

Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the

published version when available.

Downloaded 2024-05-16T06:02:14Z

Some rights reserved. For more information, please see the item record link above.

Title On Applying Controlled Natural Languages for Ontology
Authoring and Semantic Annotation

Author(s) Davis, Brian Patrick

Publication
Date 2013-02-07

Item record http://hdl.handle.net/10379/4176

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/

On Applying Controlled Natural Languages for

Ontology Authoring and Semantic Annotation

Brian Patrick Davis

Submitted in fulfillment of the requirements for the degree of

Doctor of Philosophy

PRIMARY SUPERVISOR:
Prof. Dr. Siegfried Handschuh
National University of Ireland Galway

SECONDARY SUPERVISOR:
Professor Hamish Cunningham

University of Sheffield

INTERNAL EXAMINER:
Prof. Dr. Manfred Hauswirth
National University of Ireland Galway

EXTERNAL EXAMINER:
Professor Chris Mellish

University of Aberdeen

EXTERNAL EXAMINER:
Professor Laurette Pretorius

University of South Africa

Digital Enterprise Research Institute,
National University of Ireland Galway.

February 2013

i

Declaration

I declare that the work covered by this thesis is composed by myself, and that it has not

been submitted for any other degree or professional qualification except as specified.

Brian Davis

The research contributions reported by this thesis was supported(in part) by the Lion

project supported by Science Foundation Ireland under Grant No. SFI/02/CE1/I131 and

(in part) by the European project NEPOMUK No FP6-027705.

ii

iii

Abstract

Creating formal data is a high initial barrier for small organisations and individuals

wishing to create ontologies and thus benefit from semantic technologies. Part of the so-

lution comes from ontology authoring, but this often requires specialist skills in ontology

engineering. Defining a Controlled Natural Language (CNL) for formal data description

can enable naive users to develop ontologies using a subset of natural language. How-

ever despite the benefits of CNLs, users are still required to learn the correct syntactic

structures in order to use the Controlled Language properly. This can be time consum-

ing, annoying and in certain cases may prevent uptake of the tool. The reversal of the

CNL authoring process involves generation of the controlled language from an existing

ontology using Natural Language Generation (NLG) techniques, which results in a round

trip ontology authoring environment: one can start with an existing imported ontology

(re)produce the CNL using NLG, modify or edit the text as required and subsequently

parse the text back into the ontology using the CNL authoring environment. By in-

troducing language generation into the authoring process, the learning curve associated

with the CNL can be reduced. While the creation of ontologies is critical for the Se-

mantic Web, without a critical mass of richly interlinked metadata, this vision cannot

become a reality. Manual semantic annotation is a labor-intensive task requiring training

in formal ontological descriptions for the otherwise non-expert user. Although automatic

annotation tools attempt to ease this knowledge acquisition barrier, their development

often requires access to specialists in Natural Language Processing (NLP). This chal-

lenges researchers to develop user-friendly annotation environments. While CNLs have

been applied to ontology authoring, little research has focused on their application to se-

mantic annotation. In summary, this research applies CNL techniques to both ontology

authoring and semantic annotation, and provides solid empirical evidence that for certain

scenarios applying CNLs to both tasks can be more user friendly than standard ontology

authoring and manual semantic annotation tools respectively.

iv

v

Acknowledgements

I would first like to thank Professor Hamish Cunningham, University of Sheffield, for

giving me the opportunity to pursue postgraduate study and start an academic career at

DERI, NUI Galway. In particular, I want to thank him and the GATE team for their

support and invaluable training,

Most importantly, I would like to thank my supervisor, Prof. Dr. Siegfried Handschuh

for his patience, guidance and mentorship with respect to scientific writing, research

project management, teaching, proposal writing, research leadership etc and for giving

me countless opportunities to development my research skills and academic career.

Other academics, I would like to thank include Prof. Dr. Stefan Decker, for his

inspiration, Dr Conor Hayes for his practical advice on research project management and

Dr Paul Buitelaar for being an veritable treasure chest of natural language processing

experience.

I would like to thank Prof. Chris Mellish and Prof Laurette Pretorius, (who made the

long journey from South Africa) and Prof. Dr. Manfred Hauswirth for ensuring that the

final submission is in pristine condition, such that in later years I will be able to glance

through this thesis with pride!

DERI (now INSIGHT) has and continues to be a stimulating environment to study

and work in. I have met so many wonderful, intelligent and helpful people and made so

many friends and acquaintances over the years that to list them all would be impossible! I

want in particular thank the old Nepomuk/SMILE team past and present: Tudor, Knud,

Laura, Cipri, Georgeta, Ioana, Ismael, Simon, VinhTuan, Alex, Pradeep, Vit, Manuela,

vi

Keith, Judy and Jeremy, who have all gone on to bigger and better things! A particular

thanks to Behrang for always raising the NLP bar with his vast knowledge and wonderful

discussions! Thanks to Luk, Laleh and Bahareh for tea, friendship and the occasional

needed kick in the backside!

Thanks to the DERI Operations, Administrative and Technical team over the years,

which without, DERI would simply have ground to a halt: Hilda, Claire, Brian Wall, Ger

and Andrew (and Caragh!) Gallagher, Carmel, Michelle and Sylvia and all the Irish not

forgetting Ed and Sean! You have put up with a lot over the years!

To my other baby OCD Ireland, special thanks to the team past and present and my

good friend Leslie for her wisdom over the years and for taking on so much extra work

in the last year so I could finish thesis! A special mention to Prof. Fionnuala as well!

To all my childhood friends in Dublin, Neil, Ian and Ross, Eoin and Mark, who had

no idea what I was studying and why it took so long, but have made me feel extremely

proud! To staff of the former M. Davis and Co. for always making me feel welcome and

not forgetting Rose and the infamous Mr Kitt!

I want to thank my mother and father, Louis and Mary for their unconditional love,

support, understanding and patience over the years, as well as my brother Colm and sister

Louise. I want to acknowledge Mark and Yvonne, and my army of nieces and nephews,

Caragh, Eoghan, Amelie and my Goddaughters Niamh and Ella and all the extended

family!!

