<table>
<thead>
<tr>
<th>Title</th>
<th>Meseachymal stem cell mediated sodium iodide symporter gene therapy of breast cancer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Ryan, James John</td>
</tr>
<tr>
<td>Publication Date</td>
<td>2014-05-07</td>
</tr>
<tr>
<td>Item record</td>
<td>http://hdl.handle.net/10379/4396</td>
</tr>
</tbody>
</table>

Some rights reserved. For more information, please see the item record link above.
Mesenchymal Stem Cell-Mediated Sodium Iodide Symporter Gene Therapy of Breast Cancer

A thesis submitted to the National University of Ireland as partial fulfilment of the requirements for the degree of Doctor of Philosophy (PhD)

by

James John Ryan BSc, MSc.

Under the supervision of Dr. Roisin Dwyer

And direction of Prof. Michael Kerin

Discipline of Surgery, School of Medicine, Clinical Sciences Institute, NUI Galway
TABLE OF CONTENTS

Acknowledgements XI
List of Figures XII
List of Tables XVIII
List of Abbreviations XX
Communications originating from this work XXVI
Abstract XXVIII

Chapter 1 Introduction

1.1 Breast Cancer Overview 2
 1.1.1 Diagnosis 4
 1.1.2 Staging 5
 1.1.3 Grading 7
 1.1.4 Epithelial Subtype 8
 1.1.5 Breast Cancer Markers 10
 1.1.6 Treatment 11
 1.1.7 Treatment inadequacies 13
 1.1.8 Ideal breast cancer therapy 14

1.2 Cancer Gene Therapy 15
 1.2.1 Adenovirus as gene therapy vector 18
 1.2.2 Limitations of Adenoviral Vectors 21

1.3 Mesenchymal Stem Cells 24
 1.3.1 MSC tumour tropism 25
 1.3.2 Engineering MSCs to improve tumour tropism 29
Chapter 2 Materials and Methods

2.1 Cell culture

2.1.1 Background and Method 56

2.1.2 Mesenchymal Stem Cells 58

2.1.3 Breast cancer cell lines 58

2.1.4 Recovery of frozen cells 59
2.1.5 Cell line inspections 59
2.1.6 Feeding Cells 60
2.1.7 Passage of cells 60
2.1.8 Counting Cells using a Nucleocounter 61
2.1.9 Cryopreservation of cells 64
2.2 PKH26 labelling of MSCs 65
2.3 Investigation of the effect of β-estradiol, all trans Retinoic acid and l-thyroxine on NIS expression 66
2.4 MSC differentiation assays 68
 2.4.1 Von Kossa calcium staining 69
 2.4.2 StanBio Calcium assay 69
2.5 Transfection of MSCs with Adenovirus 70
 2.5.1 Background 70
 2.5.2 Ad5/CMV/NIS infection 72
 2.5.3 Ad5/CMV/GFP infection efficiency 73
2.6 Iodide131 cytotoxicity assay 74
2.7 Analysis of gene expression 76
 2.7.1 Background 76
 2.7.2 Tissue homogenisation in preparation for RNA extraction 77
 2.7.3 Preparation of cultured cells for RNA extraction 78
 2.7.4 RNA extraction 79
 2.7.5 RNA quantification 81

