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Abstract 

 

Active pharmaceutical ingredients (APIs) can exist in various solid state forms 

including polymorphs, solvates, and hydrates. In the case of polymorphs each form 

can possess its own unique physical properties and chemical stability which in turn 

can directly affect the efficacy of the API. It is clear that accurate characterisation 

and quantification of the precise solid state form present within a formulation is of 

vital concern for safety and regulatory affairs. It is therefore important to study and 

compare which analytical technologies are most appropriate to address these issues. 

Powder X-ray diffraction (PXRD) is considered to be the golden standard in the 

differentiation of polymorphs as a difference in crystal structure signifies the 

presence of an alternate form. However this technique is not amenable to quick on–

line analysis. Vibrational spectroscopies provide useful tools as they are rapid, non–

destructive and non–contact where they can be employed in, on and at–line.  

 

In this body of work the abilities of near infra-red (NIR) and Raman spectroscopies 

in combination with chemometric methods for the identification and quantification of 

low levels of API and polymorph contaminants present in model tablet formulations 

were investigated. For active quantification a simple model tablet system comprised 

of a model API, 5–methyl–2–[(2–nitrophenyl)amino]–3– thiophenecarbonitrile, 

ROY, in a matrix of excipients was utilised. The tablets were then analysed using 

PXRD, NIR, backscattering Raman (BRS) and transmission Raman (TRS) 

spectroscopies. The data was pre-processed using a variety of methods. The data was 

then used to develop a range of calibration models for predicting ROY concentration 

with the best accuracy of ~0.3% RMSEP (root mean square error of prediction) 

being achieved with NIR and Transmission Raman spectroscopies.  

 

Polymorph and polymorph contaminant within formulations studies were concerned 

with the polymorphs of piracetam. A simple binary polymorphic system consisting 

of mixtures of varying proportions of Form II and III of piracetam were prepared and 

analysed by PXRD, NIR and Raman. Univariate and multivariate analyses were 

performed on the PXRD data and although multivariate chemometric analysis 

provided better error values of prediction for the level of polymorphs within the 
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mixtures, it did not perform as well as the NIR based multivariate model which was 

found to demonstrate the best accuracy overall. BRS models were poor due to the 

inherent sub–sampling associated with this technique. 

 

For the polymorph contaminant work, low levels of polymorphic contaminant of 

Form II piracetam were incorporated into tablets containing 10% API loading of 

Form III piracetam in the range of 0.1 to 10% of the total tablet. Transmission 

Raman and NIR were comparable with limits of detection ~ 0.6% FII in tablets. 

Transmission Raman spectroscopy overcomes the limitation of sub–sampling and 

fluorescence that is often associated with the conventional backscattering Raman and 

is a technology ripe for utilisation in a process analytical technology context within 

the pharmaceutical industry.  
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1 Introduction 

1.1 Overview of Pharmaceutical Solids 
 

Crystallisation is commonly used for the separation and purification of active 

pharmaceutical ingredients (APIs) in the pharmaceutical industry. High purity 

crystalline compounds can be produced by this method with well–defined particle 

characteristics and incorporated into solid dosage forms. Organic molecules can 

crystallise into various solid state forms including polymorphs, solvates and co–

crystals (Fig. 1). Each form can possess its own unique physical and chemical 

properties which in turn can directly affect performance characteristics such as 

bioavailability and solubility of the API under physiological conditions.(1-3) 

Bioavailability is an important parameter for pharmaceuticals and is a measurement 

of the rate and extent of the active drug that reaches systematic circulation in the 

body.(4) 

 

 

Figure 1 Schematic depicting different solid state forms. 

 

There are no certain means of knowing whether or not a substance can exist in a 

number of solid state forms and if so, what is the form’s propensity to convert to 

alternate forms. This is a significant risk to assess and indeed required by regulatory 

agencies as there are typically small energy differences between forms which can 

result in the unintentional formation of an undesired form – a famous case of which 

is Ritonavir which is discussed further in this chapter. To garner as much 

understanding of the API and potential alternate forms possible, rigorous solid state 

screening assays are typically carried out during the early stages of drug 



 
2 

 

development to identify alternate solid state forms. Presently it cannot be predicted 

what effect these new solid state forms could have on the API’s solid state properties 

nor in–vivo dissolution profile and performance. Thus the importance of knowing 

which precise form of the API is present at all stages of product development, from 

initial studies through to manufacture of the final marketed product, is paramount to 

ensuring product performance and patient welfare.  Extensive reviews on the subject 

of polymorphism and alternate solid state forms in pharmaceuticals have appeared in 

the literature in the past 15 years, signifying the high occurrence and importance of 

polymorphism in the field of pharmaceuticals.(3, 5-23)  

 

1.2 Polymorphism 
 

The most widely used definition of a polymorph is that of Walter McCrone; “A 

polymorph is a solid crystalline phase of a given compound resulting from the 

possibility of at least two different arrangements of the molecules of that compound 

in the solid state.”(24) Polymorphs result from different spatial arrangements of the 

same molecule giving different crystal lattice structures. This can occur in two ways, 

by packing or conformational arrangements. Packing polymorphism results from 

different packing of conformationally rigid molecules by differing inter and intra 

molecular interactions. Conformational flexibility of a molecule can also allow the 

molecule to pack differently in the crystal lattice according to its molecular 

conformation creating further polymorphs.(25)  

 

As polymorphs have unique crystal lattices, physical and chemical properties 

including density, melting point, solubility and stability can differ. All can have an 

effect on how the drug is processed, manufactured and its efficacy within the body. 

Such differences in properties can have significant consequences when 

polymorphism arises in pharmaceuticals, where the formation of a previously 

unknown, more thermodynamically stable polymorph with an undesired dissolution 

profile can cause the drug to be ineffective for its original purpose. This is 

exemplified by Abbotts’ anti–retroviral drug Ritonavir.(26, 27) A more 

thermodynamically stable form with poorer solubility and bioavailability was 

discovered to be precipitating out in liquid filled capsules. This required 
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reformulation of the product to ensure that drug performance in vivo was not 

compromised. A recent study detailing the impact of polymorphism on solubility 

noted that in general the ratio of polymorph solubility of one form compared to 

another is typically less than two although occasionally a higher solubility ratios can 

be observed; for the case of Ritonavir the solubility ratio was four for the FII:FI 

polymorphs.(28) 

 

1.3 Enantiotropy and monotropy 
 

Polymorphs can be described in two ways from a thermodynamic viewpoint. 

Monotropic polymorphs are defined by free energy curve plots where one polymorph 

is the stable form at all temperatures below the melting point. For example in Fig. 2 

left, FII is the most stable form. The free energy curves of the polymorphs do not 

come into contact with one another and no reversible polymorph transformation can 

occur at temperatures lower than the melting point. 

  

 

Figure 2 Free energy diagrams of monotropic and enantiotropic polymorphic systems. 

 

In enantiotropic systems, the free energy curves of the polymorphs intersect at a 

defined transition temperature which occurs before the melting point of the solid. 

This transition is reversible meaning that conversion of one form to another can 

occur. In the example above, Fig. 2 right, FII and FIII share an enantiotropic 

relationship where at a given temperature X
o
C they can interconvert from one form 

to another. At temperatures above X
o
C FIII is the most stable polymorph and at 

temperatures below X
o
C FII is the most stable form. 

 



 
4 

 

1.4 Ostwald’s rule  
 

Predominantly, the most thermodynamically stable polymorph is usually selected for 

development for inclusion in a pharmaceutical product; however where a metastable 

form is easier to manufacture, process or enhances bioavailability, it can be selected 

for development if it will not undergo undesired transformations to an alternate solid 

state form on processing or storage.(29) Ostwald’s rule states that “When leaving a 

given state and in transforming to another state, the state which is sought out is not 

the thermodynamically stable one, but the state nearest in stability to the original 

state”.(30) In general, a metastable form will crystallise first before the most 

thermodynamically stable crystal form crystallises.(31) Although this is not a 

universal rule it is important to consider the stability of each polymorph and perform 

rigorous testing to determine the stability order of each polymorph. This is a non–

trivial matter as many variables can impact polymorph crystallisation and will be 

discussed in the next section. 

 

1.5 Polymorph generation 
 

A variety of factors can influence which polymorph is generated including 

temperature and solubility. Solvent selection can impart selectivity on which form is 

obtained and their crystal morphology.(32) For example all five polymorphs of 

sulfathiazole can be crystallised using varying solvents with alcohol functionality 

and the morphology of FI could be modified from acicular to columnar morphology 

by addition of small amounts of methanol to 1–propanol.  These habits are depicted 

in Fig. 3, with additional habits for comparison, and as one can see the two 

morphologies are different. If such a change were to occur in a manufacturing 

environment this could impact how one could go about processing the material. In 

this hypothetical example greater mechanical energy through use of a rotary mill 

may be required to break up the stronger columnar particles in comparison to that 

required for grinding the acicular particles to achieve a desired particle size for 

further downstream processes such as granulation, compression or sachet filling.  
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Figure 3 Schematic of crystal habits reproduced from USP monograph <776> Optical 

Microscopy.(33)  

 

Further factors which can influence which polymorph is generated are humidity and 

temperature changes. In the case of mefenamic acid a conversion from the FII 

polymorph to the FI polymorph occurred over time when exposed to high relative 

humidities.(34) Increases in pressure can be exploited to generate further forms, 

examples include two forms of piracetam which are unstable at ambient pressure  (35, 

36) and metastable forms of paracetamol.(37) These metastable forms could then be 

used to seed crystallisation experiments at ambient conditions to generate the 

metastable form at room temperature. Additives can be used for selective 

crystallisation of polymorphs as in the case of L–glutamic acid where differing 

amino acid derivatives were used to suppress growth of the beta form in favour of the 

alpha form.(38) Similarly, impurities can play a similar role in mediating form 

generation. This is believed to have been the case in Ritonavir where a structurally 

similar compound, formed by a base catalysed degradation of the API, acted as a 

template for the formation of FII.(26)  Self–assembled monolayers (SAMs) were 

used to generate polymorphs of 5–methyl–2–[(2–nitro phenyl) amino] 3–

thiophenecarbonitrile (ROY).(39)  

 

Pharmaceutical processing can impact the polymorphic forms produced and include 

roller compaction, milling, tableting and wet granulation. Transformations that occur 

via processing are referred to as process induced transformations (PITs). 

Transformations can additionally occur due to handling and storage of the API as 

well as interactions with excipients. An extensive review by Zhang et al. highlights 

the majority of phase transformation considerations that should be noted during 

process development and the manufacture of solid oral dosage forms.(40) Recent 
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literature includes a case where wet milling resulted in solid state transformations of 

an anti–cancer compound as a function of pressure where FII transformed to FI at 

pressures of 500–1500 bar and hydrate formation was noted at pressures greater than 

1500 bar.(41) An additional example details form conversions on tablet surfaces of a 

caffeine formulation on compaction where PXRD was used to monitor form 

changes.(42)   

 

1.6 Polymorphism of 5–methyl–2–[(2–nitro phenyl) 
amino] 3–thiophenecarbonitrile 

 

5–methyl–2–[(2–nitrophenyl) amino] 3–thiophenecarbonitrile is highly polymorphic, 

more commonly known as ROY due to its polymorphs being red, orange and yellow 

in colour, Fig. 4.(43, 44) ROY is a precursor in the synthesis of Olanzapine, an 

atypical antipsychotic drug produced by Eli Lilly.(45) ROY exhibits concomitant 

polymorphism where two or more polymorphs can crystallise from the same solution 

concurrently.(46) To date, ten polymorphs of ROY have been discovered and it is the 

most polymorphic system to be found in the Cambridge Structural Database (CSD), 

seven of which were successfully characterised by single X-ray diffraction and the 

remaining three by Raman spectroscopy alone.(44) 

 

 

Figure 4 Polymorphs of ROY, reproduced from Yu, 2011. (43) 

 
 

*Polymorph nomenclature for ROY; O = orange form, ON = orange needles, OP= orange plates, ORP= orange red plates, R = red form, Y = 

yellow form, and YN = yellow needles. 
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ROY features conformational polymorphism which is due to the changing π–

conjugation between the phenyl and thiophene rings as the torsional angle between 

the two rings, θ, changes.(47) This torsion bond angle varies by up to 83
o
 between 

polymorphs and is responsible for the variety of colours associated with the 

polymorphs. The following are in order of decreasing torsional angle θ from Y to R 

(Y ~ YN > OP > ON > ORP > R).* The C–C≡N angle deviates from the expected 

angle of 180˚ in all polymorphs, ON in particular (176.2˚). The oxygen of the nitro 

group and the amino hydrogen form an intra–molecular hydrogen bond in all 

polymorphs. None exhibit inter–molecular hydrogen bonds except polymorph Y, 

which is due to a short contact between the amino hydrogen of one ROY molecule to 

the cyano group of a neighbouring molecule. The remaining polymorphs are 

arranged together via van der Waal’s forces. The polymorphs of ROY have been 

produced by a variety of methods including solution crystallisation,(43) vapour 

deposition on single–crystal substrates,(48) melt crystallisation,(49, 50) from liquids 

in contact with polymers,(51) gold islands,(39) and liquids within confined 

environments such as capillary tubes,(52) and porous solids.(53)  

 

 

1.7 Amorphous Solids, Solvates and Co–Crystals 
 

Further solid state forms include amorphous solids, solvates and co–crystals. 

Amorphous solids are made of randomly orientated molecules with no long range 

order and are thus non-crystalline.(54, 55) Amorphates can offer increased 

bioavailability; however as they are typically metastable their lack of long–term 

physical stability can pose development challenges.(29) Means of mitigating these 

issues include incorporation of the amorphous form into formulations by co–

processing with suitable polymers in spray dried dispersions and hot melt extrudates 

to maintain physical stability by inhibiting crystallisation.(56, 57) 

 

Solvates and co-crystals are similar in that both are multi component crystals 

containing the API with an additional molecule.(58) Solvates consist of the 

incorporation of some solvent into specific lattice sites with a defined stoichiometry. 

Where water is present as the solvent, its solvates are termed hydrates. Phase 
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transformations can occur from the solvated form to the non-solvated forms due to 

changes in temperature, relative humidity and degree by which the solvate molecule 

is bound to the lattice. Co-crystals consist of an additional molecule which is a solid 

at room temperature – such molecules are termed co-crystal formers. In API 

formulations co-crystallisation of APIs with suitable excipients represent a new 

category of pharmaceutical material. Apart from the possible benefits in 

bioavailability, stability and solubility, co-crystals present a viable opportunity to 

improve manufacturing characteristics such as compressibility, hygroscopisity and 

flowability of a compound.(12, 20, 23, 59, 60) 

 

1.8 Regulatory Filings 
 

Extensive solid state screening of candidate APIs prior to scale–up and formulation 

can enable an informed choice as to which solid form will perform as intended and is 

a prerequisite from regulatory bodies for newly developed drugs. For both new drug 

applications (NDAs) and abbreviated new drug applications (ANDAs), the US Food 

and Drug administration (FDA) requires near–total characterisation of the API.(61, 

62) These include specifications relating to solubility, purity, morphology, particle 

size, surface area, crystal properties and detailed investigations of the influence of 

the structure of the API and its formulated product on stability and dissolution in vivo. 

International Conference on Harmonisation (ICH) guidelines which have been 

adopted across a number of regulatory agencies incorporate a series of decision trees 

(Fig. 5 and 6) to aid in the assessment of the impact of polymorphism in drug 

substance and products.(62, 63) Detection and quantification of low levels of an 

undesired solid state form present in a formulation is required from a quality 

assurance point of view, particularly where the two polymorphs are not bioequivalent. 

Establishing analytical methods to determine low levels of alternate polymorphs in 

formulations can impart increased confidence that these forms can be detected should 

they be present at the time of production or develop throughout the product’s shelf–

life.  
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Figure 5 Drug substance decision trees reproduced from ICH Q6A guidelines. (64) 
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Figure 6 Drug product decision trees reproduced from ICH Q6A guidelines.(64) 

 

1.9 Patent infringement 
 

Incidences of polymorphism can also provide unfavourable patent issues where not 

all polymorphs or solid state forms of an API are provided and documented in a 

patent, providing opportunities for competitors to generate new polymorphs which 

may possess similar or improved performance characteristics. Conversely, discovery 

of new polymorphs can expand the range of possible development strategies and 

offer a means to extend patent protection. GlaxoSmithKline’s (GSK) discovery of a 
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new polymorph of ranitidine hydrochloride enabled GSK to submit a new patent for 

this newly found polymorph which extended the product life and their production 

exclusivity of Zantac, for which ranitidine hydrochloride is the active ingredient. 

This new polymorph also offered improved filtering and drying characteristics.(48) 

Litigation ensued when a generic competitor, Novopharm, wished to produce a 

generic product containing the original polymorph used by GSK on expiry of the 

patented original form. Novopharm challenged the original patent by claiming that 

there was no way to produce the off patent polymorph from the original patent as 

described by GSK, Novopharm could only generate the newly patented form by the 

method described for GSK’s newly patented polymorph.(43) Independent studies 

confirmed that it was possible to prepare the original polymorph as described by the 

original patent. GSK contended that Novopharm were in breach of the later patent 

for the new polymorph alleging that there must be seeding of Form II occurring and 

that Novopharm could not be producing a pure Form I drug substance. Later 

Novopharm were able to demonstrate using PXRD patterns that they were able to 

produce Form I with no detectable contamination of Form II and were thus granted 

approval to market the product.(44, 51) Additional examples of patent litigations 

dealing with polymorphs include Cefadroxil, Paroxetine Hydrochloride, 

Pantoprazole Sodium and Terasosin Hydrochloride. 
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2 Analytical techniques for solid–state analysis 

2.1 Vibrational spectroscopy 
 

Vibrational spectroscopy is very sensitive to small force field changes caused by 

structural changes in molecules caused by solid state transformations and 

polymorphism. In polymorphism, the vibrational modes associated with each crystal 

lattice can vary which can result in unique band positions specific to each form 

allowing for their identification.(65) Raman and NIR spectroscopy are based on 

different phenomena and are governed by their own specific selection rules which 

will be discussed below. 

2.2 Molecular vibrations 
 

The bonds within molecules are in constant motion via vibrations, rotations and 

translations. Atoms connected together by chemical bonds displace one another in 

relation to the other in a frequency that can be defined by the strength of the bond 

and the mass of the individual bonded atoms or the groups attached. In the simple 

Harmonic Oscillator approximation the chemical bond between two atoms is 

considered to act like a perfectly elastic spring, which can be described by Hooke’s 

law where the restoring force exerted by a spring is proportional to its displacement 

where k is the restoring spring constant; 

 

           

 

Force is related to potential energy by F = –dV/dx and expressed as follows; 

 

  
 

 
     

 

The energy of a harmonic oscillator is quantized; 

 

    (  
 

 
)  
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The vibrational terms of a molecule can be expressed as follows where E = hcῦ; 

 

  
 

   
√
 

 
 

    

where µ represents the reduced mass of a diatomic molecule given by;  

 

  
    

     
 

 

A molecular potential energy curve characteristic of a harmonic oscillator is depicted 

in Fig. 5 below. This approximation consists of a potential energy well that is 

symmetrical between the binding potential of the bonding electrons and the repulsive 

forces between the atomic nuclei with evenly spaced energy levels. This 

approximation takes no account of bond dissociation and although it can be a good 

estimate of the distance between lower energy levels it fails at higher excitation 

energies. An additional restriction is that transitions can only occur from one level to 

another which is adjacent to it.  

 

 

Figure 7 Molecular potential energy plots, adapted from Pasquini et al.(66) 
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A more realistic approximation accounting for anharmonicity is the Morse potential 

energy curve where the number of bound levels is finite and the spacing between 

each energy level converges as the number of energy levels increases until the 

dissociation energy is reached (Fig. 5). The potential energy of the anharmonic 

model can be expressed as; 

 

    [           ]
 
 

 

where a is the constant for a given molecule, De is the spectral dissociation energy, r 

is the distance between the atoms and re is the equilibrium distance between the 

atoms. Applying quantum mechanics to the Morse equation results in the vibrational 

levels being described by the following equation; 

 

    (  
 

 
)      (  

 

 
) 

 

where xm is the anharmonicity constant of the vibration. Transitions from one energy 

level to others non–adjacent to the originating energy level can occur as well as the 

existence of combination bands between vibrations. The vibrations are no longer 

independent of each other and can interact with one another. The strength of an 

absorption depends on the number of molecules in a particular energy level and this 

is governed by the Boltzmann distribution; 

 

   
  

   
  ⁄

 
 

 

where Ni is the number of molecules in an energy level with energy Ei, N is the total 

number of molecules in system, k is the Boltzmann constant, T is temperature and q 

is the partition function. 

 

Vibrations, rotations and translations of the atomic bonds are a result of the 

interaction of photons with the molecule. For a polyatomic molecule the presence of 

N atoms results in 3N degrees of freedom. For a linear molecule three co–ordinates 
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are enough to define the center of gravity of the molecule and to describe the 

translational motion of the molecule. For a non–linear molecule three additional co–

ordinates are required to specify the orientation of it resulting in 3N – 6 vibrational 

degrees of freedom. For a linear molecule this is 3N – 5 as only orientational co–

ordinates are necessary.(67)  

 

2.3 Raman Spectroscopy 
 

Raman observed the Raman effect in 1928 and was awarded the Nobel prize in 

Physics two years later for this discovery. The Raman effect occurs when the 

interaction of a molecule and an electromagnetic field results in inelastic scattering 

of an incident photon.(68, 69) Radiation may be scattered in two ways, elastically 

and inelastically, Fig. 8. The elastic scattering of light is referred to as Rayleigh 

scattering where there is no change in the energy of the photon on interaction with 

radiation. Roughly 99.99% of light is scattered in this manner. Radiation inelastically 

scattered is the Raman effect and is due to the interaction of photons with molecules 

which results in an exchange of energy where radiation is scattered at differing 

frequencies corresponding to vibrational excitation and de–excitation of the molecule. 

 

 

Figure 8  Schematic energy level diagram highlighting the three different ways in which light 

can scatter. V=0 corresponds to the ground state and V=1 corresponds to an excited vibrational 

energy state. 
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The Raman effect relies upon a change in polarizability of a molecule by the electric 

field of incoming light. (69) This can be expressed mathematically where the dipole 

moment, P, induced in a molecule by an external electric field, E, is proportional to 

the electronic field. The proportionality constant, α, is the polarizability of the 

molecule. 

     

 

Polarizability measures the ease with which the electron cloud around a molecule can 

be distorted. The induced dipole emits or scatters light at the optical frequency of the 

incident light wave. The main selection rule of Raman spectroscopy is that for a 

Raman active vibration there must be a change in polarizability during the vibration. 

If a vibration does not greatly change polarizability, the intensity of the Raman band 

will be low. Bond bending and/or stretching substantially changes electron density 

distribution of bonds resulting in bands of stronger intensity. Changes in 

polarizability as a result of the molecular bonds stretching and vibrating allows for 

the molecular identification of the entity of interest by Raman spectroscopy.(67, 69) 

Typical strong Raman scatterers are moieties with distributed electron clouds i.e. 

C=C. The π electron cloud is easily distorted in an external electric field. Many APIs 

contain aromatic functional groups with symmetric vibrational modes and are strong 

Raman scatterers, while most pharmaceutical excipients lack aromaticity rendering 

them poor Raman scatterers.(70)  

 

As Raman is based on a scattering phenomenon it allows for little or no sample 

preparation and enables facile in–situ analysis. Further advantages include sampling 

in aqueous media, as water is weakly Raman active, and remote sampling by use of 

fiber optics. Drawbacks include fluorescence, sample degradation by high intensity 

light illumination, poor sensitivity at low analyte concentrations and expense of 

instrumentation. Fluorescence is observed in spectra by a broad high intensity band 

which can smother some or all of any information pertaining to the Raman effect. 

