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Abstract

An important problem in computational biology is the identification of candidate
genes which can be considered as representative of the different cellular processes
taking place in the cell as it evolves through time. Multiple and very noisy data
sources contain information about such processes and should therefore be inte-
grated in order to obtain a reliable identification of such candidate genes. In this
paper, we present a novel ranking algorithm which determines process represen-
tative genes by integrating a set of noisy binary relations between genes. We
present some preliminary results on two artificial toy datasets and one real biolog-
ical problem. In the biological problem, we use this method to identify representa-
tive genes of some of the fundamental biological mechanisms taking place during
cellular growth in A. thaliana by integrating gene expression data and information
from the gene GO annotation.

1 Introduction

Gene expression experiments measure the activity of thousands of genes in response to various con-
ditions. In these experiments, genes involved in a particular biological mechanism tend to exhibit
similar expression patterns and form groups. Selecting marker genes which can represent specific
mechanisms is an important problem. These markers serve as readouts and help in making sense of
the mechanisms, monitoring interactions between the mechanisms and also track any physiological
effects they may exert. For example, as plants grow, the genetic data contained in them is converted
into phenotype according to its genetic content and various environmental signals that are medi-
ated by different types of hormones. Genes involved in various hormone pathways exhibit distinct
similarity in expression patterns and form groups. Sensitive and specific markers which can track
and report the dynamics of each group are essential for investigating the mechanisms of response to
each hormone, cross-talk between hormone pathways and the relationship between hormones and
phenotypic effects [3].

Multiple data sources exist for any set of genes that describe a particular biological mechanism.
One such data type is expression similarity between two genes measured by a linear correlation
coefficient (LCC). Besides gene expression data, one could also consider taxonomical data such
as the one developed by the Gene Ontology (GO) Consortium [1]. The GO project is specifically
designed for annotating gene products by a shared, structured and controlled vocabulary that can be
applied to any organism. Within this ontology, terms are inter-related forming a DAG. The nodes
of the GO tree represent terms with a specific biological meaning. Genes are better represented
by lower nodes of the tree as these nodes describe biological concepts with higher precision. GO
is divided into three independent categories - Molecular Function (MF), Biological Process (BP)
and Cellular Component (CC). Genes are annotated to GO terms in each of the three independent

1



categories. We can compute semantic similarity between pairs of gene products using methods
developed for lexical taxonomies such as Resnik measure [5].

In this paper, we present a novel ranking algorithm which determines process representative genes
by integrating a set of noisy binary relations between genes.

2 Problem Definition

2.1 Ranking on A Single Graph

Given a weighted graph G = (V, E, W ), where Wij is the correlation between Gene i and Gene j,
we want to rank on the nodes of G so that the node with a higher representative ability has a higher
ranking score. Let us denote the ranking vector by f = [f1, f2, . . . , fn]T . The representation ability
is formally defined as:

• If Wij is large, then the difference between ranking scores fi and fj is large.
• If Dii =

∑
k

Wik is large, then fi is large.

This can be formulated as the optimization of the following objective function:

max
∑

ij

1
2
Wij(fi − fj)2 + µ(

∑

i

Diifi)2 s.t. ||f ||2 = 1 (1)

We notice that this function can be written in matrix form as:
∑

ij

1
2
Wij(fi − fj)2 + µ(

∑

i

Diifi)2 = fT Lf + µfT V ∗ V T f (2)

where L = D − W , D is diagonal weight matrix, its entries are column (or row, since W is
symmetric) sums of W , Dii =

∑
j Wji, and V is column vector consisting of Dii. Here L = D−W

is the Graph Laplacian, which is a symmetric, positive semidefinite matrix, and so has only non-
negative eigenvalues. The lagrangian of the above problem is

J = fT Lf + µfT V ∗ V T f + λ(1− fT f). (3)

By taking the derivative of J with respect to f , and setting it to be zero, we have (L+µV ∗V T )f =
λf . Replacing (L + µV ∗ V T )f = λf in the objective function and considering the constraint
fT f = 1, we obtain fT Lf + µfT V ∗ V T f = fT (L + µV ∗ V T )f = λfT f = λ. Therefore,
we only need to find the maximum eigenvalue and the corresponding eigenvector of the matrix
L + µV ∗ V T . When µ ≥ 0, L + µV ∗ V T is a symmetric, positive semidefinite matrix since both
the Graph Laplacian L = D − W and V ∗ V T are positive semidefinite matrices. This property
guarantees the existence of the maximum positive eigenvalue.

