

Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the

published version when available.

Downloaded 2024-05-14T21:34:33Z

Some rights reserved. For more information, please see the item record link above.

Title SPARQL++ for mapping between RDF vocabularies

Author(s) Polleres, Axel

Publication
Date 2007

Publication
Information

Axel Polleres, François Scharffe, Roman Schindlauer
"SPARQL++ for mapping between RDF vocabularies", OTM
2007, Part I : Proceedings of the 6th International Conference
on Ontologies, DataBases, and Applications of Semantics
(ODBASE 2007), 4803, Springer, 2007.

Publisher Springer

Link to
publisher's

version
http://dx.doi.org/10.1007/978-3-540-76848-7_59

Item record http://hdl.handle.net/10379/438

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/

SPARQL++ for Mapping between RDF Vocabularies?

Axel Polleres1, François Scharffe2, and Roman Schindlauer3,4

1 DERI Galway, National University of Ireland, Galway
axel@polleres.net

2 Leopold-Franzens Universität Innsbruck, Austria
francois.scharffe@uibk.ac.at

3 Department of Mathematics, University of Calabria, 87030 Rende (CS), Italy
4 Institut für Informationssysteme, Technische Universität Wien

roman@kr.tuwien.ac.at

Abstract. Lightweight ontologies in the form of RDF vocabularies such as SIOC,
FOAF, vCard, etc. are increasingly being used and exported by “serious” applica-
tions recently. Such vocabularies, together with query languages like SPARQL
also allow to syndicate resulting RDF data from arbitrary Web sources and open
the path to finally bringing the Semantic Web to operation mode. Considering,
however, that many of the promoted lightweight ontologies overlap, the lack of
suitable standards to describe these overlaps in a declarative fashion becomes ev-
ident. In this paper we argue that one does not necessarily need to delve into the
huge body of research on ontology mapping for a solution, but SPARQL itself
might — with extensions such as external functions and aggregates — serve as
a basis for declaratively describing ontology mappings. We provide the semantic
foundations and a path towards implementation for such a mapping language by
means of a translation to Datalog with external predicates.

1 Introduction
As RDF vocabularies like SIOC,5 FOAF,6 vCard,7 etc. are increasingly being used and
exported by “serious” applications we are getting closer to bringing the Semantic Web
to operation mode. The standardization of languages like RDF, RDF Schema and OWL
has set the path for such vocabularies to emerge, and the recent advent of an opera-
ble query language, SPARQL, gave a final kick for wider adoption. These ingredients
allow not only to publish, but also to syndicate and reuse metadata from arbitrary dis-
tibuted Web resources in flexible, novel ways.

When we take a closer look at emerging vocabularies we realize that many of
them overlap, but despite the long record of research on ontology mapping and align-
ment, a standard language for defining mapping rules between RDF vocabularies is still

? This research has been partially supported by the European Commission under the FP6
projects inContext (IST-034718), REWERSE (IST 506779), and Knowledge Web (FP6-
507482), by the Austrian Science Fund (FWF) under project P17212-N04, as well as by Sci-
ence Foundation Ireland under the Lion project (SFI/02/CE1/I131).

5 http://sioc-project.org/
6 http://xmlns.com/foaf/0.1/
7 http://www.w3.org/TR/vcard-rdf

missing. As it turns out, the RDF query language SPARQL [27] itself is a promis-
ing candidate for filling this gap: Its CONSTRUCT queries may themselves be viewed
as rules over RDF. The use of SPARQL as a rules language has several advantages:
(i) the community is already familiar with SPARQL’s syntax as a query language,
(ii) SPARQL supports already a basic set of built-in predicates to filter results and
(iii) SPARQL gives a very powerful tool, including even non-monotonic constructs
such as OPTIONAL queries.

When proposing the use of SPARQL’s CONSTRUCT statement as a rules language
to define mappings, we should first have a look on existing proposals for syntaxes
for rules languages on top of RDF(S) and OWL. For instance, we can observe that
SPARQL may be viewed as syntactic extension of SWRL [19]: A SWRL rule is of the
form ant ⇒ cons , where both antecedent and consequent are conjunctions of atoms
a1 ∧ . . . ∧ an. When reading these conjunctions as basic graph patterns in SPARQL
we might thus equally express such a rule by a CONSTRUCT statement:

CONSTRUCT { cons } WHERE { ant }
In a sense, such SPARQL “rules” are more general than SWRL, since they may be
evaluated on top of arbitrary RDF data and — unlike SRWL — not only on top of valid
OWL DL. Other rules language proposals, like WRL [8] or TRIPLE [9] which are
based on F-Logic [22] Programming may likewise be viewed to be layerable on top of
RDF, by applying recent results of De Bruijn et al. [6, 7]. By the fact that (i) expressive
features such as negation as failure which are present in some of these languages are
also available in SPARQL8 and (ii) F-Logic molecules in rule heads may be serialized
in RDF again, we conjecture that rules in these languages can similarly be expressed as
syntactic variants of SPARQL CONSTRUCT statements.9

On the downside, it is well-known that even a simple rules language such as SWRL
already lead to termination/undecidability problems when mixed with ontology vocabu-
lary in OWL without care. Moreover, it is not possible to express even very simple map-
pings between common vocabularies such as FOAF [5] and VCard [20] in SPARQL
only. In order to remedy this situation, we propose the following approach to enable
complex mappings over ontologies: First, we keep the expressivity of the underlying
ontology language low, restricting ourselves to RDFS, or, more strictly speaking to,
ρdf− [24] ontologies; second, we extend SPARQL’s CONSTRUCT by features which
are almost essential to express various mappings, namely: a set of useful built-in func-
tions (such as string-concatenation and arithmetic functions on numeric literal values)
and aggregate functions (min, max, avg). Third, we show that evaluating SPARQL
queries on top of ρdf− ontologies plus mapping rules is decidable by translating the
problem to query answering over HEX-programs, i.e., logic programs with external
built-ins using the answer-set semantics, which gives rise to implementations on top
of existing rules engines such as dlvhex. A prototype of a SPARQL engine for evalu-
ating queries over combined datasets consisting of ρdf− and SPARQL mappings has
been implemented and is avaiblable for testing online.10

The remainder of this paper is structured as follows. We start with some motivat-
ing examples of mappings which can and can’t be expressed with SPARQL CON-
STRUCT queries in Section 2 and suggest syntactic extensions of SPARQL, which

8 see [27, Section 11.4.1]
9 with the exception of predicates with arbitrary arities

10 http://kr.tuwien.ac.at/research/dlvhex/

we call SPARQL++, in order to deal with the mappings that go beyond. In Section 3
we introduce HEX-programs, whereafter in Section 4 we show how SPARQL++ CON-
STRUCT queries can be translated to HEX-programs, and thereby bridge the gap to im-
plementations of SPARQL++. Next, we show how additional ontological inferences by
ρdf− ontologies can be itself viewed as a set of SPARQL++ CONSTRUCT “mappings”
to HEX-programs and thus embedded in our overall framework, evaluating mappings
and ontological inferences at the same level, while retaining decidability. After a brief
discussion of our current prototype and a discussion of related approaches, we conclude
in Section 6 with an outlook to future work.

2 Motivating Examples – Introducing SPARQL
Most of the proposals in the literature for defining mappings between ontologies use
subsumption axioms (by relating defining classes or (sub)properties) or bridge rules [3].
Such approaches do not go much beyond the expressivity of the underlying ontology
language (mostly RDFS or OWL). Nonetheless, it turns out that these languages are
insufficient for expressing mappings between even simple ontologies or when trying to
map actual sets of data from one RDF vocabulary to another one.