I also want to thank my fiancé Alessandra, who has always been a steady force of love,

patience and much needed motivation to finish, this thesis even when I resisted!

Finally, I want to mention my father, Louis Davis who passed away unexpectedly a

year before this thesis was defended. I miss you very much Dad, and I wish you were

here to celebrate with me.

vii

viii

Dedicated to my father, Louis Michael Davis

(1940 - 2012).

x

Table of Contents

Abstract iv

Acknowledgements v

Table of Contents xi

List of Figures xiv

List of Tables xviii

I Prelude 1

1 Introduction 2

1.1 Motivation and Problem Description . 2

1.2 Research Questions . 6

1.3 Contributions . 7

1.4 Thesis Structure . 8

II Foundations 10

2 Human Language Technology and the Semantic Web 11

2.1 The Semantic Web and Linked Data . 11

2.2 Human Language Technology . 25

xi

2.3 Information Extraction . 28

2.4 Ontology based Information Extraction (OBIE) 40

2.5 Natural Language Generation . 46

2.6 Natural Language Generation from Ontologies 53

2.7 Conclusions . 59

3 Controlled Natural Languages and Semantic Annotation 63

3.1 Control Natural Languages for the Semantic Web 63

3.2 Semantic Annotation . 74

3.3 Conclusions . 87

III Core Research 92

4 CLOnE - Controlled Language for Ontology Editing 93

4.1 Introduction . 93

4.2 Requirements and Implementation . 95

4.3 Evaluation . 101

4.4 Related Work . 110

4.5 Conclusion . 113

5 Round Trip Ontology Authoring 115

5.1 Introduction . 115

5.2 Design and Implementation . 117

5.3 Evaluation . 127

5.4 Related work . 137

5.5 Conclusion & Discussion . 143

6 Towards Controlled Natural Language for Semantic Annotation 146

6.1 Introduction . 146

6.2 CLANN: Design and Implementation . 154

xii

6.3 Evaluation . 171

6.4 Related work . 184

6.5 Conclusion and Future Work . 188

IV Conclusion and Future Work 191

7 Conclusions and Future Work 192

7.1 Research Contributions . 192

7.2 Open Questions . 195

7.3 Ongoing Work with CLANN . 196

7.4 Future Work . 197

7.5 Summary . 199

Bibliography 201

A Evaluation documents for CLIE/CLOnE 231

A.1 Training manual . 231

A.2 Test procedure, tasks and questionnaires 247

B Evaluation documents for Round Trip Ontology Authoring ROA 257

B.1 Training manual . 257

B.2 Test procedure, tasks and questionnaires 273

C Evaluation documents for Controlled Annotation 283

C.1 Training manual . 283

C.2 Controlled Language ANNotator Type II (CLANN II) 298

C.3 OntoMat Annotatizer . 312

C.4 Test procedure, tasks and questionnaires 334

xiii

List of Figures

2.1 The Semantic Web layer cake. 15

2.2 Linking Open Data cloud diagram, by Richard Cyganiak and Anja Jentzsch.

http://lod-cloud.net/, Retrieved Tue 23 Jul 2013 14:36:02 IST 25

2.3 Performance trade-off relative to specificity and complexity for IE (ex-

tracted from [Cunningham, 2005], Fri 18 Jan 2013 11:24:39 GMT 30

4.1 The CLIE pipeline . 97

5.1 The ROA RoundTrip Ontology Authoring pipeline 119

5.2 Generated CLOnE output . 121

5.3 ROA Ontology viewer . 123

5.4 Example of a generation template . 126

5.5 Text Generated by ROA . 129

6.1 Controlled Annotation and the Semantic Web Information Food Chain . . 152

6.2 Meeting Minutes Template for CLANN I and II 158

6.3 Overview of CLANN I and II in GATE 159

6.4 CLANN I pipeline . 161

6.5 CLANN I visualised in GATE . 162

6.6 An example of a semantic annotation of type Task in CLANN I 163

6.7 CLANN II pipeline . 168

6.8 CLANN II visualised in GATE . 169

xiv

6.9 An example of a semantic annotation of type Conference in CLANN II . 169

A.1 Graphical depiction of classes and instances 233

A.2 CLIE Text input . 235

A.3 CLIE Ontology viewer . 236

A.4 Symbols used in CLIE . 236

A.5 Reserved words and phrases in CLOnE . 241

A.6 Protégé’s Subclass Explorer and Class Editor 243

A.7 Protégé’s Property Browser and Property Editor 244

A.8 Protégé’s Instance Browser and Individual Editor 246

A.9 Symbols used in Protégé . 246

A.10 Initial ontology (viewed in GATE) . 248

A.11 Task list A . 249

A.12 Intermediate ontology (viewed in GATE) 250

A.13 Task list B . 251

A.14 Final ontology (viewed in GATE) . 252

A.15 Pre-test questionnaire . 253

A.16 Post-test questionnaire for each system . 254

A.17 Post-test questionnaire comparing the tools 255

A.18 Post-test questionnaire comparing the tools 256

B.1 Graphical depiction of classes and instances 258

B.2 CLOnE Text input . 261

B.3 ROA Ontology viewer . 262

B.4 Protégé’s Subclass Explorer and Class Editor 269

B.5 Protégé’s Property Browser and Property Editor 270

B.6 Protégé’s Instance Browser and Individual Editor 272

B.7 Symbols used in Protégé . 272

B.8 Initial ontology (viewed in GATE) . 274

xv

B.9 Task list A . 275

B.10 Intermediate ontology (viewed in GATE) 276

B.11 Task list B . 277

B.12 Final ontology (viewed in GATE) . 278

B.13 Pre-test questionnaire . 279

B.14 Post-test questionnaire for each system . 280

B.15 Post-test questionnaire comparing the tools 281

B.16 Post-test questionnaire comparing the tools 282

C.1 Graphical depiction of classes and instances 284

C.2 Our use of the terms ontology, annotation and relational metadata 286

C.3 Overview of CLANN I and II in GATE 288

C.4 Initial Sample meeting minutes in free or uncontrolled text 290

C.5 Meeting Minutes Template for CLANN I and II in BNF 294

C.6 CLANN I - Final Correct Output . 295

C.7 Sample of reserved words and phrases in CLANN I 297

C.8 Reserved template phrases and punctuation in CLANN 2 297

C.9 CLANN II - Initial Sample Text . 302

C.10 CLANN II - Meeting Minutes Template 303

C.11 CLANN II - Correct Output . 304

C.12 CLANN II - Correct Output Continued 305

C.13 CLANN II - Final Correct Output . 306

