<table>
<thead>
<tr>
<th>Title</th>
<th>Computational homology of n-types</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Le, Van Luyen</td>
</tr>
<tr>
<td>Publication Date</td>
<td>2014-01-10</td>
</tr>
<tr>
<td>Item record</td>
<td>http://hdl.handle.net/10379/4417</td>
</tr>
</tbody>
</table>

Some rights reserved. For more information, please see the item record link above.
Computational homology of \(n \)-types

PhD thesis

by

Le Van Luyen

Supervisor: Professor Graham Ellis

School of Mathematics, Statistics and Applied Mathematics
National University of Ireland, Galway

January 2014
Contents

Declaration v

Acknowledgement vi

List of symbols vii

Summary viii

1 Introduction 1

1.1 Main goal and outline of thesis 2

1.2 Review of necessary background material 3

1.2.1 Homological algebra 3

1.2.2 Simplicial groups 5

2 Homology of 1-types 8

2.1 Homology of groups 9

2.2 Persistent group homology of dihedral 2-groups 12

2.3 Bar resolution, small resolutions and chain homotopy equivalences 18

3 Homology of n-types 25

3.1 Perturbation Lemma 26
<table>
<thead>
<tr>
<th>Section</th>
<th>Function Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Data types</td>
<td>104</td>
</tr>
<tr>
<td>8.2</td>
<td>List of functions</td>
<td>106</td>
</tr>
<tr>
<td>8.3</td>
<td>GAP Code</td>
<td>113</td>
</tr>
<tr>
<td>8.3.1</td>
<td>BarResolutionEquivalence(R)</td>
<td>113</td>
</tr>
<tr>
<td>8.3.2</td>
<td>BarComplexEquivalence(R)</td>
<td>118</td>
</tr>
<tr>
<td>8.3.3</td>
<td>ChainComplexOfSimplicialGroup(X)</td>
<td>120</td>
</tr>
<tr>
<td>8.3.4</td>
<td>EilenbergMacLaneSimplicialGroup(X,n,l)</td>
<td>133</td>
</tr>
<tr>
<td>8.3.5</td>
<td>CrossedModuleByAutomorphismGroup(G)</td>
<td>141</td>
</tr>
<tr>
<td>8.3.6</td>
<td>CrossedModuleByNormalSubgroup(G,N)</td>
<td>142</td>
</tr>
<tr>
<td>8.3.7</td>
<td>Order(X)</td>
<td>142</td>
</tr>
<tr>
<td>8.3.8</td>
<td>HomotopyGroup(X,n)</td>
<td>142</td>
</tr>
<tr>
<td>8.3.9</td>
<td>CatOneGroupByCrossedModule(X)</td>
<td>143</td>
</tr>
<tr>
<td>8.3.10</td>
<td>CrossedModuleByCatOneGroup(X)</td>
<td>146</td>
</tr>
<tr>
<td>8.3.11</td>
<td>NerveOfCatOneGroup(X,n)</td>
<td>148</td>
</tr>
<tr>
<td>8.3.12</td>
<td>CatOneGroupsByGroup(G)</td>
<td>156</td>
</tr>
<tr>
<td>8.3.13</td>
<td>NumberSmallCatOneGroups(arg)</td>
<td>164</td>
</tr>
<tr>
<td>8.3.14</td>
<td>SmallCatOneGroup(m,k,i)</td>
<td>165</td>
</tr>
<tr>
<td>8.3.15</td>
<td>IsomorphismCatOneGroups(C,D)</td>
<td>166</td>
</tr>
<tr>
<td>8.3.16</td>
<td>IdCatOneGroup(C)</td>
<td>169</td>
</tr>
<tr>
<td>8.3.17</td>
<td>NumberSmallCrossedModules(m)</td>
<td>172</td>
</tr>
<tr>
<td>8.3.18</td>
<td>SmallCrossedModule(m,k)</td>
<td>172</td>
</tr>
<tr>
<td>8.3.19</td>
<td>IsomorphismCrossedModules(XC,XD)</td>
<td>173</td>
</tr>
<tr>
<td>8.3.20</td>
<td>IdCrossedModule(X)</td>
<td>174</td>
</tr>
<tr>
<td>8.3.21</td>
<td>SubQuasiIsomorph(C)</td>
<td>175</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------</td>
<td>-----</td>
</tr>
<tr>
<td>8.3.22</td>
<td>QuotientQuasiIsomorph(C)</td>
<td>176</td>
</tr>
<tr>
<td>8.3.23</td>
<td>QuasiIsomorph(X)</td>
<td>178</td>
</tr>
<tr>
<td>8.3.24</td>
<td>Homology(X,n)</td>
<td>179</td>
</tr>
<tr>
<td>8.3.25</td>
<td>HomotopyCrossedModule(X)</td>
<td>179</td>
</tr>
<tr>
<td>8.3.26</td>
<td>NumberSmallQuasiCrossedModules(m)</td>
<td>180</td>
</tr>
<tr>
<td>8.3.27</td>
<td>SmallQuasiCrossedModule(m,k)</td>
<td>180</td>
</tr>
<tr>
<td>8.3.28</td>
<td>IdQuasiCrossedModule(X)</td>
<td>180</td>
</tr>
<tr>
<td>8.3.29</td>
<td>HomotopyLowerCentralSeriesOfCrossedModule(X)</td>
<td>181</td>
</tr>
<tr>
<td>8.3.30</td>
<td>PersistentHomologyOfCrossedModule(X,n)</td>
<td>183</td>
</tr>
</tbody>
</table>
Declaration

I, Le Van Luyen, certify that the thesis is all my own work and that I have not obtained a degree in this University or elsewhere on the basis of any of this work.
Acknowledgement

I would like to thank my supervisor Professor Graham Ellis for suggesting the studies from which this thesis arose and for his constructive guidance and warm encouragement during the course of this work. Without his guidances, this thesis would never be done.

Thanks also to all the Riverside Terrapin postgrads; we have had great laughs, good times and a bit of maths. Many thanks to all members of staff at the School of Maths, NUI Galway and especially to Mary Kelly who has always been so attentive and helpful.

I am grateful to the NUI Galway for offering me a PhD fellowship, without which I would not have been able to complete this research.

Finally, it is my pleasure to acknowledge the support and encouragement of my wife at all stages of the preparation of this thesis.

Galway, January 8, 2014

Le Van Luyen
List of symbols

\[[x] \] greatest integer less than or equal to \(x \)
\[\mathbb{Z} \] integer numbers \(\{ \ldots, -2, -1, 0, 1, 2, \ldots \} \)
\[\mathbb{Z}G \] integral group ring
\[\mathbb{Z}_n \] \(\{0, 1, \ldots, n-1\} \)
\[C_n \] cyclic group of order \(n \)
\[D_{2n} \] dihedral group of order \(2n \)
\[\oplus \] direct sum
\[\otimes \] tensor product
\[\rtimes \] semidirect product
\[\mathbb{K} \] field
\[\mathbb{F}_p \] field of \(p \) elements
\[1_A \] identity map from \(A \) to \(A \)
\[\text{rank}(f) \] dimension of the image of \(f \)
\[\{\gamma_iG\}_{i \geq 1} \] lower central series of group \(G \)
\[\langle g \rangle \] group generated by element \(g \)
\[1 \] trivial group
\[\text{Aut}(G) \] automorphism group of group \(G \)
\[Z(M) \] center of group \(M \)
\[[N, M] \] commutator of two subgroups \(N \) and \(M \)
Summary

The thesis makes the following new contributions to the area of combinatorial homotopy theory:

1. We determine the persistent homology of dihedral groups of order 2^n and confirm a conjecture in [22]. (See Corollary 2.2.4.)

2. We implement an algorithm for computing a $\mathbb{Z}G$-equivariant chain homotopy equivalence

$$R^G_* \rightleftharpoons B^G_*$$

between the bar resolution B^G_* of group G and the smaller resolution R^G_* of group G given in the HAP package [20]. (See Algorithm 2.3.4.)

3. We implement the following functors on computer:

- The isomorphism between the category of cat1-groups and the category of crossed modules

$$\lambda : \text{(Crossed modules)} \rightarrow \text{(Cat}^1\text{-groups)}$$ (see Algorithm 5.2.1),

$$\gamma : \text{(Cat}^1\text{-groups)} \rightarrow \text{(Crossed modules)}$$ (see Algorithm 5.2.2).

- The nerve of cat1-groups

$$\mathcal{N} : \text{(Cat}^1\text{-groups)} \rightarrow \text{(Simplicial groups)}$$ (see Algorithm 5.2.3).

- The Eilenberg-Mac Lane simplicial group $K(A,n)$ with A an abelian group

$$K(_ , n) : \text{(Abelian groups)} \rightarrow \text{(Simplicial abelian groups)}$$ (see Algorithms 4.1.1, 4.1.2).

4. We devise and implement an algorithm which inputs a finite crossed module $\partial : M \rightarrow P$ and outputs a quasi-isomorphic crossed module $\partial' : M' \rightarrow P'$ where ∂' has order less than or equal to the order of ∂. (See Algorithm 5.4.2.)
5. We devise and implement an algorithm which inputs a finite group G and outputs all non-isomorphic cat1-group structures on group G (see Algorithm 5.3.1). By using this algorithm, we construct data of cat1-groups and crossed modules of order $m \leq 255$.

6. We devise and implement an algorithm for computing a chain complex for homology of a simplicial group (see Algorithm 3.2.1). By using this chain complex, we compute the integral homology of simplicial groups.

7. We devise and implement an algorithm for computing a homology map induced by a morphism of simplicial groups. (See Algorithm 6.1.1.)

8. We classify most of the 2-types of “order” $m \leq 255$. (See Section 5.6.)

9. We introduce a notion of persistent homology of crossed modules and prove that it is a quasi-isomorphism invariant (see Theorem 7.1.10). We devise and implement an algorithm for computing this notion (see Algorithm 7.2.2).
Chapter 1

Introduction
1.1 Main goal and outline of thesis

The main goal of this thesis is the development of computational tools for helping with the classification of 2-types. Our primary computational tool is the homology, and persistent homology, of 2-types. We provide a classification of most of the 2-types of “order” \(m \leq 255 \).

The thesis has eight chapters.

Chapter 1 recalls preliminary notions and results that will be used in the thesis. These include chain complexes and simplicial groups.

Chapter 2 is devoted to 1-types. We present a new result in the persistent group homology of dihedral 2-groups. Moreover, we construct an algorithm to compute a chain homotopy equivalence between the bar resolution and the HAP resolution of a group. The algorithm is an important step in developing an algorithm in Chapter 3.

Chapter 3 recalls an important “Perturbation Lemma”. Using this lemma, we construct an algorithm to compute a chain complex for homology of a simplicial group.

Chapters 4, 5 develop special cases of Chapter 3. Using the computation of the chain complex for homology of simplicial groups, we can calculate the homology of crossed modules and Eilenberg-Mac Lane spaces.

Chapter 6 presents an algorithm to compute a homology map induced by a morphism of simplicial groups.

Chapter 7 introduces the definition of persistent homology of a crossed module. The persistent homology is a quasi-isomorphism invariant of crossed modules. We also give an algorithm to compute the persistent homology of crossed modules.

Chapter 8 concerns computation in GAP. We present the data types of objects that are mentioned in this thesis such as: cat\(^1\)-groups, crossed modules, simplicial groups. We also give the description of all functions relating the computation and their GAP code.
1.2 Review of necessary background material

1.2.1 Homological algebra

Definition 1.2.1. [47] Let R be a ring. A chain complex $C = (C_n, d_n)_{n \in \mathbb{Z}}$ of R-modules is a sequence of homomorphisms of R-modules

$$\cdots \xrightarrow{d_{n+1}} C_{n+1} \xrightarrow{d_n} C_n \xrightarrow{d_{n-1}} \cdots$$

such that $d_n d_{n+1} = 0$ for all n. The chain complex C is called an sequence if $\text{Im} d_{n+1} = \text{Ker} d_n$ for all n.

Definition 1.2.2. [47] Let $C = (C_n, d_n)_{n \in \mathbb{Z}}$ be a chain complex of R-modules. For each $n \in \mathbb{Z}$, the nth homology module of C is defined to be the quotient module

$$H_n(C) = \frac{\text{Ker} d_n}{\text{Im} d_{n+1}}.$$

Definition 1.2.3. [47] Let $C = (C_n, d_n)$ and $C' = (C'_n, d'_n)$ be chain complexes of R-modules. A chain map $f : C \to C'$ is a sequence of homomorphisms of R-modules $f_n : C_n \to C'_n$ such that the following diagram commutes

$$\cdots \xrightarrow{d_{n+1}} C_{n+1} \xrightarrow{d_n} C_n \xrightarrow{d_{n-1}} \cdots$$

It is not difficult to prove that a chain map $f : C \to C'$ induces R-module homomorphisms

$$H_n(f) : H_n(C) \to H_n(C') \text{ for all } n.$$

Definition 1.2.4. [47] Let $f, g : C \to C'$ be chain maps. A chain homotopy h between f and g, denoted by $h : f \simeq g$, is a sequence of homomorphisms $h_n : C_n \to C'_{n+1}$ such that

$$f_n - g_n = d'_{n+1} h_n + h_{n-1} d_n \text{ for all } n.$$

If there exists a chain homotopy between f and g, then f and g are said to be chain homotopic.

Lemma 1.2.1. [47] If $f, g : C \to C'$ are chain homotopic then they induce the same
1.2 Review of necessary background material

Homomorphisms

\[H_n(C) \to H_n(C') \text{ for all } n. \]

Definition 1.2.5. [47] Let \(f : C \to C' \) be a chain map. The map \(f \) is said to be a **chain homotopy equivalence** if there is a chain map \(g : C' \to C \) such that \(gf \) and \(fg \) are chain homotopic to the respective identity chain maps of \(C \) and \(C' \).

Definition 1.2.6. [47] A chain map \(f : C \to C' \) is said to be a **quasi-isomorphism** if \(f \) induces isomorphisms

\[H_n(f) : H_n(C) \cong H_n(C') \text{ for all } n. \]

Definition 1.2.7. [47] Two chain complexes \(C \) and \(C' \) are said to be **quasi-isomorphic** if there is a sequence

\[C \xrightarrow{f_1} C_1 \xleftarrow{f_2} C_2 \xrightarrow{f_3} \cdots \xleftarrow{f_k} C' \]

of chain maps such that each \(f_i \) is a quasi-isomorphism for \(1 \leq i \leq k \).

Definition 1.2.8. [47] A **bicomplex** \(M \) of \(R \)-modules is a family \(\{ M_{p,q} \}_{p,q \in \mathbb{Z}} \) of \(R \)-modules, together with homomorphisms \(d^h : M_{p,q} \to M_{p-1,q} \) and \(d^v : M_{p,q} \to M_{p,q-1} \) such that \(d^h d^v = d^v d^h = d^v d^h + d^h d^v = 0 \). It is pictured as the following diagram

\[
\begin{array}{ccccccccc}
\cdots & \to & M_{p+1,q+1} & \xrightarrow{d^h} & M_{p,q+1} & \xrightarrow{d^h} & M_{p-1,q+1} & \to & \cdots \\
& & d^v & & d^v & & d^v & & \\
\cdots & \to & M_{p+1,q} & \xrightarrow{d^h} & M_{p,q} & \xrightarrow{d^h} & M_{p-1,q} & \to & \cdots \\
& & d^v & & d^v & & d^v & & \\
\cdots & \to & M_{p+1,q-1} & \xrightarrow{d^h} & M_{p,q-1} & \xrightarrow{d^h} & M_{p-1,q-1} & \to & \cdots \\
& & & & & & & & \\
\cdots & \to & M_{p,q} & \xrightarrow{d^v} & M_{p,q} & \xrightarrow{d^v} & M_{p,q} & \to & \cdots \\
& & & & & & & & \\
& & & & & & & & \\
\end{array}
\]

Definition 1.2.9. [47] Let \(M = \{ M_{p,q} \}_{p,q \in \mathbb{Z}} \) be a bicomplex of \(R \)-modules. The **total complex** of \(M \), denoted by \(\text{Tot}(M) \), is a chain complex defined by

\[\text{Tot}(M)_n = \bigoplus_{p+q=n} M_{p,q} \]

with boundary map given by \(d_n(x) = d^v(x) + d^h(x) \) for \(x \in M_{p,q} \).
1.2 Review of necessary background material

1.2.2 Simplicial groups

Definition 1.2.10. [35] Let \mathcal{C} be a category. The category \mathcal{sC} of simplicial objects over \mathcal{C} is defined as follows:

- An object $K \in \mathcal{sC}$ consists of

 - A set of objects $\{K_n\}_{n \geq 0}$ in \mathcal{C};

 - For every pair of integers (i, n) such that $0 \leq i \leq n$, face and degeneracy maps $d_i : K_n \to K_{n-1}$ and $s_i : K_n \to K_{n+1}$ satisfying the simplicial identities:

 \[
 d_id_j = d_{j-1}d_i \quad \text{if } i < j \\
 d_is_j = s_{j-1}d_i \quad \text{if } i < j \\
 d_js_j = 1 = d_{j+1}s_j \\
 d_is_j = sjd_{i-1} \quad \text{if } i > j + 1 \\
 s_is_j = sj+1s_i \quad \text{if } i \leq j.
 \]

- Let K and L be simplicial objects. A morphism $f : K \to L$ consists of maps $f_n : K_n \to L_n$ which commute with face maps and degeneracy maps, that is, $f_{n-1}d_i = d_if_n$ and $f_{n+1}s_i = s_if_n$ for all $0 \leq i \leq n$.

If \mathcal{C} is a category of set, the elements of K_n are called the n-simplices of K.

Definition 1.2.11. A simplicial set is a simplicial object over the category of sets and a simplicial group is a simplicial object over the category of groups.

Definition 1.2.12. A bisimplicial set is a simplicial object over the category of simplicial sets.

Definition 1.2.13. Let \mathcal{C} be a category. The nerve of \mathcal{C}, denoted by \mathcal{NC}, is a simplicial set constructed as follows:

- For each integer $n \geq 0$, the set $\mathcal{N}_n\mathcal{C}$ of n-simplices is the set of diagrams

 \[A_0 \to A_1 \to \cdots \to A_n\]

 of objects and morphisms from \mathcal{C}.
• For each pair of integers \((i, n)\) such that \(0 \leq i \leq n\),
 - the face maps \(d_i : \mathcal{N}_n \mathcal{C} \to \mathcal{N}_{n-1} \mathcal{C}\) are given by composition of morphisms at the \(i\)th node in the diagram (or dropping the first or last arrow if \(i = 0\) or \(n\) respectively),
 - the degeneracy maps \(s_i : \mathcal{N}_n \mathcal{C} \to \mathcal{N}_{n+1} \mathcal{C}\) are given by inserting identity morphisms at the \(i\)th node in the diagram.

If \(G\) is a group, then \(G\) can be identified with a category with one object \(*\) and one morphism \(g : * \to *\) for each element \(g\) of \(G\). So we can construct the nerve of a group \(G\). In particular, the nerve of group \(G\) is a simplicial set \(\mathcal{N}G\) with

\[
\mathcal{N}_0 G = 1; \mathcal{N}_n G = \underbrace{G \times \cdots \times G}_n
\]

and a collection of face maps \(d_i : \mathcal{N}_n G \to \mathcal{N}_{n-1} G\) and degeneracy maps \(s_i : \mathcal{N}_n G \to \mathcal{N}_{n+1} G\),

\[
d_i(g_1, \ldots, g_n) = \begin{cases}
(g_2, \ldots, g_n) & \text{if } i = 0, \\
(g_1, \ldots, g_ig_{i+1}, \ldots, g_n) & \text{if } 0 < i < n, \\
(g_1, \ldots, g_{n-1}) & \text{if } i = n,
\end{cases}
\]

\[
s_i(g_1, \ldots, g_n) = (g_1, \ldots, g_i, 1, g_{i+1}, \ldots, g_n) & \text{if } 0 \leq i \leq n.
\]

Definition 1.2.14. Let \(G_*\) be a simplicial group. The Moore complex of \(G_*\), denoted by \(MG_* = (M_n G_*, \partial_n)_{n \geq 0}\), is defined by

\[
M_n G_* = G_n \cap \text{Ker } d_1 \cap \ldots \cap \text{Ker } d_n
\]

with differential map \(\partial_n : M_n G_* \to M_{n-1} G_*\) induced from \(d_0\) by restriction.

Definition 1.2.15. Let \(G_*\) be a simplicial group. The homotopy groups of \(G_*\) are defined to be the homology groups of its Moore complex,

\[
\pi_n(G_*) = \text{Ker } (\partial_n : M_n G_* \to M_{n-1} G_*)/\text{Im } (\partial_{n+1} : M_{n+1} G_* \to M_n G_*).
\]

Definition 1.2.16. Let \(G_*\) be a simplicial abelian group. We set \(A_n G_* = G_n \ (n \geq 0)\)
with boundary map given by

\[\partial_n = \sum_{i=0}^{n} (-1)^i d_i^n : A_n G_* \to A_{n-1} G_* . \]

Then \(A G_* \) is a chain complex. We call \(A G_* \) be the *alternating chain complex* of \(G_* \).

Definition 1.2.17. A morphism \(f : G_* \to G'_* \) of simplicial groups is said to be a *weak equivalence* if \(f \) induces isomorphisms

\[\pi_n(G_*) \cong \pi_n(G'_*) \] for all \(n \geq 0 \).

Definition 1.2.18. Two simplicial groups \(G_* \) and \(G'_* \) are said to be *weakly equivalent* if there is a sequence

\[G_* \xrightarrow{f_1} G'_1 \xleftarrow{f_2} G'_2 \xrightarrow{f_3} \cdots \xleftarrow{f_k} G'_k \]

of morphisms of simplicial groups such that each \(f_i \) is a weak equivalence for \(1 \leq i \leq k \).
Chapter 2

Homology of 1-types
2.1 Homology of groups

An 1-type is a CW-space X with $\pi_i X = 0$ for $i = 0, i \geq 2$. It can be modelled algebraically by a free $\mathbb{Z}G$-resolution where $G = \pi_1 X$. (The definition of “$\mathbb{Z}G$-resolution” is given below.)

Definition 2.1.1. [42] Let G be a group and \mathbb{Z} be the group of integers considered as a trivial $\mathbb{Z}G$-module. The map $\epsilon: \mathbb{Z}G \to \mathbb{Z}$ from the integral group ring to \mathbb{Z}, given by $\sum m_g g \mapsto \sum m_g$, is called the augmentation.

It easy to see that ϵ is a $\mathbb{Z}G$-module homomorphism.

Definition 2.1.2. [1] Let G be a group. A free $\mathbb{Z}G$-resolution of \mathbb{Z} is an exact sequence of $\mathbb{Z}G$-modules

$$R_*^G: \cdots \to R_{n+1}^G \xrightarrow{\partial_{n+1}} R_n^G \xrightarrow{\partial_n} R_{n-1}^G \to \cdots \to R_1^G \xrightarrow{\partial_1} R_0^G \xrightarrow{\epsilon} R_{-1}^G = \mathbb{Z} \to 0$$

with each R_i^G a free $\mathbb{Z}G$-module for all $i \geq 0$.

Definition 2.1.3. Let R_*^G be a free $\mathbb{Z}G$-resolution of \mathbb{Z}. A contracting homotopy h of R_*^G is a sequence of homomorphisms of \mathbb{Z}-modules $h_n: R_n^G \to R_{n+1}^G$ ($n \geq -1$) such that

$$\epsilon h_{-1} = 1_{\mathbb{Z}},$$

$$h_{-1} \epsilon + \partial_0 h_0 = 1_{R_0^G},$$

$$h_{i-1} \partial_i + \partial_{i+1} h_i = 1_{R_i^G} \text{ for } i > 0.$$

Definition 2.1.4. [1] Let R_*^G be a free $\mathbb{Z}G$-resolution of \mathbb{Z} and A be a $\mathbb{Z}G$-module. The homology of G with coefficients in A is defined by

$$H_n(G, A) := H_n(R_*^G \otimes_{\mathbb{Z}G} A) \text{ for all } n \geq 0.$$

Definition 2.1.5. Let $\phi: G \to G'$ be a group homomorphism. A chain map $f: R_*^G \to R_*^{G'}$ of \mathbb{Z}-chain complexes is said to be ϕ-equivariant if $f_n(gx) = \phi(g)f_n(x)$ for all $g \in G, x \in R_n^G, n \geq 0.$
Proposition 2.1.1. Let R^G_s be a free $\mathbb{Z}G$-resolution of \mathbb{Z} and $R^{G'}_s$ be a free $\mathbb{Z}G'$-resolution of \mathbb{Z}. Let $\phi: G \to G'$ be a group homomorphism. Note that, for $i \geq 1$, R^G_i is a $\mathbb{Z}G$-module with G acting via ϕ. Then

(i) There exists a ϕ-equivariant chain map $f: R^G_s \to R^{G'}_s$ for which

\[
\begin{array}{c}
R^G_0 \xrightarrow{f_0} R^{G'}_0 \\
\downarrow \epsilon \quad \downarrow \epsilon' \\
\mathbb{Z} \xrightarrow{=} \mathbb{Z}
\end{array}
\]

commutes. Here ϵ, ϵ' are surjective homomorphisms with $\text{Ker} \epsilon = \text{Im} \partial_0, \text{Ker} \epsilon' = \text{Im} \partial'_0$.

(ii) Any two ϕ-equivariant chain maps $f: R^G_s \to R^{G'}_s$ and $g: R^G_s \to R^{G'}_s$ are chain homotopic via a $\mathbb{Z}G$-equivariant homotopy $h_n: R^G_n \to R^{G'}_{n+1}$.

Lemma 2.1.2. [5] Let $\phi: G \to G'$ be a homomorphism of groups and A be $\mathbb{Z}G'$-module. Note that A is also a $\mathbb{Z}G$-module with G acting via ϕ. Then ϕ induces homomorphisms

$$H_n(\phi): H_n(G, A) \to H_n(G', A)$$

for all $n \geq 0$.

Proposition 2.1.3. [1] Let G be a cyclic group of order n generated by x. Then there is a free $\mathbb{Z}G$-resolution of \mathbb{Z}

$$R^G_s: \cdots \to \mathbb{Z}G \overset{N_x}{\longrightarrow} \mathbb{Z}G \overset{x^{-1}}{\longrightarrow} \mathbb{Z}G \overset{N_x}{\longrightarrow} \mathbb{Z}G \overset{x^{-1}}{\longrightarrow} \mathbb{Z}G \overset{\epsilon}{\longrightarrow} \mathbb{Z} \to 0$$

with $N_x = 1 + x + \cdots + x^{n-1}$ and

$$H_m(G, \mathbb{Z}) \cong \begin{cases}
\mathbb{Z} & \text{if } m = 0, \\
\mathbb{Z}_m & \text{if } m \text{ odd}, \\
0 & \text{otherwise}.
\end{cases}$$

Definition 2.1.6. For $n \geq 1$ we denote by D_{2n} the dihedral group generated by x, y subject to the relations $x^n = 1, y^2 = 1, yxy^{-1} = x^{-1}$.

Remark 2.1.1. We abuse notation and let x, y denote generators for D_2, D_4, D_6, \ldots and let the context remove any possible ambiguity.
Proposition 2.1.4. [1] Let G be the dihedral group of order $2n$. Then there is a free $\mathbb{Z}G$-resolution of \mathbb{Z} (denoted by R^G_\ast) arising as the total complex of the following bicomplex

\[
\cdots \rightarrow \mathbb{Z}G \xrightarrow{\alpha_{33}} \mathbb{Z}G \xrightarrow{\alpha_{23}} \mathbb{Z}G \xrightarrow{\alpha_{13}} \mathbb{Z}G \xrightarrow{\alpha_{03}} \mathbb{Z}G \\
\downarrow{\beta_{33}} \downarrow{\beta_{23}} \downarrow{\beta_{13}} \downarrow{\beta_{03}} \\
\cdots \rightarrow \mathbb{Z}G \xrightarrow{\alpha_{32}} \mathbb{Z}G \xrightarrow{\alpha_{22}} \mathbb{Z}G \xrightarrow{\alpha_{12}} \mathbb{Z}G \xrightarrow{\alpha_{02}} \mathbb{Z}G \\
\downarrow{\beta_{32}} \downarrow{\beta_{22}} \downarrow{\beta_{12}} \downarrow{\beta_{02}} \\
\cdots \rightarrow \mathbb{Z}G \xrightarrow{\alpha_{31}} \mathbb{Z}G \xrightarrow{\alpha_{21}} \mathbb{Z}G \xrightarrow{\alpha_{11}} \mathbb{Z}G \xrightarrow{\alpha_{01}} \mathbb{Z}G \\
\downarrow{\beta_{31}} \downarrow{\beta_{21}} \downarrow{\beta_{11}} \downarrow{\beta_{01}} \\
\cdots \rightarrow \mathbb{Z}G \xrightarrow{\alpha_{30}} \mathbb{Z}G \xrightarrow{\alpha_{20}} \mathbb{Z}G \xrightarrow{\alpha_{10}} \mathbb{Z}G \xrightarrow{\alpha_{00}} \mathbb{Z}G
\]

Here

\[
\alpha_{pq} = \begin{cases}
 x - 1 & \text{if } p \text{ odd}, \\
 N_x & \text{if } p \text{ even},
\end{cases}
\]

with $N_x = 1 + x + x^2 + \cdots + x^{n-1}$ and

\[
\beta_{pq} = \begin{cases}
 y - 1 & p \equiv 0 \mod 4, \ q \text{ odd}, \\
 y + 1 & p \equiv 0 \mod 4, \ q \text{ even}, \\
 yx + 1 & p \equiv 1 \mod 4, \ q \text{ odd}, \\
 yx - 1 & p \equiv 1 \mod 4, \ q \text{ even}, \\
 -y - 1 & p \equiv 2 \mod 4, \ q \text{ odd}, \\
 -y + 1 & p \equiv 2 \mod 4, \ q \text{ even}, \\
 -yx + 1 & p \equiv 3 \mod 4, \ q \text{ odd}, \\
 -yx - 1 & p \equiv 3 \mod 4, \ q \text{ even}.
\end{cases}
\]

In particular, for $i \geq 1$, the boundary map $\partial_i : R^G_i \rightarrow R^G_{i-1}$ is given by

\[
\partial_i(e_{pq}) = \begin{cases}
 \alpha_{pq}e_{p-1,q} + \beta_{pq}e_{p,q-1} & \text{if } p, q \geq 1, \\
 \alpha_{pq}e_{p-1,q} & \text{if } p \geq 1, q = 0, \\
 \beta_{pq}e_{p,q-1} & \text{if } p = 0, q \geq 1,
\end{cases}
\]
2.2 Persistent group homology of dihedral 2-groups

with \(\{ e_{p,q} \}_{p+q=i} \) the basis of the \(R_i^G \).

Proposition 2.1.5. [1] Let \(G \) be the dihedral group of order \(2n \) with \(n \) even. Then

\[
H_m(G, \mathbb{Z}_2) = \mathbb{Z}_2^{m+1} \text{ for all } m \geq 0.
\]

2.2 Persistent group homology of dihedral 2-groups

Recall that the *lower central series* of group \(G \) is defined by

\[
\gamma_1 G = G, \quad \gamma_{i+1} G = [G, \gamma_i G] \text{ for } i \geq 1
\]

and the *class* of \(G \) is the smallest non-negative integer \(c \) such that \(\gamma_{c+1} G = 1 \).

In this section, we fix \(G \) to be a \(p \)-group of class \(n - 1 \). The lower central series of \(G \) gives rise to a sequence of homomorphisms of groups.

\[
G/\gamma_n G \to G/\gamma_{n-1} G \to \cdots \to G/\gamma_3 G \to G/\gamma_2 G.
\]

Let \(\mathbb{F}_p \) be the field of \(p \) elements. By using the functor \(H_m(-, \mathbb{F}_p) \), we obtain the sequence of induced linear maps of vector spaces on \(\mathbb{F}_p \)

\[
H_m(G/\gamma_n G, \mathbb{F}_p) \to H_m(G/\gamma_{n-1} G, \mathbb{F}_p) \to \cdots \to H_m(G/\gamma_3 G, \mathbb{F}_p) \to H_m(G/\gamma_2 G, \mathbb{F}_p).
\]

Now we determine the rank of \(H_m(G/\gamma_i G, \mathbb{F}_p) \) and phrase our answer in the language of persistent homology.

Definition 2.2.1. Let \(p \) be a prime number and \(G \) be a \(p \)-group of class \(n - 1 \). We have a sequence of linear maps of vector spaces on \(\mathbb{F}_p \)

\[
H_m(G/\gamma_n G, \mathbb{F}_p) \to H_m(G/\gamma_{n-1} G, \mathbb{F}_p) \to \cdots \to H_m(G/\gamma_3 G, \mathbb{F}_p) \to H_m(G/\gamma_2 G, \mathbb{F}_p).
\]

We let \(PH_m(G) \) be the upper triangular matrix \(PH_m(G) = (p_{ij})_{1 \leq i,j \leq n-1} \) with

- \(p_{ij} = \text{rank of } H_m(G/\gamma_{n-i+1} G, \mathbb{F}_p) \to H_m(G/\gamma_{n-j+1} G, \mathbb{F}_p) \) for \(i < j \).
- \(p_{ii} = \text{the dimension of } H_m(G/\gamma_{n-i+1} G, \mathbb{F}_p) \).
- \(p_{ij} = 0 \) for \(i > j \).
The entries p_{ij} of the matrix $PH_m(G)$ are called the persistent Betti numbers of G at degree m.

Now we focus on dihedral groups of order 2^n and we give a result on the persistent Betti numbers of these groups. Recall that if G is a dihedral group of order 2^n then the class of G is $n-1$. It means $\gamma_n G = 1$ and $\gamma_{n-1} G \neq 1$.

Lemma 2.2.1. Let $G = D_{2^n}$. Then

(i) for each $2 \leq k \leq n$, $\gamma_k G = \langle x^{2^{k-1}} \rangle$ and $\phi_k : D_{2^k} \cong G/\gamma_k G$ with

$$\phi_k : x \mapsto x\gamma_k G, y \mapsto y\gamma_k G;$$

(ii) the sequence of homomorphism

$$G/\gamma_n G \xrightarrow{\alpha_n} G/\gamma_{n-1} G \xrightarrow{\alpha_{n-1}} \cdots \xrightarrow{\alpha_4} G/\gamma_3 G \xrightarrow{\alpha_3} G/\gamma_2 G$$

is isomorphic to

$$D_{2^n} \xrightarrow{\beta_n} D_{2^{n-1}} \xrightarrow{\beta_{n-1}} \cdots \xrightarrow{\beta_3} D_2$$

with α_k the quotient map and $\beta_k : x \mapsto x, y \mapsto y$ for all $3 \leq k \leq n$.

Proof. To prove (i) is suffices to show that $\gamma_k G = \langle x^{2^{k-1}} \rangle$ by induction on k.

For $k = 2$, $[x, y] = xyx^{-1}y^{-1} = xx = x^2$. So $\langle x^2 \rangle \leq \gamma_2 G$. Since G is a dihedral group of order 2^n, every element of G can be represented in the form $x^i y^j$ with $0 \leq i \leq 2^{n-1} - 1, j = 0, 1$. Let $a, b \in G$. We compute the commutator $[a, b] = aba^{-1}b^{-1}$.

- If $a = x^i, b = x^j$ then $[a, b] = 1$.
- If $a = x^i, b = x^i y$ then $[a, b] = x^{2i}$.
- If $a = x^i y, b = x^j$ then $[a, b] = x^{-2j}$.
- If $a = x^i y, b = x^j y$ then $[a, b] = x^{2(i-j)}$.

From the above cases, we see that $[a, b] \in \langle x^2 \rangle$. This implies $\gamma_2 G \leq \langle x^2 \rangle$. Thus $\gamma_2 G = \langle x^2 \rangle$.
Suppose that $\gamma_k G = \langle x^{2^k-1} \rangle$ for some $2 \leq k \leq n - 1$. Then we have

$$[x^{2^k-1}, y] = x^{2^k-1} y x^{-2^k-1} y^{-1} = x^{2^k-1} x^{2^k-1} = x^{2^k}.$$

This implies $\langle x^{2^k} \rangle \leq \gamma_{k+1} G$. Let $a \in \gamma_k G, b \in G$,

- If $a = x^{i2^k-1}, b = x^j$ then $[a, b] = 1$.
- If $a = x^{i2^k-1}, b = x^j y$ then $[a, b] = x^{i2^k}$.

We see that all generators of $\gamma_{k+1} G$ are in $\langle x^{2^k} \rangle$. This implies $\gamma_{k+1} G \leq \langle x^{2^k} \rangle$. Thus $\gamma_{k+1} G = \langle x^{2^k} \rangle$.

By the induction hypothesis we have $\gamma_k G = \langle x^{2^k-1} \rangle$ for all $2 \leq k \leq n$.

Part (ii) is an easy observation based on the proof of part (i).

Lemma 2.2.2. Let $G = D_{2kn}, G' = D_{2n}$ and let $\phi: G \to G'$ be the homomorphism defined by $\phi(x) = x, \phi(y) = y$. We consider R^G_s, R^G_s' as the free $\mathbb{Z}G$-resolution and free $\mathbb{Z}G'$-resolution of \mathbb{Z} obtained from Proposition 2.1.4. Then there exists a ϕ-equivariant chain map $f: R^G_s \to R^G_s'$ defined by

$$f_{-1} = 1_{\mathbb{Z}},$$

$$f_i(e^G_{p,q}) = k \left[\frac{p}{q} \right] e^G_{p,q},$$

for $i \geq 0, p + q = i$, where $\{e^G_{p,q}\}, \{e^G'_{p,q}\}$ are the bases of R^G_i and $R^G'_i$.

Proof. We need to prove that f is a \mathbb{Z}-equivariant chain map. It means $f_{i-1} \partial^G_i = \partial^G_i f_i$ for all $i \geq 0$.

Let us call $N^G_x, \alpha^G_{pq}, \beta^G_{pq}, \partial^G_i$ be the components of R^G_s and $N^G'_x, \alpha^G'_{pq}, \beta^G'_{pq}, \partial^G_i$ be the components of $R^G'_s$ as in Proposition 2.1.4. It is easy to see that

$$\phi(N^G_x) = k N^G'_x,$$

$$\phi(\alpha^G_{pq}) = \begin{cases} \alpha^G'_{pq} & \text{if } p \text{ odd,} \\ k \alpha^G'_{pq} & \text{if } p \text{ even,} \end{cases}$$

$$\phi(\beta^G_{pq}) = \beta^G'_{pq}.$$
We easily see $f_i \partial^G_i = \partial^G'_i f_i$. For $i \geq 1$,

- With $p = 2m + 1$ ($m \geq 0$)

 $$f_{i-1} \partial^G_i (e^G_{p,q}) = f_{i-1}(\alpha^G_{pq} e^G_{p-1,q} + \beta^G_{pq} e^G_{p,q-1})$$

 $$= \phi(\alpha^G_{pq} f_{i-1}(e^G_{p-1,q}) + \phi(\beta^G_{pq} f_{i-1}(e^G_{p,q-1})$$

 $$= \alpha^G' k \left[\frac{e^{G'}}{p-1} \right] e^G_{p-1,q} + \beta^G' k \left[\frac{e^{G'}}{q-1} \right] e^G_{p,q-1}$$

 $$= \alpha^G' k^{m-1} e^G_{p-1,q} + \beta^G' k^{m} e^G_{p,q-1}$$

 $$= k^m (\alpha^G_{pq} e^G_{p-1,q} + \beta^G_{pq} e^G_{p,q-1});$$

 $$\partial^G_i f_i (e^G_{p,q}) = \partial^G_i (k \left[\frac{e^{G'}}{q-1} \right] e^{G'}_{p,q}) = \partial^G_i (k^m e^{G'}_{p,q})$$

 $$= k^m (\alpha^G_{pq} e^G_{p-1,q} + \beta^G_{pq} e^G_{p,q-1}).$$

- With $p = 2m$ ($m \geq 1$)

 $$f_{i-1} \partial^G_i (e^G_{p,q}) = f_{i-1}(\alpha^G_{pq} e^G_{p-1,q} + \beta^G_{pq} e^G_{p,q-1})$$

 $$= \phi(\alpha^G_{pq} f_{i-1}(e^G_{p-1,q}) + \phi(\beta^G_{pq} f_{i-1}(e^G_{p,q-1})$$

 $$= k \alpha^G' k \left[\frac{e^{G'}}{p-1} \right] e^G_{p-1,q} + \beta^G' k \left[\frac{e^{G'}}{q-1} \right] e^G_{p,q-1}$$

 $$= k \alpha^G' k^{m-1} e^G_{p-1,q} + \beta^G' k^{m} e^G_{p,q-1}$$

 $$= k^m (\alpha^G_{pq} e^G_{p-1,q} + \beta^G_{pq} e^G_{p,q-1});$$

 $$\partial^G_i f_i (e^G_{p,q}) = \partial^G_i (k \left[\frac{e^{G'}}{q-1} \right] e^{G'}_{p,q}) = \partial^G_i (k^m e^{G'}_{p,q})$$

 $$= k^m (\alpha^G_{pq} e^G_{p-1,q} + \beta^G_{pq} e^G_{p,q-1}).$$

So we deduce $f_{i-1} \partial^G_i = \partial^G'_i f_i$ for all $i \geq 0$. This implies f is a \mathbb{Z}-equivariant chain map.

Theorem 2.2.3. Let $G = D_{2kn}, G' = D_{2n}$ with n, k even and let $\phi: G \to G'$ be the homomorphism defined by $\phi(x) = x, \phi(y) = y$. Then ϕ induces homomorphisms

$$H_m(\phi): H_m(G, \mathbb{Z}_2) \to H_m(G', \mathbb{Z}_2)$$

for all $m \geq 0$

and

$$\text{rank}(H_m(\phi)) = \begin{cases}
 1 & \text{if } m = 0, \\
 2 & \text{if } m > 0.
\end{cases}$$
Proof. From Lemma 2.2.2, the homomorphism ϕ induces an ϕ-equivariant chain map $f: R^G_* \rightarrow R^{G'}_*$ satisfying

$$f_i(e^G_{p,q}) = k^i e^{G'}_{p,q} \text{ for all } i \geq 0.$$

By taking the tensor product with \mathbb{Z}_2, the chain map f induces a chain map $\tilde{f}: R^G_* \otimes_{\mathbb{Z}_2} \mathbb{Z}_2 \rightarrow R^{G'}_* \otimes_{\mathbb{Z}_2} \mathbb{Z}_2$.