In Subsection 10.2.1 of the latest SPARQL specification [27] an example for such a
mapping from FOAF [5] to VCard [20] is explicitly given, translating the VCard prop-
erties into the respective FOAF properties most of which could equally be expressed
by simple rdfs:subPropertyOf statements. However, if we think the example a bit fur-
ther, we quickly reach the limits of what is expressible by subclass- or subproperty
statements.

Example 1. A simple and straightforward example for a mapping from VCard:FN to
foaf:name is given by the following SPARQL query:
CONSTRUCT { ?X foaf:name ?FN . } WHERE { ?X VCard:FN ?FN . FILTER isLiteral(?FN) }

The filter expression here reduces the mapping by a kind of additional “type check-
ing” where only those names are mapped which are not fully specified by a substructure,
but merely given as a single literal.

Example 2. The situation quickly becomes more tricky for other terms, as for instance
mapping between VCard:n (name) and foaf:name, because VCard:n consists of
a substructure consisting of Family name, Given name, Other names, honorific Pre-
fixes, and honorific Suffixes. One possibility is to concatenate all these to constitute a
foaf:name of the respective person or entity:

CONSTRUCT { ?X foaf:name ?Name . }
WHERE { ?X VCard:N ?N .

OPTIONAL {?N VCard:Family ?Fam } OPTIONAL {?N VCard:Given ?Giv }
OPTIONAL {?N VCard:Other ?Oth } OPTIONAL {?N VCard:Prefix ?Prefix }
OPTIONAL {?N VCard:Suffix ?Suffix }
FILTER (?Name = fn:concat(?Prefix," ",?Giv, " ",?Fam," ",?Oth," ",?Suffix))

}

We observe the following problem here: First, we use filters for constructing a new bind-
ing which is not covered by the current SPARQL specification, since filter expressions
are not meant to create new bindings of variables (in this case the variable ?Name),
but only filter existing bindings. Second, if we wanted to model the case where e.g.,
several other names were provided, we would need built-in functions beyond what the

current SPARQL spec provides, in this case a string manipulation function such as
fn:concat. SPARQL provides a subset of the functions and operators defined by
XPath/XQuery, but these cover only boolean functions, like arithmetic comparison op-
erators or regular expression tests and basic arithmetic functions. String manipulation
routines are beyond the current spec. Even if we had the full range of XPath/XQuery
functions available, we would admittedly have to also slightly “extend” fn:concat
here, assuming that unbound variables are handled properly, being replaced by an empty
string in case one of the optional parts of the name structure is not defined.

Apart from built-in functions like string operations, aggregate functions such as
count, minimum, maximum or sum, are another helpful construct for many mappings
that is currently not available in SPARQL.

Finally, although we can query and create new RDF graphs by SPARQL CON-
STRUCT statements mapping one vocabulary to another, there is no well-defined way
to combine such mappings with arbitrary data, especially when we assume that (1) map-
pings are not restricted to be unidirectional from one vocabulary to another, but bidirec-
tional, and (2) additional ontological inferences such as subclass/subproperty relations
defined in the mutually mapped vocabularies should be taken into account when query-
ing over syndicated RDF data and mappings. We propose the following extensions of
SPARQL:

– We introduce an extensible set of useful built-in and aggregate functions.
– We permit function calls and aggregates in the CONSTRUCT clause,
– We further allow CONSTRUCT queries nested in FROM statements, or more gen-

eral, allowing CONSTRUCT queries as part of the dataset.

2.1 Built-in Functions and Aggregates in Result Forms
Considering Example 1, it would be more intuitive to carry out the string translation
from VCard:n to foaf:name in the result form, i.e., in the CONSTRUCT clause:

CONSTRUCT {?X foaf:name fn:concat(?Prefix," ",?Giv," ",?Fam," ",?Oth," ",?Suffix).}
WHERE { ?X VCard:N ?N .

OPTIONAL {?N VCard:Family ?Fam } OPTIONAL {?N VCard:Given ?Giv }
OPTIONAL {?N VCard:Other ?Oth } OPTIONAL {?N VCard:Prefix ?Prefix }
OPTIONAL {?N VCard:Suffix ?Suffix } }

Another example for a non-trivial mapping is the different treatment of telephone num-
bers in FOAF and VCard.

Example 3. A VCard:tel is a foaf:phone – more precisely, VCard:tel is re-
lated to foaf:phone as follows. We have to create a URI from the RDF literal value
defining vCard:tel here, since vCard stores Telephone numbers as string literals,
whereas FOAF uses resources, i.e., URIs with the tel: URI-scheme:

CONSTRUCT { ?X foaf:phone rdf:Resource(fn:concat("tel:",fn:encode-for-uri(?T)) . }
WHERE { ?X VCard:tel ?T . }

Here we assumed the availability of a cast-function, which converts an xs:string
to an RDF resource. While the distinction between literals and URI references in RDF
usually makes perfect sense, this example shows that conversions between URI refer-
ences and literals become necessary by practical uses of RDF vocabularies.

The next example shall illustrate the need for aggregate functions in mappings.

Example 4. The DOAP vocabulary [10] contains revision, i.e. version numbers of re-
leased versions of projects. With an aggregate function MAX, one can map DOAP in-
formation into the RDF Open Source Software Vocabulary [32], which talks about the
latest release of a project, by picking the maximum value (numerically or lexicograph-
ically) of the set of revision numbers specified by a graph pattern as follows:

CONSTRUCT { ?P os:latestRelease MAX(?V : ?P doap:release ?R. ?R doap:revision ?V) }
WHERE { ?P rdf:type doap:Project . }

Here, the WHERE clause singles out all projects, while the aggregate selects the
highest (i.e., latest) revision date of any available version for that project.

2.2 Nested CONSTRUCT Queries in FROM Clauses
The last example show another example of “aggregation” which is not possible with
SPARQL upfront, but may be realized by nesting CONSTRUCT queries in the FROM
clause of a SPARQL query.

Example 5. Imagine you want to map/infer from an ontology having co-author rela-
tionships declared using dc:creator properties from the Dublin Core metadata vo-
cabulary to foaf:knows, i.e., you want to specify

If ?a and ?b have co-authored the same paper, then ?a knows ?b.

The problem here is that a mapping using CONSTRUCT clauses needs to introduce new
blank nodes for both ?a and ?b (since dc:creator is a datatype property usually just
giving the name string of the author) and then need to infer the knows relation, so what
we really want to express is a mapping

If ?a and ?b are dc:creators of the same paper, then someone named with
foaf:name ?a foaf:knows someone with foaf:name ?b.

A first-shot solution could be:
CONSTRUCT { _:a foaf:knows _:b . _:a foaf:name ?n1 . _:b foaf:name ?n2 . }
FROM <g> WHERE { ?p dc:creator ?n1 . ?p dc:creator ?n2 . FILTER (?n1 != ?n2) }

Let us consider the present paper as example graph g:
g: <http://ex.org/papers#sparqlmappingpaper> dc:creator "Axel"

<http://ex.org/papers#sparqlmappingpaper> dc:creator "Roman"
<http://ex.org/papers#sparqlmappingpaper> dc:creator "Francois"

By the semantics of blank nodes in CONSTRUCT clauses — SPARQL creates new
blank node identifiers for each solutions set matching the WHERE clause — the above
would infer the following additional triples:

_:a1 foaf:knows _:b1. _:a1 foaf:name "Axel". _:b1 foaf:name "Roman".
_:a2 foaf:knows _:b2. _:a2 foaf:name "Axel". _:b2 foaf:name "Francois".
_:a3 foaf:knows _:b3. _:a3 foaf:name "Francois". _:b3 foaf:name "Roman".
_:a4 foaf:knows _:b4. _:a4 foaf:name "Francois". _:b4 foaf:name "Axel".
_:a5 foaf:knows _:b5. _:a5 foaf:name "Roman". _:b5 foaf:name "Axel".
_:a6 foaf:knows _:b6. _:a6 foaf:name "Roman". _:b6 foaf:name "Francois".