III
2.7.6 RNA concentration

2.7.7 Reverse Transcription/ cDNA synthesis

2.7.8 Relative Quantitative PCR

2.7.9 Amplification Efficiency

2.7.10 RQ-PCR

2.8 Immunohistochemistry

2.8.1 Background

2.8.2 Methanol fixation of cells cultured in chamber slides

2.8.3 Cryosectioning of tissue

2.8.4 Immunohistochemistry targeting the Sodium Iodide Symporter (NIS)

2.8.5 Microscopy

2.8.6 Fluorescent Microscopy

2.8.6.1 Nuclei counterstaining for fluorescent microscopy

2.9 Flow Cytometry

2.9.1 Background

2.9.2 Graphical representation of Flow Data

2.9.3 Methods

2.9.4 Antibodies

2.9.5 Concentration of antibodies and Fluorophore conjugation of monoclonal antibody

2.9.6 Preparation of Cell Suspension for Flow Cytometric Analysis
2.9.7 Flow cytometric analysis of cell suspensions by

Guava® EasyCyte 8HT™

2.9.8 Data analysis

2.10 In Vivo Studies

2.10.1 Background

2.10.2 Athymic nude mice

2.10.3 Background on animal handling

2.10.4 Anaesthesia

2.10.5 Tagging

2.10.6 Timeline of In Vivo study

2.10.7 Mammary fat pad injection of MDA-MB-231 cells

2.10.8 Tail vein injection of PKH26 stained MSCs

2.10.9 Blood sampling through cardiac puncture

2.10.10 Animal sacrifice

2.10.11 Animal Necropsy, Tissue Harvesting and Processing

2.10.12 Distribution of MSCs expressing NIS transgene after systemic administration in a mouse breast cancer model.
Results and Discussion 1: Chapter 3. Expression of the Sodium Iodide Symporter (NIS) and potential regulators in Breast Tissue

3.1 Introduction
3.2 Objectives
3.3 Materials and Methods
3.4 Patient cohort
3.5 Confirmation of Normal distributions of gene expression data
3.6 NIS gene expression in human breast tissue.
3.7 NIS protein expression in breast tissue
3.8 RAR alpha and beta expression in human breast tissue and relationship with NIS expression
3.9 ERα and PI3K expression in human breast tissue.
3.10 THR alpha and beta expression in human breast tissue.
3.11 Additional correlations in gene expression.
3.12 Discussion

Results and Discussion 2: Chapter 4. In vitro stimulation of NIS expression in breast cancer cell lines.

4.1 Introduction
4.2 Objectives
4.3 Materials and Methods
4.4 Assessment of baseline NIS expression in selected cell lines.
4.5 NIS gene expression following stimulation of T47D cells with Estradiol

4.6 NIS gene expression following stimulation of T47D cells with ATRA

4.7 NIS gene expression following stimulation of T47D cells with Thyroxine

4.8 NIS gene expression following stimulation of Sk-Br-3 cells with Estradiol

4.9 NIS gene expression following stimulation of Sk-Br-3 cells with ATRA

4.10 NIS gene expression following stimulation of Sk-Br-3 cells with Thyroxine

4.11 NIS gene expression is synergistically stimulated in T47D cells using combinations of ATRA and T4

4.12 NIS gene expression is also synergistically stimulated in Sk-Br-3 cells using combinations of ATRA and T4

4.13 Changes in receptor expression in response to ligand stimulation.

4.14 Discussion

Results and Discussion 3: Chapter 5. Adenovirus-mediated expression and function of the Sodium Iodide Symporter (NIS) in Mesenchymal Stem Cells

5.1 Introduction
5.2 Objectives 175
5.3 Materials and Methods 176
5.4 Basal expression in MSCs 177
5.5 Robust NIS transgene expression in Ad5/CMV/NIS infected MSCs 178
5.6 NIS transgene expression in proliferating and nonproliferating Ad5/CMV/NIS infected MSCs 180
5.7 NIS protein expression in proliferating and nonproliferating Ad5/CMV/NIS infected MSCs 182
5.8 Ad5/CMV/NIS infection efficiency in MSCs 185
5.9 Analysis of osteogenic potential and surface marker expression in Ad5/CMV/NIS infected MSCs 187
5.10 Iodide131 cytotoxicity assay in co-cultured MSC-NIS and T47D cells 192
5.11 Discussion 195

Results and Discussion 4: Chapter 6. In Vivo Investigation of tumour-targeted MSC migration and engraftment

A. Tracking MSC-mediated transgene delivery in vivo

B. Tracking MSC migration, engraftment and persistence in vivo

6.1 Introduction 201
6.2 Objectives 202

Section A

6.3 Materials and methods 203

6.4 Human MRPL19 expression in tissues following systemic
Ad5/CMV/NIS administration

6.5 Human NIS expression following systemic administration of Ad5/CMV/NIS

6.6 Human MRPL19 expression following systemic administration of Ad5/CMV/NIS infected MSCs

6.7 Human NIS expression following systemic administration of Ad5/CMV/NIS infected MSCs

Section B

6.8 Materials and Methods

6.9 Fluorescent microscopy to investigate engraftment of PKH26 labelled MSCs in tissues harvested from murine models of breast cancer

6.10 Detection of human and mouse specific transcripts by RQ-PCR

6.11 Flow-cytometry based analysis of cellular components of ex vivo murine tissue samples

6.12 Discussion

Chapter 7 Discussion and Conclusion

7.1 Discussion

7.2 Conclusion

Chapter 8 References
ACKNOWLEDGEMENTS

I would like to thank Dr. Roisin Dwyer for giving me the opportunity to work in research and for the amount of time and effort she put into supervising this project. Thanks especially for the huge help and encouragement in completing this thesis.