As we know $\{e^G_{p,q}\}_{p+q=i}$ and $\{e^{G'}_{p,q}\}_{p+q=i}$ are the bases of R^G_i and $R^{G'}_i$. We can consider $\{e^G_{p,q}\}_{p+q=i}$ and $\{e^{G'}_{p,q}\}_{p+q=i}$ as bases of $R^G_i \otimes_{\mathbb{Z}_2} \mathbb{Z}_2$ and $R^{G'}_i \otimes_{\mathbb{Z}_2} \mathbb{Z}_2$. Since k is even, we have

$$\tilde{f}_i(e^G_{p,q}) = \begin{cases} e^{G'}_{p,q} & \text{if } p = 0, 1, \\ 0 & \text{if } p \geq 2. \end{cases}$$

We know that $R^G_i \otimes_{\mathbb{Z}_2} \mathbb{Z}_2 \cong \mathbb{Z}_2^{i+1}$ and $R^{G'}_i \otimes_{\mathbb{Z}_2} \mathbb{Z}_2 \cong \mathbb{Z}_2^{i+1}$. It follows that \tilde{f} is represented by the following diagram

$$\begin{array}{cccccccc}
\cdots & \mathbb{Z}_2^4 & \rightarrow & \mathbb{Z}_2^3 & \rightarrow & \mathbb{Z}_2^2 & \rightarrow & \mathbb{Z}_2 & \rightarrow & 0 \\
0 \oplus 0 \oplus 1 \oplus 1 & \| & 0 \oplus 1 \oplus 1 & \| & 1 \oplus 1 & \| & 1 & \\
\cdots & \mathbb{Z}_2^4 & \rightarrow & \mathbb{Z}_2^3 & \rightarrow & \mathbb{Z}_2^2 & \rightarrow & \mathbb{Z}_2 & \rightarrow & 0.
\end{array}$$

Thus the chain map \tilde{f} induces homomorphisms $H_m(\phi): H_m(G, \mathbb{Z}_2) \rightarrow H_m(G', \mathbb{Z}_2)$ with

$$\text{rank}(H_m(\phi)) = \begin{cases} 1 & \text{if } m = 0, \\ 2 & \text{if } m > 0. \end{cases}$$

From the above we obtain the following result.

Corollary 2.2.4. Let G be the dihedral group of order 2^n. The persistent Betti numbers of G at degree m form an upper triangular matrix $PH_m(G) = (p_{ij})$ of size $(n - 1)$ where:

- If $m = 0$ then $p_{ij} = 1$ for all $1 \leq i \leq j \leq n - 1$.

If $m \geq 1$ then

$$p_{ij} = \begin{cases} 2 & \text{if } i < j, \\ m + 1 & \text{if } i = j. \end{cases}$$

Proof. By using Lemma 2.2.1, we have

$$G/\gamma_n G \to G/\gamma_{n-1} G \to \cdots \to G/\gamma_3 G \to G/\gamma_2 G$$

is isomorphic to

$$D_{2^n} \to D_{2^{n-1}} \to \cdots \to D_{2^3} \to D_{2^2}.$$

Now we apply the functor $H_m(\cdot, \mathbb{Z}_2)$ to the above two sequences. We obtain that

$$H_m(G/\gamma_n G, \mathbb{Z}_2) \to H_m(G/\gamma_{n-1} G, \mathbb{Z}_2) \to \cdots \to H_m(G/\gamma_3 G, \mathbb{Z}_2) \to H_m(G/\gamma_2 G, \mathbb{Z}_2)$$

is isomorphic to

$$H_m(D_{2^n}, \mathbb{Z}_2) \to H_m(D_{2^{n-1}}, \mathbb{Z}_2) \to \cdots \to H_m(D_{2^3}, \mathbb{Z}_2) \to H_m(D_{2^2}, \mathbb{Z}_2).$$

For $2 \leq j < i \leq n$, we apply Theorem 2.2.3 for the group homomorphism $D_{2^i} \to D_{2^j}$. We obtain

$$\text{rank}(H_m(D_{2^i}, \mathbb{Z}_2) \to H_m(D_{2^j}, \mathbb{Z}_2)) = \begin{cases} 1 & \text{if } m = 0, \\ 2 & \text{if } m > 0. \end{cases}$$

On the other hand, by applying Proposition 2.1.5 we have the dimension of $H_m(D_{2^i}, \mathbb{Z}_2)$ is equal to $m + 1$. \qed

Now we recall the coclass theory and use the results of the persistent homology of dihedral groups to confirm a conjecture in the paper [22].

The coclass theory was initiated in 1980 by Leedham-Green and Newman [32]. It suggests to use the coclass as primary invariant to classify and investigate finite p-groups. A major tool in coclass theory is the coclass graph $G(p, r)$ whose vertices are the p-groups of coclass c and two groups G and H are connected by an edge if $H/\gamma(H) \cong G$ where $\gamma(H)$ denotes the last non-trivial term of the lower central series of H. Ellis and King [22] introduced notion of persistent homology for coclass trees. Let T is a coclass tree in the coclass graph $G(p, r)$ and let G_l denote the p-group
2.3 Bar resolution, small resolutions and chain homotopy equivalences

at level l on the infinite path of T. Let $\text{Im} v_{n}^{l,k}$ denote the image of the canonical homology homomorphism $v_{n}^{l,k} : H_n(G_{l+k}, \mathbb{F}_p) \to H_n(G_l, \mathbb{F}_p)$. Then they define the l-persistent homology of T in degree n is the subgroup $P_l H_n(T) = \bigcap_{k=1}^{\infty} \text{Im} v_{n}^{l,k}$ of the homology group $H_n(G_l, \mathbb{F}_p)$. Note that there is a canonical infinite sequence of surjective homomorphisms

$$\cdots \to P_{l+2} H_n(T) \to P_{l+1} H_n(T) \to P_l H_n(T).$$

The persistent homology $P H_n(T)$ of T is defined to be the inverse limit of this sequence. By using calculations on computer, they strongly suggest the following conjecture

Conjecture 2.2.5. For T the infinite tree in $\mathcal{G}(2,1)$ we have

$$P H_n(T) = \mathbb{F}_2 \oplus \mathbb{F}_2 \quad (n \geq 1).$$

Moreover, the infinite path of T in $\mathcal{G}(2,1)$ is a sequence of dihedral groups $D_4, D_8, D_{16}, D_{32}, \ldots, D_{2^k}, D_{2^{k+1}}, \ldots$. By applying Theorem 2.2.3, we obtain

$$\text{Im} v_{n}^{l,k} = \mathbb{F}_2 \oplus \mathbb{F}_2 \text{ for all } n \geq 1.$$

This implies $P_l H_n(T) = \mathbb{F}_2 \oplus \mathbb{F}_2$ for all $l \geq 1, n \geq 1$. Thus Conjecture 2.2.5 is confirmed.

2.3 Bar resolution, small resolutions and chain homotopy equivalences

Definition 2.3.1. For any group G, a free $\mathbb{Z}G$-resolution R_i^G of \mathbb{Z} is said to be finitely generated if the free $\mathbb{Z}G$-module R_i^G has finite rank for each $i \geq 0$.

Definition 2.3.2. We say that a group G is n-constructible if we have an algorithm with:

- Input: Group G and integer $n \geq 0$.
• Output: The first $n + 1$ terms of a free $\mathbb{Z}G$-resolution of \mathbb{Z},

$$R^G_* : R^G_n \xrightarrow{d_n} R^G_{n-1} \rightarrow \cdots \rightarrow R^G_2 \xrightarrow{d_2} R^G_1 \xrightarrow{d_1} R^G_0,$$

in which each R^G_i is a finitely generated free $\mathbb{Z}G$-module for all $0 \leq i \leq n$.

The HAP package [20] provides implementations of practical algorithms for computing the first $n + 1$ terms of finitely generated free $\mathbb{Z}G$-resolutions for many groups. The algorithm in HAP have the general form of Algorithm 2.3.1.

Algorithm 2.3.1.

Input: A n-constructible group G.

Output:

- The $\mathbb{Z}G$-rank of the ith free module R^G_i $(0 \leq i \leq n)$.
- The image of the kth free $\mathbb{Z}G$-generator of R^G_i under the boundary homomorphism

 $$d_i : R^G_i \rightarrow R^G_{i-1} \ (1 \leq i \leq n).$$

- The image of the kth free \mathbb{Z}-generator of R^G_i under a contracting homotopy

 $$h_i : R^G_i \rightarrow R^G_{i+1} \ (0 \leq i \leq n - 1).$$

The contracting homotopy in Algorithm 2.3.1 can be used to make algorithmic the following frequent element of choice.

For $x \in \text{Ker} \, d_i$ choose an element $\tilde{x} \in R^G_{i+1}$ such that $d_{i+1}(\tilde{x}) = x$.

We can choose $\tilde{x} = h_i(x)$. In particular, for any group homomorphism $\phi : G \rightarrow G'$, the contracting homotopy on a free $\mathbb{Z}G'$-resolution R^G_* provides an explicit induced ϕ-equivariant chain map $f : R^G_* \rightarrow R^G_{*'}$.

We call the free $\mathbb{Z}G$-resolution obtained from Algorithm 2.3.1 the HAP resolution of group G.

Moreover, the HAP package [20] provides implementations of an algorithm for com-
putting the HAP complex \overline{R}_s^G of group G given by

$$\overline{R}_s^G := R_s^G \otimes_{ZG} Z.$$

Algorithm 2.3.2.

Input: A HAP resolution R_s^G of group G.

Output:

- The \mathbb{Z}-rank of the ith free \mathbb{Z}-module \overline{R}_i^G ($i \geq 0$).
- The image of the kth free \mathbb{Z}-generator of \overline{R}_i^G under the boundary homomorphism $d_i: \overline{R}_i^G \rightarrow \overline{R}_{i-1}^G$ ($i \geq 1$).

Definition 2.3.3. [42] For any group G, the bar resolution of \mathbb{Z} is the sequence

$$B_s^G: \cdots \rightarrow B_{n+1}^G \xrightarrow{\partial_{n+1}} B_n^G \xrightarrow{\partial_n} B_{n-1}^G \rightarrow \cdots \rightarrow B_1^G \xrightarrow{\partial_1} B_0^G \xrightarrow{\epsilon} \mathbb{Z} \rightarrow 0$$

where B_0 is the free $\mathbb{Z}G$-module on the single generator $[]$, $\epsilon: B_0 \rightarrow \mathbb{Z}$ is the augmentation. For $n \geq 1$, B_n is the free $\mathbb{Z}G$-module generated by n-tuples $[g_1] \cdots [g_n]$ ($g_i \in G$), and the boundary homomorphism is $\partial_n = \sum_{i=0}^{n} (-1)^i d_i: B_n^G \rightarrow B_{n-1}^G$ where

$$d_i[g_1] \cdots [g_n] = \begin{cases}
 g_1[g_2] \cdots [g_n] & \text{if } i = 0, \\
 [g_1] \cdots [g_ig_{i+1}] \cdots [g_n] & \text{if } 0 < i < n, \\
 [g_1] \cdots [g_{n-1}] & \text{if } i = n.
\end{cases}$$

We let B_s^G denote the bar resolution of group G.

Let $h_n: B_n^G \rightarrow B_{n+1}^G$ be the \mathbb{Z}-homomorphism given by

$$g[g_1] \cdots [g_n] \mapsto [g]g_1 \cdots [g_n].$$

It is not difficult to check that h_n is a contracting homotopy of the bar resolution B_s^G.

We define the bar complex \overline{B}_s^G of group G to be the chain complex of free abelian groups given by

$$\overline{B}_s^G := B_s^G \otimes_{\mathbb{Z}G} \mathbb{Z}.$$
2.3 Bar resolution, small resolutions and chain homotopy equivalences

Note that the module B^G_i is not of finite rank when G is infinite. Even for finite groups the rank of B^G_i is large and it is usually not possible to compute the homology of group G from its bar complex B^G_s.

Now we use formulas in the definition of the bar resolution and obtain an algorithm for computing the bar resolution B^G_* of group G on computer.

Algorithm 2.3.3.

Input: A group G and an integer $n \geq 0$.

Output:

- The image of the free generator $[g_1|\cdots|g_i]$ of B^G_i under the boundary map $\partial_i: B^G_i \to B^G_{i-1} \ (1 \leq i \leq n)$.

- The image of the element $g[g_1|\cdots|g_i]$ of B^G_i under the contracting homotopy $h_i: B^G_i \to B^G_{i+1} \ (0 \leq i \leq n-1)$.

Procedure: We consider an element $mg[g_1|\cdots|g_i]$ of B^G_i as a list $[m, g, g_1, \ldots, g_i]$ on the computer. By using the formulas in Definition 2.3.3, we easily compute the boundary homomorphism ∂_i and the contracting homotopy h_i.

Since the bar resolution B^G_* and the HAP resolution R^G_* of group G are free $\mathbb{Z}G$-resolutions of \mathbb{Z} there exists a diagram

\[
\begin{array}{cccccccc}
& \cdots & B^G_{n+1} & \xleftarrow{H_n} & B^G_n & \xleftarrow{H_{n-1}} & B^G_{n-1} & \cdots & B^G_1 & \xleftarrow{H_0} & B^G_0 \\
\downarrow{\iota_{n+1}} & \downarrow{\psi_{n+1}} & \downarrow{\psi_n} & \downarrow{\psi_{n-1}} & \downarrow{\psi_{n-1}} & \downarrow{\psi_1} & \downarrow{\iota_1} & \downarrow{\iota_0} & \downarrow{\psi_0} \\
& \cdots & R^G_{n+1} & \to & R^G_n & \to & R^G_{n-1} & \cdots & R^G_1 & \to & R^G_0 \\
\end{array}
\]

where

- $\psi_s : B^G_s \to R^G_s$ is a $\mathbb{Z}G$-equivariant chain homotopy equivalence.

- $\iota_s : R^G_s \to B^G_s$ is a $\mathbb{Z}G$-equivariant chain homotopy equivalence.
• The \(\mathbb{Z}G \)-equivariant homotopy map \(H_i : B^G_i \to B^G_{i+1} \) satisfies

\[
\iota_i \psi_i = 1 + \partial_{i+1} H_i + H_{i-1} \partial_i.
\]

We give an algorithm for computing a \(\mathbb{Z}G \)-equivariant chain homotopy equivalence between the bar resolution \(B^G_* \) and the HAP resolution \(R^G_* \).

Algorithm 2.3.4.

Input: A HAP resolution \(R^G_* \) of group \(G \).

Output:

• The image of the free generator \([g_1|\cdots|g_i]\) of \(B^G_i \) under the chain map \(\psi_i : B^G_i \to R^G_i \).

• The image of the \(k \)th free generator of \(R^G_i \) under the chain map \(\iota_i : R^G_i \to B^G_i \).

• The image of the free generator \([g_1|\cdots|g_i]\) of \(B^G_i \) under the homotopy map \(H_i : B^G_i \to B^G_{i+1} \) satisfying \(\iota_i \psi_i = 1 + \partial_{i+1} H_i + H_{i-1} \partial_i \).

Procedure: We construct \(\iota_i, \psi_i, H_i \) by finding the image of the free generators of \(R^G_i \) and \(B^G_i \) and by using induction. We suppose that \(a^k_i \) is a free generator of \(R^G_i \) and \(b^k_i \) is a free generator of \(B^G_i \).

• Construction of \(\iota_i \).

 ◦ For \(i = 0 \), set \(\iota_0 := 1 \).

 ◦ For \(i > 0 \), set \(\iota_i(a^k_i) := h_{i-1} \iota_{i-1} d_i(a^k_i) \).

• Construction of \(\psi_i \).

 ◦ For \(i = 0 \), set \(\psi_0 := 1 \).

 ◦ For \(i > 0 \), set \(\psi_i(b^k_i) := h_{i-1} \psi_{i-1} \partial_i(b^k_i) \).

• Construction of \(H_i \).

 ◦ For \(i = 0 \), set \(H_0 := 0 \).
For $i > 0$. Since h_i is the contracting homotopy of the bar resolution, we have
\[\partial_{i+1} h_i + h_{i-1} \partial_i = 1. \]
So
\[\partial_{i+1} h_i (\iota_i \psi_i - H_{i-1} \partial_i) (b^k_i) + h_{i-1} \partial_i (\iota_i \psi_i - H_{i-1} \partial_i) (b^k_i) = (\iota_i \psi_i - H_{i-1} \partial_i) (b^k_i). \]
Moreover, by using induction, we can easily prove $\partial_i (\iota_i \psi_i - 1 - H_{i-1} \partial_i) = 0$. It follows that
\[\partial_{i+1} h_i (\iota_i \psi_i - H_{i-1} \partial_i) (b^k_i) = (\iota_i \psi_i - 1 - H_{i-1} \partial_i) (b^k_i). \]
So we choose $H_i(b^k_i) := h_i (\iota_i \psi_i - 1 - H_{i-1} \partial_i) (b^k_i)$. Then
\[\partial_{i+1} H_i(b^k_i) = (\iota_i \psi_i - 1 - H_{i-1} \partial_i) (b^k_i) \]
or
\[\iota_i \psi_i (b^k_i) = (b^k_i) + \partial_{i+1} H_i(b^k_i) + H_{i-1} \partial_i (b^k_i). \]
Note that the construction of the formulae of ι_i, ψ_i, H_i looks quite similar to the formulae of f_n, g_n, k_n in the paper [39] on page 306.

By applying the tensor product to the result obtained from Algorithm 2.3.4 with \mathbb{Z}, we obtain an algorithm for constructing a \mathbb{Z}-chain homotopy equivalence between the bar complex \overline{B}_G and the HAP complex \overline{R}_G.

\[\begin{array}{cccccc}
\overline{B}_{G,n+1} & \xleftarrow{H_{n+1}} & \overline{B}_{G,n} & \xleftarrow{H_{n}} & \overline{B}_{G,n-1} & \ldots \xleftarrow{H_1} \overline{B}_{G,0} \\
\psi_{n+1} \downarrow & & \psi_n \downarrow & & \psi_{n-1} \downarrow & & \psi_0 \\
\overline{R}_{G,n+1} & \xrightarrow{\iota_{n+1}} & \overline{R}_{G,n} & \xrightarrow{\iota_{n}} & \overline{R}_{G,n-1} & \ldots \xrightarrow{\iota_1} \overline{R}_{G,0} \\
\end{array} \]

Algorithm 2.3.5.

Input: A HAP resolution \overline{R}_G of group G.

Output:

- The image of the free generator $[g_1 | \cdots | g_i]$ of \overline{B}_i under the chain map $\psi_i : \overline{B}_i \to \overline{R}_i$.

Diagram:

\[\begin{array}{cccccc}
\overline{B}_{G,n+1} & \xleftarrow{H_{n+1}} & \overline{B}_{G,n} & \xleftarrow{H_{n}} & \overline{B}_{G,n-1} & \ldots \xleftarrow{H_1} \overline{B}_{G,0} \\
\psi_{n+1} \downarrow & & \psi_n \downarrow & & \psi_{n-1} \downarrow & & \psi_0 \\
\overline{R}_{G,n+1} & \xrightarrow{\iota_{n+1}} & \overline{R}_{G,n} & \xrightarrow{\iota_{n}} & \overline{R}_{G,n-1} & \ldots \xrightarrow{\iota_1} \overline{R}_{G,0} \\
\end{array} \]
$
\mathcal{R}^G_i$

- The image of the kth free generator of \mathcal{R}^G_i under the chain map $\iota_i: \mathcal{R}^G_i \to \mathcal{B}^G_i$.

- The image of the free generator $[g_1|\cdots|g_i]$ of \mathcal{B}^G_i under the homotopy map $H_i: \mathcal{B}^G_i \to \mathcal{B}^G_{i+1}$ satisfying $\iota_i \psi_i = 1 + \partial_{i+1} H_i + H_{i-1} \partial_i$.

Procedure:

- Applying Algorithm 2.3.4 for \mathcal{R}^G_*, we obtain $\mathbb{Z}G$-equivariant chain homotopy equivalence between the bar resolution \mathcal{B}^G_* and the HAP resolution \mathcal{R}^G_*.

- Take the tensor product of this chain homotopy equivalence with \mathbb{Z}. Note that, if e_i is a free generator of \mathcal{B}^G_i or \mathcal{R}^G_i then $m g e_i \otimes k = m k e_i$.
Chapter 3

Homology of n-types
An \(n \)-type \(X \) is a CW-space with homotopy groups \(\pi_i(X) = 0 \) for all \(i > n \). Up to homotopy equivalence such a space can be specified algebraically by means of a simplicial group \(G_* \) whose Moore complex is trivial in degrees greater than or equal to \(n \). More precisely, by treating each group \(G_i \) as a category with one object and constructing the nerve \(\mathcal{N}G_i \) one obtains a bisimplicial set \(\mathcal{N}G_* \). The diagonal of this bisimplicial set, \(\Delta \mathcal{N}G_* \), is a simplicial set whose geometric realization is a CW-space \(B(G_*) \). The condition on the Moore complex of \(G_* \) is sufficient to ensure that \(B(G_*) \) is an \(n \)-type. The functor \(B \) induces an equivalence of categories

\[
Ho(\text{Simplicial groups with Moore complex trivial in degrees } \geq n) \xrightarrow{\simeq} Ho(n\text{-types})
\]

where \(Ho(C) \) denotes the category obtained from a category \(C \) by localizing with respect to those maps in \(C \), termed quasi-isomorphisms, that induce isomorphisms on homotopy groups. (See [33] for more detail on this general theory.)

In this chapter, we describe an algorithm for computing a chain complex for homology of a simplicial group (see Definition 3.2.5 and Algorithm 3.2.1).

3.1 Perturbation Lemma

Definition 3.1.1. [12] A homotopy equivalence data

\[
(L,b) \xrightarrow{i} p (M,b), h \tag{3.1}
\]

consists of the following:

(i) two chain complexes \((L,b), (M,b)\) and quasi-isomorphisms \(i, p\) between them;

(ii) a chain homotopy \(h : ip \simeq 1_M\) (so \(i_n p_n - 1_{M_n} = h_{n-1} b_n + b_{n+1} h_n\) for all \(n\)).

Note that this definition does not necessarily induce a chain homotopy \(h' : pi \simeq 1_L\).

Remark 3.1.1. In applications \(M\) will denote a massive chain complex such as a bar resolution, and \(L\) will denote a little chain complex such as an explicitly computed HAP resolution.

Definition 3.1.2. [12] A perturbation \(\delta\) of (3.1) is a sequence of homomorphisms \(\delta_n : M_n \rightarrow M_{n-1}\) such that \((b_n + \delta_n)(b_{n+1} + \delta_{n+1}) = 0\) for all \(n\). We call it small if
(1_{M_n} - \delta_{n+1} h_n) is invertible for all n. In this case we put:

$$A_n = (1_{M_{n-1}} - \delta_n h_{n-1})^{-1} \delta_n,$$

and we consider

$$(L, b') \xrightarrow{p'} (M, b + \delta), \ h'$$ (3.2)

with:

$$i'_n = i_n + h_{n-1} A_n i_n, \ p'_n = p_n + p_n A_{n+1} h_n, \ h'_n = h_n + h_n A_{n+1} h_n, \ b'_n = b_n + p_{n-1} A_n i_n$$

for all n.

Remark 3.1.2. $(1 - x)$ is invertible means $(1 - x)^{-1} = 1 + x + x^2 + x^3 + \cdots + x^{k-1}$ for some k satisfying $x^k = 0$.

Remark 3.1.3. If $(\delta_{n+1} h_n)^k = 0$ for some $k > 0$ then $(1_{M_n} - \delta_{n+1} h_n)$ is invertible.

Theorem 3.1.1. [12] If δ is a small perturbation of the homotopy equivalence data (3.1), then the perturbed data (3.2) is a homotopy equivalence data.

A proof of this theorem is given in [12]. Because this paper has not been published yet, we include the proof in this thesis with just minor modifications on [12].

To prove Theorem 3.1.1, we need the following.

Lemma 3.1.2. For any homotopy equivalence data (3.1), any small perturbation δ and any $n \in \mathbb{Z}$, we have

$$\delta_n h_{n-1} A_n = A_n h_{n-1} \delta_n = A_n - \delta_n,$$ (3.3)

$$(1_{M_n} - \delta_{n+1} h_n)^{-1} = 1_{M_n} + A_{n+1} h_n,$$ (3.4)

$$(1_{M_n} - h_{n-1} \delta_n)^{-1} = 1_{M_n} + h_{n-1} A_n,$$ (3.5)

$$A_n i_n p_n A_{n+1} + A_n b_{n+1} + b_n A_{n+1} = 0.$$ (3.6)

Proof. From the definition of A_n, $(1_{M_{n-1}} - \delta_{n} h_{n-1}) A_n = \delta_n$ which proves $\delta_n h_{n-1} A_n = A_n - \delta_n$. Multiplying the identity $\delta_n h_{n-1} \delta_n = \delta_n - (1_{M_{n-1}} - \delta_n h_{n-1}) \delta_n$ by $(1_{M_{n-1}} - \delta_n h_{n-1})^{-1}$ from the left we also get $A_n h_{n-1} \delta_n = A_n - \delta_n$. These prove (3.3). The relations we have to check in order to prove (3.4) and (3.5) follow immediately from
3.1 Perturbation Lemma

For instance:

\[(1_{M_n} - \delta_{n+1}h_n)(1_{M_n} + A_{n+1}h_n) = 1_{M_n} + A_{n+1}h_n - \delta_{n+1}h_n - \delta_{n+1}h_nA_{n+1}h_n \]
\[= 1_{M_n} + (A_{n+1} - \delta_{n+1} - \delta_{n+1}h_nA_{n+1})h_n \]
\[= 1_{M_n}. \tag{3.3} \]

\[(1_{M_n} - h_{n-1}\delta_n)(1_{M_n} + h_{n-1}A_n) = 1_{M_n} + h_{n-1}A_n - h_{n-1}\delta_n - h_{n-1}\delta_nh_{n-1}A_n \]
\[= 1_{M_n} + h_{n-1}(A_n - \delta_n - \delta_nh_{n-1}A_n) \]
\[= 1_{M_n} \tag{3.3} \]

To prove (3.6) we use (3.3), (3.4) and the relations \(i_np_n - 1_{M_n} = h_{n-1}b_n + b_{n+1}h_n; \ (b_n + \delta_n)(b_{n+1} + \delta_{n+1}) = 0 \)

Prove Theorem 3.1.1 We have to prove various relations:

1) \((L, b')\) is a chain complex (i.e. \(b'_n b'_{n+1} = 0\) for all \(n\)).

\[b'_n b'_{n+1} = (b_n + p_{n+1}A_n i_n)(b_{n+1} + p_{n}A_{n+1} i_{n+1}) \]
\[= b_n b_{n+1} + b_n p_{n+1}A_{n+1} i_{n+1} + p_{n+1}A_n i_n b_{n+1} + p_{n+1}(A_n i_n p_n A_{n+1}) i_{n+1} \]
\[= b_n b_{n+1} + b_n p_{n+1}A_{n+1} i_{n+1} + p_{n+1}A_n i_n b_{n+1} - p_{n+1}(A_n b_{n+1} + b_n A_{n+1}) i_{n+1} \]
\[= (b_n p_n - p_{n+1}b_n) A_{n+1} i_{n+1} + p_{n+1}A_n (i_n b_{n+1} - b_{n+1} i_{n+1}) = 0. \tag{3.6} \]

2) \(i'\) is a chain map (i.e. \(i'_{n-1}b'_n = (b_n + \delta_n)i'_n\) for all \(n\)).
\[i_{n-1}'b'_n - (b_n + \delta_n)i_n = \]
\[= (i_{n-1} + h_{n-2}A_{n-1}i_{n-1})(b_n + p_{n-1}A_{n}i_n) - (b_n + \delta_n)(i_n + h_{n-1}A_{n}i_n) \]
\[= i_{n-1}b_n + i_{n-1}p_{n-1}A_{n}i_n + h_{n-2}A_{n-1}i_{n-1}b_n + h_{n-2}(A_{n-1}i_{n-1}p_{n-1}A_{n})i_n \]
\[- b_ni_n - b_nh_{n-1}A_{n}i_n - \delta_ni_n - (\delta_n h_{n-1}A_{n})i_n \]
\[\equiv i_{n-1}p_{n-1}A_{n}i_n + h_{n-2}A_{n-1}i_{n-1}b_n - h_{n-2}(A_{n-1}b_n + b_{n-1}A_{n})i_n \]
\[- b_nh_{n-1}A_{n}i_n - \delta_ni_n - (A_{n} - \delta_n)i_n \]
\[= (i_{n-1}p_{n-1} - h_{n-2}b_{n-1} - b_nh_{n-1} - 1_{M_n})A_{n}i_n = 0. \]

3) \(p' \) is a chain map (i.e. \(p'_{n-1}(b_n + \delta_n) = b'_np'_n \) for all \(n \)).

\[
p'_{n-1}(b_n + \delta_n) - b'_np'_n = \]
\[= (p_{n-1} + p_{n-1}A_{n}h_{n-1})(b_n + \delta_n) - (b_n + p_{n-1}A_{n}i_n)(p_n + p_{n}A_{n+1}h_n) \]
\[= p_{n-1}b_n + p_{n-1}i_n + p_{n-1}A_{n}h_{n-1}b_n + p_{n-1}(A_{n}h_{n-1} - \delta_n) \]
\[- b_np_n - b_{n}p_{n}A_{n+1}h_n - p_{n-1}A_{n}i_{n}p_{n} - p_{n-1}(A_{n}i_{n}p_{n}A_{n+1})h_n \]
\[\equiv p_{n-1}A_{n}h_{n-1}b_n + p_{n-1}(A_{n} - \delta_n) \]
\[- b_np_{n}A_{n+1}h_n - p_{n-1}A_{n}i_{n}p_{n} - p_{n-1}(A_{n}b_{n+1} + b_{n}A_{n+1})h_n \]
\[= p_{n-1}A_{n}h_{n-1}b_n + p_{n-1}A_{n} - p_{n-1}A_{n}i_{n}p_{n} + p_{n-1}A_{n}b_{n+1}h_n \]
\[= p_{n-1}A_{n}(h_{n-1}b_n + 1_{M_n} - i_{n}p_{n} + b_{n+1}h_n) = 0. \]

4) \(h' \) is a chain homotopy between \(i'p' \) and \(1_M \) (i.e. \(i'p'_{n} - 1_{M_n} = h'_{n-1}(b_n + \delta_n) + (b_{n+1} + \delta_{n+1})h'_{n} \) for all \(n \)).

\[
i'p'_{n} - 1_{M_n} - h'_{n-1}(b_n + \delta_n) - (b_{n+1} + \delta_{n+1})h'_{n} = \]
\[= (i_n + h_{n-1}A_{n}i_n)(p_n + p_{n}A_{n+1}h_n) - 1_{M_n} \]
\[- (h_{n-1} + h_{n-1}A_{n}h_{n-1})(b_n + \delta_n) - (b_{n+1} + \delta_{n+1})(h_n + h_{n}A_{n+1}h_n) \]
\[= i_{n}p_{n} + i_{n}p_{n}A_{n+1}h_n + h_{n-1}A_{n}i_{n}p_{n} + h_{n-1}(A_{n}i_{n}p_{n}A_{n+1})h_n - 1_{M_n} \]
\[- b_{n+1}h_{n} - b_{n+1}h_{n}A_{n+1}h_n - \delta_{n+1}h_{n} - (\delta_{n+1}h_{n}A_{n+1})h_n \]
\[= (i_{n}p_{n}A_{n+1}h_n + h_{n-1}A_{n}i_{n}p_{n} - h_{n-1}b_{n}A_{n+1}h_n - h_{n-1}A_{n}b_{n+1}h_n) \]
\[- b_{n+1}h_{n} - b_{n+1}h_{n}A_{n+1}h_n - \delta_{n+1}h_{n} - (\delta_{n+1}h_{n}A_{n+1})h_n \]
\[= h_{n-1}A_{n}(i_{n}p_{n} - b_{n+1}h_{n} - h_{n-1}b_{n}1_{M_n}) \]
3.1 Perturbation Lemma

\[+(i_n p_n - h_{n-1} b_n - b_{n+1} h_n - 1_{M_n}) A_{n+1} h_n = 0.\]

(5) \(p'\) and \(i'\) are quasi-isomorphisms From step 4 it follows that \(i' p'\) induces the identity in homology. So it suffices to show that \(i'\) is injective in homology. Assume that \(x \in \text{Ker} b'_n\) and \(i'_n(x) \in \text{Im} (b_{n+1} + \delta_{n+1})\), so there exists \(y \in M_{n+1}\) satisfying \(i'_n(x) = (b_{n+1} + \delta_{n+1})(y)\). Hence

\[b_n(x) + p_{n-1} A_n i_n(x) = 0, \tag{3.7}\]
\[i_n(x) + h_{n-1} A_n i_n(x) = b_{n+1}(y) + \delta_{n+1}(y). \tag{3.8}\]

Now we need to prove that \(x \in \text{Im} b'_{n+1}\).

Applying \(\delta_n\) to (3.8), and replacing \(\delta_n h_{n-1} A_n\) by \(A_n - \delta_n\) (Lemma 3.1.2) and \(\delta_n b_{n+1} + \delta_n \delta_{n+1}\) by \(-b_n \delta_{n+1}\) (because \((b_n + \delta_n)(b_{n+1} + \delta_{n+1}) = 0\)), we obtain

\[A_n i_n(x) = -b_n \delta_{n+1}(y). \tag{3.9}\]

With this formula for \(A_n i_n(x)\) plugged into (3.8), we get

\[i_n(x) = b_{n+1}(y) + \delta_{n+1}(y) + h_{n-1} b_n \delta_{n+1}(y), \tag{3.10}\]

and, using \(h_{n-1} b_n = i_n p_n - 1_{M_n} - b_{n+1} h_n\), we get

\[i_n(x - p_n \delta_{n+1}(y)) = b_{n+1}(y - h_n \delta_{n+1}(y)). \tag{3.11}\]

Next, plug the formula (3.9) for \(A_n i_n(x)\) into (3.7) to get

\[b_n(x) - p_{n-1} b_n \delta_{n+1}(y) = 0 \Leftrightarrow b_n(x) - b_n p_n \delta_{n+1}(y) = 0 \Leftrightarrow b_n(x - p_n \delta_{n+1}(y)) = 0.\]

From (3.11) we have \(i_n(x - p_n \delta_{n+1}(y)) \in \text{Im} b_{n+1}\). Since \(i\) is a quasi-isomorphism and \(x - p_n \delta_{n+1}(y) \in \text{Ker} b_n\), we obtain \(x - p_n \delta_{n+1}(y) \in \text{Im} b_{n+1}\). So, there exists \(z \in L_{n+1}\) such that

\[b_{n+1}(z) = x - p_n \delta_{n+1}(y) \Leftrightarrow x = b_{n+1}(z) + p_n \delta_{n+1}(y) \tag{3.12}\]

Applying \(i_n\) to this formula and using (3.10),
\[b_{n+1}(y) + \delta_{n+1}(y) + h_{n-1}b_{n}\delta_{n+1}(y) = i_n p_n \delta_{n+1}(y) + i_n b_{n+1}(z) \]

\[\Leftrightarrow i_n p_n \delta_{n+1}(y) + b_{n+1}i_{n+1}(z) - b_{n+1}(y) - \delta_{n+1}(y) - h_{n-1}b_{n}\delta_{n+1}(y) = 0. \]

Using now \(i_n p_n = 1_M + h_{n-1}b_n + b_{n+1}h_n \), we deduce that

\[b_{n+1}(i_{n+1}(z) - y + h_n\delta_{n+1}(y)) = 0. \]

Since \(i \) is surjective in homology, we can write

\[i_{n+1}(z) - (1 - h_n\delta_{n+1})(y) = i_{n+1}(\alpha) + b_{n+2}(\beta) \]

for some \(\alpha \in L_{n+1} \) with \(b_{n+1}(\alpha) = 0 \), and some \(\beta \in M_{n+2} \). Applying \(p_n A_{n+1} \) to this and using \(A_{n+1}(1_M + h_n\delta_{n+1}) = \delta_{n+1} \) and \(A_{n+1}b_{n+2} = -b_{n+1}A_{n+2} - A_{n+1}i_{n+1}p_{n+1}A_{n+2} \) (Lemma 3.1.2), we deduce

\[p_n A_{n+1}i_{n+1}(z) = p_n \delta_{n+1}(y) + p_n A_{n+1}i_{n+1}(\alpha) - p_n b_{n+1}A_{n+2}(\beta) - p_n A_{n+1}i_{n+1}p_{n+1}A_{n+2}(\beta). \]

From this we extract \(p_n \delta_{n+1}(y) \) and we plug the result in (3.12). Rearranging the terms we get

\[x = b_{n+1}(z + p_{n+1}A_{n+2}(\beta)) + p_n A_{n+1}i_{n+1}(z + p_{n+1}A_{n+2}(\beta) - \alpha)). \]

Since \(b_{n+1}(\alpha) = 0 \), we conclude that \(x = b'_{n+1}(z + p_{n+1}A_{n+2}(\beta) - \alpha) \). It means \(x \in \text{Im} b'_{n+1}. \)

\[\square \]

3.2 Chain complex for homology of simplicial groups

Definition 3.2.1. The functor

\[N : (\text{Simplicial groups}) \rightarrow (\text{Bisimplicial sets}) \]

sends a simplicial group \(G_* \) to the bisimplicial set

\[NG_* : \begin{array}{cccccccc}
NG_4 & \xrightarrow{d} & NG_3 & \xrightarrow{d} & NG_2 & \xrightarrow{d} & NG_1 & \xrightarrow{d} \\
& \xrightarrow{s} & & \xrightarrow{s} & & \xrightarrow{s} & & \xrightarrow{s} & \end{array} \]
where $\mathcal{N}G_n$ is the nerve of the group G_n for all $n \geq 0$.

Definition 3.2.2. The functor

$$\Delta: (\text{Bisimplicial sets}) \to (\text{Simplicial sets})$$

sends a bisimplicial set X_{**}

$$
\begin{array}{c}
X_{n,n} \xrightarrow{d^v_i} X_{n-1,n} \\
\downarrow s^h_i \quad \downarrow s^h_i \\
X_{n,n-1} \quad \quad X_{n-1,n-1} \quad \quad \\
\downarrow s^h_i \\
X_{n,0} \quad \quad X_{n-1,0} \\
\downarrow s^h_i \\
\end{array}
\quad
\begin{array}{c}
X_{1,n} \xrightarrow{d^v_i} X_{0,n} \\
\downarrow s^h_i \\
\cdots \quad \quad \cdots \\
\downarrow s^h_i \\
X_{0,0} \\
\end{array}
$$

to ΔX_{**} where $\Delta_n X_{**} := X_{n,n}, d_i := d^v_i d^h_i$ and $s_i := s^h_i s^v_i$ for all $n \geq 0, 0 \leq i \leq n$.

Definition 3.2.3. The functor

$$\mathcal{F}: (\text{Simplicial sets}) \to (\text{Simplicial abelian groups})$$

sends a simplicial set X_* to $\mathcal{F}X_*$ where $\mathcal{F}_n X_*$ is the free abelian group generated by X_n for all $n \geq 0$.

Definition 3.2.4. The functor

$$\mathcal{A}: (\text{Simplicial abelian groups}) \to (\text{Chain complexes})$$

sends a simplicial abelian group G_* to $\mathcal{A}G_*$, the alternating chain complex of G_*.

We now come to the main object of study in this thesis.

Definition 3.2.5. For any simplicial group G_*, the *integral homology* of G_* is defined by

$$H_n(G_*, \mathbb{Z}) := H_n(\mathcal{A}\mathcal{F}\Delta \mathcal{N}G_*)$$

for all $i \geq 0$.

Remark 3.2.1. Note that, in topology, the integral homology of a simplicial group
G_* is also defined by

$$H_n(G_*, \mathbb{Z}) := H_n(B(G_*), \mathbb{Z})$$ for all $n \geq 0$,

where $B(G_*)$ is the classifying space of G_*.

Proposition 3.2.1. The nth integral homology $H_n(-, \mathbb{Z})$ is a covariant functor from the category of simplicial groups to the category of abelian groups.

Proof. It is obvious.

Theorem 3.2.2 (well-known). Let $f : G_* \to G'_*$ be a morphism of simplicial groups. If f is a weak equivalence then f induces isomorphisms

$$H_n(f) : H_n(G_*, \mathbb{Z}) \xrightarrow{\cong} H_n(G'_*, \mathbb{Z})$$ for all $n \geq 0$.

Corollary 3.2.3. Let G_* and G'_* be simplicial groups. If G_* and G'_* are weakly equivalent then

$$H_n(G_*, \mathbb{Z}) \cong H_n(G'_*, \mathbb{Z})$$ for all $n \geq 0$.

Lemma 3.2.4. Let X_{**} be a bisimplicial set. Then $\mathcal{F}\Delta X_{**}$ and $\Delta \mathcal{F}X_{**}$ are the same.

Proof. It is obvious.

Theorem 3.2.5. [29] Let X_{**} be a bisimplicial abelian group. Then the chain complex $\mathcal{A}\Delta X_{**}$ and $\text{Tot}(\mathcal{A}X_{**})$ are chain homotopy equivalent.

For any simplicial group G_*, we apply the bar complex construction to the terms in G_* and obtain a chain complex $\overline{B}_*^{G_*}$ of simplicial abelian groups. Taking the alternating chain complex of each simplicial abelian group $\overline{B}_q^{G_*}$ yields a bicomplex which we denote by $\mathcal{A}\overline{B}_*^{G_*}$.