Obviously, we lost some information in this mapping, namely the corellations that
the “Axel” knowing “Francois” is the same “Axel” that knows “Roman”, etc. We could
remedy this situation by allowing to nest CONSTRUCT queries in the FROM clause of
SPARQL queries as follows:

CONSTRUCT { ?a knows ?b . ?a foaf:name ?aname . ?b foaf:name ?bname . }
FROM { CONSTRUCT { _:auth foaf:name ?n . ?p aux:hasAuthor _:auth . }

FROM <g> WHERE { ?p dc:creator ?n . } }
WHERE { ?p aux:hasAuthor ?a . ?a foaf:name ?aname .

?p aux:hasAuthor ?b . ?b foaf:name ?bname . FILTER (?a != ?b) }

Here, the “inner” CONSTRUCT creates a graph with unique blank nodes for each
author per paper, whereas the outer CONSTRUCT then aggregates a more appropriate
answer graph, say:

_:auth1 foaf:name "Axel". _:auth2 foaf:name "Roman". _:auth3 foaf:name "Francois".
_:auth1 foaf:knows _:auth2. _:auth1 foaf:knows _:auth3.
_:auth2 foaf:knows _:auth1. _:auth2 foaf:knows _:auth3.
_:auth3 foaf:knows _:auth1. _:auth3 foaf:knows _:auth2.

In the following, we will extend SPARQL syntactically and semantically to deal
with these features. This extended version of the language, which we call SPARQL++

shall allow to evaluate SPARQL queries on top of RDF(S) data combined with map-
pings again expressed in SPARQL++.

3 Preliminaries – HEX-Programs
To evaluate SPARQL++ queries, we will translate them to so-called HEX-programs [12],
an extension of logic programs under the answer-set semantics.

Let Pred , Const , Var , exPr be mutually disjoint sets of predicate, constant, vari-
able symbols, and external predicate names, respectively. In accordance with common
notation in LP and the notation for external predicates from [11] we will in the following
assume that Const comprises the set of numeric constants, string constants beginning
with a lower case letter, or double-quoted string literals, and IRIs.11 Var is the set of
string constants beginning with an uppercase letter. Elements from Const ∪ Var are
called terms. Given p ∈ Pred an atom is defined as p(t1, . . . , tn), where n is called the
arity of p and t1, . . . , tn are terms. An external atom is of the form

g[Y1, . . . , Yn](X1, . . . , Xm),

where Y1, . . . , Yn is a list of predicates and terms and X1, . . . , Xm is a list of terms
(called input list and output list, respectively), and g ∈ exPr is an external predicate
name. We assume the input and output arities n and m fixed for g. Intuitively, an ex-
ternal atom provides a way for deciding the truth value of an output tuple depending on
the extension of a set of input predicates and terms. Note that this means that external
predicates, unlike usual definitions of built-ins in logic programming, can not only take
constant parameters but also (extensions of) predicates as input.

Definition 1. A rule is of the form

h← b1, . . . , bm,not bm+1, . . .not bn (1)

where h and bi (m + 1 ≤ i ≤ n) are atoms, bk (1 ≤ k ≤ m) are either atoms or
external atoms, and ‘not’ is the symbol for negation as failure.

11 For the purpose of this paper, we will disregard language-tagged and datatyped literals in the
translation to HEX-programs.

We use H(r) to denote the head atom h and B(r) to denote the set of all body literals
B+(r) ∪B−(r) of r, where B+(r) = {b1, . . . , bm} and B−(r) = {bm+1, . . . , bn}.

The notion of input and output terms in external atoms described above denotes the
binding pattern. More precisely, we assume the following condition which extends the
standard notion of safety (cf. [31]) in Datalog with negation.

Definition 2 (Safety). Each variable appearing in a rule must appear in a non-negated
body atom or as an output term of an external atom.

Finally, we define HEX-programs.

Definition 3. A HEX-program P is defined as a set of safe rules r of the form (1).

The Herbrand base of a HEX-program P , denoted HBP , is the set of all possible ground
versions of atoms and external atoms occurring in P obtained by replacing variables
with constants from Const . The grounding of a rule r, ground(r), is defined accord-
ingly, and the grounding of program P is ground(P) =

⋃
r∈P ground(r).

An interpretation relative to P is any subset I ⊆ HBP containing only atoms. We
say that I is a model of atom a ∈ HBP , denoted I |= a, if a ∈ I . With every external
predicate name e ∈ exPr we associate an (n+m+1)-ary Boolean function fe (called
oracle function) assigning each tuple (I, y1 . . . , yn, x1, . . . , xm) either 0 or 1, where
n/m are the input/output arities of e, I ⊆ HBP , xi ∈ Const , and yj ∈ Pred ∪ Const .
We say that I ⊆ HBP is a model of a ground external atom a = e[y1, . . . , yn](x1, . . . ,
xm), denoted I |= a, iff fe(I, y1 . . ., yn, x1, . . . , xm) = 1.

Let r be a ground rule. We define (i) I |= H(r) iff there is some a ∈ H(r) such
that I |= a, (ii) I |= B(r) iff I |= a for all a ∈ B+(r) and I 6|= a for all a ∈ B−(r),
and (iii) I |= r iff I |= H(r) whenever I |= B(r). We say that I is a model of a
HEX-program P , denoted I |= P , iff I |= r for all r ∈ ground(P).

The semantics we use here generalizes the answer-set semantics [16] and is defined
using the FLP-reduct [15], which is more elegant than the traditional Gelfond-Lifschitz
reduct of stable model semantics and ensures minimality of answer sets also in presence
of external atoms: The FLP-reduct of P with respect to I ⊆ HBP , denoted P I , is the
set of all r ∈ ground(P) such that I |= B(r). I ⊆ HBP is an answer set of P iff I is a
minimal model of P I .

By the cautious extension of a predicate p we denote the set of atoms with predicate
symbol p in the intersection of all answer sets of P .
For our purposes, we define a fixed set of external predicates exPr = {rdf , isBLANK ,
isIRI , isLITERAL,=, != ,REGEX ,CONCAT ,COUNT ,MAX ,MIN ,SK}with a
fixed semantics as follows. We take these external predicates as examples, which demon-
strate the HEX-programs are expressive enough to model all the necessary ingredients
for evaluating SPARQL filters (isBLANK , isIRI , isLITERAL,=, != ,REGEX) and
also for more expressive built-in functions and aggregates (CONCAT ,SK ,COUNT ,
MAX ,MIN). Here, we take CONCAT just as an example built-in, assuming that more
XPath/XQuery functions could similarly be added.

For the rdf predicate we write atoms as rdf [i](s, p, o) to denote that i ∈ Const ∪
Var is an input term, whereas s, p, o ∈ Const are output terms which may be bound
by the external predicate. The external atom rdf [i](s, p, o) is true if (s, p, o) is an RDF
triple entailed by the RDF graph which is accessibly at IRI i. For the moment, here we
consider simple RDF entailment [18] only.

The atoms isBLANK [c](val), isIRI [c](val), isLITERAL[c](val) test input term
c ∈ Const ∪Var (in square brackets) for being a valid string representation of a blank
node, IRI reference or RDF literal. The atom REGEX [c1, c2](val) test whether c1
matches the regular expression given in c2. All these external predicates return an out-
put value val ∈ {t, f, e}, representing truth, falsity or an error, following the semantics
defined in [27, Sec. 11.3].

We write comparison atoms ‘t1 = t2’ and ‘t1 != t2’ in shorthand infix notation
with t1, t2 ∈ Const ∪ Var and the obvious semantics of (lexicographic or numeric)
(in)equality. Here, for = either t1 or t2 is an output term, but at least one is an input
term, and for != both t1 and t2 are input terms.