Fluorescence involves the absorption of energy by a molecule elevating it to a higher 

energy state which rapidly returns to the ground state by emission of a photon with 

energy equal to the difference between the higher energy and ground energy 

states.(71) It is a phenomenon which can be orders of magnitude greater than the 

Raman effect. In some instances this can be mitigated by selection of an appropriate, 
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typically NIR (1064 nm), laser excitation wavelength and careful utilisation of 

suitable pre-processing measures.(69, 72)  

 

2.3.1 Backscattering and Transmission Raman 

 

In Backscattering Raman spectroscopy (BRS) the excitation light impinges on the 

surface of the sample and the Raman signal is collected at an angle of 180° to the 

spectrometer. Using this typical configuration, the sampling volume is located 

primarily at the surface and the immediate sub–surfaces of the sample and is 

determined by a combination of opacity and scattering potential of the material in 

combination with instrument parameters. In Transmission Raman spectroscopy (TRS) 

a collimated laser beam is incident on one side of the sample and the Raman signal is 

collected from the opposite side after passage through the whole of the sample.(73, 

74) 

 

 

Figure 9 Schematic of Backscattering and Transmission Raman collection geometries. On the 

right a Monte Carlo simulation of Raman signal generated by TRS adapted from Macleod et al. 

(81) 

 

The main difference between these two geometries which is critical, is the sampling 

volume accessible with each, Fig. 9. In BRS as the Raman signal generated is 

typically representative of the immediate layers just below the surface where the 

laser point has penetrated, sub–sampling can be the main limitation of this 

geometry.(75) This can be mitigated somewhat by the use of surface mapping where 

the laser collects a spectrum from each point on a pre–determined mapped out area 
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of the sample surface, by sample rotation or by use of probes which allow for larger 

laser spot sizes, often termed as wide area illumination to irradiate the surface (i.e. 

PhAT probe, Kaiser Optical Systems Ltd. as used in Wikstrom et al. and Allan et 

al.).(76-78) Johansson et al. conducted a study comparing four different laser 

irradiation layouts as shown in Fig. 10. The layouts were as follows; point irradiation 

consisting of a total of 5 points, two circle patterns of 2.5 and 5 mm diameter where 

spectra were acquired from the circles’ perimeter and a 5 mm diameter circle where 

the entire area of the circle was analysed. This study demonstrated the sub–sampling 

issues associated with the various irradiation patterns and intuitively it was found 

that irradiation of a larger tablet surface area resulted in quantitative models with 

lower prediction errors.(75)  

 

 

Figure 10 Adapted from Johansson et al. (75) Irradiation layouts to the left of the image and to 

the right PLS calibration plots of prediction of API content vs. UV reference values for each 

laser irradiance pattern. 

 

Unfortunately mapping generally does not solve the penetration depth issue. 

Additionally the use of mapping can be accompanied by a severe time penalty. For 

example, in the case of tablets manufactured from a non–uniform powder blend of 

multiple components, any heterogeneity due to this poor sample mixing could impact 

accurate quantitation. In the case of typical pharmaceutical solid dosage forms, many 

incorporate surface coatings, allowing ease of ingestion or control over the location 

of drug release such as enteric coatings, and signals arising from such coatings can 

swamp signals pertaining to the API or the excipients found within the tablet mass.  
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In TRS the Raman signal is more representative of the entire tablet undergoing study 

as Raman photons can be generated at any point at which the collimated laser beam 

passes through the tablet to reach the detector on the opposite side.(73) Larger spot 

sizes are typically used, thus sampling a much greater proportion of the tablet. This 

reduces the issue of sub–sampling leading to spectra which are more representative 

of the tablet bulk. TRS was demonstrated by Schrader and co–workers as far back as 

1967 however it is only now within the past decade that interest in TRS has returned, 

due to advancements in instrumentation, with a number of pharmaceutically relevant 

studies highlighted in Table 1.(79)  

 

This is due in part to the development of spatially offset Raman spectroscopy 

(SORS), where the laser beam and its point of contact with the sample and the 

Raman collection zone are spatially offset on the sample surface. Depending on the 

spatial offset used, Raman spectra can be collected from different depths within a 

sample as those photons originating from deeper within the sample can be spread 

further apart as they reach the surface.(80) Such spectra can contain some lingering 

Raman signal pertaining to the surface layer and this can be eliminated from the 

spectra by spectral subtraction returning a Raman spectrum representative of the 

sample contents. This has applications in the security and pharmaceutical raw 

material identification fields as SORS allows for analysis through material packaging 

such as paper sacks or solid plastic containers without the requirement for sampling 

bulk materials as is currently the case within pharmaceutical companies.(81-83) Such 

an example is provided in Fig. 11 for neopentyl glycol which was analysed through 

its blue plastic sack packaging. A BRS spectrum was acquired and although it 

contains some features of the glycol it heavily features a Raman signal due to the 

packaging material (low density polyethylene glycol – LD-PE) and from 200 – 1000 

cm
–1

 this swamps any Raman signal of the glycol from the spectrum. The SORS 

spectrum does not have this issue and matches quite closely the glycol reference 

spectrum generated across the entire spectral range.  
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Figure 11 Adapted from Bloomfield et al. (83) SORS and BRS Raman spectra of neopentyl 

glycol through LD–PE sacks with reference spectra of the individual materials. 

 

TRS can effectively be viewed as an extreme case of SORS where the laser beam 

and Raman collection zone are separated by the maximum by being located on 

opposite sides of the tablet. In a direct comparison of BRS and TRS, experimental 

work and Monte Carlo simulations of a pharmaceutical tablet–like system was 

undertaken where an impurity layer of paracetamol was moved from the sample 

surface to a depth of 3 mm within the tablet medium of trans–stilbene, Fig. 12.(73) 

The simulations supported the experimental work where it was found that TRS was 

able to detect the impurity layer’s presence no matter where the layer was located i.e. 

at the top, middle or bottom of the tablet–like medium. The particular BRS set–up 

employed for the same analysis was incapable of detecting the impurity at any other 

layer than when it was present as the surface layer. Characteristic peaks of 

paracetamol in the 1200 – 1480 cm
–1

 spectral range were absent in the BRS spectrum 

when this layer was located at the bottom of the tablet medium unlike TRS spectra 

where all peaks were present. Further studies detail experimentally the sub–sampling 

issue associated with BRS and the lack thereof associated with TRS and will be 

discussed in Section 2.5. (84, 85) 
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Figure 12 Adapted from Matousek et al. (73) Raman spectra obtained from a two–layer sample 

(3.9mm thick paracetamol tablet and 2mm thick trans–stilbene powder layer) using (a) 

conventional backscattering geometry and (b) transmission geometry. The measurements are 

performed at twos ample orientations, with paracetamol at the top and at the bottom of the 

trans–stilbene cell, as indicated in the graphs. The top and bottom spectra are those of 

paracetamol and trans–stilbene, respectively, obtained in separate experiments. Legend: p – 

paracetamol, t – trans–stilbene, R – Raman light, L – laser beam.
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Table 1 Summary of pharmaceutically relevant transmission Raman studies. 

Year Compound Synopsis Results Reference  

2007 Undisclosed API Comparison of TRS and BRS 

for quantitation of unknown 

API in tablets. 

PLS model RMSEP for API content within tablets 

of 2.2% and 2.9% for TRS and BRS respectively. 

Capsules have a RMSEP of ± 3.6%. Leaner 

calibration models can be built using 2 or 3 

calibration spectra. 

Johansson et 

al. (84) 

2008 Undisclosed API Analysis of production 

capsules filled with unknown 

API and 3 excipients by TRS. 

CLS and PLS models built where PLS reported a 

RMSEP of ± 1.2% with 5 s acquisition time. 

Eliasson et 

al.  (86) 

2010 Flufenamic acid Analysis of binary polymorph 

mixtures by TRS and BRS. 

TRS offers improved modelling of system with 

increase of percentage of variance for first loading 

in comparison to BRS; 98.09% and 89.7% 

respectively.  

Aina et al. 

(87) 

2010 Co–crystals of salicylic 

acid–nicotinic acid; and  

DL–phenylalanine,6HNA, 

and  

3,4–dihydroxybenzoic 

acid with oxalic 

acid cocrystals 

Characterisation of co–

crystals by TRS, BRS, PXRD 

and DSC. 

Low wavenumber Raman bands accessed using 

TRS suitable for identification of co–crystals from 

co–crystal formers. 

Elbagerma et 

al. (88) 

2010 Paracetamol Tablets of API and 4 

excipients analysed using 

TRS and multiple multivariate 

techniques. 

PLS, CLS and MCR comparable in prediction 

performance; 2.4–3.4%. Simple lean calibrations 

with few components were generated using TRS 

data. 

Fransson et 

al. (89) 

2011 Undisclosed API Capsules comprising API and 

3 excipients studied by TRS. 

RMSEP of 1.5% reported for API concentration. 

TRS insensitive to capsule fill weight, allowed for 

a model made from a batch at a single fill weight to 

be applied to batches of varying fill weights. 

Hargreaves 

et al. (85) 
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Table 1 (continued) Summary of pharmaceutically relevant transmission Raman studies. 

Year Compound Synopsis Results Reference  

2012 Ranitidine 

hydrochloride 

Comparison of BRS to TRS for 

quantification of polymorphs in 

a spiked commercial 

formulation. 

Powder models of MCC and binary polymorph 

mixture. Spiked tablets and capsules.  More accurate 

PLS models yielded for tablets than capsules. 

RMSECV 4.80 and 2.40% for capsules and tablets. 

RPD reported of 14.62 and 7.42% for tablets and 

capsules. 

McGoverin 

et al.  (90) 

2012 Flurbiprofen and 

nicotinamide co–

crystal 

TRS for supervised 

classification of model co–

crystal tablet formulations. 

PCA can discriminate between two APIs and co–

crystal in second loading. First loading concerned 

with amount of APIs present. 

Burley et al. 

(91) 

2012 Sulfur Effect of particle properties of 

MCC powders in TRS. 

TRS signal intensity found to be sensitive to particle 

size differences. 

Townshend 

et al. (92) 

2012 Chlorpheniramine 

maleate 

Quantification by TRS and BRS 

of API at 2% w/w level within 

marketed tablets by use of 

external calibration samples 

MCC of differing particle sizes were incorporated into 

calibration samples. TRS was found to be sensitive to 

particle size differences. BRS and TRS results were in 

agreement with HPLC. 

Townshend 

et al. (93) 

2012 Ambroxol Study of effects of coloured 

capsule shells on API prediction 

models. 

Formulation containing capsules showed a slight 

decline in PLS prediction accuracy due to weak 

fluorescence of blue and green coloured capsules. 

Lee et al. 

(94) 
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2.4 Near Infra–red Spectroscopy 
 

Near infra-red spectroscopy (NIR) was championed 50 years ago by Karl Norris 

during his studies of moisture content in agricultural products.(95) Since then its 

applications have grown exponentially and its development and widespread use has 

been aided by the technological progression of instrumentation, fiber optics and new 

mathematical methods allowing data treatment. Such developments have facilitated 

the growth of NIR substantially in it’s application as a quality control technique in 

the pharmaceutical industry.(96)  

 

NIR refers to the region of the infra-red spectrum closest to the visible light 

region which is specified as the region lying between 750 and 2500 nm. The region 

can be divided into 3 sub–regions; 

 

 Region I (800–1200 nm) where 2
nd

 and 3
rd

 overtones and combination modes 

of XH (X = O, N, C) stretching vibrations are present. 

 Region II (1200–1800 nm) where 1
st
 overtones of XH stretching vibrations 

and various types of combination modes of XH stretching vibrations are 

found. 

 Region III (1800–2500 nm) is the combination mode region. Overtones, if 

present, can be attributed to the 2
nd

 overtones of carbonyl stretching 

vibrations. 

 

Overtones occur at integral multiples of fundamental bands. Combination bands 

appear near the sum or difference of two or three fundamental bands. Under the 

quantum Harmonic Oscillator approximation, overtones and combination modes are 

known as forbidden transitions and should not occur. As detailed in Section 2.2 only 

transitions from one level to another adjacent to the originating level is permitted in 

the simple harmonic oscillator approximation. Additionally the vibrations under this 

approximation would be independent and their combinations would not exist. A 

better approximation is that of the anharmonic model using the Morse potential 

which accounts for transitions greater than one and combination bands between 

vibrations. Since these bands are weaker, the NIR region has an excellent 
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permeability to IR radiation which allows non–destructive analysis and 

experimentally allows for a thicker/longer sampling path–length to be used. 

 

For a band to be IR and hence NIR active it must exhibit a change in its dipole 

moment during a vibration and if the resonant frequency of the vibrating bond 

matches that of the incident radiation, absorption will occur. Molecules that absorb 

NIR energy vibrate in stretching and bending modes. Stretching is the continuous 

change in the interatomic distance along the axis of the bond between atoms. 

Bending is defined as changes in bond angles. Functional groups such as C–H, N–H, 

S–H and O–H feature strongly in NIR spectra. C=O and C–C bonds can also be 

evident in NIR spectra when combined in overtone–combination bands with the 

aforementioned functional groups. The bands in the resultant spectra are typically 

broad which can overlap making band assignment challenging. The development of 

mathematical methods in the field of chemometrics has allowed for band 

interpretation and NIRS coupled with chemometrics is a powerful technique in the 

identification and quantification of components in samples such as tablets or reaction 

vessels.  

 

Analysis of solid samples using NIR spectrometers is generally performed using two 

modes of sampling, transmittance and diffuse reflectance. Transmittance can be 

described by the Beer Lambert Law where the ratio of intensities for light transmitted 

through a given path length  is related to the materials molar absorptivity, and 

concentration as follows; 

 

     
  
 
     

 

This works well for materials in solutions however in terms of solid samples the 

radiation can not only be absorbed or transmitted, which the Beer–Lambert Law 

assumes; the radiation can interact with the solid materials through diffuse reflection, 

diffuse transmission, specular reflection or transflection. A more suitable means of 

describing this relationship is through the Kubelka–Munk equation: (97) 
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where R is the diffuse reflectance, obtained by: 

 

  
  
   

 

 

where IR is the intensity of radiation reflected by the sample and IRO is the same 

quantity reflected by a non–absorbing material over the full spectral range of 

measurement. This treatment is valid for transparent homogeneous materials and 

establishes a linear relationship between concentration and diffuse reflectance. In 

analytical development the following relationship is employed where, for small 

changes in reflectance, it is presumed there is a linear relationship between 

reflectance and the concentration of the analyte. 

 

        
 

 
 

  

2.5 Raman vs. NIR 
 

Both types of spectroscopies rely on differing phenomena to occur and are governed 

by different rules. The Raman effect is due to the inelastic scattering of light which 

changes the polarizability of a molecule whilst NIR involves the absorption of light 

where a change in the dipole moment of the molecule results in a NIR spectrum. It 

has been shown from group theory that if a molecule has a centre of symmetry, 

vibrations which are Raman active will be silent in IR and vice versa.(95) This is 

known as the rule of mutual exclusion. Such an example is that of CO2, where the 

symmetric stretch of this centrosymmetric molecule causes a change in polarizability 

resulting in a Raman active vibration. The anti–symmetric stretch of CO2 results in a 

change in the dipole moment of the molecule and is an IR active vibration. Raman 

and IR can be considered as complementary techniques in that they provide different 

information that the other cannot due to their different selection rules.  
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NIR shares with Raman spectroscopy similar advantages; for example, little or no 

sample preparation is required and the sample can be of various shapes, thicknesses 

and physical states; analysis can be performed in–situ, in reactor vessels or 

storage containers as it is suitable to be coupled with fiber optics which allows for 

remote operation and analysis of on–line processes.(98) NIR, though not as sensitive 

as MIR to water, is moisture sensitive and is useful for quantification of water 

absorption in tablets unlike Raman where water is a poor Raman scatterer. Raman 

spectra exhibit high chemical specificity, consisting of sharp well resolved bands 

which assist facile monitoring of fundamental vibrational modes, whereas NIR 

spectra consist of overtones and combination modes of fundamental molecular 

vibrations that occur in the IR region. The spectra typically consist of broad and often 

overlapped bands which are difficult to assign so spectral assessment is further 

compounded by this. NIR is also sensitive to physical differences in samples such as 

tablet hardness or excipient particle size within spectra. (99, 100) Recent studies by 

TRS show that it too can also be sensitive to particle size effects as was found to be 

the case for different particle sizes of MCC in aspirin and chlorpheniramine maleate 

containing samples.(92, 93) 

 

A further drawback of NIR for quantitative analysis is the requirement of large 

calibration data sets with plenty of variation for the generation of a robust NIR 

calibration model.(98) For pharmaceuticals, normal production conditions or batches 

of pharmaceutical formulations should not deviate much in terms of sample 

characteristics such as API loading or hardness. For robust NIR calibration models to 

be generated, formulations outside of the normal specifications should be produced 

to allow for model development.(101)  

 

Lean calibration opportunities by spectroscopic means could have potentially great 

impact in early development pharmaceutical manufacturing settings where there may 

be few tablets available for analysis. For TRS it has been shown that far fewer 

samples are required for calibration set generation to build a quantitative model for 

propranolol; as the number of samples decrease the RMSEP associated with TRS 

models remains relatively unchanged.(84) This contrasted with BRS where the 

RMSEP increased with decreasing calibration samples (Fig. 13). Another example of 
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the lean calibration of TRS by the previous authors demonstrated no difference in 

prediction errors between calibration models built using only two samples and using 

half the available samples (18 tablets in total).(89) .No reports of a direct comparison 

between NIR and TRS for the generation of lean calibration models has been 

reported thus far in the literature.  

 

 

Figure 13 Plot describing the effect on RMSEP of reducing the number of samples used for 

generation of calibration models by BRS (open circles) and TRS (black circles) reproduced from 

ref (84). 

 

2.6 Powder X-ray diffraction 
 

Powder X-ray diffraction (PXRD) can be considered to be the definitive method in 

the characterisation and identification of solid state crystalline forms in powders. 

Since polymorphs and all other solid state forms differ in their crystal structures such 

differences lead to the characterisation of individual forms.(102) PXRD patterns 

result from the fulfilment of the Bragg formula when an X-ray hits an atom in a 

crystal lattice and is diffracted according to the following equation; 

 

          

 

where λ is the wavelength of the X–ray radiation, d is the distance between 

individual parallel planes in a crystal lattice and θ is the angle between the incident 

radiation and the set of parallel planes at which constructive interference results. 

Diffraction patterns are obtained by measuring the intensity of scattered waves as a 

function of scattering angle. 
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Figure 14 Schematic of Braggs law. 

 

In comparison to spectroscopic methods, PXRD can be more time intensive as 

samples must be analysed off–line often requiring a longer analysis time, minutes 

compared to the seconds required for spectroscopy. Furthermore PXRD can be 

sensitive to particle effects such as preferred orientation where the samples may 

arrange themselves in the sampling compartment in such a way that only certain 

faces of the crystals/fine powder are exposed resulting in diffraction patterns that are 

not truly representative of the bulk crystalline material.(102) This can be observed in 

PXRD patterns by peak intensity variation. This effect can be reduced by grinding of 

the samples to reduce particle size as long as such grinding causes no solid state 

changes and by rotation of the sample during analysis.(103)  

 

Crystalline compounds show strong diffraction patterns, typically featuring sharp, 

high intensity peaks in a diffractogram. Compounds of low crystallinity tend to 

exhibit peaks of weak intensity and in amorphous compounds a “halo” effect 

(apparent in top diffraction patterns depicted in Fig. 15) is observed where a broad 

featureless band encompasses the diffraction pattern resulting in qualitative and 

quantification challenges. Chieng et al. generated the amorphous form of ranitidine 

hydrochloride by cryo–milling the API and were able to demonstrate decreasing 

crystallinity and increasing amorphous content in the compound by PXRD (Fig. 15). 

(104) 
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Figure 15 PXRD diffraction patterns of ranitidine hydrochloride demonstrating the conversion 

of crystalline polymorphic forms to amorphates on cryo–milling over extended periods of time. 

Reproduced from Chieng et al. (104) 

 

From PXRD patterns it is also possible to determine the components and their 

concentrations in multi–component mixtures as long as there is limited interference 

to the peaks of interest, for example the quantification of API in a powder 

formulation containing several excipients.(105, 106) In all patent submissions to the 

regulatory agencies, powder patterns and crystallography data are required, as unique 

crystal structures provide definitive evidence of non–equivalent crystal structures. 

PXRD in combination with vibrational spectroscopic techniques has been widely 

used to study multicomponent mixtures. (11, 105, 107-110)  

 

2.7 Pharmaceutical applications of Raman 
spectroscopy 

 

Raman spectroscopy and its use in pharmaceutical settings has grown substantially in 

recent decades with examples including quantification of polymorphic mixtures, 

tablets, capsules and for inline analysis of fluid bed drying processes.(70, 84, 111-

113) Its uses have been highlighted by extensive reviews and a book on the 

subject.(70, 113-119) Pharmaceutical materials are ideal to study by Raman 
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spectroscopy as they are typically strong Raman scatterers due to the presence of 

aromatic functional groups with symmetric vibrational modes contained within the 

API molecule whose changes in polarizabilities cause Raman scattering.  

 

Raman has been used to qualify and quantify components of multi component 

mixtures including powder mixtures,(105, 120, 121)  tablets,(110, 112, 122) and 

suspensions.(123) Raman can be used to monitor solid form changes including PITs 

and solid state transformations of the API occurring in production settings.(124, 125) 

In addition Raman has successfully been utilised to study the effect of storage 

conditions such as humidity, pressure, grinding and temperature on APIs as 

summarised in a recent review by Chieng et al. (126)  

 

Modern instrumentation and improved optical filters provide the necessary Rayleigh 

rejection filtering to analyse down to low wavenumbers. The spectral region from 

~45–400 cm
–1

, the phonon mode region, is associated with crystal lattice vibrations 

which will show differentiation between polymorphs as they can have non–identical 

crystal structures. This can be demonstrated by indomethacin as reported by Hédoux 

et al. where clear differences between both polymorphs and the amorphous form are 

evident in low wavenumber spectral regions, Fig. 16.(127) Other examples of 

utilisation of this region include Raman analysis of thermally induced phase 

transitions of paracetamol.(128)  

 

Figure 16 Raman spectra of the phonon mode region of three solid state forms of indomethacin 

as reported by Hedoux et al. (124) 
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2.7.1 Quantitation of polymorph mixtures 

 

Vibrational spectroscopic methods, mostly in combination with PXRD for 

comparison, have been utilised for the quantification of polymorphs where present in 

mixtures alone or within formulations and are summarised in Table 2.  This is likely 

due to the rapid and non–invasive nature of the spectroscopic techniques whilst 

revealing specific bands or subtle changes associated with each polymorphic form. 

DSC and ssNMR methods have also been used though not to the extent of the 

previously mentioned methods.(129, 130) Quantification of polymorphic mixtures 

has been achieved using a range of analytical techniques including; solid state NMR 

(SS-NMR) (131), PXRD (132-140), spectroscopic methods including infra-red (120) 

(133, 141), near infra-red (120, 142-145), Terahertz and Raman (119, 120, 146-148) 

in combination with univariate and multivariate chemometric methods.  

 

 

The analysis and successful quantitation of a polymorphic system is very much case 

dependent. This can be due to the API itself and which technique is optimal in terms 

of selectivity for characterisation of the polymorph. One must take into consideration 

the rate of transformation and how the sample presents itself for analysis. For 

example, monitoring a slow form transformation over time in a tablet matrix or rapid 

phase change in slurry formulations can aid the analyst in the appropriate techniques 

to begin investigation with – in the former example speed of measurement may not 

be an issue whereas for the latter some in–situ real time measurement may be of use. 

For some cases, PXRD out–performs spectroscopic methods as in the case of 

sulfamerazine where PXRD was the most accurate for determination of a sample, 

followed by DSC and then Raman (BRS).(130) It was noted by the authors that the 

two polymorphs were present in different crystal habits which would impact how 

well the samples could be mixed to homogeneity and how well the sample could be 

packed. This would have a two–fold effect on Raman measurements; non–

representative spectra as the sampling volume would be as small as the laser spot 

diameter (typically ~300 µm) and the samples are not a perfectly homogenous 

mixture, and, large intensity differences due to difficulty ensuring the sample surface 

is flat.  
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Previous studies have highlighted possible sources of error associated with Raman 

spectroscopy and PXRD for the quantification of polymorph mixtures. (149, 150) 

Similar to the sulfamerazine case discussed above, such sources of error include 

sample preparation and wide particle size ranges of the polymorphs utilised which 

can be alleviated by careful sample packing, use of sample rotation to improve 

sample representativeness and use of sieves to ensure tighter particle sizing. (149, 

151, 152) 

 

TRS has recently been used to quantify ranitidine hydrochloride in binary polymorph 

mixtures with microcrystalline cellulose (MCC) in tablets and capsules compared 

directly to previously generated BRS and NIR quantitative studies by McGoverin et 

al. (90, 146, 153) It was reported that TRS outperformed all previously generated 

quantitative models, with more accurate PLS models yielded for tablets than capsules 

with RMSEVs of 4.80 and 2.40% for capsules and tablets respectively.   
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Table 2 Summary of polymorph quantification studies. 