Lemma 3.2.6. Let G be a group. Then $\mathcal{A}\mathcal{F}NG$ and the bar complex \overline{B}_*^{G} are the same.

Proof. It is obvious.

Theorem 3.2.7. Let G_* be a simplicial group. Then

$$H_n(G_*, \mathbb{Z}) \cong H_n(\text{Tot}(\mathcal{A}\overline{B}_*^{G_*}))$$ for all $n \geq 0$.

Proof. To prove this theorem, we use the following diagram.

\[
\begin{array}{ccc}
\Delta \mathcal{N} G_* & \xrightarrow{\text{free abelian}} & \mathcal{F} \Delta \mathcal{N} G_* \\
G_* & \xrightarrow{\text{nerve}} \mathcal{N} G_* & \xrightarrow{\text{free abelian}} \mathcal{F} \mathcal{N} G_* \\
\mathcal{F} \mathcal{N} G_* & \xrightarrow{\text{diagonal}} & \mathcal{F} \Delta \mathcal{N} G_* \\
\end{array}
\]

\[
\begin{array}{ccc}
\Delta \mathcal{F} \mathcal{N} G_* & \xrightarrow{\text{alternate}} & \mathcal{F} \Delta \mathcal{N} G_* \\
\mathcal{F} \mathcal{N} G_* & \xrightarrow{\text{diagonal}} & \mathcal{F} \Delta \mathcal{F} \mathcal{N} G_* \\
\mathcal{F} \Delta \mathcal{F} \mathcal{N} G_* & \xrightarrow{\text{alternate}} & \Delta \mathcal{F} \mathcal{N} G_* \\
\end{array}
\]

\[
\begin{array}{ccc}
\Delta \mathcal{F} \mathcal{N} G_* & \xrightarrow{\text{alternate}} & \mathcal{F} \Delta \mathcal{F} \mathcal{N} G_* \\
\mathcal{F} \mathcal{F} \mathcal{N} G_* & \xrightarrow{\text{diagonal}} & \mathcal{F} \mathcal{F} \Delta \mathcal{F} \mathcal{N} G_* \\
\mathcal{F} \mathcal{F} \Delta \mathcal{F} \mathcal{N} G_* & \xrightarrow{\text{alternate}} & \Delta \mathcal{F} \mathcal{F} \mathcal{N} G_* \\
\end{array}
\]

\[
\begin{array}{ccc}
\Delta \mathcal{F} \mathcal{F} \mathcal{N} G_* & \xrightarrow{\text{alternate}} & \mathcal{F} \Delta \mathcal{F} \mathcal{F} \mathcal{N} G_* \\
\mathcal{F} \mathcal{F} \mathcal{F} \mathcal{N} G_* & \xrightarrow{\text{diagonal}} & \mathcal{F} \mathcal{F} \Delta \mathcal{F} \mathcal{F} \mathcal{N} G_* \\
\mathcal{F} \mathcal{F} \Delta \mathcal{F} \mathcal{F} \mathcal{N} G_* & \xrightarrow{\text{alternate}} & \Delta \mathcal{F} \mathcal{F} \mathcal{F} \mathcal{N} G_* \\
\end{array}
\]

From this diagram, we have \(\mathcal{A} \mathcal{F} \Delta \mathcal{N} G_* \) and \(\text{Tot}(\mathcal{A} \mathcal{B}^G_*) \) are chain homotopy equivalent. This implies \(H_n(\mathcal{A} \mathcal{F} \Delta \mathcal{N} G_*) \cong H_n(\text{Tot}(\mathcal{A} \mathcal{B}^G_*)) \) for all \(n \geq 0 \) or

\[
H_n(G_*, \mathbb{Z}) \cong H_n(\text{Tot}(\mathcal{A} \mathcal{B}^G_*)) \quad \text{for all } n \geq 0.
\]

We consider \(\mathcal{A} \mathcal{B}^G_* \) as a bicomplex \((\mathcal{B}^G_q, \partial^p_q, \delta^q_p)_{p,q \geq 0}\) with vertical homomorphisms \(\partial^p_q \) and horizontal homomorphisms \(\delta^q_p \).

\[
\begin{array}{cccccc}
\mathcal{B}^G_3 & \xrightarrow{\delta^1_3} & \mathcal{B}^G_3 & \xrightarrow{\delta^1_2} & \mathcal{B}^G_2 & \xrightarrow{\delta^1_1} & \mathcal{B}^G_1 & \xrightarrow{\delta^1_0} & \mathcal{B}^G_0 \\
\partial^1_3 & \downarrow & \partial^1_2 & \downarrow & \partial^1_1 & \downarrow & \partial^1_0 \\
\mathcal{B}^G_2 & \xrightarrow{\delta^2_3} & \mathcal{B}^G_2 & \xrightarrow{\delta^2_2} & \mathcal{B}^G_2 & \xrightarrow{\delta^2_1} & \mathcal{B}^G_1 & \xrightarrow{\delta^2_0} & \mathcal{B}^G_0 \\
\partial^2_3 & \downarrow & \partial^2_2 & \downarrow & \partial^2_1 & \downarrow & \partial^2_0 \\
\mathcal{B}^G_1 & \xrightarrow{\delta^1_3} & \mathcal{B}^G_1 & \xrightarrow{\delta^1_2} & \mathcal{B}^G_1 & \xrightarrow{\delta^1_1} & \mathcal{B}^G_1 & \xrightarrow{\delta^1_0} & \mathcal{B}^G_0 \\
\partial^1_3 & \downarrow & \partial^1_2 & \downarrow & \partial^1_1 & \downarrow & \partial^1_0 \\
\mathcal{B}^G_0 & \xrightarrow{\delta^1_3} & \mathcal{B}^G_0 & \xrightarrow{\delta^1_2} & \mathcal{B}^G_0 & \xrightarrow{\delta^1_1} & \mathcal{B}^G_0 & \xrightarrow{\delta^1_0} & \mathcal{B}^G_0 \\
\partial^1_3 & \downarrow & \partial^1_2 & \downarrow & \partial^1_1 & \downarrow & \partial^1_0 \\
\end{array}
\]

For each \(p \geq 0 \), the column \((\mathcal{B}^G_p, \partial^p)\) is the bar complex of group \(G_p \). Applying
Algorithm 2.3.5 we construct a homotopy equivalence data

\[(R^G_p, d^p) \xrightarrow{\iota^p} (B^G_p, \partial^p), H^p.\]

where \((R^G_p, d^p)\) is a HAP complex of \(G_p\).

We now build a chain complex \(T = (T_n, \partial_n)_{n \geq 0}\) as the total complex of the bicomplex \((B^G_{p,q}, \partial^p_q, 0)_{p,q \geq 0}\) where the horizontal homomorphisms are set equal to zero. This means that \(T\) is given by

\[T_n = \bigoplus_{p+q=n} B^G_{p,q}\]

with differential homomorphism \(\partial_n(x) = \partial^p_q(x)\) for \(x \in B^G_{p,q}\).

In the same way, we also build a chain complex \(HT = (HT_n, d_n)_{n \geq 0}\) as the total complex of the bicomplex \((R^G_{p,q}, d^p_q, 0)_{p,q \geq 0}\). Thus \(HT\) is given by

\[HT_n = \bigoplus_{p+q=n} R^G_{p,q}\]

with differential homomorphism \(d_n(y) = d^p_q(y)\) for \(y \in R^G_{p,q}\).

For each \(p \geq 0\), we have the homotopy equivalence data

\[(R^G_p, d^p) \xrightarrow{\psi^p} (B^G_p, \partial^p), H^p.\]

This implies a homotopy equivalence data

\[(HT_*, d) \xrightarrow{\psi} (T_*, \partial), H \quad \text{(3.13)}\]

with

- \(\iota_n(y) = \iota^p_q(y)\) for all \(y \in R^G_{p,q}, p + q = n\),
- \(\psi_n(x) = \psi^p_q(x)\) for all \(x \in B^G_{p,q}, p + q = n\),
- \(H_n(x) = H^p_q(x)\) for all \(x \in B^G_{p,q}, p + q = n\).

The homotopy equivalence data 3.13 is illustrated in the following diagram.
We denote by δ a sequence of homomorphisms $\delta_n : T_n \to T_{n-1}$ defined by $\delta_n(x) = \delta^p_q(x)$ for $x \in B^G_q$. It is easy to see δ is a perturbation of (3.13). Moreover, for all $n \geq 0$, $(\delta_{n+1}H_n)^{n+1} = 0$. This implies that δ is a small perturbation and

$$(1 - \delta_{n+1}H_n)^{-1} = 1 + \delta_{n+1}H_n + \cdots + (\delta_{n+1}H_n)^n.$$

Applying Theorem 3.1.1, we have a homotopy equivalence data

$$(HT_*, d') \xrightarrow{\psi'} (T_*, \partial + \delta), H'$$

with

- $d'_n = d_n + \psi_{n-1}d_n + \psi_{n-1}(\delta_nH_{n-1})\delta_n + \cdots + \psi_{n-1}(\delta_nH_{n-1})^{n-1}\delta_n$,
 \hspace{1cm} (3.14)
- $\iota'_n = \iota_n + H_{n-1}\iota_n + H_{n-1}(\delta_nH_{n-1})\iota_n + \cdots + H_{n-1}(\delta_nH_{n-1})^{n-1}\iota_n$,
 \hspace{1cm} (3.15)
- $\psi'_n = \psi_n + \psi_n\delta_{n+1}H_n + \psi_n(\delta_{n+1}H_n)\delta_{n+1}H_n + \cdots + \psi_n(\delta_{n+1}H_n)^n\delta_{n+1}H_n$,
 \hspace{1cm} (3.16)
- $H'_n = H_n + H_n\delta_{n+1}H_n + H_n(\delta_{n+1}H_n)\delta_{n+1}H_n + \cdots + H_n(\delta_{n+1}H_n)^n\delta_{n+1}H_n$.
 \hspace{1cm} (3.17)

By using Formula 3.14, we deduce the following theorem

Theorem 3.2.8. Suppose that G_* is a simplicial group and that we have a homotopy equivalence data $\left(\overline{R}^{G}_*, d \xrightarrow{\psi} \overline{B}^{G}_*, \partial\right), H$ for each $p \geq 0$. Then the total complex $\text{Tot}(\mathcal{A}B^{G}_*)$ is chain homotopic to a chain complex (K_*, d') with

$$K_n = \bigoplus_{p+q=n} \overline{R}^{G}_{q}$$
and with boundary homomorphism

\[d' = d + \psi \delta i + \psi \delta H \delta i + \psi \delta H \delta H \delta i + \cdots \]

where \(\delta \) is the horizontal homomorphism of \(\mathcal{AB}_*^G \). Thus, in given degree \(n \)

\[d' = d_n + \psi_{n-1} \delta n t_n + \psi_{n-1} \delta n H n-1 \delta n t_n + \psi_{n-1} \delta n H n-1 \delta n H n-1 \delta n t_n + \cdots . \]

The boundary homomorphism \(d' \) of \(K \) sends, for instance, \(x \in \mathcal{R}^G_1 \) to

\[d'(x) = x_0 + x_1 + x_2 + x_3 \]

with \(x_0 \in \mathcal{R}^G_0, x_1 \in \mathcal{R}^G_1, x_2 \in \mathcal{R}^G_2, x_3 \in \mathcal{R}^G_3 \). This is illustrated in the following diagram

Definition 3.2.6. We say that a simplicial group \(G_* \) is \(n \)-constructible if \(G_k \) is \((n-k)\)-constructible for \(k = 0, 1, \ldots, n \).

By using Theorem 3.2.8 and Algorithm 2.3.5, we obtain an algorithm for constructing a chain complex \(K \) of a simplicial group \(G_* \).

Algorithm 3.2.1.

Input: An \(n \)-constructible simplicial group \(G_* \).

Output: The chain complex \(K \) of Theorem 3.2.8 in the form:

- The dimension of \(K_i \) (\(0 \leq i \leq n \)).
- The image of the \(k \)th generator of \(K_i \) under the chain map \(d'_i : K_i \to K_{i-1} \) (\(1 \leq i \leq n \)).
3.2 Chain complex for homology of simplicial groups

Procedure:

- For each $p \geq 0$, we use Algorithm 2.3.5 to construct a homotopy equivalence data

 $$(R_G^{G_p}, d) \xrightarrow{\psi} (B_G^{G_p}, \partial), H$$

- Using formulas in Theorem 3.2.8, we compute the dimension of K_i and the image of the kth generator of K_i under the chain map d'_i.

Definition 3.2.7. For any field K we let

$$K: \text{(Simplicial sets)} \to \text{(Simplicial vector spaces)}$$

sends a simplicial set X_\ast to simplicial vector space KX_\ast where K_nX_n is the vector space over K with basis X_n.

Definition 3.2.8. Let G_\ast be a simplicial group and K be a field. The homology of G_\ast with coefficients in K is defined by

$$H_n(G_\ast, K) := H_n(\Delta N(G_\ast)) \text{ for all } n \geq 0.$$

Proposition 3.2.9. The nth homology $H_n(-, K)$ is a covariant functor from the category of simplicial groups to the category of vector spaces over K.

Proof. It is obvious.

Proposition 3.2.10. Let G_\ast be a simplicial group and K be a chain complex for homology of G_\ast obtained from Algorithm 3.2.1. Then

$$H_n(G_\ast, \mathbb{F}_p) \cong H_n(K \otimes \mathbb{Z} \mathbb{F}_p) \text{ for all } n \geq 0.$$

Proof. It is obvious.
Chapter 4

Eilenberg-Mac Lane spaces
4.1 Construction of Eilenberg-Mac Lane simplicial groups

For any abelian group A and $n \geq 2$, the Eilenberg-Mac Lane space $K(A, n)$ is considered as a special case of n-types. It can be modeled algebraically by a simplicial group G_\ast with $\pi_{n-1}G_\ast = A, \pi_iG_\ast = 0$ for $i \neq n - 1$. In this section, we construct the simplicial group G_\ast and use it for computing the integral homology of the Eilenberg-Mac Lane space $K(A, n)$.

Definition 4.1.1. Let A be an abelian group and $n \geq 2$. An *Eilenberg-Mac Lane simplicial group* is a simplicial group K such that $\pi_{n-1}K = A$ and $\pi_iK = 0$ for $i \neq n - 1$. Such a simplicial group is denoted by $K(A, n)$.

Let Δ the category whose objects are the finite ordered sets $[n] = \{0, 1, \cdots, n\}$ and whose morphisms are nondecreasing monotone functions. A simplicial object A in a category \mathcal{C} can be viewed as a contravariant functor from Δ to \mathcal{C}, that is, $A: \Delta^{\text{op}} \rightarrow \mathcal{C}$. Every map $\theta^*: A_n \rightarrow A_m$ corresponds to a map $\theta: [m] \rightarrow [n]$.

Let $C = (C_n, d_n)_{n \geq 0}$ be a chain complex of abelian groups. Using a method of Dold and Kan (see [29]) we construct a simplicial abelian group G_\ast such that the Moore complex of G_\ast is the chain complex C. More precisely,

- $G_n = \bigoplus_{[n] \rightarrow [k]} C_k$ where $[n] \rightarrow [k]$ ranges over all surjective maps from $[n]$ to $[k]$, for $0 \leq k \leq n$.

- The map
 \[
 \theta^*: \bigoplus_{[n] \rightarrow [k]} C_k \rightarrow \bigoplus_{[m] \rightarrow [r]} C_r
 \]
 associated to the map $\theta: [m] \rightarrow [n]$ given on the summand corresponding to $\sigma: [n] \rightarrow [k]$ by the composite
 \[
 C_k \xrightarrow{d^*_\sigma} C_s \xrightarrow{\text{in}_\sigma} \bigoplus_{[m] \rightarrow [r]} C_r
 \]
 where
 \[
 [m] \xrightarrow{t} [s] \xrightarrow{d}[k]
 \]
is the epic-monic factorization of the composite
\[[m] \xrightarrow{\theta} [n] \xrightarrow{\sigma} [k], \]
the map \(\text{in}_t \) sends \(C_s \) by identity map to the copy of \(C_s \) indexed by the epimorphism \(t : [m] \to [s] \), and
\[d^* = \begin{cases}
 d_k & \text{if } s = k - 1, \\
 0 & \text{if } s \neq k - 1.
\end{cases} \]

Definition 4.1.2. [29] The functor
\[\Gamma : \text{Ch}_+ \to s\text{Ab} \]
sends a chain complex of abelian groups \(C = (C_n, d_n)_{n \geq 0} \) to a simplicial abelian group \(G_* \) using the above recipe.

Definition 4.1.3. [29] The functor
\[M : s\text{Ab} \to \text{Ch}_+ \]
sends a simplicial abelian group \(G_* \) to \(MG_* \), the Moore complex of \(G_* \).

Theorem 4.1.1. [29] (Dold-Kan Correspondence) The functors
\[\Gamma : \text{Ch}_+ \to s\text{Ab} \text{ and } M : s\text{Ab} \to \text{Ch}_+ \]
form an isomorphism of categories.

Theorem 4.1.2 (well-known). Let \(A \) be an abelian group and \(n \geq 2 \). If \(K(A,n) \) and \(K'(A,n) \) are Eilenberg-Mac Lane simplicial groups then
\[H_m(K(A,n), \mathbb{Z}) \cong H_m(K'(A,n), \mathbb{Z}) \text{ for all } m \geq 0. \]

Proof. This result is well-known. However, for completeness, we outline a proof in the case where \(K(A,n) \) and \(K'(A,n) \) are abelian simplicial groups. Since \(A \) is an abelian group, there exists a free abelian group \(F \) such that \(F/R \cong A \) with \(R \) a subgroup of \(F \).
We consider the following chain complex

\[MA : \cdots \rightarrow 0 \rightarrow \cdots \rightarrow 0 \rightarrow R \xrightarrow{i} F \xrightarrow{\pi} 0 \rightarrow \cdots \rightarrow 0. \]

By applying the functor \(\Gamma \), we obtain the simplicial abelian group \(G_* = \Gamma(MA) \).

Since \(K(A, n) \) is an Eilenberg-Mac Lane abelian simplicial group, the Moore complex of \(K(A, n) \) have the form

\[MK : \cdots \rightarrow C_n \xrightarrow{d_n} C_{n-1} \xrightarrow{d_{n-1}} C_{n-2} \xrightarrow{d_{n-2}} \cdots \xrightarrow{d_2} C_1 \xrightarrow{d_1} C_0 \]

with \(\text{Ker} d_{n-1}/\text{Im} d_n = A \) and \(\text{Ker} d_k/\text{Im} d_{k+1} = 0 \) for \(k \neq n - 1 \).

The isomorphism \(F/R \cong A \) implies that there exists an isomorphism \(h : F/R \rightarrow \text{Ker} d_{n-1}/\text{Im} d_n \). This lifts to a homomorphism \(\tilde{h} : F \rightarrow \text{Ker} d_{n-1} \) with \(\tilde{h}(R) \subset \text{Im} d_n \).

We consider the following diagram

\[
\begin{array}{ccc}
0 & \xrightarrow{g} & R \xrightarrow{i} F \xrightarrow{\pi} 0 \\
\downarrow{\tilde{h}_R} & & \downarrow{h} \\
C_{n+1} & \xrightarrow{i} & \text{Im} d_n \xrightarrow{j} \text{Ker} d_{n-1} & \xrightarrow{\pi} C_{n-2} \\
\downarrow{d_{n+1}} & & \downarrow{d_n} & \downarrow{d_{n-1}} \\
C_n & & C_n & \xrightarrow{d_{n-1}} C_{n-1}
\end{array}
\]

with \(\tilde{h}_R \) is the restriction of \(\tilde{h} \) to \(R \) and \(i, j \) are inclusions.

Since \(R \) is a subgroup of free abelian group \(F \), \(R \) is also a free abelian group. So there exists a homomorphism \(g : R \rightarrow C_n \) such that \(d_n g = \tilde{h}_R \).

We prove \(MA \) and \(MK \) are quasi-isomorphic by constructing a chain map \(f \) between \(MA \) and \(MK \) as follows

\[f_k = \begin{cases}
 g & \text{if } k = n, \\
 j \tilde{h} & \text{if } k = n-1, \\
 0 & \text{if } k \neq n, n-1.
\end{cases} \]

It is easy to see that \(f \) is a quasi-isomorphism.

By applying the same argument to the Moore complex \(MK' \) of \(K'(A, n) \), we also deduce \(MA \) and \(MK' \) are quasi-isomorphic. This implies \(MK \) is quasi-isomorphic.
to MK'. From Theorem 4.1.1, we have $K(A,n)$ and $K'(A,n)$ are weakly equivalent. By using Corollary 3.2.3, we have

$$H_m(K(A,n), \mathbb{Z}) \cong H_m(K'(A,n), \mathbb{Z}) \text{ for all } m \geq 0.$$

Now we apply the functor Γ to the chain complex

$$\cdots \to 0 \to \cdots \to 0 \to A \uparrow_{n-1} \to 0 \to \cdots \to 0,$$

we obtain an algorithm for constructing an Eilenberg-Mac Lane simplicial group $K(A,n)$. In fact, it will be a simplicial abelian group.

Algorithm 4.1.1.

Input: An abelian group A and two integers $n \geq 2, l \geq 1$.

Output: The Eilenberg-Mac Lane simplicial group $K(A,n)$ of length l in the form:

- The groups K_i ($0 \leq i \leq l$).
- The face maps $d_j: K_i \to K_{i-1}$ ($0 \leq j \leq i$).
- The degeneracy maps $s_j: K_i \to K_{i+1}$ ($0 \leq j \leq i$).

Procedure: Implement the method of Dold and Kan.

Example 4.1.1. The following GAP session illustrates how to compute the integral homology of an Eilenberg-Mac Lane simplicial group $K(\mathbb{Z}_3, 2)$.

```gap
gap> A:=CyclicGroup(3);;
gap> K:=EilenbergMacLaneSimplicialGroup(A,2,8);
Simplicial group of length 8
gap> C:=ChainComplexOfSimplicialGroup(K);
Chain complex of length 8 in characteristic 0
gap> Homology(C,6);;
[9]
gap> Homology(C,7);;
[3]
```
These commands took 33 seconds on a Windows Dual core 2.8 GHz desktop with 2GB RAM.

In the PhD thesis of Alain Clément [11], he introduced a method to compute the integral homology of the Eilenberg-Mac Lane space $K(\mathbb{Z}_2^s, n)$ for all $n \geq 1, s \geq 1$. In addition, he listed the values of the integral homology of $K(\mathbb{Z}_2, 2)$, $K(\mathbb{Z}_2, 3)$, $K(\mathbb{Z}_4, 2)$, $K(\mathbb{Z}_4, 3)$ up to degree 200. We have used these values to test our results at degree $0 \leq i \leq 9$.

For any be a homomorphism of abelian groups $f: A \to A'$, we have the following chain map

\[
\cdots \to 0 \to \cdots \to 0 \to A \to 0 \to \cdots \to 0
\]

\[
\cdots \to 0 \to \cdots \to 0 \to A' \downarrow_f \to 0 \to \cdots \to 0.
\]

Applying the functor Γ to the chain map, we obtain a morphism $f_*: K(A, n) \to K(A', n)$. We also give an algorithm to compute this morphism.

Algorithm 4.1.2.

Input: A homomorphism of abelian groups $f: A \to A'$ and two integers $n \geq 2, l \geq 1$.

Output: The morphism $f_*: K(A, n) \to K(A', n)$ of simplicial groups of length l in the form:

- Simlicial group $K = K(A, n)$.
- Simlicial group $K' = K(A', n)$.
- Group homomorphisms $f_i: K_i \to K'_i$ ($0 \leq i \leq l$).

Procedure: We implement the method of Dold and Kan.

Example 4.1.2. Let $f: \mathbb{Z}_4 \to \mathbb{Z}_2$ give by $m \mapsto m \mod 2$. The following GAP session illustrates how to compute the morphism

\[
f_*: K(\mathbb{Z}_4, 2) \to K(\mathbb{Z}_2, 2).
\]
4.2 Small chain complex for homology of $K(Z_m, 2)$

The chain complex constructed for a simplicial group using Algorithm 3.2.1 is typically unnecessarily large. Given any chain complex (R_\ast, d) of finitely generated free abelian groups there are a number of ways in which one might attempt to produce a chain homotopy equivalence $R_\ast \simeq R'_\ast$ where (R'_\ast, d') is a chain complex of free abelian groups of lower ranks. We shall describe one such algorithm which is based on idea of Pawel Dlotko, T. Kaczynski and Marian Mrozek in their paper [14]. It is extremely simple to implement yet surprisingly effective in many cases.

Let us denote by e_i^n the free generators of R_n. Let us define a pair (e_i^n, e_j^{n-1}) to be **redundant** if $d(e_i^n) = \pm e_j^{n-1}$. A redundant pair generates a sub chain complex

$$
\cdots \rightarrow 0 \rightarrow 0 \rightarrow \cdots \rightarrow 0 \rightarrow \langle e_i^n \rangle \rightarrow \langle e_j^{n-1} \rangle \rightarrow 0 \rightarrow \cdots
$$

of R_\ast with trivial homology. The long exact homology sequence arising from a short exact sequence of chain complexes implies that the quotient chain map

$$
\begin{array}{cccccccc}
\cdots & \rightarrow & R_{n+1} & \rightarrow & R_n & \rightarrow & R_{n-1} & \rightarrow & R_{n-2} & \rightarrow & \cdots \\
\downarrow \Pi_n & & \Pi_{n-1} \\
\cdots & \rightarrow & R_{n+1} & \rightarrow & R_n/\langle e_i^n \rangle & \rightarrow & R_{n-1}/\langle e_j^{n-1} \rangle & \rightarrow & R_{n-2} & \rightarrow & \cdots
\end{array}
$$

induces isomorphisms on homology. Moreover, the quotient chain complex is a chain complex of free abelian groups and hence Π_\ast must be a chain homotopy equivalence.

These commands took 1 second.
Algorithm 4.2.1.

Input: A finite dimensional chain complex R_*.

Output: A reduced chain complex R'_* chain homotopy equivalent to R_*.

Procedure: Repeatedly search for and remove redundant pairs as defined above.

An implementation of Algorithm 4.2.1 is available in the HAP package [20]. To illustrate its performance we consider the Eilenberg-Mac Lane space simplicial group $K(\mathbb{Z}_2, 2)$. Let R_* denote the chain complex for $K(\mathbb{Z}_2, 2)$ constructed using Algorithm 4.1.1 and Algorithm 3.2.1. When Algorithm 4.2.1 is applied to this chain complex R_* it yields a chain homotopy equivalence $R_* \simeq R'_*$ where the ranks of R_i and R'_i are listed in the following table for low degrees.

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>rank(R_i)</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>32</td>
<td>64</td>
<td>128</td>
<td>256</td>
<td>512</td>
</tr>
<tr>
<td>rank(R'_i)</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>13</td>
<td>21</td>
<td>34</td>
</tr>
</tbody>
</table>

Experimental evidence seems to suggest that Algorithm 4.2.1 yields a free abelian chain complex for $K(\mathbb{Z}_m, 2)$, $m \geq 2$, whose terms have ranks equal to the Fibonacci numbers. We remark that Clemens Berger [4] has proved the existence of a CW-complex of type $K(\mathbb{Z}_2, 2)$ whose terms have ranks equal to the Fibonacci numbers.
Chapter 5

Homology of 2-types
5.1 Group theoretic examples of crossed modules

Definition 5.1.1. A **crossed module** is a group homomorphism \(\partial: M \rightarrow P \) together with a group action \(P \) on \(M \), denoted by \((p, m) \rightarrow p^m\) and satisfying the following conditions:

(i) \(\partial(p^m) = p\partial(m)p^{-1} \);

(ii) \(\partial(m)m' = mm'm^{-1} \),

for all \(p \in P, \ m, m' \in M \).

Example 5.1.1.

1. If \(G \) is any group with normal subgroup \(N \) then the inclusion \(i: N \hookrightarrow G \) is a crossed module with action \(^g n := gng^{-1} \).

2. If \(G \) is any group and \(M \) any \(G \)-module then the trivial homomorphism \(\partial: M \rightarrow \ast \rightarrow G \) is a crossed module.

3. The homomorphism \(\partial: M \rightarrow Aut(M), m \rightarrow \iota_m(x) = mxm^{-1} \) from a group \(M \) to its automorphism group is a crossed module.

4. If \(\partial: M \rightarrow G \) is a central group extension (i.e. if \(\text{Ker} \partial \) lies in \(Z(M) \) and \(\partial \) is surjective) then \(\partial \) is a crossed module in which \(^g m = \tilde{g} m \tilde{g}^{-1} \) with \(\tilde{g} \in M \) satisfying \(\partial(\tilde{g}) = g \).

Definition 5.1.2. For any crossed module \(\partial: M \rightarrow P \), the **order** of \(\partial \) is defined to be the product \(|\partial| = |M| \times |P| \) of the orders of the groups \(M, P \).

Lemma 5.1.1. [8] For any crossed module \(\partial: M \rightarrow P \), \(\text{Im} \partial \) is a normal subgroup of \(P \).

Definition 5.1.3. [8] For any crossed module \(\partial: M \rightarrow P \), the **homotopy groups** of \(\partial \) are defined as

\[
\pi_n(\partial) = \begin{cases}
P/\text{Im} \partial & n = 1, \\
\text{Ker} \partial & n = 2, \\
0 & n > 2.
\end{cases}
\]

Lemma 5.1.2. [8] Let \(\partial: M \rightarrow P \) be a crossed module. Then
(i) $\pi_2(\partial) \leq Z(M)$.

(ii) $\pi_2(\partial)$ is a $\pi_1(\partial)$-module.

Note that $\pi_2(\partial)$ is a $\pi_1(\partial)$-module with the action $\pi_1(\partial)$ on $\pi_2(\partial)$ defined by $\gamma a := \tilde{g}a$ where \tilde{g} is an element chosen from the pre image of g in P.

Definition 5.1.4. A morphism between two crossed modules $\partial: M \to P$ and $\partial': M' \to P'$ is a pair (μ, η) of homomorphisms of groups $\mu: M \to M'$ and $\eta: P \to P'$ such that

(i) the diagram

$$
\begin{array}{ccc}
M & \xrightarrow{\mu} & M' \\
\downarrow{\partial} & & \downarrow{\partial'} \\
P & \xrightarrow{\eta} & P'
\end{array}
$$

commutes, i.e. $\partial'\mu = \eta\partial$, and

(ii) $\mu(pm) = \eta(p)\mu(m)$ for all $m \in M, p \in P$.

A morphism is an isomorphism if μ and η are isomorphisms.

Crossed modules and their morphisms form a category. We denote this category by XMod.

5.2 Nerve of cat1-groups

The following notion was introduced by J-L. Loday in [33].

Definition 5.2.1. A cat1-group is a triple (G, s, t) such that G is a group and $s, t: G \to G$ are group homomorphisms satisfying conditions

(i) $st = t$ and $ts = s$,

(ii) $[\text{Ker } s, \text{Ker } t] = 1$.

Definition 5.2.2. For any cat1-group (G, s, t), the order of (G, s, t) is defined to be the order of group G.
Proposition 5.2.1. [33] Let \((G, s, t)\) be a \(\text{cat}^1\)-group. Then

(i) \(\text{Im } s = \text{Im } t\),

(ii) \(ss = s, tt = t\).

Definition 5.2.3. A \textit{morphism} of \(\text{cat}^1\)-groups between \((G, s, t)\) and \((G', s', t')\) is a homomorphism of groups \(\phi : G \rightarrow G'\) such that \(\phi s = s' \phi\) and \(\phi t = t' \phi\).

A morphism is an \textit{isomorphism} if \(\phi\) is an isomorphism. It is easy to see that \(\text{cat}^1\)-groups and their morphisms form a category. The category is denoted by \textbf{Cat1}.

Proposition 5.2.2. [8] There exists a functor

\[
\lambda : \text{XMod} \rightarrow \text{Cat1}
\]

which sends a crossed module \(\partial : M \rightarrow P\) to the \(\text{cat}^1\)-group \((M \rtimes P, s, t)\), where \(s(m, p) = (1, p)\) and \(t(m, p) = (1, \partial(m)p)\).

From this proposition, we obtain an algorithm for computing the functor \(\lambda\).

Algorithm 5.2.1.

Input: A crossed module or a morphism of crossed modules.

Output:

- A \(\text{cat}^1\)-group if input a crossed module.
- A morphism of \(\text{cat}^1\)-groups if input a morphism of crossed modules.

Procedure: We implement the formulae of Proposition 5.2.2.

Proposition 5.2.3. [8] There exists a functor

\[
\gamma : \text{Cat1} \rightarrow \text{XMod}
\]

which sends a \(\text{cat}^1\)-group \((G, s, t)\) to the crossed module \(t|_{\text{Ker } s} : \text{Ker } s \rightarrow \text{Im } s\) where \(t|_{\text{Ker } s}\) is restriction of \(t\) to \(\text{Ker } s\) and \(\text{Im } s\) acts on \(\text{Ker } s\) by conjugation.

From this proposition, we obtain an algorithm for computing the functor \(\gamma\).
Algorithm 5.2.2.

Input: A \(\text{cat}^1 \)-group or a morphism of \(\text{cat}^1 \)-groups.

Output:

- A crossed module if input a \(\text{cat}^1 \)-group.
- A morphism of crossed modules if input a morphism of \(\text{cat}^1 \)-groups.

Procedure: We implement the formulae of Proposition 5.2.3.

Proposition 5.2.4. [8] The functors

\[
\lambda : \text{XMod} \to \text{Cat}^1 \quad \text{and} \quad \gamma : \text{Cat}^1 \to \text{XMod}
\]

form an isomorphism of categories.

For any \(\text{cat}^1 \)-group \((G, s, t)\), we can consider \((G, s, t)\) to be a category with objects the elements of \(\text{Im } s\) and morphisms the elements of \(G\). The source (respectively target) of the morphism \(g\) is \(s(g)\) (respective \(t(g)\)). The morphisms \(g\) and \(h\) are composable if \(t(g) = s(h)\) and their composite \(h \circ g\) is \(gt(g^{-1})h\). So we construct a simplicial group by taking the nerve of this category \((G, s, t)\). The construction is described in the following Proposition.

Proposition 5.2.5. [33] If \((G, s, t)\) is a \(\text{cat}^1\)-group then the nerve of \((G, s, t)\) is the simplicial group \(N_G\) given as follows:

\[
N_nG = \begin{cases}
\text{Im } s & \text{if } n = 0, \\
G & \text{if } n = 1, \\
\{(g_1, g_2, \ldots, g_n) | t(g_i) = s(g_{i+1}), g_i \in G\} & \text{if } n > 1.
\end{cases}
\]

- the face maps \(d_i : N_nG \to N_{n-1}G\) with

\[
d_i(g_1, g_2, \ldots, g_n) = \begin{cases}
(g_2, \ldots, g_n) & \text{if } i = 0, \\
(g_1, \ldots, g_i t(g_i^{-1}) g_{i+1}, \ldots, g_n) & \text{if } 0 < i < n, \\
(g_1, g_2, \ldots, g_{n-1}) & \text{if } i = n.
\end{cases}
\]
• the degeneracy maps $\eta_i: \mathcal{N}_nG \to \mathcal{N}_{n+1}G$ with

$$
\eta_i(g_1, g_2, \ldots, g_n) = \begin{cases}
(s(g_1), g_1, g_2, \ldots, g_n) & \text{if } i = 0, \\
(g_1, \ldots, g_i, t(g_i), g_{i+1}, \ldots, g_n) & \text{if } 0 < i \leq n.
\end{cases}
$$

In addition, the Moore complex of this simplicial group has the form

$$
\cdots \to 1 \to 1 \to \cdots \to 1 \to \text{Ker } s \xrightarrow{t} \text{Im } s.
$$

Proposition 5.2.6. Let (G, s, t) be a cat1-group and $M = \text{Ker } t$. Then, for $n \geq 2$,

$$
\mathcal{N}_nG \cong M \rtimes \varphi_{n-1} (M \rtimes \varphi_{n-2} \cdots (M \rtimes \varphi_1 G))
$$

where $\varphi_1: G \to \text{Aut } M$ is given by $g \mapsto (m \mapsto s(g)ms(g^{-1}))$

and for $i \geq 2$

$$
\varphi_i: M \rtimes \varphi_{i-1} (M \rtimes \varphi_{i-2} \cdots (M \rtimes \varphi_1 G)) \to \text{Aut } M
$$

is given by

$$(m_1, m_2, \ldots, m_{i-1}, g) \mapsto (m \mapsto s(m_1m_2\ldots m_{i-1}g)ms((m_1m_2\ldots m_{i-1}g)^{-1})).$$

Proof. We consider the function

$$
\psi: \mathcal{N}_nG \to M \rtimes \varphi_{n-1} (M \rtimes \varphi_{n-2} \cdots (M \rtimes \varphi_1 G))
$$

defined by

$$(g_1, g_2, \ldots, g_{n-1}, g_n) \mapsto (g_1s(g_2^{-1}), \ldots, g_{n-1}s(g_n^{-1}), g_n).$$

Let $x = (x_1, x_2, \ldots, x_{n-1}, g)$ and $y = (y_1, y_2, \ldots, y_{n-1}, h)$ be in $M \rtimes \varphi_{n-1} (M \rtimes \varphi_{n-2} \cdots (M \rtimes \varphi_1 G))$. We find the product xy as follows.

• For $n = 2$,

$$xy = (x_1, g)(y_1, h) = (x_1\varphi_1(g)(y_1), gh) = (x_1s(g)y_1s(g^{-1}), gh).$$
• For $n = 3$,

$$xy = (x_1, x_2, g)(y_1, y_2, h)$$

$$= ((x_1)\varphi_2(x_2, g)(y_1), (x_2, g)(y_2, h))$$

$$= (x_1s(x_2g)y_1s((x_2g)^{-1}), x_2s(g)y_2s(g^{-1}), gh)$$

By using induction, we obtain

$$xy = (S^{xy}_1, S^{xy}_2, \ldots, S^{xy}_{n-1}, gh)$$

with

$$S^{xy}_i = x_is(x_{i+1} \ldots x_{n-1}g)y_is((x_{i+1} \ldots x_{n-1}g)^{-1}).$$

Let $u = (g_1, g_2, \ldots, g_n), v = (h_1, h_2, \ldots, h_n) \in N_nG$, we have

$$\psi(u)\psi(v) = \psi(g_1, g_2, \ldots, g_n)\psi(h_1, h_2, \ldots, h_n)$$

$$= (g_1s(g_2^{-1}), \ldots, g_{n-1}s(g_n^{-1}), g_n)(h_1s(h_2^{-1}), \ldots, h_{n-1}s(h_n^{-1}), h_n)$$

$$= (S_1, S_2, \ldots, S_{n-1}, g_nh_n)$$

with

$$S_1 = g_is(g_{i+1}^{-1})s(g_{i+1}s(g_{i+2}^{-1}) \ldots g_{n-1}s(g_n^{-1})g_n)h_is(h_{i+1}^{-1})s(g_{i+1}s(g_{i+2}^{-1}) \ldots g_{n-1}s(g_n^{-1})g_n)^{-1}$$

$$= g_ih_is(h_{i+1}^{-1})s(g_{i+1}^{-1}) \text{ (as } ss = s)$$

$$= (g_ih_is((g_{i+1}h_{i+1})^{-1}).$$

So

$$\psi(u)\psi(v) = ((g_1h_1)s((g_2h_2)^{-1}), \ldots, (g_{n-1}h_{n-1})s((g_nh_n)^{-1}), g_nh_n).$$

On the other hand, we have

$$\psi(uv) = \psi(g_1h_1, g_2h_2, \ldots, g_nh_n)$$

$$= ((g_1h_1)s((g_2h_2)^{-1}), \ldots, (g_{n-1}h_{n-1})s((g_nh_n)^{-1}), g_nh_n).$$

This implies ψ is a homomorphism.
Furthermore, if \(\psi(g_1, g_2, \ldots, g_n) = (1, 1, \ldots, 1) \) then
\[
(g_1 s(g_2^{-1}), \ldots, g_{n-1} s(g_n^{-1}), g_n) = (1, 1, \ldots, 1).
\]

So \(g_i = 1 \) for \(1 \leq i \leq n \). It means \(\ker \psi = 1 \) or \(\psi \) is injective.

Moreover, for \(x = (x_1, x_2, \ldots, x_{n-1}, g) \in M \rtimes_{\varphi_{n-1}} (M \rtimes_{\varphi_{n-2}} \cdots (M \rtimes_{\varphi_1} G)) \), it is easy to see
\[
\psi(x_1 s(x_2, \ldots, x_{n-1} g), \ldots, x_i s(x_{i+1}, \ldots, x_{n-1} g), \ldots, g) = x.
\]

So \(\psi \) is surjective.

We can implement this Proposition on computer in the form of the following algorithm.

Algorithm 5.2.3.

Input: A finite cat\(^1\)-group \((G, s, t)\) and an integer \(n \geq 0\).

Output: The nerve of \((G, s, t)\) as the first \(n\) terms of a simplicial group \(N G\) in the form:

- The groups \(N_i G\) (\(0 \leq i \leq n\)).
- The face homomorphisms \(d_j : N_i G \to N_{i-1} G\) (\(0 \leq j \leq i\)).
- The degeneracy homomorphisms \(s_j : N_i G \to N_{i+1} G\) (\(0 \leq j \leq i\)).

Procedure: We implement the formulae in Proposition 5.2.6 and in its proof.

5.3 Cat\(^1\)-groups and crossed modules of low order

The construction of cat\(^1\)-groups and crossed modules of low order have been studied by Alp and Wensley [3]. They have developed the XMod package [2] in the GAP computer systems and the XMod package provides data of all cat\(^1\)-groups and crossed modules of order \(m \leq 70\).
In this section, we give a new algorithm to compute all non-isomorphic cat\(^1\)-group structures on a finite group. By using this algorithm, we construct data of all cat\(^1\)-groups and crossed modules of order \(m \leq 255\).

