
 
Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the

published version when available.

Downloaded 2024-03-13T07:24:29Z

 

Some rights reserved. For more information, please see the item record link above.
 

Title The NEPOMUK Project - On the way to the Social Semantic
Desktop

Author(s) Groza, Tudor; Handschuh, Siegfried; Möller, Knud

Publication
Date 2007

Publication
Information

Tudor Groza, Siegfried Handschuh, Knud Möller, Gunnar
Grimnes, Leo Sauermann, Enrico Minack, Cédric Mesnage,
Mehdi Jazayeri, Gerald Reif, Rósa Gudjónsdottir "The
NEPOMUK Project - On the way to the Social Semantic
Desktop", Proceedings of I-SEMANTICS 2007, Graz, Austria,
2007.

Item record http://hdl.handle.net/10379/437

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/


The NEPOMUK Project - On the way to the Social

Semantic Desktop

Tudor Groza, Siegfried Handschuh, Knud Möller
(DERI, National University of Ireland, Galway, Ireland

tudor.groza@deri.org, siegfried.handschuh@deri.org, knud.moeller@deri.org)

Gunnar Grimnes, Leo Sauermann
(DFKI Kaiserslautern, Germany

gunnar.grimnes@dfki.de, leo.sauermann@dfki.de)

Enrico Minack
(L3S Hannover, Germany

minack@l3s.de)

Mehdi Jazayeri, Cédric Mesnage
(Faculty of Informatics, University of Lugano, Switzerland

mehdi.jazayeri@unisi.ch, cedric.mesnage@lu.unisi.ch)

Gerald Reif
(Department of Informatics, University of Zurich, Switzerland

reif@ifi.unizh.ch)

Rósa Gudjónsdóttir
(Department of Human-Computer Interaction, School of Computer Science and
Communication, Royal Institute of Technology, KTH, Sweden, rosag@kth.se)

Abstract: This paper introduces the NEPOMUK project which aims to create a
standard and reference implementation for the Social Semantic Desktop. We outline
the requirements and functionalities that were identified for a useful Semantic Desktop
system and present an architecture that fulfills these requirements which was acquired
by incremental refinement of the architecture of existing Semantic Desktop prototypes.
The NEPOMUK project is primarily motivated by three real-life industrial use-cases,
we briefly outline these and the processes used to extract required functionalities from
the people working in these areas today, and we present a selection of typical tasks
where the Semantic Desktop could be of benefit.

Key Words: Semantic Desktop, Personal Information Management, Semantic Mid-
dleware

Category: H.3.7, H.5.4

1 Introduction

In traditional desktop architectures, applications are isolated islands of data –
each application has its own data, unaware of related and relevant data in other



applications. Individual vendors may decide to allow their applications to inter-
operate, so that e.g. the email client knows about the address book. However,
today there is no consistent approach for allowing interoperation and a system-
wide exchange of data between applications. In a similar way, the desktops of
different users are also isolated islands - there is no standardized architecture for
interoperation and data exchange between desktops. Users may exchange data
by sending emails or upload it to a server, but so far there is no way of seamless
communication from an application used by one person on their desktop to an
application used by another person on another desktop.

The problem on the desktop is similar to that on the Web. On the Web we
are faced with isolated data islands, and also as on the desktop there is not yet
a standardized approach for finding and interacting between applications.

The Social Semantic Desktop (SSD) paradigm adopts the ideas of the Se-
mantic Web paradigm, which offers a solution for the web. Formal ontologies
capture both a shared conceptualization of desktop data and personal mental
models. RDF (Resource Description Format)1 serves as a common data repre-
sentation format. Web Services - applications on the web - can describe their
capabilities and interfaces in a standardized way and thus become Semantic Web
Services. On the desktop, applications (or rather: their interfaces) will therefore
be modelled in a similar fashion. Together, these technologies provide a means to
build the semantic bridges necessary for data exchange and application integra-
tion. The Social Semantic Desktop will transform the conventional desktop into
a seamless, networked working environment, by loosening the borders between
individual applications and the physical workspace of different users.

