15 ContinuousN N Y Guides & Standards5 30 0.115 &&GeoCon1209&&

1210 Surface Construction ElementsGeometry Material Density 1200 ContinuousN N Y Guides & Standards5 30 120 &&GeoDen1210&&

1211 Surface Construction ElementsGeometry Material Specific Heat 1000 ContinuousN N Y Guides & Standards5 30 100 &&GeoSpe1211&&

1212 Surface Construction ElementsGeometry Material Thermal Absorptance0.9 ContinuousN Y Y Guides & Standards5 30 0 &&GeoThe1212&&

1213 Surface Construction ElementsGeometry Material Solar Absorptance0.73 ContinuousN Y Y Guides & Standards5 30 0 &&GeoSol1213&&

1214 Surface Construction ElementsGeometry Material Visible Absorptance0.73 ContinuousN Y Y Guides & Standards5 30 0 &&GeoVis1214&&

1215 Material 1 N_Lib_Struct_Concrete_01

1216 Surface Construction ElementsGeometry Material Name N_Lib_Struct_Concrete_01Discrete N Y Y Not ApplicableNA NA NULL &&GeoNam1216&&

1217 Surface Construction ElementsGeometry Material RoughnessRough Discrete N Y Y Default Value 6 40 NULL &&GeoRou1217&&

1218 Surface Construction ElementsGeometry Material Thickness 0.25 ContinuousN N Y As-Built Drawings 3 10 0.008333 &&GeoThi1218&&

1219 Surface Construction ElementsGeometry Material Conductivity 2.5 ContinuousN N Y Guides & Standards5 30 0.25 &&GeoCon1219&&

1220 Surface Construction ElementsGeometry Material Density 2300 ContinuousN N Y Guides & Standards5 30 230 &&GeoDen1220&&

1221 Surface Construction ElementsGeometry Material Specific Heat 1000 ContinuousN N Y Guides & Standards5 30 100 &&GeoSpe1221&&

1222 Surface Construction ElementsGeometry Material Thermal Absorptance0.9 ContinuousN Y Y Guides & Standards5 30 0 &&GeoThe1222&&

1223 Surface Construction ElementsGeometry Material Solar Absorptance0.6 ContinuousN Y Y Guides & Standards5 30 0 &&GeoSol1223&&

1224 Surface Construction ElementsGeometry Material Visible Absorptance0.6 ContinuousN Y Y Guides & Standards5 30 0 &&GeoVis1224&&

1225 Material 1 N_Lib_Struct_Concrete_02

1226 Surface Construction ElementsGeometry Material Name N_Lib_Struct_Concrete_02Discrete N Y Y Not ApplicableNA NA NULL &&GeoNam1226&&

1227 Surface Construction ElementsGeometry Material RoughnessRough Discrete N Y Y Default Value 6 40 NULL &&GeoRou1227&&

1228 Surface Construction ElementsGeometry Material Thickness 0.275 ContinuousN N Y As-Built Drawings 3 10 0.009167 &&GeoThi1228&&

1229 Surface Construction ElementsGeometry Material Conductivity 2.5 ContinuousN N Y Guides & Standards5 30 0.25 &&GeoCon1229&&

1230 Surface Construction ElementsGeometry Material Density 2300 ContinuousN N Y Guides & Standards5 30 230 &&GeoDen1230&&

1231 Surface Construction ElementsGeometry Material Specific Heat 1000 ContinuousN N Y Guides & Standards5 30 100 &&GeoSpe1231&&

1232 Surface Construction ElementsGeometry Material Thermal Absorptance0.9 ContinuousN Y Y Guides & Standards5 30 0 &&GeoThe1232&&

1233 Surface Construction ElementsGeometry Material Solar Absorptance0.6 ContinuousN Y Y Guides & Standards5 30 0 &&GeoSol1233&&