Compound Year Methods Results Reference  

Benzimidazole 2005 FT–Raman Quantification of 3 polymorphs varied between 5–10% of a 5% drug 

loading in a suspension–emulsion formulation. 

De Spiegeleer 

et al. (147) 

Bicafidene HCl 2005 ATR–IR, ATR–

NIR, Raman and 

PXRD 

Quantification of binary polymorph mixtures where NIR proved to 

be most accurate for quantitation 

McArdle et al. 

(105) 

Buspirone HCl 2006 FTIR and PXRD FTIR and PXRD used for quantitation of binary polymorph 

mixtures. 

Sheikhzadeh et 

al. (154) 

Carbamazepine 2004 Raman  Raman analysis of binary polymorph mixtures with PCA provides a 

quantitation limit of < 2%. 

Strachan et al. 

(155) 

Casopitant 

mesylate 

2011 Transmission 

PXRD and ss–

NMR  

Transmission PXRD and SS–NMR allow quantitative detection of 

alternate polymorph which by a range of preformulation tasks could 

prove to be non–CQA. Identification of alternate polymorphs in 

development candidate 

Cimarosti et al. 

(129) 

Clopidogrel 

bisulphate 

2009 IR and Raman  Reported 1% LOD for both in combination with CLS, PCR and PLS 

for quantification of binary mixtures. 

Nemet et al. 

(151) 

Famotidine 2009 PXRD and BRS BRS is more accurate and precise than PXRD for quantification of 

binary mixtures, spatial averaging improves sample representativity. 

Nemet et al. 

(156) 

Fluconazole 2011 NIR and PXRD NIR and PXRD interchangeable for quantification of FII 

fluconazole in mixtures of FII and FIII. 

Ziemons et al. 

(157) 

Flufenamic acid 2010 TRS and BRS TRS offers improved modelling of system with increase of 

percentage of variance for first loading in comparison to BRS; 

98.09% and 89.7% respectively for binary mixtures.  

Aina et al. (87) 

Indomethacin 2003 NIR and PXRD  NIR found to offer lower SDs and higher correlation coefficient than 

PXRD. Both suitable for prediction of external samples of 

polymorphs in powder blends and tablets. 

Otsuka et al. 

(158) 

 2007 NIR and Raman  NIR more accurate for quantitation than BRS limited to a small 

extent by fluorescence of samples in ternary mixtures of solid state 

forms. 

Heinz et al. 

(159) 

 



 
36 

 

 

Table 2 (continued) Summary of polymorph quantification studies. 

Compound Year Methods Results Reference  

Mannitol 2002 PXRD Investigation of preferred orientation effects by PXRD of binary 

polymorph mixtures. Sample rotation and particle size reduction improved 

LOD and LOQ by half. 

Roberts et al. 

(149) 

 2002 BRS Quantification by BRS improved when particle size was controlled and a 

rotating sample holder was employed for analysis of binary polymorph 

mixtures. 

Roberts et al. 

(160) 

Mebendazole 2010 DRIFTS and 

ANN  

modelling 

Simultaneous quantification of three solid state forms by ANN modelling 

produced lower RMSEP values than PLS models. 

Kachrimanis et 

al.  (161) 

Olanzapine 2007 PXRD Quantification of binary polymorph mixtures by PXRD with LOD and 

LOQ of 0.40 and 1.22% w/w respectively. 

Tiwari et al. 

(106) 

Paracetamol 2002 FT–IR and 

Raman  

Univariate analysis performed showing high correlation coefficients with 

both technique and a LOD of 1.2% of monoclinic form. 

Al–Zoubi et al. 

(148) 

 2007 FT–Raman RMSEP of 054 % monoclinic form by PLS in combination with OSC pre-

processing. 

Kachrimanis et 

al. (162) 

Ranitidine 

HCl 

2000 Raman Demonstrated monitoring of low content FII contaminant in tablets. No 

model built. 

Taylor et al. 

(163) 

 2002 BRS PCA and quantitative models with a quantitation limit of less than 2% in 

binary polymorph mixtures of powdered tablets. 

Pratiwi et al. 

(146) 

 2006 NIR BRS found to be more accurate for quantification of polymorphs in binary 

mixtures. 

McGoverin et 

al. (153) 

Ranitidine 

HCl 

2009 PXRD and BRS BRS provided better PLS models for quantification than PXRD for 

quantification of 3 solid state forms. 

Chieng et al. 

(121) 

 2012 BRS and TRS Comparison of BRS to TRS for quantification of polymorphs in a spiked 

commercial formulation. More accurate PLS models yielded for tablets 

than capsules. RMSECV values of 2.40 and 4.80% respectively.  

McGoverin et 

al. (90) 
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Table 2 (continued) Summary of polymorph quantification studies. 

Compound Year Methods Results Reference  

Risperidone 2007 IR, BRS and 

PXRD 

IR and Raman incapable of identifying presence of form A in tablets despite 

lower detection limits reported, PXRD proved better suited for proving 

presence of polymorph in stability study. 

Karabas et al. 

(164) 

Sulfamerazine 2011 DSC, PXRD 

and BRS 

DSC and PXRD more accurate than BRS for quantification of binary 

polymorph mixtures. 

Tan et al. 

(130) 

Sulfathiazole 2000 NIR Binary polymorph mixtures quantified by NIR of FI in FIII sulfathiazole. Luner et al. 

(165) 

 2001 NIR Binary polymorph mixtures quantified by NIR with a LOD of 0.3% API 

reported. 

Patel et al.  

(166) 

 2010 ATR–IR, NIR 

and BRS  

NIR followed by BRS provided best models for quantification for analysis of 

ternary polymorph mixtures. 

Hu et al. 

(120) 

Undisclosed 2007 Raman  Raman mapping of undesired polymorphic form Sasic et al. 

(167) 

 2008 BRS, NIR and 

PXRD 

BRS advantageous for quantification of amorphous form in blend and tablets. Xie et al. 

(168) 

 2012 Raman Raman mapping of spiked formulation of two different polymorphs and an 

amorphate with contaminant levels of 0.025 to 0.1% w/w tablet. 

Sasic et al. 

(169) 
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2.7.2 Quantification of active ingredients 

 

 

High performance liquid chromatography (HPLC) is commonly used to determine 

the content uniformity of tablets and formulations with the capability to detect the 

presence of low levels of API. Highly specific methods can be produced by this 

technique for the quantification of API and its associated degradation products. The 

major drawback with HPLC is that it requires destructive sample preparation. HPLC 

can also require the use of large volumes of expensive solvents and is not considered 

to be a “green” technique. Spectroscopic methods such as NIR and Raman can be 

used for the quantification of APIs and their excipients within formulations with 

minimal sample preparation, with no use of solvents and by real–time measurements 

as exemplified by the studies reported in Table 3. The increased efficiency associated 

with spectroscopic methods due to the relative speed of analysis in comparison to 

HPLC and the capability of high sample throughput all aid the case for 

implementation of spectroscopic techniques, where appropriate, in pharmaceutical 

environments as exemplified by the examples in Table 3. 

 

Several reports in the literature detail the generation of calibration sets based on 

laboratory samples and their potential and real application to the prediction of 

production samples.(170-175) In the case of NIR it is generally recommended to 

make use of transmittance over diffuse reflectance mode as a greater volume of the 

sample is probed.(176-178) Raman mapping has also been employed by Sasic et al. 

for the study of API distribution in Zanax tablets.(179) However there is a time 

penalty associated with performing mapping of statistical significance as described in 

their paper. In the case of Raman, BRS and TRS can provide great differences in 

their predictive ability due to the inherent sub–sampling issue associated with BRS 

and the lack thereof associated with TRS.   

 

The popularity of TRS has increased significantly in the past decade, particularly for 

pharmaceutical analysis such as API quantification and excipients in pharmaceutical 

tablets and capsules, polymorphs in pharmaceutical formulations and calibration 

transfer.(84, 87, 180-182) Fransson et al. were able to develop simple lean 
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calibrations with few components/latent variables on pharmaceutical tablets 

composed of paracetamol with four excipients.(89) Johansson et al. compared the 

two geometry modes on pharmaceutical tablets and yielded an improved relative 

Root Mean Square Error for prediction (RMSEP) of API content of 2.2% with 

Transmission Raman as compared with 2.9% for Backscatter mode.(84) Hargreaves 

et al. have utilised Transmission Raman for quantitative analysis of pharmaceutical 

capsules achieving a relative RMSE for prediction of API concentration of 1.5%.(85)  

In this study API was quantified in capsule formulations of varying fill weights. By 

pre-processing the spectra to account for variations in the Raman signal intensity due 

to these varying fill weights the authors were able to develop a single PLS model to 

predict the active content across the entire fill weight range – 100–400 mg. 

Townshend et al. reported quantification by TRS and BRS of chlorpheniramine 

maleate content at 2% w/w level with marketed tablets.(92, 93) The author noted that 

accurate prediction of the API content by TRS could only be achieved by ensuring 

that the calibration tablets generated externally matched the photon propagation 

properties of the sample tablets. Additionally the effects of coloured capsule shells 

on prediction models of ambroxol in encapsulated formulations generated using TRS 

showed a slight decline in PLS prediction accuracy due to weak fluorescence of blue 

and green coloured capsules. (94)  
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Table 3 Recent API quantitation studies by spectroscopic methods. 

Compound Year Methods Results Reference  

Acetaminophen and caffeine 

anhydrate 

2010 NIR – 

transmittance 

Bilayer tablets containing each API. PLS models built for 

both API content determinations. 

Ito et al. 

(178) 

Acetaminophen, aspirin and 

caffeine – Excedrin and 

Vivarin 

2012 Transmission 

FT–Raman 

Tablet cores, increased representativeness of spectra due to 

increased sampling volume. 

Pelletier et 

al. (183) 

Alprazolam – Zanax 2007 Raman mapping Use of PCA to evaluate API dispersion in low–level API 

tablets,(0.4 and 0.8% w/w)  

Sasic et al. 

(179) 

Ambroxol 2004 FT–Raman For a 200 mg tablet, 29.6 mg of API was LOQ associated 

with Raman models. 

Szostak et al. 

(184) 

 2012 TRS  Capsules containing formulation did show a slight decline in 

PLS prediction accuracy due to weak fluorescence of blue and 

green coloured capsules. 

Lee et al. 

(94) 

Aminophylline 2008 Raman Injection solution analysed where multivariate models were 

found to be more accurate than univariate models. Level of 

quantification matches pharmacoepeial method. 

Mazurek et 

al. (185) 

Atorvastatin Calcium  2009 Raman and UV Powders and pellets of model formulations analysed with high 

correlation coefficients reported.  

Mazurek et 

al. (172) 

 2008 Raman, PXRD 

and IR 

Raman had a LOD of 1 wt% in comparison to 3.33 and 6.66 

wt% for PXRD and IR respectively. 

Skorda et al. 

(186) 

Bromazepam 2005 NIR and HPLC Comparable results with HPLC reference method. 0.17 mg 

RMSEP reported for API quantitation. 

Chalus et al. 

(187) 
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Table 3 (continued) Recent API quantitation studies by spectroscopic methods. 

Compound Year Methods Results Reference  

Caffeine anhydrate 2008 NIR – 

transmittance and 

reflectance 

Tablets analysed using both modalities showed lower errors 

associated with transmittance. 

Ito et al. (176) 

Captopril 2006 Raman RMESP values of API PLS models were 1.8–2.2% and 2.7–3.1%, 

Three commercial preparations of captopril containing 12.5mg and 

one 25mg of API per tablet were quantified using developed 

models. 

Mazurek et al. 

(171) 

Chlorpheniramine 

maleate 

2012 TRS and BRS MCC of differing particle sizes were incorporated into calibration 

samples. TRS was found to be sensitive to particle size differences. 

BRS and TRS results were in agreement with HPLC. 

Townshend et 

al.  (93) 

Clonazapam 2005 NIR and HPLC Comparable results with reference method. ~ 0.07 mg RMSEP Chalus et al. 

(187) 

Diltiazem HCl 2002 FT–Raman and 

HPLC 

Comparable results between both techniques for experimental and 

commercial tablets. 

Vergote et al. 

(170) 

Diclofenac sodium 2008 Raman Tablets and capsules analysed with RMSEP values in the range of 

2.6 – 3.5 and 1.4–1.7 respectively. 

Mazurek et al. 

(188) 

 2006 Raman Injection formulation with RMSEP from 0.4–2.4% API for PLS 

model 

Mazurek et al. 

(185) 

Diphenhydramine 

HCl 

2006 FT–Raman and 

HPLC 

Liquid formulation analysed and though a much lower LOD 

associated with HPLC, prediction errors similar between the two 

methods. 

Orkoula et al. 

(189) 

Ibuprofen 2008 NIR – 

transmittance 

0–5% w/w API tablet formulations analysed and details the 

importance of choosing an appropriate calibration range for model 

development. 

Alcala et al. 

(190) 

 2010 NIR Highlighted the effects of particle size, lacquer coating and 

compression in calibration development. RMSEPs of 1.1–1.5% 

API reported. 

Blanco et al. 

(174) 

Indapamide 2012 NIR and HPLC 2.08% w/w RMSEP reported for API quantification. Porfire et al. 

(191) 
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Table 3 (continued) Recent API quantitation studies by spectroscopic methods. 

Compound Year Methods Results Reference  

Irbesartan and paracetamol separately 2011 NIR Extended variable model incorporating physical 

characteristics of samples utilised for quantification of 

tablets containing irbesartan and paracetamol 

separately. 

Blanco et al. 

(175) 

Hydrochlorothiazide 2012 DR–NIR and 

HPLC 

RMSEP of 1.7% API reported and found to be 15 

times faster than HPLC method employed. 

Ferriera et al. 

(192) 

Metformin HCl 2012 NIR Calibration model built using powder samples and 

applied to commercial samples. 

Blanco et al., 

(193) 

Paracetamol 2010 TRS PLS, CLS and MCR comparable in prediction 

performance; 2.4–3.4% API. Simple lean calibrations 

with few components were generated using TRS data. 

Fransson et al. 

(89) 

Potassium sodium 

dehydroandroandrographolide 

succinate 

2011 DR NIR Artificial neural networks produced RMSEPs of low 

values for both API and water content determination. 

Li et al. (194) 

Prednisolone 2006 Raman RMSEP values of API PLS models generated were 

reported as 1.8–2.1% and 3.2–3.7% respectively. 

Mazurek et al. 

(171) 

Ranitidine HCl 2008 NIR and 

HPLC 

RMSEP of 1.49% API reported as best model and 

NIR demonstrated to show good precision and 

reproducibility by authors.  

Rosa et al. 

(195) 

Risperidone 2008 FT–Raman Coated and uncoated tablets analysed and with 

improved LODs for uncoated tablets. 

Orkoula et al. 

(196) 

Sulfathiazole and Sulanilamide 

 

2008 Raman Simultaneous determination of 2 APIs in powder 

mixtures to sub 4% API with highly reproducible 

measurements. 

Lopez–

Sanchez et al. 

(197) 

Thiamine HCl 2012 Raman, 

DRIFT and 

ATR–IR 

Raman and DRIFT comparable in terms of RMSEP 

values, 2.1 and 2.2% API. 

Mazurek et al.  

(198) 
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Table 3 (continued) Recent API quantitation studies by spectroscopic methods. 

Compound Year Methods Results Reference  

Tianeptine 2011 NIR Two independent validation sets used with RMSEP values of 2.0 and 2.7% API 

reported. The effect of model transfer to a different instrument investigated and 

RMSEP values increased – this was overcome by additional data processing. 

Boiret et al. 

(199) 

Unspecified  2007 TRS and BRS PLS model RMSEP for API content within tablets of 2.2% and 2.9% for TRS 

and BRS respectively. Capsules have a RMSEP of ± 3.6%. Leaner calibration 

models can be built using 2 or 3 calibration spectra. 

Johansson et 

al. (84) 

 2008 NIR Highlights time difference between HPLC analysis and NIR, 5 hrs to 12 mins. 

Comparison of 3 NIR instruments for determination of API. 

Sulub et al. 

(200) 

 2008 TRS CLS and PLS models built where PLS reported a RMSEP of ± 1.2% with 5 s 

acquisition time 

Eliasson et al. 

(86) 

 2009 NIR and 

HPLC 

Content uniformity of tablets with differing grades of excipients showed no 

effect on model prediction ability. 

Li et al. (173) 

 2009 NIR – 

transmittance 

Content uniformity determination of 125 and 500 mg tablets with RMSEP 

values of 1.6 and 1.5% HPLC value respectively. 

Xiang et al. 

(177) 

 2010 NIR and 

HPLC 

Two models of similar correlation coefficients produced and authors used 

accuracy profiling to determine each models’ ability to quantify API over the 

chosen API range. 

Mantanus et 

al. (201) 

 2010 Raman Family class assignment based on Raman and chemometric treatment Roggo et al. 

(202) 

 2011 TRS RMSEP of 1.5% reported for API concentration. TRS insensitive to capsule fill 

weight, allowed for a model made from a batch at a single fill weight to be 

applied to batches of varying fill weights. 

Hargreaves et 

al. (85) 
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3 Data analysis and chemometrics 
 

3.1 Introduction 
 

The analysis and monitoring of chemical systems and processes can result in large 

datasets as the case may be for quality assurance and reproducibility studies. 

Spectroscopy can be utilised for at, in and online analysis of processes for such 

studies and the spectral output is typically highly multivariate in nature. Spectra are 

often a result of not only the chemical response (pH, concentration) of the 

component of interest but further responses due to other components such as physical 

responses (particle size) or instrumental artefacts (noise).  

 

Chemometrics can be utilised to extract useful information from complex datasets by 

simplifying data via the generation of mathematical expressions that can correlate 

differing responses into meaningful information which can allow for enhanced 

knowledge of the system. (203) According to the International Chemometrics 

Society, chemometrics is the science of relating measurements made on a chemical 

system or process to the state of the system via application of mathematical or 

statistical methods. It is considered by the FDA to be a PAT tool as listed in their 

Process Analytical Technology Initiative.(204) The aim of PAT is to increase 

process understanding, assure and build in quality throughout the manufacturing 

process (Quality by Design – QbD). (205, 206) The most commonly used 

chemometric methods include classification and regression. Classification methods 

such as principal component analysis (PCA) group samples together according to 

their spectral variations and correlate these changes with other variables. Regression 

methods such as multi–linear regression and partial least squares (PLS) link the 

spectra recorded to quantifiable properties of the sample. 
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3.2 Univariate & Multivariate Methods 
 

Univariate calibration is typically useful for situations where the analyte of interest’s 

concentration is the only factor on which the instrument response depends, e.g. the 

linear relationship between analyte concentration and absorbance in UV visible 

spectroscopy as described by the Beer–Lambert Law. In the case of complex spectra 

if one peak attributable to a single variable can be identified it can be useful for the 

monitoring of one variable, such as peak area changes due to change in concentration 

in the case of piracetam. (207) However in the majority of cases where multivariate 

spectral data is concerned, discrete changes of multiple variables are taking place. 

Multivariate calibration is capable of monitoring the changes of multiple variables in 

one step. It is useful where chemical or physical responses occur across a variety of 

spectral regions, allowing for simultaneous analysis of multiple variables in contrast 

to univariate methods where only one variable can be monitored at a time. Due to 

this and its coupling with pre-processing steps, discrete changes in spectral data 

across a wide spectral range can be used for quantitative or qualitative analyses.   

3.3 Spectral data pre-processing  
 

Pre–processing is commonly applied to data to enhance chemometric model 

performance by improving signal to noise ratios and/or removing interference effects 

that are not correlated to analyte changes. Examples of such interferences include 

shot noise, detector noise, fluorescence and baseline offsets. This can result in an 

improvement in errors associated with chemometric modelling as variable responses 

such as noise can be suppressed. Care must be taken when selecting suitable pre-

processing methods; for it to be useful it must enhance chemically related 

information in the data while a poor pre-processing method can impair chemical 

information and generate spurious models. For Raman spectra sources of noise 

include; photon shot noise, sample–generated noise such as fluorescence, detector 

noise and externally–generated noise such as cosmic rays.(72, 208)  Typically NIR 

spectra contain baseline offsets associated with the interaction of NIR radiation with 

the samples where the diffusion of light through a sample can be influenced by the 
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compression method used, particle size of the material and sample presentation to the 

instrument i.e. use of vials, direct placement on analysis interface, etc.(209, 210) 

 

3.3.1 Normalisation 

 

Normalisation is of particular use when pre-processing Raman spectroscopic data as 

there are inherent intensity differences in the spectra due to power fluctuations of the 

laser source throughout data collection. There are multiple means of how one can 

normalise spectral data, the most common is that of normalising the spectrum to a 

constant area of a specified band which will act to remove the fluctuating signal’s 

effect.(211)  

 

3.3.2 Multiplicative Scattering Correction  

 

Multiplicative Scattering Correction (MSC) is a pre-processing method which is a 

variant of normalisation that corrects for differences in baseline offsets and scattering 

variations which are often due to particle–size distributions and the interaction of 

light with the solids.(209) It does this by first calculating a reference spectrum which 

is the average of all spectra in the dataset. For MSC a linear regression of each 

spectrum against the reference spectrum is made. The least squares coefficients of 

the linear regressions are determined and are then used to calculate the MSC–

corrected spectrum. 
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Figure 17 NIR spectra of tablets containing mostly MCC. Left, raw NIR spectra exhibiting 

small baseline offsets. Right, MSC treated NIR spectra. (Piracetam tablet spectra) 
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3.3.3 Standard Normal Variate 

 

Standard Normal Variate (SNV) is a normalisation variant similar to MSC where it is 

used to correct for baseline offsets and scattering variations in spectra. In SNV the 

mean of each spectrum is subtracted and then divided by the standard deviation. It 

produces very similar results to MSC. 

3.3.4 Derivatives 

 

Derivatives are often used to remove offset and background slope variations between 

spectra and enhance spectral differences. First derivatives remove baseline offset 

variations from spectra while second derivatives can remove both baseline offset 

variations and differences in baseline slopes between spectra. First derivatives 

provide the slope at each point of the original spectrum and have peaks where the 

original spectrum has maximum slope and crosses zero where the raw spectrum had 

peaks. Second derivatives measure curvature at each point in the original spectra and 

are more similar to the non–processed spectrum as peaks are approximately in the 

same place however with a reverse configuration i.e. where a band has high intensity 

in the original spectrum, the band will have a large negative intensity post second 

derivatisation. 

 

Figure 18 Raman spectra of FIII piracetam. Top, first derivative spectrum. Middle, raw 

spectrum. Bottom, second derivative spectrum. 

 

 

A commonly used derivatisation method is the Savtizky Golay filter which is used 

for smoothing and derivation.(212) It is a polynomial smoothing function that 
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analyses the spectra and estimates the smoothing derivation for each point separately. 

There are 3 parameters to be considered when using this filter; degree of derivative 

sought, number of points to be used in the smoothing and the polynomial order of the 

smoothing function. As the degree of derivation increases, the signal to noise ratio 

decreases as the amount of signal is reduced.(213-215) This is particularly true when 

few points are used in the smoothing and/or a high polynomial order is used for the 

smoothing function. Derivatives can also be used to compensate for the effects of 

minor fluorescence where present in a Raman spectrum. 

3.3.5 Mean centering 

 

Mean centering is used to centre the data relative to the mean of the data set to 

emphasize differences in the spectral features of the dataset. It is performed by 

calculating the average data vector of all n rows in a dataset and subtracting it point 

by point from each vector in the dataset.(211)  

 

3.4 Chemometric methods of analysis 
 

There are a variety of chemometric methods which can be employed for multivariate 

analysis. Known system responses, such as concentration of API present, can be 

modelled with spectral data to build models for quantification. In this thesis PCA 

was mainly used for determination of powder blend homogeneity prior to preparation 

of tablets. PLS was used to build quantitative models of API concentration and 

polymorph contamination in model formulations. 

 

3.4.1 Principal component analysis 

 

PCA a qualitative exploratory tool where the data matrix is decomposed into a 

number of principal components (PCs) that maximise the explained variance in the 

data on each successive component under the constraint of being orthogonal to the 

previous PCs.(216, 217)  
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X is a M × N matrix where M corresponds to samples with N measured variables. T 

is a M × A matrix and P
t
 is an A × N matrix where A is the number of calculated PCs. 