Apart from these truth-valued external atoms we add other external predicates which
mimic built-in functions an aggregates. As an example predicate for a built-in, we
chose the predicate CONCAT [c1, . . . , cn](cn+1) with variable input arity which con-
catenates string constants c1, . . . , cn into cn+1 and thus implements the semantics of
fn:concat in XPath/XQuery [23].

Next, we define external predicates which mimic aggregate functions over a certain
predicate. Let p ∈ Pred with arity n, and x1, . . . , xn ∈ Const ∪ {mask} where mask
is a special constant not allowed to appear anywhere except in input lists of aggregate
predicates.

Then COUNT [p, x1, . . . , xn](c) is true if c equals the number of distinct tuples
(t1, . . . , tn), such that I |= p(t1, . . . , tn) and for all xi different from the constant
mask it holds that ti = xi.

MAX [p, x1, . . . , xn](c) (and MIN [p, x1, . . . , xn](c), resp.) is true if among all tu-
ples (t1, . . . , tn), such that I |= p(t1, . . . , tn), c is the lexicographically greatest (small-
est, resp.) value among all the ti such that xi = mask .12

We will illustrate the use of these external predicates to express aggregations in
Section 4.4 below when discussing the actual translation from SPARQL++ to HEX-
programs.

Finally, the external predicate SK [id , v1, . . . , vn](skn+1) computes a unique, new
“Skolem”-like term id(v1, . . . , vn) from its input parameters. We will use this built-in
function in our translation of SPARQL queries with blank nodes in the CONSTRUCT
part. Similar to the aggregate functions mentioned before, when using SK we will need
to take special care in our translation in order to retain strong safety.

As widely known, for programs without external predicates, safety guarantees that
the number of entailed ground atoms is finite. Though, by external atoms in rule bodies,
new, possibly infinitly many, ground atoms could be generated, even if all atoms them-
selves are safe. In order to avoid this, a stronger notion of safety for HEX-programs is
defined in [30]: Informally, this notion says that a HEX-program is strongly safe, if no
external predicate recursively depends on itself, thus defining a notion of stratification
over external predicates. Strong safety guarantees finiteness of models as well as finite
computability of external atoms.

4 Extending SPARQL towards mappings
In Section 2 we have shown that an extension of the CONSTRUCT clause is needed for
SPARQL to be suitable for mapping tasks. In the following, we will formally define

12 Note that in this definition we allow min/max to aggregate over several variables.

extended SPARQL queries which allow to integrate built-in functions and aggregates in
CONSTRUCT clauses as well as in FILTER expressions. We will define the semantics of
such extended queries, and, moreover, we will provide a translation to HEX-programs,
building upon an existing translation presented in [26].

A SPARQL++ queryQ = (R,P,DS) consists of a result formR, a graph pattern P ,
and an extended dataset DS as defined below.13 We refer to [27] for syntactical details
and will explain these in the following as far as necessary.

For a SELECT query, a result form R is simply a set of variables, whereas for a
CONSTRUCT query, the result form R is a set of triple patterns.

We assume the pairwise disjoint, infinite sets I , B, L and Var , which denote IRIs,
blank node identifiers, RDF literals, and variables respectively. I ∪ L ∪ Var is also
called the set of basic RDF terms. In this paper, we allow as blank node identifiers
nested ground terms similar to HiLog terms [4], such that B is defined recursively over
an infinite set of constant blank node identifiers Bc as follows:

– each element of Bc is a blank node identifier, i.e., Bc ⊆ B.
– for b ∈ B and t1, . . . , tn in I ∪B ∪ L, b(t1, . . . , tn) ∈ B.

Now, we extend the SPARQL syntax by allowing built-in functions and aggregates
in place of basic RDF terms in graph patterns (and thus also in CONSTRUCT clauses)
as well as in filter expressions. We define the set Blt of built-in terms as follows:

– All basic terms are built-in terms.
– If blt is a built-in predicate (e.g., fn:concat from above or another XPath/XQuery

functions), and c1, . . . , cn are built-in terms then blt(c1, . . . , cn) is a built-in term.
– If agg is an aggregate function (e.g., COUNT , MIN , MAX), P a graph pattern,

and V a tuple of variables appearing in P , then agg(V :P) is a built-in term.14

In the following we will introduce extended graph patterns that may include built-in
terms and extended datasets that can be constituted by CONSTRUCT queries.

4.1 Extended Graph Patterns
As for graph patterns, we follow the recursive definition from [25]:

– a triple pattern (s, p, o) is a graph pattern where s, o ∈ Blt and p ∈ I ∪ Var .15

Triple patterns which only contain basic terms are called basic triple patterns and
value-generating triple patterns otherwise.

– if P, P1 and P2 are graph patterns, i ∈ I ∪ V ar, and R a filter expression then
(P1 AND P2), (P1 OPT P2), (P1 UNION P2), (GRAPH i P), and (P FILTER R)
are graph patterns.16

For any pattern P , we denote by vars(P) the set of all variables occurring in P and
by vars(P) the tuple obtained by the lexicographic ordering of all variables in P . As
atomic filter expression, we allow here the unary predicates BOUND (possibly with
variables as arguments), isBLANK, isIRI, isLITERAL, and binary equality predicates ‘=’
13 As we deal mainly with CONSTRUCT queries here, we will ignore solution modifiers.
14 This aggregate syntax is adapted from the resp. definition for aggregates in LP from [15].
15 We do not consider blanks nodes here as these can be equivalently replaced by variables [6].
16 We use AND to keep with the operator style of [25] although it is not explicit in SPARQL.

with arbitrary safe built-in terms as arguments. Complex filter expressions can be built
using the connectives ‘¬’, ‘∧’, and ‘∨’.

Similar to aggregates in logic programming, we use a notion of safety. First, given
a query Q = (R,P,DS) we allow only basic triple patterns in P , ie. we only allow
built-ins and aggregates only in FILTERs or in the result pattern R. Second, a built-in
term blt occurring in the result form or in P in a query Q = (R,P,DS) is safe if all
variables recursively appearing in blt also appear in a basic triple pattern within P .

4.2 Extended Datasets

In order to allow the definition of RDF data side-by-side with implicit data defined by
mappings of different vocabularies or, more general, views within RDF, we define an
extended RDF graph as a set of RDF triples I ∪ L ∪ B × I × I ∪ L ∪ B and
CONSTRUCT queries. An RDF graph (or dataset, resp.) without CONSTRUCT queries
is called a basic graph (or dataset, resp.).

The dataset DS = (G, {(g1, G1), . . . (gk, Gk)}) of a SPARQL query is defined by
(i) a default graph G, i.e., the RDF merge [18, Section 0.3] of a set of extended RDF
graphs, plus (ii) a set of named graphs, i.e., pairs of IRIs and corresponding extended
graphs.

Without loss of generality (there are other ways to define the dataset such as in a
SPARQL protocol query), we assume DS defined by the IRIs given in a set of FROM
and FROM NAMED clauses. As an exception, we assume that any CONSTRUCT query
which is part of an extended graphG by default (i.e., in the absence of FROM and FROM
NAMED clauses) has the dataset DS = (G, ∅) For convenience, we allow extended
graphs consisting of a single CONSTRUCT statement to be written directly in the FROM
clause of a SPARQL++ query, like in Example 5.