I would also like to express my appreciation to the following people:

- Prof. Kerin for his encouragement, guidance, appraisal of manuscripts and presentations and his contributions to the biobank facility.
- Cathy Curran for all the technical support and for being a great desk buddy.
- Grace Clarke for her kindness throughout.
- Sonja Khan for great help with flow cytometry.
- Mr. Karl Sweeney for constructive criticism and biobank contributions.
- Emer Hennessy for her help with biobanking and molecular work.
- Dr. Nicola Miller for advice on molecular studies.
- Dr. John Newell for providing statistical support.
- Prof. John Morris for providing the Ad5/CMV/NIS vector and NIS mAb.
- Mam, Dad, Pakie, Philip, Phil and Sheila for their support.
- Paula, without whom, I would not have completed this work.
- All my lab colleagues for their support and friendship.
- Cancer Research Ireland and NBCRI for funding this research.

Finally, I’d like to thank the breast cancer patients who generously consented to participate in NBCRI studies.
LIST OF FIGURES

Chapter 1 Introduction

Figure 1.1 Anatomy of the female breast
3

Figure 1.2 Distal metastasis of an invasive ductal carcinoma
4

Figure 1.3 Adenovirus structure
19

Figure 1.4 Proposed model of MSC migration
28

Figure 1.5 NIS structure
42

Figure 1.6 Basolateral localisation of NIS in thyroid follicular cells
43

Figure 1.7 Synthesis of thyroid hormones
44

Figure 1.8 Thyroid scan using NIS accumulation of radiolabelled iodide
46

Chapter 2 Materials and Methods

Figure 2.1 Chemometec nucleocassette
62

Figure 2.2 Principles of nucleocounter
63

Figure 2.3 Replication deficient Adenovirus type 5 carrying the human sodium iodide symporter under the control of CMV promoter (AD5/CMV/NIS)
71

Figure 2.4 Overview of Gene expression analysis
77

Figure 2.5 Results Window from RNA-40 analysis on Nanodrop 1000
82

Figure 2.6 Polymerase chain reaction
86

Figure 2.7 Flow cytometry
100

Figure 2.8 Photomultiplier tube.
101

Figure 2.9 Stokes Shift and Jablonski representation of fluorescence
102
Figure 2.10 Peak emission spectrum of fluorophores

Figure 2.11 Graphical representation of flow cytometry data

Figure 2.12 Guava microcapillary system versus traditional flow cytometry

Figure 2.13 Intramuscular injection of anaesthetic to the left posterior thigh muscle

Figure 2.14 Timeline of animal study. MDA-MB-231 cells were introduced to the 2nd thoracic MFP

Figure 2.15 Mammary fat pad injection of MDA–MB-231 cells

Figure 2.16 Intravenous tail vein injection of MSC cells

Figure 2.17 Blood sampling through cardiac puncture

Figure 2.18 Necropsy form

Figure 2.19 Tissue preparation from sacrificed animal model

Results and Discussion 1: Chapter 3. Expression of the Sodium Iodide Symporter (NIS) and potential regulators in Breast Tissue

Figure 3.1 Probability (PP) and histogram plots (HP) displaying normality of gene expression data including Arlington Darling analysis

Figure 3.2 NIS gene expression in normal, benign (fibroadenoma) and malignant breast tissue

Figure 3.3 Immunohistochemical detection of NIS protein expression in 5 μM sections of selected tissues from patient cohort

Figure 3.4 RAR alpha and beta expression in breast tissue samples and their relationship with NIS
Figure 3.5 ER alpha and PI3K expression in breast tissue samples and their relationship with NIS

Figure 3.6 THR alpha and THR beta expression in normal, benign and malignant breast tissue

Results and Discussion 2: Chapter 4. In vitro stimulation of NIS expression in breast cancer cell lines.