T and P are vectors. E is a M × N matrix containing the PCA model residuals, i.e. 

variance unexplained by the PCs.  

 

 

Figure 19 An illustration of PCA; a). A typical dataset; b) 3 orthogonal principal components 

for the data, ordered by variance; and c) the scores plot of the data set into the first two 

components. 

 

 

The first PC explains as much of the variation in the data as possible. The second PC 

is orthogonal to the first and describes as much of the remaining variation as possible, 

and so on. Plotting the PCs results in a scores plot which can be used for the 

interpretation of the PCA model and the samples which were analysed. Score plots 

can reveal patterns or trends in the data; for example, in the case of counterfeit 

pharmaceuticals where counterfeit and genuine article pharmaceutical tablet spectra 

cluster together separately allowing for identification and even knowledge of 

counterfeit origin.(218, 219) An illustrative example is the use of NIR by Hu et al. to 

show the clustering of crystallised samples based on relative humidity in Fig. 20.(220) 

The samples were composed of a mixture of the FI polymorph and amorphate of 

sulfathiazole that had been prepared by milling FII for 120 mins prior to placement at 

a number of different % RH conditions ranging from 10 to 98% RH. The greatest 

differences arose across PC1 which represents the recrystallisation of the mixtures to 

alternate polymorphs, FII, FIII and FIV. At 10% RH the amorphous content of the 

mixture converted to FI. At higher relative humidities the mixtures converted to FII 

and mixtures of FIII and FIV. This could be seen spectrally at 6880 cm
–1

 where peak 

intensity decreases as a result of diminishing amorphate content. 
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Figure 20 a) PCA scores plot of the NIR spectra of milled samples stored at different humidity 

conditions. b) NIR spectra of milled FII samples stored (1) at 10% RH for 28 days; (2) at 43% 

RH for 14 days; (3) at 43% RH for 28 days; (4) at 43% RH for 56 days; (5) at 75% RH for 14 

days; (6) at 98% RH for 14 days. Reproduced from Hu et al.(220) 

 

3.4.2 Partial Least Squares 

 

Partial Least Squares (PLS) is used to develop regression models that formulate 

linear relationships between variables and properties of interest i.e. spectral data with 

analyte concentrations.(221, 222) It attempts to find factors which both capture 

variance and achieve correlation between these different information sets. The 

matrices of both the variables (X) and the property of interest (Y) are decomposed to 

generate a matrix of scores and loadings for both information sets where T and U 

correspond to the matrix of scores, P' and C' represent the loadings, and E and F 

signify the residuals for each respective information set as follows; 

 

        
 

        
 

PLS aims to model all these components for X and Y such that both sets of residuals 

are approximately equal to zero. Residuals are the differences between the actual and 

predicted values of a dependent variable. A relationship between each set of scores is 

generated where orthogonal variables are calculated leading to reduced 

dimensionality. This can be further improved upon by using further iterations to 

increase covariance between the two information sets. 
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Figure 21 Graphical description of PLS regression. Adapted from Kourti et al. (205) 

  

 

There are multiple PLS methods in use currently however the focus of all work in 

this thesis will focus on PLS1. This PLS method consists of generation of separate 

calibration models built for each column in Y. A calibration set of samples are 

prepared, analysed and the data is used to build the calibration model. A further set 

of samples called the prediction set are used to test the calibration model.   

 

3.5 Model evaluation  
 

In chemometric modelling, hundreds of calibration models can be generated in a 

relatively short time. Selection of the optimal model requires systematic evaluation 

of models based on characteristics common to all. The performance of the calibration 

models can be evaluated using the correlation coefficient and the root mean square 

error (RMSE) as defined by the following equation; 

 

 




n

i n

yy iiRMSE
1

)ˆ( 2

 

 

where yi is the reference value, ŷi is the calculated value and n is the number of 

samples.(211) RMSE is termed as the root mean square error of calibration (RMSEC) 

for the calibration set,  the root mean square error of cross validation of the 

calibration set (RMSECV) and the root mean square error of prediction (RMSEP) for 

the prediction set. The correlation coefficient, R
2
, is a measure of the linearity of the 
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data and the closer this value approaches 1, the better the fit of the measured Y vs. 

predicted Y.  The RMSECV is derived using a leave–one–out cross validation 

procedure which iteratively selects a sample from the dataset and uses this sample for 

prediction by a calibration model built by the remaining unselected samples.  This is 

an approximation of the error linked to prediction of samples. RMSEP is used to test 

the error associated with the calibration model for the prediction of samples new to 

or unseen by the calibration model. This is the real test of the model by observing the 

errors associated by measuring new samples and using the established calibration 

model to predict for these new samples. 

 

3.6 Limits of detection and quantification 
 

The limit of detection (LOD) refers to a qualitative measurement where the lowest 

concentration of a substance can be detected with reasonable certainty by an 

analytical technique.(90, 211) The limit of quantification (LOQ) signifies the level at 

which an acceptable quantitative analysis can be made.(211) The LOD and LOQ for 

each correlation were calculated using the equations below, which were based on the 

standard deviation of the response and the slope, where the standard deviation (SD) 

of three measurements of a sample and the slope (m) of the calibration plot of a PLS 

model was used.(223)  

 

    
    

 
 

 

 

    
     

 
 

 

   

3.7 Mean square of differences 
 

Mean square of differences, was used to determine homogeneity where a spectra 

from different time points of mixing is subtracted from the spectra preceding it and 

the difference is squared and normalised and plotted against mixing time.(224)  This 

is given by; 
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where   
   is the absorbance at each wavelength   for the spectrum measured at a 

given time    and    
   is the absorbance at the same wavelength for the spectrum 

recorded at the preceding time   . Subtracting the two terms from each other and 

squaring the difference results in the mean square of differences. The closer the 

difference is to zero, the more similar the spectra are and once this value oscillates 

closely to a minimum the mixture can be assumed to be homogeneous. 
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4 Experimental Chapter 
 

4.1 Materials 
 

4.1.1 Tablet preparation 

 

Powder mixtures of the desired components were first prepared in 2 g quantities and 

mixed until homogeneous. Such quantities were used so as to ensure that the mixing 

vials were at least half filled to minimise weighing errors and that the vials would 

have sufficient fill volume to allow for NIR analysis. Homogeneity was determined 

by analysis of the powders using NIR at 30 second intervals between mixing using a 

Vortex mixer. Analysis using Mean Squares of Differences (MSD) was used to 

assess homogeneity. A spectrum from different time points of mixing was subtracted 

from the spectrum immediately preceding it and the difference was squared and 

normalised and plotted against mixing time as per Blanco et al.(224)  The closer the 

MSD value was to zero the more similar the spectra, thus this acted as an indicator of 

homogeneity. PCA was also used to visualise spectral similarity and supported the 

MSD results.  

 

Using the homogeneous powder blends, each tablet was prepared by hand–filling 

into a standard IR die hydraulic press (Perkin Elmer) with a 13 mm die set and a 

compression of 253 kPa was employed. All tablets were prepared in triplicate. After 

each tablet was produced 5 measurements of thickness were collected per tablet 

using digital callipers. The mean and standard deviation of each replicate set 

containing 10 tablets, totalling 30 tablets per thickness, was calculated. The % error 

reported with each is the result of dividing the standard deviation by the mean for 

each tablet thickness and multiplication by 100 to express as a percentage. The 

following sub–sections detail the tablets prepared for each experiment. 
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4.1.1.1 ROY tablets 
 

Tablets used for Chapter 5 consisted of 5–methyl–2–[(2–nitro phenyl) amino] 3–

thiophenecarbonitrile (ROY) as the model active ingredient in an excipient matrix of 

microcrystalline cellulose (MCC) and magnesium stearate (MgSt). Powder blends 

were prepared as outlined by the general methodology above and both PCA and 

MSD plots are presented in Fig. 22. PCA was used on spectra that were pre-

processed using a combination of MSC and a 2
nd

 derivative. 

 

Figure 22 Left, PCA scores plot of NIR spectra from mixing experiment, number refers to order 

in which spectra were collected, and right; NIR spectra pre-processed using MSC and a 2nd 

derivative with a mean squares of differences plot inset. 

 

Sample 1 (large blue spectrum in Fig. 22) is from time zero with no mixing, with all 

subsequent measurements collected after 30 seconds of mixing. As PCA 

demonstrates, the time zero spectrum is distinct from the main grouping of samples 

where even after 30 seconds, there was some level of mixing achieved. Variation is 

greatly reduced amongst the main grouping and this is supported by the MSD plot.  

The mean square was initially very high as to be expected with the time zero sample 

but then dropped to ~zero, the values then fluctuated narrowly around the zero value 

as the mixing time progressed. Both PCA and MSD confirmed that the powder 

mixtures where sufficiently homogenous for subsequent tablet production. 

 

Tablets of different thicknesses (0.75, 1.00, 1.25 and 1.50 mm) were prepared with 

ten different ROY concentrations, entire compositions are detailed below (Table 4). 

Each tablet, at each concentration, and thickness were prepared in triplicate, resulting 

in 120 tablets in total. These tablets served as the calibration set.  Four separate 
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tablets at the concentrations of 4, 6, 9 and 14% at four different thicknesses were 

prepared in an identical manner and used as the validation set.  

 

Table 4 Composition of model ROY tablets in % w/w. 

  Concentration (% Weight) 

Calibration Samples % ROY % MCC % MgSt 

1 1.0 95.0 4.0 

2 2.0 94.0 4.0 

3 3.0 93.0 4.0 

4 4.0 92.0 4.0 

5 5.0 91.0 4.0 

6 7.5 88.5 4.0 

7 10.0 86.0 4.0 

8 12.5 83.5 4.0 

9 15.0 81.0 4.0 

10 17.5 78.5 4.0 

  Concentration (% Weight) 

Validation Samples % ROY % MCC % MgSt 

P4 4.0 92.0 4.0 

P6 6.0 90.0 4.0 

P9 9.0 87.0 4.0 

P14 14.0 82.0 4.0 

 

After each tablet was manufactured, the variation associated with thickness was 

assessed. The variation in tablet thickness was low, with a maximum % error of 1.1% 

for the 0.75 mm, 0.5% for the 1 mm, 0.45% for the 1.25 mm and 0.57% for the 1.5 

mm tablets as shown in Table 5 below. 
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Table 5 Thickness data collected using digital callipers from ROY tablets. 

  0.75 mm   1 mm   1.25 mm   1.5 mm  

Replicate Mean STD   Mean STD   Mean STD   Mean STD 

A 0.775 0.010   1.002 0.005   1.265 0.004   1.520 0.005 

B 0.788 0.008   1.005 0.005   1.264 0.005   1.519 0.009 

C 0.782 0.008   1.005 0.005   1.232 0.008   1.491 0.012 

                        

Avg Mean 0.782   1.004   1.254   1.51 

Avg STD 0.007   0.005   0.006   0.009 

% Error 1.096   0.505   0.446   0.565 

 

 

4.1.1.2 Piracetam contaminant tablets 
 

4.1.1.2.1 Preparation of polymorphs 

 

Piracetam (FIII polymorph form purity confirmed by DSC and PXRD) was supplied 

by Sigma Aldrich and used as received.  The FII polymorph was prepared by first 

generating the FI polymorph by heating the FIII (previously ground roughly using an 

agate pestle and mortar for 1 minute to decrease particle size) to 140
°
C in an oven for 

72 hours.  The FII form was then formed from the unstable FI form at room 

temperature over four days with the conversion process monitored by Raman 

spectroscopy, spectra and their discussion presented in Chapter 8.(225, 226)    

4.1.1.2.2 Preparation of contaminant tablets 

 

Preparation of tablets containing piracetam (mixtures of FII and FIII) as an active 

ingredient with calcium carbonate (CaCO3) and microcrystalline cellulose (MCC) as 

excipients were mixed in a 10:10:80 ratio by weight. The piracetam component (10% 

by weight) comprised of mixtures of FII and FIII which varied from 0.1:99.9% 

FII:FIII to 99.9:0.1% FII:FIII (Table 6). 
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Table 6 Composition of piracetam polymorph contaminant tablets in % w/w. 

Calibration Samples % FII % FIII 

FIII100 0 10.0 

FII01 0.1 9.9 

FII02 0.2 9.8 

FII04 0.4 9.6 

FII08 0.8 9.2 

FII10 1.0 9.0 

FII20 2.0 8.0 

FII50 5.0 5.0 

FII80 8.0 2.0 

FII90 9.0 1.0 

FII92 9.2 0.8 

FII96 9.6 0.4 

FII98 9.8 0.2 

FII99 9.9 0.1 

FII100 10.0 0 

Validation Samples % FII % FIII 

FII04 0.4 9.6 

FII10 1.0 9.0 

FII90 9.0 1.0 

FII92 9.2 0.8 

 

To ensure that the powder mixtures were homogeneously mixed prior to tablet 

manufacture, NIR was used to monitor homogeneity at 30 second time points 

throughout mixing.  Spectra were pre-processed using MSC and a second derivative.  
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Figure 23 Left, PCA scores plot of NIR spectra from mixing experiment, and right; NIR spectra 

pre-processed using MSC and a 2nd derivative with mean squares of differences plot. 

 

 

The resulting spectra were used for PCA and the scores plot is shown in Fig. 23.  

Sample 1 (large blue spectrum in Fig. 23 right) is from time zero with no mixing, 

with all subsequent measurements collected after 30 seconds of mixing by using a 

Vortex Mixer. The mixing profiles seen here match that of the ROY powder blends 

where the initial time zero spectrum was vastly different to all subsequent spectra as 

mixing progressed. All subsequent spectra after 30 seconds of mixing were highly 

similar as demonstrated by their close clustering in the PCA plot above and their low 

MSD values close to zero indicating that the powder blends were well mixed in 

preparation of compression. 

 

Table 7 Measurement of thickness of the piracetam tablets and associated errors with the 

reproduction of tablets. 

 

1 mm Tablets   2 mm Tablets   3 mm Tablets 

Replicate Mean STD   Mean STD   Mean STD 

A 0.982 0.007   1.969 0.008   2.938 0.005 

B 0.997 0.006   1.977 0.004   2.987 0.007 

C 0.993 0.011   1.968 0.005   2.987 0.007 

 
                

AVG Mean 0.991   1.971   2.971 

AVG STD 0.008   0.006   0.006 

% Error 0.813   0.297   0.211 

 

After the tablets were manufactured the thickness of each tablet was measured as 

previously detailed in Section 4.1.1.1. The variation in tablet thickness was low, with 
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a maximum % error of 0.8% for the 1 mm, 0.3% for the 2 mm and 0.21% for the 3 

mm tablets as shown in Table 7 above. 

 

4.2 Analytical techniques 
 

4.2.1 Backscatter Raman spectroscopy 

 

BRS data were collected at room temperature using a RamanStation spectrometer 

(AVALON Instruments Ltd., Belfast, Northern Ireland; now PerkinElmer) with 785 

nm laser diode excitation with a spot size of ~ 200 m in diameter, a cooled (–77 ºC) 

CCD detector and a motorised XYZ stage. Spectra were acquired from 250–3310 

cm
–1

. Tablets were analysed using a custom made multi–tablet holder plate. Powders 

were placed in aluminium crucibles (Thorn Scientific Services Ltd, UK) of 2 mm 

depth and 5 mm diameter. In all cases a sampling grid employing 0.5 mm spacing 

was used to minimize spectral variance and reduce sub–sampling effects. The spectra 

collected were then averaged for subsequent data analysis. Table 8 details the 

acquisition parameters and instrument settings used for all analyses. 

 

Table 8 Conditions employed for backscatter Raman analyses. 

Experiment Resolution / 

cm
–1 

Laser power 

/ mW 

Acquisition 

parameters 

Grid 

size 

ROY tablets 4 55.9 2 seconds × 8 3 × 3 

Piracetam binary 

mixtures 

4 79.9 2 seconds × 10 3 × 3 

PiraTabs 4 79.9 2 seconds × 10 4 × 4 

PiraConversion 2 79.9 2 seconds × 10 4 × 4 
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4.2.2 Transmission Raman spectroscopy 

 

TRS data were collected using a Cobalt Light Systems Ltd. TRS100 Transmission 

Raman Optical Engine at an excitation wavelength of 830 nm and a laser power of 

0.65 W.  Tablets were arranged on a multi–tablet holder plate for analysis. Powders 

were measured by placing in polyethylene bags and placement on a custom plate for 

analysis.  A spot size of 8 mm was used and spectra were collected at a resolution of 

7 cm
–1

 from 50 to 2400 cm
–1

.  Acquisition parameters and instrument settings used 

for all analyses are detailed in Table 9. 

 

Table 9 Conditions employed for transmission Raman analyses. 

Experiment Resolution / cm
–1 

Laser power / W Acquisition parameters 

ROY tablets 7 0.65 0.1 seconds × 50 

PiraTabs 7 0.65 0.2 seconds × 32 

 

4.2.3 Near infra-red spectroscopy 

 

NIR reflectance spectra were collected using a Perkin Elmer NTS ATR–FT–NIR 

fitted with an NIR reflectance attachment at a resolution of 4 cm
–1

 from 10000 to 

4000 cm
–1

 with 32 co–added scans per spectrum.  Interleaved scanning mode was 

used for collection of all spectra which allows for a ratio of the sample spectrum 

against a background that is recorded almost simultaneously, eliminating residual 

atmospheric absorptions for the final spectrum. Three spectra of each tablet was 

collected after rotating the tablet 120° on the sampling mount and these spectra were 

averaged for subsequent data analysis. For powders, sample vials were shaken and 

repositioned between triplicate measurements of each sample. Details of parameters 

used for analyses are detailed in Table 10. 
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Table 10 Conditions employed NIR analyses. 

Experiment Resolution / 

cm
–1 

Acquisition 

parameters 

Accessory 

ROY powder blends 4 32 Reflectance 

ROY tablets 4 32 Reflectance 

Piracetam binary 

mixtures 

8 32 Reflectance 

PiraTabs blend 8 32 Reflectance 

PiraTabs  8 32 Reflectance 

PiraTabs 4 32 Transmittance 

 

 

4.2.4 Powder X-ray diffraction 

 

PXRD data of the ROY tablets and piracetam polymorphs generated, were collected 

using an Inel Equinox 3000 (Artenay, France) powder diffractometer equipped with 

a CPS180 fixed curved multi–channel detector.  Diffraction patterns were collected 

for 16 minutes with the X–Ray generator operating at 35 kV with a 25 mA current.  

Samples were held in dedicated aluminium sample holders, fabricated in–house for 

each tablet thickness.  Each sample was spun at a rate of 5 revolutions per minute 

during data collection and analysed in triplicate.  The individual patterns were then 

averaged to provide a single powder pattern for each sample. 

 

4.2.5 Differential scanning calorimetry 

 

Differential Scanning Calorimetry (DSC) was performed on a Rheometric Scientific 

STA625 with a heating rate of 10 °Cmin
–1

 used for piracetam polymorph samples by 

Dermot McGrath, Chief Technical Officer, School of Chemistry, NUI Galway. 
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4.3 Data analysis 
 

All multivariate data analysis was carried out using The Unscrambler software 

version 8 (Camo, Norway) and the PLS toolbox (Eigenvector) running on Matlab 

version 8 (Mathworks).  A variety of several pre-processing methods were assessed 

for each analytical method and these included baseline correction, 1
st
 order and 2

nd
 

order Savtizky–Golay derivatives, standard normal variate (SNV) and multiplicative 

scattering correction (MSC).(209, 227, 228)  Principal Component Analysis (PCA) 

was used for qualitative analysis and standard Partial Least Squares (PLS) regression 

was used for quantitative modelling.(216, 229)  The performance of the various PLS 

calibration models generated from data employing the different pre-processing 

methods was evaluated using the correlation coefficient and various root mean 

square error (RMSE).(211)  The optimal number of PLS factors was determined by 

using a leave–one–out cross validation procedure.  

 

For PXRD data of the piracetam binary polymorph mixtures, X'Pert HighScore Plus 

software (PANalytical) was used to calculate peak height intensity and area, and for 

correction of the shifts along the 2θ axis for PXRD scans. The cubic spline data 

interpolation technique was then used to reconstruct the PXRD scans. The PXRD 

and spectroscopic data were subjected to mean centring prior to partial least squares 

(PLS) analysis.  
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5 Comprehensive analysis of a model 
pharmaceutical tablet system incorporating ROY 
by the use of Raman, transmission Raman, and 
near infra-red spectroscopies and powder X-ray 
diffraction 

 

5.1 Introduction 

 

APIs are frequently delivered to the patient in their solid form by inclusion in tablets, 

capsules or as powders.  A common issue associated with solid formulations is the 

need to accurately quantify the precise concentration of API loading.  This is 

required for good manufacturing practices (GMP) and it is also desirable that one 

uses a method that is accurate, non–contact and non–destructive.  This last point is 

important as HPLC, one of the most widely used analytical methods for API 

quantification, requires the samples to be destroyed and made up into solutions for 

analysis which can be costly in terms of time and solvents required. Spectroscopic 

methods provide a useful solution to these issues as they are amenable to fiber optic 

coupling, are non–destructive and rapid.  

 

Here, we quantitatively assess the efficacy of several rapid characterisation methods 

(Backscatter and Transmission Raman spectroscopies and NIR spectroscopy) and 

PXRD in combination with chemometric methods for the quantitative analysis of an 

API in model tablets.  The aim of this study is to compare and contrast the methods 

for a system with a range of API concentration from 1% to 17.5% by weight of the 

system which comprises of a model API, 5–methyl–2–[(2–nitrophenyl) amino]–3–

thiophenecarbonitrile (ROY), with several excipients (e.g. microcrystalline cellulose 

and magnesium stearate).  Tablets were manufactured with four different tablet 

thicknesses; 750, 1000, 1250 and 1500 μm.  The data was then used to develop a 

range of calibration models for predicting ROY concentration with the best accuracy 

of ~0.3% API RMSEP being achieved with NIR and TRS. 
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5.2 Qualitative analysis 
 

5.2.1 Powder X-ray diffraction 
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Figure 24 PXRD analysis of ROY, MCC and MgSt tablets; (top) raw PXRD diffraction 

patterns, (bottom) data reduced and mean normalised PXRD patterns of tablets where the 

green to red transition is due to increasing ROY content. 

 

Fig. 24 shows the PXRD pattern of the components and their tablets from 10 to 40 2θ 

as this region contained the most information regarding the tablets as the majority of 

features to all tablet components were present in this region. In the tablet diffraction 

patterns, the three most intense peaks, 15.5 and 26.5 2θ, due to contributions from 

ROY, and the main broad band at 22.72 2θ, due to an overlap of bands of MgSt, 

MCC and ROY respectively as shown by the pure component patterns presented 

above. There is a linear change at these bands as the quantity of ROY decreases and 

the quantity of MCC increases in the tablets. Peaks attributable to ROY are evident 
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across the tablet patterns at 11, 15.2, 18, 19.2, 24.2, 26.5 and 30.5 2θ and grow in 

intensity as the concentration of ROY increases across the tablets manufactured.  

 

5.2.2 Near infra-red spectroscopy 
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Figure 25  (top) raw NIR spectra of tablet components, (bottom) NIR spectra of the tablets 

overlaid and separated where the green to red transition is due to increasing ROY content. 

 

 

The NIR spectrum of ROY exhibits many features, most notably around the 6000 – 

4000 cm
–1

 spectral region which are due to CH and CH2 combinations and around 

5000 cm
–1

 bands associated with the primary amide and cyano moieties within the 

molecule. MgSt features a sharp band at 7045 cm
–1

 due to the carboxylate 
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functionality of stearate and a broad band at 5185 cm
–1

 in its spectrum.(230) The 

NIR spectrum of microcrystalline cellulose displays a large broad peak at 6800 cm
–1

 

and several broad peaks in the 5300–4000 cm
–1

 region due to CH and CH2 

overtones.(230) The NIR spectra of the tablets strongly feature MCC characteristics 

which are as expected since it is the main tablet constituent. There are also scattering 

variations and baseline offsets due to the interaction of light with the tablets evident 

in the raw spectra. There are small peaks observable due to ROY present in the 

6200–5300 cm
–1

 and 5000–4000 cm
–1

 spectral regions.  