An important resource for finite group theorists is the computer classification of all groups of low order. This classification is available in the GAP computer systems [28] and, for example, can be used to:

(i) list non-isomorphic groups of a given order \(m\);

(ii) identify the isomorphism class of a user-defined group \(G\) in terms of a pair \((m, k)\) where \(m\) is the order of \(G\) and \(k\) is a catalogue number.

Example 5.3.1.

```
gap> G:=SmallGroup(128,5);
g<pc group of size 128 with 7 generators>
gap> H:=DihedralGroup(56);;
gap> IdGroup(H);
[ 56, 5 ]
```

For any finite group \(G\), a cat\(^1\)-group with underlying group \(G\) is called a cat\(^1\)-group structure on group \(G\). To compute all non-isomorphic cat\(^1\)-group structures on group \(G\) we perform the following two steps:

Step 1. Compute all possible cat\(^1\)-group structures on group \(G\).

We begin by computing a list \(\mathbb{L}\) of all normal subgroups \(N\) in \(G\) and a list \(\mathbb{L}'\) of subgroups \(K\) in \(G\) representing all subgroup conjugacy classes. We then do:

1. For each \(N \in \mathbb{L}\). Let \(p: G \to G/N\) be the quotient homomorphism. We find all \(K \in \mathbb{L}'\) satisfying

 - \(K\) is isomorphic to \(G/N\) (use \(\text{IdGroup()}\)).
 - \(|p(K)| = |G/N|\).

 For each such \(K\) the quotient homomorphism \(p\) restricts to an isomorphism \(p|_K: K \to G/N\). We form the inverse isomorphism \((p|_K)^{-1}: G/N \to K\) and set \(\sigma = (p|_K)^{-1}p: G \to G\). By construction we have \(\ker \sigma = N\), \(\text{im} \sigma = K\).
and $\sigma \sigma = \sigma$. For each normal subgroup N we compute the list \mathbb{L}_N of such homomorphisms σ.

2. For each pair of normal subgroups N, M in G satisfying $[N, M] = 1$ we consider all $s \in \mathbb{L}_N$, $t \in \mathbb{L}_M$. If $\text{Im } s = \text{Im } t$ we add the data (G, s, t) to our list of cat1-group structures on G.

In this manner, all possible cat1-group structures on G are produced, though isomorphic copies may have been produced.

Step 2. Compute a list of non-isomorphic cat1-group structures on G from Step 1.

We use an algorithm to test whether two cat1-group structures on group G are isomorphic. To do this we need to access the automorphism group $\text{Aut}(G)$ of the group G. As this automorphism group can be large we follow a suggestion of Alexander Hulpke and use:

(i) the action $^f K = f(K)$ of $f \in \text{Aut}(G)$ on subgroups $K \leq G$;

(ii) the action $^f s = fsf^{-1}$ of $f \in \text{Aut}(G)$ on endomorphisms $s: G \rightarrow G$.

For each action we have adapted a GAP implementation of an orbit-stabilizer algorithm written by Alexander Hulpke and used it to

(i) compute the orbit $\text{Orb}(x)$ of an element x under the action;

(ii) compute the stabilizer subgroup $\text{Stab}(x)$;

(iii) find $f \in \text{Aut}(G)$ if $x' \in \text{Orb}(x)$ such that $^fx = x'$.

A description of the orbit-stabilizer algorithm can be found in [31].

To test if two cat1-group structures (G, s, t) and (G, s', t') are isomorphic we perform the following steps.

1. We first use GAP’s `IdGroup()` function to check that $\text{Im } s \cong \text{Im } s'$ and $\text{Ker } s \cong \text{Ker } s'$ and $\text{Ker } t \cong \text{Ker } t'$. If this check fails then the two cat1-groups are not isomorphic and we return `false`.
2. Otherwise we compute the orbit of $\text{Ker} \ s$ under the action of $\text{Aut}(G)$. If $\text{Ker} \ s'$ is not in this orbit then the two cat^1-groups are not isomorphic and we return $false$. Otherwise we can find an element $f \in \text{Aut}(G)$ such that $\text{Ker} \ s' = f(\text{Ker} \ s)$. We then define $s'' = f^{-1}s'$, $t'' = f^{-1}t'$ to obtain a cat^1-group (G, s'', t'') which is isomorphic to (G, s', t') and which has the property that $\text{Ker} \ s'' = \text{Ker} \ s$. For ease of notation we redefine $s' := s''$, $t' := t''$. In other words, we replace (G, s', t') by an isomorphic cat^1-group satisfying $\text{Ker} \ s' = \text{Ker} \ s$.

3. We compute the stabilizer subgroup $\text{Stab}(\text{Ker} \ s) \leq \text{Aut}(G)$ and the orbit of $\text{Im} \ s$ under the action of $\text{Stab}(\text{Ker} \ s)$. If $\text{Im} \ s'$ is not in this orbit then the two cat^1-groups are not isomorphic and we return $false$. Otherwise we can find an element $f \in \text{Stab}(\text{Ker} \ s)$ such that $\text{Im} \ s' = f(\text{Im} \ s)$ and then replace (G, s', t') by an isomorphic cat^1-group satisfying $\text{Im} \ s' = \text{Im} \ s$ and $\text{Ker} \ s' = \text{Ker} \ s$.

4. We compute the stabilizer subgroup $\text{Stab}(\text{Im} \ s) \leq \text{Stab}(\text{Ker} \ s)$ and the orbit of $\text{Ker} \ t$ under the action of $\text{Stab}(\text{Im} \ s)$. If $\text{Ker} \ t'$ is not in this orbit then the two cat^1-groups are not isomorphic and we return $false$. Otherwise we replace (G, s', t') by an isomorphic cat^1-group satisfying $\text{Ker} \ t' = \text{Ker} \ t$, $\text{Im} \ s' = \text{Im} \ s$ and $\text{Ker} \ s' = \text{Ker} \ s$.

5. We compute the stabilizer $\text{Stab}(\text{Ker} \ t) \leq \text{Stab}(\text{Im} \ s)$ and the orbit of s under the action of $\text{Stab}(\text{Ker} \ t)$. If s' is not in this orbit the two cat^1-groups are not isomorphic and we return $false$. Otherwise we replace (G, s', t') by an isomorphic cat^1-group satisfying $\text{Ker} \ t' = \text{Ker} \ t$, $s' = s$.

6. We compute the stabilizer $\text{Stab}(s) \leq \text{Stab}(\text{Ker} \ t)$ and the orbit of t under the action of $\text{Stab}(s)$. If t' is not in this orbit then the two cat^1-groups are not isomorphic and we return $false$. Otherwise we return $true$.

Algorithm 5.3.1.

Input: A finite group G.

Output: A list of all non-isomorphic cat^1-group structures on group G.

Procedure: We implement the above two steps.
By using the small group database of the \textbf{GAP} computer systems, we know that there are:

- 7012 non-isomorphic groups of order $m \leq 255$.
- 56092 non-isomorphic groups of order 256.

So, in this thesis, we only list all non-isomorphic groups of order $m \leq 255$. Then we implement the above algorithm and perform it to construct data of all cat1-groups of order $m \leq 255$. The computation of all these cat1-group took one month. Furthermore, the data of these cat1-groups is stored in the \textbf{HAP} package \cite{20}.

\textbf{Example 5.3.2.} The following \textbf{GAP} session illustrates how to compute a list of all non-isomorphic cat1-group structures on group G where G is equal to the 500th group of order 2000 from the database of small groups.

\begin{verbatim}
gap> G:=SmallGroup(2000,500);;
gap> L:=CatOneGroupsByGroup(G);;
gap> Length(L);
16
\end{verbatim}

We adapt Step 2 of the above algorithm to give two algorithms relating cat1-groups.

\textbf{Algorithm 5.3.2.}

\textbf{Input:} Two finite cat1-groups (G, s, t) and (G', s', t').

\textbf{Output:} An isomorphism of cat1-groups if (G, s, t) and (G', s', t') are isomorphic and \textit{fail} otherwise.

\textbf{Procedure:}

- If group G is not isomorphic to group G' then return \textit{fail}. Otherwise we compute an isomorphism $f : G \to G'$. Then set $s'' := fs'f^{-1}$ and $t'' := ft'f^{-1}$. Thus (G, s'', t'') is a cat1-group structure on G.

- We use Step 2 of Algorithm 5.3.1, if (G, s, t) and (G', s'', t'') are not isomorphic then return \textit{fail}. Otherwise, we find $h \in \text{Aut}(G)$ such that $s'' := h^{-1}sh, t'' := h^{-1}th$. We then set $f := fh$ then return $f : (G, s, t) \to (G', s', t')$.

Algorithm 5.3.3.

Input: A finite cat1-group (G, s, t) of order less than or equal to 255.

Output: A triple (m, k, i) where G is isomorphic to the kth group of order m in the database of small groups and (G, s, t) is isomorphic to the ith cat1-group structure on group G.

Procedure:

- Use `IdGroup()` to identify group G by positive integers m, k.
- We compute the list L of all non-isomorphic cat1-group structures on G (by using the database of small cat1-groups). If (G, s, t) is isomorphic to ith cat1-group of the list L then return (m, k, i).

Example 5.3.3. The following GAP session illustrates how to compute an isomorphism between G_1 and G_2 where G_1 is the cat1-group corresponding to the crossed module $\partial: D_{12} \to \text{Aut}(D_{12})$ and G_2 is the 8th cat1-group structure on the 154th group of the library of groups of order 144.

```gap
gap> XG1:=CrossedModuleByAutomorphismGroup(DihedralGroup(12));;
gap> G1:=CatOneGroupByCrossedModule(XG1);
gap> G2:=SmallCatOneGroup(144,154,8);
gap> f:=IsomorphismCatOneGroups(G1,G2);
Morphism of two cat-1-groups
```

Example 5.3.4. The following GAP session illustrates how to identify the cat1-group G_3 where G_3 is the cat1-group corresponding the crossed module $\partial: C_{30} \to \text{Aut}(C_{30})$.

```gap
gap> XG3:=CrossedModuleByAutomorphismGroup(CyclicGroup(30));;
gap> G3:=CatOneGroupByCrossedModule(XG3);
gap> IdCatOneGroup(C3);
[ 240, 195, 8 ]
```

As we know there is an isomorphism between the category of cat1-groups and the category of crossed modules. By using the functors λ, γ in Section 5.2 and algorithms on cat1-groups, we obtain the following algorithms.
5.3 Cat1-groups and crossed modules of low order

Algorithm 5.3.4.

Input: Two finite crossed modules ∂ and ∂'.

Output: A isomorphism of crossed modules if ∂ and ∂' are isomorphic and *fail* otherwise.

Procedure: We do the following steps:

- Use Algorithm 5.2.1 to compute cat1-group C^∂ and $C^{\partial'}$ corresponding to ∂ and ∂'.
- Use Algorithm 5.3.2 to compute an isomorphism $f : C^\partial \rightarrow C^{\partial'}$ if it exists and return *fail* otherwise.
- Use Algorithm 5.2.2 to compute the isomorphism $Xf : \partial \rightarrow C^{\partial'}$ corresponding to $f : C^\partial \rightarrow C^{\partial'}$.

Algorithm 5.3.5.

Input: A finite crossed module $\partial : M \rightarrow P$ of order less than or equal to 255.

Output: A pair (m,k) where ∂ is isomorphic to the kth crossed module of order m in the database of crossed modules.

Procedure:

- Use Algorithm 5.2.1 to compute cat1-group C^∂ corresponding to ∂.
- Identify C^∂ by using Algorithm 5.3.3 and find the catalogue number k of C^∂ in the list of cat1-groups of order m.

Example 5.3.5. The following GAP session illustrates how to identify the crossed module $\partial : D_{12} \rightarrow \text{Aut}(D_{12})$. And then compute an isomorphism between ∂ and ∂' where ∂' is the 891th crossed module of order 144.

```plaintext
    gap> XC:=CrossedModuleByAutomorphismGroup(DihedralGroup(12));;
    gap> IdCrossedModule(XC);
    [ 144, 891 ]
    gap> XD:=SmallCrossedModule(144,891);;
```
gap> f:=IsomorphismCrossedModules(XC,XD);
Morphism of two crossed modules

Section 5.4 Quasi-isomorphisms of crossed modules

Definition 5.4.1. A morphism (μ, η) of crossed modules $\partial: M \to P$ and $\partial': M' \to P'$ is said to be a *quasi-isomorphism* if (μ, η) induces isomorphisms $\mu_*: \pi_2(\partial) \xrightarrow{\sim} \pi_2(\partial')$ and $\eta_*: \pi_1(\partial) \xrightarrow{\sim} \pi_1(\partial')$.

Definition 5.4.2. Two crossed modules $\partial: M \to P$ and $\partial': M' \to P'$ are said to be *quasi-isomorphic* if there is a sequence of morphisms of crossed modules

$$
\begin{align*}
M & \xrightarrow{\mu_1} M_1 & \xleftarrow{\mu_2} M_2 & \xrightarrow{\mu_3} \cdots & \xleftarrow{\mu_k} M' \\
P & \xrightarrow{\eta_1} P_1 & \xleftarrow{\eta_2} P_2 & \xrightarrow{\eta_3} \cdots & \xleftarrow{\eta_k} P'
\end{align*}
$$

such that each (μ_i, η_i) is a quasi-isomorphism for $1 \leq i \leq k$.

We write $\partial \simeq \partial'$ to denote that ∂ is quasi-isomorphic to ∂'. Note that \simeq is an equivalence relation on crossed modules; the corresponding equivalence classes are called *quasi-isomorphism classes*.

Since the category Cat^1 is isomorphic to the category XMod, we also give corresponding definitions such as “homotopy groups”, “quasi-isomorphism”, “quasi-isomorphic” in the category Cat^1.

Definition 5.4.3. For any cat^1-group (G, s, t), the *homotopy groups* of (G, s, t) are defined as

$$
\pi_n(G, s, t) = \begin{cases}
\text{Im } s/t(\text{Ker } s) & \text{if } n = 1, \\
\text{Ker } s \cap \text{Ker } t & \text{if } n = 2, \\
0 & \text{if } n > 2.
\end{cases}
$$

Definition 5.4.4. A morphism $\phi: (G, s, t) \to (G', s', t')$ of cat^1-groups is said to be a *quasi-isomorphism* if ϕ induces isomorphisms $\phi_*^1: \pi_1(G, s, t) \xrightarrow{\sim} \pi_1(G, s', t')$ and $\phi_*^2: \pi_2(G, s, t) \xrightarrow{\sim} \pi_2(G, s', t')$.

Definition 5.4.5. Two cat^1-groups (G, s, t) and (G', s', t') are said to be *quasi-
isomorphic if there is a sequence of morphisms of cat\(^1\)-groups

\[(G, s, t) \xrightarrow{\phi_1} (G_1, s_1, t_1) \xleftarrow{\phi_2} (G_2, s_2, t_2) \xrightarrow{\phi_3} \cdots \xleftarrow{\phi_{k-1}} (G_k, s_k, t_k) \xrightarrow{\phi_k} (G', s', t')\]

such that each \(\phi_i\) is a quasi-isomorphism for \(1 \leq i \leq k\).

We now give an algorithm which inputs a finite cat\(^1\)-group \((G, s, t)\) and outputs a quasi-isomorphic cat\(^1\)-group \((G', s', t')\) where \(G'\) has order less than or equal to the order of \(G\). In some case the order of \(G'\) will be significantly smaller than that of \(G\).

To find the cat\(^1\)-group \((G', s', t')\), we first need to solve the following two problems:

Problem 1. Let \(H\) be a normal subgroup of \(G\). If \((G/H, s^*, t^*)\) is a cat\(^1\)-group where \(s^*, t^*\) are defined by \(s^*(gH) = s(g)H\), \(t^*(gH) = t(g)H\) for all \(g \in G\), then how to check if the natural homomorphism \(p: G \to G/H\) is a quasi-isomorphism?

Problem 2. Let \(K\) be a subgroup of \(G\). If \((K, s_* , t_*)\) is a cat\(^1\)-group where \(s_*, t_*\) are the restriction of \(s, t\) to \(K\), then how to check if the inclusion \(i: K \to G\) is a quasi-isomorphism?

Solution to Problem 1.

Note that \(\pi_1(G, s, t) = \text{Im } s/t(\text{Ker } s)\) and \(\pi_2(G, s, t) = \text{Ker } s \cap \text{Ker } t\). To test if \(p\) is a quasi-isomorphism it suffices to check the following four sets of conditions:

1. \(s(H) \subset H\) and \(t(H) \subset H\).
2. \([s^{-1}(H), t^{-1}(H)] \subset H\).
3. \(\frac{|\text{Im } s|}{|s \cap H|} = |\pi_1(G, s, t)| \frac{|t(s^{-1}(H))|}{|t(s^{-1}(H) \cap H)|}\).
4. \(\frac{|s^{-1}(H) \cap H|}{|H|} \frac{|t^{-1}(H) \cap H|}{|H|} = |\pi_2(G, s, t)| \frac{|\text{Ker } s \cap \text{Ker } t|}{|\text{Ker } s \cap \text{Ker } t \cap H|} = |\pi_2(G, s, t)|\).

Conditions 1 ensure that \(s^*\) and \(t^*\) are homomorphisms.

Condition 2 is equivalent to \([\text{Ker } s^*, \text{Ker } t^*] = 1\) because

\([\text{Ker } s^*, \text{Ker } t^*] = \left[\frac{s^{-1}(H)}{H}, \frac{t^{-1}(H)}{H}\right] = \left[\frac{s^{-1}(H), t^{-1}(H)}{H}\right].\)
So

\[[\text{Ker} \, s^*, \text{Ker} \, t^*] = 1 \iff \frac{[s^{-1}(H), t^{-1}(H)]_H}{H} = 1 \iff [s^{-1}(H), t^{-1}(H)] \subset H. \]

Condition 3 ensures that \(p \) induces an isomorphism \(p_1 : \pi_1(G, s, t) \rightarrow \pi_1(G/H, s^*, t^*) \) because

\[\pi_1(G/H, s^*, t^*) = \text{Im} \, s^*/t^*(\text{Ker} \, s^*) \quad \text{and} \quad p_1 : \pi_1(G, s, t) \rightarrow \pi_1(G/H, s^*, t^*) \]

given by \(g \, t(\text{Ker} \, s) \mapsto (gH)(t^*(\text{Ker} \, s^*)). \)

Clearly, \(p_1 \) is a surjective. So \(p_1 \) is an isomorphism if \(|\text{Im} \, s^*/t^*(\text{Ker} \, s^*)| = |\pi_1(G, s, t)| \) or \(|\text{Im} \, s^*| = |\pi_1(G, s, t)| \, |t^*(\text{Ker} \, s^*)| \). Moreover,

\begin{itemize}
 \item \(\text{Im} \, s^* = \frac{\text{Im} \, s \, s^{-1}(H)}{H} \approx \frac{\text{Im} \, s \, s^{-1}(H)}{\text{Im} \, s \cap H} \)
 \item \(t^*(\text{Ker} \, s^*) = t^*(s^{-1}(H)/H) = \frac{t(s^{-1}(H))s^{-1}(H)}{H} \approx \frac{t(s^{-1}(H))}{t(s^{-1}(H)) \cap H} \)
\end{itemize}

So

\[\frac{|\text{Im} \, s^*|}{|\text{Im} \, s \cap H|} = |\pi_1(G, s, t)| \, \frac{|t^*(s^{-1}(H))|}{|t^*(s^{-1}(H)) \cap H|}. \]

Conditions 4 ensure that \(p \) induces an isomorphism \(p_2 : \pi_2(G, s, t) \rightarrow \pi_2(G/H, s^*, t^*) \) because

\[\pi_2(G/H, s^*, t^*) = \text{Ker} \, s^* \cap \text{Ker} \, t^* = \frac{s^{-1}(H)}{H} \cap \frac{t^{-1}(H)}{H} \quad \text{and} \quad p_2 : \pi_2(G, s, t) \rightarrow \pi_2(G/H, s^*, t^*) \]

given by \(g \mapsto gH \).

So, \(p_2 \) is an isomorphism if it satisfies \(|\pi_2(G/H, s^*, t^*)| = |\pi_2(G, s, t)| \) and \(|\text{Im} \, p_2| = |\pi_2(G, s, t)| \). Moreover, \(\text{Im} \, p_2 = \frac{(\text{Ker} \, s \cap \text{Ker} \, t)H}{(\text{Ker} \, s \cap \text{Ker} \, t) \cap H} \approx \frac{\text{Ker} \, s \cap \text{Ker} \, t}{(\text{Ker} \, s \cap \text{Ker} \, t) \cap H} \).

So

\[|\frac{s^{-1}(H)}{H} \cap \frac{t^{-1}(H)}{H}| = |\pi_2(G, s, t)| \quad \text{and} \quad \frac{|\text{Ker} \, s \cap \text{Ker} \, t|}{|(\text{Ker} \, s \cap \text{Ker} \, t) \cap H|} = |\pi_2(G, s, t)|. \]

Solution to Problem 2.

Recall that \(\pi_1(G) = \text{Im} \, s/t(\text{Ker} \, s) \) and \(\pi_2(G) = \text{Ker} \, s \cap \text{Ker} \, t \). To test if \(i \) is a quasi-isomorphism it suffices to check the following three sets of conditions:
1. \(s(K) \subset K \) and \(t(K) \subset K \).

2. \(\frac{|s(K)|}{|t(K \cap \text{Ker } s)|} = |\pi_1(G, s, t)| \) and \(\frac{|s(K)|}{|s(K) \cap t(K \text{Ker } s)|} = |\pi_1(G, s, t)| \).

3. \(\text{Ker } s \cap \text{Ker } t \subset K \).

Conditions 1 ensure that \(s_* \) and \(t_* \) are homomorphisms.

Conditions 2 ensure that \(i \) induces an isomorphism \(i_1: \pi_1(K, s_*, t_*) \rightarrow \pi_1(G, s, t) \) because

\[
\pi_1(K, s_*, t_*) = \frac{\text{Im } s_*}{t_*(\text{Ker } s_*)} = \frac{s(K)}{t(\text{Ker } s \cap K)} \quad \text{and } i_1: \pi_1(K, s_*, t_*) \rightarrow \pi_1(G, s, t) \text{ given by } h t(\text{Ker } s \cap K) \mapsto h t(\text{Ker } s).
\]

We have \(\text{Im } i_1 = \frac{s(K)t(\text{Ker } s)}{t(\text{Ker } s \cap K)} \cong \frac{s(K)}{s(K) \cap t(\text{Ker } s)}. \) The homomorphism \(i_1 \) is an isomorphism if \(|\text{Im } i_1| = |\pi_1(G, s, t)| \) and \(|\pi_1(K, s_*, t_*)| = |\pi_1(G, s, t)| \). So \(\frac{|s(K)|}{|t(\text{Ker } s \cap K)|} = \frac{|\pi_1(G, s, t)|}{|s(K) \cap t(\text{Ker } s)|} = |\pi_1(G, s, t)| \).

Condition 3 ensures that \(i \) induces an isomorphism \(i_2: \pi_2(K, s_*, t_*) \rightarrow \pi_2(G, s, t) \) because

\[
\pi_2(K, s_*, t_*) = \text{Ker } s_* \cap \text{Ker } t_* = (\text{Ker } s \cap K) \cap (\text{Ker } t \cap K) = (\text{Ker } s \cap \text{Ker } t) \cap K \quad \text{and } \quad i_2: \pi_2(K, s_*, t_*) \rightarrow \pi_2(G, s, t) \text{ given by } h \mapsto h.
\]

It is easy to see that \(i_2 \) is injective. So \(i_2 \) is an isomorphism if \(\text{Im } i_2 = \pi_2(G, s, t) \).

Thus \((\text{Ker } s \cap \text{Ker } t) \cap K = \text{Ker } s \cap \text{Ker } t \) or \(\text{Ker } s \cap \text{Ker } t \subset K \).

We implement the above two solutions as the following tests.

Test 1.

Input: A finite cat\(^1\)-group \((G, s, t)\) and a normal subgroup \(H \lhd G\).

Output: \(\text{True} \) if the natural morphism \(p: G \rightarrow G/H \) is a quasi-isomorphism and \(\text{false} \) otherwise.

Test 2.
Input: A finite cat\(^1\)-group \((G, s, t)\) and a subgroup \(K \leq G\).

Output: \textit{True} if the inclusion \(i : K \hookrightarrow G\) is a quasi-isomorphism and \textit{false} otherwise.

By using the above two Tests, we give an algorithm to compute a quasi-isomorphic cat\(^1\)-group of a finite cat\(^1\)-group.

Algorithm 5.4.1.

Input: A finite cat\(^1\)-group \((G, s, t)\).

Output: A quasi-isomorphic cat\(^1\)-group \((G', s', t')\) and \(|G'| \leq |G|\).

Procedure:

Step 1. Search through the normal subgroups of \(G\) and use Test 1 to find a biggest normal subgroup \(H\) of \(G\) such that the natural morphism \(p : G \rightarrow G/H\) is a quasi-isomorphism. We set \(G := G/H\).

Search through the subgroups of \(G\) and use Test 2 to find a smallest subgroup \(K \leq G\) such that the inclusion \(i : K \hookrightarrow G\) is a quasi-isomorphism.

Step 2. While the order of \(K\) is less than the order \(G\), we set \(G := K\) and repeat Step 1.

Example 5.4.1. The following GAP session illustrates how to find a quasi-isomorphic cat\(^1\)-group of the cat\(^1\)-group corresponding to the crossed module \(\partial : D_{24} \rightarrow \text{Aut}(D_{24})\).

```gap
gap> XC:=CrossedModuleByAutomorphismGroup(DihedralGroup(24));;
gap> C:=CatOneGroupByCrossedModule(XC);;
gap> Order(C);
1152
gap> CQ:=QuotientQuasiIsomorph(C);;
gap> Order(CQ);
128
gap> CS:=SubQuasiIsomorph(CQ);;
gap> Order(CS);
8
```
Now we give an algorithm which inputs a finite crossed module \(\partial: M \to P \) and outputs a quasi-isomorphic crossed module \(\partial': M' \to P' \) where \(\partial' \) has order less than or equal to the order of \(\partial \).

Algorithm 5.4.2.

Input: A finite crossed module \(\partial: M \to P \).

Output: A quasi-isomorphic crossed module \(\partial': M' \to P' \) and \(|\partial'| \leq |\partial| \).

Procedure:

- Applying the functor \(\gamma \) to \(\partial \) (see Algorithm 5.2.1), we obtain the cat\(^1\)-group \(C^\partial \) corresponding to \(\partial \).

- Use Algorithm 5.4.1 to find a quasi-isomorphic cat\(^1\)-group of \(C^\partial \). We call this cat\(^1\)-group \(D^\partial \).

- Applying the functor \(\lambda \) to \(D^\partial \) (see Algorithm 5.2.2), we obtain the crossed module \(\partial' \) correspondent to \(D^\partial \).

Example 5.4.2. The following GAP session illustrates how to find a quasi-isomorphic crossed module of the crossed module \(\partial: D_{32} \to \text{Aut}(D_{32}) \).

```gap
gap> XC:=CrossedModuleByAutomorphismGroup(DihedralGroup(32));;
gap> Order(XC);
4096
gap> XD:=QuasiIsomorph(XC);;
gap> Order(XD);
64
```

These commands took 54 seconds.
5.5 Homology of crossed modules

Theoretical aspects of homology of crossed modules have been studied in several papers [13, 10, 36]. Ana Romero [38, 39, 40] has written Lisp code for computing the integral homology of a crossed module X with a trivial action of $\pi_2(X)$ on $\pi_1(X)$. Her method uses the fibration sequence

$$K(\pi_2(X), 2) \rightarrow X \rightarrow K(\pi_1(x), 1)$$

associated to any 2-type X and the classical homological perturbation lemma [6] to obtain a small algebraic model for X in terms of small models for the Eilenberg-MacLane spaces $K(\pi_2(X), 2)$ and $K(\pi_1(X), 1)$. Her code is available as a module for the Kenzo system [27] for computations in Algebraic Topology.

Let $\partial: M \rightarrow P$ be a crossed module. By applying the functor λ of Proposition 5.2.2 we obtain a cat1-group. Then take the nerve of this cat1-group we obtain a simplicial group. We define the integral homology of $\partial: M \rightarrow P$ by using the integral homology of this simplicial group.

Definition 5.5.1. [26] For any crossed module $\partial: M \rightarrow P$, the integral homology of $\partial: M \rightarrow P$ is defined by:

$$H_n(\partial: M \rightarrow P, \mathbb{Z}) := H_n(N\lambda(\partial: M \rightarrow P), \mathbb{Z})$$

for all $n \geq 0$.

Lemma 5.5.1. The nth homology is a covariant functor from the category of crossed modules to the category of abelian groups.

Proof. It is obvious.

Theorem 5.5.2. If two crossed modules $\partial: M \rightarrow P$ and $\partial': M' \rightarrow P'$ are quasi-isomorphic then

$$H_n(\partial: M \rightarrow P, \mathbb{Z}) \cong H_n(\partial': M' \rightarrow P', \mathbb{Z})$$

for all $n \geq 0$.

Proof. Suppose that $\partial: M \rightarrow P$ and $\partial': M' \rightarrow P'$ are quasi-isomorphic then there is a sequence of morphisms of crossed modules.
5.5 Homology of crossed modules

\[
\begin{array}{ccc}
M_1 & \xrightarrow{\mu_1} & M_2 & \xrightarrow{\mu_2} & \cdots & \xrightarrow{\mu_k} & M' \\
\partial & \downarrow & \partial_1 & \downarrow & \partial_2 & \downarrow & \partial' \\
P & \xrightarrow{\eta_1} & P_1 & \xrightarrow{\eta_2} & P_2 & \xrightarrow{\eta_3} & \cdots & \xrightarrow{\eta_k} & P'
\end{array}
\] (1)

such that each \((\mu_i, \eta_i)\) is a quasi-isomorphism for \(1 \leq i \leq k\).

Applying the functor \(\lambda\) in Proposition 5.2.2, we obtain a sequence of morphisms of \(\text{cat}^1\)-groups. We take the nerve of this sequence, we obtain a sequence of simplicial groups

\[
\begin{array}{cccc}
G_1 & \xrightarrow{\phi_1} & G_2^1 & \xrightarrow{\phi_2} & G_2^2 & \xrightarrow{\phi_3} & \cdots & \xleftarrow{\phi_k} & G'_s
\end{array}
\] (2)

From Proposition 5.2.5, we see that (1) is the sequence of Moore complex of (2). This implies that the two simplicial groups \(G_\ast\) and \(G'_\ast\) are weakly equivalent. Applying Theorem 3.2.2, we have

\[
H_n(G_\ast, \mathbb{Z}) \cong H_n(G'_\ast, \mathbb{Z}) \quad \text{for all } n \geq 0.
\]

or

\[
H_n(\partial: M \to P, \mathbb{Z}) = H_n(\partial': M' \to P', \mathbb{Z}) \quad \text{for all } n \geq 0.
\]

Now we give an algorithm for computing the integral homology of a cross module.

Algorithm 5.5.1.

Input: A finite crossed module \(\partial\) and an integer \(n \geq 0\).

Output: The integral homology \(H_n(\partial, \mathbb{Z})\).

Procedure: We do the following steps:

- Applying the functor \(\lambda\) to \(\partial\) (see Algorithm 5.2.1), we obtain the \(\text{cat}^1\)-group \(C^\partial\) corresponding to \(\partial\).

- Use Algorithm 5.2.3 to compute the nerve of the \(\text{cat}^1\)-group \(C^\partial\). We call this simplicial group \(NC^\partial\).

- Use Algorithm 3.2.1 to compute the first \(n + 1\) terms of chain complex of the simplicial group \(NC^\partial\) then return the homology of this chain complex at degree \(n\).
The method which is presented in this algorithm relies on the theoretical representation of a crossed module as the diagonal of the bisimplicial set arising from the nerve of the corresponding cat1-group of the crossed module. The Romero’s method relies on the explicit representation of a crossed module by a certain twisting cocycle which is then used to construct a twisted cartesian product. At present the process of representing a crossed module by an explicit twisting cocycle has not been automated and hence a direct comparison of the computational performance of the two approaches and implementations is, at present, not practical. The paper [40] gives one example of the computation of the degree 5 integral homology of a crossed module X with $\pi_1(X) = C_3$, $\pi_2(X) = \mathbb{Z}_3$ and trivial action of $\pi_1(X)$ on $\pi_2(X)$. The group-theoretic structure of this crossed module is not given in [40] but an analysis shows that it is a 2-type of order 81. The computation of the degree 5 integral homology of all 2-types of order 81 is certainly within the scope of the method presented in this thesis (see Section 5.6).

Example 5.5.1. The following GAP session illustrates how to compute

$$H_4(\partial; D_{32} \to \text{Aut}(D_{32}), \mathbb{Z}) = \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2.$$

The crossed module ∂ has order 4096, homotopy groups $\pi_1(\partial) = C_4 \times C_2$, $\pi_2(\partial) = \mathbb{Z}_2$, and $\pi_1(\partial)$ acts non-trivially on $\pi_2(\partial)$. To reduce computations a quasi-isomorphism of crossed module $\partial \simeq \partial'$ is constructed.

```
gap> XC:=CrossedModuleByAutomorphismGroup(DihedralGroup(32));;
gap> Order(XC);
4096
gap> StructureDescription(HomotopyGroup(XC,1));
"C4 x C2"
gap> StructureDescription(HomotopyGroup(XC,2));
"C2"
gap> XD:=QuasiIsomorph(XC);;
gap> Order(XD);
64
gap> Homology(XD,4);
[ 2, 2, 2 ]
```
These commands took 75 seconds.

5.6 2-types of low order

Recall that a 2-type X is a CW-space with homotopy groups $\pi_n X = 0$ for $n \neq 1, 2$. Mac Lane and Whitehead [34] showed that there is a one-one correspondence between 2-types and quasi-isomorphism classes of crossed modules. When the homotopy groups $\pi_1 X$ and $\pi_2 X$ are finite one can represent the homotopy type X by a crossed module $\partial: M \to P$ in which M and P are finite groups. We define the order of a quasi-isomorphism class of crossed modules to be the least order of any crossed module in the class. We then define the order of a 2-type X to be the order of the corresponding quasi-isomorphism class of crossed modules. In this section we describe a method to find smallest representatives of quasi-isomorphism classes of order $m \leq 255$. Moreover, this method is used to enumerate most of the 2-types of order $m \leq 255$.

Definition 5.6.1. Let $\partial: M \to P$ be a crossed module. Then the $\pi_1(\partial)$-module $\pi_2(\partial)$ induces the crossed module $\pi_2(\partial) \xrightarrow{0} \pi_1(\partial)$ and this crossed module is defined to be homotopy crossed module of ∂. We denote it by $H(\partial)$.

Lemma 5.6.1. Let $\partial: M \to P$ and $\partial': M' \to P'$ be crossed modules. If ∂ is quasi-isomorphic to ∂' then the homotopy crossed module $H(\partial)$ of ∂ is isomorphic to the homotopy crossed module $H(\partial')$ of ∂'.

Proof. We only need to check if (μ, η) is a quasi-isomorphism between $\partial: M \to P$ and $\partial': M' \to P'$ then (μ, η) induces an isomorphism between two crossed modules $\pi_2(\partial) \xrightarrow{0} \pi_1(\partial)$ and $\pi_2(\partial') \xrightarrow{0} \pi_1(\partial')$.

We consider the following diagram:

$$
\begin{array}{cccccc}
\pi_2(\partial) & \xrightarrow{i} & M & \xrightarrow{\partial} & P & \xrightarrow{p} & \pi_1(\partial) \\
\downarrow{\mu_*} & & \downarrow{\mu} & & \downarrow{\eta} & & \downarrow{\eta_*} \\
\pi_2(\partial') & \xrightarrow{i'} & M' & \xrightarrow{\partial'} & P' & \xrightarrow{p'} & \pi_1(\partial')
\end{array}
$$
For $g \in \pi_1(\partial), a \in \pi_2(\partial)$, we have

$$\mu_*(\eta a) = \mu_*(\tilde{g}a) \quad (\text{where } \tilde{g} \in p^{-1}(g))$$

$$= \mu(\tilde{g}a) = \eta(\tilde{g})\mu(a)$$

$$= \eta(\tilde{g})\mu_*(a) = \nu'\eta'(\tilde{g})\mu_*(a)$$

$$= \eta'\nu'(\tilde{g})\mu_*(a) = \eta(\tilde{g})\mu_*(a).$$

Furthermore, μ_*,η_* are isomorphisms. Thus (μ_*,η_*) is an isomorphism. It means $H(\partial)$ is isomorphic to $H(\partial')$.

Lemma 5.6.2. [8] A quasi-isomorphism class X of crossed modules can be represented by the fundamental group π_1X, the π_1X-module π_2X and a cohomology class $\kappa \in H^3(\pi_1X,\pi_2X)$.

Let us denote

$$\text{Iso}^2(m) = \text{number of isomorphism classes of crossed modules of order } m.$$
$$\text{QIso}^2(m) = \text{number of homotopy 2-types of order } m$$

$$= \text{number of quasi-isomorphism classes of order } m.$$

Proposition 5.6.3. Let p,q be primes and $p < q$. Then

(i) $\text{Iso}^2(p) = \text{QIso}^2(p) = 2.$

(ii) $\text{Iso}^2(p^2) = 6$ and $\text{QIso}^2(p^2) = 5.$

(iii) $\text{Iso}^2(pq) = \text{QIso}^2(pq) = 6$ when p divides $q - 1$ and $\text{Iso}^2(pq) = \text{QIso}^2(pq) = 4$ when p does not divide $q - 1$

Proof.

(i) There are only two crossed modules of order p. They are $C_p \rightarrow 0$ and $0 \rightarrow C_p$. So $\text{Iso}^2(p) = \text{QIso}^2(p) = 2.$

(ii) There are only six crossed modules of order p^2. They are $C_p \rightarrow C_p$, $C_p \rightarrow 1 \rightarrow C_p$, $C_{p^2} \rightarrow 0$, $0 \rightarrow C_{p^2}$, $C_p \times C_p \rightarrow 0$ and $0 \rightarrow C_p \times C_p$. Clearly, $C_p \rightarrow 1 \rightarrow C_p$ is quasi-isomorphic to $0 \rightarrow 0$. Thus $\text{Iso}^2(p^2) = 6$ and $\text{QIso}^2(p^2) = 5.$

(iii) We know that the cyclic group of order p can act non-trivially on the cyclic group of order q when p divides $q - 1$. Moreover, the only groups of order pq
with \(p \) not dividing \(q - 1 \) are the cyclic groups; the only groups of order \(pq \) with \(p \) dividing \(q - 1 \) are the cyclic group and one non-abelian semi-direct product of cyclic groups. Therefore, in the case \(p \) is not a divisor of \(q - 1 \) there are four crossed modules \(\mathbb{C}_p \to \mathbb{C}_q \), \(\mathbb{C}_q \to \mathbb{C}_p \), \(\mathbb{C}_{pq} \to 0 \) and \(0 \to \mathbb{C}_{pq} \). In the case \(p \) is a divisor of \(q - 1 \), there are two more crossed modules \(\mathbb{C}_p \to \mathbb{C}_q \) with the non-trivial action of \(\mathbb{C}_q \) on \(\mathbb{C}_p \) and \(0 \to \mathbb{C}_p \rtimes \mathbb{C}_q \). It is easy to see that these crossed modules are not quasi-isomorphic.

We now describe a method to find smallest representatives of quasi-isomorphism classes of order \(m \leq 255 \). To do this we perform the following steps:

Step 1. From Section 5.3, a table of all isomorphism types of crossed modules of order \(m \leq 255 \) has been computed. This table immediately yields the upper bound \(\text{Iso}_2(m) \geq \text{QIso}_2(m) \). We denote the table by \(\mathbb{T} \).

Step 2. We apply Algorithm 5.4.2 to each crossed module \(\partial \) in \(\mathbb{T} \), and then discarding \(\partial \) if the algorithm succeeds in finding a smaller crossed module quasi-isomorphic to \(\partial \).

Step 3. We partition the table \(\mathbb{T} \) into classes with two crossed modules in the same class if and only if their homotopy crossed module are isomorphic. The class of \(\partial \) is denoted \(\mathbb{H}_\partial \).

Step 4. For each class \(\mathbb{H}_\partial \), if the class only contains one crossed module \(\partial \) of order \(m \), we add \(\partial \) into the list of smallest representatives of quasi-isomorphism classes of order \(|\partial| \). If the class contains more than one crossed module, we use Algorithm 5.5.1 to compute the abelian invariants of the integral homology group \(H_n(\partial, \mathbb{Z}) \) for \(n \leq 4 \). Then use the cohomology function in the HAP package [20] to compute \(H^3(\pi_1(\partial), \pi_2(\partial)) \). The order of this cohomology group provides an upper bound on the number of quasi-isomorphism classes of crossed modules with given fundamental group \(\pi_1(\partial) \) and given second homotopy group \(\pi_2(\partial) \). In some cases this upper bound is sufficient to conclude that two crossed module in the class \(\mathbb{H}_\partial \) are quasi-isomorphic. If \(\partial \) is quasi-isomorphic to \(\partial' \) and \(|\partial| \leq |\partial'| \) then we delete \(\partial' \) from \(\mathbb{H}_\partial \). Therefore, we obtain a list of smallest representatives of quasi-isomorphism classes in the class \(\mathbb{H}_\partial \). For each representative \(\partial \), we add \(\partial \) into the list of smallest representatives of quasi-isomorphism classes of order \(|\partial| \). For example
From the above GAP session, the homotopy crossed modules of X_1, X_2, X_3 and X_4 are isomorphic. This implies X_1, X_2, X_3 and X_4 are in same class \mathbb{H}_∂. In addition, $H^3(\pi_1(\partial), \pi_2(\partial)) = \mathbb{Z}_2$ and

Thus, X_1 is quasi-isomorphic to X_2 and X_3 is quasi-isomorphic to X_4. So we only add X_1 into the list of smallest representatives of quasi-isomorphism classes of order 4 and add X_3 into the list of smallest representatives of quasi-isomorphism classes of order 16.