C.14 Reserved template phrases and punctuation in CLANN 2 311

C.15 Opening Ontology Browser in Ontomat 313

C.16 Opening Web Browser in Ontomat . 313

C.17 Opening a HTML file in Ontomat . 314

C.18 Opening an OWL Ontology in Ontomat 315

C.19 Selecting text in Ontomat . 315

C.20 Creating an instance in Ontomat . 316

xvi

C.21 Creating Attributes in Ontomat . 317

C.22 Creating Relations in Ontomat . 318

C.23 Example Meeting Minutes for OntoMat 320

C.24 Creating a new instance of a Meeting in Ontomat. 321

C.25 Annotating the Date of the Meeting in the text using “hasDateLiteral”. . 322

C.26 Annotate the Project name of the Meeting in Ontomat 323

C.27 Create Person instances for each person a note 324

C.28 Create and instance of Meeting Chair . 325

C.29 Assign the Role of Chair to a Person . 326

C.30 Assign Claudia (ClaudiaChair) as Chair 327

C.31 Create an Agenda Item in Ontomat . 328

C.32 Link the Agenda Item to the current Meeting instance 329

C.33 Create relation Metadata . 330

C.34 Linking to the Agenda Item . 331

C.35 Create an instances of type Comment . 332

C.36 Saving the Ontology in Ontomat . 333

C.37 Exporting Metadata in Ontomat . 333

C.38 Task A . 335

C.39 Task B . 336

C.40 Task C . 337

C.41 Pre-test questionnaire . 338

C.42 Post-test questionnaire for each Tool . 339

C.43 Post-test questionnaire comparing the tools 340

C.44 Post-test questionnaire comparing the tools 341

C.45 Post-test questionnaire comparing CLANN I and CLANN II 342

C.46 Post-test questionnaire comparing the tools 343

xvii

List of Tables

4.1 Groups of equivalent sentences in CLOnE 95

4.2 Summary of the questionnaire scores . 105

4.3 Confidence intervals (95%) for the SUS scores 105

4.4 Correlation coefficients . 106

4.5 Groups of subjects by source and tool order 107

4.6 Comparison of the two sources of subjects 108

5.1 Excerpt of CLOnE grammar with examples 120

5.2 Summary of the questionnaire scores . 132

5.3 Summary of the Task per Tool times . 132

5.4 Confidence intervals (95%) for the SUS scores 133

5.5 Correlation coefficients . 134

5.6 Groups of subjects by source and tool order 135

5.7 Comparison of the two sources of subjects 136

6.1 Excerpt of CLANN I grammar with examples 166

6.2 Excerpt of CLANN II grammar with examples 168

6.3 Groups of subjects by source and tool order 174

6.4 Summary of the questionnaire scores . 176

6.5 Summary statistics for tool times . 176

6.6 Correlation coefficients . 178

6.7 Comparison of SUS scores against backgrounds 180

xviii

6.8 Comparison of task times against backgrounds 181

6.9 Summary of the Precision and Recall scores for each tool 184

xix

Part I

Prelude

1

1 Introduction

1.1 Motivation and Problem Description

The Semantic Web endeavours to extend the current Web, by enriching information

with well defined meaning, which is machine processable [Berners-Lee et al., 2001a]. It

envisions the idea of having data on the Web defined and linked in a uniform manner

that can be utilised and exploited by machines not just for display and visualisation

purposes but for automation, integration and reuse of data across various applications

[Kashyap et al., 2008a]. This would result in an environment, whereby intelligent agents

can interact freely across web resources and engage in sophisticated tasks for users.

In order for the Semantic Web to become a reality, we need, as a primer inter pares,

semantic data. The process of providing semantic data is called Semantic Annotation,

because it frequently involves the embellishment of existing data, i.e. the text, with se-

mantic metadata, which can subsequently describe the associated text. This process is

heavily dependent on the existence of ontologies, which describe the domain of interest.

Ontologies are considered one of the pillars of the Semantic Web, although their defini-

tion in the literatures tends to vary [Gómez-Pérez et al., 2007]. Studer et al define an

ontology “as a formal explicit specification of a shared conceptualisation”[Gruber, 1993,

Studer et al., 1998]. It is formal in that it must be machine readable, explicit in that

the types of concepts used and their respective constraints must be explicitly defined and

shared. in that it is not private but must be accepted by some group [Studer et al., 1998].

Both Semantic Annotation and ontologies are interconnected, whereby Semantic Annota-

tion requires ontologies to drive the the annotation process and the subsequent association

2

of instances and relations within text to the ontology, while on the other hand, ontologies

may be extended by instance population from facts discovered in text. This can occur

as a side-effect of the annotation process. Consequently (i) Ontology Authoring and (ii)

Semantic Annotation are two of the core challenges for building the Semantic Web.

With respect to (i) – Ontology Authoring – formal data representation can be a sig-

nificant deterrent for non-expert users or small organisations seeking to create ontologies

and subsequently benefit from adopting semantic technologies. Existing ontology author-

ing tools, such as Protégé1 [Knublauch et al., 2004] and Swoop [Kalyanpur et al., 2006]

attempt to resolve this, but they often require ontology engineering skills on the part of

the user. On the other hand, this is especially problematic for domain specialists, such

as clinicians, business analysts, legal experts, etc. Such professionals cannot be expected

to train themselves to comprehend Semantic Web formalisms and on the other hand, the

process of knowledge gathering, involving both a domain expert and an ontology engineer,

can be time-consuming and costly. This challenges researchers to develop user-friendly

means for ontology authoring.