Figure 4.1 Baseline expression of NIS and potential regulators of NIS in T47D, Sk-Br-3, and MDA-MB-231 cells

Figure 4.2 Effect of various concentrations of Estradiol on NIS expression in T47D cells

Figure 4.3 Effect of various concentrations of all trans Retinoic acid on NIS expression in T47D cells

Figure 4.4 Effect of various concentrations of Thyroxine on NIS expression in T47D cells

Figure 4.5 Effect of various concentrations of Estradiol on NIS expression in Sk-Br-3 cells

Figure 4.6 Effect of various concentrations of all trans Retinoic acid on NIS expression in Sk-Br-3 cells

Figure 4.7 Effect of various concentrations of Thyroxine on NIS expression in Sk-Br-3 cells

Figure 4.8 Effect of treating T47D cells with Estradiol, all trans Retinoic acid and Thyroxine individually and in combination on NIS gene expression

Figure 4.9 Effect of treating Sk-Br-3 cells with Estradiol, all trans Retinoic acid and Thyroxine individually and in combination on NIS gene expression

Figure 4.10 Expression of RARα, RARβ, ERα, THRα and THRβ in T47D
cells following treatment with Estrogen, all trans Retinoic acid and Thyroxine individually and in combination

Results and Discussion 3: Chapter 5. Adenovirus-mediated expression and function of the Sodium Iodide Sympporter (NIS) in Mesenchymal Stem Cells

Figure 5.1 NIS transgene expression in MSCs infected with Ad5/CMV/NIS

Figure 5.2 NIS transgene expression in proliferating and nonproliferating Ad5/CMV/NIS infected cells

Figure 5.3 DABmap NIS staining in Ad5/CMV/NIS infected, proliferating and nonproliferating MSCs

Figure 5.4 DABmap NIS staining in Ad5/CMV/NIS infected nonproliferating and proliferating 28 days after infection

Figure 5.5 Transduction efficiency of Ad5/CMV/GFP in MSCs determined by flow cytometry

Figure 5.6 Transduction efficiency of Ad5/CMV/GFP in MSCs determined by Fluorescence microscopy

Figure 5.7 Quantification of calcium deposition by MSCs and Ad5/CMV/NIS infected MSCs induced to differentiate to an osteogenic lineage

Figure 5.8 Von Kossa staining in MSCs and MSC-Ad5/CMV/NIS induced to osteogenic lineage

Figure 5.9 CD105, CD90, CD73, CD34, CD45, CD10, CD31, CD227, CD24 expression profiles of MSCs alone and MSCs infected with Ad5/CMV/NIS

Figure 5.11 Iodide 131 cytotoxicity assay in MSC-NIS (Ad5/CMV/NIS MOI 100)-T47D co-cultures
Results and Discussion 4: Chapter 6. *In Vivo* Investigation of tumour-targeted MSC migration and engraftment

B. Tracking MSC migration, engraftment and persistence *in vivo*

Figure 6.1 Fluorescent imaging of tissue harvested from control mouse, sectioned and counterstained with DAPI (blue) to highlight nuclei

Figure 6.2 Fluorescent imaging of kidney and spleen tissue harvested from mice up to 2 weeks after systemic administration of PKH26 labelled MSCs

Figure 6.3 Fluorescent imaging of liver tissue harvested from mice up to 2 weeks after systemic administration of PKH26 labelled MSCs

Figure 6.4 Fluorescent imaging of tumour, enlarges node, lung and heart tissue harvested from mice one week after systemic administration of PKH26 labelled MSCs.