By using the above method the list of smallest representatives of all quasi-isomorphism classes of order m are computed and recorded in the HAP package [20] for most $m \leq 255$.

We also use this record to implement the function $\text{SmallQuasiCrossedModule}(m,k)$
which inputs a pair \((m, k)\) and returns the smallest representative of \(k\)th quasi-isomorphism classes of order \(m \leq 255\). Furthermore, for each crossed module \(\partial\) of order less than or equal to 255, we can find the order \(m\) of quasi-isomorphism class of \(\partial\) and the catalogue number \(k\) of this class. Then this data is also stored in the HAP package [20].

Now we give an algorithm for identifying the quasi-isomorphism class of a crossed module.

Algorithm 5.6.1.

Input: A finite crossed module \(\partial : M \to P\).

Output: If successful in finding the smallest representative of the quasi-isomorphism class of \(\partial\), it outputs a pair of integers \((m, k)\) with \(m\) the order of this class and \(k\) the number uniquely identifying this class, and fail otherwise.

Procedure:

- Use Algorithm 5.4.2 to find a quasi-isomorphic crossed module \(\partial'\).
- If the order \(\partial'\) is greater than 255 then return fail. Otherwise, we use the above data to find a pair \((m, k)\). Then return \((m, k)\) if it exists and return fail otherwise.

Example 5.6.1. The following GAP session illustrates how to find smallest representatives of quasi-isomorphism classes of the crossed module \(\partial : D_{30} \to \text{Aut}(D_{30})\).

```gap
> XC:=CrossedModuleByAutomorphismGroup(DihedralGroup(30));;
> IdQuasiCrossedModule(XC);
[ 4, 1 ]
> XD:=SmallQuasiCrossedModule(4,1);
Crossed module with group homomorphism 1 -> C4
```

On the other hand, we use the above method and obtain the value table of \(Iso_2(m)\) and \(QIso_2(m)\) for \(m \leq 255\). From Proposition 5.6.3 we omit values for \(m = p, p^2, pq\) from the table.
In addition, we also give a partial result for $QIso_2(m)$ of order that is missing on the above table.
5.6 2-types of low order

<table>
<thead>
<tr>
<th>m</th>
<th>32</th>
<th>64</th>
<th>81</th>
<th>96</th>
<th>128</th>
<th>144</th>
<th>160</th>
<th>162</th>
<th>192</th>
<th>224</th>
<th>243</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIN</td>
<td>158</td>
<td>726</td>
<td>45</td>
<td>996</td>
<td>4811</td>
<td>1057</td>
<td>1045</td>
<td>249</td>
<td>5854</td>
<td>904</td>
<td>183</td>
</tr>
<tr>
<td>MAX</td>
<td>171</td>
<td>831</td>
<td>46</td>
<td>1052</td>
<td>6105</td>
<td>1061</td>
<td>1101</td>
<td>251</td>
<td>6557</td>
<td>960</td>
<td>201</td>
</tr>
</tbody>
</table>
Chapter 6

Homology of maps of n-types
6.1 Algorithm for homology of maps of n-types

Let $f: G_* 	o G'_*$ be a morphism of simplicial groups. As we know, for $n \geq 0$, $H_n(-, \mathbb{Z})$ is a functor from the category of simplicial groups to the category of abelian groups. So f induces homomorphisms

$$H_n(f): H_n(G_*, \mathbb{Z}) \to H_n(G'_*, \mathbb{Z}) \text{ for all } n \geq 0.$$

In this section, we give an algorithm for computing a chain map between a chain complex for homology KG_* of G_* and a chain complex for homology KG'_* of G'_*

$$f_*: KG_* \to KG'_*.$$

Then we use this chain map to compute $H_n(f)$.

From Theorem 3.2.8 we can find the integral homology of G_* by using the total complex of the bicomplex $\mathcal{A}B^G_*$.

\[
\begin{array}{cccccc}
B^G_3 \xrightarrow{\delta^3_3} & B^G_2 \xrightarrow{\delta^3_2} & B^G_1 \xrightarrow{\delta^3_1} & B^G_0 \\
\partial^1_3 & \downarrow & \partial^2_3 & \downarrow & \partial^3_3 & \\
B^G_2 \xrightarrow{\delta^2_2} & B^G_1 \xrightarrow{\delta^2_1} & B^G_0 \\
\partial^1_2 & \downarrow & \partial^2_2 & \downarrow & \partial^3_2 & \\
B^G_1 \xrightarrow{\delta^1_1} & B^G_0 \\
\partial^1_1 & \downarrow & \partial^2_1 & \downarrow & \partial^3_1 & \\
B^G_0 \\
\end{array}
\]

with columns

$B^G_*: \cdots \to B^G_3 \xrightarrow{\partial^3_3} B^G_2 \xrightarrow{\partial^3_2} B^G_1 \xrightarrow{\partial^3_1} B^G_0$

the bar complex of G_* for all $p \geq 0$.

On the other hand, the morphism f induces homomorphisms

$$f^i_j: B^G_i \to B^G'_j \text{ for all } i, j \geq 0.$$
Recall that

\[\cdots \to \mathcal{R}_3^{G_p} \xrightarrow{\partial_3} \mathcal{R}_2^{G_p} \xrightarrow{\partial_2} \mathcal{R}_1^{G_p} \xrightarrow{\partial_1} \mathcal{R}_0^{G_p} \]

is the HAP complex of \(G_p \). By using Theorem 3.2.8, we obtain two chain complexes \(K_* = (\bigoplus_{p+q=n} \mathcal{R}_p^{G_0}, d) \) and \(K'_* = (\bigoplus_{p+q=n} \mathcal{R}_p^{G'}, d') \) of \(G_* \) and \(G'_* \). Now we find the chain map

\[f_n : \bigoplus_{p+q=n} \mathcal{R}_p^{G_q} \to \bigoplus_{p+q=n} \mathcal{R}_p^{G'_q} \]

by the following three steps.

Step 1. We construct the chain map

\[\Pi_n : \bigoplus_{p+q=n} \mathcal{R}_p^{G_q} \to \bigoplus_{p+q=n} \mathcal{B}_p^{G_q} \]

by using Equation 3.15. For example, the homomorphism \(\Pi_4 \) sends \(x \in \mathcal{R}_1^{G_3} \) to

\[\Pi_4(x) = x_1 + x_2 + x_3 \]

with \(x_1 \in \mathcal{B}_1^{G_2}, x_2 \in \mathcal{B}_2^{G_1}, x_3 \in \mathcal{B}_3^{G_0} \). This is illustrated in the following diagram.
6.1 Algorithm for homology of maps of n-types

Step 2. We construct the chain map

$$\Phi_n : \bigoplus_{p+q=n} B^G_p \rightarrow \bigoplus_{p+q=n} B^G_p$$

given by $\Phi_n(x) = f^p_p(x)$ with $x \in B^G_p$.

Step 3. We construct the chain map

$$\delta_n : \bigoplus_{p+q=n} B^G_p \rightarrow \bigoplus_{p+q=n} R^G_p$$

by using Equation 3.16. For example, the homomorphism Δ_4 sends $x \in B^G_1$ to

$$\Delta_4(x) = x_1 + x_2 + x_3$$

with $x_1 \in R^G_1, x_2 \in R^G_2, x_3 \in R^G_3$. This is illustrated in the following diagram.
Finally, we compute the chain map \(f_n = \Delta_n \Phi_n \Pi_n \).

Algorithm 6.1.1.

Input: A morphism \(f : G_* \to G'_* \) of simplicial groups and an integer \(n \geq 0 \).

Output: A chain map \(f_* : KG_* \to KG'_* \) between a chain complex for homology of \(G_* \) and a chain complex for homology of \(G'_* \).

Procedure: We implement the above three steps.

Example 6.1.1. Let \(f : \mathbb{Z}_4 \to \mathbb{Z}_2 \) give by \(m \mapsto m \mod 2 \). The following GAP session illustrates how to compute the homology map \(H_4(f) : H_4(K(\mathbb{Z}_4, 2), \mathbb{Z}) \to H_4(K(\mathbb{Z}_2, 2), \mathbb{Z}) \).

```gap
gap> Z4:=CyclicGroup(4);;
gap> a:=Z4.1;;  ## Z4=<a>
gap> Z2:=CyclicGroup(2);;
gap> b:=Z2.1;;  ## Z2=<b>
gap> f:=GroupHomomorphismByImages(Z4,Z2,[a],[b]);;
gap> Kf:=EilenbergMacLaneSimplicialGroup(f,2,5);
Morphism of simplicial groups of length 5
gap> HKf:=ChainComplexOfSimplicialGroup(fK);
Chain map between complexes of length 5.
gap> Homology(HKf,4);
C8 -> C4
```

These commands took 1 second.
Chapter 7

Persistent homology of 2-types
In this chapter, we introduce a new quasi-isomorphism invariant of crossed modules (see Definition 7.1.4, Theorem 7.1.10). It is called persistent homology. In addition, it might be used to determine whether two crossed modules are not quasi-isomorphic.

Let \(\partial : M \rightarrow P \) be a crossed module. We denote \(\pi_1(\partial) \) by \(G \) and denote \(\pi_2(\partial) \) by \(A \).

7.1 Definition of persistent homology of crossed modules

Definition 7.1.1. Let \(\partial : M \rightarrow P \) be a crossed module. For any group \(H \leq G \) let \(H \) be the preimage of \(H \) in \(P \). Then the crossed module \(\partial \) restricts to a crossed module \(\partial_H : M \rightarrow H \).

Let us call \(\partial_H \) the covering crossed module corresponding to the subgroup \(H \).

Note that \(\pi_1(\partial_H) = H, \pi_2(\partial_H) = A \) and that there is an inclusion morphism of crossed modules

\[
\begin{array}{ccc}
M & \xrightarrow{\partial_H} & H \\
\downarrow{\partial} & & \downarrow{\partial} \\
P & \xrightarrow{} & \end{array}
\]

Let \(\{\gamma_i G\}_{i \geq 1} \) be the lower central series of \(G \). Then it gives rise to a sequence of inclusions of covering morphisms of crossed modules

\[
\cdots \xrightarrow{\partial_{\gamma_i G}} \partial_{\gamma_{i-1} G} \xrightarrow{\partial_{\gamma_i G}} \cdots \xrightarrow{\partial_{\gamma_2 G}} \partial_{\gamma_2 G} \xrightarrow{\partial} \tag{7.1}
\]

Proposition 7.1.1. Let \((\mu, \eta) \) be a quasi-isomorphism between \(\partial : M \rightarrow P \) and \(\partial' : M' \rightarrow P' \). For \(i \geq 1 \), we define

\[
\eta_i : \gamma_i G \rightarrow \gamma_i G' \text{ by } \eta_i(p) := \eta(p) \text{ for all } p \in \gamma_i G.
\]

Then \((\mu, \eta_i) \) is a quasi-isomorphism between \(\partial_{\gamma_i G} : M \rightarrow \gamma_i G \) and \(\partial'_{\gamma_i G'} : M' \rightarrow \gamma_i G' \).

Proof. Firstly, we need to prove that \((\mu, \eta_i) \) is a morphism of crossed modules.
• Note that $G = P/\text{Im } \partial$ and $G' = P'/\text{Im } \partial'$. By applying the Correspondence Theorem in group theory, we have

$$
\overline{\gamma_i G}/\text{Im } \partial = \gamma_i G \text{ and } \overline{\gamma_i G'}/\text{Im } \partial' = \gamma_i G'.
$$

Since (μ, η) is a quasi-isomorphism, η induces the isomorphism $\eta^*: G \overset{\sim}{\to} G'$. Furthermore, $\gamma_i G$ and $\gamma_i G'$ are ith terms of the lower central series of G and G', so η^* induces an isomorphism $\eta_i^*: \gamma_i G \to \gamma_i G'$ or

$$
\eta_i^*: \overline{\gamma_i G}/\text{Im } \partial \to \overline{\gamma_i G'}/\text{Im } \partial'
$$
given by $\eta_i^*(p \text{ Im } \partial) := \eta^*(p \text{ Im } \partial) = \eta(p) \text{ Im } \partial'$ for all $p \in \overline{\gamma_i G}$.

Let $p \in \overline{\gamma_i G}$ then $p \text{ Im } \partial \in \overline{\gamma_i G}/\text{Im } \partial$, so $\eta(p) \text{ Im } \partial' \in \overline{\gamma_i G'}/\text{Im } \partial'$. Thus $\eta(p) \in \overline{\gamma_i G'}$ or $\eta(p) \in \overline{\gamma_i G'}$. This implies η_i is a homomorphism.

• It is easy to see that $\partial_{\gamma_i G'}\mu = \eta_i \partial_{\gamma_i G}$.

• Let $m \in M$ and $p \in \overline{\gamma_i G}$, we have $\mu(m) = \eta(p)\mu(m) = \eta_i(p)\mu(m)$.

Secondly, we prove (μ, η_i) induces two isomorphisms $\mu^*: \pi_2(\partial_{\gamma_i G}) \overset{\sim}{\to} \pi_2(\partial'_{\gamma_i G'})$ and $\eta_i^*: \pi_1(\partial_{\gamma_i G}) \overset{\sim}{\to} \pi_1(\partial'_{\gamma_i G'})$.

• We have $\eta_i^*: \gamma_i G \to \gamma_i G'$ is an isomorphism; furthermore, $\pi_1(\partial_{\gamma_i G}) = \gamma_i G$ and $\pi_1(\partial'_{\gamma_i G'}) = \gamma_i G'$. We conclude that η_i induces an isomorphism $\eta_i^*: \pi_1(\partial_{\gamma_i G}) \overset{\sim}{\to} \pi_1(\partial'_{\gamma_i G'})$.

• Since (μ, η) is quasi-isomorphic, μ induces $\mu^*: A \overset{\sim}{\to} A'$. Furthermore $\pi_2(\partial_{\gamma_i G}) = A$ and $\pi_2(\partial'_{\gamma_i G'}) = A'$ so $\mu^*: \pi_2(\partial_{\gamma_i G}) \overset{\sim}{\to} \pi_2(\partial'_{\gamma_i G'})$.

\[\square\]

Lemma 7.1.2. Let (μ, η) be a morphism between $\partial: M \to P$ and $\partial': M' \to P'$. Then, for $i \geq 1$,

$$(\mu, \eta_i)(1_M, i_{i+1}) = (1_{M'}, i'_{i+1})(\mu, \eta_{i+1})$$

where $i_{i+1}: \overline{\gamma_{i+1} G} \hookrightarrow \overline{\gamma_i G}$ and $i'_{i+1}: \overline{\gamma_{i+1} G'} \hookrightarrow \overline{\gamma_i G'}$ are two inclusion homomorphisms. In other words, the following diagram commutes.
Definition 7.1.2. Let B be a G-module. For $b \in B$ and $g \in G$, we define the commutator $[b, g] = bgb^{-1}$ and

$$[B, G] = \langle [b, g] \mid b \in B, g \in G \rangle$$

the subgroup of B generated by all commutators $[b, g]$ with $b \in B$ and $g \in G$.

Lemma 7.1.3. Let B be a G-module. Then $[B, G]$ is also a G-module.

Proof. Let any $b \in B$, $g, h \in G$, we have

$$r^h[b, g] = h(bgb^{-1}) = hbg(hb^{-1}) = hbb^{-1} = h(b^{-1}b)b^{-1} = (b^{-1}bb^{-1})(b^{-1}b)(h^{-1}b)(b^{-1}b) = b^{-1}[b, h][b, hg] \in [B, G].$$

This implies $^h[b, g] \in [B, G]$ for all $b \in B, h, g \in G$; furthermore, $[b, g]$ is a generator of $[B, G]$. So $[B, G]$ is a G-module.

Let $\partial : M \to P$ be a crossed module. Recall that A is a G-module with the action G on A defined by $^g a := \tilde{g} a$ where \tilde{g} is an element chosen from the preimage of g in P. Moreover, $^p a = \text{pre}
 \partial a$ for all $p \in P, a \in A$.

Definition 7.1.3. For $i \geq 1$, we define $\beta_i A$ as follows:

$$\beta_1 A = A \text{ and } \beta_{i+1} A = [\beta_i A, G] \text{ for all } i \geq 1.$$

Lemma 7.1.4. For $i \geq 1$, we have

(i) $\beta_{i+1} A \leq \beta_i A$.

(ii) $\beta_iA \triangleleft M$.

Proof. It is obvious. □

Lemma 7.1.5. Let $\partial: M \to P$ be a crossed module. Then, for $i \geq 1$,

$$\partial^{\beta_iA}: M/\beta_iA \to P$$

defined by $\partial^{\beta_iA}(m\beta_iA) := \partial(m)$

together with the action $p(m\beta_iA) := (pm)\beta_iA$ is a crossed module.

Proof. We only need to prove that for $p \in P$ and $m\beta_iA \in M/\beta_iA$, the definition $p(m\beta_iA) := (pm)\beta_iA$ yields an action P on M/β_iA. This means, if $m_1\beta_iA = m_2\beta_iA$ then $(pm_1)\beta_iA = (pm_2)\beta_iA$.

Let $m_1\beta_iA = m_2\beta_iA$. There exist $a \in \beta_iA$ such that $m_1 = m_2a$. Then

$$pm_1 = p(m_2a) = pm_2p(a) = pm_2(p^1m\partial)a.$$

Since β_iA is a G-module and $p\text{Im}\partial \in G$, we have $p^1m\partial \in \beta_iA$. Thus $(pm_1)\beta_iA = (pm_2)\beta_iA$. □

For any crossed module $\partial: M \to P$ and $i \geq 1$, we obtain the following morphism of crossed modules.

$$
\begin{array}{ccc}
M & \longrightarrow & M/\beta_iA \\
\downarrow\partial & & \downarrow\partial^{\beta_iA} \\
 & & P \\
 & & \phantom{\partial^{\beta_iA}}
\end{array}
$$

Moreover, $\{\beta_iA\}_{i \geq 1}$ gives rise to a sequence of morphisms of crossed modules

$$
\cdots \to \partial^{\beta_iA} \to \partial^{\beta_{i-1}A} \to \cdots \to \partial^{\beta_3A} \to \partial^{\beta_2A} \to \partial^{\beta_1A}. \quad (7.2)
$$

Lemma 7.1.6. Let (μ, η) be a quasi-isomorphism between $\partial: M \to P$ and $\partial': M' \to P'$. For $i \geq 1$, we define

$$
\mu_i: \beta_iA \to \beta_iA' \text{ by } \mu_i(a) := \mu(a) \text{ for all } a \in \beta_iA.
$$

Then μ_i is an isomorphism.

Proof. We prove that μ_i is an isomorphism by induction on i.
We consider the element ∂. Proposition 7.1.7.

Since (μ, η) is quasi-isomorphic, then μ induces an isomorphism $\mu_* : A \xrightarrow{\cong} A'$ with $\mu_*(a) = \mu(a)$ for all $a \in A$. Note that $\beta_i A = A$, $\beta_i A' = A'$. This implies $\mu_1 : \beta_i A \to \beta_i A'$ is an isomorphism.

We suppose that $\mu_i : \beta_i A \to \beta_i A'$ is an isomorphism for all $i \geq 1$.

Let $[a, g]$ be a generator of $\beta_{i+1}A$ ($a \in \beta_i A, g \in G$). Then

$$
\mu_{i+1}([a, g]) = \mu(\gamma a^{-1}) = \mu(a) \mu(\gamma a^{-1})
$$

$$
= \mu(a) \mu(\gamma a^{-1}) = \mu(a) \eta(\gamma) \mu(a^{-1})
$$

$$
= \mu(a) \eta(\gamma)(\mu(a))^{-1} = \mu_i(a) \eta(\gamma)(\mu_i(a))^{-1} \text{ (as } a \in \beta_i A)
$$

$$
= \mu_i(a)^{(\eta(\gamma) \Im \partial)(\mu_i(a))^{-1}} = [\mu_i(a), \eta(\gamma) \Im \partial'] \in [\beta_i A', G'] = \beta_{i+1} A'.
$$

It is easy to see that μ_{i+1} is the restriction of μ_* to $\beta_{i+1}A$. So μ_{i+1} is injective.

Let $[a', g']$ be a generator of $\beta_{i+1}A'$ ($a' \in \beta_i A', g' \in G'$). Since μ_i is an isomorphism there exists $a \in \beta_i A$ such that $\mu_i(a) = a'$. Because (μ, η) is quasi-isomorphic, η induces an isomorphism $\eta_* : G \to G'$. So there exists $g \in G$ such that $\eta_*(g) = g'$.

We have $g = \gamma \Im \partial$, $\eta_*(g) = \eta_*(\gamma \Im \partial) = \eta(\gamma) \Im \partial'$. This implies $\eta(\gamma) \Im \partial' = g'$.

We consider the element $[a, g]$. Clearly, $[a, g] \in \beta_{i+1}A$. Then

$$
\mu_{i+1}([a, g]) = \mu(\gamma a^{-1}) = \mu(a) \mu(\gamma a^{-1})
$$

$$
= \mu(a) \mu(\gamma a^{-1}) = \mu(a) \eta(\gamma) \mu(a^{-1})
$$

$$
= \mu(a) \eta(\gamma) \Im \partial'(\mu(a))^{-1} = a' \gamma a'^{-1}
$$

$$
= [a', g'].
$$

So μ_{i+1} is surjective; furthermore, μ_{i+1} is injective. Thus μ_{i+1} is an isomorphism.

Proposition 7.1.7. Let (μ, η) be a quasi-isomorphism between $\partial : M \to P$ and $\partial' : M' \to P'$. We define

$$
\overline{\partial}_i : M/\beta_i A \to M'/\beta_i A' \text{ by } \overline{\partial}_i(m\beta_i A) = \mu(m)\beta_i A'.
$$

Then $(\overline{\partial}_i, \eta)$ is a quasi-isomorphism between $\partial^{\beta_i A} : M/\beta_i A \to P$ and $\partial'^{\beta_i A} : M'/\beta_i A' \to P'$.

Proof. Firstly, we need to prove that $(\overline{\partial}_i, \eta)$ is a morphism of crossed modules.
7.1 Definition of persistent homology of crossed modules

- Let $m_β, A \in M/β, A$,

$$\partial^{β, A'}\overline{\pi}_i(m_β, A) = \partial^{β, A'}(μ(m)β, A') = \partial'μ(m),$$

$$η\partial^{β, A'}(m_β, A) = η\partial(m) = \partial'μ(m).$$

So $\partial^{β, A'}\overline{\pi}_i = η\partial^{β, A'}(m_β, A)$.

- Let $m_β, A \in M/β, A$ and $p \in P$.

$$\overline{\pi}_i(F(m_β, A)) = \overline{\pi}_i(F(m)β, A) = μ(Fm)β, A = (η(p)μ(m))β, A,$n

$$ηF\overline{\pi}_i(m_β, A) = η(p)(μ(m)β, A) = (η(p)μ(m))β, A.$$

So $\overline{π}_i(F(m_β, A)) = η(p)\overline{π}_i(m_β, A)$.

Secondly, we prove $(\overline{π}_i, η)$ induces two isomorphisms $\overline{π}_i: π_2(\partial^{β, A}) \xrightarrow{≅} π_2(\partial^{β, A'})$ and $η^*: π_1(\partial^{β, A}) \xrightarrow{≅} π_1(\partial^{β, A'})$.

- It is easy to see $π_1(\partial^{β, A}) = G$ and $π_1(\partial^{β, A'}) = G'$. Since $(\overline{π}_i, η)$ is a quasi-isomorphism, $η$ induces an isomorphism $η^*: π_1(\partial^{β, A}) \xrightarrow{≅} π_1(\partial^{β, A'})$.

- We have $π_2(\partial^{β, A}) = A/β, A$ and $π_2(\partial^{β, A'}) = A'/β, A'$. We consider the homomorphism $\overline{π}_i: A/β, A \rightarrow A'/β, A'$ defined by $\overline{π}_i(aβ, A) := \overline{π}_i(aβ, A) = μ(A)β, A$. By using Lemma 7.1.6, we have the isomorphism $μ_i: β, A \xrightarrow{≅} β, A'$. Furthermore, $μ$ induces an isomorphism $μ^*: A \xrightarrow{≅} A'$. Thus $\overline{π}_i$ is an isomorphism. □

Lemma 7.1.8. Let $(μ, η)$ be a morphism of $\partial: M \rightarrow P$ and $\partial': M' \rightarrow P'$. Then for $i ≥ 1$,

$$(p_{i+1}', 1_p)(\overline{π}_{i+1}, η_{i+1}) = (\overline{π}_i, η_i)(p_{i+1}, 1_p)$$

with $p_{i+1}: M/β_{i+1}A \rightarrow M/β, A$ defined by $p_{i+1}(mβ_{i+1}A) := mβ_iA$ for all $m \in M$ and p_{i+1}', $M'/β_{i+1}A' \rightarrow M'/β, A'$ defined by $p_{i+1}(mβ_{i+1}A') := mβ_iA'$ for all $m' \in M'$. In other words, the following diagram commutes
Proof. It is obvious. \hfill □

Lemma 7.1.9. Let \(p \) be a prime number and \(\partial : M \to P \) be a crossed module with \(A \) and \(G \) \(p \)-groups. Then there exists an integer \(n \) such that \(\beta_n A = 1 \).

Proof. We proceed by induction on the order of \(A \). If \(|A| = 1\) then immediately \(\beta_1 A = 1 \) (as \(\beta_1 A = A \)).

Now suppose \(|A| > 1\). Let

\[
T = \text{Fix}_A(G) = \{a \in A |^a = a \text{ for all } g \in G\}.
\]

It easy to see that \(T \) is a \(G \)-module and \([T, G] = 1\). From Lemma 5.2 [41], we obtain \(|T| \equiv |A| \mod p\). Since \(|A|\) has order of \(p \) power, so \(T \) also has order of \(p \) power. Clearly, \(T \) is a normal subgroup of \(M \). So \(\partial \) induces the crossed module \(\overline{\partial} : M/T \to P \). Note that \(\pi_1(\overline{\partial}) = G \) and \(\pi_2(\overline{\partial}) = A/T \). We call \(f \) the natural homomorphism from \(M \) to \(M/T \). We consider the following morphism of crossed modules

\[
\begin{array}{ccc}
M & \xrightarrow{f} & M/T \\
\downarrow{\partial} & & \downarrow{\overline{\partial}} \\
P & \xrightarrow{=} & P
\end{array}
\]

Now we prove \(f(\beta_i A) = \beta_i(A/T) \) for all \(i \geq 1 \) by induction on \(i \). For \(i = 1 \),

\[
f(\beta_1 A) = f(A) = A/T = \beta_1(A/T).
\]

Suppose that \(f(\beta_i A) = \beta_i(A/T) \) for \(i \geq 1 \).

\[
f(\beta_{i+1} A) = f([\beta_i A, G]) \subset [f(\beta_i A), G] = [\beta_i(A/T), G] = \beta_{i+1}(A/T).
\]

Let \([aT, g]\) be a generator of \(\beta_{i+1}(A/T) \). Since \(aT \in \beta_i(A/T) \), there exists \(x \in \beta_i A \) such that \(f(x) = aT \). Clearly, \(f([x, g]) = [f(x), g] = [aT, g] \). Therefore \(f(\beta_{i+1} A) = \beta_{i+1}(A/T) \).

Since \(A, T \) have order of \(p \) power, then \(|A/T| < |A|\). By induction hypothesis, there exists \(k \) such that \(\beta_k(A/T) = 1 \). This implies \(f(\beta_k A) = 1 \). Thus \(\beta_k A \subset T \). We have

\[
\beta_{k+1} A = [\beta_k A, G] \subset [T, G] = 1.
\]
Therefore there is a number \(n \) such that \(\beta_n A = 1 \).

Let \(p \) be prime number and \(\partial: M \to P \) be a crossed module with \(A \) and \(G \) \(p \)-groups. Then there exist \(k, l \) such that \(\gamma_k G = 1, \beta_l A = 1 \). So the sequences (7.1) and (7.2) are of finite length and can be spliced together

\[
\partial \gamma_k G \to \partial \gamma_{k-1} G \to \cdots \to \partial \gamma_2 G \to \partial \to \partial \beta_{l-1} A \to \cdots \to \partial \beta_2 A \to \partial \beta_1 A.
\]

We set \(m = k + l - 1 \) and change the notations for \(\partial \gamma_i G, \partial \beta_i A \) by \(\partial_i \), we obtain a sequence of morphisms of crossed modules

\[
\partial_1 \to \partial_2 \to \partial_3 \to \cdots \to \partial_{m-1} \to \partial_m.
\]

We define this sequence to be the homotopy lower series of crossed module \(\partial \).

We now give the main new definition of the chapter.

Definition 7.1.4. Let \(p \) be a prime number and \(\partial: M \to P \) be a crossed module with \(G, A \) \(p \)-groups. By applying the functor \(H_n(-, \mathbb{F}_p) \) to the homotopy lower series

\[
\partial_1 \to \partial_2 \to \partial_3 \to \cdots \to \partial_{m-1} \to \partial_m
\]

of \(\partial \), we obtain a sequence of linear maps of vector spaces over \(\mathbb{F}_p \).

\[
H_n(\partial_1, \mathbb{F}_p) \to H_n(\partial_2, \mathbb{F}_p) \to H_n(\partial_3, \mathbb{F}_p) \to \cdots \to H_n(\partial_{m-1}, \mathbb{F}_p) \to H_n(\partial_m, \mathbb{F}_p).
\]

We let \(PH_n(G) \) be the upper triangular matrix \(PH_n(\partial) = (p_{ij})_{1 \leq i, j \leq m} \) with

- \(p_{ij} = \) the rank of \(H_n(\partial_i, \mathbb{F}_p) \to H_n(\partial_j, \mathbb{F}_p) \) for \(i < j \).
- \(p_{ii} = \) the dimension of \(H_n(\partial_i, \mathbb{F}_p) \).
- \(p_{ij} = 0 \) for \(i > j \).

The entries \(p_{ij} \) of the matrix \(PH_n(\partial) \) are called the persistent Betti numbers of \(\partial \) at degree \(n \).

Theorem 7.1.10. Quasi-isomorphic crossed modules have identical persistent Betti numbers.
Proof. Since \(\partial \) is quasi-isomorphic to \(\partial' \), we obtain the homotopy lower series of \(\partial \) and \(\partial' \) have the same length.

\[
\begin{align*}
\partial_1 \to & \partial_2 \to \partial_3 \to \cdots \to \partial_{m-1} \to \partial_m \\
\partial'_1 \to & \partial'_2 \to \partial'_3 \to \cdots \to \partial'_{m-1} \to \partial'_m.
\end{align*}
\]

By using Lemma 7.1.2 and Lemma 7.1.8, we see that the following diagram commutes

\[
\begin{array}{cccc}
\partial_1 & \to & \partial_2 & \to \cdots \to \partial_{m-1} \to \partial_m \\
\downarrow & & \downarrow & & \downarrow \\
\partial'_1 & \to & \partial'_2 & \to \cdots \to \partial'_{m-1} \to \partial'_m
\end{array}
\]

Applying the functor \(H_n(-, \mathbb{F}_p) \), we obtain the commutative diagram as below

\[
\begin{array}{cccc}
H_n(\partial_1, \mathbb{F}_p) & \xrightarrow{d_1} & H_n(\partial_2, \mathbb{F}_p) & \xrightarrow{d_2} \cdots \to H_n(\partial_{m-1}, \mathbb{F}_p) & \xrightarrow{d_{m-1}} & H_n(\partial_m, \mathbb{F}_p) \\
\downarrow f_1 & & \downarrow f_2 & & \cdots & & \downarrow f_{m-1} & \downarrow f_m \\
H_n(\partial'_1, \mathbb{F}_p) & \xrightarrow{d'_1} & H_n(\partial'_2, \mathbb{F}_p) & \xrightarrow{d'_2} \cdots \to H_n(\partial'_{m-1}, \mathbb{F}_p) & \xrightarrow{d'_{m-1}} & H_n(\partial'_m, \mathbb{F}_p)
\end{array}
\]

For \(1 \leq i \leq m \), by using Proposition 7.1.1 and Proposition 7.1.7, we obtain \(\partial_i \) is quasi-isomorphic to \(\partial'_i \). This implies \(f_i: H_n(\partial_i, \mathbb{Z}) \to H_n(\partial'_i, \mathbb{Z}) \) is an isomorphism. Thus \(H_n(\partial_i, \mathbb{F}_p) \) and \(H_n(\partial'_i, \mathbb{F}_p) \) have the same dimension.

For \(1 \leq i < j \leq m \), since the above diagram commutes, we have

\[
d'_i f_i = f_j d_{ij}
\]

with \(d_{ij} = d_i \ldots d_{j-1} \) and \(d'_{ij} = d'_i \ldots d'_{j-1} \). Furthermore, \(f_i \) and \(f_j \) are isomorphisms, then the rank of \(H_n(\partial_i, \mathbb{F}_p) \to H_n(\partial_j, \mathbb{F}_p) \) equals to the rank of \(H_n(\partial'_i, \mathbb{F}_p) \to H_n(\partial'_j, \mathbb{F}_p) \). Therefore \(\partial \) and \(\partial' \) have the same persistent Betti numbers. \(\square \)
7.2 Algorithm for persistent homology of crossed modules

Let $\partial: M \to P$ be a crossed module with G, A p-groups. By the construction in Section 7.1, we obtain the homotopy lower series

$$\partial_1 \to \partial_2 \to \partial_3 \to \cdots \to \partial_{m-1} \to \partial_m$$

of ∂. Now we give an algorithm for computing the homotopy lower series of crossed modules.

Algorithm 7.2.1.

Input: A crossed module $\partial: M \to P$ with G, A p-groups

Output: The homotopy lower series of ∂.

Procedure: We do the following steps.

- Implement the sequence (7.1)

$$\partial_{\gamma_k G} \to \partial_{\gamma_{k-1} G} \to \cdots \to \partial_{\gamma_2 G} \to \partial.$$

- Implement the sequence (7.2)

$$\partial \to \partial_{\beta_{k-1} A} \to \cdots \to \partial_{\beta_2 A} \to \partial_{\beta_1 A}.$$

- Combine the above two sequences.

Now we give an algorithm to compute the persistent homology of crossed modules.

Algorithm 7.2.2.

Input: A crossed module $\partial: M \to P$ with G, A p-groups and an integer $n \geq 0$.

Output: The matrix of persistent Betti numbers of ∂ at degree n.

Procedure: We do the following steps.
• Use Algorithm 7.2.1 to compute the homotopy lower series of ∂. This sequence is denoted by L^∂.

• Applying the functor γ to L^∂ (see Algorithm 5.2.1), we obtain a sequence of morphisms of cat^1-groups. This sequence is denoted by LC^∂.

• Applying functor \mathcal{N} to LC^∂ (see 5.2.3), we get a sequence of morphisms of simplicial groups. This sequence is denoted by $\mathcal{N}L^\partial$.

• Applying Algorithm 6.1.1 for every morphisms of $\mathcal{N}L^\partial$, we get a sequence of chain maps. We denote this sequence by KL^∂.

• Take the tensor product KL^∂ with F_p.

• Then we compute the persistent homology of the sequence of chain maps KL^∂.

Example 7.2.1. The following GAP session illustrates how to compute the persistent homology of the 171th crossed module of order 72 at degree $n = 2$.

```gap
gap> X:=SmallCrossedModule(72,171);;
gap> Size(HomotopyGroup(X,1));
2
gap> Size(HomotopyGroup(X,2));
4
gap> PersistentHomologyOfCrossedModule(X,2);
[ [ 1, 1, 1, 0 ], [ 0, 2, 2, 1 ],
  [ 0, 0, 2, 1 ], [ 0, 0, 0, 1 ] ]
```

These commands took 14 minutes.

Then

$$PH_2(X) = \begin{pmatrix}
1 & 1 & 1 & 0 \\
0 & 2 & 2 & 1 \\
0 & 0 & 2 & 1 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

Example 7.2.2. The following GAP session illustrates how to compute the persistent homology at degree 3 of the 6th crossed module and the 11th crossed module of order 16.
7.2 Algorithm for persistent homology of crossed modules

\begin{verbatim}
gap> X1:=SmallCrossedModule(16,6);;
gap> X2:=SmallCrossedModule(16,11);;
gap> PersistentHomologyOfCrossedModule(X1,3);
[[1, 1, 0], [0, 3, 1], [0, 0, 1]]
gap> PersistentHomologyOfCrossedModule(X2,3);
[[1, 1, 0], [0, 1, 0], [0, 0, 1]]
\end{verbatim}

Since $PH_3(X_1) \neq PH_3(X_2)$, X_1 is not quasi-isomorphic to X_2.
Further Works

In this thesis we have developed computational tools for the classification of 2-types. We also provided a classification of most of the 2-types of order $m \leq 255$. By using this result, in many cases, we can determine if two crossed modules are quasi-isomorphic or not. We will investigate further on the quasi-isomorphism of two crossed modules. In particular, we will use theory and computation to answer the following questions:

- How to determine whether two crossed modules are quasi-isomorphic or not?
- Let ∂ and ∂' be quasi-isomorphic. How to find a finite sequence of quasi-isomorphisms
 \[
 \partial \xrightarrow{\phi_1} \partial_1 \xleftarrow{\phi_2} \partial_2 \xrightarrow{\phi_3} \cdots \xleftarrow{\phi_k} \partial'
 \]
 connecting ∂ to ∂'?

Then we apply these answers to the classification of the 2-types that are not classified in this thesis.

Moreover, every 2-type X can be represented by the fundamental group π_1X, the π_1X-module π_2X and a cohomology class $\kappa \in H^3(\pi_1X, \pi_2X)$. We will construct a crossed module corresponding to the 2-type X. Then we will use this crossed module to compute the integral homology of X.

Furthermore, we will apply the concept of persistent homology to the coclass theory. Such as:

- Computing the persistent homology $PH_*(G)$ of groups G in the coclass graph $G(p, r)$. This persistent homology is an infinite graded module defined in
Further Works

[22] and is based on the work of H. Edelsbrunner, G. Carlsson and others in applied topology.

• In the paper [9] Carlson proved that there exist only finitely many isomorphism types of mod-2-cohomology rings of 2-groups of a fixed coclass. We will extend the finiteness result of Carlson to p-groups for odd primes p.

• Eick and Feichtenschlager [17] developed and implemented an algorithm in the GAP system to compute the Schur multiplicators of almost all groups in an infinite coclass sequence simultaneously. Based on this, they also obtained some results on the low-dimensional mod p cohomology groups $H^n(G_i, \mathbb{F}_p), n = 0, 1, 2$ where $(G_i \mid i \in \mathbb{N})$ is an infinite coclass sequence. We will provide an algorithm for computing $H^*(G_i, \mathbb{F}_p)$ for almost all i. We conjecture that almost all the rings $H^*(G_i, \mathbb{F}_p)$ are isomorphic to each other.

Also, in this thesis, we have just focused on 2-types. We will extend the results of 2-types to n-types ($n \geq 3$). In particular, we will

• Develop an algorithm for classification of n-types;

• Investigate the persistent homology of n-types.
Bibliography

Index

1-type, 9
φ-equivariant, 9
n-constructible
 group, 18
 simplicial group, 37
n-simplices, 5
n-type, 26
HAP complex, 20
HAP resolution, 19
sequence, 3
alternating chain complex, 7
augmentation, 9
bar complex, 20
bar resolution, 20
bicomplex, 4
bisimplicial set, 5
cat^1-group, 49
cat^1-group structure on group, 55
category
 cat^1-groups, 50
crossed modules, 49
 simplicial objects, 5
chain complex, 3
chain homotopic, 3
chain homotopy, 3
chain homotopy equivalence, 4
chain map, 3
class, 12
commutator, 85
contracting homotopy
 free ZG-resolution, 9
covering crossed module, 83
crossed module, 48
degeneracy map, 5
dihedral group, 10
Eilenberg-Mac Lane simplicial group, 40
face map, 5
finitely generated
 free ZG-resolution, 18
 free ZG-resolution of Z, 9
homology
 chain complex, 3
 homology of groups, 9
 homotopy crossed module, 70
 homotopy equivalence data, 26
homotopy groups
 cat^1-group, 61
 crossed module, 48
 simplicial group, 6
 homotopy lower series
 crossed module, 90
integral homology
 crossed module, 67
 simplicial group, 32
isomorphism
cat¹-groups, 50
crossed modules, 49

lower central series, 12

Moore complex, 6
morphism
 cat¹-groups, 50
 crossed modules, 49

nerve
 cat¹-group, 51
 category, 5
 group, 6

order
 2-type, 70
 cat¹-group, 49
 crossed module, 48
 quasi-isomorphism class, 70

persistent Betti numbers
 crossed module, 90
 group, 13

persistent homology
 coclass tree, 18

perturbation
 homotopy equivalence data, 26

quasi-isomorphic
 cat¹-groups, 62
 chain complexes, 4
 crossed modules, 61

quasi-isomorphism
 chain map, 4
 morphism of cat¹-groups, 61
 morphism of crossed modules, 61
 quasi-isomorphism classes, 61

rank, 12

simplicial
 group, 5
 identities, 5
 map, 5
 objects, 5
 set, 5

small perturbation, 26

total complex, 4

weak equivalence
 morphism of simplicial groups, 7

weakly equivalent
 simplicial groups, 7
Chapter 8

Appendix: GAP code
8.1 Data types

1. Simplicial group

A simplicial group \((G, d, s)\) is represented by a component object \(G\) with the following components:

- \(G!.groupsList(n)\): is a function that returns the group \(G_n\).
- \(G!.boundariesList(n, i)\): is a function that returns the face map \(d^n_i: G_n \rightarrow G_{n-1}\).
- \(G!.degeneraciesList(n, i)\): is a function that returns the degeneracy map \(s^n_i: G_n \rightarrow G_{n+1}\).
- \(G!.properties\): is a list of pairs [“name”,value] where “name” is a string and value is a numerical or boolean value.

2. \(\text{Cat}^1\)-group

A \(\text{Cat}^1\)-group \((G, s, t)\) is represented as a component object \(C\) with the following components:

- \(C!.sourceMap\): is the group homomorphism \(s: G \rightarrow G\).
- \(C!.targetMap\): is the group homomorphism \(t: G \rightarrow G\).