With regard to (ii) – manual semantic annotation is a complex and laboured task. It

is both time-consuming and expensive often requiring specialist annotators or the sub-

sequent training of such annotators. This invariably results in unnecessary exposure

to formal ontological description. Such formal data representation can act as a signif-

icant deterrent for non-expert users or organisations seeking to annotate resources as

part of their daily activity, thus allowing them to fully benefit from the adoption of

Semantic Web technologies. While (semi)-automatic annotation tools attempt to re-

move this constriction, which is commonly known as the knowledge acquisition bottleneck

[Hayes-Roth et al., 1983], their application often requires access to specialists who can

combine Natural Language Processing(NLP), Machine Learning(ML) and Semantic Web

ontology languages. Such specialists are costly and rare and furthermore the creation

or acquisition of quality language resources to bootstrap (or train) such approaches may

1http://protege.stanford.edu/, Retrieved 2011-05-22

3

require significant investment. Hence, this challenges researchers to develop more user-

friendly manual annotation environments to support the knowledge acquisition process.

With respect to both of the aforementioned research problems, Controlled Natural

Languages (CNLs) for knowledge creation and management offer an attractive alternative

for non expert users wishing to (i) develop small to medium sized ontologies or a first

draft ontology which can subsequently be post-edited by the ontology engineer and (ii) to

annotate, while simultaneously authoring her documents in a user-friendly manner, yet

at the same time shielding her from the underlying complex knowledge representation

formalisms of ontology languages. Controlled Natural Languages are defined as “subsets

of natural language whose grammars and dictionaries have been restricted in order to

reduce or eliminate both ambiguity and complexity”[Schwitter and Tilbrook, 2004]. The

use of CNLs for ontology authoring and population is by no means a new concept and

it has already evolved into quite an active research area [Smart, 2008]. Furthermore,

a natural overlap exists between tools used for both ontology creation and semantic

annotation. Despite such efforts, very little research has focused on applying CNLs to

Semantic Annotation.

It is important to note that there is difference between the process of ontology creation

and population and that of semantic annotation. We describe Semantic Annotation as

“a process as well as the outcome of the process”. Hence it describes (i) “the process of

adding semantic data or metadata to content given an agreed ontology and (ii) it describes

the semantic data or metadata itself as a result of this process”[Handschuh, 2005]. Of par-

ticular importance here is the notion of the addition or association of semantic metadata

to content. From a strict viewpoint, ontology population from content involves modi-

fying the ontology while annotation involves modifying the content. However, ontology

population may occur as a side effect of annotation. Conversely, annotation may serve

to track the origin or provenance of a newly created concept in an ontology, especially if

the concept has been extracted from web content.

4

1.1.1 Annotation as Authoring

As with any annotation environment, a major drawback is that in order to create meta-

data about a document, the author must first create the content and second annotate the

content, in an additional a posteriori, annotation step. In the context of our application

of CNL to Semantic Annotation, we seek to merge the authoring and annotation steps

into one.

1.1.2 Defining Controlled Language for Semantic Annotation

We refer to the application of CNL to Semantic Annotation as Controlled (Natural Lan-

guage) Annotation which reflects how traditional CNL intersects but also differs from our

approach, whereby:

Controlled Annotation is the application of CNL technologies to the process of semantic

annotation. Controlled Annotation aims to reduce or eliminate ambiguity with respect to

the semi-automatic/manual semantic annotation of textual resources. It may include the

creation of semantic data or metadata from machine processable content as in traditional

CNL or apply CNL techniques that act as an interface to associate semantic data or

metadata with free or uncontrolled text. Unlike traditional CNL, content in Controlled

Annotation can be independent of the process.

1.1.3 CLOnE - Controlled Language for Ontology Editing

Much of the work described in this thesis is based on CLOnE - Controlled Language

for Ontology Editing [Funk et al., 2007], which allows naive users to design, create, and

manage information spaces without knowledge of complicated standards (such as XML2,

RDF3 and OWL4) or ontology engineering tools. CLOnE’s components are based on

2”XML 1.0 Specification”, W3.org. See http://www.w3.org/TR/REC-xml. Retrieved 2010-08-22

3See http://www.w3.org/TR/PR-rdf-syntax/ Retrieved 2011-05-22

4See http://www.w3.org/TR/owl2-overview/,OWL 2 Web Ontology Language Document Overview
W3C Recommendation 27 October 2009, retrieved 2011-05-08

5

GATE’s5 existing tools for Information Extraction(IE) and Natural Language Processing

(NLP) [Cunningham et al., 2002].

The CLOnE system was evaluated using a task-based methodology in comparison with

a standard ontology editor – Protégé. CLOnE performed favourably with test users in

comparison to Protégé. Despite the benefits of applying controlled language technology

to ontology engineering, a frequent criticism against its adoption, is the learning curve

associated with following the correct syntactic structures and/or terminology in order to

use the controlled language properly. Adhering to a controlled language can be, for some

non expert users, time consuming and frustrating. These difficulties are related to the

habitability problem, whereby users do not really know what commands they can or can-

not specify to the Natural Language Interface (NLI) [Thompson et al., 2005]. Where the

CLOnE system uses natural language analysis to unambiguously parse CLOnE in order to

create and populate an ontology, the reverse of this process, Natural Language Generation

(NLG), involves the generation of the CLOnE language from an existing ontology. The

text generator and CLOnE authoring processes combine to form a RoundTrip Ontology

Authoring(ROA) environment: a user can start with an existing imported ontology or

one originally produced using CLOnE, (re)produce the controlled language using the text

generator, modify or edit the text as required and subsequently parse the text back into

the ontology using the CLOnE environment. The process can be repeated as necessary

until the required result is obtained.

1.2 Research Questions

The key research questions, arising from the challenges discussed above are as follows:

Regarding Ontology Authoring:

• OA1: Is a ROA environment more user friendly the a standard ontology editor for

basic ontology editing tasks?

5General Architecture for Text Engineering - see http://gate.ac.uk/, Retrieved 2011-05-22

6

• OA2: Do users spend less time completing ontology editing tasks in ROA compared

to a standard ontology editor?

• OA3: Is ROA more user friendly that a standalone CNL - CLOnE?