Figure 6.5 Fluorescent imaging of tumour, lung, and heart tissue harvested from mice 2 weeks after systemic administration of PKH26 labelled MSCs

Figure 6.6 Fluorescent imaging of enlarged node, lung, and heart tissue harvested from mice 3 weeks after systemic administration of PKH26 labelled MSCs

Figure 6.7 Fluorescent imaging of enlarged node, lung, and heart tissue harvested from mice 4 weeks after systemic administration of PKH26 labelled MSCs

Figure 6.8 Format for calculating the percentage MHC1 positive, MHC1 and CD105 positive, and MHC1 negative cells in digested tissue specimens from MSC treated mice bearing metastatic breast cancer

Figure 6.9 Percentage of MHC1 positive (MDA-MB231), MHC1 and CD105 positive (hMSC), and MHC1 negative (Murine) cells in tumour, lung and heart specimens from hMSC treated mice bearing metastatic breast cancer
LIST OF TABLES

Chapter 1 Introduction

Table 1.1 TNM staging of breast cancer with 5-year survival rate 6
Table 1.2 Breast cancer epithelial subtypes as defined by gene expression profiling 8

Chapter 2 Materials and Methods

Table 2.1 Stimulation of T47D and Sk-Br-3 cells with E2, ATRA and T4 individually and in combination over 24hrs 67
Table 2.2 Individual and co-culture seeding densities for Iodide 75
Table 2.3 Description of primers used 90
Table 2.4 Description of antibodies used 108
Table 2.5 Assignment of tissues harvested from sacrificed mice to analysis by Flow cytometry, RQ-PCR or Fluorescent Microscopy 116
Table 2.6 Storage reagents for animal tissue 123

Results and Discussion 1: Chapter 3. Expression of the Sodium Iodide Symporter (NIS) and potential regulators in Breast Tissue

Table 3.1 Patient demographics of breast tissue specimen cohort 130
Table 3.2 Additional significant Pearson correlations observed between genes expressed in breast tissue 143

Results and Discussion 4: Chapter 6. In Vivo Investigation of tumour-targeted MSC migration and engraftment

XVII
A. Tracking MSC-mediated transgene delivery in vivo

Table 6.1 Human MRPL19 gene expression in tissues harvested from murine breast cancer models 3 and 7 days after systemic administration of Ad5/CMV/NIS

Table 6.2 Human NIS expression in tissues harvested from murine breast cancer models 3 and 7 days after systemic administration of Ad5/CMV/NIS

Table 6.3 Human MRPL19 gene expression in tissues harvested from murine breast cancer models 3 and 7 days after systemic administration of MSC-Ad5/CMV/NIS

Table 6.4 Human NIS gene expression in tissues harvested from murine breast cancer models 3 and 7 days after systemic administration of MSC-Ad5/CMV/NIS

Table 6.5 Detection of human PPIA and mouse HPRT in tissues harvested 7 days after systemic injection of human MSCs
LIST OF ABBREVIATIONS