The aim of the NEPOMUK project2, described in this paper, is to provide
a standardized description of a Semantic Desktop architecture, independent of
any particular operating system or programming language. Reference implemen-
tations will show the feasibility of the standard. The current paper is structured
as follows: we start with Section 2 by describing the engineering cycle we follow
in the project. Then we detail in Section 3 scenarios captured from real-world
case-studies and in Section 4 a list of functionalities extracted from these scenar-
ios. Section 5 depicts the current version of the NEPOMUK SSD Architecture,
while Section 6 shows related approaches for building the SSD. In Section 7 we
state our conclusions.

2 NEPOMUK Engineering Cycle

The NEPOMUK project relies heavily on existing software developed by the
partners, such as the P-Grid peer-to-peer system[1], the Beagle++ search engine
[5], Aperture [3] — the metadata extraction system or the RDF Repository. On
the other hand, usability research is being held with the case studies partners by
1 http://www.w3.org/RDF/
2 http://nepomuk.semanticdesktop.org/



interviewing potential users of the SSD. This specific set up of the project led
us to develop our engineering cycle (Figure 1). This cycle represents the way we
intend to merge the existing technologies and the needs from users.

Clockwise, Figure 1 shows the forward en-

Figure 1: NEPOMUK Engi-
neering Cycle

gineering cycle. We analyzed the end-user’s
intended usage of the SSD, studied the differ-
ent use cases and formulated them into sce-
narios. We generalized the individual scenar-
ios and extracted the common functionali-
ties that make up the SSD. These function-
alities formed the basis to define the refer-
ence architecture which in turn lead to the
service specification and implementation that
is tested by the end-users. On the other hand,
partners already started to hack components
that are likely to be needed by the SSD or
had component developed before the NEPO-

MUK project started. Therefore, we reverse
engineered these components to get their spec-
ifications and used the gained experience when
defining the architecture.

The construction of the architecture of the SSD is therefore the combination
of different parts, (1) the requirements and objectives from the vision of the SSD
driving the NEPOMUK project, (2) the functionalities from user studies (for-
ward engineering), and (3) the service specifications of existing implementations
(reverse engineering). The overlaps between these areas give us confidence in the
needs. Combining these three sources results in a complete architecture. Thus
the architecture represents a shared understanding of all partners involved in
the project and we see it as a roadmap towards the realization of the SSD.

In the next sections we present some of the scenarios which we considered as
being particularly representative for the SSD paradigm, then we show the list of
functionalities abstracted from the user study material.
3 Scenarios

The study of user needs regarding collaboration on the SSD is a major goal of
the NEPOMUK project. User studies were carried out in the project at the case
study partner sites, which are companies and research labs working in the area
of business software, biomedical research, Linux development, and management
consulting. The type of work performed varies between the case study partners,
but what they have in common is the fact that the employees are knowledge
workers, receiving, interpreting and structuring information on a daily basis.
The purpose of the user studies was to understand the work environment in or-



der to develop a SSD that meets the knowledge workers’ needs and requirements.
40 contextual interviews [4] and seven video brainstorming workshops [12] were
performed with employees at the different partner sites. To document the re-
sulting user requirements 14 personas and 40 usage scenarios [7, 8] were created,
illustrating the user needs, desires and expectations on the SSD. Personas are
fictitious persons that represent different user groups and are always based data
collected in user studies. A persona and a related scenario where the persona
uses the SSD that we will develop, is an effective way to illustrate how the users
want the SSD to operate. In this section we summarize a collection of the usage
scenarios with the help of our primary personas.

Dirk gets task from Claudia. Claudia is working on a project deliverable
and she identifies tasks to be done. She adds the tasks to the project and assigns
them to Dirk. Dirk is notified of his new tasks and he accepts the responsibility
for some of the tasks and Claudia is notified. Dirk realises that some tasks require
more specific knowledge so he declines them and suggests allocating them to
Martin. Claudia reassigns the tasks to Martin.

Josephine follows-up the project plan. Josephine is following up on an
active project she is administrating. It involves Karen and a few other trainers.
She accesses the project plan and browses to see if everything is on schedule.
The project plan is connected to the trainers calendars and all changes in their
calendar get fed directly into the project plan.

Karen edits a document with another person. Karen is to give a pre-
sentation for an existing client in a couple of days. The presentation is new and
the purpose is to sum up a series of training programs she has performed for the
client. When she is working on a slide she can see a new graphical layout sug-
gestion by Josephine who is concurrently working on the presentations graphic
form. The system allows them to collaborate, make changes, discuss and explain
their intentions and thoughts.