Regarding Semantic Annotation:

• SA1: Can Controlled Annotation effectively substitute for a standard manual se-

mantic annotation tool in certain scenarios?

• SA2: Is Controlled Annotation more user friendly than a standard manual semantic

annotation tool in certain scenarios?

The aforementioned research questions result in the following scientific and technolog-

ical contributions which are described briefly in the next section.

1.3 Contributions

With respect to CNL for ontology authoring, this thesis makes the following contributions:

• A Round-Trip Ontology Authoring (ROA) environment, which combines both CLOnE

and NLG, to to improve the user experience with respect to basic ontology authoring

and editing tasks (OA1).

• Empirical evidence that ROA is more user friendly than a standard ontology editor

for basic ontology editing tasks (OA2).

• Empirical evidence that users complete basic ontology editing tasks faster using

ROA compared to a standard ontology editor (OA2).

• Evidence that ROA is more user friendly than CLOnE for basic ontology editing

tasks (OA3).

With respect to Semantic Annotation, this thesis makes the following contributions:

7

• A novel approach to manual annotation, using CNL, called Controlled Annotation,

where we move away from traditional a-posteriori annotation by merging both au-

thoring an annotations steps together(SA1).

• Two Controlled Language ANNotator - CLANN prototypes, each varying in ex-

pressiveness and usability(SA1) .

• Statistical evidence that for certain scenarios, controlled annotation can be more

user friendly than a standard manual semantic annotation approach(SA2) .

1.4 Thesis Structure

Each chapter is preceded by a a brief introduction which connects its content to the

the overall structure and research goals of the thesis. The remainder of this thesis is

divided into three parts: Foundations(II), Core Research (III) and Conclusions and Future

Work(IV). Each part is organised as follows:

Part II – Foundations

• Chapter 2 provides an overview of the fields of Human Language Technology (HLT)

and the Semantic Web. It does not provide an exhaustive review of both fields,

rather we presume that the reader has some knowledge of the Semantic Web or is

expected to conduct additional reading if necessary. In addition, this chapter does

not contain an exhaustive review of HLT, but rather focuses on the key technologies

underpinning our research contributions which are Information Extraction(IE) and

Natural Language Generation(NLG) and more specifically their intersection with

the Semantic Web.

• Chapter 3 provides a thorough introduction into Controlled Natural Languages

(CNLs) for the Semantic Web. In addition, we review the state of the art with

respect to Semantic Annotation, ranging from manual to semi-automatic annotation

tools to fully-automatic semantic annotation platforms.

8

Part III – Core Research

• Chapter 4 introduces the CLOnE language and discusses the, grammar, design and

implementation of the language and the CLOnE environment. The chapter also

discusses a comparative user evaluation with Protégé and discusses the quantitative

findings. CLOnE is not a contribution of this thesis, however it does form the basis

of the research output of this work.

• Chapter 5 discusses the design and implementation of the Round Trip Ontology

Authoring (ROA) environment focusing on the NLG component - the ROA text

generator. Again this chapter also describes a comparative user evaluation with

Protégé and discusses the quantitative findings.

• Chapter 6 provides a detailed definition of Controlled Annotation. We describe

implementations for two prototypes of Controlled Language ANNotator – CLANN,

both varying in expressiveness. This chapter also describes the domain ontology,

based on the domain use case which involves the authoring and annotation of project

minutes and status reports. Finally, the chapter describes a user evaluation which

compares both CLANN prototypes with a standard manual semantic annotation

tool - Ontomat6 [Handschuh et al., 2002].

Part IV – Conclusions and Future Work.

• Chapter 7 summarises the contributions of this thesis and also links the results back

to the original research questions described in Chapter 1. We discuss the outcome

and any lessons learned and what solutions can be woven into future work.

6http://annotation.semanticweb.org/ontomat/index.html, retrieved 2011-05-08

9

Part II

Foundations

10

2 Human Language Technology and the Semantic Web

This Chapter provides an overview of the underlying semantic and language technolo-

gies of this thesis. Section 2.1 summaries the Web in brief, and discusses the Semantic

Web and Linked Data to the degree that is relevant to the research output of this thesis.

With respect to Human Language Technology(HLT), a definition of the term is provided

and a history of its origins in Section 2.2, but we focus specifically on Information Ex-

traction (IE) and Natural Language Generation(NLG), both of which serve as enabling

technologies of our work with languages. Finally, this chapter, discusses HLT with re-

spect to the Semantic Web focusing on Ontology Based IE (OBIE) (See Section 2.4)

and Natural Language Generation from Ontologies (See Section 2.6). Finally Section 2.7

concludes the entire chapter, and provides a summary analysis with respect HLT and the

Semantic Web.

References: Section 2.2 is in part based on [Bontcheva et al., 2008] and Section 2.5 is

in part based on [Bontcheva and Davis, 2008].

2.1 The Semantic Web and Linked Data

2.1.1 History of the Web in Brief

The World Wide Web or called simply “WWW” is a global information system of doc-

uments interlinked via computers which are connected to the Internet. Traditionally,

documents consist of hypertext [Nelson, 1965]. Hypertext functionality is realised by

means of HTML – HyperText Markup Language, which can consist of formatted natural

language text, digital images and media as well as structured information. It instructs

11

client web browsers how to display the content of a HTML document correctly. A HTML

document may reference another Web document via a hyperlink, which when clicked on by

a mouse or other input device, leads the user to the target document on the Web. Hyper-

linking is achieved by embedding a machine understandable reference or URL - Uniform

Resource Locator into the body of HTML markup. A URL is a global unique address

or location on the Web. Hypertext forms the basis of the WWW and its discovery was

intricately intertwined with simultaneous endeavours which occurred in the 1960’s such

as the work of Doug Engelbart [Engelbart, 1962, Engelbart and English, 1968] and Nel-

son’s Xanadu [Nelson, 1965], and IBM’s Generalised Markup Language [Goldfarb, 1996].