We will now define syntactic restrictions on the CONSTRUCT queries allowed in
extended datasets, which retain finite termination on queries over such datasets. Let G
be an extended graph. First, for any CONSTRUCT query Q = (R,P,DSQ) in G, DSQ
we allow only triple patterns tr = (s, p, o) in P or R where p ∈ I , i.e., neither blank
nodes nor variables are allowed in predicate positions in extended graphs, and, addi-
tionally, o ∈ I for all triples such that p = rdf:type. Second, we define a predicate-
class-dependency graph over an extended dataset DS = (G, {(g1, G1), . . . (gk, Gk)})
as follows. The predicate-class-dependency graph for DS has an edge p → r with
p, r ∈ I for any CONSTRUCT query Q = (R,P,DS) in G with r (or p, resp.) either (i)
a predicate different from rdf:type in a triple inR (or P , resp.), or (ii) an object in an
rdf:type triple in R (or P , resp.). All edges such that r occurs in a value-generating
triple are marked with ‘∗’. We now say that DS is strongly safe if its predicate-class-
dependency graph does not contain any cycles involving marked edges. As it turns out,
in our translation in Section 4.4 below, this condition is sufficient (but not necessary) to
guarantee that any query can be translated to a strongly safe HEX-program.

Like in [29] we assume that blank node identifiers in each query Q = (R,P,DS)
have been standardized apart, i.e., that no blank nodes with the same identifiers appear
in a different scope. The scope of a blank node identifier is defined as the graph or graph
pattern it appears in, where each WHERE or CONSTRUCT clause open a “fresh” scope .
For instance, take the extended graph dataset in Fig. 1(a), its standardized apart version
is shown in Fig. 1(b). Obviously, extended datasets can always be standardized apart in
linear time in a preprocessing step.

g1: :paper2 foaf:maker _:a.
_:a foaf:name "Jean Deau".

g2: :paper1 dc:creator "John Doe".
:paper1 dc:creator "Joan Dough".
CONSTRUCT {_:a foaf:knows _:b .

_:a foaf:name ?N1 .
_:b foaf:name ?N2 . }

WHERE {?X dc:creator ?N1,?N2.
FILTER(?N1 != ?N2) }

(a)

g1: :paper2 foaf:maker _:b1.
_:b1 foaf:name "Jean Deau".

g2: :paper1 dc:creator "John Doe".
:paper1 dc:creator "Joan Dough".
CONSTRUCT {_:b2 foaf:knows _:b3 .

_:b2 foaf:name ?N1 .
_:b3 foaf:name ?N2 . }

WHERE {?X dc:creator ?N1,?N2.
FILTER(?N1 != ?N2) }

(b)

Fig. 1. Standardizing apart blank node identifiers in extended datasets.

4.3 Semantics
The semantics of SPARQL++ is based on the formal semantics for SPARQL queries
by Pérez et al. in [25] and its translation into HEX-programs in [26].

We denote by Tnull the union I ∪B ∪L∪ {null}, where null is a dedicated constant
denoting the unknown value not appearing in any of I,B, or L, how it is commonly
introduced when defining outer joins in relational database systems. A substitution θ
from Var to Tnull is a partial function θ : Var → Tnull. We write substitutions in postfix
notation in square brackets, i.e., if t, t′ ∈ Blt and v ∈ Var , then t[v/t′] is the term
obtained from replacing all occcurences of v in t by t’. The domain of θ, denoted by
dom(θ), is the subset of Var where θ is defined. The lexicographic ordering of this
subset is denoted by dom(Var). For a substitution θ and a set of variables D ⊆ Var
we define the substitution θD with domain D as follows

xθD =


xθ if x ∈ dom(θ) ∩D
null if x ∈ D \ dom(θ)

Let x ∈ Var , θ1, θ2 be substitutions, then θ1∪θ2 is the substitution obtained as follows:

x(θ1 ∪ θ2) =

8>><>>:
xθ1 if xθ1 defined and xθ2 undefined

else: xθ1 if xθ1 defined and xθ2 = null
else: xθ2 if xθ2 defined
else: undefined

Thus, in the union of two substitutions defined values in one take precedence over null
values the other substitution. Two substitutions θ1 and θ2 are compatible when for all
x ∈ dom(θ1) ∩ dom(θ2) either xθ1 = null or xθ2 = null or xθ1 = xθ2 holds, i.e.,
when θ1 ∪ θ2 is a substitution over dom(θ1)∪ dom(θ2). Analogously to Pérez et al. we
define join, union, difference, and outer join between two sets of substitutions Ω1 and
Ω2 over domains D1 and D2, respectively:

Ω1 ./ Ω2 = {θ1 ∪ θ2 | θ1 ∈ Ω1, θ2 ∈ Ω2, θ1 and θ2 are compatible}
Ω1 ∪Ω2 = {θ | ∃θ1 ∈ Ω1 with θ = θD1∪D2

1 or
∃θ2 ∈ Ω2 with θ = θD1∪D2

2 }
Ω1 −Ω2 = {θ ∈ Ω1 | for all θ2 ∈ Ω2, θ and θ2 not compatible}
Ω1=./ Ω2 = (Ω1 ./ Ω2) ∪ (Ω1 −Ω2)

Next, we define the application of substitutions to built-in terms and triples: For a built-
in term t, by tθ we denote the value obtained by applying the substitution to all variables
in t. By evalθ(t) we denote the value obtained by (i) recursively evaluating all built-
in and aggregate functions, and (ii) replacing all bNode identifiers by complex bNode
identifiers according to θ, as follows:

evalθ(fn:concat(c1, c2, . . . , cn)) Returns the xs:string that is the concatenation of the values of c1θ,. . . ,c1θ
after conversion. If any of the arguments is the empty sequence or null, the argu-
ment is treated as the zero-length string.

evalθ(COUNT(V : P)) Returns the number of distinct17answer substitutions for the query Q =

(V, Pθ,DS) where DS is the dataset of the encapsulating query.
evalθ(MAX(V : P)) Returns the maximum (numerically or lexicographically) of distinct answer sub-

stitutions for the queryQ = (V, Pθ,DS).
evalθ(MIN(V : P)) Analogous to MAX, but returns the minimum.

evalθ(t) Returns tθ for all t ∈ I ∪ L ∪ Var , and t(dom(θ)θ) for t ∈ B.18

Finally, for a triple pattern tr = (s, p, o) we denote by trθ the triple (sθ, pθ, oθ), and
by evalθ(tr) the triple (evalθ(s), evalθ(p), evalθ(o)).
The evaluation of a graph pattern P over a basic dataset DS = (G,Gn), can now be
defined recursively by sets of substitutions, extending the definitions in [25, 26].

Definition 4. Let tr = (s, p, o) be a basic triple pattern, P, P1, P2 graph patterns, and
DS = (G,Gn) a basic dataset, then the evaluation [[·]]DS is defined as follows:

[[tr]]DS = {θ | dom(θ) = vars(P) and trθ ∈ G}
[[P1 AND P2]]DS = [[P1]]DS ./ [[P2]]DS

[[P1 UNION P2]]DS = [[P1]]DS ∪ [[P2]]DS

[[P1 OPT P2]]DS = [[P1]]DS =./ [[P2]]DS

[[GRAPH i P]]DS = [[P]](i,∅), for i ∈ Gn
[[GRAPH v P]]DS = {θ ∪ [v/g] | g ∈ Gn and θ ∈ [[P [v/g]]](g,∅)}, for v ∈ Var
[[P FILTER R]]DS = {θ ∈ [[P]]DS | Rθ = >}
Let R be a filter expression, u, v ∈ Blt . The valuation of R on a substitution θ, written Rθ
takes one of the three values {>,⊥, ε}19 and is defined as follows.
Rθ = >, if: (1) R = BOUND(v) with v ∈ dom(θ) ∧ evalθ(v) 6= null;

(2) R = isBLANK(v) with evalθ(v) ∈ B;
(3) R = isIRI(v) with evalθ(v) ∈ I;
(4) R = isLITERAL(v) with evalθ(v) ∈ L;
(5) R = (u = v) with evalθ(u) = evalθ(v) ∧ evalθ(u) 6= null;
(6) R = (¬R1) with R1θ = ⊥;
(7) R = (R1 ∨R2) with R1θ = > ∨ R2θ = >;
(8) R = (R1 ∧R2) with R1θ = > ∧ R2θ = >.