3. Crossed module

A crossed module \(\partial: M \rightarrow P\) is represented as a component object \(X\) with the following components:

- \(X!.map\): is the group homomorphism \(\partial: M \rightarrow P\).
- \(X!.action(p, m)\): is a function that returns the image \(\text{im}\ m\) of \(m\) under the action of \(p\).

4. Morphism of \(\text{Cat}^1\)-groups

A morphism of \(\text{Cat}^1\)-groups \(\phi: (G, s, t) \rightarrow (G', s', t')\) is represented as a component object \(F\) with the following components:
• $F!.source$: is the cat1-group (G, s, t).

• $F!.target$: is the cat1-group (G', s', t').

• $F!.mapping$: is the group homomorphism $\phi: G \rightarrow G'$.

5. Morphism of crossed modules

A morphism of crossed modules

\[
\begin{array}{c}
M \xrightarrow{\mu} M' \\
\partial \downarrow \quad \downarrow \partial' \\
P \xrightarrow{\eta} P'
\end{array}
\]

is represented as a component object F with the following components:

• $F!.source$: is the crossed module $\partial: M \rightarrow P$.

• $F!.target$: is the crossed module $\partial': M' \rightarrow P'$.

• $F!.mapping(n)$: is a function that returns the group homomorphism $\mu: M \rightarrow M'$ if $n = 1$ and returns the group homomorphism $\eta: P \rightarrow P'$ if $n = 2$.

6. Morphism of simplicial groups

A morphism of simplicial groups $f: G_\ast \rightarrow G'_\ast$ is represented as a component object F with the following components:

• $F!.source$: is the simplicial group G_\ast.

• $F!.target$: is the simplicial group G'_\ast.

• $F!.mapping(n)$: is a function that returns the group homomorphism $f_n: G_n \rightarrow G'_n$.

• $F!.properties$: is a list of pairs [“name”,value] where “name” is a string and value is a numerical or boolean value.
8.2 List of functions

1. **BarResolutionEquivalence(R)** (see GAP code 8.3.1)

 - Input: A HAP resolution \(R^G_n \) of group \(G \).
 - Output: A component object \(HE \) with components

 - \(HE!.\phi(n,w) \): is a function which inputs an integer \(n \geq 0 \) and an element \(w \) in \(B^G_n \). It returns the image of \(w \) in \(R^G_n \) under a chain map \(\phi: B^G_n \rightarrow R^G_n \).

 - \(HE!.\psi(n,w) \): is a function which inputs an integer \(n \geq 0 \) and an element \(w \) in \(R^G_n \). It returns the image of \(w \) in \(B^G_n \) under a chain map \(\psi_n: R^G_n \rightarrow B^G_n \).

 - \(HE!.\text{equiv}(n,w) \): is a function which inputs an integer \(n \geq 0 \) and an element \(w \) in \(B^G_n \). It returns the image of \(w \) in \(B^G_{n+1} \) under a homomorphism \(H_n: B^G_n \rightarrow B^G_{n+1} \) satisfying

 \[
 w - \psi_n \phi_n(w) = d_{n+1} H_n(w) + H_{n-1} d_n(w)
 \]

 where \(d_n: B^G_n \rightarrow B^G_{n-1} \) is the boundary homomorphism in the bar resolution. (See Algorithm 2.3.4.)

2. **BarComplexEquivalence(R)** (see GAP code 8.3.2)

 - Input: A HAP resolution \(R^G_n \) of group \(G \).
 - Output: It first constructs the chain complexes \(\overline{R}^G_n := R^G_n \otimes_{\mathbb{Z}G} \mathbb{Z} \) and \(\overline{B}^G_n := B^G_n \otimes_{\mathbb{Z}G} \mathbb{Z} \). The function returns a component object \(HE \) with components

 - \(HE!.\phi(n,w) \): is a function which inputs an integer \(n \geq 0 \) and an element \(w \) in \(\overline{B}^G_n \). It returns the image of \(w \) in \(\overline{R}^G_n \) under a chain map \(\phi_n: \overline{B}^G_n \rightarrow \overline{R}^G_n \).

 - \(HE!.\psi(n,w) \): is a function which inputs an integer \(n \geq 0 \) and an element \(w \) in \(\overline{R}^G_n \). It returns the image of \(w \) in \(\overline{B}^G_n \) under a chain map \(\psi_n: \overline{R}^G_n \rightarrow \overline{B}^G_n \).
8.2 List of functions

- \(HE! . equiv(n, w) \): is a function which inputs an integer \(n \geq 0 \) and an element \(w \) in \(B_n^G \). It returns the image of \(w \) in \(B_{n+1}^G \) under a homomorphism \(H_n : B_n^G \to B_{n+1}^G \) satisfying

\[
 w - \psi_n \phi_n (w) = d_{n+1} H_n (w) + H_{n-1} d_n (w)
\]

where \(d_n : B_n^G \to B_{n-1}^G \) is the boundary homomorphism in the bar complex.

(See Algorithm 2.3.5.)

3. \texttt{ChainComplexOfSimplicialGroup(X)} (see GAP code 8.3.3)

- Input: A simplicial group \(X = G \), or a morphism of simplicial groups \(X = (f : G_1 \to G_2) \), or a sequence of morphisms of simplicial groups \(X = (G_1 \xrightarrow{f_1} G_2 \xrightarrow{f_2} \cdots \xrightarrow{f_{n-1}} G_n) \).

- Output: The image of the input under the map

\[
 K : \text{Simplicial groups} \to \text{Chain complexes}.
\]

(See Algorithm 3.2.1, 6.1.1.)

4. \texttt{EilenbergMacLaneSimplicialGroup(X,n,l)} (see GAP code 8.3.4)

- Input: An abelian group \(X = A \) or a homomorphism of abelian groups \(X = (f : A \to B) \), and two integers \(n \geq 2, l \geq 1 \).

- Output: The Eilenberg-MacLane simplicial group \(K(A, n) \) of length \(l \) or the morphism \(f_* : K(A, n) \to K(B, n) \) of simplicial groups of length \(l \) by applying the functor

\[
 K(-, n) : \text{Abelian groups} \to \text{Simplicial abelian groups}.
\]

(See Algorithms 4.1.1, 4.1.2.)

5. \texttt{CrossedModuleByAutomorphismGroup(G)} (see GAP code 8.3.5)

- Input: A group \(G \).
8.2 List of functions

• Output: The crossed module $\partial: G \to \text{Aut}(G)$.
 (See Example 5.1.1.)

6. CrossedModuleByNormalSubgroup(G,N) (see GAP code 8.3.6)

• Input: A group G with a normal subgroup N.
• Output: The inclusion crossed module $i: N \hookrightarrow G$.
 (See Example 5.1.1.)

7. Order(X) (see GAP code 8.3.7)

• Input: A crossed module X.
• Output: The order of X.
 (See Definition 5.1.2.)

8. HomotopyGroup(X,n) (see GAP code 8.3.8)

• Input: A crossed module X and an integer $n = 1, 2$.
• Output: The nth homotopy group of X.
 (See Definition 5.1.3.)

9. CatOneGroupByCrossedModule(X) (see GAP code 8.3.9)

• Input: A crossed module X, or a morphism of crossed modules $X = (f: X_1 \to X_2)$ or a sequence of morphisms of crossed modules $X = (X_1 \overset{f_1}{\to} X_2 \overset{f_2}{\to} \cdots \overset{f_{n-1}}{\to} X_n)$.
• Output: The image of the input under the functor

\[\lambda: \text{(Crossed modules)} \to \text{(Cat}^1\text{-groups)}. \]

 (See Proposition 5.2.2.)

10. CrossedModuleByCatOneGroup(X) (see GAP code 8.3.10)
• Input: A cat\(^1\)-group \(X\), or a morphism of cat\(^1\)-groups \(X = (f : C_1 \rightarrow C_2)\), or a sequence of morphisms of cat\(^1\)-groups \(X = (C_1 \xrightarrow{f_1} C_2 \xrightarrow{f_2} \cdots \xrightarrow{f_{n-1}} C_n)\).

• Output: The image of the input under the functor

\[\gamma : (\text{Cat}^{1}\text{-groups}) \rightarrow (\text{Crossed modules}). \]

(See Proposition 5.2.3.)

11. \text{NerveOfCatOneGroup}(X,n) (see GAP code 8.3.11)

• Input: A cat\(^1\)-group \(X = C\), or a morphism of cat\(^1\)-groups \(X = (f : C_1 \rightarrow C_2)\), or a sequence of morphisms of cat\(^1\)-groups \(X = (C_1 \xrightarrow{f_1} C_2 \xrightarrow{f_2} \cdots \xrightarrow{f_{n-1}} C_n)\), and an integer \(n \geq 0\).

• Output: The image of the input of length \(n\) under the functor

\[\mathcal{N} : (\text{Cat}^{1}\text{-groups}) \rightarrow (\text{Simplicial groups}). \]

(See Proposition 5.2.6.)

12. \text{CatOneGroupsByGroup}(G) (see GAP code 8.3.12)

• Input: A finite group \(G\).

• Output: A list of all non-isomorphic cat\(^1\)-group structures on group \(G\).

(See Algorithm 5.3.1.)

13. \text{NumberSmallCatOneGroups}(\text{arg}) (see GAP code 8.3.13)

• Input: A positive integer \(m \leq 255\), or two positive integers \(m,k\) with \(m \leq 255\).

• Output: The number of cat\(^1\)-groups of order \(m\), or the number of non-isomorphic cat\(^1\)-group structures on the \(k\)th group of order \(m\).

14. \text{SmallCatOneGroup} (see GAP code 8.3.14)

• Input: Three positive integers \(m,k,i\) with \(m \leq 255\).
8.2 List of functions

- Output: The \(i \)th cat\(^1\)-group structure on the \(k \)th group of order \(m \).

15. **IsomorphismCatOneGroups(C,D)** (see GAP code 8.3.15)

- Input: Two finite cat\(^1\)-groups \(C, D \).
- Output: An isomorphism between \(C \) and \(D \) if they are isomorphic and \textit{fail} otherwise.
 (See Algorithm 5.3.2.)

16. **IdCatOneGroup(C)** (see GAP code 8.3.16)

- Input: A cat\(^1\)-group \(C \) of order less than or equal to 255.
- Output: A triple \((m,k,i)\) where \(C \) is isomorphic to the \(i \)th cat\(^1\)-group structure on the \(k \)th group of order \(m \).
 (See Algorithm 5.3.3.)

17. **NumberSmallCrossedModules(m)** (see GAP code 8.3.17)

- Input: A positive integer \(m \leq 255 \).
- Output: The number of crossed modules of order \(m \).

18. **SmallCrossedModule(m,k)** (see GAP code 8.3.18)

- Input: Two positive integers \(m, k \) with \(m \leq 255 \).
- Output: The \(k \)th crossed module of order \(m \).

19. **IsomorphismCrossedModules(XC,XD)** (see GAP code 8.3.19)

- Input: Two finite crossed modules \(XC, XD \).
- Output: An isomorphism between \(XC \) and \(XD \) if they are isomorphic and \textit{fail} otherwise.
 (See Algorithm 5.3.4.)
20. \textbf{IdCrossedModule}(X) (see GAP code \ref{def:GAPcode:IdCrossedModule})

- Input: A finite crossed module \(X\) of order less than or equal to 255.
- Output: A pair \((m,k)\) where \(X\) is isomorphic to the \(k\)th crossed module of order \(m\).
 (See Algorithm \ref{def:algorithm:IdCrossedModule}.)

21. \textbf{SubQuasiIsomorph}(C) (see GAP code \ref{def:GAPcode:SubQuasiIsomorph})

- Input: A finite cat\(^1\)-group \(C\).
- Output: A sub cat\(^1\)-group \(D\) of \(C\) such that \(D\) is quasi-isomorphic to \(C\).

22. \textbf{QuotientQuasiIsomorph}(C) (see GAP code \ref{def:GAPcode:QuotientQuasiIsomorph})

- Input: A finite cat\(^1\)-group \(C\).
- Output: A quotient cat\(^1\)-group \(D\) of \(C\) such that \(D\) is quasi-isomorphic to \(C\).

23. \textbf{QuasiIsomorph}(X) (see GAP code \ref{def:GAPcode:QuasiIsomorph})

- Input: A finite crossed module or a finite cat\(^1\)-group \(X\).
- Output: A crossed module or cat\(^1\)-group \(QX\) such that \(QX\) is quasi-isomorphic to \(X\) and \(|QX| \leq |X|\).
 (See Algorithms \ref{def:algorithm:QuasiIsomorph}, \ref{def:algorithm:QuasiIsomorph2}.)

24. \textbf{Homology}(X,n) (see GAP code \ref{def:GAPcode:Homology})

- Input: A crossed module \(X\) and an integer \(n \geq 0\).
- Output: The integral homology \(H_n(X,\mathbb{Z})\).
 (See Definition \ref{def:definition:homology} and Algorithm \ref{def:algorithm:homology}.)

25. \textbf{HomotopyCrossedModule}(X) (see GAP code \ref{def:GAPcode:HomotopyCrossedModule})

- Input: A crossed module \(X\)
• Output: The homotopy crossed module $\pi_2(X) \to \pi_1(X)$ of X.
(See Definition 5.6.1.)

26. **NumberSmallQuasiCrossedModules**(m) (see GAP code 8.3.26)

• Input: A positive integer $m \leq 255$.
• Output: The number of quasi-isomorphism classes of order m.

27. **SmallQuasiCrossedModule**(m,k) (see GAP code 8.3.27)

• Input: Two positive integers m,k with $m \leq 255$.
• Output: The smallest representative of the kth quasi-isomorphism classes of order m.

28. **IdQuasiCrossedModule**(X) (see GAP code 8.3.28)

• Input: A finite crossed module X.
• Output: If successful in finding the smallest representative of the quasi-isomorphism class of X, it outputs a pair of integers (m,k) with m the order of the quasi-isomorphism class of X and k the number uniquely identifying this class, and $fail$ otherwise.
(See Algorithm 5.6.1.)

29. **HomotopyLowerCentralSeriesOfCrossedModule**(X) (see GAP code 8.3.29)

• Input: A crossed module X with π_1X, π_2X p-groups.
• Output: The homotopy lower central series of X.
(See Algorithm 7.2.1.)

30. **PersistentHomologyOfCrossedModule**(X,n) (see GAP code 8.3.30)

• Input: A crossed module X with π_1X, π_2X p-groups and an integer $n \geq 0$.
• Output: The matrix of persistent Betti numbers of X at degree n.
(See Algorithm 7.2.2.)
8.3 GAP Code

8.3.1 BarResolutionEquivalence(R)

##
#0
#F BarResolutionEquivalence
Input: A HAP resolution of group G
Output: A ZG-equivariant chain homotopy equivalence between the bar
resolution B^G and the HAP resolution R^G
##
InstallGlobalFunction(BarResolutionEquivalence,function(R)
local nElts,Elts,e,nR,n,k,
 SearchPosition,AddElement,HapHomotopy,BarHomotopy,BarBoundary,
 PsiBasis,BoundBasis,TmpPsi,tmp1,tmp2,sign,base,g,Stmp,
 Phi,Psi,Equiv;

Elts:=R!.elts;
nElts:=Length(Elts);
e:=Identity(R!.group);
nR:=EvaluateProperty(R,"length");

###
#1
#F SearchPosition
Input: An element g of G
Output: The position of g in Elts
##
SearchPosition:=function(g)
local n,i;

 n:=Length(Elts);
 for i in [1..n] do
 if Elts[i]=g then
 return i;
 fi;
 od;
 Add(Elts,g); #These two lines added by Graham
 return n+1; #
end;
##
#1
#F AddElement
Input: A list L=[[m_1,h_1,g_11,...,g_1n],...,[m_k,h_k,g_k1,
...,g_kn]] and an element x=[m’,h’,g’_1,...,g’_n]
Output: Add the element x into the list L
##
AddElement:=function(L,x)
local sx,nx,nL,flag,i,j;

 sx:=StructuralCopy(x);
 nx:=Length(sx);
 nL:=Length(L);
 for i in [1..nL] do
flag:=0;
for j in [2..nx] do
 if L[i][j]<>sx[j] then
 flag:=1;
 break;
 fi;
 od;
if flag=0 then
 L[i][1]:=L[i][1]+sx[1];
 if L[i][1]=0 then
 Remove(L,i);
 fi;
 return;
fi;
od;
Add(L,sx);
end;
#

F BarBoundary
Input: A word w=[[m_1,h_1,g_{11},...g_{1n}],...,m_k,h_k,g_{k1},...g_{kn}]] and an integer n>=0
Output: The image of w under the boudary map d_n:B_n->B_{n-1}
##
BarBoundary:=function(n,w)
local i,j,tmp,x,Rew;
Rew:=[];
for x in w do
 ############### Compute 0 #####################
tmp:=[x[1],x[2]*x[3]];
 for j in [2..n] do
 Add(tmp,x[j+2]);
 od;
 AddElement(Rew,tmp);
 ############### Compute 1 -> n-1 ##############
 for i in [1..n-1] do
 tmp:=[(-1)^i*x[1],x[2]];
 for j in [1..i-1] do
 Add(tmp,x[j+2]);
 od;
 AddElement(Rew,tmp);
 od;
 ############### Compute n ########################
tmp:=[(-1)^n*x[1],x[2]];
 for j in [1..n-1] do
 Add(tmp,x[j+2]);
 od;
 AddElement(Rew,tmp);

end;
8.3 GAP Code

od;
return Rew;
end;
#
普通步演奏 end of BarBoundary

 staggering end of HapHomotopy

 staggering end of BarHomotopy

Compute the image of basis of R under the map psi:R->B
PsiBasis:=List([0..nR],x->[]);
PsiBasis[1][1]:=[[1,e]]; #0+1[1]
for n in [1..nR] do
 for k in [1..R!.dimension(n)] do
 TmpPsi:=[];
 BoundBasis:=R!.boundary(n,k); #ex: [[2,3],[-3,5]]
 for tmp1 in BoundBasis do
 if tmp1[1]<0 then
 sign:=-1;
 base:=-tmp1[1];
 else
 sign:=1;
 base:=tmp1[1];
 fi;
 g:=Elts[tmp1[2]];
 Stmp:=StructuralCopy(PsiBasis[n][base]);
 for tmp2 in Stmp do
 tmp2[1]:=sign*tmp2[1];
 tmp2[2]:=g*tmp2[2];
 od;
 Append(TmpPsi,Stmp);
 od;
 PsiBasis[n+1][k]:=BarHomotopy(n-1,TmpPsi);
 od;
od;

#1
#F Psi
Input: A word w:=[[m1,e1,pos1],...,[mk,ek,posk]] and n>=0
Output: The image of w under the map psi_n: R_n->B_n
##
Psi:= function(n,w)
 local Rew,m,h,x,u,Psix;
 Rew:=[];
 for x in w do
 m:=x[1];
 h:=Elts[x[3]];
 Psix:=StructuralCopy(PsiBasis[n+1][x[2]]);
 for u in Psix do
 u[1]:=m*u[1];
 u[2]:=h*u[2];
 AddElement(Rew,u);
 od;
 od;
 return Rew;
end;

#1
#F Phi
Input: A word w:=[[m1,h1,g11,...,g1n],...,[mk,hk,gk1,...,gkn]]
Output: The image of w under the map phi_n: B_n->R_n
##
Phi:=function(n,w)
 local x,Rew,Rex,h,u,cw;
 cw:=StructuralCopy(w);
 cw:=[[m1,h1,g11,...,g1n],...,[mk,hk,gk1,...,gkn]]
 for x in cw do
 m:=x[1];
 h:=Elts[x[3]];
 cw:=StructuralCopy(cw);
 for u in cw do
 u[1]:=m*u[1];
 u[2]:=h*u[2];
 AddElement(Rew,u);
 od;
 od;
 return Rew;
end;
Rew:=[];
if n=0 then
 for x in cw do
 AddElement(Rew,[x[1],1,SearchPosition(x[2])]);
 od;
 return Rew;
fi;
for x in cw do
 h:=x[2];
 x[2]:=e;
 Rex:=HapHomotopy(n-1,Phi(n-1,BarBoundary(n,[x])));
 for u in Rex do
 u[3]:=SearchPosition(h*Elts[u[3]]);
 AddElement(Rew,u);
 od;
od;
return Rew;
end;
#
end of Phi

#1
#F Equiv
Input: A word w=[[m1,h1,g11,...,g1n],...,[mk,hk,gk1,...,gkn]]
Output: The image of w under the homotopy map H_n: B_n->B_{n+1}
Equiv:=function(n,w)
local
cw,h,x,
PsiPhix,HBx,HLx,
tmp,Rex,Rew,u;

cw:=StructuralCopy(w);
if n = 0 then
 return [];
fi;
Rew:=[];
for x in cw do
 h:=x[2];
 x[2]:=e;
 HBx:=Equiv(n-1,BarBoundary(n,[x]));
 AddElement(HBx,x);
 for tmp in HBx do
 tmp[1]:=-tmp[1];
 od;
 PsiPhix:=Psi(n,Phi(n,[x]));
 HLx:=Concatenation(PsiPhix,HBx);
 Rex:=BarHomotopy(n,HLx);
 for u in Rex do
 u[2]:=h*u[2];
 AddElement(Rew,u);
 od;
od;
return Rew;
end;
#
end of Equiv
8.3 GAP Code

8.3.2 BarComplexEquivalence(R)

InstallGlobalFunction(BarComplexEquivalence,function(R)
local e,dim,
 BarResEqui,Phi,Psi,Equiv,
 CPhi,CPsi,CEquiv;

 e:=Identity(R!.group);
 dim:=R!.dimension;
 BarResEqui:=BarResolutionEquivalence(R);
 Phi:=BarResEqui!.phi;
 Psi:=BarResEqui!.psi;
 Equiv:=BarResEqui!.equiv;

CPsi
Input: A word \([m_1,e_1], \ldots [m_k,e_k]\) with \(k = \dim(R_n^G)\)
Output: The image of \(w\) under map \(c\psi: cR_n \to cB_n\)
CPsi:=function(n,w)
llocal Rew,x,cw;
 cw:=StructuralCopy(w);
 for x in cw do
 Add(x,1);
 od;
 Rew:=Psi(n,cw);
 for x in Rew do
 Remove(x,2);
 od;
 return Rew;
end;

CPhi
CPhi:=function(n,w)
local Zw,x,tmp,PhiZw,i,Rew;
 Zw:=[[];
 for x in w do
 tmp:=[x[1],e];
 for i in [2..n+1] do
 Add(tmp,x[i]);
 od;
 Add(Zw,tmp);
 od;
 PhiZw:=Phi(n,Zw);
 Rew:= List([1..dim(n)],x->0);
 for tmp in PhiZw do
 i:=tmp[2];
 Rew[i]:=Rew[i]+tmp[1];
 od;
 return Rew;
end;
#
#F CEquiv
CEquiv:=function(n,w)
local Zw,x,i,tmp,Rew;
 Zw:=[[];
 for x in w do
 tmp:=[x[1],e];
 for i in [2..n+1] do
 Add(tmp,x[i]);
 od;
 Add(Zw,tmp);
 od;
 Rew:=Equiv(n,Zw);
 for tmp in Rew do
 Remove(tmp,2);
 od;
 return Rew;
end;
#
return rec(
 phi:=CPhi,
 psi:=CPsi,
 equiv:=CEquiv
);
end);
8.3.3 ChainComplexOfSimplicialGroup(X)

```
0
F ChainComplexOfSimplicialGroup
## Input: A simplicial group, or a morphism of simplicial groups or
## a sequence of morphisms of simplicial groups
## Output: The image of the input under the functor
## (Simplicial groups)->(Chain complexes)
##
InstallGlobalFunction(ChainComplexOfSimplicialGroup, function(X)
local
    AddElement,
    ChainComplexOf_Objpre,
    ChainComplexOf_Obj,
    ChainComplexOf_Morpre,
    ChainComplexOf_Mor,
    ChainComplexOf_Seq;

1
F AddElement
## Input: A list L=[[m_1,h_1,g_1],...,g_n],[m_k,h_k,g_k]),1,
## ...,[m_k,h_k,g_k]] and an element x=[m',h',g'_1,...,g'_n]
## Output: Add the element x into the list L
##
AddElement:=function(L,x)
    local sx,nx,nL,flag,i,j;
    sx:=StructuralCopy(x);
    nx:=Length(sx);
    nL:=Length(L);
    for i in [1..nL] do
        flag:=0;
        for j in [2..nx] do
            if L[i][j]<>sx[j] then
                flag:=1;
                break;
            fi;
        od;
        if flag=0 then
            L[i][1]:=L[i][1]+sx[1];
            if L[i][1]=0 then
                Remove(L,i);
            fi;
            return;
        fi;
    od;
    Add(L,sx);
end;
```

```
1
F ChainComplexOf_Objpre
```

```
1
F ChainComplexOf_Objpre:=function(N,Maps,Bar,Hap)
local
```
HapBoundary, Phi, Psi, Equiv, HapDimension, BarMap, Dim, BoundChain, ImageBasis, i, j, k, n, tmp, t, M, m, ii, jj, SearchPosition, Dimension, BelowDim, Boundary, d0, dm;

###
#2
HapBoundary:= function(i,j,k)
 return Hap[i+1]!.boundary(j,k);
end;
#
###
#2
Psi:=function(i,j,w)
 return Bar[i+1]!.psi(j,w);
end;
#
###
#2
Phi:=function(i,j,w)
 return Bar[i+1]!.phi(j,w);
end;#
###
#2
Equiv:=function(i,j,w)
 return Bar[i+1]!.equiv(j,w);
end;
#
###
#2
HapDimension:=function(i,j)
 return Hap[i+1]!.dimension(j);
end;
#
###
#2
#F BarMap
Input: A position (i,j) and a word w
Output: The image of w under del_n: B_{i}^j->B_{i-1}^j
##
BarMap:=function(i,j,w)
local Rew,sign,ii,jj,x,d,tmp;
 if j mod 2 = 0 then
 sign:=1;
 else
 sign:=-1;
 fi;
 Rew:=[];
 for ii in [0..i] do
 d:=Maps(i,ii);
 for x in w do
 tmp:=[sign*x[1]];
 for jj in [1..j] do
 Rew:=Rew union tmp;
 od;
 od;
 Rew:=Reversed(Rew);
 od;
 return Rew;
end;

###
Add(tmp,Image(d,x[jj+1]));
 od;
AddElement(Rew,tmp);
 od;
 sign:=-sign;
 od;
return Rew;
end;
##

Compute the dimension of K_n
Dim:=[];
for i in [0..N] do
 k:=0;
 for j in [0..i] do;
 k:=k+HapDimension(j,i-j);
 od;
 Dim[i+1]:=k;
od;

Dimension:=function(n)
 return Dim[n+1];
end;
##

Compute the sum of dimensions under the position(i,j)
BelowDim:=List([0..N],n->[[]]);

for i in [0..N] do
 for j in [0..N-i] do
 n:=i+j;
 tmp:=0;
 for k in [0..j-1] do
 tmp:=tmp+HapDimension(n-k,k);
 od;
 BelowDim[i+1][j+1]:=tmp;
 od;
od;

SearchPosition:=function(n,t)
local count,j,k;
 count:=0;
 for j in [0..n] do
 k:=t-count;
 count:=count+HapDimension(n-j,j);
 if t <= count then
 return [n-j,j,k];
 break;
 fi;
 od;
return [0,0,0];
end;

BelowDim
Code 123

d0

Input: A position \((i,j)\) and a basis element \(e_k\)

Output: The image of \(e_k\) under the map \(d_0\)

```gap
function(i,j,k)
local n,t,beg,Bound,Rew;
  n:=i+j;
  if n=0 then
    return [0];
  fi;
  Rew:=List([1..Dimension(n-1)],x->0);
  if j=0 then
    return Rew;
  fi;
  beg:=BelowDim[i+1][j];  # below(i,j-1)
  Bound:=HapBoundary(i,j,k);
  for t in [1..HapDimension(i,j-1)] do
    Rew[beg+t]:=Bound[t];
  od;
  return Rew;
end;
```

ImageBasis

```gap
ImageBasis:=[];
for i in [1..N] do
  ImageBasis[i]:=[[]];
  for j in [0..N-i] do
    ImageBasis[i][j+1]:=[[]];
    for m in [1..i] do
      ImageBasis[i][j+1][m]:=[[]];
    od;
  od;
  od;
end;
```

Compute ImageBasis\([i][j+1][1][k]\)

```gap
for i in [1..N] do
  for j in [0..N-i] do
    for k in [1..HapDimension(i,j)] do
      ImageBasis[i][j+1][1][k]:=BarMap(i,j,\Psi(i,j,[[1,k]]));
    od;
  od;
end;
```

Compute for \(m>1\)

```gap
for i in [2..N] do
  for j in [0..N-i] do
    for m in [2..i] do
      for k in [1..HapDimension(i,j)] do
```
```gap
# Topological code

Code 124

### Structural Copy

tmp := StructuralCopy(ImageBasis[i][j+1][m-1][k]);
ImageBasis[i][j+1][m][k] := BarMap(i-m+1,j+m-1,
   Equiv(i-m+1,j+m-2,tmp));

### Bar Map

od; od; od;

# Topological code

# 2
# F dm
## Input: A position (i,j) and a basis element e_k
## Output: The image of e_k under the map d_m
##

dm := function(i,j,m,k)
local n,t,beg,Rew,Phiw;

n := i+j;
if n = 0 then
   return [0];
fi;
Rew := List([1..Dimension(n-1)],x->0);
if m > i then
   return Rew;
fi;
Phiw := Phi(i-m,j+(m-1),ImageBasis[i][j+1][m][k]);
beg := BelowDim[(i-m)+1][j+(m-1)+1];
for t in [1..HapDimension(i-m,j+(m-1))] do
   Rew[beg+t] := Phiw[t];
od;
return Rew;
end;

# End of dm

BoundChain := List([0..N],x->[0]);
BoundChain[1][1] := [0];
for n in [1..N] do
   for t in [1..Dimension(n)] do
      M := SearchPosition(n,t);
i := M[1];
j := M[2];
k := M[3];
tmp := d0(i,j,k);
   for m in [1..i] do
      tmp := tmp + dm(i,j,m,k);
   od;
   BoundChain[n+1][t] := tmp;
od;

Boundary := function(n,k)
   return BoundChain[n+1][k];
end;

# End of Boundary

return Objectify(HapChainComplex, rec(
```
boundary:=Boundary,
dimension:=Dimension,
properties:= [["length",N],
 ["type", "chainComplex"],
 ["characteristic",0]]
);
8.3 GAP Code

return BarH[i+1]!.equiv(j,w);
end;
##
#2
HapDimensionH:=function(i,j)
 return HapH[i+1]!.dimension(j);
end;
##
###
#2
#F BarMapH
Input: A position (i,j) and a word w
Output: The image of w under del_n: BH_{i}^j->BH_{i-1}^j
##
BarMapH:=function(i,j,w)
local Rew,sign,ii,jj,x,d,tmp;
 if j mod 2 = 0 then
 sign:=1;
 else
 sign:=-1;
 fi;
 Rew:=[];
 for ii in [0..i] do
 d:=MapsH(i,ii);
 for x in w do
 tmp:=[sign*x[1]];
 for jj in [1..j] do
 Add(tmp,Image(d,x[jj+1]));
 od;
 AddElement(Rew,tmp);
 od;
 sign:=-sign;
 od;
 return Rew;
end;
##
########## end of BarMapH #################################

########## Compute the dimendion of KH_n ##################
DimH:=[];
for i in [0..N] do
 k:=0;
 for j in [0..i] do;
 k:=k+HapDimensionH(j,i-j);
 od;
 DimH[i+1]:=k;
od;
###
DimensionH:=function(n)
 return DimH[n+1];
end;
##
SearchPosH

Input: Two non-negative integers n and t
Output: The position (i,j) and the order of e_t

SearchPosH:=function(n,t)
local count,j,k;
if t>DimensionH(n) then
 return fail;
fi;
count:=0;
for j in [0..n] do
 k:=t-count;
count:=count+HapDimensionH(n-j,j);
 if t <= count then
 return [n-j,j,k];
 break;
 fi;
end;
od;
end;

end of SearchPosition

All functions for G

PsiG:=function(i,j,w)
 return BarG[i+1]!.psi(j,w);
end;

PhiG:=function(i,j,w)
 return BarG[i+1]!.phi(j,w);
end;

EquivG:=function(i,j,w)
 return BarG[i+1]!.equiv(j,w);
end;

HapDimensionG:=function(i,j)
 return HapG[i+1]!.dimension(j);
end;

BarMapG

Input: A position (i,j) and a word w
Output: The image of w under del_n: BG_{i}^j->BG_{i-1}^j

BarMapG:=function(i,j,w)
local Rew,sign,ii,jj,x,d,tmp;
if j mod 2 = 0 then
 sign:=1;
else
 sign:=-1;
fi;
Rew:=[];
for ii in [0..i] do
d:=MapsG(i,ii);
 for x in w do
 tmp:=[sign*x[1]];
 for jj in [1..j] do
 Add(tmp,Image(d,x[jj+1]));
 od;
 AddElement(Rew,tmp);
 od;
sign:=-sign;
od; return Rew;
end;
##
############## end of BarMapG ###############################

############## Compute the dimension of KG_n ##############
DimG:=[];
for i in [0..N] do
 k:=0;
 for j in [0..i] do;
 k:=k+HapDimensionG(j,i-j);
 od;
 DimG[i+1]:=k;
od;

#2 DimensionG:=function(n)
 return DimG[n+1];
end;
##

#2 #F SearchPosG
Input: Two non-negative integers n and t
Output: The position (i,j) and the position of e_t in R_ij
##
SearchPosG:=function(n,t)
 local count,j,k;
 if t>DimensionG(n) then
 return fail;
 fi;
count:=0;
 for j in [0..n] do
 k:=t-count;
count:=count+HapDimensionG(n-j,j);
 if t <= count then
 return [n-j,j,k];
 break;
 od;
end;
8.3 GAP Code

```
fi;
  od;
end;
#
############# end of SearchPosition ###################################

#2
#F BarMapHG
#
## Input: A position (i,j) and a word w
## Output: The image of w under the map_i: BH->BG
#
BarMapHG:=function(i,j,w)
local x,f,jj,tmp,Rew;
  f:=map(i);
  Rew:=[ ];
  for x in w do
    tmp:=[x[1]];
    for jj in [2..j+1] do
      Add(tmp,Image(f,x[jj]));
      od;
    AddElement(Rew,tmp);
  od;
  return Rew;
end;
#
############# end of BarMapHG ################################

############# Compute d_m(e_k) at the postion (i,j) in BH ####
ImageBasisH:=[ ];
for i in [0..N] do
  ImageBasisH[i+1]:=[ ];
  for j in [0..N-i] do
    ImageBasisH[i+1][j+1]:=[ ];
    for m in [0..i] do
      ImageBasisH[i+1][j+1][m+1]:=[ ];
      od;
    od;
  od;
#
############# Compute for m =1 ################################
for i in [0..N] do
  for j in [0..N-i] do
    for m in [0..i] do
      for k in [1..HapDimensionH(i,j)] do
        ImageBasisH[i+1][j+1][m+1][k]:=PsiH(i,j,[[1,k]]);
      od;
    od;
  od;
#
############# Compute for m >1 ################################
for i in [1..N] do
  for j in [0..N-i] do
    for m in [1..i] do
      for k in [1..HapDimensionH(i,j)] do
        tmp:=StructuralCopy(ImageBasisH[i+1][j+1][m][k]);
        ImageBasisH[i+1][j+1][m+1][k]:=EquivH(i-m,j+(m-1),
```
(BarMapH(i-(m-1),j+(m-1),tmp));
 od;
 od;
 od;
#
Compute d_m(e_k) at the position (i,j) from BH -> BG
#
ImgG:=[];
for i in [0..N] do
 ImgG[i+1]:=[];
 for j in [0..N-i] do
 ImgG[i+1][j+1]:=[];
 for m in [0..i] do
 ImgG[i+1][j+1][m+1]:=[];
 od;
 od;
for i in [0..N] do
 for j in [0..N-i] do
 for m in [0..i] do
 for k in [1..HapDimensionH(i,j)] do
 ImgG[i+1][j+1][m+1][k]:=BarMapHG(i-m,j+m,
 ImageBasisH[i+1][j+1][m+1][k]);
 od;
 od;
 od;
 Imgs:=[];
for i in [0..N] do
 Imgs[i+1]:=[];
 for j in [0..N-i] do
 Imgs[i+1][j+1]:=[];
 for m in [0..i] do
 Imgs[i+1][j+1][m+1]:=[];
 od;
 od;
for i in [0..N] do
 for j in [0..N-i] do
 for k in [1..HapDimensionH(i,j)] do
 Tmp:=List([0..i],m->[]);
 for m in [0..i] do
 w:=StructuralCopy(Tmp[m+1][n]);
 Tmp[m+1][n+1]:=BarMapG(i-(m+(n-1)),j+(m+n),
 EquivG(i-(m+(n-1)),j+(m+(n-1)),w));
 od;
 od;
 od;
 for n in [0..i] do
 itmp:=[];
 for n in [0..m] do
 Append(itmp,Tmp[n+1][m-n+1]);
 od;
 od;
 od;
 od;
od;
Imgs[i+1][j+1][m+1][k]:=PhiG(i-m,j+m,itmp);
od;
od;
od;

########### Compute the sum of dimensions under position(i,j)
LowDimG:=List([0..N],n->[0]);
for i in [0..N] do
 for j in [0..N-i] do
 n:=i+j;
 tmp:=0;
 for k in [0..j-1] do
 tmp:=tmp+HapDimensionG(n-k,k);
 od;
 LowDimG[i+1][j+1]:=tmp;
 od;
od;
##
FF:=List([0..N],n->[0]);
for n in [0..N] do
 for t in [1..DimensionH(n)] do
 LM:=SearchPosH(n,t);
 i:=LM[1];
 j:=LM[2];
 k:=LM[3];
 Tmp:=List([1..LowDimG[i+1][j+1]],m->0);
 for m in [0..i] do
 Append(Tmp,Imgs[i+1][j+1][m+1][k]);
 od;
 FF[n+1][t]:=Tmp;
 od;
od;

#F Mapping
##
Mapping:=function(v,n)
 local Rew,len,k;
 Rew:=List([1..DimensionG(n)],x->0);
 len:=Length(v);
 for k in [1..len] do
 if v[k] <> 0 then
 Rew:=Rew+v[k]*FF[n+1][k];
 fi;
 od;
 return Rew;
end;
##

#2
return Mapping;
end;
##

end of ChainComplexOf_Morpre

##
#1
#F ChainComplexOf_Mor
Input: A simplicial map Sf:G→G'
Output: The chain map of chain complexes of Sf
##
ChainComplexOf_Mor:=function(Sf)
local
 map,N,
 H,GrpsH,MapsH,RH,HapH,BarH,

 H:=Sf!.source;
 G:=Sf!.target;
 map:=Sf!.mapping;
 N:=EvaluateProperty(Sf,"length");

 GrpsH:=H!.groupsList;
 MapsH:=H!.boundariesList;
 RH:=List([0..N],i->ResolutionGenericGroup(GrpsH(i),(N+1)-i));
 HapH:=List([0..N],i->TensorWithIntegers(RH[i+1]));
 BarH:=List([0..N],i->BarComplexEquivalence(RH[i+1]));

 GrpsG:=G!.groupsList;
 MapsG:=G!.boundariesList;
 RG:=List([0..N],i->ResolutionGenericGroup(GrpsG(i),(N+1)-i));
 HapG:=List([0..N],i->TensorWithIntegers(RG[i+1]));
 BarG:=List([0..N],i->BarComplexEquivalence(RG[i+1]));

 return Objectify(HapChainMap, rec(
 source:=ChainComplexOf_Objpre(N,MapsH,BarH,HapH),
 target:=ChainComplexOf_Objpre(N,MapsG,BarG,HapG),
 mapping:=ChainComplexOf_Morpre(N,map,MapsH,BarH,
 HapH,MapsG,BarG,HapG),
 properties:= [
 ["type", "chainMap"],
 ["characteristic",0]
]
));
end;
##

#1
#F ChainComplexOf_Seq
Input: A sequence of simplicial maps L
Output: The sequence of chain maps of chain complexes of Sf
##
ChainComplexOf_Seq:=function(L)
local
 nL,k,
 LSG,Grps,Maps,R,Hap,Bar,KG,RewL,map;

 nL:=Length(L);
 LSG:=[];
 for k in [1..nL] do;
 LSG[k]:=L[k]!.source;
 od;
 LSG[nL+1]:=L[nL]!.target;
 Hap:=[];
 Bar:=[];

Maps:=[];
KG:=[];
for k in [1..nL+1] do
 G:=LSG[k];
 N:=EvaluateProperty(G,"length");
 Grps:=G!.groupsList;
 Maps[k]:=G!.boundariesList;
 R:=List([0..N],i->ResolutionGenericGroup(Grps(i),(N+1)-i));
 Hap[k]:=List([0..N],i->TensorWithIntegers(R[i+1]));
 Bar[k]:=List([0..N],i->BarComplexEquivalence(R[i+1]));
 KG[k]:=ChainComplexOf_Objpre(N,Maps[k],Bar[k],Hap[k]);
 od;
RewL:=[];
for k in [1..nL] do
 N:=EvaluateProperty(L[k],"length");
 map:=L[k]!.mapping;
 RewL[k]:=Objectify(HapChainMap, rec(
 source := KG[k],
 target := KG[k+1],
 mapping := ChainComplexOf_Morpre(N,map,Maps[k],
 Bar[k],Hap[k],Maps[k+1],Bar[k+1],Hap[k+1]),
 properties:= [["type", "chainMap"],
 ["characteristic",0]]
));
 od;
 return RewL;
end;
##
############## end of ChainComplexOf_Seq ##########################