Early inspiration stems from Jorge Luis Borges: 1941 short story The Garden of Forking

Paths7 as well as Vannevar Bush’s article on the proto-hypertext device – Memex, a mi-

crofiche that halted upon request and was analogous to the associative processes of the

human mind but with permanent memory [Bush and Wang, 1945].

In 1980, Tim Berners Lee, an independent contractor at the European Organisation

for Nuclear Research – CERN developed ENQUIRE, which was a personal database of

people and software models that explored the potential of hypertext. Each new page

in the ENQUIRE system linked to an existing page. ENQUIRE was limited however

to a single machine and was developed on a NEXT workstation8. Upon his return to

CERN in 1984, Berners Lee began to work on the information presentation issues of

ENQUIRE and more importantly he began to factor in the need for physicists to share

data globally despite the barriers of not having common OS platforms or presentation

software [Berners-Lee, 1993].

By Christmas 1990, Berners Lee had engineered all the basic tools fundamental to

the Web we know today such as: the HyperText Transfer Protocol (HTTP) and HTML,

the first Web browser and editor, the first HTTP server software, then known as the

7”The Garden of Forking Paths” (original Spanish title: ”El Jardin de senderos que se bifurcan”.) is
a 1941 short story by Argentine writer and poet Jorge Luis Borges.

8The NeXT station was a high-end workstation computer developed, manufactured and sold by the
company NeXT from 1990 until 1993. It ran the NeXTSTEP operating system.

12

CERN httpd, the first web server9, and the first web pages which described his project

[Berners-Lee, 1993]. In order to promote the project, the CERN telephone directory was

published on the Web. Prior to this CERN users were required to access a mainframe to

check the telephone directory. In September 1991, Paul Kunz from the Stanford Linear

Accelerator Centre (SLAC) visited CERN and was impressed by the technology. He

brought the NEXT software back to SLAC, where it was adapted by librarian Louise

Addis to the VMC/VAC operating system on the IBM mainframe in order to display

SLAC’s catalog of online documents. By the mid nineties, early adopters of the Web

were university based. However, there were still no graphical browser available aside from

what was available for the NEXT platform. A major milestone for the WWW was the

development of the Mosaic Web Browser in 1993 by a small team at the National Centre

for Supercomputing Applications (NCSA), University of Illinois at Urbana-Chanpaign

(UIUC), which was led by Marc Andreessen [Berners-Lee, 1993].

By May 1994, the first WWW conference was organised by Robert Cailliau. It was held

at CERN. Since then the conference has been held annually. In 1994, Tim Berners-Lee

founded the World Wide Web Consortium (W3C) at the Massachusetts Institute of Tech-

nology with support from the Defence Advanced Research Projects Agency (DARPA) and

the European Commission. It comprised of academic and commercial organisations that

were willing to create standards and recommendations to improve the quality of the Web.

The period 1996-1998, saw the emergence of Web based businesses or E-commerce and

the increase of start-up companies due to the novelty of the the dot-com concept. After

the dot-com boom and subsequent bust from 1999-2001, several companies managed to

find success by developing more compelling business models. Examples included Google’s

search engine, Amazon’s online department store experiences, Ebay’s do-it-yourself auc-

tion site and airline booking sites. In addition, this new era included the emergence of

social networking sites such as MySpace and Facebook, which, although initially unpopu-

lar, have now become part of everyday culture. New methods for sharing and exchanging

9http://info.cern.ch

13

content in an ad hoc manner such as Weblogs and RSS began to rapidly gain acceptance

on the Web. This new model for information exchange which enabled users to edit and

generate website content themselves has collectively grown into what we now call Web

2.0. This has ushered in a new period of democratisation and popularisation of the Web.

New sites such as Wikipedia were revolutionary in exploiting user generated content. In

addition, Youtube, the video viewing website, became the most quickly popularised web-

site in history. Beyond Web 2.0, it is believed that the Semantic Web will be the next

stage of evolution for the Web.

2.1.2 The Semantic Web

The goal of the Semantic Web is to augment webpages with machine understandable

meaning or semantics [Berners-Lee et al., 2001b]. This would involve lifting current Web

content, which can be both unstructured and semi-structured, into a Web of Data. The

Semantic Web is built on top of the the existing Web infrastructure and standards and the

process of creating the Semantic Web involves the addition of several technologies which

are summarised as the “The Semantic Web layer cake” (see Figure 2.110). Exploring the

layer cake in detail is beyond the scope of this thesis, as the CNL technologies developed

as part of this work were targeted towards the creation of metadata and ontologies. Hence

we focus on describing the fundamental data interchange language for the Semantic Web

- RDF and its schema. In addition, we provide a brief overview of the ontology language

OWL (See Section C.1.1).

The Resource Description Framework - RDF defines a standard method for mod-

elling information on the Web. In 1999, the W3C published the first RDF recom-

mendation [Lassila and Swick, 1999]. The latest recommendation was published in 2004

[Klyne and Carroll, 2004]. There are overall six published RDF recommendations11.

RDF is based on the open world assumption (OWA). Hence, unlike closed world as-

10See http://www.w3.org/2007/03/layerCake.svg, Retrieved 31 Oct 2012

11http://www.w3.org/standards/techs/rdf, Retrieved 2011-05-08

14

Figure 2.1: The Semantic Web layer cake.

sumption (CWA), if a statement is unknown, it is not assumed to be false. In addition,

there is no unique name assumption (UNA), so different names, presented by a URI12

may map to the same entity.

RDF permits the description of resources, which are things that can be identified on

the Web even if they cannot be directly retrieved on the Web [Klyne and Carroll, 2004].

Statements are made about resources in the form of subject, predicate, object expressions

which are commonly known as triples. A subject is the resource, while the predicate or

property describes a relationship between the subject and the object. An example of a

statement is “The sea has the colour blue”. Hence “the sea” is the subject, while “has the

12Uniform Resource Identifiers (URIs, aka URLs) are short strings that identify resources in the web:
documents, images, downloadable files, services, electronic mailboxes, and other resources.

15

colour” is the predicate and finally ”blue” is the object. The object of a statement (i.e.,

the property value) can be another resource or it can be a literal; i.e a resource (specified

by a URI) or a simple string or other primitive datatype defined by XML.