Rθ = ε, if: (1) R = isBLANK(v),R = isIRI(v),R = isLITERAL(v), or
R = (u = v) with (v ∈ Var ∧ v 6∈ dom(θ)) ∨ evalθ(v) = null ∨

(u ∈ Var ∧ u 6∈ dom(θ)) ∨ evalθ(u) = null;
(2) R = (¬R1) and R1θ = ε;
(3) R = (R1 ∨R2) and R1θ 6= > ∧ R2θ 6= > ∧ (R1θ = ε ∨ R2θ = ε);
(4) R = (R1 ∧R2) and R1θ = ε ∨ R2θ = ε.

Rθ = ⊥ otherwise.

In [26] we have shown that the semantics defined this way corresponds with the
original semantics for SPARQL defined in [25] without complex built-in and aggregate
terms and on basic datasets.20

17 Note that we give a set based semantics to the counting built-in, we do not take into account
duplicate solutions which can arise from the multi-set semantics in [27] when counting.

18 For blank nodes evalθ constructs a new blank node identifier, similar to Skolemization.
20 Our definition here only differs in in the application of evalθ on built-in terms in filter expres-

sions which does not make a difference if only basic terms appear in FILTERs.

Note that, so far we have only defined the semantics in terms of a pattern P and ba-
sic dataset DS , but neither taken the result form R nor extended datasets into account.
As for the former, we proceed with formally define solutions for SELECT and CON-
STRUCT queries, respectively. The semantics of a SELECT query Q = (V, P,DS) is
fully determined by its solution tuples [26].

Definition 5. Let Q = (R,P,DS) be a SPARQL++ query, and θ a substitution in
[[P]]DS , then we call the tuple vars(P)θ a solution tuple of Q.

As for a CONSTRUCT queries, we define the solution graphs as follows.

Definition 6. Let Q = (R,P,DS) be a SPARQL CONSTRUCT query where blank
node identifiers in DS and R have been standardized apart and R = {t1, . . . , tn} is
the result graph pattern. Further, for any θ ∈ [[P]]DS , let θ′ = θvars(R)∪vars(P). The
solution graph for Q is then defined as the triples obtained from⋃

θin[[P]]DS

{evalθ′(t1), . . . , evalθ′(tn)}

by eliminating all non-valid RDF triples.21

Our definitions so far only cover basic datasets. Extended datasets, which are implicitly
defined bring the following additional challenges: (i) it is not clear upfront which blank
node identifiers to give to blank nodes resulting from evaluating CONSTRUCT clauses,
and (ii) extended datasets might involve recursive CONSTRUCT definitions which con-
struct new triples in terms of the same graph in which they are defined. As for (i),
we remedy the situation by constructing new identifier names via a kind of Skolem-
ization, as defined in the function evalθ, see the table on page 12. evalθ generates a
unique blank node identifier for each solution θ. Regarding (ii) we avoid possibly in-
finite datasets over recursive CONSTRUCT clauses by the strong safety restriction in
Section 4.2. Thus, we can define a translation from extended datasets to HEX-programs
which uniquely identifies the solutions for queries over extended datasets.

4.4 Translation to HEX-Programs
Our translation from SPARQL++ queries to HEX-programs is based on the translation
for non-extended SPARQL queries outlined in [26]. Similar to the well-known corre-
spondence between SQL and Datalog, SPARQL++ queries can be expressed by HEX-
programs, which provide the additional machinery necessary for importing and process-
ing RDF data as well as evaluating built-ins and aggregates. The translation consists of
two basic parts: (i) rules that represent the query’s graph pattern (ii) rules defining the
triples in the extended datasets.

We have shown in [26] that solution tuples for any query Q can be generated by a
logic program and are represented by the extension of a designated predicate answerQ,
assuming that the triples of the dataset are available in a predicate tripleQ. We refer
to [26] for details and only outline the translation here by examples.

Complex graph patterns can be translated recursively in a rather straightforward
way, where unions and join of graph patterns can directly be expressed by appropriate
rule constructions, whereas OPTIONAL patterns involve negation as failure.
21 That is, triples with null values or blank nodes in predicate position, etc.

Example 6. Let query q select all persons who do not know anybody called “John Doe”
from the extended dataset DS = (g1∪ g2, ∅), i.e., the merge of the graphs in Fig. 1(b).
SELECT ?P FROM <g1> FROM <g2>
WHERE { ?P rdf:type foaf:Agent . FILTER (!BOUND(?P1))

OPTIONAL { P? foaf:knows ?P1 . ?P1 foaf:name "John Doe" . } }

This query can be translated to the following HEX-program:
answerq(P) :- answer1q(P,P1), P1 = null.
answer1q(P,P1) :- answer2q(P), answerq3(P,P1).
answer1q(P,null) :- answer2q(P), not answer3q’(P).
answer2q(P) :- tripleq(P,rdf:type,foaf:Agent,def).
answer3q(P,P1) :- tripleq(P,foaf:knows,P1,def),triple(P1,foaf:name,"John Doe",def).
answer3q’(P) :- answer3q(P,P1).

More complex queries with nested patterns can be translated likewise by introducing
more auxiliary predicates. The program part defining the tripleq predicate fixes the
triples of the dataset, by importing all explicit triples in the dataset as well as recursively
translating all CONSTRUCT clauses and subqueries in the extended dataset.

Example 7. The program to generate the dataset triples for the extended dataset DS =
(g1 ∪ g2, ∅) looks as follows:
tripleq(S,P,O,def) :- rdf["g1"](S,P,O).
tripleq(S,P,O,def) :- rdf["g2"](S,P,O).
tripleq(B2,foaf:knows,B3,def) :- SK[b2(X,N1,N2)](B2),SK[b3(X,N1,N2)](B3),

answerC1,g2(X,N1,N2).
tripleq(B2,foaf:name,N1,def) :- SK[b2(X,N1,N2)](B2), answerC1,g2(X,N1,N2).
tripleq(B3,foaf:knows,N2,def) :- SK[b3(X,N1,N2)](B3), answerC1,g2(X,N1,N2).
answerC1,g2(X,N1,N2) :- tripleq(X,dc:creator, N1,def),

tripleq(X,dc:creator,N2,def), N1 != N2.

The first two rules import all triples given explicitly in graphs g1, g2 by means of the
“standard” RDF import HEX predicate. The next three rules create the triples from the
CONSTRUCT in graph g2, where the query pattern is translated by an own subprogram
defining the predicate answerC1,g2, which in this case only consists of a single rule.

The example shows the use of the external function SK to create blank node ids for
each solution tuple as mentioned before, which we need to emulate the semantics of
blank nodes in CONSTRUCT statements.

Next, we turn to the use of HEX aggregate predicates in order to translate aggregate
terms. Let Q = (R,P,DS) and a = agg(V :Pa) – here, V ⊆ vars(Pa) is the tuple
of variables we want to aggregate over – be an aggregate term appearing either in R or
in a filter expression in P . Then, the idea is that a can be translated by an external atom
agg [aux , vars(Pa)′[V/mask]](va) where

(i) vars(Pa)
′ is obtained from vars(Pa) by removing all the variables which only appear in Pa

but not elsewhere in P ,
(ii) the variable va takes the place of a,
(iii) auxa is a new predicate defined by a rule: auxa(vars(Pa)

′)← answera(vars(Pa)).
(iv) answera is the predicate defining the solution set of the query Qa = (vars(Pa), Pa,DS)

Example 8. The following rules mimic the CONSTRUCT query of Example 4:
triple(P,os:latestRelease,Va) :- MAX[auxa,P,mask](Va),

triple(P,rdf:type,doap:Project,gr).
auxa(P,V) :- answera(P,R,V).
answera(P,R,V) :- triple(P,doap:release R,def), triple(R,doap:revision,V,def).