AD Aldehyde dehydrogenase
Ad5/CMV/GFP Adenovirus-5 carrying GFP gene with CMV promoter
Ad5/CMV/NIS Adenovirus-5 carrying NIS gene with CMV promoter
Ad5/MUC1/NIS Adenovirus-5 carrying NIS gene with MUC1 promoter
AdCMV-p53 Adenovirus carrying P53 gene with CMV promoter
BALP/c mouse strain used for cancer and immunology research
BCL2 B-cell lymphoma 2
BCSC Breast Cancer Stem Cell
CA-15 Cancer Antigen-15
CA27-29 Cancer Antigen 27-29
cAMP Cyclic adenosine monophosphate
CAR Coxsackie Adenovirus Receptor
CCR2 Chemokine Receptor Type 2
CD Cluster of Differentiation
CEA Carcinoembryonic antigen
cGy/mCi centi Gray/ milli Curie
CMV Cytomegalovirus
COOH carboxy
CREB cAMP response element-binding protein
DCIS Ductal Carcinoma in situ
DMSO Dimethyl Sulfoxide
DNA Deoxyribonucleic Acid
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1A</td>
<td>Early 1A</td>
</tr>
<tr>
<td>E1B</td>
<td>Early 1B</td>
</tr>
<tr>
<td>E2A</td>
<td>Early 2A</td>
</tr>
<tr>
<td>E2B</td>
<td>Early 2B</td>
</tr>
<tr>
<td>E3</td>
<td>Early 3</td>
</tr>
<tr>
<td>E4</td>
<td>Early 4</td>
</tr>
<tr>
<td>EGF</td>
<td>Epidermal Growth Factor</td>
</tr>
<tr>
<td>EGFR</td>
<td>Epidermal Growth Factor Receptor</td>
</tr>
<tr>
<td>EMT</td>
<td>Epithelial to Mesenchymal Transition</td>
</tr>
<tr>
<td>ER</td>
<td>Estrogen Receptor</td>
</tr>
<tr>
<td>ERα</td>
<td>Estrogen Receptor alpha</td>
</tr>
<tr>
<td>FBS</td>
<td>Fetal Bovine Serum</td>
</tr>
<tr>
<td>FOS</td>
<td>FOS oncogene</td>
</tr>
<tr>
<td>GFP</td>
<td>Green Fluorescent Protein</td>
</tr>
<tr>
<td>GVHD</td>
<td>Graft Versus Host Disease</td>
</tr>
<tr>
<td>HER2</td>
<td>Human Epidermal Growth Factor-2</td>
</tr>
<tr>
<td>HIF</td>
<td>Hypoxia Inducible Factor</td>
</tr>
<tr>
<td>HMLER</td>
<td>human mammary epithelial cells expressing SV40 large-T antigen, the telomerase catalytic subunit, and H-Ras oncoprotein</td>
</tr>
<tr>
<td>hrs</td>
<td>hours</td>
</tr>
<tr>
<td>hTERT</td>
<td>human Telomerase reverse transcriptase</td>
</tr>
<tr>
<td>I-</td>
<td>iodide</td>
</tr>
<tr>
<td>I+</td>
<td>iodonium</td>
</tr>
<tr>
<td>I125</td>
<td>Radioactive Iodide 125</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>I131</td>
<td>Radioactive Iodide 131</td>
</tr>
<tr>
<td>ICV</td>
<td>Intracerebroventricular</td>
</tr>
<tr>
<td>IGF1R</td>
<td>Insulin Growth Factor 1R</td>
</tr>
<tr>
<td>IHC</td>
<td>Immunohistochemistry</td>
</tr>
<tr>
<td>IL-12</td>
<td>Interleukin-12</td>
</tr>
<tr>
<td>IL-1α</td>
<td>Interleukin-1 alpha</td>
</tr>
<tr>
<td>IL-1β</td>
<td>Interleukin-1 beta</td>
</tr>
<tr>
<td>IL-2</td>
<td>Interleukin 2</td>
</tr>
<tr>
<td>IL-6</td>
<td>Interleukin-6</td>
</tr>
<tr>
<td>IL-8</td>
<td>Interleukin-8</td>
</tr>
<tr>
<td>kb</td>
<td>kilo base pair</td>
</tr>
<tr>
<td>K-BALP</td>
<td>K-RAS overexpressing transformed BALB/3T3</td>
</tr>
<tr>
<td>kDa</td>
<td>kilo Dalton</td>
</tr>
<tr>
<td>Ki67</td>
<td>Antigen KI-67</td>
</tr>
<tr>
<td>L1-5</td>
<td>Late 1-5</td>
</tr>
<tr>
<td>LCIS</td>
<td>Lobular Carcinoma in situ</td>
</tr>
<tr>
<td>Let-7a</td>
<td>Lethal-7a</td>
</tr>
<tr>
<td>LOX</td>
<td>lysyl oxidase</td>
</tr>
<tr>
<td>µM</td>
<td>micro Molar</td>
</tr>
<tr>
<td>µm/s</td>
<td>micro metres per second</td>
</tr>
<tr>
<td>M</td>
<td>Molar</td>
</tr>
<tr>
<td>MAPK</td>
<td>Mitogen-activated Protein Kinase</td>
</tr>
<tr>
<td>mCi/m2</td>
<td>milli Curie per metre squared</td>
</tr>
<tr>
<td>MCP-1</td>
<td>Monocyte chemoattractant protein-1</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>MFP</td>
<td>Mammary Fat Pad</td>
</tr>
<tr>
<td>MHC1</td>
<td>Major Histocompatibility Complex 1</td>
</tr>
<tr>
<td>mins</td>
<td>minutes</td>
</tr>
<tr>
<td>MIP-1α</td>
<td>Macrophage inflammatory protein-1α</td>
</tr>
<tr>
<td>MIP-2</td>
<td>macrophage inflammatory protein 2</td>
</tr>
<tr>
<td>miR</td>
<td>micro RNA</td>
</tr>
<tr>
<td>mM</td>
<td>milli Molar</td>
</tr>
<tr>
<td>MMP11</td>
<td>Matrix metalloproteinase 11</td>
</tr>
<tr>
<td>MRI</td>
<td>Magnetic resonance imaging</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger Ribonucleic Acid</td>
</tr>
<tr>
<td>MSC</td>
<td>Mesenchymal Stem Cell</td>
</tr>
<tr>
<td>MSC-IFNβ</td>
<td>MSCs expressing Interferon beta</td>
</tr>
<tr>
<td>MSC-NIS</td>
<td>MSCs expressing NIS transgene</td>
</tr>
<tr>
<td>MUC1</td>
<td>Mucin 1</td>
</tr>
<tr>
<td>n</td>
<td>sample number</td>
</tr>
<tr>
<td>Na+</td>
<td>Sodium ion</td>
</tr>
<tr>
<td>NCOA4</td>
<td>Nuclear Receptor Coactivator 4</td>
</tr>
<tr>
<td>NFW</td>
<td>Nuclease free water</td>
</tr>
<tr>
<td>NH2</td>
<td>amine</td>
</tr>
<tr>
<td>NH4OH</td>
<td>Ammonium hydroxide</td>
</tr>
<tr>
<td>NIS</td>
<td>Sodium Iodide Symporter</td>
</tr>
<tr>
<td>NK-4</td>
<td>Internal fragment of hepatocyte growth factor</td>
</tr>
<tr>
<td>nM</td>
<td>nano Molar</td>
</tr>
<tr>
<td>NPI</td>
<td>Nottingham Prognostic Index</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
</tr>
<tr>
<td>NUE</td>
<td>NIS upstream enhancer</td>
</tr>
<tr>
<td>P16/INK4A</td>
<td>Cyclin-dependent kinase inhibitor 2A</td>
</tr>
<tr>
<td>p27</td>
<td>Cyclin-dependent kinase inhibitor 1B</td>
</tr>
<tr>
<td>p53</td>
<td>tumour protein 53</td>
</tr>
<tr>
<td>Pax-8</td>
<td>Paired box gene 8</td>
</tr>
<tr>
<td>pCR</td>
<td>pathological Complete Response</td>
</tr>
<tr>
<td>PDGF</td>
<td>platelet derived growth factor</td>
</tr>
<tr>
<td>P-glycoprotein</td>
<td>Permeability-glycoprotein</td>
</tr>
<tr>
<td>PI3K</td>
<td>Phosphoinositide-3-kinase</td>
</tr>
<tr>
<td>PKH26</td>
<td>Fluorescent dye for labelling cell membranes</td>
</tr>
<tr>
<td>PR</td>
<td>Progesterone Receptor</td>
</tr>
<tr>
<td>RANTES</td>
<td>Regulated on Activation, Normal T cell Expressed and Secreted</td>
</tr>
<tr>
<td>RARα</td>
<td>Retinoic Acid Receptor alpha</td>
</tr>
<tr>
<td>RARβ</td>
<td>Retinoic Acid Receptor beta</td>
</tr>
<tr>
<td>RAS</td>
<td>Protein controlling intracellular signaling networks</td>
</tr>
<tr>
<td>RGD</td>
<td>Arginine Glycine Aspartame</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic Acid</td>
</tr>
<tr>
<td>RQ-PCR</td>
<td>Relative Quantitative-Polymerase Chain Reaction</td>
</tr>
<tr>
<td>SCID</td>
<td>Severe Combined Immunodeficiency</td>
</tr>
<tr>
<td>SLC5A5</td>
<td>X-linked inhibitor of apoptosis protein</td>
</tr>
<tr>
<td>SP-1</td>
<td>specificity protein 1</td>
</tr>
<tr>
<td>SPECT/CT</td>
<td>Single-photon emission computed tomography</td>
</tr>
<tr>
<td>T₃</td>
<td>Triiodothyronine</td>
</tr>
<tr>
<td>T₄</td>
<td>Thyroxine</td>
</tr>
</tbody>
</table>