##
#0
#F EilenbergMacLaneSimplicialGroup
Input: An abelian group A or a homomorphism of abelian groups, and
two positive integers n>=2, l>=1.
Output: The Eilenberg-MacLane simplicial group K(A,n) of length l or
the morphism f_*: K(A,n) \rightarrow K(B,n) of simplicial groups of
length l by applying the functor
K(-,n): (Abelian groups)\rightarrow(Simplicial abelian groups)
InstallGlobalFunction(EilenbergMacLaneSimplicialGroup, function(X,n,l)
local EilenbergMacLane_Obj,
EilenbergMacLane_Map;

##
#1
#F EilenbergMacLane_Obj
Input: An abelian group A and two non-negative integers n, l
Output: The simplicial group \(K(A,n) \) of length l
##
EilenbergMacLane_Obj:= function(A,NN,nK)
local nn,zero,i,j,n,k,pos,tmp,x,y,
GensA,ZeroGrp,CoF,CoD,NN,
NumberFace,NumberDegen,ImgGens,
ZeroToZero,AToZero,ZeroToA,IdA,
Surjection,NumOfSur,
Faces,Degens,ListGroups,
GroupsList,FaciesList,DegeneraciesList,
AllSurjections,CompositeOfMaps,CoDegeneracies,CoFaces;

nn:=NN-1;

##
#2
#F AllSurjections
Input: Two non-negative integers m, n and \(m \geq n \)
Output: All surjections from \([m]\) to \([n]\)
AllSurjections:=function(m,n)
local CreatCouple,Res,y,M;

if m<n then
 return fail;
fi;
if m=0 then
 return [[[0,0]]];
fi;

##
#3
#F CreatCouple
##
CreatCouple:=function(m,n)
local LA,LB,M,x,i;

if n=0 then
 M:=[[]];
 for i in [0..m] do
 Add(M,[i,0]);
 od;
 return [M];
fi;
if m=n-1 then
 M:=[[]];
 for i in [0..m] do
 Add(M,[i,i]);
 od;

else
return [M];
fi;
LA:=CreatCouple(m-1,n-1);
for x in LA do
 Add(x,[m,n-1]);
od;

LB:=CreatCouple(m-1,n);
for x in LB do
 Add(x,[m,n]);
od;

return Concatenation(LA,LB);
end;
#
 ########## end of CreatCouple #################################

Res:=CreatCouple(m-1,n);
for y in Res do
 Add(y,[m,n]);
od;
return Res;
end;

end of AllSurjections ________________________________

#2 #F CoFaces
Input: A integer n>=0
Output: All cofaces: [n]->[n+1]
##
CoFaces:=function(n)
local i,k,M,Res;

 Res:=[];
 for i in [0..n+1] do
 M:=[];
 for k in [0..i-1] do
 Add(M,[k,k]);
od;
 for k in [i..n] do
 Add(M,[k,k+1]);
od;
 Add(Res,M);
od;
 return Res;
end;
#
 end of CoFaces ###

#2 #F CoDegeneracies
Input: An integer n>=0
Output: All codegeneracies: [n]->[n-1]
##
CoDegeneracies:=function(n)
local i,k,M,Res;

 Res:=[];
 for i in [0..n] do
 M:=[];
 for k in [0..i-1] do
 Add(M,[k,k]);
od;
 for k in [i..n] do
 Add(M,[k,k+1]);
od;
 Add(Res,M);
od;
 return Res;
end;
#
 end of CoDegeneracies ###
Res:=[];
for i in [0..n-1] do
 M:=[[];
 for k in [0..i-1] do
 Add(M,[k,k]);
 od;
 Add(M,[i,i]);
 for k in [i+1..n] do
 Add(M,[k,k-1]);
 od;
 Add(Res,M);
 od;
return Res;
end;
#

end of CoDegeneracies

#F CompositeOfMaps
Input: Two maps m]->[n] and [n]->>[k]
Output: The map [m]->>[k] if it exists or 0 for otherwise
#
CompositeOfMaps:=function(M,N)
local Res,k,m,Temp,i,x,y;
 k:=nn;
 m:=Length(M)-1;
 x:=M[m+1][2];
 y:=N[x+1][2];
 if y<>k then
 return 0;
 fi;
 Res:=[[];
 Temp:=[[];
 for i in [0..m] do
 x:=M[i+1][2];
 y:=N[x+1][2];
 Add(Res,[i,y]);
 Add(Temp,y);
 od;
 if Length(Set(Temp))<k+1 then
 return 0;
 fi;
 return Res;
end;
#

end of CompositeOfMaps

Surjection:=[[];
NumOfSur:=[[];
for i in [nn..nK] do
 Surjection[i+1]:=AllSurjections(i,nn); ##[i+1]
 NumOfSur[i+1]:=Length(Surjection[i+1]); ##[i+1]
od;

zero:=Identity(A);
ZeroGrp:=Group(zero);
ListGroups:=[[];
for i in [0..nn-1] do
ListGroups[i+1]:=ZeroGrp;
end;
ListGroups[nn+1]:=A;
for i in [nn+1..nK] do
 ListGroups[i+1]:=DirectProduct(List([1..NumOfSur[i+1]],x->A));
end;
GensA:=GeneratorsOfGroup(A);
ZeroToZero:=GroupHomomorphismByImages(ZeroGrp,ZeroGrp,[],[]);
AToZero:=GroupHomomorphismByImages(A,ZeroGrp,GensA,
 List(GensA,x->zero));
ZeroToA:=GroupHomomorphismByImages(ZeroGrp,A,[],[]);
IdA:=GroupHomomorphismByImages(A,A,GensA,GensA);

########## Compute the faces map: K_n-->K_{n-1}##############
Faces:=List([1..nK],i->[]);

########### Compute the face maps d_k^i with k<n ############
for i in [1..nn-1] do
 for j in [0..i] do
 Faces[i][j+1]:=ZeroToZero;
 od;
end;

########### Compute the face maps d_nn^i ####################
if nn>0 then
 for j in [0..nn] do
 Faces[nn][j+1]:=AToZero;
 od;
fi;

########### Compute the face map d_n^i #####################
NumberFace:=[];
for n in [1..nK] do
 NumberFace[n]:=[];
 for i in [0..n] do
 NumberFace[n][i+1]:=[];
 od;
end;

for n in [nn+1..nK] do
 CoF:=CoFaces(n-1);
 MN:=Surjection[n];
 for i in [0..n] do
 for k in [1..NumOfSur[n+1]] do
 N:=Surjection[n+1][k];
 T:=CompositeOfMaps(CoF[i+1],N);
 if T=0 then
 NumberFace[n][i+1][k]:=0;
 else
 NumberFace[n][i+1][k]:=Position(MN,T);
 fi;
 od;
 od;
end;

for n in [nn+1..nK] do
 G:=ListGroups[n+1];
H:=ListGroups[n];
nNumG:=NumOfSur[n+1];
nNumH:=NumOfSur[n];
GensG:=GeneratorsOfGroup(G);
G:=Length(GensG);
Pro:=List([1..nNumG],k->Projection(G,k));
ListGensG:=[];
for i in [1..nG] do
 x:=GensG[i];
 tmp:=List([1..nNumG],k->Image(Pro[k],x));
 Add(ListGensG,tmp);
od;
if n=nn+1 then ## at position nn, there is only A
 Emb:=[IdA];
else
 Emb:=List([1..nNumH],k->Embedding(H,k));
fi;
for i in [0..n] do
 ImgGens:=[];
 for j in [1..nG] do
 x:=Identity(H);
 for k in [1..nNumG] do
 pos:=NumberFace[n][i+1][k];
 if pos<>0 then
 x:=x*Image(Emb[pos],ListGensG[j][k]);
 fi;
 od;
 ImgGens[j]:=x;
 od;
 Faces[n][i+1]:=GroupHomomorphismByImages(G,H,GensG,ImgGens);
od;

########### Compute the degeneracy map s_n^i ##############
Degens:=List([0..nK-1],i->[]);

########### Compute the degeneracy maps s_k^i with k<n-1 ####
for i in [0..nn-2] do
 for j in [0..i] do
 Degens[i+1][j+1]:=ZeroToZero;
 od;
od;

########### Compute the degeneracy maps at s_{n-1}^i ##############
if nn>1 then
 for j in [0..nn-1] do
 Degens[nn][j+1]:=ZeroToA;
 od;
fi;

NumberDegen:=[]; ###[n+1][i+1][k]
for n in [0..nK-1] do
 NumberDegen[n+1]:=[];
 for i in [0..n] do
 NumberDegen[n+1][i+1]:=[];
 od;
od;
for n in [nn..nK-1] do
 CoD:=CoDegeneracies(n+1);
 MN:=Surjection[n+2];
 for i in [0..n] do
 for k in [1..NumOfSur[n+1]] do
 N:=Surjection[n+1][k];
 T:=CompositeOfMaps(CoD[i+1],N);
 if T=0 then
 NumberDegen[n+1][i+1][k]:=0;
 else
 NumberDegen[n+1][i+1][k]:=Position(MN,T); ##i+1
 fi;
 od;
 od;
end;

for n in [nn..nK-1] do
 G:=ListGroups[n+1];
 H:=ListGroups[n+2];
 nNumG:=NumOfSur[n+1];
 nNumH:=NumOfSur[n+2];
 GensG:=GeneratorsOfGroup(G);
 nG:=Length(GensG);
 if n=nn then
 Pro:=[IdA];
 else
 Pro:=List([1..nNumG],k->Projection(G,k));
 fi;
 ListGensG:=[];
 for i in [1..nG] do
 x:=GensG[i];
 tmp:=List([1..nNumG],k->Image(Pro[k],x));
 Add(ListGensG,tmp);
 od;
 Emb:=List([1..nNumH],k->Embedding(H,k));
 for i in [0..n] do
 ImgGens:=[];
 for j in [1..nG] do
 x:=Identity(H);
 for k in [1..nNumG] do
 pos:=NumberDegen[n+1][i+1][k];
 if pos<>0 then
 x:=x*Image(Emb[pos],ListGensG[j][k]);
 fi;
 od;
 ImgGens[j]:=x;
 od;
 Degens[n+1][i+1]:=GroupHomomorphismByImages(G,H,
 GensG,ImgGens);
 od;
end;

GroupsList:=function(i)
 return ListGroups[i+1];
end;
FaciesList:=function(i,j)
 return Faces[i][j+1];
end;

DegeneraciesList:=function(i,j)
 return Degens[i+1][j+1];
end;

return Objectify(HapSimplicialGroup,
 rec(
 groupsList:=GroupsList,
 boundariesList:=FaciesList,
 degeneraciesList:=DegeneraciesList,
 properties:=[["length",nK]]
));
end;

EilenbergMacLane_Map:=function(f,n,nK)
local
 A,B,KA,KB,
 Maps,Mapping,GrpKA,GrpKB,
 Gens,Pro,Emb,ImgGens,
 i,j,k,t,nGens,
 h,g;

 A:=f!.Source;
 B:=f!.Range;
 KA:=EilenbergMacLane_Obj(A,n,nK);
 KB:=EilenbergMacLane_Obj(B,n,nK);
 Maps:=[];
 for i in [0..n-2] do
 Maps[i+1]:=GroupHomomorphismByImages(Group(Identity(A)),
 Group(Identity(B)),[],[]);
 od;
 Maps[n]:=f; ##n-1
 for i in [n..nK] do
 GrpKA:=KA!.groupsList(i);
 GrpKB:=KB!.groupsList(i);
 Gens:=GeneratorsOfGroup(GrpKA);
 Pro:=[];
 Emb:=[];
 k:=Length(GrpKA!.DirectProductInfo!.groups);
 for j in [1..k] do
 Pro[j]:=Projection(GrpKA,j);
 Emb[j]:=Embedding(GrpKB,j);
 od;
 ImgGens:=[[];
 nGens:=Length(Gens);
for j in [1..nGens] do
 h:=Gens[j];
 g:=Identity(GrpKB);
 for t in [1..k] do
 g:=g*Image(Emb[t],Image(f,Image(Pro[t],h)));
 od;
 ImgGens[j]:=g;
od;
Maps[i+1]:=GroupHomomorphismByImages(GrpKA,GrpKB,Gens,ImgGens);
od;

Mapping:=function(i)
 return Maps[i+1];
end;

return Objectify(HapSimplicialGroupMorphism,
 rec(
 source:=KA,
 target:=KB,
 mapping:=Mapping,
 properties:=[["length",nK]]
));
end;
##

8.3.5 CrossedModuleByAutomorphismGroup(G)

InstallGlobalFunction(CrossedModuleByAutomorphismGroup, function(G)
 local AutG,GensG,d,act;
 AutG:=AutomorphismGroup(G);
 GensG:=GeneratorsOfGroup(G);
 d:=GroupHomomorphismByImages(G,AutG,GensG,List(GensG,g->
 GroupHomomorphismByImages(G,G,GensG,List(GensG,x->g^(-1)*x*g))));
 act:=function(f,g)
 return Image(f,g);
 end;
 return Objectify(HapCrossedModule,rec(
 map:=d,
8.3 GAP Code

8.3.6 CrossedModuleByNormalSubgroup(G,N)

Code 142

```gap
action:=act
end);
##
###################################################################
#0
#F CrossedModuleByNormalSubgroup
## Input: A group G with normal subgroup N
## Output: The inclusion crossed module i:N->G
##
InstallGlobalFunction(CrossedModuleByNormalSubgroup, function(G,N)
local d,act;

  if not IsNormal(G,N) then
    Print("Only apply for a normal subgroup of group");
    return fail;
  fi;

  d:=GroupHomomorphismByFunction(N,G,x->x);
  act:=function(g,h)
    return g^(-1)*h*g;
  end;

  return Objectify(HapCrossedModule,rec(
    map:=d,
    action:=act
  ));
end);
##
###################################################################

### 8.3.7 Order(X)

#### Code 142

```gap
Order(X)
```

```gap
end;
##
###

8.3.8 HomotopyGroup(X,n)

Code 142

```gap
HomotopyGroup(X,n)
```

```gap
end;
##
###################################################################
```
Output: The nth homotopy groups of X

InstallOtherMethod(HomotopyGroup, "Homology group of crossed modules", [IsHapCrossedModule, IsInt], function(X,n)
local d;

d:=X!.map;
if n = 1 then
 return Range(d)/Image(d);
fi;
if n =2 then
 return Kernel(d);
fi;
Print("Only apply for n=1,2");
return fail;
end);
##

end of HomotopyGroup

8.3.9 CatOneGroupByCrossedModule(X)

#0
#F CatOneGroupByCrossedModule
Input: A crossed module, or a morphism of crossed modules, or
a sequence of morphisms of crossed modules
Output: The image of the input under the functor
(Crossed modules)->(Cat-1-groups)
##
InstallGlobalFunction(CatOneGroupByCrossedModule, function(X)
local

CMToCat1_Obj,
CMToCat1_Morpre,
CMToCat1_Mor,
CMToCat1_Seq;

#1
#F CMToCat1_Obj
Input: A crossed module X
Output: The cat-1-group corresponds to X
##
CMToCat1_Obj:=function(XC)
local
d,act,p,m,M,AutM,GensM,GensP,pro,emb1,emb2,Elts,Eltt,g,pg,s,t;

d:=XC!.map;
act:=XC!.action;
M:=Source(d);
P:=Range(d);

AutM:=AutomorphismGroup(M);
GensM:=GeneratorsOfGroup(M);
GensP:=GeneratorsOfGroup(P);
alpha:=GroupHomomorphismByImages(P,AutM,GensP,List(GensP,p->
 GroupHomomorphismByImages(M,M,GensM,List(GensM,m->act(p,m))))));
G := SemidirectProduct(P, alpha, M);
GensG := GeneratorsOfGroup(G);
pro := Projection(G);
emb1 := Embedding(G, 1);
emb2 := Embedding(G, 2);
Elts := [];
Eltt := [];
for g in GensG do
 p := Image(pro, g);
 pg := Image(emb1, p);
 Add(Elts, pg);
 m := PreImagesRepresentative(emb2, pg^(-1) * g);
 Add(Eltt, Image(emb1, p * Image(d, m)));
od;
s := GroupHomomorphismByImages(G, G, GensG, Elts);
t := GroupHomomorphismByImages(G, G, GensG, Eltt);
return Objectify(HapCatOneGroup,
 rec(sourceMap := s, targetMap := t
));
end;
##
##
#1
#F CMToCat1_Morpre
##
CMToCat1_Morpre := function(CC, CD, map)
local
 GC, GensGC, proC, emb1C, emb2C, g,
 GD, fM, fP, p, m, emb1D, emb2D, ImGensGC;
 GC := Source(CC!.sourceMap);
 GensGC := GeneratorsOfGroup(GC);
 GD := Source(CD!.sourceMap);
 fM := map(1);
 fP := map(2);
 proC := Projection(GC);
 emb1C := Embedding(GC, 1);
 emb2C := Embedding(GC, 2);
 emb1D := Embedding(GD, 1);
 emb2D := Embedding(GD, 2);
 ImGensGC := [];
 for g in GensGC do
 p := Image(proC, g);
 m := PreImagesRepresentative(emb2C, (Image(emb1C, p))^-1 * g);
 Add(ImGensGC, Image(emb2D, Image(fM, m)));
 od;
 return Objectify(HapCatOneGroupMorphism,
 rec(
 source := CC,
 target := CD,
 mapping := GroupHomomorphismByImages(GC, GD, GensGC, ImGensGC)
));
end;
CMToCat1_Mor:=function(fX)
local CC,CD,map;
 CC:=CMToCat1_Obj(fX!.source);
 CD:=CMToCat1_Obj(fX!.target);
 map:=fX!.mapping;
 return CMToCat1_Morpre(CC,CD,map);
end;

CMToCat1_Seq:=function(LfX)
local n,i,GC,Res;
 n:=Length(LfX);
 GC:=[];
 for i in [1..n] do
 GC[i]:=CMToCat1_Obj(LfX[i]!.source);
 od;
 GC[n+1]:=CMToCat1_Obj(LfX[i]!.target);
 Res:=[];
 for i in [1..n] do
 Res[i]:=CMToCat1_Morpre(GC[i],GC[i+1],LfX[i]!.mapping);
 od;
 return Res;
end;

8.3.10 CrossedModuleByCatOneGroup(X)

```gap
# CrossedModuleByCatOneGroup
# Input: A cat-1-group, or a morphism of cat-1-groups, or
# a sequence of morphisms of cat-1-groups
# Output: The image of the input under the functor
# (Cat-1-groups)->(Crossed modules)
InstallGlobalFunction(CrossedModuleByCatOneGroup, function(X)
local Cat1ToCM_Obj,
    Cat1ToCM_Morpre,
    Cat1ToCM_Mor,
    Cat1ToCM_Seq;

# Cat1ToCM_Obj
# Input: A cat-1-group C
# Output: The crossed module corresponds to C
Cat1ToCM_Obj:=function(C)
local s, t, M, P, GensM, d, act;
s:=C!.sourceMap;
t:=C!.targetMap;
M:=Kernel(s);
P:=Image(s);
GensM:=GeneratorsOfGroup(M);
d:=GroupHomomorphismByImages(M, P, GensM, List(GensM, m->Image(t, m)));
act:=function(p, m)
    return p^(-1)*m*p;
end;
return Objectify(HapCrossedModule,
    rec(map:=d,
        action:=act)
);
end;
#
### end of Cat1ToCM_Obj ###########################

# Cat1ToCM_Morpre
# Input: A cat-1-group C
# Output: The crossed module corresponds to C
Cat1ToCM_Morpre:=function(XC, XD, f)
local phiC, MC, PC,
    GensM, GensP, mapM, mapP, Map,
    phiD, MD, PD;
phiC:=XC!.map;
phiD:=XD!.map;
MC:=Source(phiC);
PC:=Range(phiC);
MD:=Source(phiD);
PD:=Range(phiD);
```

GensM := GeneratorsOfGroup(MC);
GensP := GeneratorsOfGroup(PC);
mapM := GroupHomomorphismByImages(MC, MD, GensM, List(GensM, m -> Image(f, m)));
mapP := GroupHomomorphismByImages(PC, PD, GensP, List(GensP, p -> Image(f, p)));

###
#2
Map := function(n)
 if n = 1 then
 return mapM;
 fi;
 if n = 2 then
 return mapP;
 fi;
 Print("Only apply for n = 1, 2");
 return fail;
end;
#
###

return Objectify(HapCrossedModuleMorphism,
 rec(source := XC,
 target := XD,
 mapping := Map));
end;
#
###

#1
#F Cat1ToCM_Mor
Input: A morphism fC of cat-1-groups
Output: The morphism of crossed modules corresponds to fC
##
Cat1ToCM_Mor := function(fC)
local XC, XD, f;

 XC := Cat1ToCM_Obj(fC!.source);
 XD := Cat1ToCM_Obj(fC!.target);
 f := fC!.mapping;
 return Cat1ToCM_Morpre(XC, XD, f);
end;
#
###

#1
#F Cat1ToCM_Seq
Input: A sequence LfC of morphisms of cat-1-groups
Output: The sequence of morphisms of crossed modules
corresponds to LfC
##
Cat1ToCM_Seq := function(LfC)
local n, i, XC, Res;

 n := Length(LfC);
8.3 GAP Code

XC := []; for i in [1..n] do
 XC[i] := Cat1ToCM_Obj(LfC[i]!.source);
 od;
XC[n+1] := Cat1ToCM_Obj(LfC[i]!.target);
Res := [];
for i in [1..n] do
 Res[i] := Cat1ToCM_Morpre(XC[i], XC[i+1], LfC[i]!.mapping);
 od;
return Res;
end;
##
end of Cat1ToCM_Seq

if IsHapCatOneGroup(X) then
 return Cat1ToCM_Obj(X);
fi;
if IsHapCatOneGroupMorphism(X) then
 return Cat1ToCM_Mor(X);
fi;
if IsList(X) then
 return Cat1ToCM_Seq(X);
fi;
end;
##
end of CrossedModuleByCatOneGroup

8.3.11 NerveOfCatOneGroup(X,n)

NerveOfCatOneGroup_Obj
Input: A cat-1-group C and an integer number >=0
Output: The nerve of C
local LGs, LBs, LDs,
 t, e,
 N, M, AutM, phi,
 g, pg, m, ConjTmp,
 Tmp, TmpBs, TmpDs,
 Gens, GensToLists, ImgGens,
if not IsHapCatOneGroup(C) then
 Print("This function must be applied to a cat-1-group.\n");
 return fail;
fi;
s:=C!.sourceMap;
t:=C!.targetMap;
N:=Image(s);
M:=Kernel(s);
AutM:=AutomorphismGroup(M);
e:=One(M);
LGs:=[];
LBs:=[];
LDs:=[];
EmbOnes:=[];
EmbTwos:=[];
Pros:=[];
Gens:=[];
GensToLists:=[];

############### Compute the list of group G_i for i=1..n ###############
LGs[1]:=Source(s);
Gens[1]:=GeneratorsOfGroup(LGs[1]);
GensToLists[1]:=List(Gens[1],g->[g]);
for n in [2..number] do
 ConjTmp:=[];
 len:=Length(Gens[n-1]);
 for i in [1..len] do
 m:=GensToLists[n-1][i][1];
 for j in [2..n-1] do
 m:=m*GensToLists[n-1][i][j];
 od;
 Add(ConjTmp,ConjugatorAutomorphismNC(M,Image(t,m)));
 od;
 phi:=GroupHomomorphismByImagesNC(LGs[n-1],AutM,
 Gens[n-1],ConjTmp);
 LGs[n]:=SemidirectProduct(LGs[n-1],phi,M);
 EmbOnes[n]:=Embedding(LGs[n],1);
 EmbTwos[n]:=Embedding(LGs[n],2);
 Pros[n]:=Projection(LGs[n]);
 Gens[n]:=GeneratorsOfGroup(LGs[n]);
 len:=Length(Gens[n]);
 GensToLists[n]:=List([1..len],x->[[]]);
 for i in [1..len] do
 g:=Gens[n][i];
 Tmp:=[];
 for j in [1..n-1] do
 pg:=Image(Pros[n-j+1],g);
 m:=PreImagesRepresentative(EmbTwos[n-j+1],
 (Image(EmbOnes[n-j+1],pg))^(-1)*g);
 Tmp[n-j+1]:=m;
 g:=pg;
 od;
 Tmp[1]:=g;
GensToLists[n][i]:=Tmp;
 od;
od;

###
#2
#F BoundariesOfToList
Input: List Lm:=[g_1,m_2,...,m_n]
Output: List of the image of d_i(Lm) with i:=0..n
##
BoundariesOfToList:=function(Lm,n)
local i,j,TmpB,LB;

 if n=2 then
 LB:=[[Image(t,Lm[1])*Lm[2]],[Lm[1]*Lm[2]],[Lm[1]]];
 fi;

 if n>2 then
 LB:=[];

 ############### Compute d_0 #########################
 TmpB:=[[Image(t,Lm[1])*Lm[2]]];
 for i in [2..n-1] do
 TmpB[i]:=Lm[i+1];
 od;
 Add(LB,TmpB);

 ############### Compute d_1-->d_{n-1} ###############
 for i in [2..n] do
 TmpB:=[];
 for j in [1..i-2] do
 TmpB[j]:=Lm[j];
 od;
 TmpB[i-1]:= Lm[i-1]*Lm[i];
 for j in [i..n-1] do
 TmpB[j]:=Lm[j+1];
 od;
 Add(LB,TmpB);
 od;

 ############### Compute d_n ##########################
 TmpB:=[];
 for i in [1..n-1] do
 TmpB[i]:=Lm[i];
 od;
 Add(LB,TmpB);
 fi;
 return LB;
end;

#2
#F DegeneraciesOfToList
Input: List Lm:=[g_1,m_2,...,m_n]
Output: List of the image of s_i(Lm) with i:=0..n
##
DegeneraciesOfToList:=function(Lm,n)

...
local i,j,TmpD,LD,g;

g:=Lm[1];
if n=1 then
 LD:=[[Image(s,g),Image(s,g^(-1))*g],[g,e]];
fi;
if n>1 then
 LD:=[];
 ########## Compute s_0 #########################
 TmpD:=[[Image(s,g),Image(s,g^(-1))*g] ;
 for i in [3..n+1] do
 TmpD[i]:=Lm[i-1];
 od;
 Add(LD,TmpD);

 ########## Compute s_1 -> s_n ##################
 for i in [2..n+1] do
 TmpD:=[];
 for j in [1..i-1] do
 TmpD[j]:=Lm[j];
 od;
 TmpD[i]:=e;
 for j in [i+1..n+1] do
 TmpD[j]:=Lm[j-1];
 od;
 Add(LD,TmpD);
 od;
 fi;
 return LD;
end;
##
########## end of DegeneraciesOfToList ####################
###
#2
#F ListToOne
Input: List Lm:=[g_1,m_2,m_3,...,m_n]
Output: The semi-product g_1 x| m_2 x| m_3 x| ... x| m_n
##
ListToOne:=function(Lm,n)
local i,m;

 if n=1 then
 m:=Lm[1];
 fi;
 if n>1 then
 m:=Lm[1];
 for i in [2..n] do
 m:=Image(EmbOnes[i],m)*Image(EmbTwos[i],Lm[i]);
 od;
 fi;
 return m;
end;
##
########## end of ListToOne ################################

##
Compute boundary maps #######################################
LBs:=[[t,s]];
for n in [2..number] do
 len:=Length(Gens[n]);
 Tmp:=[];
 TmpBs:=[];
 for i in [1..len] do
 Tmp[i]:=BoundariesOfToList(GensToLists[n][i],n);
 TmpBs[i]:=List(Tmp[i],Lm->ListToOne(Lm,n-1));
 od;
 ImgGens:=[];
 for k in [1..n+1] do
 ImgGens[k]:=List([1..len],i->TmpBs[i][k]);
 od;
 LTmpB:=[];
 for k in [1..n+1] do
 LTmpB[k]:=GroupHomomorphismByImagesNC(LGs[n],LGs[n-1],
 Gens[n],ImgGens[k]);
 od;
 LBs[n]:=LTmpB;
 od;

############################ Compute degeneracy maps #############################
for n in [1..number-1] do
 len:=Length(Gens[n]);
 Tmp:=[];
 TmpDs:=[];
 for i in [1..len] do
 Tmp[i]:=DegeneraciesOfToList(GensToLists[n][i],n);
 TmpDs[i]:=List(Tmp[i],Lm->ListToOne(Lm,n+1));
 od;
 ImgGens:=[];
 for k in [1..n+1] do
 ImgGens[k]:=List([1..len],i->TmpDs[i][k]);
 od;
 LTmpD:=[];
 for k in [1..n+1] do
 LTmpD[k]:=GroupHomomorphismByImagesNC(LGs[n],LGs[n+1],
 Gens[n],ImgGens[k]);
 od;
 LDs[n]:=LTmpD;
 od;

#2
GroupsList:=function(n)
 if n=0 then
 return N;
 fi;
 return LGs[n];
end;
##
#2
BoundariesList:=function(n,k)
 return LBs[n][k+1];
end;
##
8.3 GAP Code

DegeneraciesList:=function(n,k)
 if n=0 and k = 0 then
 return GroupHomomorphismByFunction(N,LGs[1],
 function(x) return x; end);
 fi;
 return LDs[n][k+1];
end;
```

##

```
return Objectify(HapSimplicialGroup,
 rec(
 groupsList:=GroupsList,
 boundariesList:=BoundariesList,
 degeneraciesList:=DegeneraciesList,
 properties:=["length",number])
));
end;
```

### end of NerveOfCatOneGroup_Obj #

```
#F NerveOfCatOneGroup_Morpre
Input: Nerve of G, nerve of H and map f:G-->H
Output: The morphism between nerve of G and nerve of H
##
NerveOfCatOneGroup_Morpre:=function(NG,NH,f,number)
local
 GLs,GEmbOnes,GEmbTwos,GPros,HLs,HEmbOnes,HEmbTwos,HPros,
 Gens,GensToLists,
 i,j,n,m,g,pg,len,
 Tmp,ImgGens,Maps,
 HListToOne,Mapping;
 GLs:=[];
 GEmbOnes:=[];
 GEmbTwos:=[];
 GPros:=[];
 HLs:=[];
 HEmbOnes:=[];
 HEmbTwos:=[];
 HPros:=[];
 Gens:=[];
 GensToLists:=[];
for n in [2..number] do
 GLs[n]:=NG!.groupsList(n);
 GEmbOnes[n]:=Embedding(GLs[n],1);
 GEmbTwos[n]:=Embedding(GLs[n],2);
 GPros[n]:=Projection(GLs[n]);
 HLs[n]:=NH!.groupsList(n);
 HEmbOnes[n]:=Embedding(HLs[n],1);
 HEmbTwos[n]:=Embedding(HLs[n],2);
 HPros[n]:=Projection(HLs[n]);
 Gens[n]:=GeneratorsOfGroup(GLs[n]);
 len:=Length(Gens[n]);
GensToLists[n] := List([1..len],x->[]);
for i in [1..len] do
 g := Gens[n][i];
 Tmp := [];
 for j in [1..n-1] do
 pg := Image(GPros[n-j+1],g);
 m := PreImagesRepresentative(GEmbTwos[n-j+1],(Image(GEmbOnes[n-j+1],pg))^(-1)*g);
 Tmp[n-j+1] := m;
 g := pg;
 od;
 Tmp[1] := g;
 GensToLists[n][i] := Tmp;
od;

HListToOne

HListToOne := function(Lm, n)
 local i, m;
 m := Lm[1];
 for i in [2..n] do
 m := Image(HEmbOnes[i],m)*Image(HEmbTwos[i],Lm[i]);
 od;
 return m;
end;

Maps := [];
for n in [2..number] do
 len := Length(Gens[n]);
 ImgGens := [];
 for i in [1..len] do
 ImgGens[i] := HListToOne(List(GensToLists[n][i], m->Image(f,m)), n);
 od;
 Maps[n] := GroupHomomorphismByImages(GLs[n], HLS[n],
 Gens[n], ImgGens);
od;

Mapping := function(n)
 if n=0 then
 return GroupHomomorphismByFunction(NG!.groupsList(0),
 NH!.groupsList(0),function(x) return Image(f,x); end);
 fi;
 if n=1 then
 return f;
 fi;
 return Maps[n];
end;
return Objectify(HapSimplicialGroupMorphism,
 rec(
 source:=NG,
 target:=NH,
 mapping:=Mapping,
 properties:=[["length",number]]
));
end;
#
#################### end of NerveOfCatOneGroup_Morpre ###############

#1
#F NerveOfCatOneGroup_Mor
Input: A morphism of cat-1-groups
Output: The morphism of their nerves
##
NerveOfCatOneGroup_Mor:=function(Cf,n)
 local NG,NH,f;

 NG:=NerveOfCatOneGroup_Obj(Cf!.source,n);
 NH:=NerveOfCatOneGroup_Obj(Cf!.target,n);
 f:=Cf!.mapping;
 return NerveOfCatOneGroup_Morpre(NG,NH,f,n);
end;
#
#################### end of NerveOfCatOneGroup_Mor ###############

#1
#F NerveOfCatOneGroup_Seq
Input: A sequence of morphisms of cat-1-groups
Output: The sequence of morphisms of their nerves
##
NerveOfCatOneGroup_Seq:=function(Lf,n)
 local len,i,NC,Res;

 len:=Length(Lf);
 NC:=[[]];
 for i in [1..len] do
 NC[i]:=NerveOfCatOneGroup_Obj(Lf[i]!.source,n);
 od;
 NC[len+1]:=NerveOfCatOneGroup_Obj(Lf[len]!.target,n);
 Res:=[[]];
 for i in [1..len] do
 Res[i]:=NerveOfCatOneGroup_Morpre(NC[i],NC[i+1],
 Lf[i]!.mapping,n);
 od;
 return Res;
end;
#
#################### end of NerveOfCatOneGroup_Seq ###############

if IsHapCatOneGroup(X) then
 return NerveOfCatOneGroup_Obj(X,n);
f1;
if IsHapCatOneGroupMorphism(X) then
 return NerveOfCatOneGroup_Mor(X,n);
fi;
if IsList(X) then
 if IsEmpty(X) then
 return [];
 fi;
 return NerveOfCatOneGroup_Seq(X,n);
fi;
end);
#
############################# end of NerveOfCatOneGroup #############################

8.3.12 CatOneGroupsByGroup(G)

##
#0
#F CatOneGroupsByGroup
Input: A finite group G
Output: The list of all non-isomorphic cat-1-group structures on G
##
InstallGlobalFunction(CatOneGroupsByGroup, function(G)
local
 nk,n,k,Lst,S,p,x,tmp,i,Imgs,s,h,hinv,Gens,C,ResCats,
 ClassifyPairsByOrbit,CreatePairsByAbelianGroup,
 CreatePairsByNonAbelianGroup,CreatePairsByGroup;

 ###
#1
#F ClassifyPairsByOrbit
Input: The automorphism group of group G and
a list Lst of pairs of group homomorphisms [s,t]:G->G
Output: A list of non-isomorphic pairs of Lst
##
ClassifyPairsByOrbit:=function(A,Lst)
local
 CL,TmpCL,Lx,Res,
 ActToMap,ActToPair,
 RefineClassesUnderGroup,
 processDuplicates;

 if Length(Lst)<=1 then
 return Lst;
 fi;

 #2
 ActToMap:=function(s,f)
 return InverseGeneralMapping(f)*s*f;
 end;
 ##
 #2
 ActToPair:=function(p,f)
 local h;
 h:=InverseGeneralMapping(f);
 return [h*p[1]*f,h*p[2]*f];
 end;
RefineClassesUnderGroup := function(A, Lst, Indx, attr, actAttr)
local ValAttr, i, NC, LC, Sel, Orb, T, Dict, S, Gens, op, qs, g, h, img, p, x, cnt;

ValAttr := [];
for i in [1..Length(Indx)] do
 ValAttr[i] := attr(Lst[Indx[i]]);
 od;
NC := [];
Gens := SmallGeneratingSet(A);
Sel := [1..Length(Indx)];
while Length(Sel) > 0 do
 # orbit algorithm on attributes, regular transversal
 LC := [Indx[Sel[1]]];
 Orb := [ValAttr[Sel[1]]];
 Unbind(Sel[1]);
 T := [One(A)];
 Dict := NewDictionary(Orb[1], true);
 AddDictionary(Dict, Orb[1], 1);
 S := TrivialSubgroup(A);
 op := 1;
 qs := Size(A);
 while op <= Length(Orb) and Size(S) < qs do
 for g in Gens do
 img := actAttr(Orb[op], g);
 p := LookupDictionary(Dict, img);
 if p = fail then
 Add(Orb, img);
 AddDictionary(Dict, img, Length(Orb));
 Add(T, T[op]*g);
 qs := Size(A)/Length(Orb);
 elif Size(S) <= qs/2 then
 x := T[op]*g/T[p];
 S := ClosureSubgroup(S, x);
 fi;
 od;
 op := op + 1;
 od;
 # which other values are in the orbit
 for i in [2..Length(Sel)] do
 p := LookupDictionary(Dict, ValAttr[Sel[i]]);
 if p <> fail then
 x := Indx[Sel[i]];
 AddSet(LC, x);
 Unbind(Sel[i]);
 if p > 1 then # not identity
 h := T[p]^-1;
 Lst[x] := ActToPair(Lst[x], h);
 fi;
 od;
 od;
end;
##
#2
#F RefineClassesUnderGroup
##

RefineClassesUnderGroup := function(A, Lst, Indx, attr, actAttr)
local ValAttr, i, NC, LC, Sel, Orb, T, Dict, S, Gens, op, qs, g, h, img, p, x, cnt;

ValAttr := [];
for i in [1..Length(Indx)] do
 ValAttr[i] := attr(Lst[Indx[i]]);
 od;
NC := [];
Gens := SmallGeneratingSet(A);
Sel := [1..Length(Indx)];
while Length(Sel) > 0 do
 # orbit algorithm on attributes, regular transversal
 LC := [Indx[Sel[1]]];
 Orb := [ValAttr[Sel[1]]];
 Unbind(Sel[1]);
 T := [One(A)];
 Dict := NewDictionary(Orb[1], true);
 AddDictionary(Dict, Orb[1], 1);
 S := TrivialSubgroup(A);
 op := 1;
 qs := Size(A);
 while op <= Length(Orb) and Size(S) < qs do
 for g in Gens do
 img := actAttr(Orb[op], g);
 p := LookupDictionary(Dict, img);
 if p = fail then
 Add(Orb, img);
 AddDictionary(Dict, img, Length(Orb));
 Add(T, T[op]*g);
 qs := Size(A)/Length(Orb);
 elif Size(S) <= qs/2 then
 x := T[op]*g/T[p];
 S := ClosureSubgroup(S, x);
 fi;
 od;
 op := op + 1;
 od;
 # which other values are in the orbit
 for i in [2..Length(Sel)] do
 p := LookupDictionary(Dict, ValAttr[Sel[i]]);
 if p <> fail then
 x := Indx[Sel[i]];
 AddSet(LC, x);
 Unbind(Sel[i]);
 if p > 1 then # not identity
 h := T[p]^-1;
 Lst[x] := ActToPair(Lst[x], h);
 fi;
 od;
 od;
end;
fi;
fi;
Add(NC,[S,LC]);
Sel:=Set(Sel);
od;
return NC;
end;
##
	## end of RefineClassesUnderGroup ###############
##
end of RefineClassesUnderGroup
##

#2
#F processDuplicates #remove duplicates
#

processDuplicates:=function()
local Lx,i,p,Sel;

TmpCL:=[];
for Lx in CL do
 Sel:=[[];
 for i in Lx[2] do
 p:=First(Sel,x->Lst[i]=Lst[x]);
 if p=fail then
 Add(Sel,i);
 fi;
 od;
 Add(TmpCL,[Lx[1],Sel]);
od;
CL:=TmpCL;
end;
##
	## end of processDuplicates ###############
##

Images of first component
CL:=RefineClassesUnderGroup(A,Lst,[1..Length(Lst)],
x->Image(x[1]),function(s,a) return Image(a,s);end);
processDuplicates();

Res:=[];
Kernels of first component
TmpCL:=[[];
for Lx in CL do
 if Length(Lx[2])= 1 then
 Add(Res,Lst[Lx[2][1]]);
 else
 Append(TmpCL,RefineClassesUnderGroup(Lx[1],Lst,Lx[2],
x->Kernel(x[1]),function(s,a) return Image(a,s);end));
 fi;
od;
CL:=TmpCL;
processDuplicates();

Kernels of second component
TmpCL:=[[];
for Lx in CL do
 if Length(Lx[2])= 1 then
 Add(Res,Lst[Lx[2][1]]);
 else

Append(TmpCL,RefineClassesUnderGroup(Lx[1],Lst,Lx[2],
x->Kernel(x[2]),function(s,a) return Image(a,s);end));
fi;
od;
CL:=TmpCL;
processDuplicates();

First component
TmpCL:=[];
for Lx in CL do
 if Length(Lx[2]) = 1 then
 Add(Res,Lst[Lx[2][1]]);
 else
 Append(TmpCL,RefineClassesUnderGroup(Lx[1],Lst,Lx[2],
x->x[1],ActToMap));
 fi;
 od;
CL:=TmpCL;
processDuplicates();

Second component
TmpCL:=[];
for Lx in CL do
 if Length(Lx[2]) = 1 then
 Add(Res,Lst[Lx[2][1]]);
 else
 Append(TmpCL,RefineClassesUnderGroup(Lx[1],Lst,Lx[2],
x->x[2],ActToMap));
 fi;
 od;
CL:=TmpCL;
processDuplicates();
if IsEmpty(CL) then
 return Res;
fi;
if ForAny(CL,x->Length(x[2])>1) then
 Error("Uniqueness failure");
fi;
return Concatenation(Res,List(CL,x->Lst[x[2][1]]));
end;
##
end of ClassifyPairsByOrbit
#1
#F CreatePairsByAbelianGroup
Input: An abelian group G
Output: A list of all non-isomorphic pairs [s,t]:G->G
such that (G,s,t) is a cat-1-group
##
CreatePairsByAbelianGroup:=function(G)
local
AbIn,NumX,SizeX,nX,GroupX,GensX,
i,LSX,e,Gens,sum,
GensLK,LK,sLK,LComX,tmp,GensK,ImgS,xK,xG,
M,S,f,finv,nLK,Aut,n,LfK,K,CompK,N,GensN,t,
ResPairs,FCombination;
AbIn:=AbelianInvariants(G);
ifIsEmpty(AbIn) then
 return [IdentityMapping(G),IdentityMapping(G)];
fi;