1234 Surface Construction ElementsGeometry Material Visible Absorptance0.6 ContinuousN Y Y Guides & Standards5 30 0 &&GeoVis1234&&

Material:AirGap Count 3
1236 Material:AirGap 1 N_Lib_Air_Space

1237 Surface Construction ElementsGeometry Material:AirGapName N_Lib_Air_Space Discrete N Y N As-Built Drawings 3 10 NULL &&GeoNam1237&&

1238 Surface Construction ElementsGeometry Material:AirGapThermal Resistance {m2-K/W}0.15 ContinuousN N N Guides & Standards5 30 0.015 &&GeoThe1238&&

Material:InfraredTransparent Count2
1240 Material:InfraredTransparent1 IDFGENERATOR  IRTMaterial

1241 Surface Construction ElementsGeometry Material:InfraredTransparentName IDFGENERATOR  IRTMaterialDiscrete N Y N Default Value 6 40 NULL &&GeoNam1241&&

WindowMaterial:Glazing Count12
1243 WindowMaterial:Glazing1 Clear 3mm

1244 Surface Construction ElementsGeometry WindowMaterial:GlazingName Clear 3mm Discrete N Y N As-Built Drawings 3 10 NULL &&GeoNam1244&&

1245 Surface Construction ElementsGeometry WindowMaterial:GlazingOptical Data TypeSpectralAverage Discrete N Y N Default Value 6 40 NULL &&GeoOpt1245&&

1246 Surface Construction ElementsGeometry WindowMaterial:GlazingWindow Glass Spectral Data Set NameContinuousY Y N Default Value 6 40 NULL &&GeoWin1246&&

1247 Surface Construction ElementsGeometry WindowMaterial:GlazingThickness (m) 0.003 ContinuousN N N As-Built Drawings 3 10 0.0001 &&GeoThi1247&&

1248 Surface Construction ElementsGeometry WindowMaterial:GlazingSolar Transmittance at Normal Incidence0.837 ContinuousN N N Default Value 6 40 0.1116 &&GeoSol1248&&

1249 Surface Construction ElementsGeometry WindowMaterial:GlazingFront Side Solar Reflectance at Normal Incidence0.075 ContinuousN N N Default Value 6 40 0.01 &&GeoFro1249&&

1250 Surface Construction ElementsGeometry WindowMaterial:GlazingBack Side Solar Reflectance at Normal Incidence0.075 ContinuousN N N Default Value 6 40 0.01 &&GeoBac1250&&

1251 Surface Construction ElementsGeometry WindowMaterial:GlazingVisible Transmittance at Normal Incidence0.898 ContinuousN N N Default Value 6 40 0.119733 &&GeoVis1251&&

1252 Surface Construction ElementsGeometry WindowMaterial:GlazingFront Side Visible Reflectance at Normal Incidence0.081 ContinuousN N N Default Value 6 40 0.0108 &&GeoFro1252&&

1253 Surface Construction ElementsGeometry WindowMaterial:GlazingBack Side Visible Reflectance at Normal Incidence0.081 ContinuousN N N Default Value 6 40 0.0108 &&GeoBac1253&&

1254 Surface Construction ElementsGeometry WindowMaterial:GlazingInfrared Transmittance at Normal Incidence0 ContinuousN N N Default Value 6 40 0 &&GeoInf1254&&
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D.1 Calibration Papers - Techniques 

Author Title 
Journal / 

Conference 
Year Tools 

Calibrati
on Type 

Analytical 
Techniques 

Math. 
Methods 

Building 
Type 

System 
Type  

Subbarao, K. 

Primary and secondary terms 
analysis and renormalization: A 

unified approach to building 
energy simulations and short-

term testing 

Solar Energy 

Research Inst. 
1988 PSTAR Manual PSTAR, STEM N/A Residential  N/A 

Kaplan, MB; 

McFerran, J; 
Jansen, J & 

Pratt, R 

Reconciliation of a DOE2. 1C 

model with monitored end-use 
data for a small office building 

ASHRAE 
Transactions 

1990 DOE-2 Manual STEM, PARRED N/A Office 
Mechanical 

HVAC 

Bronson, D.J.; 
Hinchey, S.B.; 
Haberl, J.S. & 

O'Neal., D.L. 