 

5.2.3 Raman spectroscopy 
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Figure 26  Top left and right, BRS and TRS spectra of tablet components respectively, and  

bottom left and right, BRS and TRS spectra of tablets respectively where the transition from 

green to red is due to increasing ROY content. 
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Fig 26 shows the BRS (250–3310 cm
–1

) and TRS (44–2450 cm
–1

) spectra of the 

tablet components and their Raman bands are listed in Table 11 – to our knowledge 

no detailed band assignment of ROY is available in the literature and is hence not 

provided here. Both sets of Raman spectra show well resolved bands which allow for 

facile observation of spectral differences between all components. One of the 

strongest features of ROY is the peak at 1338 cm
–1

 which may be attributable to 

v(CNO2) of ROY. MCC exhibits a sloping baseline with several bands in the 850 – 

1500 cm
–1

 spectral region which are due to v(C–O) and v(C–C) stretching vibrations 

and δ(CH2) deformations.(231-235) There are also peaks present at 380 and 460 cm
–1

 

which are due to δ(CCC), δ(CO) and δ(CCO) binding vibrations and ring 

deformations.(236). A band at 1093 cm
–1

 is characteristic of unsubstituted cellulose 

rings which are found in MCC.(231) In the Raman spectrum of MgSt, bands at 1061 

and 1128 cm
–1

 can be assigned to v(CC) antisymmetric and symmetric stretching 

vibrations respectively and δ(CH2) vibrations are responsible for Raman bands at 

1294 and 1437 cm
–1

.(71, 237)   

 

A difference between the two Raman systems employed was the difference in 

spectral ranges accessible; the BRS system utilised the 250 – 3300 cm
–1

 range and 

the TRS system the 45–2500 cm
–1

 range. The TRS system allowed for the 

observation of Raman signal by the phonon mode region which can reveal bands 

specific to crystal lattice vibrations. It is also of interest to note that in this case ROY 

gives a strong Raman signal in this region without much interference from the 

excipients which may be of use for quantitative model generation. 

 

As is evident particularly from the tablet spectral data generated by both Raman 

methods, ROY which is yellow in colour, imparts a growing fluorescent signal as the 

ROY content increases from 1 to 17.5% tablet weight. The laser power was adjusted 

to ensure that sample fluorescence did not swamp the Raman signal from the tablets, 

and a compromise of 70% laser power was used. Both Raman systems employed for 

this study made use of different laser sources, 785 and 830 nm for the BRS and TRS 

systems respectively which had an effect on the level of fluorescence present in each 

spectrum. The closer to a NIR wavelength that a laser employs the greater the 

reduction of the effects of fluorescence.  
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Table 11 Backscattered Raman bands of tablet components. 

Compound  Raman Bands / cm
–1

 

ROY 290(w), 306(w), 323(w), 337(w), 370(m), 408(w), 

442(w), 467(w), 490(w), 506(w), 522(w), 568(m), 

603(w), 650(w), 689(m), 721(vw), 752(vw), 

801(vw), 827(m), 873(vw), 921(vw), 952(vw), 

1043(m), 1074(mw), 1122(w), 1147(m), 1196(w), 

1226(m), 1267(m)m, 1338(s), 1377(w), 1442(mw), 

1496(m), 1530(mw), 1554(mw), 1573(mw), 

1611(mw) 

Magnesium Stearate 888(w), 945(w), 1061(s), 1102(w), 1128(s), 

1294(vs), 1437(s), 1458(m) 

Microcrystalline Cellulose 343(w), 378(s), 435(m), 457(m), 517(m), 894(w), 

1093(vs), 1120(s), 1152(m), 1335(m), 1378(m), 

1473(w) 

w, weak; mw, medium weak; m, medium; s, strong; vs, very strong. 

 

5.3 Spectral region of interest selection 
 

Specific regions of interest (ROIs) were selected from each set of spectral data for 

use in multivariate analysis. This allowed the analyst to make use of spectral features 

which were known to vary as a result of changing concentration i.e. the 625–1750 

cm
–1

 spectral region specific to ROY in Raman spectral data; and also to omit 

spectral regions where little to no information could be utilised i.e. from 1800–2400 

cm
–1

 in the TRS spectra or from 4–10 2θ in the PXRD patterns. This increased the 

speed of analysis. ROIs selected for multivariate analysis are detailed in Table 12. 
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Table 12 Regions of interest selected for model generation using NIR and Raman data. 

Technique Name Wavenumber region / cm
–1

 

NIR Full 10000–4000 

A and B 6200–4000 

A  6200–5400 

B 5400–4000 

ROY peak 5549–5481 

Backscattered  

Raman 

Full 250–3300 

A 250–626 

B 626–1750 

C 250–1750 

ROY peak 1314–1354 

Transmission  

Raman 

Full 44–2450 

A and B 44–1700 

A 44–625 

B 625–1700 

 ROY peak 1327–1350 

 

 

5.4 Spectral pre-processing 

 

The aim of spectral pre-processing is to enhance information of interest such as that 

pertaining to the analyte of interest and to reduce redundant information such as 

noise which can impact quantitative analyses where unaccounted for. In the case of 

PXRD, data reduction was used to reduce analysis time. The original PXRD data 

files comprised 8192 data points over a range of PXRD diffraction patterns were 

reduced in half, using 4096 data points.  This allowed for quicker model 

development and proved no worse than use of the full data set. Additionally a 

smoothing function and a normalisation step were applied to the PXRD data which 

both improved the noise levels and took account of intensity variations between the 

tablets. NIR raw spectra consist of much broader peaks and show some scattering 

variations and baseline offsets due to the interaction of light with the tablets. These 

scattering effects were corrected for using MSC (Multiplicative Scatter Correction) 

and all tablets have a uniform baseline (Fig. 27). This highlights the spectral 

differences between varying ROY concentrations which are present in the 6200 – 

5300 cm
–1

 and 5000 – 4000 cm
–1

 spectral regions. The spectra were further pre-

processed using a 15 point second derivative which maximised the ROY 

concentration differences between the tablets in the aforementioned regions.  
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Figure 27 Top row from left to right; PXRD raw patterns, PXRD mean normalised patterns and 

PXRD mean normalised and smoothed patterns. Bottom row from left to right; NIR raw 

spectra, NIR MSC treated spectra and NIR MSC and second derivative pre-processed spectra 
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Figure 28 Top row from left to right; TRS raw spectra, baseline corrected spectra and baseline 

corrected and second derivative pre-processed spectra. Bottom row from left to right; BRS raw 

spectra, baseline corrected spectra and baseline corrected and second derivative pre-processed 

spectra. 
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Both sets of Raman spectral data contain a sweeping baseline due to fluorescence 

which goes upwards at lower wavenumbers (Fig. 28). In this case reduction of the 

laser power results in a reduction of the fluorescent baseline with less swamping of 

the ROY signals from the tablets. ROY has strong features particularly in the 600 – 

1700 cm
–1

 spectral region. This area features a strong sharp peak associated with 

ROY at 1338 cm
–1

 which increases in intensity due to increasing ROY concentration. 

Two means of removing the effects of the fluorescent baseline were tested, manual 

baseline correction, the use of derivatives alone and in combination with baseline 

correction. The manual baseline correction required careful selection of a number of 

points in the spectra which were least affected by fluorescence and then fitted to an 

appropriate polynomial. This required an expert eye and careful review of the data. 

Derivatives are commonly used to correct for baseline changes due to fluorescence 

and most utilised are first and second derivatives. Both are shown by the two spectral 

sets in Fig. 28 which show strong fluctuations in their spectra that occur in spectral 

regions related to changing ROY concentration. 
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5.5 Quantitative Analysis 1mm tablets 
 

5.5.1 Powder X-ray diffraction 
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Figure 29 19 – 27.5 2θ region of PXRD patterns 

 

The PXRD data was mean normalised and smoothed using a 5 point moving average 

(Fig. 29). The 5 point moving average serves to smooth data, reducing the signal–to–

noise ratio of the data.  PLS models were built using one PLS factor, with a selection 

of ROIs. One PLS factor was chosen as the majority of the x and y variance was 

captured in one latent variable with no appreciable improvement in model output 

when further loadings were incorporated into the models.  The 19–27.5 and 19–26 2θ 

regions yielded lower RMSEs of 0.53% and 0.56% for calibration, and 0.58% and 

0.31% for prediction, respectively (Table 13). The PC1 loading compares very well 

to the ROY diffraction pattern showing that this models biggest contributor is the 

changing concentration of ROY.  The 2θ region from 21–24 2θ shows a dip in PC1 

which can be attributed to the masking effects of MCC and MgSt in this region, as 

this is where both components have strong broad peaks which hide any diffraction 
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peaks of ROY from showing. The RMSEC values barely change between the mean 

normalised models in comparison with the mean normalised and smoothed models 

however the latter model has improved RMSEP values. The loadings are similar 

between the two with a negative contribution from the MCC broad peak at 22.8 2θ 

and with positive contributions with peaks associated with ROY i.e.  19.2, 24.2 and 

26.5 2θ. 

 

Table 13 Results of regression models  built using PXRD 1mm tablet data. 

Pre–processing Region LV RMSEC R
2
 RMSECV RMSEP 

 Half 1 0.71 0.9914 0.90 0.65 

Data reduced A and B 1 0.70 0.9918 0.89 0.63 

 A 1 0.78 0.9897 1.02 1.01 

 B 1 0.87 0.9871 1.23 2.08 

 Half 1 0.52 0.9954 0.64 1.04 

Mean normalised A and B 1 0.54 0.9952 0.65 0.81 

 A 1 0.56 0.9946 0.74 0.42 

 B 1 0.77 0.9901 0.91 1.26 

 Half 1 0.52 0.9954 0.64 0.93 

Mean normalised  A and B 1 0.54 0.9952 0.65 0.71 

&  moving average A 1 0.56 0.9946 0.74 0.38 

 B 1 0.77 0.9901 0.91 1.12 

 

5.5.2 Near infra-red spectroscopy 

 

PLS models built using NIR spectra treated with MSC pre-processing were made 

using 2 PLS factors for all ROIs that were selected. Regions of interest were selected 

to see if certain areas or combination of these areas could yield better PLS models 

with fewer PLS factors and lower RMSEs. Use of the full spectrum 10000–4000 cm
–

1
 gave the best model with RMSEs of 0.26% for calibration and 0.31% for prediction 

(Table 14). A near equivalent performing model using the region of interest from 

6200–4000 cm
–1

 encompassed the main features of the tablet components. MSC pre-

processing performed very well in this area in particular, smoothing out differences 

in baseline offset and scattering variations in the model tablets (Fig. 30).  MSC also 

reduced the number of latent variables to one for all models indicating that the 

models are now wholly concerned with the chemical differences between the tablets 

as opposed to the physical differences between the tablets which resulted in varying 

interactions with the NIR radiation. The loadings of PC1 closely resemble the 

spectrum of ROY showing that this model is mostly based on the changing 



 
76 

 

concentration of ROY of the model tablets. Noticeably in all loadings plots there is a 

negative contribution from the broad peak of MCC at 5300 cm
–1

.  

 

 

6000 5500 5000 4500 4000

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
b
s
o
r
b
a
n
c
e

Wavenumber / cm-1
0 2 4 6 8 10 12 14 16 18

0

2

4

6

8

10

12

14

16

18

P
r
e
d
ic

te
d
 C

o
n
c
e
n
tr

a
ti
o
n
 /

 %
w

/w

Measured Concentration / %w/w

6000 5500 5000 4500 4000

Wavenumber / cm-1

 Loading 1

 Loading 2

 

6000 5500 5000 4500 4000

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
b
s
o
r
b
a
n
c
e

Wavenumber / cm-1
0 2 4 6 8 10 12 14 16 18

0

2

4

6

8

10

12

14

16

18

P
re

d
ic

te
d
 C

o
n
c
e
n
tr

a
ti
o
n
 /

 %
w

/w

Measured Concentration / %w/w

6000 5500 5000 4500 4000

Wavenumber / cm-1

 Loading 1

 

6000 5500 5000 4500 4000

-7.0x10
-4

-6.0x10
-4

-5.0x10
-4

-4.0x10
-4

-3.0x10
-4

-2.0x10
-4

-1.0x10
-4

0.0

1.0x10
-4

2.0x10
-4

3.0x10
-4

In
te

n
s
it
y

Wavenumber / cm-1
0 2 4 6 8 10 12 14 16 18

0

2

4

6

8

10

12

14

16

18

P
re

d
ic

te
d
 C

o
n
c
e
n
tr

a
ti
o
n
 /

 %
w

/w

Measured Concentration / %w/w

6000 5500 5000 4500 4000

Wavenumber / cm-1

 Loading 1

 

Figure 30 Top left, raw NIR spectra; top middle, measured vs. predicted ROY concentration 

plot; top right, loadings of PLS model of raw spectra; center left, MSC pre-processed NIR 

spectra; center middle, measured V predicted ROY concentration plot; and center right, 

loading of this PLS model. bottom left, MSC and 2
nd

 derivative pre-processed NIR spectra; 

bottom middle, measured vs. predicted ROY concentration plot; and bottom right, loading 1 of 

best performing PLS model. 
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Table 14 Results of PLS models generated using 1 mm NIR spectral data.  RMSE in % w/w. 

Pre–processing Region LV RMSEC R
2
 RMSECV RMSEP 

 Full 2 0.26 0.9989 0.38 0.31 

 A and B 2 0.27 0.9988 0.36 0.30 

Raw data A 2 0.26 0.9989 0.33 0.42 

 B 2 0.27 0.9987 0.38 0.29 

 ROY peak 2 0.26 0.9989 0.31 0.46 

 Full 1 0.23 0.9991 0.28 0.17 

 A and B 1 0.25 0.9989 0.31 0.16 

MSC A 1 0.29 0.9986 0.34 0.23 

 B 1 0.26 0.9989 0.32 0.19 

 ROY peak 1 0.24 0.9990 0.28 0.48 

 Full 1 0.22 0.9992 0.27 0.31 

 A and B 1 0.22 0.9992 0.27 0.31 

MSC &  2
nd

 deriv. A 1 0.24 0.9990 0.29 0.29 

 B 1 0.23 0.9992 0.27 0.35 

 ROY peak 1 0.25 0.9990 0.29 0.43 

 

Combining MSC and a second derivative pre-processing step results in further 

improvement of PLS models generated using the NIR data. All models are nearly 

equivalent with the best performing model being that concerning the entire or 6200 – 

4000 cm
–1

 spectral regions which encompass all concentration differences between 

the tablets. Once MSC accounted for the baseline offsets of the data, the second 

derivative accentuates differences between the tablets which are a result of increasing 

concentration of ROY. 

 

5.5.3 Backscattered Raman spectroscopy 

 

Reviewing the effect of spectral region selection regarding the raw BRS spectral data 

shows no improvement on the RMSEC, RMSECV and R
2
 values (Table 15). On pre-

processing with a first or second derivative, there is little change in these values 

however there is a reduction in the RMSEP values. The smaller the difference 

between RMSEC and RMSEP the better the model and this is the case on pre-
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processing with a first derivative. The B and C regions corresponding to 626–1706 

and 250–1750 cm
–1

 provide the best quantitative models on that basis and their 

results are presented in Table 15 below. The loadings plot indicate that the peak at 

1338 cm
–1

, characteristic of ROY is a large contributor to all models as this peak 

increases in intensity with increasing ROY concentrations.  
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Figure 31 BRS spectra. Top row, raw BRS spectra, middle row, BRS first derivative pre-

processed spectra, bottom row, BRS second derivative pre-processed spectra. First column, 

spectral data; second column, measured vs. predicted concentration plot of ROY concentration; 

and third column, loadings plots. 
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Table 15 PLS model results generated by use of 1 mm derivative BRS spectral data.  RMSE in 

% w/w. 

Pre–processing Region LV RMSEC R
2 

RMSECV RMSEP 

 Full 1 0.82 0.9887 1.08 1.11 

Raw A 1 0.82 0.9887 1.08 1.11 

 B 1 0.81 0.9888 1.07 1.10 

 C 1 0.82 0.9888 1.08 1.11 

 ROY peak 1 0.81 0.9888 1.07 1.03 

 Full 1 0.80 0.9891 1.05 1.04 

1
st
 SG A 1 0.91 0.9860 1.24 1.08 

 B 1 0.80 0.9893 1.04 0.85 

 C 1 0.91 0.9889 1.06 0.89 

 ROY peak 1 0.99 0.9836 1.31 2.03 

 Full 1 0.81 0.9889 1.05 0.47 

 A 1 0.84 0.9882 1.08 0.96 

2
nd

 SG B 1 0.80 0.9891 1.04 0.42 

 C 1 0.81 0.9890 1.05 0.45 

 ROY peak 1 0.81 0.9889 104 0.51 

 

 

Baseline correction was also used to correct for the fluorescence baseline and 

subsequently pre-processed using either a first or second derivative (Table 16 and 

Fig. 32). Using a first derivative resulted in the best quantitative models for the B 

region which encompassed the main features of ROY. Selecting this area alone 

resulted in models with similar performance to the B spectral region. 

 

Table 16 Results of PLS models generated using 1 mm BRS baseline corrected spectral data.  

RMSE in % w/w. 

Pre–processing Region LV RMSEC R
2 

RMSECV RMSEP 

 Full 1 0.83 0.9885 1.09 0.37 

Baseline corrected A 1 0.85 0.9878 1.11 0.89 

 B 1 0.82 0.9885 1.08 0.34 

 C 1 0.83 0.9885 1.09 0.36 

 ROY peak 1 0.82 0.9888 1.07 0.38 

 Full 1 0.80 0.9892 1.06 0.50 

Baseline corrected A 1 0.83 0.9884 1.09 0.90 

and 1
st
 SG B 1 0.80 0.9893 1.06 0.43 

 C 1 0.80 0.9893 1.05 0.48 

 ROY peak 1 0.80 0.9891 1.05 0.53 

 Full 1 0.81 0.9890 1.07 0.44 

Baseline corrected A 1 0.83 0.9884 1.10 0.45 

and 2
nd

 SG B 1 0.80 0.9891 1.06 0.40 

 C 1 0.80 0.9891 1.06 0.40 

 ROY peak 1 0.81 0.9890 1.06 0.40 
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Figure 32 BRS spectra. Top row, baseline corrected BRS spectra, middle row, BRS first 

derivative pre-processed spectra, bottom row, BRS second derivative pre-processed spectra. 

First column, spectral data; second column, measured vs. predicted concentration plot of ROY 

concentration. 
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5.5.4 Transmission Raman spectroscopy 
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Figure 33 Top row, raw TRS spectra, bottom row, TRS second derivative pre-processed spectra. 

First column, spectral data; second column, measured vs. predicted concentration plot of ROY 

concentration; and third column, loadings plots. 

 

All tablets share sloping baselines due to the increasing levels of fluorescence with 

increasing ROY concentration. The loadings plot of a PLS model built using the raw 

spectra of the 625–1700 cm
–1

 spectral region show that this fluorescent baseline 

dominates, however features of both MCC and ROY are present in the loadings plots 

particularly in the region around 1350 cm
–1

 which is due to the presence of ROY (Fig. 

33). Using this region RMSEC and RMSECV values of 0.70 and 0.85% w/w were 

achieved with a high linear correlation of 0.9917 (Table 17). On testing the 

calibration model using the external prediction set a RMSEP of 1.72% w/w was 

achieved which suggests that these samples are poorly accounted for using a PLS 

model built using raw spectral data. This could be due to the effects of fluorescence 

on the spectral baseline. To counteract this fluorescent baseline a second derivative 

was applied to the spectral data. As shown in the above spectra, strong signals due to 

the changing concentrations of MCC and ROY are present. A higher correlation was 
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achieved with lower RMSEC and RMSECV errors reported in Table 17 with a much 

improved RMSEP of 0.33% w/w. 

 

Table 17 Results of PLS models generated using 1 mm TRS spectral data.  RMSE in % w/w. 

Pre–processing Region LV RMSEC R
2
 RMSECV RMSEP 

 Full 1 0.73 0.9909 0.87 1.77 

 A and B 1 0.73 0.9909 0.89 1.78 

Raw data A 1 0.76 0.9903 0.92 1.82 

 B 1 0.70 0.9917 0.85 1.72 

 ROY peak 1 0.67 0.9924 0.80 1.46 

 Full 2 0.64 0.9931 0.83 0.40 

 A and B 2 0.64 0.9930 0.83 0.41 

2
nd

 Deriv.  A 1 0.97 0.9842 1.24 0.47 

 B 1 0.66 0.9926 0.79 0.33 

 ROY peak 1 0.66 0.9927 0.78 0.31 

 

Another approach commonly used to counteract fluorescent baselines in Raman 

spectral data is to baseline correct the spectra either manually or by some automated 

method such as the Lieber method. For this case manual baseline correction using 

Matlab proved to be the best for this case resulting in lower RMSE errors and also a 

lower RMSEP when compared to raw TRS data. Further pre-processing of the 

baseline corrected data using either a first or second derivative results in RMSEC and 

RMSECV values of 0.65 and 0.77% w/w using a first derivative which proves to be 

the best performing PLS model generated using the 625–1700 cm
–1 

spectral region 

(Table 18 and Fig. 34). Little difference was found between the second derivative 

TRS data and that which was baseline corrected prior to employment of the second 

derivative.  
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Table 18 Results of PLS models generated using 1 mm TRS spectral data.  RMSE in % w/w. 

Pre–processing Region LV RMSEC R
2
 RMSECV RMSEP 

 Full 2 0.86 0.9877 1.09 0.46 

 A and B 1 0.77 0.9900 0.97 0.37 

Baseline corrected A 1 0.88 0.9871 1.11 0.48 

 B 1 0.62 0.9935 0.73 0.30 

 ROY peak 1 0.63 0.9934 0.74 0.30 

 Full 2 0.61 0.9937 0.82 0.40 

 A and B 2 0.61 0.9937 0.83 0.40 

Baseline corrected A 1 0.92 0.9857 1.17 0.56 

and 1st deriv. B 1 0.65 0.9929 0.77 0.32 

 ROY peak 1 0.65 0.9928 0.78 0.29 

 Full 2 0.64 0.9931 0.83 0.40 

 A and B 2 0.64 0.9930 0.83 0.41 

Baseline corrected A 1 0.97 0.9842 1.24 0.47 

and 2nd deriv. B 1 0.66 0.9926 0.79 0.33 

 ROY peak 1 0.66 0.9927 0.78 0.31 
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Figure 34 TRS spectra. Top row, baseline corrected TRS spectra, center row TRS and first 

derivative pre-processed TRS spectra, and bottom row, TRS baseline corrected and second 

derivative pre-processed spectra. First column, spectral data; second column, measured vs. 

predicted concentration plot of ROY concentration; and third column, loadings plots. 
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5.6 Discussion 
  

A summary of the best quantitative models for 1 mm thick tablets is presented in 

Table 19 where the optimal pre-processing for each model is included. 

 

Table 19 PLS quantification results of 1 mm tablets for analytical techniques using the best 

means of pre-processing for each technique using different regions of interest. 

Method Pre–processing PLS 

Factors 

RMSEC R
2 

RMSECV RMSEP 

NIR MSC & 2
nd

 SG 1 0.22 0.9992 0.27 0.31 

TRS Baseline 

corrected & 2
nd

 

SG
 

1 
0.66 0.9926 0.79 0.33 

BRS 2
nd

 SG 1 0.8 0.9893 1.04 0.85 

PXRD Normalised & 5 

point average
 

1 
0.54 0.9952 0.65 0.71 

 

Transmission Raman spectra which were collected at a 5 second total exposure time 

per sample yielded good PLS models consisting of 1 PLS factor in all cases once the 

spectra were baseline corrected and then pre-processed using a second derivative.  

Using a specific region of interest from 1700–625 cm
–1 

yielded the best model with 

RMSEs of 0.66% for calibration and 0.33% for prediction.  This compared very well 

to what could be considered as the univariate analysis of a ROY specific peak at 

1327–1350 cm
–1

 which produced a model with RMSEs of 0.63% for calibration and 

0.30% for prediction.  These two particular regions of interest may have performed 

better than those models built using the larger regions of interest such as the entire 

spectrum due to the fact that the region from 800–2450 cm
–1

 would have been easier 

to have baseline corrected manually in comparison to the highly increasing baseline 

from 44–800 cm
–1

. These results mark an improvement in RMSEs previously 

published in the literature of 2.2% for pharmaceutical tablets and 1.5% for 

pharmaceutical capsules for quantitation of API content(180, 238).  