Karen shares experience. Karen finds the time to take care of some ad-
ministration issues. She just finished a project successfully and feels that the
experiences should be shared with her colleagues. She opens the course material,
marks it Shared, and adds a few keywords to make sure that people interested
find the material.

4 Functionalities

In order to integrate the requirements expressed in the scenarios and other mate-
rials produced in the case studies we need to use a more formal approach. All the
material was processed by a group of members of the project coming from dif-
ferent areas: developers, case study partners, architects and usability designers.
The results of this workshop is an homogeneous list of functionalities required to



satisfy the scenarios. For each functionality, we provide a name, a short textual
description, inputs, outputs and the relevant material in which this functionality
was discovered. We grouped these in five clusters as depicted in Figure 1.

In the following we give an Search Search, Query Related
Items

Social Social interaction, Resource
sharing, Access rights man-
agement, Publish subscribe,
User group management

Profiling Training, Tailor, Trust, Log-
ging, Annotation

Data Analysis Reasoning, Keyword extrac-
tion, Sorting and grouping

Desktop Offline access, Desktop
sharing, Resource man-
agement, Application
integration, Notification
management

Table 1: Functionalities of the Social Semantic
Desktop.

overview of the identified func-
tionalities :

Search enables users to search
for resources amongst different
sources (either locally or on the
network). Users also need to
find relevant resources by query-
ing by example.

Desktop. On their desk-
top, users manage resources, they
use legacy applications to ei-
ther create or edit documents
therefore NEPOMUK needs to
integrate these applications. NEPO-

MUK should provide a notifi-
cation management system for
the user to receive informations
regarding shared resources and
configure the ways she is notified. Even when offline, users should be able to ac-
cess relevant resources transparently. We see desktop sharing as the ability to
share applications or windows.

Profiling by logging the user’s activity, NEPOMUK should be trained to
behave according to the specific user’s needs. This automatic behaviours must
be tailorable and include annotations and information regarding trust with other
users or sources(i.e., if a user do not trust an information source, he should not
receive results from this source).

Data Analysis. To ease semantic annotation of unstructured documents,
such as text, users can use keyword extraction. Search results might need to be
rearranged using sorting and grouping. The use of reasoning provides with new
information.

Social. At the social level, the management of groups and users enhances
social interaction and ease resource sharing. Access rights management tackles
with the security needs. Users can publish and subscribe to relevant stream of
information, such as the modifications made to a particular resource or the
results of a search.

The discussion around these functionalities lead to a new architecture which
integrates the user requirements and the SSD vision. This architecture is dis-



cussed in the following section.

5 Architecture

In this section we present an overview of the NEPOMUK architecture. The
architecture, as show in Figure 2, is organized in three layers. The NEPOMUK

SSD is made up by the user’s individual desktops which are organized in a peer-
to-peer fashion. To support the communication between the peers, the lowest
layer is the Network Communication layer. This layer provides an Event-based
System, which is responsible for the distribution of the events on between the
NEPOMUK peers. The events carry an RDF graph as payload describing the
cause of the event. The Messaging System routes the messages to receiver. The
Peer-to-Peer File Sharing System enables the shared information space. It will be
based on GridVine [2]. GridVine is based on P-Grid [1] and provides a distributed
index which supports RDQL search queries.

On top of the Network Communication Layer, the NEPOMUK Semantic
Middleware provides the core services the NEPOMUK SSD is made up from.
The goal of the NEPOMUK project is to propose a reference architecture for the
SSD that can be implemented on top of different operating systems such as MS
Windows, MacOS, and Linux. Hence, different communication techniques such
as SOAP over HTTP, OSGI3, or D-Bus4 can be used for interaction between
the NEPOMUK services depending on the platform. Therefore, we decided to
use WSDL as communication technique and programming language independent
interface definition language to specify the service interfaces. The services have
to register at the Service Registry.