A procedure for calibrating the 
DOE-2 simulation program to 

non-weather-dependent 

measured loads 

Proc. Of 
ASHRAE Winter 

Meeting 

1992 DOE-2 Manual 3D N/A 
Government 

/ Large 

Office 

N/A 

Waltz, JP 

Practical experience in achieving 

high levels of accuracy in energy 
simulations of existing buildings  

ASHRAE Transa
ctions 

1992 N/A Manual 
AUDIT, 

EXPERT, STAT 
N/A N/A N/A 

Katipamula, S & 

Claridge, DE 

Use of simplified system models 
to measure retrofit energy 

savings 

Journal of Solar 
Energy 

Engineering 

1993 SEAP Manual SEAP N/A 
Engineering 

Center 

DDCV with 

VAV 

Carroll, W.L. & 
Hitchcock, R. J. 

Tuning simulated building 
descriptions to match actual 

util ity data: methods and 

implementation 

ASHRAE 
Transactions 

1993 DOE-2 
Automat

ed 
EXPERT PENALTY School Mixed 

Clarke, J. A.; 
Strachan, P. A. 

& Pernot, C. 

An approach to the calibration of 
building energy simulation 

models 

ASHRAE 
Transactions 

1993 ESP-r Manual HIGH, SA N/A Test Cell  
Passive 

Solar 
(PASSYS) 
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Author Title 
Journal / 

Conference 
Year Tools 

Calibrati
on Type 

Analytical 
Techniques 

Math. 
Methods 

Building 
Type 

System 
Type  

Bou-Saada, T. E. 
& Haberl, J. S. 

An improved procedure for 
developing calibrated hourly 

simulation models 

Proceedings of 
the 5th 

International 
IBPSA 

Conference 

1995 DOE-2.1D 
Automat

ed 
EVIDENCE, 3D N/A 

Office (US 
DOE 

Forrestal 

Complex) 

Mechanical 
HVAC 

Manke, JM; 
Hittle, DC & 
Hancock, CE 

Calibrating building energy 
analysis models using short term 

test data 

Journal of solar 
energy 

engineering 
1996 BLAST Manual STEM N/A School 

Furnace and 
air-

conditioning 

units 

Soebarto, VI 

Calibration of hourly energy 
simulations using hourly 

monitored data and monthly 
util ity records for two case study 

buildings 

Proceedings of 
the 4th 

International 
IBPSA 

Conference 

1997 DOE-2 Manual INT N/A 

University 
and 

Municipal 

Building 

Dual-Duct 
Variable Air 

Volume 

(DDVAV) 

Haberl, J. S JS & 
Bou-Saada, T. E. 

TE 

Procedures for calibrating hourly 
simulation models to measured 

building energy and 
environmental data 

Journal of solar 
energy 

engineering 
1998 DOE-2.1D 

Automat
ed 

HIGH, 3D N/A 

Office (US 
DOE 

Forrestal 
Complex) 

Mechanical 
HVAC 

Reddy, TA; 
Deng, S & 

Claridge, DE 

Development of an inverse 
method to estimate overall 

building and ventilation 
parameters of large commercial 

buildings 

Journal of solar 
energy 

engineering 
1999 DOE-2 Manual MPE N/A 

Commercial 
Office  

Mechanical 
HVAC 

Lunneberg, TA 
Improving simulation accuracy 
through the use of short-term 

electrical end-use monitoring 

Proceedings of 
the 6th 

International 

IBPSA 
Conference 

1999 DOE-2 Manual STEM N/A Office N/A 



 