XXIII
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAF</td>
<td>Tumour Associated Fibroblasts</td>
</tr>
<tr>
<td>Tg</td>
<td>Thyroglobulin</td>
</tr>
<tr>
<td>TGFα</td>
<td>Tumour Growth Factor alpha</td>
</tr>
<tr>
<td>TGFβ1</td>
<td>Tumour Growth Factor beta 1</td>
</tr>
<tr>
<td>THRα</td>
<td>Thyroid Hormone receptor alpha</td>
</tr>
<tr>
<td>THRβ</td>
<td>Thyroid Hormone receptor beta</td>
</tr>
<tr>
<td>TNF</td>
<td>Tumour Necrosis Factor</td>
</tr>
<tr>
<td>TNM</td>
<td>Tumour size (T)Nodal involvement (N) Metastasis (M)</td>
</tr>
<tr>
<td>TRAIL</td>
<td>TNF-related apoptosis-inducing ligand</td>
</tr>
<tr>
<td>TSH</td>
<td>Thyroid Stimulating Hormone</td>
</tr>
<tr>
<td>VCAM-1</td>
<td>vascular cell adhesion protein-1</td>
</tr>
<tr>
<td>VEGF</td>
<td>vascular endothelial growth factor</td>
</tr>
<tr>
<td>VLA-4</td>
<td>Very Late Antigen-4</td>
</tr>
<tr>
<td>XIAP</td>
<td>X-linked inhibitor of apoptosis protein</td>
</tr>
</tbody>
</table>
COMMUNICATIONS ORIGINATING FROM THIS WORK