The Data Services are responsible to control the insertion, modification, dele-
tion, and retrieval of resources on the NEPOMUK desktop. A resource can be
a user, a document, a calendar entry, an email, and so on. It provides a service
to store the RDF meta-data in the Local Storage. A resource and their RDF de-
scription can either be manually added to the NEPOMUK desktop or the Data
Wrapper or the Text Analysis service extracts the information form desktop ap-
plications such as email clients of calendar applications. The Data Wrapper will
be used to extract meta-data form structured data sources (e.g., email headers,
calendar entries, etc.) and will be implemented based on Aperture [3]. The Text
Analysis service will be used to extract meta-data form unformatted text (e.g.,
email bodies, text processor documents, etc.). For local queries and for offline
working the RDF meta-data is stored in the Local Storage. If a resource is shared
with other users in an information space, the meta-data is also uploaded to the
distributed index of the peer-to-peer file sharing system. The Search service can
3 OSGi Alliance – http://www.osgi.org/
4 D-Bus – http://www.freedesktop.org/wiki/Software/dbus



NEPOMUK
Semantic

Middleware

Network
Communication

Applications

Se
rv

ic
e 

Re
gi

st
ry

Co
m

m
un

ic
at

io
n SOAP

OSGI

DBUS

Web 
Browser

Kn
ow

le
dg

e 
W

or
kb

en
ch

Local File 
Browser

Blog 
Authoring Tool

Wiki

Office 
Applications

Email Client

CAD Tool

...

IM Client

...

Data Services

Services

Publish/
Subscribe

User Context 
Manager

Community 
Manager
Access
Control

Mapping Data Wrapping

Text Analytics 

Local Distributed

Search

Local Distributed

Storage

P2P System Messaging System Event-based System

Task 
Management

Figure 2: Layered NEPOMUK Architecture.

either issue a local search in the local storage or a distributed search in the
underlying peer-to-peer system.

Ideally only one ontology exists for a domain of interest such as contact
data, calendar events. In reality, however, we are faced with many ontologies of
(partly) overlapping domains (e.g., foaf and vCard for contact data). Therefore,
the NEPOMUK middleware provides a Mapping Service that can be used by
other middleware services and services in higher layers to translate RDF graphs
from a source ontology to a target ontology.

Actions a user performs on the shared information space have to be ap-
proved by the Access Control System. Depending on the group membership of a
user, maintained in the User/Group Management, the Community Management
grands the privileges to perform the action. The access rights, the user, and the
group data are stored as RDF graphs in the distributed index of the peer-to-peer
system. This data is encoded using the access right ontology and the user/group
ontology, which belong to the NEPOMUK core ontologies.

The NEPOMUK middleware logs the actions a user performs on the re-
sources on his desktop. The logged data is stored in the Local Storage and is
analyzed by the User Context Manager to capture the current working context
of the user. The working context of the user is used to suggest meaningful actions
to the user depending on the task a user is currently working on.



The Publish/Subscribe System allows users to subscribe to events in the
NEPOMUK system. The subscriptions are stored as SPARQL queries [14]
which are matched against the RDF payload of the events. When the subscrip-
tion, i.e., the SPARQL query, matches the event, the Messaging System looks
up the preferred notification media (e.g., email, instant messaging, SMS) and
delivers the messages. The Messaging System is further used for synchronous
and asynchronous communication between NEPOMUK users.

The NEPOMUK Middleware provides the core services of the NEPOMUK

architecture. These services can be accessed via the NEPOMUK Application
Programming Interface (API). An application programmer can build usage spe-
cific services on top of the NEPOMUK API. By using the functionality provided
by the API, the programmer can implement new functionality according to the
end-users’ business requirements. Hence, the basic set of services provided by
the NEPOMUK API can be customized and extended by businesses and or-
ganizations. For example, a company might be interested in integrating Task
Management system whereas another might be interested in having document
versioning support for resources. The end-user specific services are shown in
dashed boxes in Figure 2.

The top layer of the architecture is the presentation layer. It provides a user
interface to the services provided by the NEPOMUK desktop. The presentation
layer is built using the NEPOMUK API. Many desktop applications are possible
sources for resources that should be managed by NEPOMUK. Therefore, each
desktop application should integrate support for the NEPOMUK Middleware.
Since this assumption does not hold for most of the applications, we developed
plug-ins and add-ons to enable a seamless integration for popular applications
such as the MS Office Suite, which for example extract email or calendar data
and adds them as resources to the NEPOMUK desktop. However, with in the
NEPOMUK project we develop applications such as Wikis or Blog Tools that
have generic support for the SSD and build directly on tho of the NEPOMUK

API.
In addition, the Knowledge Workbench is the central place to browse, query,

view, and edit resources and their meta-data. This way the Knowledge Work-
bench aims to replace current file management tools such as the MS File Ex-
plorer. If the SSD is extended by usage specific services, the application pro-
grammer has also to provide the corresponding user interface in the Presentation
Layer.