2.2 Ranking on Multi Graphs

Often multiple graphs are available which contains complementary information. For example, in
Fig. 1, both Fig. 1(b) and Fig. 1(c) are subgraphs of the graph in Fig. 1(a), which therefore contains
more information than the other two graphs. It is not surprising to observe that the ranking algorithm
cannot find the best result on both of the subgraphs. However, it can be expected that a combination
of some subgraphs (multiple data sources) can supplement each other so that a resulting graph can
better model the complete information hidden in each individual graph. According to the above
consideration, we propose to combine each subgraph by the following method.

Given a set of weighted graphs Gk = (V k, Ek,W k) (k = 1, 2, . . . , I), we construct a graph G =
(V, E, W ), where V =

⋃
V k, E =

⋃
Ek, W =

∑I
i=1 αkW k, and W i is an extended matrix

constructed from W i such that W k
ij = W k

ij if (i, j) ∈ Ek, and zero otherwise. We can apply to G
the algorithm described in the previous section.

Note that αk (k = 1, 2, . . . , I) are not necessarily nonnegative because some data sources may be
contained in other data sources, and so they are redundant. Therefore these redundant data sources
should be subtracted from the summation, which may cause the negative coefficients.
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Figure 1: Dataset containing 50 points are generated by a normal distribution with mean (0, 0) and
variance I2 (the 2 × 2 identity matrix). The symbol ? in each graph highlights the highest rank
node, and numbers show the ranking values by the solution to Eq. (1) where µ = 1. (a) There is an
edge between i and j if the distance dij between them is less than 2. The weight is calculated by
Wij = e−dij if there is an edge between i and j, and zero otherwise. (b) and (c) are two subgraphs
of the graph in (a), in which some edges are removed.
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Figure 2: The symbol ? in each graph shows the highest rank node, and numbers show the ranking
values by the solution to Eq. (1) where µ = 1. (a) The graph has 22 nodes. (b), (c) are subgraphs of
the graph in (a).

3 Experiments

In Fig. 1 and 2 we show the result obtained on two problems. These figures show that the ranking
algorithm can find the most representative node, and that by combining parts of a larger graph, the
problem of information incompleteness can be addressed (see figure captions for details).

In order to test our method on real biological data we chose 400 genes which were known to belong
to 10 different biological mechanisms (clusters) which are activated by cellular growth in A. thaliana
[2]. Four different fully connected graphs were available, where these genes represented the nodes,
and the weight on the edges corresponded to the linear correlation (LCC) measured during gene
expression experiments (from [2]); and the distances between the gene GO annotations according to
the three GO categories of Molecular Function (MF), Biological Process (BP) and Cellular Compo-
nent (CC). These distance were measured using [4].

We will evaluate our ranking algorithm by comparing the relevance score (RS) of the top N highest
ranking genes using the following formula.

RSN =
N∑

i=1

Rank(i) ∗ C Cluster(i),
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Table 1: The statistics for the number of genes appearing in each cluster among the top N genes
Top N # C1 # C2 # C3 # C4 # C5 # C6 # C7 # C8 # C9 # C10

10 1 0 1 4 2 0 0 0 1 1
20 2 4 1 5 5 0 0 0 1 2
30 6 4 1 5 5 2 2 1 2 2
40 8 4 3 6 7 4 3 1 2 2
50 8 4 5 7 10 6 4 1 2 3

where Rank(i) is the i-th highest ranking score, and C Cluster(i) is the linear correlation coef-
ficient between the expression of gene i and the mean of the expression of the genes in the same
cluster [2]. Therefore, RSN measures how good the top N results of the ranking list are relevant to
the linear correlation coefficients.

The RS50 scores obtained using separately the LCC, CC, BP, and MF matrix were 2.5379, 2.4986,
3.1995, and 3.1102 respectively. For a linear combination of LCC, CC, BP and MF, we can achieve
a RS50 score 3.8992, which is increased by 21.87% over the best one using single data source. The
corresponding coefficients are α1 = −0.2, α2 = −0.2, α3 = 0.9, α4 = 0.5.

We found that optimal results are obtained when LCC is weighed the least and BP is assigned the
highest weight. The fact that semantic similarity of BP terms contribute the most to the performance
of the algorithm is in agreement with biological knowledge since BP is essentially an ontology that
attempts to describe the various biological mechanisms in the organism. The -0.2 weight of LCC
suggests that BP may render some of the LCC data redundant.

Next, we demonstrate the representative ability of the ranking algorithm. The best result should be
that the top 10 genes with highest ranking score should be selected from 10 different clusters. By
Table 1, we show that, although our algorithm cannot achieve the ideal case, it can cover all the 10
clusters by top 30 genes with highest ranking scores.

4 Conclusions

We have presented a novel ranking algorithm that has the ability to select the most representative
node in a graph. Through implementing the ranking algorithm on some toy data, and some real
biological data, we have also showed that with multiple data sources, the algorithm performance can
be greatly increased. In the future work, we attempt to learn the mixing coefficients for the multiple
data sources.
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