293 

Author Title 
Journal / 

Conference 
Year Tools 

Calibrati
on Type 

Analytical 
Techniques 

Math. 
Methods 

Building 
Type 

System 
Type  

Yoon, JH & Lee, 
EJ 

Calibration procedure of energy 
performance simulation model 

for a commercial building 

Proceedings 
from the 
Building 

Simulation 

Conference 

1999 DOE-2.1E Manual 
BASE, 

EVIDENCE 
N/A 

Large 
Commercial 

Building 

Package 
AHU 

Liu, M; Claridge, 
D E; Bensouda, 

N; Heinemeier, 
K; Lee, Seung 
Uk & Wei, G 

High Performance Commercial 
Building Systems Manual of 

Procedures for Calibrating 
Simulations of Building Systems 

Report. 
California 

Energy 
Commission 

2003 DOE-2 Manual SIG, STAT N/A 

Office 
Building / 

Campus 
Building /  

SDCV / 
SDVAV / 

DDCV / 
DDVAV 

Yoon, Jongho; 
Lee, E. J. & 

Claridge, D. E. 

Calibration Procedure for Energy 
Performance Simulation of a 

Commercial Building 

Journal of Solar 
Energy 

Engineering 

2003 DOE-2.1E Manual 
BASE, 

EVIDENCE, 

STAT 

N/A 
Large 

Commercial 

Building 

Package 
AHU 

Liu, S. & Henze, 

G. P 

Calibration of building models for 

supervisory control of 
commercial buildings 

Proceedings of 
the 9th 

International 
IBPSA 

Conference 

2005 
EnergyPlus 

/ GenOpt /  
Auto N/A SYS N/A 

AHU / VAV / 

Icemaking 
Chiller 

Westphal, FS & 

Lamberts, R. 

Building simulation calibration 

using sensitivity analysis  

Proceedings of 
the 9th 

International 

IBPSA 
Conference 

2005 
EnergyPlus 

(v1.2) 
Manual SA N/A Office 

Mixed 

Mode 

Sun, Jian & 
Reddy, T. Agami 

Calibration of Building Energy 

Simulation Programs Using the 
Analytic Optimization Approach 

(RP-1051). 

HVAC&R 
Research 

2006 DOE-2 Auto UQ MC 
Pseudo-
Building 

N/A 
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Author Title 
Journal / 

Conference 
Year Tools 

Calibrati
on Type 

Analytical 
Techniques 

Math. 
Methods 

Building 
Type 

System 
Type  

Reddy, T. Agami 
TA; Maor, 
Itzhak & 

Panjapornpon, 

Chanin 

Calibrating Detailed Building 
Energy Simulation Programs with 
Measured Data-- Part I: General 

Methodology (RP-1051). 

HVAC&R 
Research 

2007 DOE-2 Auto EXPERT, UQ MC N/A N/A 

Reddy, T. 
Agami; Maor, 

Itzhak & 
Panjapornpon, 

Chanin 

Calibrating Detailed Building 
Energy Simulation Programs with 

Measured Data--Part II: 
Application to Three Case Study 

Office Buildings (RP-1051). 

HVAC&R 

Research 
2007 DOE-2 Auto EXPERT, UQ MC Office  VAV System 

Neto, Alberto 

Hernandez & 
Fiorelli , Flavio 

Augusto 
Sanzovo 

Comparison between detailed 
model simulation and artificial 
neural network for forecasting 
building energy consumption 

Energy and 
Buildings 

2008 EnergyPlus Auto N/A ANN 
University B

uilding 
N/A 

Raftery, Paul; 
Keane, Marcus 

& Costa, 
Andrea 

Calibrating whole building energy 
models: Detailed case study 

using hourly measured data 

Energy & 

Buildings 
2011  Manual 

HIGH, 

EVIDENCE 
N/A Office 

VAV System

s 

Liu, Guopeng & 

Liu, Mingsheng 

A rapid calibration procedure and 
case study for simplified 

simulation models of commonly 
used HVAC systems 

Building and 

Environment 
2011 SEAP Manual SEAP, SIG N/A Office 

VAV 

systems, CV 
system 

Raftery, Paul; 
Keane, Marcus; 