6 Related Work

In the following we want to review the most important projects related to estab-
lishing a Social Semantic Desktop. These projects are coming from the research,



business, as well as the open-source community. After a brief general overview
of each project, we want to learn from the related work as the conclusion of this
section.

Gnowsis Semanic Desktop. The first research project targeting a Seman-
tic Desktop system is the Gnowsis Semantic Desktop [17] diploma thesis. The
goal of Gnowsis is to complement established desktop applications and the desk-
top operating system with Semantic Web features, rather than replacing them,
while primarily focusing on Personal Information Management (PIM). The the-
sis addresses the problems of how to identify and represent desktop resources in
an unified RDF graph.

Haystack. A major research project concerning an integrated approach in
our field is the Haystack system [15]. Application-created barriers of information
representation and accessibility are removed by simply replacing these applica-
tions with Haystack’s word-processors, email client, image manipulation, instant
messaging and other functionality. Haystack was ground-breaking in terms of the
dynamic creation of user interfaces, but the project ended before establishing any
standards.

Semex. Another relevant Personal Information Management tool is the Se-
mex System (SEMantic EXplorer) [10]. Semex concentrates on the problem of
Reference Reconciliation, meshing objects and relations seamlessly together.
They combine three measures for this approach being evaluated on one of the
author’s private dataset. In contrast, NEPOMUK will add more reconciliation
algorithms from the Semantic Web and evaluate the data integration in industry
scenarios.

IRIS. The idea of the PIM system IRIS [6] is to have an integrated environ-
ment, similar to Haystack, but based on standard software, which is integrated
into one coherent interface, allowing to classify and display related information.
By today, the project lists only one publication introducing their approach.

DeepaMehta. DeepaMehta [16] is an open source semantic desktop applica-
tion based on the Topic Maps standard. It aims at evolving nowadays separated
desktop applications into an integrated workspace, enabling the user to organise,
describe and relate information objects like text notes, external documents and
media, browse the web and create semantic networks—all these in one seamless,
semantic-enabled desktop environment.

Apogée. The Apogée project aims at building a framework to create En-
terprise Development Process-oriented desktop applications, independent from
vendor or technologies. Probably due to its status of an industrial project, it
aims at implementing state-of-the-art features, but not beyond.

All integrated Semantic Desktop systems faced similar problems. First prob-
lem is evaluation and verification of the ideas in industry settings. Most systems
like IRIS or Semex are not evaluated yet, they are only used by the developers



in self-experiments. With its case studies, NEPOMUK will provide a testbed
to show the implications of the whole Semantic Desktop in both, industrial en-
vironments and open-source communities.

Second problem is that the projects do not consider collaborative work and
the interconnection of Semantic Desktops at all. They concentrate on a single
user scenario, whereas NEPOMUK also tackles collaborative knowledge work.

Last and probably most significant problem is integration. While for example
DBin shows the aspect of collaborative work, it does not connect to desktop
applications. Though Haystack provides a well evaluated user interface, it does
not re-use established Desktop applications users are used to, thus faces the user
with a new environment. Further, none of the projects established standards
which would increase interoperability and reusability.

Each system accommodates singular beneficial features, but also suffers from
flaws like usability problems, or very bad performance, or missing functionality.
Each of the introduced projects is designed as an integrated system, and despite
the fact that most prototypes are open-source, it is not straightforward to reuse
components of one for the other in order to amplify their features and extinguish
their weaknesses.

In contrast, NEPOMUK will establish a framework and standards so that
components can be reused and are interoperable, creating a better whole.

7 Conclusion

This paper has given a very brief overview of the motivations, goals and progress
of the NEPOMUK project. We have described the features and functionalities
that our vision of a Social Semantic Desktop requires, based on observation of
real knowledge-workers and their struggle with information integration using
today’s technology. Using an engineering process where we worked backwards
from the desired functionalities and requirements, while simultanously refined
a collection of existing Semantic Desktop research prototypes, we devised an
architecture for the Semantic Desktop. This architecture enabled us to build a
prototype featuring some of the required functionalities, and it is released as
open-source and is available for download from the NEPOMUK web-site.5.