Resources are represented by URIs. Anything described by an RDF expression is a

resource. A resource can refer to anything with an identity, be it an online resource such

as a Webpage or a ”real world” resource such as a person or place. A resource can be

identified in RDF using URIs, which can appear in any position of a triple. A property

is a specific attribute, or relation used to describe a resource. A property has a specific

meaning and defines constraints on permitted values as well the types of resources it can

describe. A property may also describe its relationship to other properties. A literal

may only appear in the object position of a triple, as a value of a property. Literals

can have type information using XML schema or a language tag. Unidentified resources

called blank or anonymous nodes are unnamed nodes within an RDF graph. They cannot

appear as the predicate in a triple. They can be used to represent complex data, but their

usage is discouraged as it poses problems when querying [Bizer et al., 2007]. A collection

of RDF statements can be represented as a labeled multi-graph.

Furthermore, additional knowledge about an RDF statement can be modelled using

reification, whereby a statement is assigned a URI and treated as a resource. Consequently

additional statements can be modelled such as “Brian says that Pradeep is a Masters

Student” in order to make additional assertions about a statement. Reification can have

many uses, such as annotation, adding provenance data, modelling context or access

rights. An alternative to using reification is named graphs, whereby a collection of RDF

statements or a graph is associated with a URI in order to add context without the need

to reify the triple. This is becoming much more popular as the application of reification

introduces indirectness and is quite verbose and cumbersome to model.

Serialisation of RDF may be in XML form [Beckett, 2004] or in non XML form

called Turtle [Berners-Lee, 2006b]. Other human friendly formats include N-Triples

[Grant and Beckett, 2004], a subset of Turtle [Beckett, 2007], which is quite popular

16

among semantic web developers. RDFa is also another syntax format which permits the

addition of a set of attribute-level extensions to HTML, XHTML and various XML-based

document types for embedding rich metadata within Web documents [Adida et al., 2008].

An example of Turtle can be seen in Listing 2.1 as well as the equivalent in RDF XML in

Listing 2.2. Both examples describe the following statements Leonardo Di Caprio starred

in Inception and Inception has a similar plot to the Matrix.

Finally, we note that the standard recommended query language for RDF is SPARQL

[Prud’hommeaux and Seaborne, 2008], although other languages exist such as RDF Data

Query Language (RDQL) [Seaborne, 2004]. Others include the Sesame RDF Query

Language (SeRQL) [Broekstra and Kampman, 2003] and RDF Query Language (RQL)

[Karvounarakis et al., 2002]. An in-depth discussion of RDF query languages is beyond

the scope of this thesis, as we are not concerned with mapping natural language for

querying RDF data.

✞ ☎

@pr e f i x r d f : <ht tp : //www.w3 . org /1999/02/22− rd f−syntax−ns#> .

@pr e f i x ex : <ht tp : //www. example . org/> .

ex : l e o n a r d o d e c a p r i o ex : s t a r r e d i n ex : i n c e p t i o n .

ex : i n c e p t i o n r d f : t ype ex : movie .

ex : i n c e p t i o n ex : s i m i l a r p l o t a s ex : t h e ma t r i x .
✝ ✆

Listing 2.1: RDF example represented in Turtle.

17

✞ ☎

<?xml v e r s i o n =”1.0” encod ing=”UTF−8”?>

<r d f :RDF xm ln s : r d f=”http : //www.w3 . org /1999/02/22− rd f−syntax−ns#”

xm lns :ex=” http : //www. example . org /”>

<r d f : Desc r i p t i o n r d f : a bou t=”http : //www. example . org / l e o n a r d o d i c a p r i o ”>

<ex : s t a r r e d i n >

<ex :movie r d f : a bou t=”http : //www. example . org / i n c e p t i o n ” />

</ex : s t a r r e d i n>

</ r d f : Descr i p t i on >

<r d f : Desc r i p t i o n r d f : a bou t=”http : //www. example . org / i n c e p t i o n ”>

<ex : s i m i l a r p l o t a s r d f : r e s o u r c e=”http : //www. example . org / t h e ma t r i x ” />

</ r d f : Descr i p t i on >

</ r d f :RDF>
✝ ✆

Listing 2.2: RDF example represented in XML.

2.1.2.1 Ontologies, RDF Schema and OWL

RDF is a means for interchanging information in an homogenous manner, however addi-

tional semantics are required in order to make this information machine understandable.

For instance, in order to create and associate metadata to resources, it is necessary to

first develop a vocabulary on which to base the metadata. This basic vocabulary consists

of terms and concepts of interest to the application domain as well as relations across con-

cepts. This representational vocabulary can be defined as an ontology, which is a shared

representation for a domain of discourse and may include definitions of classes, relations,

functions and other objects [Kashyap et al., 2008b]. Ontologies are represented as OWL

and RDFS within the layer cake in Figure 2.1. Studer et al define an ontology “as a formal

explicit specification of a shared conceptualisation”[Gruber, 1993, Studer et al., 1998]. It

is formal in that it must be machine readable, explicit in that the types of concepts used

and their respective constraints must be explicitly defined. An ontology may also be

18

shared in that it is not private but must be accepted by some group [Studer et al., 1998].

Ontologies can be categorised into the following [Gómez-Pérez et al., 2007]:

• Top level ontologies or Upper level ontologies, which describe general notions

and should be linked to from existing ontologies [Gómez-Pérez et al., 2007].

• Domain ontologies, which are reusable for a given specific domain such as law,

medicine and aeronautics [Mizoguchi et al., 1995, van Heijst et al., 1997]

• Task ontologies, which describe the vocabulary needed for a generic task or activ-

ity such as scheduling, selling and diagnosing. Task ontologies specialise the terms

in top level ontologies [Mizoguchi et al., 1995, Guarino, 1998]. The tasks defined

need not belong to the same domain.

• Domain task ontologies define tasks which are reusable in a given domain but

not across domains. They are application independent. An example would be a

trip schedule [Gómez-Pérez et al., 2007].

• Method ontologies define the relevant concepts and relations needed to perform a

reasoning process in order to execute a specific task [Tijerino and Mizoguchi, 1993].