 

In terms of the baseline corrected, derivatised and their combination of pre-

processing Raman data showed that they were near equivalent in terms of RMSEC 

and CV values. However, there is a difference in RMSEP values reported for either 

pre-processing technique. Prediction errors associated with baseline corrected data 
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which is then subsequently derivatised result in very low values suggesting that the 

models generated may be over–predicting the validation data. The prediction errors 

associated with the derivative processed models is closer in value with the error 

associated with full internal cross validation and is a more reliable model to use for 

the quantification of ROY by BRS.   

 

PXRD is considered the gold standard method in the differentiation of solid state 

forms however analysis time can be lengthy, for this experiment each tablet was 

analysed for 16 minutes by the diffractometer in triplicate resulting in a total analysis 

time of 48 minutes. For materials that are not particularly crystalline such as the 

MCC used in the fabrication of the tablets, broad peaks are present which can 

overlap and hinder analysis of peaks at the same value of 2θ. Normalisation and a 

moving average were utilised to improve the signal–to–noise ratio of the data.   

 

In comparison, NIR is rapid, with each analysis taking roughly 2 and a half minutes 

per tablet, though similar to PXRD the broad nature of spectra does not lead to facile 

or direct interpretation. In addition for the case presented here the spectra closely 

mirror that of MCC with only subtle peaks due to ROY observable which require 

multivariate methods to be used for effective analysis. Across all thickness NIR was 

superior in measuring from 0.75 to 1.50 mm thick tablets with the Raman models 

hampered by fluorescence as shown in Table 20. TRS models appear to be better 

than the corresponding BRS models potentially due to enhanced sampling and 

slightly improved fluorescence dampening due to different laser sources – (830 nm 

vs. BRS  785 nm). 
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Table 20 PLS quantification results of tablets of all thicknesses for analytical techniques using 

the best means of pre-processing for each technique using different regions of interest. 

Method Thickness Pre-processing LV RMSEC R
2
 RMSECV RMSEP 

NIR 0.75 MSC & 2
nd

 SG 1 0.43 0.9968 0.60 0.27 

 

1.00 

 

1 0.22 0.9992 0.27 0.31 

 

1.25 

 

1 0.42 0.9971 0.59 0.45 

  1.50   1 0.38 0.9975 0.52 0.30 

TRS 0.75 Baseline corrected  1 0.58 0.9944 0.74 0.43 

 

1.00 & 2
nd

 SG 1 0.66 0.9926 0.79 0.33 

 

1.25 

 

1 0.43 0.9969 0.54 0.49 

  1.50   1 0.87 0.9871 1.15 0.81 

BRS 0.75 2
nd

 SG 1 0.84 0.9881 1.09 1.00 

 

1.00 

 

1 0.80 0.9893 1.04 0.85 

 

1.25 

 

1 0.41 0.9972 0.48 1.80 

  1.50   1 0.76 0.9903 0.94 0.37 
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5.7 Chapter conclusions 
 

Quantitative analysis of a model pharmaceutical tablet system consisting of an API–

type molecule in a matrix of two excipients was feasible using NIR and Transmission 

Raman spectroscopies and PXRD.  In each case, spectral pre-processing to remove 

instrumental and measurement artefacts were critical to the development of robust 

quantitative models. 

 

PXRD based models could be generated with relatively high RMSEC and RMSEP 

accuracies of 0.56 and of 0.31 respectively.  However, the method was more time 

consuming than vibrational spectroscopy based methods.  NIR spectroscopy gave the 

best accuracy RMSEC of 0.26, RMSEP of 0.31, and the method is rapid.  However, 

NIR spectra do not give much features with which one can analyse in detail 

variances in composition.  Transmission Raman Spectroscopy (TRS) gave 0.66 

(RMSEC) and 0.33 (RMSEP) which was intermediate in performance.  The main 

factor which degraded the TRS performance was the substantial fluorescence in the 

model system arising from the MCC and the ROY itself, this reduced the S/N and 

made the generation of more accurate models unfeasible.  In terms of time, TRS was 

by far the quickest means of analysis, taking approximately 5 seconds per tablet 

which contrasts to the 2.5 and 16 minutes per sample necessary for NIR and PXRD 

respectively.   
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6 Piracetam 
 

The subsequent studies in this thesis focus on the quantitation of polymorphs of 

piracetam in both binary polymorph mixtures and within a model formulation to 

assess the ability of vibrational spectroscopy. Chapter 6 details the polymorphism of 

piracetam along with its spectral characterisation. Chapter 7 is concerned with the 

analysis of binary polymorph mixtures of piracetam FII and FIII.  PXRD and 

vibrational spectroscopy was employed along with univariate and multivariate 

analyses to assess this binary system. Chapter 8 focuses on the use of vibrational 

spectroscopies for the determination of low level polymorphic contaminant in a 

model formulation. 

 

6.1 Introduction to piracetam 
 

 
Figure 35 Chemical structure of piracetam (2–oxo–1–pyrrolidine acetamide). 

 

 

Piracetam (2–oxo–1–pyrrolidine acetamide) is a nootropic drug which is linked to 

cognitive enhancement and has been used for the treatment of Alzheimer’s and 

dementia.(239, 240) There are five polymorphs reported in the literature. Forms IV 

and V are yielded in a diamond anvil cell under high pressure (> 0.5 GPa) 

conditions.(35, 36, 225, 241) Forms I, II and III have all been characterised however 

Form I is very unstable and produced by heating Form II or Form III to 400 K and 

subsequent quenching to room temperature.(225, 226) Within hours it transforms to 

Form II. Form II is considered to be the metastable polymorph and Form III the 

stable polymorph, as determined by melting points by Kuhnert–Brandstatter et 

al.(241) The packing arrangements of FIII and FII are similar; they share the same 

hydrogen packing motif (Fig. 36) featuring networks of centrosymmetric hydrogen–

bonded dimers of piracetam molecules; the two forms pack differently as shown.(242)  
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Figure 36 Schematics of form II and III piracetam molecular packing and their shared 

hydrogen bonding motif as reproduced from Ceolin et al. (226) and Fabbiani et al. (35). 

 

Recent studies of piracetam include co–crystal generation, in–situ monitoring of 

supersaturation and polymorph interconversions in solvent systems. (243, 244) (207, 

245).  By use of carboxylic functionalised molecules several co–crystals of piracetam 

could be prepared by solvent evaporation, solvent drop grinding or crystallisation of 

mixtures of co–crystal formers and piracetam. (20, 244) Spectroscopic techniques 

including Raman and IR were used to monitor the polymorphic form produced and 

supersaturation of a cooling crystallisation of piracetam in ethanol. Raman showed 

particularly good differentiation between the two polymorphic forms and the authors 

made use of the differences found from 1640 – 1670 cm
–1

 to characterise the 

forms.(207) Energy Dispersive X-ray Diffraction (ED–XRD) was used to study 

solvent influences on the crystallisation of polymorphic and hydrate forms of 

piracetam where from a variety of solvents the crystalline form as a result of time 

and temperature could be monitored in–situ.(245) 
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6.2 Raman spectroscopy of piracetam 
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Figure 37 Raman spectra of FII and FIII piracetam, left BRS spectra and right TRS spectra. 

 

The Raman spectra of the polymorphs show considerable differences, Fig. 37. 

Khamchukov et al. assigned Raman bands to piracetam ascribing the bands around 

3140, 1680 and 1650 cm
–1 

to symmetric stretching vibrations of NH2, and the amide 

C=O stretching vibration respectively in the ring and acetamide.(246) The bands 

around 2750–2990 cm
–1 

regions can be assigned to the symmetric and anti–

symmetric stretching vibrations of the CH2 groups. 

 

Figure 38 Raman spectra of piracetam polymorphs. 
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Inspection of the spectral region from 250–1750 cm
–1

 reveals many differences 

between the polymorphs, Fig. 38. FII has a single amide I band at 1654 cm
–1

, while 

in the FIII form this is split into a pair of peaks at 1658 and 1648 cm
–1

.  A peak 

specific to FIII is present at 1410 cm
–1

 and band shifts are observable in the 1530–

1370 cm
–1

 spectral region.  Also evident are band shifts in the 890–1750 cm
–1

 

spectral region which are due to changes in the bond lengths and angles made by 

atoms adjacent to the carbonyl groups.   

50 75 100125150175200225250275300325350375400

Wavenumber / cm-1

 FII

 FIII

 

Figure 39 TRS spectra of piracetam polymorphs in 44–270 cm
–1

 spectral region. 

 

Using this particular TRS instrument, information pertaining to the phonon mode 

region down to 44 cm
–1

 could be attained (Fig. 39). The spectra reveal very 

significant differences between the two polymorphs with 3–5 cm
–1

 differences 

observed for several of the bands at ~380, 300, 160, and 110 cm
–1

.  The other major 

difference is a splitting of the 91 cm
–1

 band in the FII polymorph where we see a 

reduction in the intensity at 91 cm
–1

 coupled with the appearance of a strong shoulder 

at 79 cm
–1

.  Khamchukov et al. observed the same bands at low wavenumbers, and 

ascribed the vibrational modes at 42, 84, 125 cm
–1

 to crystal lattice vibrations.(246)  

It is noted that in this work a band at 91 cm
–1

 and not at 84 cm
–1

 was observed as 

shown in Fig. 39.  The peak shift around 106 cm
–1

 is attributed as an out-of-plane 

vibration in the amide group, which is due to the change in the angle between 

C6C5N3 (the carbon adjacent to the ring, C=O and amide N) and O2C5N3 (O of 

carboxyl group, C of carboxyl group and amide N) planes. The remaining Raman 
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band assignments are adapted from the literature and presented in the Table 21 

overleaf. (246) 

 

 

 

 

Figure 40 Numerical labelling of atoms present in piracetam and as described in band 

assignment table overleaf. 
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Table 21 Assignment of experimental vibrational spectral bands and modes of the calculated 

vibrations of piracetam. Adapted from ref (246). 

 

VR / cm
–1 

Vibrational modes 

v1 42 Lattice mode 

v2 84 Lattice mode  

106 (O4C5N3, C6C5N3) (C10N9C6) 

v3 125 Lattice mode 

156 (N9C10C12), (C10N9C6), (C12C10N9, O11C10N9), (C12C10O11) 

290 (C12C10N9), (C12C10O11), (C18N9C6) 

342 (N9C10O11), (N9C6C5), (C18N9C10), (C12C10C11) 

379 (C18N9C10), (C12C10N9),  (C6N9C10), (C5C6N9) 

503 (N6C6H7), (C15C12C10), (C18C15C12), (C12C10O11), (C5N9C6) 

520 (O4C5C6), (O4C5N3), (C5N3H2) 

550 (O11C10N9), (O11C10C12), (N9C6H7), (N9C6H8) 

610 (N9C6H7), (N9C6H8), (C5C6H8), (C5C6H7)  

715 (C15C18H20), (C15C18H19), (N9C18H20), (N9C18H19) 

729 (H14C12C15), (H14C12C10), (C10N9), (C12C10), (C15C18) 

807 (H13C12C15), (H13C12C10), (H17C15C12), (H16C15C12) 

845 (C6C5), (C5N3), (H14C12C15) 

861 (C10N9), (C5N3), (C12C10), (C6C5), (H13C12C10) 

922 (C15C18), (H1N3C5), (H2N3C5) 

946 (H1N3C5), (H2N3C5) 

1025 (C12C10), (H14C12C10), (H14C12C15), (C12C15) 

1070 (C12C15), (H13C12C15), (C10N9), (H14C12C10) 

1136 (H13C12C10), (H14C12C10), (H13C12C14), (H14C12C15)   

1190 (H7C6C5), (N9C6H7) 

1220 (H16C15C12), (H17C15C12), (C18C15H16), (C18C15H17) 

1305 (C12C15), (C5N3H1), (C5N3H2), (N9C6H8) 

1408 (H1N3H2), (C5N3), (N9C6), (C5C6), (H7C6C5), (H8C6C5) 

1430 (H19C18H20), (C15C18H20), (C15C18H19) 

1445 (H16C15H17), (H16C15C12), (H17C15C12) 

1470 (H7C8H8), (N9C6H7), (N9C6H8) 

1498 (C18N9), (C15C18), (H7C6H8) 

1645 (C5O4) 

1660 (H13C12H14), (H13C12C15), (H14C12C15) 

1677 (C10O11) 

2750 (C12H13), (C12H14) 

2810 (C18H19), (C18H20) 

2840 (C6H7), (C6H8) 

2886 (C15H16), (C15H17) 

2926 (C15H16), (C15H17) 

2960 (C6H8), (C6H7) 

2997 (C18H19), (C18H20) 

3130 (C12H14), (C12H17) 

3340 (N3H1),  (N3H2) 
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6.3 Near infra-red spectroscopy of piracetam 
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Figure 41  NIR spectra of piracetam polymorphs. Top left, Excipient spectra; top right, 

polymorph spectra; and bottom an expanded view of the 6000 – 4000 cm
–1

 spectral region. 

 

NIR spectra of the two polymorphs show some differences in the 5870–5600 cm
–1

 

and 4314–4080 cm
–1

 spectral regions as can be seen in Fig. 41 above. FIII has a 

characteristic single peaks at 5724 cm
–1

 and a peak split at 4364 cm
–1

, while FII 

distinguishable features with two peaks present at 5748 and 5708 cm
–1

 and a further 

two peaks present at 4380 and 4358 cm
–1

 in its pure spectrum. These regions are 

related to CH and CH2 overtones which differ between the polymorphs as different 

strains are present due to either polymorph. This can be seen in the Raman spectra of 

the polymorphs in Fig. 37 in the 2900–3150 cm
–1

 spectral region where the 

polymorphs feature differences in band shifts and peak intensities as a result of 

different packing arrangements within their respective crystal structures. 
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7 A comparative study of the use of powder X-ray 
diffraction, Raman and near infra-red 
spectroscopies for the quantification of binary 
polymorphic mixtures of piracetam 

 

7.1 Introduction 
 

Production of an alternate polymorph can impact the efficacy of a drugs performance 

in vivo as well as during processing and manufacturing operations. Quantification of 

an alternate polymorph in the presence of the desired polymorph is an area of 

concern for pharmaceutical researchers.(126, 247) ICH Q6A proposes surveillance of 

the polymorph form during stability testing of the drug product in two instances, a) 

where the efficacy of the product is related to the API form present, and b) 

performance testing such as HPLC assays cannot reveal the presence of a polymorph 

conversion.(64) Detection of low levels of an undesired solid state form present in a 

formulation is required from a quality assurance point of view, given that 

bioavailability can be affected by polymorphism.  

 

The aim of this chapter is to quantify binary mixtures of piracetam polymorphs using 

NIR, Raman and PXRD in combination with multivariate methods and demonstrate 

the efficacies of each technique for this challenge. A simple univariate model was 

developed by colleagues in the University of Limerick for quantification of binary 

polymorphs and this was compared to multivariate models developed in this thesis.*  

 

 

 

 

 

 

 

 

 

 

 

 

*The author of this work discloses that all binary mixtures were prepared by colleagues in UL. These samples were analysed by PXRD in UL by 

the collaborator. All physical samples were couriered to NUI Galway for spectroscopic analysis. PXRD data was shared between the collaborators 

from which the multivariate models reported in this chapter were produced. 
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7.1.1 Data analysis and spectral regions of interest 

 

A selection of pre-processing methods were used to enhance spectral signals of 

interest and these included Multiplicative Scatter Correction (MSC), standard normal 

variate (SNV), first and second derivatives and their combinations were applied for 

Raman and NIR data. Savitzky–Golay first and second order derivatives were 

performed using a window size of 15 points and a second order polynomial. Mean 

normalization was used for PXRD data. The PXRD and spectroscopic data were 

subjected to mean centring prior to partial least squares (PLS) analysis. The optimal 

number of PLS factors was then determined by using a leave–one–out cross 

validation procedure. Regions of interest as detailed in Table 22 were selected for 

model generation as they contained the majority of differences between the 

polymorphs. 

 
Table 22 Regions of interest selected for model generation using PXRD, NIR and Raman data. 

Technique Name Regions of interest 

PXRD Full 10.01–34.98 2θ 

A 15.14–26.07 2θ 

B 15.14–21.00 & 22.79–26.07 2 θ 

NIR Full 10000–4000 cm
–1

 

Half 6000–4000 cm
–1

 

A 6000–5600 cm
–1

 

B 4314–4080 cm
–1

 

 A and B 6000–5600 & 4314–4080 cm
–1

 

Raman 

 

Full 250–3310 cm
–1 

Half 250–1730 cm
–1

 

A 454–1730 cm
–1

 

B 454–1534 cm
–1

 

 C 1370–1730 cm
–1

 

 D 2770–3034 cm
–1

 

 E 250–402 cm
–1

 

 F 678–1518 cm
–1

 

 

7.1.2 Multivariate powder X-ray diffraction analysis  

 

PLS regression was performed making use of discrete regions of interest including 

the 15.1–21.0 and 22.8–26.1 2θ ranges, excluding the reflection around 21.3 and 21.7 

2θ which exhibited intensity variation due to preferred orientation effects due to FIII.  
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Figure 42 PXRD patterns of FII and FIII piracetam, normalised and partially offset. 

 

During the PLS regression analysis, 45 PXRD scans were used from 15 calibration 

samples. Mean normalisation was used for pre-processing of the PXRD diffraction 

patterns. 

 

Figure 43 Top left, mean normalised PXRD pattern; top middle, measured vs. predicted FII 

piracetam concentration plot; top right, loadings of PLS model; bottom left, mean normalised 

pattern excluding peaks known to show preferred orientation effects; bottom middle, measured 

vs. predicted FII piracetam concentration plot; bottom right, loading of this PLS model. 

 

The best calibration model was achieved for the quantification of FII by use of the 

aforementioned range in combination with mean normalisation. A correlation 

coefficient (R
2
) of 0.997 was achieved by this model of one latent variable which 
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was due to the change in concentration to FII present in the samples, with RMSEC 

and RMSEP values of 2.07 and 1.81% FII respectively. These values, particularly the 

RMSEC and RMSEP values, are a marked improvement on those generated by the 

univariate data analysis using either peak height intensity or peak area. Since the 

majority of information pertaining to both polymorphs was contained within the 

15.1–21.0 and 22.8–26.1 2θ ranges, utilising all the information from these areas of 

the diffractogram allows for any subtle changes due to either polymorph present to 

be taken account. This is a marked contrast to the univariate method which used only 

two peaks one of which was specific to each polymorph. 

Table 23:  Performance of the regression models using different pre-processing methods.  This 

data was the NIR spectra collected from the 1 mm thick tablets.  RMSE values in % FII. 

Pre–processing Region LV RMSEC R
2
 RMSECV RMSEP 

 Full 2 2.03 0.998 2.14 1.56 

Mean normalisation A 2 2.06 0.998 2.19 1.57 

 B 1 2.06 0.998 2.17 1.81 

7.1.3 Quantitative analysis by Raman spectroscopy  
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Figure 44 Top left, raw Raman spectra; top middle, measured vs. predicted FII piracetam 

concentration plot; top right, loadings of PLS model of raw spectra; bottom left, MSC and 2nd 

derivative pre-processed Raman spectra; bottom middle, measured vs. predicted FII piracetam 

concentration plot; and bottom right, PC1 loading plot of best performing PLS model. 

 



 
101 

 

BRS was used in the entirety of this study. PLS models were generated using full and 

several discrete spectral regions of interest in combination with a variety of pre-

processing methods. These included MSC, SNV, derivatives and their combinations 

in an effort to reduce noise and information pertaining to instrumental effects and to 

enhance chemical information. Generation of PLS models based on the spectral 

region of 1730–1370 cm
–1

 and pre-processed using a combination of MSC and 

Savitzky-Golay 15 point second polynomial second derivative proved to be the best 

for quantification of FII in the binary polymorph mixtures. MSC helped eliminate 

effects of light scattering from the powder mixtures and use of the second derivative 

accentuated the spectral differences pertaining to each polymorph in the mixtures. 

The PLS loading of this model (Fig. 44) can be attributed to that of a pre-processed 

spectrum of FIII however with contributions from FII appearing from 1390–1450 

cm
–1

. The loadings associated with the raw unprocessed data (Fig. 44) suggests that 

the loadings correspond to FII and FIII separately. A high level of linearity was 

achieved with the calibration model built using this spectral region and the 

combination of pre-processing with a correlation coefficient of 0.999. RMSEC and 

RMSEP values of 0.94 and 1.21% FII were achieved with this model. Using a 95% 

FIII sample the limit of detection and quantification for Raman analysis was 

determined to be 1.48 and 4.47% FII respectively. 
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Table 24 Performance of the regression models using different pre-processing methods for 

Raman data. RMSE values in % FII. 

Pre–

processing 

Region  PLS 

Factors 

RMSEC R
2 

RMSECV RMSEP 

 Full 2 7.63 0.9777 11.32 6.74 

 Half
 

2 7.33 0.9795  11.36 9.07 

 A 2 7.36 0.9793 11.43 9.07 

Raw B
 

2 7.37 0.9792 11.42 9.04 

 C
 

2 7.40 0.9791 11.39 8.84 

 D 2 7.70 0.9773 11.98 8.21 

 E 2 7.37 0.9792 11.10 8.82 

 F 2 7.47 0.9787 11.49 8.73 

 Full 2 0.97 0.9996 1.30 1.64 

 Half
 

1 1.29 0.9994 1.45 3.70 

 A 1 1.29 0.9994 1.44 3.37 

MSC B
 

1 1.32 0.9993 1.48 3.77 

 C
 

1 1.16 0.9995 1.30 1.04 

 D 1 1.59 0.9990 1.83 1.67 

 E 1 1.36 0.9993 1.55 4.74 

 F 1 1.26 0.9994 1.41 3.22 

 Full 1 1.31 0.9993 1.49 0.99 

 Half
 

1 1.04 0.9996 1.17 1.36 

 A 1 1.03 0.9996 1.16 1.27 

MSC &   B
 

1 1.08 0.9996 1.22 1.37 

2
nd

 deriv. C
 

1 0.94 0.9997 1.06 1.12 

 D 1 1.85 0.9987 2.09 0.91 

 E 1 1.30 0.9994 1.50 2.19 

 F 1 1.05 0.9996 1.19 1.47 
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7.1.4 Quantitative analysis by NIR spectroscopy 

 

NIR spectra of the two polymorphs show strong differences in the 5870–5600 and 

4314–4080 cm
–1

 spectral regions and these two spectral regions were combined to 

construct a PLS model. A combination of MSC and a second derivative pre-

processing was applied to generate the best model for quantification of FII using NIR. 

A linear relationship with a correlation coefficient of 0.999 was observed between 

the calculated and actual FII content. RMSEC and RMSEP values of 0.99 and 0.64% 

FII were achieved with this model. Using a 95% FIII sample the limit of detection 

and quantification for Raman analysis was determined to be 0.84 and 2.56% FII 

respectively. 

 
Table 25 Performance of the regression models using different pre-processing methods.  This 

data was the NIR spectra collected from the 1 mm thick tablets.  RMSE values in % FII. 

Pre–processing Region LV RMSEC R
2
 RMSECV RMSEP 

 Full 3 2.24 0.9981 3.27 6.51 

 Half 3 1.57 0.9991 2.13 7.03 

Raw data A  2 1.62 0.9990 3.39 5.21 

 B 2 1.75 0.9988 2.11 5.62 

 A and B 3 1.50 0.9992 2.01 6.39 

 Full 1 1.75 0.9988 2.04 2.92 

 Half 1 1.55 0.9991 1.79 2.49 

MSC A 1 3.28 0.9959 3.86 4.26 

 B 1 1.74 0.9989 1.99 0.61 

 A and B 1 1.07 0.9996 1.20 1.13 

 Full 1 1.29 0.9994 1.46 1.25 

 Half 1 1.41 0.9992 1.61 1.38 

MSC &  2
nd

 deriv. A 1 0.86 0.9997 0.95 0.45 

 B 1 1.50 0.9992 1.72 1.01 

 A and B 1 0.99 0.9996 1.12 0.64 
 

 

 

 

 

 



 
104 

 

5850 5800 5750 5700 5650 5600

0.26

0.28

0.30

0.32

0.34

0.36

A
b
s
o
r
b
a
n
c
e

Wavenumber / cm-1
0 20 40 60 80 100

0

20

40

60

80

100

P
r
e
d
ic

te
d
 c

o
n
c
e
n
tr

a
ti
o
n
 /

 %
F

II

Measured concentration / %FII 5850 5800 5750 5700 5650 5600

 Loading 1

4300 4250 4200 4150 4100

0.48

0.50

0.52

0.54

0.56

A
b
s
o
r
b
a
n
c
e

Wavenumber / cm-1
0 20 40 60 80 100

0

20

40

60

80

100

P
r
e
d
ic

te
d
 c

o
n
c
e
n
tr

a
ti
o
n
 /

 %
F

II

Measured concentration / %FII

4300 4250 4200 4150 4100

Wavenumber / cm-1

 Loading 1

 

5850 5800 5750 5700 5650 4300 4250 4200 4150 4100

-0.0010

-0.0005

0.0000

0.0005

0.0010

A
b
s
o
r
b
a
n
c
e

Wavenumber / cm-1
0 20 40 60 80 100

0

20

40

60

80

100

P
r
e
d
ic

te
d
 c

o
n
c
e
n
tr

a
ti
o
n
 /

 %
F

II

Measured concentration / %FII

5850 5800 5750 5700 5650 4300 4250 4200 4150 4100

Wavenumber / cm-1

 Loading 1

 

Figure 45 Top left, MSC treated NIR spectra of 6000–5600 cm
–1

; top middle, measured vs. 

predicted FII piracetam concentration plot; top right, loading of PLS model for this spectral 

region; centre left, MSC treated NIR spectra of 4314–4080 cm
–1

;  centre middle, measured vs. 

predicted FII piracetam concentration plot; centre right, loading of  PLS model for this spectral 

region; bottom left, MSC and second derivative treated NIR spectra of 6000–5600 and 4314–

4080 cm
–1

 spectral regions;  bottom middle, measured vs. predicted FII piracetam concentration 

plot; and bottom right, PC loading plots from best performing PLS model 
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7.2 Discussion  
 

Quantification of binary polymorph mixtures of piracetam was easily achieved using 

both univariate and multivariate models however with different levels of accuracy.  