NumX:=Set(AbIn);
SizeX:=List(NumX,x->Length(Filtered(AbIn,i->i=x)));

#2
#F FCombination
#
FCombination:=function(n)
local T,ST,tmp,Res,x;
 if n=1 then
 return List([0..SizeX[n]],x->[x]);
 fi;
 if n>1 then
 Res:=[];
 T:=FCombination(n-1);
 for x in [0..SizeX[n]] do
 ST:=StructuralCopy(T);
 for tmp in ST do
 Add(tmp,x);
 od;
 Append(Res,ST);
 od;
 return Res;
 fi;
end;
#

nX:=Length(NumX);
GroupX:=[];
GensX:=[];
for i in [1..nX] do
 GroupX[i]:=CyclicGroup(NumX[i]);
 GensX[i]:=First(GroupX[i],g->Order(g)=NumX[i]);
 od;

LSX:=[];
for i in [1..nX] do
 Append(LSX,List([1..SizeX[i]],m->[GroupX[i]]));
 od;
S:=DirectProduct(LSX);
e:=One(S);
Gens:=[];
sum:=0;
for i in [1..nX] do
 Append(Gens,List([1..SizeX[i]],m->[Image(Embedding(S,sum+m),GensX[i]])]);
 sum:=sum+SizeX[i];
 od;
GensLK:=[];
LK:=[];
sLK:=[];
LComX:=FCombination(Length(NumX));
for tmp in LComX do
 GensK:=[];
 Imgs:=[];
 sum:=0;
 for i in [1..Length(tmp)] do
 xK:=List([1..tmp[i]],m->Gens[sum+m]);
 xG:=Concatenation(xK,List([tmp[i]+1..SizeX[i]],m->e));
 Append(GensK,xK);
 Append(Imgs,xG);
 sum:=sum+SizeX[i];
 od;
 Add(GensLK,GensK);
 if IsEmpty(GensK) then
 Add(LK,Group(e));
 else
 Add(LK,Group(GensK));
 fi;
 Add(sLK,GroupHomomorphismByImages(S,S,Gens,Imgs));
od;

f:=IsomorphismGroups(S,G);
finv:=InverseGeneralMapping(f);
LK:=List(LK,K->Image(f,K));
sLK:=List(sLK,s->finv*s*f);
GensLK:=List(LK,K->GeneratorsOfGroup(K));
LK:=Length(LK);

Aut:=AutomorphismGroup(G);
e:=One(G);
ResPairs:=[];
for n in [1..nLK] do
 LfK:=[];
 K:=LK[n];
 CompK:=Complementclasses(G,K);
 for N in CompK do
 GensN:=SmallGeneratingSet(N);
 Gens:=Concatenation(GensLK[n],GensN);
 Imgs:=Concatenation(GensLK[n],List(GensN,g->e));
 t:=GroupHomomorphismByImages(G,G,Gens,Imgs);
 Add(LfK,[sLK[n],t]);
 od;
 Append(ResPairs,ClassifyPairsByOrbit(Aut,LfK));
od;
return ResPairs;
end;

##
#F CreatePairsByNonAbelianGroup

CreatePairsByNonAbelianGroup:=function(G)
local
Aut,GensG,LN,nLN,IdLN,SizeLN,SetSizeLN,CLN,
i,j,k,nCLN,LS,IdLS,nLS,
LfN,dem,N,nat,GoN,SizeGoN,IdGoN,K,GensK,f,h,
x,y,s,Li,SKer,NotSKer,a,b,
T,PairSKer,PairNotSKer,ResPairs;

Aut:=AutomorphismGroup(G);
GensG:=GeneratorsOfGroup(G);
LN:=NormalSubgroups(G);
nLN:=Length(LN);
IdLN:=List(LN,x->IdGroup(x));
SizeLN:=List(LN,x->Size(x));
SetSizeLN:=Set(SizeLN);
CLN:=List([1..Length(SetSizeLN)],x->[]);
for i in [1..nLN] do
 Add(CLN[Position(SetSizeLN,SizeLN[i])],i);
od;
nCLN:=Length(CLN);
LS:=LatticeSubgroups(G)!._conjugacyClassesSubgroups;
if not IsMutable(LS) then
 LS:= ShallowCopy(LS);
fi;
LS:=List(LS,x->x[1]);
IdLS:=List(LS,x->IdGroup(x));
nLS:=Length(LS);
PairSKer:=[[];
PairNotSKer:=[[];
for n in [1..nCLN] do
 L:=CLN[n];
nL:=Length(L);
 LfN:=List([1..nLN],x->[]);
 for i in L do
 N:=LN[i];
 nat:=NaturalHomomorphismByNormalSubgroup(G,N);
 GoN:=Range(nat);
 SizeGoN:=Size(GoN);
 IdGoN:=IdGroup(GoN);
 for k in [1..nLS] do
 if IdLS[k]= IdGoN then
 K:=LS[k];
 if Size(Image(nat,K))=SizeGoN then
 GensK:=GeneratorsOfGroup(K);
 f:=GroupHomomorphismByImages(K,GoN,GensK,
 List(GensK,g->Image(nat,g)));
 h:=InverseGeneralMapping(f);
 s:=GroupHomomorphismByImages(G,G,GensG,
 List(GensG,g->Image(h,Image(nat,g))));
 Add(LfN[i],[k,s]);
 fi;
 fi;
 od;
 od;
end;
SKer:=[[];
for a in [1..nL] do
 i:=L[a];
 Li:=[[];
 if Size(CommutatorSubgroup(LN[i],LN[i]))=1 then
 Li:=List(LfN[i],x->[x[2],x[2]]);
Append(SKer, ClassifyPairsByOrbit(Aut, Li));
od;
Append(PairSKer, ClassifyPairsByOrbit(Aut, SKer));

NotSKer := [];
for a in [2..nL] do
 i := L[a];
 Li := [];
 for b in [1..a-1] do
 j := L[b];
 if Size(CommutatorSubgroup(LN[i], LN[j])) = 1 then
 for x in LfN[i] do
 for y in LfN[j] do
 if x[1] = y[1] then
 Add(Li, [x[2], y[2]]);
 fi;
 od;
 fi;
 od;
 od;
Append(NotSKer, ClassifyPairsByOrbit(Aut, Li));
od;
NotSKer := ClassifyPairsByOrbit(Aut, NotSKer);
T := ShallowCopy(NotSKer);
for x in NotSKer do
 Add(T, [x[2], x[1]]);
od;
Append(PairNotSKer, ClassifyPairsByOrbit(Aut, T));
od;
ResPairs := Concatenation(PairSKer, PairNotSKer);
return ResPairs;
end;
##
CreatePairsByGroup := function(G)
if IsAbelian(G) then
return CreatePairsByAbelianGroup(G);
else
return CreatePairsByNonAbelianGroup(G);
fi;
#end;
##
CreatePairsByGroup

n := Size(G);
if n <= HAP_CAT_SIZE then
 nk := IdGroup(G);
n := nk[1];
k := nk[2];
Gens := GeneratorsOfGroup(G);
S := SmallGroup(n, k);
h := IsomorphismGroups(G, S);
hinv := InverseGeneralMapping(h);
Lst := [];
if nk in HAP_CAT_PERM then
 for x in HAP_CAT[n][k] do
 fi;
 od;
else
 Append(SKer, ClassifyPairsByOrbit(Aut, Li));
 od;
Append(PairSKer, ClassifyPairsByOrbit(Aut, SKer));

NotSKer := [];
for a in [2..nL] do
 i := L[a];
 Li := [];
 for b in [1..a-1] do
 j := L[b];
 if Size(CommutatorSubgroup(LN[i], LN[j])) = 1 then
 for x in LfN[i] do
 for y in LfN[j] do
 if x[1] = y[1] then
 Add(Li, [x[2], y[2]]);
 fi;
 od;
 fi;
 od;
 od;
Append(NotSKer, ClassifyPairsByOrbit(Aut, Li));
od;
NotSKer := ClassifyPairsByOrbit(Aut, NotSKer);
T := ShallowCopy(NotSKer);
for x in NotSKer do
 Add(T, [x[2], x[1]]);
od;
Append(PairNotSKer, ClassifyPairsByOrbit(Aut, T));
od;
ResPairs := Concatenation(PairSKer, PairNotSKer);
return ResPairs;
end;
##
CreatePairsByNonAbelianGroup

CreatePairsByGroup := function(G)
 if IsAbelian(G) then
 return CreatePairsByAbelianGroup(G);
 else
 return CreatePairsByNonAbelianGroup(G);
 fi;
#end;
##
CreatePairsByGroup

n := Size(G);
if n <= HAP_CAT_SIZE then
 nk := IdGroup(G);
n := nk[1];
k := nk[2];
Gens := GeneratorsOfGroup(G);
S := SmallGroup(n, k);
h := IsomorphismGroups(G, S);
hinv := InverseGeneralMapping(h);
Lst := [];
if nk in HAP_CAT_PERM then
 for x in HAP_CAT[n][k] do
 fi;
 od;
tmp:=[];
for i in [1..2] do
 s:=GroupHomomorphismByImages(S,S,x[i][1],x[i][2]);
 Imgs:=List(Gens,g->Image(hinv,Image(s,(Image(h,g)))));
 tmp[i]:=GroupHomomorphismByImages(G,G,Gens,Imgs);
 od;
Add(Lst,tmp);
od;
else
 p:=Pcgs(S);
 for x in HAP_CAT[n][k] do
 tmp:=[];
 for i in [1..2] do
 Imgs:=List(x[i],m->PcElementByExponents(p,m));
 s:=GroupHomomorphismByImages(S,S,p,Imgs);
 Imgs:=List(Gens,g->Image(hinv,Image(s,(Image(h,g)))));
 tmp[i]:=GroupHomomorphismByImages(G,G,Gens,Imgs);
 od;
 Add(Lst,tmp);
 od;
fi;
else
 Lst:=CreatePairsByGroup(G);
fi;
ResCats:=[];
for x in Lst do
 C:=Objectify(HapCatOneGroup,
 rec(sourceMap:=x[1],
 targetMap:=x[2]));
 Add(ResCats,C);
od;
return ResCats;
end);

##
end of CatOneGroupsByGroup

8.3.13 NumberSmallCatOneGroups(arg)

#F NumberSmallCatOneGroups
Input: A positive integer m or two positive integers m,k
Output: The number of cat-1-groups of order m or or the number of
non-isomorphic cat-1-group structures on the kth group of
order m from the database of small groups
InstallGlobalFunction(NumberSmallCatOneGroups, function(arg)
local m,k;

m:=arg[1];
if m >HAP_CAT_SIZE then
 Print("This function only apply for order less than or equal to ",
 HAP_CAT_SIZE,".\m");
 return fail;
fi;
if Length(arg)=1 then
 return Sum(List([1..NumberSmallGroups(m)],
k->Length(HAP_CAT[m][k])));
fi;
if Length(arg)=2 then
 k:=arg[2];
 if k>NumberSmallGroups(m) then
 Print("There are only ",NumberSmallGroups(m),
 " groups of order ",m,"\m");
 return fail;
 fi;
 return Length(HAP_CAT[m][k]);
fi;
return fail;
end);

##
################### end of NumberSmallCatOneGroups #######################

8.3.14 SmallCatOneGroup(m,k,i)
##
#0
#F SmallCatOneGroup
Input: Three positive integers m,k,i with m <=255
Output: The ith cat-1-group structure on SmallGroup(m,k)
##
InstallGlobalFunction(SmallCatOneGroup, function(m,k,i)
local S,sm,x,s,t,p;
sm:=Length(HAP_CAT[m][k]);
if i>sm then
 Print("There are only ",sm," cat-1-groups of SmallGroup(",
m,"","k")\m");
 return fail;
fi;
S:=SmallGroup(m,k);
x:=HAP_CAT[m][k][i];
if [m,k] in HAP_CAT_PERM then
 s:=GroupHomomorphismByImages(S,S,[1][1],[1][2]);
 t:=GroupHomomorphismByImages(S,S,[2][1],[2][2]);
else
 p:=Pcgs(S);
 s:=GroupHomomorphismByImages(S,S,p,List(x[1],
m->PcElementByExponents(p,m)));
 t:=GroupHomomorphismByImages(S,S,p,List(x[2],
m->PcElementByExponents(p,m)));
fi;
return Objectify(HapCatOneGroup,
 rec(sourceMap:=s,
 targetMap:=t
));
end);
##
################### end of SmallCatOneGroup #######################
8.3 GAP Code

8.3.15 IsomorphismCatOneGroups(C,D)

##
F IsomorphismCatOneGroups
Input: Two finite cat-1-groups C and D
Output: An isomorphism between C and D if they are isomorphic
and fail otherwise
##
InstallGlobalFunction(IsomorphismCatOneGroups, function(C,D)
 local
 sC,tC,G,sD,tD,GD,
 xC,xD,A,attr,actAttr,M,p,f,h,
 ActToMap,ActToPair,ActToSubgroup,FindOrbit,processOrbit,
 Map,map;

##
#1
ActToMap:=function(s,f)
 return InverseGeneralMapping(f)*s*f;
end;
##
##
#1
ActToPair:=function(p,f)
 local h;
 h:=InverseGeneralMapping(f);
 return [h*p[1]*f,h*p[2]*f];
end;
##
##
#1
ActToSubgroup:=function(K,f)
 return Image(f,K);
end;
##
##
#1
#F FindOrbit
##
FindOrbit:=function(A,attr,actAttr)
 local
 Gens,Orb,T,Dict,S,op,qs,g,p,img,h;
 Gens:=SmallGeneratingSet(A);
 Orb:=[attr(xC)];
 T:=[One(A)];
 Dict:=NewDictionary(Orb[1],true);
 AddDictionary(Dict,Orb[1],1);
 S:=TrivialSubgroup(A);
 op:=1;
 qs:=Size(A);
 while op<=Length(Orb) and Size(S)<qs do
 for g in Gens do
 img:=actAttr(Orb[op],g);
 p:=LookupDictionary(Dict,img);
 if p=fail then
 Add(Orb,img);
 AddDictionary(Dict,img,Length(Orb));
 end;
 end;
 end;
Add(T,T[op]*g);
qs:=Size(A)/Length(Orb);
elif Size(S)<=qs/2 then # otherwise stabilizer cant grow
 h:=T[op]*g/T[p];
 S:=ClosureSubgroup(S,h);
 fi;
 od;
 op:=op+1;
 od;
 return [Dict,S,T];
end;
##

processOrbit:=function()
##
###
M:=FindOrbit(A,attr,actAttr);
p:=LookupDictionary(M[1],attr(xD));
if p=fail then
 return fail;
fi;
A:=M[2];
if p<>1 then
 h:=M[3][p]^-1;
 f:=f*h;
 xD:=ActToPair(xD,h);
fi;
##

sC:=C!.sourceMap;
tC:=C!.targetMap;
G:=Source(sC);
sD:=D!.sourceMap;
tD:=D!.targetMap;
GD:=Source(sD);

f:=IsomorphismGroups(GD,G);
if f = fail then
 return fail;
fi;
if IsomorphismGroups(HomotopyGroup(C,1),HomotopyGroup(D,1))=fail then
 return fail;
fi;
if IsomorphismGroups(HomotopyGroup(C,2),HomotopyGroup(D,2))=fail then
 return fail;
fi;
if IsomorphismGroups(Kernel(tC),Kernel(tD))=fail then
 return fail;
fi;
if IsomorphismGroups(Kernel(sC),Kernel(sD))=fail then
 return fail;
fi;
if IsomorphismGroups(Image(tC),Image(tD))=fail then
 return fail;
fi;
if IsomorphismGroups(Image(sC),Image(sD))=fail then
return fail;
fi;

Map:=function()
xC:=[sC,tC];
xD:=ActToPair([sD,tD],f);
if xC=xD then
 return InverseGeneralMapping(f);
fi;

A:=AutomorphismGroup(G);
attr:=s->Image(s[1]);
actAttr:=ActToSubgroup;
processOrbit();

attr:=s->Kernel(s[1]);
actAttr:=ActToSubgroup;
processOrbit();
if xC=xD then
 return InverseGeneralMapping(f);
fi;

attr:=s->Image(s[2]);
actAttr:=ActToSubgroup;
processOrbit();
if xC=xD then
 return InverseGeneralMapping(f);
fi;

attr:=s->s[1];
actAttr:=ActToMap;
processOrbit();
if xC=xD then
 return InverseGeneralMapping(f);
fi;

attr:=s->s[2];
actAttr:=ActToMap;
processOrbit();
if xC=xD then
 return InverseGeneralMapping(f);
fi;
return fail;
end;
map:=Map();
if map=fail then
 return fail;
fi;
return Objectify(HapCatOneGroupMorphism,
 rec(
 source:= C,
 target:= D,
 mapping:= map
)
);
end);
##

############## IsomorphismCatOneGroups #

8.3.16 IdCatOneGroup(C)

#F IdCatOneGroup
Input: A cat-1-group C of order <= 255
Output: A triple \([m,k,i]\) where C is isomorphic to the ith cat-1-group
structure on SmallGroup(m,k).
##
InstallGlobalFunction(IdCatOneGroup, function(C)

local
 ActToMap,ActToPair,ActToSubgroup,FindOrbit,processOrbit,
 s,t,G,nk,n,k,S,f,Lst,x,tmp,i,p,Imgs,A,xC,Ln,CLn,attr,actAttr,M;

ActToMap:=function(s,f)
 return InverseGeneralMapping(f)*s*f;
end;

ActToPair:=function(p,f)
 local h;
 h:=InverseGeneralMapping(f);
 return \([h*p[1]*f,h*p[2]*f]\);
end;

ActToSubgroup:=function(K,f)
 return Image(f,K);
end;

FindOrbit:=function(A,attr,actAttr)
 local Gens,Orb,T,Dict,S,op,qs,g,p,img,h;

#F FindOrbit
Gens:=SmallGeneratingSet(A);
Orb:=[attr(xC)];
T:=[One(A)];
Dict:=NewDictionary(Orb[1],true);
AddDictionary(Dict,Orb[1],1);
S:=TrivialSubgroup(A);
op:=1;
qs:=Size(A);
while op<=Length(Orb) and Size(S)<qs do
 for g in Gens do
 img:=actAttr(Orb[op],g);
p:=LookupDictionary(Dict,img);
 if p=fail then
 Add(Orb,img);
 AddDictionary(Dict,img,Length(Orb));
 Add(T,T[op]*g);
 qs:=Size(A)/Length(Orb);
 elsif Size(S)<=qs/2 then # otherwise stabilizer cant grow
 h:=T[op]*g/T[p];
 S:=ClosureSubgroup(S,h);
 fi;
 od;
op:=op+1;
 od;
return [Dict,S,T];
end;
##
###
##
processOrbit:=function()
 M:=FindOrbit(A,attr,actAttr);
 for i in Ln do
 p:=LookupDictionary(M[1],attr(Lst[i]));
 if p<>fail then
 Add(CLn,i);
 Lst[i]:=ActToPair(Lst[i],M[3][p]^-1);
 fi;
 od;
end;
##
###
s:= C!.sourceMap;
t:= C!.targetMap;
G:=Source(s);
n:=Size(G);
if n>HAP_CAT_SIZE then
 Print("This function only apply for cat-1-groups of order less than ",
 HAP_CAT_SIZE+1,"\n");
 return fail;
fi;
nk:=IdGroup(G); k:=nk[2];
S:=SmallGroup(n,k); f:=IsomorphismGroups(G,S);
Lst:=[];
if nk in HAP_CAT_PERM then
 for x in HAP_CAT[n][k] do
 tmp:=[];
 fi;

for i in [1..2] do
 tmp[i]:=GroupHomomorphismByImages(S,S,x[i][1],x[i][2]);
 od;
 Add(Lst,tmp);
 od;
else
 p:=Pcgs(S);
 for x in HAP_CAT[n][k] do
 tmp:=[];
 for i in [1..2] do
 Imgs:=List(x[i],m->PcElementByExponents(p,m));
 tmp[i]:=GroupHomomorphismByImages(S,S,p,Imgs);
 od;
 Add(Lst,tmp);
 od;
 fi;
A:=AutomorphismGroup(S);
xC:=ActToPair([s,t],f);

###
A:=AutomorphismGroup(S);
Ln:=[1..Length(Lst)];
CLn:=[];
attr:=s->Image(s[1]);
actAttr:=ActToSubgroup;
processOrbit();
if Length(CLn) =1 then
 return [n,k,CLn[1]];
fi;
A:=M[2];
Ln:=CLn;
CLn:=[];

###
attr:=s->Kernel(s[1]);
actAttr:=ActToSubgroup;
processOrbit();
if Length(CLn) =1 then
 return [n,k,CLn[1]];
fi;
A:=M[2];
Ln:=CLn;
CLn:=[];

###
attr:=s->Image(s[2]);
actAttr:=ActToSubgroup;
processOrbit();
if Length(CLn) =1 then
 return [n,k,CLn[1]];
fi;
A:=M[2];
Ln:=CLn;
CLn:=[];

###
attr:=s->Kernel(s[1]);
actAttr:=ActToSubgroup;
processOrbit();
if Length(CLn) =1 then
 return [n,k,CLn[1]];
fi;
A:=M[2];
Ln:=CLn;
CLn:=[];

############## First component ##################################
attr:=s->s[1];
actAttr:=ActToMap;
processOrbit();
if Length(CLn) =1 then
 return [n,k,CLn[1]];
fi;
A:=M[2];
Ln:=CLn;
CLn:=[];

############## Second component ##################################
attr:=s->s[2];
actAttr:=ActToMap;
processOrbit();
if Length(CLn) =1 then
 return [n,k,CLn[1]];
fi;
return fail;
end);
##

8.3.17 NumberSmallCrossedModules(m)

#0
#F NumberSmallCrossedModules
Input: A positive integer m<=255
Output: The number of crossed modules of order m
##
InstallGlobalFunction(NumberSmallCrossedModules, function(m)
 if m >HAP_CAT_SIZE then
 Print("This function only apply for order less than or equal to ",
 HAP_CAT_SIZE,".\n")
 return fail;
 fi;
 return Sum(HAP_CAT[m],x->Length(x));
end);
##

8.3.18 SmallCrossedModule(m,k)

#0
#F SmallCrossedModule
Input: Two positive integers m,k with m<=255
Output: The kth crossed module of order m in the database of
small crossed module
##
InstallGlobalFunction(SmallCrossedModule, function(m,k)
local sum,t,i;

if m >HAP_CAT_SIZE then
 Print("This function only apply for order less than or equal to ",
 HAP_CAT_SIZE,",\m");
 return fail;
fi;
if k>NumberSmallCrossedModules(m) then
 Print("There are only ",NumberSmallCrossedModules(m),
 " crossed modules of order ",m,"\m");
 return fail;
fi;
sum:=0;
t:=0;
while sum<k do
 i:=k-sum;
 t:=t+1;
 sum:=sum+Length(HAP_CAT[m][t]);
 od;
return CrossedModuleByCatOneGroup(SmallCatOneGroup(m,t,i));
end);
##
################### SmallCrossedModule ###################################

8.3.19 IsomorphismCrossedModules(XC,XD)
##
#0
#F IsomorphismCrossedModules
Input: Two finite crossed modules XC, XD
Output: An isomorphism between XC and XD if they are isomorphic and
fail otherwise
##
InstallGlobalFunction(IsomorphismCrossedModules, function(XC,XD)
local C,D,Iso,f,GC,GD,MC,MD,
 proD,emb1C,emb2C,emb1D,emb2D,
 Gens,Imgs,m,x,px,Map;

C:=CatOneGroupByCrossedModule(XC);
D:=CatOneGroupByCrossedModule(XD);
 Iso:=IsomorphismCatOneGroups(C,D);
if Iso=fail then
 return fail;
fi;
f:=Iso!.mapping;
GC:=Source(f);
GD:=Range(f);
MC:=Source(XC!.map);
MD:=Source(XD!.map);
proD:=Projection(GD);
emb1C:=Embedding(GC,1);
emb2C:=Embedding(GC,2);
emb1D:=Embedding(GD,1);
emb2D:=Embedding(GD,2);

Gens:=GeneratorsOfGroup(MC);
Imgs:=[];
for m in Gens do
 x:=Image(f,Image(emb2C,m));
 px:=Image(emb1D,Image(proD,x));
 Add(Imgs,PreImagesRepresentative(emb2D,px^(-1)*x));
od;

###
##
Map:=function(n)
if n=1 then
 return GroupHomomorphismByImages(MC,MD,Gens,Imgs);
fi;
if n=2 then
 return emb1C*f*proD;
fi;
Print("Only apply for n =1,2");
return fail;
end;
##
###
return Objectify(HapCrossedModuleMorphism,
rec(source:=XC,
target:=XD,
mapping:=Map
));
end);
##

################### IsomorphismCrossedModules ############################

8.3.20 IsomorphismCrossedModule(X)

##
#0
#F IdCrossedModule
Input: A crossed module X of order <=255
Output: A pair [n,k] where X is isomorphic to the kth crossed module
of order n in the database of small crossed module
##
InstallGlobalFunction(IdCrossedModule, function(X)
local T;

if Order(X) > HAP_CAT_SIZE then
 Print("This function only apply for crossed module of order <=",
 HAP_CAT_SIZE,"\n");
 return fail;
fi;
T:=IdCatOneGroup(CatOneGroupByCrossedModule(X));
return [T[1],Sum(List([1..T[2]-1],m->}
8.3 GAP Code

Length(HAP_CAT[T[1]][m]]))*T[3]);
end);
##
######################### IdCrossedModule ####################################

8.3.21 SubQuasiIsomorph(C)

##
#0
#F SubQuasiIsomorph
Input: A finite cat-1-group C
Output: A quasi-isomorphic sub cat-1-group of C
##
InstallGlobalFunction(SubQuasiIsomorph,function(C)
local
s,t,C,H,Kers,Kert,Kersnt,tKers,OrdPiOne,OrdPiTwo,OrdPi,
LS,Lx,x,sx,Ordsx,flag,
newGens,news,newt;

s:= C!.sourceMap;
t:= C!.targetMap;
G:=Source(s);
Kers:=Kernel(s);
Kert:=Kernel(t);
Kersnt:=Intersection(Kers,Kert);
tKers:=Image(t,Kers);
OrdPiOne:=Order(HomotopyGroup(C,1));
OrdPiTwo:=Order(HomotopyGroup(C,2));
OrdPi:=OrdPiOne*OrdPiTwo;
LS:=ConjugacyClassesSubgroups(LatticeSubgroups(G));
if not IsMutable(LS) then
 LS:= ShallowCopy(LS);
fi;
Sort(LS,function(x,y) return Size(x[1])<Size(y[1]); end);
flag:=0;
for Lx in LS do
 x:=Lx[1];
 if Order(x)>= OrdPi then
 if IsSubgroup(x,Kersnt) then
 for x in Lx do
 if IsSubgroup(x,Image(s,x)) then
 sx:=Image(s,x);
 Ordsx:=Order(sx);
 if Ordsx=Order(Intersection(sx,tKers))*OrdPiOne then
 H:=x;
 flag:=1;
 break;
 fi;
 fi;
 od;
 fi;
 fi;
 fi;
fi;
if flag = 1 then
 break;
fi;
if H=G then
 return C;
fi;
newGens := GeneratorsOfGroup(H);
news := GroupHomomorphismByImagesNC(H, H, newGens,
 List(newGens, x -> Image(s, x)));
newt := GroupHomomorphismByImagesNC(H, H, newGens,
 List(newGens, x -> Image(t, x)));
return Objectify(HapCatOneGroup, rec(
 sourceMap := news,
 targetMap := newt));
end;
#
##
8.3.22 QuotientQuasiIsomorph(C)

#0
#F QuotientQuasiIsomorph
Input: A finite cat-1-group C
Output: A quasi-isomorphic quotient cat-1-group of C
##
InstallGlobalFunction(QuotientQuasiIsomorph, function (C)
local s, t, G, H, Kers, Kert, Kersnt, Ims, OrdIms, Imt, OrdPiOne, OrdPiTwo, Ord,
 LN, x, n, i,
 OrderPiOneGx, OrderPiTwoGx,
 epi, newG, newGens, news, newt;

s := C!.sourceMap;
t := C!.targetMap;
G := Source(s);
Kers := Kernel(s);
Ims := Image(s);
OrdIms := Order(Ims);
Imt := Image(t);
Kert := Kernel(t);
Kersnt := Intersection(Kers, Kert);
OrdPiOne := Order(HomotopyGroup(C, 1));
OrdPiTwo := Order(HomotopyGroup(C, 2));
Ord := Order(G)/(OrdPiOne*OrdPiTwo);

#1
OrderPiOneGx := function(x)
local tsx;

 tsx := Image(t, PreImages(s, Intersection(Ims, x)));
 return (OrdIms*Order(Intersection(tsx, x)))/
 (Order(Intersection(Ims, x))*Order(tsx));
end;
##
OrderPiTwoGx := function(x)
local f;

f := NaturalHomomorphismByNormalSubgroup(G, x);
return Order(Intersection(Image(f, PreImages(s, Intersection(Ims, x)))))), Image(f, PreImages(t, Intersection(Imt, x)))))
end;
##
###

LN := NormalSubgroups(G);
if not IsMutable(LN) then
 LN := ShallowCopy(LN);
fi;
Sort(LN, function(x, y) return Size(x) > Size(y); end);
n := Length(LN);
for i in [1..n] do
 x := LN[i];
 if Order(x) <= Ord then
 if IsSubgroup(x, Image(s, x)) then
 if IsSubgroup(x, Image(t, x)) then
 if IsSubgroup(x, CommutatorSubgroup(PreImages(s, Intersection(Ims, x)), PreImages(t, Intersection(Imt, x)))) then
 if Order(Ker(f)) = Order(Intersection(Ker(f), x)) * OrdPiTwo then
 if OrderPiTwoGx(x) = OrdPiTwo then
 if OrderPiOneGx(x) = OrdPiOne then
 H := x;
 break;
 fi;
 fi;
 fi;
 fi;
 fi;
 fi;
 fi;
 od;
if Order(H) = 1 then
 return C;
fi;

epi := NaturalHomomorphismByNormalSubgroup(G, H);
newG := Image(epi);
newGens := GeneratorsOfGroup(newG);
news := GroupHomomorphismByImagesNC(newG, newG, newGens, List(newGens, x -> Image(epi, Image(s, PreImagesRepresentative(epi, x)))));
newt := GroupHomomorphismByImagesNC(newG, newG, newGens, List(newGens, x -> Image(epi, Image(t, PreImagesRepresentative(epi, x)))));
return Objectify(HapCatOneGroup, rec(
 sourceMap := news,
 targetMap := newt));
##
###
end of QuotientQuasiIsomorph
8.3.23 QuasiIsomorph(X)

FUNCTION QuasiIsomorph(X)
#F QuasiIsomorph
Input: A finite cat-1-group or a finite crossed module X
Output: A quasi-isomorphism of X
InstallGlobalFunction(QuasiIsomorph,function(X))
local QuasiIsomorphOfCat, QuasiIsomorphOfCross;
#
F QuasiIsomorphOfCat
Input: A finite cat-1-group C
Output: A quasi-isomorphism of C
QuasiIsomorphOfCat:=function(C)
local D;
D:=QuotientQuasiIsomorph(C);
D:=SubQuasiIsomorph(D);
while Size(D) < Size(C) do
 C:=D;
 D:=QuotientQuasiIsomorph(C);
 if Size(D) < Size(C) then
 D:=SubQuasiIsomorph(D);
 fi;
 od;
return D;
end;
#
end of QuasiIsomorphOfCat
#
F QuasiIsomorphOfCross
Input: A finite crossed module XC
Output: A quasi-isomorphism of XC
QuasiIsomorphOfCross:=function(XC)
local C,D;
C:=CatOneGroupByCrossedModule(XC);
D:=QuasiIsomorphOfCat(C);
return CrossedModuleByCatOneGroup(D);
end;
#
end of QuasiIsomorphOfCross
if IsHapCatOneGroup(X) then
 return QuasiIsomorphOfCat(X);
fi;
if IsHapCrossedModule(X) then
 return QuasiIsomorphOfCross(X);
fi;
end)
#
end of QuasiIsomorph
8.3.24 Homology(X,n)

```gap
# Homology
# Input: A crossed module X and an integer n>=0
# Output: The integral homology H_n(X,Z)
InstallOtherMethod(Homology, "Homology of crossed modules", [IsHapCrossedModule, IsInt], function(X,n)
  local C,D,N,K;
  C:=CatOneGroupByCrossedModule(X);
  D:=QuasiIsomorph(C);
  N:=NerveOfCatOneGroup(D,n+1);
  K:=ChainComplexOfSimplicialGroup(N);
  return Homology(K,n);
end);
```

8.3.25 HomotopyCrossedModule(X)

```gap
# HomotopyCrossedModule
# Input: A crossed module X
# Output: The homotopy crossed module 0:pi_2(X)->pi_1(X) of X
InstallGlobalFunction(HomotopyCrossedModule, function(X)
  local phi,act,P,A,nat,G,Gens,alpha;
  phi:=X!.map;
  act:=X!.action;
  P:=Range(phi);
  A:=Kernel(phi);
  nat:=NaturalHomomorphismByNormalSubgroup(P,Image(phi));
  G:=Range(nat);
  alpha:=function(g,a)
    local x;
    x:=PreImagesRepresentative(nat,g);
    return act(x,a);
  end;
  Gens:=GeneratorsOfGroup(A);
  return Objectify(HapCrossedModule,rec(
    map:=GroupHomomorphismByImages(A,G,Gens,List(Gens,x->One(G))),
    action:=alpha
  ));
end);
```
8.3.26 NumberSmallQuasiCrossedModules(m)

#0
#F NumberSmallQuasiCrossedModules
Input: A positive integer m<=255
Output: The number of quasi-isomorphism classes of order m.
##
InstallGlobalFunction(NumberSmallQuasiCrossedModules, function(m)
 if (m > HAP_QCAT_SIZE) or (m in HAP_QCAT_NOT) then
 Print("This function only apply for order < ",HAP_QCAT_SIZE+1);
 Print(" and not in ",HAP_QCAT_NOT,"\n");
 return fail;
 fi;
 return Length(HAP_SMALL_QCAT[m]);
end);
##

8.3.27 SmallQuasiCrossedModule(m,k)

#0
#F SmallQuasiCrossedModule
Input: Two positive integers m,k with m<=255
Output: The smallest representative of the kth quasi-isomorphism classes of order m.
##
InstallGlobalFunction(SmallQuasiCrossedModule, function(m,k)
 local t,x;
 if (m > HAP_QCAT_SIZE) or (m in HAP_QCAT_NOT) then
 Print("This function only apply for order < ",HAP_QCAT_SIZE+1);
 Print(" and not in ",HAP_QCAT_NOT,"\n");
 return fail;
 fi;
 t:=Length(HAP_SMALL_QCAT[m]);
 if k> t then
 Print("There are only ",t," quasi-isomorphism classes of order ",m,"\n");
 return fail;
 fi;
 x:=HAP_SMALL_QCAT[m][k];
 return CrossedModuleByCatOneGroup(SmallCatOneGroup(m,x[1],x[2]));
end);
##

8.3.28 IdQuasiCrossedModule(X)

#0
#F IdQuasiCrossedModule
Input: A finite crossed module X
Output: A pair of integers [m,k] where X is quasi-isomorphic to
SmallQuasiCrossedModule(m,k)

InstallGlobalFunction(IdQuasiCrossedModule, function(X)
local C,x;

C:=QuasiIsomorph(CatOneGroupByCrossedModule(X));
x:=IdCatOneGroup(C);
if (x[1] > HAP_QCAT_SIZE) or (x[1] in HAP_QCAT_NOT) then
 Print("This function only apply for order < ",HAP_QCAT_SIZE+1);
 Print(" and not in ",HAP_QCAT_NOT,"\n");
 return fail;
fi;
return HAP_ID_QCAT[x[1]][x[2]][x[3]];
end);

##
#0
#F HomotopyLowerCentralSeriesOfCrossedModule
Input: A crossed module X with pi_1(X), pi_2(X) p -groups
Output: The homotopy lower central series of X
##
InstallGlobalFunction(HomotopyLowerCentralSeriesOfCrossedModule, function(X)
local del,act,M,P,GensM,A,G,nat,Gs,Ps,
nOne,XOne,i,phi,MorphismOne,
Gens,As,nTwo,a,g,natMs,Ms,XTwo,GenMs,
PreImGenMs,MorphismTwo,
ActOne,MapOne,MapTwo;

del:=X!.map;
act:=X!.action;
M:=Source(del);
P:=Range(del);
GensM:=GeneratorsOfGroup(M);
ImgGensM:=List(GensM,m->Image(del,m));
nat:=NaturalHomomorphismByNormalSubgroup(P,Image(del));
A:=Kernel(del);
G:=Range(nat);
Gs:=[G];
Ps:=[P];
nOne:=1;
while not IsTrivial(Gs[nOne]) do
 nOne:=nOne+1;
 Gs[nOne]:=CommutatorSubgroup(Gs[nOne-1],G);
 Ps[nOne]:=PreImage(nat,Gs[nOne]);
od;
MorphismOne:=[[]];
if nOne>1 then
 Ps:=Reversed(Ps);
 XOne:=[[]];
 for i in [1..nOne-1] do
 phi:=GroupHomomorphismByImages(M,Ps[i],GensM,ImgGensM);
 od;
if nOne>1 then
 for i in [1..nOne-1] do
 phi:=GroupHomomorphismByImages(M,Ps[i],GensM,ImgGensM);
 od;
end);
XOne[i]:=Objectify(HapCrossedModule,
 rec(map:=phi,
 action:=act
));

od;
XOne[nOne]:=X;

MapOne:= function(i)
 return function(n)
 local Gens;
 if n = 1 then
 return IdentityMapping(M);
 fi;
 if n =2 then
 Gens:=GeneratorsOfGroup(Ps[i]);
 return GroupHomomorphismByImages(Ps[i],
 Ps[i+1],Gens,Gens);
 fi;
 end;
end;

for i in [1..nOne-1] do
 Morp[One][i]:=Objectify(HapCrossedModuleMorphism,
 rec(source:=XOne[i],
 target:=XOne[i+1],
 mapping:=MapOne(i)
));
 od;
fi; ##### end of nOne>1

G:=List(G,g->PreImagesRepresentative(nat,g));
As:=[A];
nTwo:=1;
while not IsTrivial(As[nTwo]) do
 Gens:=[];
 for a in As[nTwo] do
 for g in G do
 Add(Gens,a*act(g,a^(-1)));
 od;
 od;
nTwo:=nTwo+1;
 As[nTwo]:=Group(Gens);
 od;
Morp[Two]:=[];
if nTwo>1 then
 As:=Reversed(As);
 natMs:=[IdentityMapping(M)];
 Ms:=[M];
 XT[wo]:=[X];
 GenMs:=[GensM];
 PreImGenMs:=[GensM];

 ActOne:=function(i)
 return function(p,mA)
return Image(natMs[i], act(p, PreImagesRepresentative(natMs[i], mA)));
end;
end;
##
###
for i in [2..nTwo] do
 natMs[i] := NaturalHomomorphismByNormalSubgroup(M, As[i]);
 Ms[i] := Range(natMs[i]);
 GenMs[i] := GeneratorsOfGroup(Ms[i]);
 PreImGenMs[i] := List(GenMs[i], m -> PreImagesRepresentative(natMs[i], m));
 phi := GroupHomomorphismByImages(Ms[i], P, GenMs[i],
 List(PreImGenMs[i], m -> Image(del, m)));
 XTwo[i] := Objectify(HapCrossedModule,
 rec(map := phi,
 action := ActOne(i)
));
od;
##
###
#1 MapTwo := function(i)
 return function(n)
 if n = 1 then
 return GroupHomomorphismByImages(Ms[i], Ms[i+1],
 GenMs[i], List(PreImGenMs[i],
 m -> Image(natMs[i+1], m)));
 fi;
 if n = 2 then
 return IdentityMapping(P);
 fi;
end;
##
###
for i in [1..nTwo-1] do
 MorphismTwo[i] := Objectify(HapCrossedModuleMorphism,
 rec(source := XTwo[i],
 target := XTwo[i+1],
 mapping := MapTwo(i)));
 od;
fi; ## end of nTwo > 1
return Concatenation(MorphismOne, MorphismTwo);
end);
##
end of HomotopyLowerCentralSeriesOfCrossedModule

8.3.30 PersistentHomologyOfCrossedModule(X, n)

##
#0 #O PersistentHomologyOfCrossedModule
Input: A crossed module X with pi_1(X), pi_2(X) p-groups and an
integer n>=0
Output: The matrix of persistent Betti numbers of X at degree n
##
InstallGlobalFunction(PersistentHomologyOfCrossedModule, function(X,n)
local
 p,Maps,
 PrimeOne,PrimeTwo,PrimeOneTwo;

PrimeOne:=PrimeDivisors(Size(HomotopyGroup(X,1)));
PrimeTwo:=PrimeDivisors(Size(HomotopyGroup(X,2)));
PrimeOneTwo:=Set(Concatenation(PrimeOne,PrimeTwo));
if Length(PrimeOneTwo) <>1 then
 return fail;
fi;

p:=PrimeOneTwo[1];
Maps:=HomotopyLowerCentralSeriesOfCrossedModule(X);
Maps:=CatOneGroupByCrossedModule(Maps);
Maps:=NerveOfCatOneGroup(Maps,n+1);
Maps:=ChainComplexOfSimplicialGroup(Maps);
Maps:=List(Maps,f->TensorWithIntegersModP(f,p));
Maps:=List(Maps,f->HomologyVectorSpace(f,n));
return LinearHomomorphismsPersistenceMat(Maps);
end);