& O’Donnell, 
James 

Calibrating whole building energy 
models: An evidence-based 

methodology 

Energy and 
Buildings 

2011 EnergyPlus  Manual 
EVIDENCE, 

PARRED 
N/A N/A N/A 
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Author Title 
Journal / 

Conference 
Year Tools 

Calibrati
on Type 

Analytical 
Techniques 

Math. 
Methods 

Building 
Type 

System 
Type  

Heo, Y.; 
Choudhary, R & 
Augenbroe, GA 

Calibration of building energy 
models for retrofit analysis under 

uncertainty 

Energy and 
Buildings 

2012 EnergyPlus  Auto UQ BAYES Office 

Gas 
Condensing 

Boiler/ 
/Natural 

Ventilation 

Coakley, Daniel; 

Raftery, Paul & 
Molloy, Padraig 

Calibration of Whole Building 
Energy Simulation Models: 

Detailed Case Study of a 
Naturally Ventilated Building 
Using Hourly Measured Data 

Proc. of 
Building 

Simulation & 
Optimisation  

Conference 

2012 EnergyPlus  Auto 

HIGH, 

EVIDENCE, 
STEM 

PEN 
University 

Building 

Natural 

Ventilation 

Manfren, 
Massimiliano; 
Aste, Niccola & 

Moshksar, Reza 

Calibration and uncertainty 
analysis for computer models: “A 
meta-model based approach for 

integrated building energy 

simulation" 

Applied Energy 2013 N/A Auto UQ 
BAYES, 
META 

Office 
Building / 
Campus 

Building /  

N/A 

Booth, A.T.; 
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1 N/A: Not applicable to this case. 

2 X: Information / paper not available at time of writing. 

3 A more comprehensive version of this table can be found on the attached CD (\Appendices\Appendix D\CalibrationPapers.xlsx)
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D.2 Calibration Toolkit 

This project proposes the creation of an integrated environment to assist in the calibration of 

Building Energy Simulation (BES) models. The tool will help users to follow the steps proposed 

in the calibration methodology outlined in this thesis. The following steps will be integrated into 

the BES calibration toolkit: 

 Data Gathering; 

 BES Model Development; 

 Uncertainty Analysis; 

 Parametric Analysis; 

 Sensitivity Analysis; 

 Visualisation; 

Each module is described in further detail below: 

Data gathering: The first module serves as a repository for Building Information necessary for 

the creation and calibration of Building Energy Simulation models. Files pertaining to the building, 

HVAC systems and environment may be added to the repository and categorised accordingly.  
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Useful features of this module could include: 

 Comment Box – enables users to add and store comments regarding documentation as it 

is added to the repository. 

 Datestamp – add date and timestamp for repository files 

 Version Control – Integrated VC tool to track and record changes made to repository 

files and restore un-wanted changes as necessary. 

 Source classification – enables the user to specify the reliability of source documentation. 

May be a useful feature when conducting parameter uncertainty analysis. 

 Data Capture from BMS System – Auto-import data to SQL database.  

The main purpose of the Data module is to enable the user to quickly organise, browse and classify 

source evidence. This will be a useful reference when building and updating the BES model.  

BES Model Development: This module would enable the user to access the current BES model 

and edit various elements of the model. This may be integrated into the toolkit using existing open-

source modules or may act as a UI to call various tools as required.  

Currently, there is no comprehensive GUI for EnergyPlus, although there is a tool under 

development (Simergy). The BES model used for our detailed calibration case-study was 

developed using a combination of the following tools and interfaces: 

 Google SketchUp and OpenStudio – Sketchup allows for the creation of building 

geometry while the OpenStudio plug-in allows users to add simulation information (such 

as zones, materials and constructions) to the model; 

 Note: Since this project began, Google SketchUp has been sold to ‘Trimble’ and 

OpenStudio has been developed as a stand-alone package. However, OpenStudio 

remains available as an open-source tool and integration into third-party tools is actively 

encouraged. 