The core aim of the NEPOMUK project is to specify an standard for Se-
mantic Desktop communication and processing. We are basing our work on well-
established existing standards for Web and Semantic Web technologies, and we
hope that our Semantic Desktop standards in turn will provide a fertile ground
for future software projects. By having a flexible and easily extendible architec-
ture we hope that over the next years any developer looking to solve information
integration problems on the desktop will look to NEPOMUK as a framework
5 http://dev.nepomuk.semanticdesktop.org



for their projects, thus by the time the project is ending, NEPOMUK will have
become a useful entity in it’s own right, with an active community and untold
possibilities.

References

1. K. Aberer, P. Cudré-Mauroux, A. Datta, Z. Despotovic, M. Hauswirth,
M. Punceva, and R. Schmidt. P-grid: a self-organizing structured p2p sys-
tem. SIGMOD Record, 32(3):29–33, 2003.

2. K. Aberer, P. Cudré-Mauroux, M. Hauswirth, and T. V. Pelt. Gridvine: Build-
ing internet-scale semantic overlay networks. In 3th International Semantic Web
Conference ISWC 2004, pages 107–121. Springer Verlag, 2004.

3. Aperture a java framework for getting data and metadata, Last visited March
2007. http://aperture.sourceforge.net/.

4. H. Beyer and K. Holtzblatt. Contextual Design ? Defining Customer-Centered
Systems. Academic Press, San Diego.

5. I. Brunkhorst, P. A. Chirita, S. Costache, J. Gaugaz, E. Ioannou, T. Iofciu,
E. Minack, W. Nejdl, and R. Paiu. The beagle++ toolbox: Towards an extendable
desktop search architecture. Technical report, L3S Research Centre, Hannover,
Germany, 2006.

6. A. Cheyer, J. Park, and R. Giuli. Iris: Integrate. relate. infer. share. In S. Decker,
J. Park, D. Quan, and L. Sauermann, editors, Proc. of Semantic Desktop Work-
shop at the ISWC, Galway, Ireland, November 6, volume 175, November 2005.

7. A. Cooper. The Inmates are Running the Asylum: Why High-Tech Products Drive
Us Crazy and How to Restore the Sanity. SAMS, Indianapolis, 1999.

8. A. Cooper and R. Reinman. About Face 2.0: The Essentials of Interaction Design.
John Wiley & Sons, 2003.

9. D-bus homepage, Last visited May 2007. http://www.freedesktop.org/wiki/
Software/dbus.

10. X. Dong and A. Y. Halevy. A platform for personal information management and
integration. In CIDR, pages 119–130, 2005.

11. J. Gemmell, G. Bell, R. Lueder, S. Drucker, and C. Wong. Mylifebits: Fulfilling
the memex vision. In ACM Multimedia December 1-6, Juan-les-Pins, France, pages
pp. 235–238, 2002.

12. E. Mackay, A. Ratzer, and P. Janecek. Video artifacts for design: bridging the
gap between abstraction and detail. In Designing interactive systems: processes,
practices, methods, and techniques, DIS ’00. ACM Pres, 2000.

13. Osgi alliance homepage, Last visited May 2007. http://www.osgi.org/.
14. E. Prud’hommeaux and A. S. eds. SPARQL query language for RDF. W3C Work-

ing Draft, 4. Octoberl 2006. http://www.w3.org/TR/rdf-sparql-query/.
15. D. Quan, D. Huynh, and D. R. Karger. Haystack: A platform for authoring end

user semantic web applications. In International Semantic Web Conference, pages
738–753, 2003.

16. J. Richter, M. Volkel, and H. Haller. Deepamehta - a semantic desktop. In Pro-
ceedings of the 1st Workshop on The Semantic Desktop - Next Generation Personal
Information Management and Collaboration Infrastructure at the International Se-
mantic Web Conference, Galway, Ireland, 2005.

17. L. Sauermann. The gnowsis-using semantic web technologies to build a semantic
desktop. Diploma thesis, Technical University of Vienna, 2003.

18. G. Tummarello, C. Morbidoni, and M. Nucci. Enabling semantic web communities
with dbin: An overview. In Proceedings of the ISWC, pages 943–950, 2006.