Published papers

Published abstracts

XXV
Oral Presentations

Posters

ABSTRACT

Introduction: The Sodium Iodide Symporter (NIS) facilitates iodide accumulation in the thyroid and radioiodide imaging and treatment of thyroid disease. Studies have suggested that elevated levels of NIS expression in malignant breast tissue may facilitate diagnosis, imaging and treatment of breast cancer. Alternative approaches, such as Adenovirus-based NIS gene therapy is limited by vector immunogenicity and an inability to specifically target tumours. Mesenchymal Stem Cells (MSCs) may represent appropriate cellular vehicles as a result of their proven tumour tropism and immune privilege. The aim of this project was to determine the presence, relevance and regulation of native mammary NIS expression and to explore the potential of MSC-mediated NIS gene therapy of breast cancer.

Methods: Expression of NIS, and putative regulators (Retinoic acid receptors (RAR), Estrogen receptor (ER), Phosphoinositide-3-kinase (PI3K), and Thyroid hormone receptors (THR)) were determined by Relative Quantitative-Polymerase Chain Reaction (RQ-PCR) in 100 breast tissue specimens that included 15 controls. *In vitro* the effects of individual and combined estradiol, retinoic acid (RA) and thyroxine stimulation on NIS expression was determined in breast cancer cell lines. MSCs were engineered to express NIS and characterised in terms of phenotype and persistence of NIS expression and function. The distribution of systemically injected MSC-NIS in non-invasive disease and labelled MSCs in metastatic murine breast cancer models was determined over time.

Results: NIS gene expression levels were significantly higher in malignant tissue compared to normal but even higher in benign tissue. Significant positive correlations in gene expression suggested relationships between NIS and putative regulators: RARα, RARβ, ERα and THRβ which were confirmed by estradiol, RA and thyroxine stimulation of NIS expression *in vitro*. Combined stimulation with RA and thyroxine had a synergistic effect on NIS expression. MSCs were successfully engineered to express NIS with no significant impact on phenotype observed. A cytotoxic effect on adjacent breast cancer cells was also demonstrated using Iodide131 *in vitro*. In animal models, initial ectopic engraftment was shown to deplete...
over time except in malignant tissue and tumour-targeted MSC tropism as well as successful delivery of transgene to tumour sites was observed.

Conclusion: This thesis presents novel data on the presence and relevance of mammary NIS expression in human tissues. It also supports a regulatory role for estradiol and retinoic acid, and introduces the potential for thyroid hormones to stimulate mammary NIS expression. The phenotype and migratory behaviour of labelled and Ad5/CMV/NIS infected MSCs demonstrated here strongly support the potential of MSC-mediated NIS gene therapy of breast cancer