With the extensions the translation in [26] outlined here for extended datasets, ag-
gregate and built-in terms we can define the solution tuples of an SPARQL++ query
Q = (R,P,DS) over an extended dataset now as precisely the set of tuples corre-
sponding to the cautious extension of the predicate answerq .
4.5 Adding ontological inferences by encoding ρdf− into SPARQL
Trying the translation sketched above on the query in Example 6 we observe that we
would not obtain any answers, as no triples in the dataset would match the triple pattern
?P rdf:type foaf:Agent in the WHERE clause. This still holds if we include the
vocabulary definition of FOAF at http://xmlns.com/foaf/spec/index.rdf to
the dataset, since the machinery introduced so far could not draw any additional infer-
ences from the triple foaf:maker rdfs:range foaf:Agent which would be nec-
essary in order to figure out that Jean Deau is indeed an agent. There are several open
issues on using SPARQL on higher entailment regimes than simple RDF entailment
which allow such inferences. One such problem is the presences of infinite axiomatic
triples in RDF semantics or several open compatibility issues with OWL semantics,
see also [11]. However, we would like to at least add some of the inferences of the
RDFS semantics. To this end, we will encode an small but very useful subset of RDFS,
called ρdf [24] into the extended dataset. ρdf, defined by Muñoz et al., restricts the
RDF vocabulary to its essentials by only focusing on the properties rdfs:subPropertyOf,
rdfs:subClassOf,rdf:type, rdfs:domain, and rdfs:range, ignoring other constituents of the
RDFS vocabulary. Most importantly, Muñoz et al. prove that (i) ρdf entailment corre-
sponds to full RDF entailment on graphs not mentioning RDFS vocabulary outside ρdf,
and (ii) that ρdf entailment can be reduced to five axiomatic triples (concerned with re-
flexivity of the subproperty relationship) and 14 entailment rules. Note that for graphs
which do not mention subclass or subproperty relationships, which is usually the case
for patterns in SPARQL queries or the mapping rules we encode here, even a reflexive-
relaxed version of ρdf that does not contain any axiomatic triples is sufficient. We can
write down all but one of the entailment rules of reflexive-relaxed ρdf as CONSTRUCT
queries which we consider implicitly present in the extended dataset:
CONSTRUCT {?A :subPropertyOf ?C} WHERE {?A :subPropertyOf ?B. ?B :subPropertyOf ?C.}
CONSTRUCT {?A :subClassOf ?C} WHERE { ?A :subClassOf ?B. ?B :subClassOf ?C. }
CONSTRUCT {?X ?B ?Y} WHERE { ?A :subPropertyOf ?B. ?X ?A ?Y. }
CONSTRUCT {?X rdf:type ?B} WHERE { ?A :subClassOf ?B. ?X rdf:type ?A. }
CONSTRUCT {?X rdf:type ?B} WHERE { ?A :domain ?B. ?X ?A ?Y. }
CONSTRUCT {?Y rdf:type ?B} WHERE { ?A :range ?B. ?X ?A ?Y. }
CONSTRUCT {?X rdf:type ?B} WHERE { ?A :domain ?B. ?C :subPropertyOf ?A. ?X ?C ?Y.}
CONSTRUCT {?Y rdf:type ?B} WHERE { ?A :range ?B. ?C :subPropertyOf ?A. ?X ?C ?Y.}

There is one more entailment rule for reflexive-relaxed ρdf concerning that blank node
renaming preserves ρdf entailment. However, it is neither straightforwardly possible,
nor desirable to encode this by CONSTRUCTs like the other rules. Blank node renam-
ing might have unintuitive effects on aggregations and in connection with OPTIONAL
queries. In fact, keeping blank node identifiers in recursive CONSTRUCTs after stan-
dardizing apart is what keeps our semantics finite, so we skip this rule, and call the
resulting ρdf fragment encoded by the above CONSTRUCTs ρdf−. Some care is in or-
der concerning strong safety of the resulting dataset when adding ρdf−. To still ensure
strong safety of the translation, we complete the predicate-class-dependency graph by
additional edges between all pairs of resources connected by subclassOf or subProper-
tyOf, domain, or range relations and checking the same safety condition as before on
the graph extended in this manner.

4.6 Implementation
We implemented a prototype of a SPARQL++ engine based on on the HEX-program
solver dlvhex.22 The prototype exploits the rewriting mechanism of the dlvhex frame-
work, taking care of the translation of a SPARQL++ query into the appropriate HEX-
program, as laid out in Section 4.4. The system implements external atoms used in the
translation, namely (i) the RDF atom for data import, (ii) the aggregate atoms, and (iii)
a string concatenation atom implementing both the CONCAT function and the SK
atom for bNode handling. The engine can directly be fed with a SPARQL++ query. The
default syntax of a dlvhex results corresponds to the usual answer format of logic pro-
gramming engines, i.e., sets of facts, from which we generate an XML representation,
which can subsequently be transformed easily to a valid RDF syntax by an XSLT to
export solution graphs.

5 Related work
The idea of using SPARQL CONSTRUCT queries is in fact not new, even some im-
plemented systems such as TopBraid Composer already seem to offer this feature, 23

however without a defined and layered semantics, and lacking aggregates or built-ins,
thus insufficient to express mappings such as the ones studied in this article.

Our notion of extended graphs and datasets generalizes so-called networked graphs
defined by Schenk and Staab [29] who also use SPARQL CONSTRUCT statements as
rules with a slightly different motivation: dynamically generating views over graphs.
The authors only permit bNode- and built-in free CONSTRUCTs whereas we addition-
ally allow bNodes, built-ins and aggregates, as long as strong safety holds which only
restricts recursion over value-generating triples. Another differenece is that their se-
mantics bases on the well-founded instead of the stable model semantics.

PSPARQL [1], a recent extension of SPARQL, allows to query RDF graphs using
regular path expressions over predicates. This extension is certainly useful to represent
mappings and queries over graphs. We conjecture that we can partly emulate such path
expressions by recursive CONSTRUCTs in extended datasets.

As an interesting orthogonal approach, we mention iSPARQL [21] which proposes
an alternative way to add external function calls to SPARQL by introducing so called
virtual triple patterns which query a “virtual” dataset that could be an arbitrary service.
This approach does not need syntactic extensions of the language. However, an imple-
mentation of this extension makes it necessary to know upfront which predicates denote
virtual triples. The authors use their framework to call a library of similarity measure
functions but do not focus on mappings or CONSTRUCT queries.

As already mentioned in the introduction, other approaches often allow only map-
pings at the level of the ontology level or deploy their own rules language such as
SWRL [19] or WRL [8]. A language more specific for ontology mapping is C-OWL [3],
which extends OWL with bridge rules to relate ontological entities. C-OWL is a formal-
ism close to distributed description logics [2]. These approaches partially cover aspects
which we cannot handle, e.g., equating instances using owl:sameAs in SWRL or relat-
ing ontologies based on a local model semantics [17] in C-OWL. None of these ap-
proaches though offers aggregations which are often useful in practical applications of
22 Available with dlvhex on http://www.kr.tuwien.ac.at/research/dlvhex/.
23

http://composing-the-semantic-web.blogspot.com/2006/09/

ontology-mapping-with-sparql-construct.html

RDF data syndication, the main application we target in the present work. The Ontology
Alignment Format [13] and the Ontology Mapping Language [28] are ongoing efforts
to express ontology mappings. In a recent work [14], these two languages were merged
and given a model-theoretic semantics which can be grounded to a particular logical
formalism in order to be actually used to perform a mediation task. Our approach com-
bines rule and mapping specification languages using a more practical approach than
the above mentioned, exploiting standard languages, ρdf and SPARQL. We keep the
ontology language expressivity low on purpose in order to retain decidability, thus pro-
viding an executable mapping specification format.