PXRD is considered to be the classical reference method for the characterisation of 

solids. While PXRD could readily detect both polymorphs, quantification of the 

binary mixtures was a challenge due to peak height intensity variation due to 

preferred orientation effects – most evident at peaks around 21.3 and 21.7 2θ on 

inspection of theoretical and actual diffraction patterns. Univariate data analysis by 

UL is presented in Table 26 and a full discussion is presented in the aforementioned 

published work which is included in an appendix at the back of this thesis.(236)  

Table 26 Performance of the regression models for quantification of FII piracetam in binary 

polymorph mixtures using varying analytical techniques. (217) 

Methods Pre–processing R
2
 

Latent  

Variables 

RMSEC 

(%) 

RMSECV 

(%) 

RMSEP 

(%) 

PXRD without K 0.9824 – 4.58 – 6.71 

(Peak Area) with K 0.9892 – 3.57 – 8.13 

       

PXRD without K 0.9774 – 5.20 – 4.64 

(Peak 

Intensity) 
with K 0.9927 – 2.94 – 1.91 

       

PXRD 

(PLS) 

mean 

normalization 
0.9968 1 2.07 2.17 1.81 

Raman 

(PLS) 

MSC and 2
nd 

Derivative 
0.9993 1 0.94 1.06 1.21 

NIR (PLS) 
MSC and 2

nd 

Derivative 
0.9993 1 0.99 1.11 0.64 

 

Despite using a response factor K to account for differences in peak height intensity 

or areas, univariate models built using the response factor did not perform as well as 

a multivariate method built using a greatly increased portion of the diffraction pattern, 

from 15.1–21.0 and 22.8–26.1 2θ range. A higher degree of linearity was achieved 

using the multivariate model when the data was pre-processed using mean 

normalisation. Mean normalisation normalised the varying peak intensities which 

were partly due to preferred orientation effects associated with FIII.  
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The vibrational spectroscopic methods showed an improvement in accuracy in 

comparison to PXRD PLS models as highlighted by the increase in correlation 

coefficients to 0.9993 and the large decreases in RMSEC and RMSEP values. Raman 

spectroscopy easily distinguished both polymorphs, showcasing the many subtle 

differences between the polymorphs. NIR spectral data interpretation was not as 

straight–forward due to the fact that NIR is based on the combination and overtone 

modes of fundamental molecular vibrations which are difficult to assign. For both 

Raman and NIR models, the pre-processing combination of MSC and a second 

derivative gave the best quantitative models overall. The spectroscopic methods in 

combination with multivariate methods exhibit lower RMSE values than those 

associated with either PXRD models. 

 

Table 27 Comparison of the three techniques for the quantification of % FII in validation 

samples. (217) 

% FII  in Sample  PXRD (Univariate) PXRD (PLS) Raman (PLS) NIR (PLS) 

15.12 18.02 16.95 14.53 14.59 

24.58 25.74 25.57 25.10 24.79 

49.95 52.01 47.69 51.26 49.14 

74.95 74.20 76.86 76.59 74.13 

LOD 0.88 0.75 1.48 0.84 

LOQ 2.68 2.26 4.47 2.56 

 

Validation of the different models generated for each technique was carried out by 

testing each model with the external test set and seeing how accurate each predicted 

result was to the known composition values. One sample was prepared at each of the 

stated % FII amounts in Table 27, analysed in triplicate and then placed into the 

appropriate models for quantitation. For lower content samples, Raman and NIR PLS 

models predict the most accurately with the multivariate PLS PXRD model next and 

the univariate PXRD model performing the worst. In the majority of cases the PXRD 

models overestimate the FII content and this may well be related to preferred 

orientation effects in the samples despite the great care taken in sample preparation 

to minimise this. Overall NIR gives the most accurate prediction of the validation 

samples with the lowest LOD and LOQ.(236) 
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For this type of quantitative work sample heterogeneity is of great importance. 

Colleagues in UL made use of a 90–125 µm sieve fraction and sample rotation 

throughout PXRD analysis was employed.(236) For Raman analyses a 3 × 3 

mapping grid of 9 spectral points was employed. The Raman system had a sampling 

spot size of ~ 200 µm in diameter. All Raman spectra were then averaged before data 

analysis was performed. NIR analysis was performed in glass vials with a sampling 

area of 15 mm. Each sample was analysed in triplicate by NIR and Raman. Raman is 

particularly sensitive to sample inhomogeneity, the relative standard deviation values 

of quantification of the 95% FII sample obtained from the averaging of nine spectra 

and from individual spectra were 6.22 and 58.81% respectively. Increasing sampling 

volume by use of the 3 × 3 mapping grid reduced the errors associated with sub–

sampling by a factor of 9.5. 
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7.3 Chapter conclusions 
 

Binary polymorphic mixtures of piracetam were analysed quantitatively using 

Raman and NIR spectroscopy, coupled with multivariate analysis of the 

spectroscopic data and PXRD patterns. Multivariate analysis of PXRD diffraction 

patterns in this case proved more accurate and reliable than use of a simple univariate 

method based on peak height intensity or area ratios of unique peaks characteristic 

from either polymorph. Use of a wider range of data points by including more of the 

diffraction pattern pertaining to the chemical information in this system is useful and 

clearly demonstrated by the improved error values reported. However, despite the 

effects of preferred orientation attributed to the FIII polymorph being greatly reduced 

by pre-processing the diffraction patterns by mean normalization, the multivariate 

PXRD models did not have comparable accuracy or limits of detection or 

quantification that the multivariate spectroscopic models do. 

 

Multivariate analysis of the Raman and NIR spectroscopic data in combination with 

pre-processing yielded models of higher linearity and accuracy of prediction of 

validation samples when compared to the PXRD models. In all cases the use of pre-

processing greatly enhanced the spectral chemical information of the binary 

polymorph mixtures.  
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8 Quantitative polymorph contaminant analysis in 
piracetam loaded tablets using Raman and near 
infra-red spectroscopies 

 

8.1 Introduction 
 

Incidences of unwanted polymorphism in pharmaceutical products have been widely 

reported and can have major ramifications such as that of Ritonavir discussed in the 

introductory chapter.(26, 27, 248)  Cases detailing the analysis of formulations where 

quantification of a polymorphic or alternate solid state form contaminant are few in 

the literature.(65, 249-251) This chapter concerns the determination of the efficacies 

of rapid spectroscopic methods for a model tablet formulation consisting of 10:10:90% 

w/w API: calcium carbonate: microcrystalline cellulose. The model API used here is 

piracetam and its polymorphism is discussed in Chapter 6 and 7. Piracetam FII and 

FIII, are used in varying ratios in this model formulation where FII is considered to 

be the polymorphic contaminant. The aim of this study is to quantify levels of 

polymorphic contaminant down to 0.1% of the tablet using NIR, backscattered 

Raman, and transmission Raman spectroscopies in combination with selected pre-

processing methods and PLS regression models. 

 

 

8.2 Solid state polymorphic transformation of FIII to 
FII monitored using Raman spectroscopy 

 

FII was prepared by first heating FIII to 140
°
C, generating FI as determined by 

PXRD which once cooled to room temperature begins to rapidly transform into 

FII.(252, 253)  The PXRD pattern of FI matched that already published and there are 

clear differences in its Raman spectrum when compared to the FII and FIII spectra 

however to our knowledge no Raman spectrum of FI has been presented 

previously.(35, 36, 207, 225, 226, 241, 244, 245, 254-256) 

 



 
110 

 

1500 1450 1400 1350 1300 1250 1200 1150

 FIII

  FI

  FII

 

Wavenumber / cm-1

 
 

Figure 46 Raman spectra of FI, FII and FIII piracetam polymorphs. 

 

 

BRS was used to monitor this transformation at 24 hour intervals starting before the 

FIII sample was heated.  It appeared that the FIII to FI solid state transformation was 

complete after 24 hours of heating while the FI to FII transformation was complete 

24 hours after removal of the FI form from the oven (Fig. 46 and 47).  Significant 

differences between all three polymorphs are evident between 1390 and 1510 cm
–1

 

arising from band shifting and a band shape change is noted at 1230 cm
–1

 in all 

polymorphs due to changes in the bond lengths and angles made by atoms adjacent 

to the carbonyl groups. See Table 21 and Section 6.2 for a fuller description of the 

band assignments for the various polymorphs.  
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Figure 47 Raman spectra collected at different time points during the solid–state transformation 

of FIII to FII; Black represents starting material at room temperature, green represents 

samples that were heated in the oven at 140
o
C and red represents samples after removal from 

oven. 

 

PCA scores plot of the Raman data (Fig. 48) showed very clear differences between 

all three polymorphs with no overlap of the sample cluster 95% ellipses.  There is 

good separation of all samples pertaining to each polymorphic form which is as 

expected considering the spectral differences between the polymorphs evident in the 

Raman spectra as shown above. In the PCA plot there is variation within the samples 

corresponding to FII after removal from the oven. On inspection of the 

corresponding Raman spectra, it is noticed that the longer FII is removed from the 

oven, the sharper the bands become which may indicate increasing crystallinity of 

FII. FII samples were used for tablet incorporation after a week of storage at room 

temperature to ensure it was stable for inclusion. 
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Figure 48 PCA scores plot of Raman spectra collected at different time points during the solid–

state transformation of FIII to FII. Black represents starting material at room temperature, 

green represents samples that were heated in the oven at 140
o
C and red represents samples at 

room temperature after oven heating. 

 

PXRD diffraction patterns and DSC thermograms of the FII and FIII polymorphs 

were compared to previously published data and confirmed that the pure forms of FII 

and FIII polymorphs had been generated with no impurities detectable, Fig. 49.(252, 

257)  As shown in the DSC thermograms the two polymorphs share an endothermic 

peak at 152°C due to the melting of Form I which is formed at 114 and 120°C as 

indicated by endothermic peaks for FII and FIII respectively. 

  

10 15 20 25 30 35

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

2

 FIII

 FII

20 40 60 80 100 120 140 160 180 200

-20

-15

-10

-5

0

5

H
e

a
t 

F
lo

w
 /

 m
W

 

Temperature / oC

 FIII

 FII

 
Figure 49 Left: Normalised (& slightly offset) PXRD patterns of the pure FIII(green) and 

FIII(red) piracetam polymorphs. Right: DSC thermograms of Piracetam Form III (green) and 

FII (red). 
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8.3 Qualitative analysis of polymorphs and excipients 
 

8.3.1 Raman spectroscopy 
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Figure 50 Raman spectra of excipients, left BRS, right TRS. 

 

 

Fig. 50 shows the BRS and TRS spectra of the tablet components. Both sets of 

Raman spectra show sharp, well resolved bands which allow for facile observation of 

spectral differences between all components. MCC exhibits a sloping baseline with 

several bands in the 850–1500 cm
–1

 spectral region which are due to v(C–O) and 

v(C–C) stretching vibrations and δ(CH2) deformations.(231-235) There are also 

peaks present at 380 and 460 cm
–1

 which are due to δ(CCC), δ(CO) and δ(CCO) 

bending vibrations and ring deformations.(236) A band at 1093 cm
–1

 is characteristic 

of unsubstituted cellulose rings which are found in MCC.(231) The most noticeable 

aspect of the MCC Raman spectra are the very large sloping baseline signal which is 

virtually the same for BRS (785 nm) and TRS (830 nm). We postulate that it may be 

related to diffuse or Mie scattering of the 20 m MCC particles. Bonnier et al. have 

noted this that for small particles the diffusely scattered radiation is not collimated 

and this leads to the excitation signal dispersion across the spectrometer’s CCD.(258)  
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The Raman spectrum of calcium carbonate has three strongly intense and sharp 

peaks in the BRS spectra at 281 cm
–1

 corresponding to the translational lattice mode, 

711 cm
–1

 due to the v4 – symmetric CO3 bending deformation and 1084 cm
–1

 to the 

v1 CO3 symmetric stretch which are attributable to carbonate.(67)   

 

8.3.2 Near infra-red spectroscopy 
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Figure 51 NIR spectra of pure tablet components. Left, excipients, right, piracetam polymorphs.  

 

The NIR spectrum of calcium carbonate exhibits a relatively featureless spectrum 

with a peak at 4300 cm
–1

 whereas microcrystalline cellulose displays a large broad 

peak at 6800 cm
–1

 and several broad peaks in the 5300–4000 cm
–1

 region due to CH 

and CH2 overtones.(230) NIR spectra of the two polymorphs show some differences 

in the 5870–5600 and 4314–4080 cm
–1

 spectral regions as can be seen in above and 

discussed previously in Chapter 6, Section 3.  
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8.4 Qualitative analysis of tablets 
 

8.4.1 Raman spectroscopy 
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Figure 52 Raman spectra of 0, 10, 30, 50, 70, 90, 100 % FII tablets; Left, BRS; and right, TRS. 

 

In the raw Raman spectra of tablets MCC dominates with a large sloping baseline in  

both the BRS and TRS spectra (Fig. 52).  However despite this large contribution by 

MCC, much of the Raman band detail is clearly visible and it is comparatively easy 

to identify bands due to each of the polymorphs. The majority of polymorph 

characteristics are noticeable in the 800–1750 cm
–1

 region which contains unique 

features such as the Amide I band at 1650–1680 cm
–1

 which differ in the two 

polymorphs plus other band position differences as detailed in Section 6.2, Raman 

spectroscopy of piracetam. 
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8.4.2 Near infra-red spectroscopy 
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Figure 53 NIR spectra of 0, 10, 30, 50, 70, 90, 100 % FII tablets – from top to bottom 

 

 

Microcrystalline cellulose displays several broad peaks in the 5300–4000 cm
–1

 

region. NIR spectra of the tablets strongly feature MCC characteristics which is the 

main tablet constituent. The calcium carbonate is unidentifiable from the multi–

component spectra. Differences in polymorphic mixture composition are rather 

subtle on initial inspection as they are obscured by the MCC. The polymorphic 

characteristics as mentioned previously are observable in the 6000–5600 and 4320–

4080 cm
–1

 spectral regions due to CH and CH2 overtones as discussed in Section 6.4, 

Near infra-red spectroscopy of piracetam. 

 

8.5 Spectral regions of interest 
 

Specific spectral regions of interest were selected for use in multivariate analysis. By 

doing so specific spectral regions where differences in polymorphic composition 

were known to occur in the raw component spectra could be utilised. Additionally 

regions where there was little to no information such as that above 1800 cm
–1

 in the 

TRS spectra could be eliminated from the multivariate analysis. This increased the 

speed of analysis. 
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Table 28 Regions of interest selected for chemometric modelling of the NIR and Raman spectra 

collected from the PiraTabs samples. 

Technique Name Wavenumber region / cm
–1

 

NIR Full 10000–4000 

Half 6000–4000 

A and B 6000–5600, 4314–4080 

A 6000–5600 

B 4314–4080 

Backscattered  

Raman 

Full 250–3300 

Half 250–1730 

A 1350–1730 

B 802–1730 

Transmission  

Raman 

Full 44–2450 

Half 44–678 

A 1370–1730 

B 801–1730 

 C 44–250 

 

 

8.6 Spectral pre-processing 

 

The differences between the spectra pertaining to high and low levels of FII are 

subtle as is shown in the Fig. 54.  To amplify the variations between the polymorph 

mixtures a second order derivative was used. Spectral differences and those regions 

pertaining to polymorph composition changes show large, sharp peaks meaning that 

there is a high level of change in this spectral region which is due to the changing FII 

concentration. Examples of this include the 6000–5600 cm
–1

 spectral region in NIR 

spectra and the 1400–1450 cm
–1

 spectral region in Raman spectra. This is to be 

expected as there are obvious differences between the polymorphs in their pure 

spectra at these regions and it would be expected that these changes would still be 

present in the tablets though they are less obvious and are more subtle due to the 

lower concentrations of polymorphs present. Normalisation by use of MSC was also 

utilised to account for baseline offsets. 
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Figure 54 Effect of pre-processing of spectral data of PiraTabs. First column,  MSC treated 

spectra; and second column, combination of MSC and a second derivative treated data. Top 

row, BRS spectra; middle row, TRS spectra; and final row, NIR spectra. Red spectra represent 

the tablets of low FII concentration and the green spectra represent tablets of high FII 

concentration. 
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8.7 Quantitative analysis 

8.7.1 BRS PLS models of 1 mm PiraTabs 
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Figure 55 Top left, MSC pre-processed BRS spectra; center middle, measured vs. predicted FII 

piracetam concentration plot; center right, loadings of PLS model of MSC pre-processed data; 

bottom left, MSC and 2nd derivative pre-processed BRS spectra; bottom middle, 

 

 

Table 29 Performance of the regression models using different pre-processing methods for 1 

mm BRS spectra.  RMSE values in % w/w. 

Pre–processing Region LV RMSEC R
2
 RMSECV RMSEP 

 Full 4 1.04 0.969 1.29 2.50 

Raw data (norm.) Half 3 1.01 0.970 1.20 2.75 

 A 3 1.06 0.968 1.20 2.62 

 B 3 1.04 0.969 1.21 2.37 

 Full 4 1.03 0.969 1.27 2.62 

MSC Half 3 1.02 0.970 1.18 2.59 

 A 3 1.07 0.967 1.21 2.75 

 B 3 1.03 0.969 1.18 2.52 

 Full 1 1.08 0.967 1.17 2.40 

MSC &  2
nd

 deriv. Half 1 1.14 0.963 1.19 1.92 

 A 2 1.07 0.967 1.16 2.65 

 B 1 1.11 0.965 1.16 2.11 
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Results of PLS models built using BRS spectral data are presented in Table 29. In all 

PLS models built using BRS data there was a large degree of scatter as can be seen in 

the low correlation coefficient values. PLS models generated using normalized BRS 

spectra which were then subsequently MSC pre-processed showed little differences 

in their RMSE values and number of latent variables. The three latent variables 

represent the MCC baseline as the primary loading with subsequent loadings due to 

the polymorphic forms. This can be seen in the raw loadings plot where the green 

loadings plot strongly features the band at 1093 cm
–1

 which is characteristic of the 

MCC unsubstituted cellulose rings.(231) 

 

Combination of the MSC treated spectra with a second derivative results in 

highlighting the differences between the tablets of varying FII concentration levels as 

can be observed above in Fig. 55. PLS models generated utilising this combination of 

pre-processing results in PLS models of one latent variable, with similar correlation 

coefficients but slightly improved RMSE values. The best performing BRS model 

for quantitation made use of the 802–1750 cm
–1 

spectral region which encompasses 

the majority of spectral differences between the two polymorphs which include 

differences around 1410 cm
–1

.  

 

As can be seen in the Table 29 all models have relatively high RMSEP values 

indicating that the models poorly predicts the external prediction set as shown by the 

almost double in value number generated for RMSEP when compared to RMSEC. 

This is probably as a result of sub-sampling. A 200 µm spot size was employed by 

the BRS system and a 16 point mapping grid was utilized to collect spectra from the 

tablet surface. This would mean that if there was a high level of surface 

inhomogeneities where the laser hit the tablet surface this could result in increased 

errors associated with the PLS models. For illustration the spectra associated with the 

FII50 sample are plotted below in Fig. 56.  One can see from the normalized and 

second derivative regression model plots above in Fig. 55 there is high variation 

between these spectra. When reviewing the raw spectral data as shown below one 

observes quite a difference in baseline amongst all three replicates. On normalization 

using MSC the spectra still show some evidence of baseline differences as well as a 

lack of band sharpness particularly from 1400–1500 cm
–1 

where all three show 

differences in terms of FII and FIII present. This carries through to the second 
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derivative spectra with other differences evident and highlights the lack of 

representativeness achieved with BRS despite use of a point mapping grid. Use of a 

more extensive mapping grid size giving a greater surface sampling area could be 

used in an attempt to improve the errors and the correlation factor of the PLS models 

however this would result in a greater time penalty. 

 

Figure 56 BRS spectra of FII 50 replicate samples. Top, raw spectra; middle, normalised 

spectra; and second derivative spectra on the bottom. 
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8.7.2 TRS PLS models of 1 mm Piratabs 
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Figure 57 Top left, raw TRS spectra; top middle, measured vs. predicted FII piracetam 

concentration plot; top right, loadings of PLS model of raw spectra; center left, MSC pre-

processed TRS spectra, center middle mea 

 

In PLS models built using raw data there are three latent variables with loadings 

corresponding to the sloping MCC baseline which strongly features in all Raman 

spectra with the remaining loadings due to the polymorphic forms (Fig. 57). The high 

correlation coefficient of 0.998 with the raw models suggests that the data collected 

is intrinsically good (Table 30), particularly when compared directly to the raw BRS 

PLS models. Pre–processing the spectral data using MSC reduces baseline offsets 

due to the interaction of light with the tablets as shown above. Further pre-processing 

the TRS data with a second derivative highlights the polymorphic content differences 
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in the tablets. This is most noticeable in the 800–1750 cm
–1

 region presented above 

as this region contains the majority of obvious variances between the polymorphs as 

detailed in Section 6.2 Raman spectroscopy of piracetam. 

 

 
Table 30  Performance of the regression models using different pre-processing methods.  This 

data was the TRS spectra collected from the 1 mm thick tablets.  RMSE values in % w/w. 

Pre–processing Region LV RMSEC R
2
 RMSECV RMSEP 

 Full 3 0.25 0.998 0.28 0.37 

 Half 3 0.25 0.998 0.28 0.36 

Norm data A 2 0.42 0.952 0.46 0.25 

 B 3 0.26 0.998 0.29 0.31 

 C 2 0.36 0.997 0.40 0.39 

 Full 2 0.33 0.997 0.37 0.44 

 Half 2 0.33 0.997 0.36 0.44 

MSC A 2 0.30 0.998 0.35 0.39 

 B 2 0.39 0.996 0.44 0.33 

 C 2 0.44 0.995 0.51 0.37 

 Full 1 0.28 0.998 0.30 0.61 

 Half 1 0.28 0.998 0.30 0.61 

MSC & 2
nd

 deriv. A 1 0.38 0.996 0.41 0.30 

 B 1 0.36 0.997 0.37 0.29 

 C 1 0.29 0.998 0.30 0.64 

 

All results of the quantitative models with varying pre-processing methods are 

presented in Table 30. All models share high correlation coefficients and low RMSE 

values. TRS models have lower errors of prediction RMSEP associated with them 

which is a vast improvement on the BRS PLS models. This can be attributed to the 

fact that TRS samples more of the tablet in comparison to BRS and the Raman signal 

generated is representative of the tablet bulk and relatively insensitive to surface 

inhomogeneities unlike BRS. 

 

A model built using the low wavenumber spectral region (44–250 cm
–1

) also 

generated similar results (referred to as data region C in Table 30 and depicted in Fig. 