 HVAC Generator – an excel-based user-interfaced which enables the specification of 

zone and system specific variable values as well as the amalgamation of EnergyPlus 

macro input files; 

 TortoiseSVN – version control software used to track and record changes to the BES 

model. 

http://simulationresearch.lbl.gov/projects/gui
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Ideally, these tools would be integrated into a single interface. Alternatively, the BES model 

module may call the various tools required for model development.  

Useful features of this module could include: 

 Version Control – display current model version along with comments. Automatically 

prompt user to update the version control repository when saving changes to any of the 

BES model files. 

 Model Import – Import Geometry files from various tools (ArchiCAD, SketchUp, 

AutoCAD etc.) using the standardised .ifc file format and clean/prepare file for 

simulation.  

 Visual representation – ability to view a virtual representation of the BES model. A 

previous MSc SD&D project dealt with the web-based visualisation of building models 

and ability to view time-series plots of data points associated with various Building 

Zones. This could serve as a useful extension of this previous work. (Ref. to Peter 

O’Neill thesis). This visualisation tool could also be a useful method of presenting error 

values (Measured vs. Simulated data) at various hours of the day (or averaged over any 

time period) or for visualising measured data in various building zones. Refer to data 

capture – integration with Measured BMS data. 

Parameter Uncertainty Analysis: This module refers to the prediction of uncertainty associated 

with individual model parameters. Currently, this process is managed using the Parametric Analysis 

excel worksheet. However, this process could be vastly improved by automating the following 

processes: 

 Generate parameter list – at present, I have manually created a list of all objects and 

parameters contained in our BES model. I have also manually classified these variables  as 

Discrete, Continuous or Multi-Dimensional. Improvements could be made by: 

 Automatically generate the list of model parameters from the EnergyPlus epmidf – this 

could be achieved using the same IDF Editor module contained in EnergyPlus.  

 Assign Ranges of Variation – this could be automatically achieved if the objects in the 

BES module were linked to the Sources contained in the Data Gathering module. For 

example, if we auto-classify all As-Built Drawings to be 95% accurate, we can auto-assign 

a ROV to all variables with this linked source evidence. 
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 Generate parametric study job list – This could be easily achieved by auto-generating a 

unique string for each model parameter and generating samples based on the assigned 

ROV using a Java math function. 

Parametric Study: This module refers to the process of running a parametric study based on the 

defined job list from the previous module. This may simply be achieved by calling jEPlus (can be 

called as a command line function) and generating the desired results.  

There are a number of features which would make this module more flexible for the user 

depending on the general project requirements. For example, we may want to change the 

EnergyPlus output parameters depending on the type of study we are conducting:  

 Calibration: We may just want to calibrate Heat or Electrical Energy use or a 

combination of different outputs. We may also want to change the resolution of our 

calibration study – hourly/weekly/monthly calibration.  

 Design: In a design case, we may just want to look at some form of cost function analysis 

when using different insulating materials or glazing surfaces. Here, we may define Energy 

use outputs along with a custom post-processing function to calculate the Value of 

construction/retrofit measures. 

The above tasks can be handled using jEPlus by implementing a number of tweaks. Therefore, 

this module could be completed separately by tweaking the jEPlus source code (as discussed in 

the other MSc proposal) and integrated into the final calibration tool.  

Sensitivity Analysis (Optional): This module could be implemented as a means of calculating 

parameter sensitivity for a given (set of) output(s). At present, we have not implemented a 

sensitivity analysis procedure as part of our methodology. However, it would certainly be a useful 

feature in any Building Energy Performance analysis toolkit.  
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