5.1 Differences with the Latest SPARQL Spec
We base our translation on the set-based semantics of [25, 26] whereas the algebra for
SPARQL defined in the latest candidate recommendation [27] defines a multiset se-
mantics. An extension of our translation towards multiset semantics is straighforward
based on the observation that duplicate solution tuples for SPARQL queries can only
arise from (i) projections in SELECT queries and (ii) from UNION patterns. Another
slight modification of pattern semantics and translation is necessary in order to mimic
the way the latest SPARQL spec deals with filters within OPTIONAL patterns that re-
fer to variables outside the OPTIONAL part.24 Our implementation allows to switch
between the semantics defined in this paper and the fully spec-compliant version.

6 Conclusions and Further Work
In this paper we have demonstrated the use of SPARQL++ as a rule language for defin-
ing mappings between RDF vocabularies, allowing CONSTRUCT queries — extended
with built-in and aggregate functions — as part of the dataset of SPARQL queries. We
mainly aimed at setting the theoretical foundations for SPARQL++. Our next steps will
involve to focus on scalability of our current prototype, by looking into how far evalua-
tion of SPARQL++ queries can be optimized, for instance, by pushing query evaluation
from our dlvhex as far as possible into more efficient SPARQL engines or possibly dis-
tributed SPARQL endpoints that cannot deal with extended datasets natively. Further,
we will investigate the feasibility of supporting larger fragments of RDFS and OWL.
Here, caution is in order as arbitrary combininations of OWL and SPARQL++ involve
the same problems as combining rules with ontologies (see[11]) in the general case.
We believe that the small fragment we started with is the right strategy in order to al-
low queries over networks of lightweight RDFS ontologies, connectable via expressive
mappings, which we will gradually extend.

References
1. F. Alkhateeb, J.-F. Baget, J. Euzenat. Extending SPARQL with Regular Expression Patterns.

Tech. Report 6191, Inst. National de Recherche en Informatique et Automatique, May 2007.
2. A. Borgida, L. Serafini. Distributed Description Logics: Assimilating Information from Peer

Sources. Journal of Data Semantics, 1:153–184, 2003.
3. P. Bouquet, F. Giunchiglia, F. van Harmelen, L. Serafini, H. Stuckenschmidt. C-OWL: Con-

textualizing Ontologies. In The Semantic Web - ISWC 2003, Florida, USA, 2003.
4. W. Chen, M. Kifer, D. Warren. HiLog: A Foundation for Higher-Order Logic Programming.

Journal of Logic Programming, 15(3):187–230, February 1993.

24 see http://lists.w3.org/Archives/Public/public-rdf-dawg/2006OctDec/0115.html

5. FOAF Vocabulary Specification, July 2005. http://xmlns.com/foaf/0.1/.
6. J. de Bruijn, E. Franconi, S. Tessaris. Logical Reconstruction of Normative RDF. In OWL:

Experiences and Directions Workshop (OWLED-2005), Galway, Ireland, 2005.
7. J. de Bruijn, S. Heymans. A Semantic Framework for Language Layering in WSML. In

First Int’l Conf. on Web Reasoning and Rule Systems (RR2007), Innsbruck, Austria, 2007.
8. J. de Bruijn (ed.). Web Rule Language (WRL), 2005. W3C Member Submission.
9. S. Decker et al. TRIPLE - an RDF Rule Language with Context and Use Cases. In W3C

Workshop on Rule Languages for Interoperability, Washington D.C., USA, April 2005.
10. E. Dumbill. DOAP: Description of a Project. http://usefulinc.com/doap/.
11. T. Eiter, G. Ianni, A. Polleres, R. Schindlauer, H. Tompits. Reasoning with Rules and On-

tologies. In Reasoning Web 2006, pp. 93–127. Springer, Sept. 2006.
12. T. Eiter, G. Ianni, R. Schindlauer, H. Tompits. A Uniform Integration of Higher-Order Rea-

soning and External Evaluations in Answer Set Programming. In International Joint Con-
ference on Artificial Intelligence (IJCAI) 2005, pp. 90–96, Edinburgh, UK, Aug. 2005.

13. J. Euzenat. An API for Ontology Alignment. In Proc. 3rd International Semantic Web
Conference, Hiroshima, Japan, pp. 698–712, 2004.

14. J. Euzenat, F. Scharffe, A. Zimmerman. Expressive Alignment Language and Implementa-
tion. Project Deliverable D2.2.10, Knowledge Web NoE (EU-IST-2004-507482), 2007.

15. W. Faber, N. Leone, G. Pfeifer. Recursive Aggregates in Disjunctive Logic Programs: Se-
mantics and Complexity. 9th European Conference on Artificial Intelligence (JELIA 2004).
Lisbon Portugal, 2004.

16. M. Gelfond, V. Lifschitz. Classical Negation in Logic Programs and Disjunctive Databases.
New Generation Computing, 9:365–385, 1991.

17. C. Ghidini, F. Giunchiglia. Local model semantics, or contextual reasoning = locality +
compatibility. Artificial Intelligence, 127(2):221–259, 2001.

18. P. Hayes. RDF Semantics. Technical Report, W3C, February 2004. W3C Recommendation.
19. I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, M. Dean. SWRL: A Seman-

tic Web Rule Language Combining OWL and RuleML, 2004. W3C Member Submission.
20. R. Iannella. Representing vCard objects in RDF/XML, Feb. 2001. W3C Note.
21. C. Kiefer, A. Bernstein, H. J. Lee, M. Klein, M. Stocker. Semantic Process Retrieval with

iSPARQL. 4th European Semantic Web Conference (ESWC ’07). Innsbruck, Austria, 2007.
22. M. Kifer, G. Lausen, J. Wu. Logical Foundations of Object-oriented and Frame-based Lan-

guages. Journal of the ACM, 42(4):741–843, 1995.
23. A. Malhotra, J. Melton, N. W. (eds.). XQuery 1.0 and XPath 2.0 Functions and Operators,

Jan. 2007. W3C Recommendation.
24. S. Muñoz, J. Pérez, C. Gutierrez. Minimal Deductive Systems for RDF. 4th European

Semantic Web Conference (ESWC’07), Innsbruck, Austria, 2007.
25. J. Pérez, M. Arenas, C. Gutierrez. Semantics and Complexity of SPARQL. In International

Semantic Web Conference (ISWC 2006), pp. 30–43, 2006.
26. A. Polleres. From SPARQL to Rules (and back). 16th World Wide Web Conference

(WWW2007), Banff, Canada, May 2007.
27. E. Prud’hommeaux, A. Seaborne (eds.). SPARQL Query Language for RDF, June 2007.

W3C Candidate Recommendation.
28. F. Scharffe, J. de Bruijn. A Language to specify Mappings between Ontologies. In First Int.

Conf. on Signal-Image Technology and Internet-Based Systems (IEEE SITIS05), 2005.
29. S. Schenk, S. Staab. Networked rdf graphs. Tech. Report, Univ. Koblenz, 2007. http:

//www.uni-koblenz.de/˜sschenk/publications/2006/ngtr.pdf.
30. R. Schindlauer. Answer-Set Programming for the Semantic Web. PhD thesis, Vienna Uni-

versity of Technology, Dec. 2006.
31. J. Ullman. Principles of Database & Knowledge Base Systems. Comp. Science Press, 1989.
32. M. Völkel. RDF (Open Source) Software Vocabulary. http://xam.de/ns/os/.