58). Access to the phonon mode region using TRS allowed for PLS models with 

practically equal performance to the best generated model from 801–1730 cm
–1

. The 

model generated using normalised spectra was composed of two latent variables 

corresponding to either polymorph. Band intensity differences between the 

polymorphs are evident at 105 cm
–1

 and there is a splitting of the 91 cm
–1

 band in the 

FII polymorph where we see a reduction in the intensity at 91 cm
–1

 coupled with the 

appearance of a strong shoulder at 79 cm
–1

. These spectral differences are amplified 
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by use of the MSC and second derivative pre-processing methods used as can be 

observed in the Fig. 58. The loadings plot of the MSC and second derivative pre-

processed PLS model suggest that these regions have the largest influence on the 

model as there are a sharp changes at these positions in the loadings plot. The main 

difference in the region is due to the change in polymorph composition and the 

excipients exhibit very few bands which makes use of this phonon mode region 

straight–forward. 
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Figure 58 Top left, Normalised TRS spectra; middle, measured vs. predicted FII piracetam 

concentration plot; and right, loadings of PLS model. Bottom left, MSC and 2nd derivative pre-

processed TRS spectra; middle, meas 
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8.7.3 NIR PLS models of 1 mm Piratabs  
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Figure 59 Top left, raw NIR spectra; top middle, measured vs. predicted FII piracetam 

concentration plot; top right, loadings of PLS model of raw spectra; center left, MSC pre-

processed NIR spectra; center middle, measured vs. predicted FII piracetam concentration plot; 

and center right, loadings of this PLS model. bottom left, MSC and 2nd derivative pre-

processed NIR spectra; bottom middle, measured vs. predicted FII piracetam concentration 

plot; and bottom right, loading 1 of best performing PLS model 

 

A variety of discrete spectral regions of  interest were selected to build PLS models 

and the models with the lowest error values typically involved selection of the 

spectral regions where the polymorph differences were most noticeable such as the 

5870–5600 and 4314–4080 cm
–1

 spectral regions. Results of all PLS models built 

using NIR data is presented in Table 31. Raw spectral data of the same region show a 

high degree of scatter due to variations in the baseline signal which generates PLS 



 
126 

 

models with three latent variables. The loading 1 plot (Fig. 59) features what appears 

to be a baseline artefact and the remaining loadings consist of FII features which 

decrease in intensity with increasing loading number. Pre–processing the NIR spectra 

with MSC removes the baseline offsets and subtle differences between the spectra 

are more pronounced. Use of MSC pre-processed spectral data results in a reduction 

in the number of latent variables and associated RMSE errors of the PLS models 

generated. Combining the MSC pre-processed data with a second derivative results 

in a clear visual distinction between the tablets containing differing FII 

concentrations as shown in Fig. 59. PLS models built using this combination of pre-

processing results in PLS models of one latent variable, which can be identified as 

the FII polymorph spectra once pre-processed in the same manner, with high 

correlation coefficients and low RMSE errors. 

 

Table 31 Results of PLS models generated using 1 mm NIR pre-processed spectral data.  RMSE 

in % w/w. 

Pre–processing Region LV RMSEC R
2
 RMSECV RMSEP 

 Full 5 0.42 0.995 0.52 0.96 

 Half 5 0.37 0.996 0.44 1.19 

Raw data A and B 4 0.50 0.993 0.57 1.50 

 A 3 0.38 0.996 0.43 0.87 

 B 2 0.77 0.983 0.83 2.18 

 Full 4 0.44 0.995 0.51 0.94 

 Half 3 0.39 0.996 0.52 1.01 

MSC A and B 2 0.47 0.994 0.54 1.44 

 A 2 0.51 0.993 0.56 0.72 

 B 2 0.65 0.988 0.70 1.24 

 Full 1 0.34 0.997 0.36 0.55 

 Half 1 0.34 0.997 0.36 0.56 

MSC &  2
nd

 deriv. A and B 1 0.37 0.996 0.39 0.59 

 A 1 0.37 0.996 0.38 0.54 

 B 1 0.61 0.990 0.63 1.22 

 

The best model, by definition of the model that produced the lowest error values 

based on the lowest number of latent variables, was the 6000–5600 cm
1
 spectral 

region where values of 0.37 and 0.39% FII for RMSEC and RMSECV were obtained 

with a high linear relationship observed between the calculated and actual FII content 

with a R
2
 value of 0.9963 for the 1 mm tablets. On testing this model using the 

external prediction set a RMSEP of 0.54% FII was produced representing a ~5.4% 

level of FII contamination in the FIII component. The model was composed of one 
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latent variable, which as shown by its loading in Fig. 59 is due to the change in FII 

content.  

 

8.8 Discussion 
 

8.8.1 Quantification of 1mm tablets 

 

NIR and TRS gave comparable quantitative results with small differences in their 

error values. Limits of detection were calculated for both and TRS was marginally 

better than NIR with a LOD of 0.6% FII when compared to a LOD of 0.7% FII for 

NIR. This improvement may be due to the fact that the spectral differences between 

the polymorphs were more readily observable in the Raman data because Raman 

spectra by their nature consist of sharp, well defined bands and peaks. In contrast 

NIR spectra mostly comprise of broad, not readily assignable, bands and in the case 

of piracetam the NIR spectral differences were subtle in the tablets – please refer to 

Fig. 53.  

 

The best models were selected on the basis of an appropriate combination of low 

error values and a low number of latent variables. For the NIR data, the best 

quantitative model used the 6000–5600 cm
–1

 and required only one latent variable 

(Table 32). On testing this model with the external prediction set a RMSEP of 0.54% 

FII was obtained which indicates that the FII contamination can be reasonably well 

quantified. This 0.54% RMSEP value represents a ~5.4% level of FII  contamination 

in the FIII component. These results are comparable to that achieved when NIR was 

used previously for the determination of bromazepam and clonazepam 

concentrations in low dosage tablets. Standard errors of prediction (SEPs) of 0.59 

and 0.57% w/w respectively were reported.(187)  

 

TRS spectra were first normalised then a variety of pre-processing methods were 

applied including MSC and a 9 point second derivative Savitzky-Golay. These 

methods were used to try and maximise differences between the spectra as a result of 

changing FII polymorph concentration. The best quantitative models for the 1 mm 
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tablets (Table 32) used the 801–1730 cm
–1

 spectral region, and there is no real 

statistical difference between the use of the normalised raw data and the MSC/2
nd

 

derivative processed spectra, except that the normalised data required 3 LV’s. This 

spectral region included the majority of the large spectral differences between the 

polymorphs such as the band shifts in the 1530–1370 cm
–1

 spectral region, the 

differences between the polymorphs in their respective carbonyl stretching vibrations 

around 1650 cm
–1

 and the peak specific to FIII at 1410 cm
–1

. The relatively high 

degree of consistency in the PLS models built using the TRS data is testament to the 

intrinsically high quality of the data collected. A model built using the low 

wavenumber spectral region (44–250 cm
–1

) also generated similar results. The data 

does not show too much scatter and the loadings plot indicates that the bands at 79 

and 106 cm
–1

 have the largest influence. One significant advantage of using this 

spectral region is that there are very few interfering bands from the MCC and 

magnesium stearate excipients. So apart from the slightly increased noise/signal ratio 

due to the scattering background the bands changes due to each polymorphic form 

are very clear. It is also worth noting that there is very little difference in the 

quantitative modelling if one is looking for FII in FIII or visa–versa. 

 

MSC and a Savitzky-Golay second derivative which maximised differences in the 

spectra between the differing ratios of polymorphs present particularly in the 1370–

1730 cm
–1

 spectral region was employed for BRS spectra. The large degree of scatter 

and high RMS errors for the BR quantitative models is most likely due to the 

sampling factor. Overall, the results from our comparative TRS and BR study are 

similar to that reported by Johansson and co–workers for a simple binary tablet 

system.(75) They used a dedicated tablet press and mixtures of propranolol (16 to 

24% w/w) and mannitol to produce ~3 mm thick tablets. They found that TRS 

outperformed the BR method by ~20% with RMSECV values of between 0.4 and 

0.6% w/w being obtained. As in our case, the improved results from TRS are 

ascribed to better sampling statistics. It is also worth noting that the quantification 

accuracy was nearly as good here, despite the facts that our tablet system has a very 

significant baseline artefact induced by the MCC, that the BR spot size used here was 

200 m (compared to the 6 mm diameter in the Johansson study) and that we only 

used a small 4 × 4 mapping grid. 
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Table 32 Performance of the PLS models for quantification of piracetam FII in 1mm model 

tablet formulation using spectroscopic methods. 

Methods Pre–processing R
2
 

Latent  

Variables 

RMSEC 

(%) 

RMSECV 

(%) 

RMSEP 

(%) 

NIR Raw 0.996 3 0.38 0.43 0.87 

 MSC and 2
nd 

Derivative 0.996 1 0.37 0.38 0.54 

       

BRS Raw 0.969 3 1.04 1.21 2.37 

 
Normalised, MSC and 

2
nd 

Derivative 
0.965 1 1.11 1.16 2.11 

       

TRS Raw 0.998 3 0.26 0.29 0.31 

 
Normalised, MSC and 

2
nd 

Derivative 
0.997 1 0.36 0.37 0.29 

 

In all cases MCC, the main excipient present had a large effect on the spectra. In the 

case of Raman it generated a baseline which may be related to diffuse or Mie 

scattering of the 20 m MCC particles.(258) The NIR tablet spectra were 

fundamentally that of MCC as it is the main tablet constituent and although it does 

not swamp the signals due to the polymorphs, visually the polymorphic regions are 

more difficult to discern. However the combination of NIR with multivariate 

chemometric methods was able to use what little information pertaining to the two 

polymorphs was left in the NIR tablet spectra to build useful quantification models.  

 

8.8.2 The effect of tablet thickness on quantification 

 

The ability to analyse tablets of different thicknesses was also investigated. Overall 

TRS outperformed NIR and BRS in terms of model consistency for all thicknesses (1, 

2 and 3 mm), Fig. 60 with legend detailed in Table 33 illustrates this trend. The TRS 

models are all very similar with only a small increase in RMSEC for the thicker 

tablets as might be expected due to the fact that the signal is collected from the 

majority of the sample in comparison to the other techniques.(250) Improving on 

these results might be achieved by a revised data collection method to reduce the 

intrinsic noise in the raw spectra (average ~128 or 256 acquisitions per sample).  

This could be achieved without an excessive time penalty and thus maintain the high 

throughput capability. The BRS RMSEC values are all much greater than those 
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presented for the NIR and TRS models. The RMSEC values do not vary much going 

from normalized to MSC and MSC and second derivative pre-processed models.  

 

Figure 60 Plots of the effect of tablet thickness and pre-processing on PLS models. Left, NIR 

PLS models; middle, BRS PLS models; and right, TRS PLS models. Generated using RMSEC 

values from Tables 29, 30 and 31. 

 

 

Table 33 Model numbers and corresponding spectral regions as legend for plots of the effect of 

tablet thickness and pre-processing on PLS models. 

 NIR  TRS  BRS  

Model 

Number 

Spectral 

Region 

Pre–

processing 

Spectral 

Region 

Pre–

processing 

Spectral 

Region 

Pre–

processing 

1 Full  Full  Full  

2 Half  Half  Half  

3 A and B Raw A  Normalised A  Normalised 

4 A  B  B  

5 B  C    

6     Full  

7 Full  Full  Half  

8 Half MSC Half MSC A  MSC 

9 A and B  A   B  

10 A  B    

11 B  C  Full  

12     Half  

13 Full  Full  A   

14 Half MSC & Half MSC & B MSC & 

15 A and B 2
nd

 Deriv. A  2
nd

 Deriv.  2
nd

 Deriv. 

16 A  B    

17 B  C    

 

#For the NIR based quantitative analysis, the thinner 1 mm tablets were found to 

provide the best quantitative models, as this is due to a more complete sampling of 

the whole tablet due to pathlength effects.  To further investigate this PCA was 

performed on all NIR spectra collected from tablets of all thicknesses and using the 
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raw data we see a clear separation between the 1 mm samples and all other tablet sets 

(Fig. 61). This did not occur when PCA was performed on the Raman spectra. 

Combination of MSC with a second derivative shows no segregation of the 1 mm 

samples from the other samples and it can be seen that all the samples of different 

thicknesses separate into three distinct clusters representing those samples with a 

high concentration of FII, a low concentration of FII and then the 50:50 samples 

containing 50:50 FII:FIII in the centre of Fig. 61 right.  This is the same for all 

techniques as pre-processing maximises chemical information which in this case is 

the concentration differences of the polymorph contaminant.  

 

 
Figure 61 PCA analysis of tablets of all thicknesses analysed using NIR. Left,  Raw NIR data; 

and right:  MSC and  second derivative treated NIR data. 1 (red triangles), 2 (blue blocks) and 3 

mm (green asterisks) thick samples. 

 

 

Transmission NIR, as shown in Fig. 62, of the different thickness samples show that 

a small fraction (0.1 to ~0.003%) of the NIR incident light passes through the 1 mm 

tablets but that the thicker tablets this is further reduced to 0.01 to 0.003%.  This 

indicates that for the 2 and 3 mm tablets the effective sampled volume only 

comprises the top ~1 mm layer and that the rest of the sample is not analysed in the 

diffuse reflectance mode used.  This lack of penetration of diffuse reflectance is 

noted in the literature (176-178) with Saeed et al. reporting a penetration depth of ~ 

0.5 mm with diffuse reflectance NIR.(259) This confirms the PCA result obtained 

where there is a systematic variation according to tablet thickness with the 1 mm 

tablet data being very distinct from the 2 and 3 mm tablet data.  For the BRS models, 

the sub–sampling issue tends to obscure any systematic variation and any thickness 

effect is less obvious.  
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Figure 62 Left, Transmission NIR spectra of 1, 2 and 3 mm thick tablets; and right. 

Transmission NIR spectrum of 1 mm thick tablet. 

 

8.8.3 Comparison of TRS and BRS 

8.8.3.1 Tablet area sampled by Raman methods 
 

TRS makes use of an 8 mm diameter spot size and when compared to the 200 m of 

the BRS system, the surface area sampled by TRS is ~100 times greater. The 

effective sampled volume is even greater because BRS essentially samples the top 

surface (estimated depth of field for the BRS systems optics is ~400–600 m) 

whereas in TRS an increased volume of the tablet is sampled.(260) 

 

Table 34 Calculation of tablet surface area analysed using TRS and BRS. 

Surface area of 13 mm tablet   1.33 × 10
–4

 m 

Area of TRS 8 mm spot size  5.03 × 10
–5

 m 

% of surface analysed using TRS 38% 

Area of BRS 200µm spot size  3.14 × 10
–8

 m 

Area of 16x16 200µm spot size 5.03 × 10
–7

 m 

% of tablet analysed using BRS 0.4% 

 

In comparing the two Raman methods the quantification accuracies are very different. 

This is due to the difference in sampling volumes associated with the two geometries. 

TRS is more representative of the bulk whereas BRS can be hindered by sub–

sampling. Overall TRS samples ~38% of the tablet surface whereas BRS manages 

0.38% (Table 34). 
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8.8.3.2 Assessment of Raman signal quality 
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Figure 63 BRS and TRS spectra of 100:0 FII:FIII tablet. 

 

In comparing the Raman signal quality from the two methods, it is clear that there is 

not a lot to choose between the two, particularly since we are dealing with non–

fluorescent samples.  Intrinsically on the excitation side, the 830 nm TRS will be ~80% 

as efficient (due to the 4
th

 power wavelength dependence) compared to 785 nm and 

thus requires a greater excitation power, likewise on the detection side the CCD 

detectors have lower quantum yields in the equivalent Raman spectral regions. It is 

evident from the above spectra that the same tablet analysed by the two different 

systems shows a difference in baseline slopes. This could potentially be attributed to 

the different scattering of the MCC particles by the two differing laser sources. 

 

The signal to noise ratios of the averaged spectra used for chemometrics from BRS 

and TRS were found to be 0.93 and 7.63 respectively. The ratios were calculated by 

taking a spectral region free from any spectral features as a measurement of the level 

of noise and divided by the intensity of a peak characteristic of piracetam as a 

measurement of signal. As regards the number of acquisitions used for each method, 

the average TRS spectra were a result of using 32 acquisitions per sample while the 

BRS data was an average of 160 spectra (10 acquisitions per point using 4 × 4 

mapping grid) led to the TRS data being ~8 times less noisy than the BRS data.  

Eliminating the noise issue for the BRS data can easily be achieved by the averaging 

of multiple spectra, although this would reduce the high throughput somewhat. 

Therefore the intrinsic advantage of a 785 nm excitation source was overcome by the 

better area sampling and much lower acquisition times in TRS mode.  
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8.8.3.3 Reproducibility of the Raman data 
 

The variation in the raw TRS spectra compared to the BRS is much less when the 

replicate data was evaluated. PCA scores plots (Fig. 64) of raw Raman spectra (TRS 

and BRS) taken from the 3 mm samples of one concentration (seven replicate 

measurements) show that the BRS spectra exhibits much more variation than TRS 

spectra.  The TRS spectra form a small cluster near the middle of the scores plot and 

when this area is zoomed in on it shows much less variation between samples 

analysed using TRS.  This is due to the different volumes being sampled by the two 

techniques and the sensitivity of BRS to surface inhomogeneities.   
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Figure 64 Left,  PCA scores plot of raw spectra taken from six replicates of the 3 mm thick 

tablets at one concentration (10:90% FII:FIII) and analysed by TRS and BRS.  Right: Zoomed 

in view of points corresponding to TRS spectra. 

 

8.8.3.4  Analysis speed 
 

Analysis times per tablet for BRS required a total analysis time of 3 minutes using a 

4 × 4 grid of spectra, NIR required 2.5 minutes per tablet, while TRS just required 

6.5 seconds per tablet.  This dramatic reduction in acquisition time enables the high–

throughput screening of large numbers of samples.  A revised experimental design 

using a 12 × 12 grid with a single exposure of 2 seconds at each point would improve 

matters, and might generate a more accurate result.  However, this increase in 

sampled area by a factor of 9 is still a long way from the 38% of the surface sampled 

by TRS.  The simplest option for the BRS method would be to change the focusing 

optics to enable a large 1 or 2 mm diameter spot size to be used, or use a PhAT probe 

(Kaiser Optical Systems, Ann Arbor, Michigan, USA) with a much larger sample 

spot size.(233)   
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8.9 Chapter conclusions 
 

Rapid spectroscopic methods were successfully employed for the analysis of a model 

pharmaceutical system containing low levels of polymorphic contaminant. These 

methods are non–destructive and are sensitive to the presence to low levels of 

polymorphic contaminant in a model tablet system, in this case low levels of FII 

piracetam in a 10% API loading of FIII piracetam. Quantitative PLS models 

generated were able to predict low content FII polymorph contaminant in tablets. In 

each case, spectral pre-processing was necessary for the development of robust 

quantitative models as it amplified the chemical information in the spectra. This was 

true for all techniques in particular NIR as the MCC signal masked information 

pertaining to the polymorphic composition of the tablets. Models built using 

Backscattering Raman were the poorest due to the inherent sub–sampling issue 

associated with this collection geometry despite use of a 4 × 4 mapping grid. 

Quantitative models built using TRS and NIR spectra were comparable in terms of 

limits of detection with TRS slightly better with a LOD of 0.6% FII with NIR having 

a LOD of 0.7% FII.  

 

Two different Raman sampling geometries were employed through this study. TRS 

offered improved sampling of the tablets compared to BRS. TRS when compared to 

BRS sampled 100 times more of the tablet surface area, meaning that the effective 

sampling area would be much greater in the case of TRS as it samples through the 

tablet. Since the TRS Raman signal was more representative of the bulk tablet and 

insensitive to surface in–homogeneities as is an issue with BRS, spectral data was 

more reproducible showing much less variation than BRS spectral data.  

 

TRS was by far the quickest means of analysis, taking approximately 5 seconds per 

tablet contrasting the 2.5 and 3 minutes per sample necessary for NIR and BRS 

respectively. TRS data was intrinsically good with very high correlation coefficients 

and of all the techniques did not suffer a decrease in RMSEs as a result of increasing 

tablet thickness. This study highlights the potential of TRS for the quantification of 

low levels of polymorphic contaminant in pharmaceutical formulations. 
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9 Thesis conclusions 
 

We have demonstrated the utility of vibrational spectroscopic methods in particular 

Transmission Raman spectroscopy for the analysis of pharmaceutical systems. 

Transmission Raman though discovered in the 1960s is finding its place within 

pharmaceutical applications to which this work adds to the growing body of 

applications through quantification of active ingredients to that of polymorphic 

contaminants in tablet formulations. 

 

Quantitative analysis of a model pharmaceutical tablet system consisting of an API–

type molecule in a matrix of two excipients was feasible using NIR and Transmission 

Raman spectroscopies and PXRD.  In each case, spectral pre-processing to remove 

instrumental and measurement artefacts were critical to the development of robust 

quantitative models. 

 

PXRD based models could be generated with relatively high RMSEC and RMSEP 

accuracies, however, the method was more time consuming than vibrational 

spectroscopy based methods.  NIR spectroscopy gave the best accuracy in terms of 

RMSEC and RMSEP and the method is rapid although spectral interpretation can be 

challenging due to the nature of the bands.  Transmission Raman Spectroscopy for 

this compound was intermediate in performance.  The main factor which degraded 

the TRS performance was the substantial fluorescence in the model system arising 

from the MCC and the ROY itself, this reduced the S/N and made the generation of 

more accurate models unfeasible.  In terms of time, TRS was by far the quickest 

means of analysis, taking approximately 5 seconds per tablet which contrasts to the 

2.5 and 16 minutes per sample necessary for NIR and PXRD respectively.   

 

Rapid spectroscopic methods were successfully employed for the analysis of a model 

pharmaceutical system containing low levels of polymorphic contaminant. These 

methods are non–destructive and are sensitive to the presence to low levels of 

polymorphic contaminant in a model tablet system, in this case low levels of FII 

piracetam in a 10% API loading of FIII piracetam. Quantitative PLS models 

generated were able to predict low content FII polymorph contaminant in tablets. In 

each case, spectral pre-processing was necessary for the development of robust 
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quantitative models as it amplified the chemical information in the spectra. This was 

true for all techniques in particular NIR as the excipient signals masked information 

pertaining to the polymorphic composition of the tablets. Models built using 

Backscattering Raman were the poorest due to the inherent sub–sampling issue 

associated with this collection geometry despite use of a 4 × 4 mapping grid. 

Quantitative models built using TRS and NIR spectra were comparable in terms of 

limits of detection with TRS slightly better with a LOD of 0.6% FII with NIR having 

a LOD of 0.7% FII.  

 

Two different Raman sampling geometries were employed through this study. TRS 

offered improved sampling of the tablets compared to BRS. TRS when compared to 

BRS sampled 100 times more of the tablet surface area, meaning that the effective 

sampling area would be much greater in the case of TRS as it samples through the 

tablet. Since the TRS Raman signal was more representative of the bulk tablet and 

insensitive to surface in–homogeneities as is an issue with BRS, spectral data was 

more reproducible showing much less variation than BRS spectral data.  

 

TRS was by far the quickest means of analysis, taking approximately 5 seconds per 

tablet contrasting the 2.5 and 3 minutes per sample necessary for NIR and BRS 

respectively. TRS data was intrinsically good with very high correlation coefficients 

and of all the techniques did not suffer a decrease in RMSEs as a result of increasing 

tablet thickness. This study highlights the potential of TRS for the quantification of 

low levels of polymorphic contaminant in pharmaceutical formulations. 

 

Binary polymorphic mixtures of piracetam were analysed quantitatively using 

Raman and NIR spectroscopy, coupled with multivariate analysis of the 

spectroscopic data and PXRD patterns. Multivariate analysis of PXRD diffraction 

patterns in this case proved more accurate and reliable than use of a simple univariate 

method based on peak height intensity or area ratios of unique peaks characteristic 

from either polymorph. Use of a wider range of data points by including more of the 

diffraction pattern pertaining to the chemical information in this system is useful 

however, despite the effects of preferred orientation attributed to the FIII polymorph 

being greatly reduced by pre-processing the diffraction patterns by mean 
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normalization, the multivariate PXRD models did not have comparable accuracy or 

limits of detection or quantification that the multivariate spectroscopic models do. 

 

Multivariate analysis of the Raman and NIR spectroscopic data in combination with 

pre-processing yielded models of higher linearity and accuracy of prediction of 

validation samples when compared to the PXRD models. In all cases the use of pre-

processing greatly enhanced the spectral chemical information of the binary 

polymorph mixtures.  
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