• Application ontologies are application dependent and model all the knowledge

necessary for a given application. The may often extend or specialise domain or

task ontologies for a given application [van Heijst et al., 1997].

Lightweight Ontologies (or schemata) can be described using the RDFs standard.

More expressive ontologies can additionally use the OWL standard. With respect to

RDF schema or RDF(S), its purpose was to extend upon the semantic expressiveness

of RDF. While RDF provides a way to express simple statements about resources, it

does not provide the ability to define specific classes of resources and constraints be-

tween classes and properties. RDFS became a W3C recommendation in early 2004

[Brickley and Guha, 2004]. It essentially extends RDF with abilities to specific well de-

fined relationships between classes . RDFS has properties such as: rdfs:subClassOf,

19

rdfs:subPropertyOf, rdfs:domain and rdfs:range. RDFS also defines other built in

vocabularies, initially specified in the RDF model and syntax specification. RDF features

can be summarised as follows [Antoniou et al., 2005]:

• classes and their features,

• binary properties between objects,

• organisation of classes and properties into hierarchies,

• types for properties such as domain and range restrictions.

While RDFS allows for the representation of some ontological knowledge, it is limited

to typed hierarchies, subclass and sub-property relationships, domain and range restric-

tions, classes and instances. There are a number of other features, however which are

missing such as: local scope for properties, disjointness of classes, cardinality restrictions,

and special characteristics for relations such as transitivity, symmetry, uniqueness and

inverses.

The Web Ontology Language(OWL) extends upon RDFS in this respect by adding

more expressive semantics to cover the above limitations. Work began initially in 2001

on new ontological language to extend RDFS, with the result OWL, becoming a W3C

recommendation in 2004 [Bechhofer et al., 2004]. OWL provides the ability to express

axioms and definitions and extends upon RDFS with the aforementioned features, as

well as for example, equivalence between instances and classes and properties as well as

inequality between individuals.

OWL is structured into three layers of expressivity [Antoniou et al., 2005]:

1. OWL Lite, which permits the expression of definitions of axioms as well as some of

the features mentioned above.

2. OWL DL which provide for support for users who want maximum expressiveness

while retaining good computational properties, in particular, decidability.

20

3. OWL Full, which provides full expressiveness but with no computational guarantees.

In 2009, OWL 2 became a W3C recommendation and introduced new functionality

beyond OWL 1.0 such as keys, property chains, richer data types and data ranges, quali-

fied cardinality restrictions and asymmetric, reflexive and disjoint properties to name but

a few [W3C OWL Working Group, 2009]. Discussing the profile and rationale of OWL

2 is beyond the scope of thesis, as the ontologies described in later chapters are either

equivalent to RDFS or no more than OWL Lite in expressiveness.

Numerous vocabularies have emerged as a result of the Semantic Web initiative, of

which a limited number have gained widespread adoption and recognition including:

Dublin Core Metadata Initiative (DCMI), which is used to describe “core metadata for

simple and generic resource descriptions” [Nilsson et al., 2008], Simple Knowledge Or-

ganisation System (SKOS) [Miles and Bechhofer, 2009], which is used to share linked

data about thesauri, taxonomies, classification schemes and subject heading systems,

Friend of A Friend (FOAF) [Brickley and Miller, 2005] to describe people and organisa-

tions, Semantically-Interlinked Online Communities (SIOC) [Breslin et al., 2005] to de-

scribe online communities and Description of A Project (DOAP) for describing software

projects13.

2.1.2.2 Ontology Editing Tools

Ontology editors are applications designed to assist domain experts and ontology engi-

neers to construct and edit ontologies. The ontologies developed by such tools can be

represented in a variety of ontology languages and often offer functionality to export

the the developed ontology into different ontology language file formats. We provide

only some brief examples below, as a comprehensive survey of ontology authoring tools14

is beyond the scope of this thesis. For the inquisitive reader, however, we recommend

13See https://github.com/edumbill/doap/wiki, Accessed 31 Oct 2012

14http://www.w3.org/wiki/Ontology_editors, Accessed Wed 24 Jul 2013 15:08:06 IST

21

the reader to the following literature [Gómez-Pérez et al., 2007], [Corcho et al., 2003],

[Norta et al., 2010], [Cardoso and Escórcio, 2007] and [Buraga et al., 2006]. One exam-

ple is the NeON15 toolkit [Haase et al., 2008], which is a state of the art, open-source,

multi platform ontology engineering environment, which aims to provide comprehensive

support for the entire ontology engineering life cycle. The toolkit is based on the Eclipse

platform and provides a set of plugins to support all aspects of ontology engineering. An-

other well know tool, is Protégé16[Knublauch et al., 2004], which is a free open source

ontology editor that permits collaborative ontology engineering. It supports numerous file

formats for exporting ontologies including RDF(S), OWL and XML schema. With respect

to TopBraid Composer17, it is an example of an enterprise class modelling environ-

ment for building Semantic Web ontologies and applications. The tool is W3C compliant

and offers comprehensive support for developing, managing and testing knowledge models

as well as the subsequently populated knowledge bases. TopBraid also provides an API

for developing semantic client/server and browser based solutions. Another example is

the Hozo ontology development environment, which consists of Ontology Editor, Onto-

Studio and Ontology Server [Kou, 2002]. Ontology Editor provides an interface for the

user, in order to browse and modify the ontology as well as management of properties

within the concept hierarchy. Onto-Studio on the other hand assists users to design on-

tologies from technical documents, while finally Ontology Server manages all builds of

ontologies and models.

2.1.3 Linked Data

The term Linked Data refers to a set of best practices for publishing and linking data on

the Web. These practices have been widely adopted in recent years, ultimately leading

to a global data space of billions of assertions. Linked Data is about creating typed links

15http://neon-toolkit.org/Accessed Wed 24 Jul 2013

16http://protege.stanford.edu/, Accessed Wed 24 Jul 2013

17http://www.topquadrant.com/products/TB_Composer.html, Accessed Wed 24 Jul 2013 15:48:21 IST

22

between difference data resources via the Web. This may consist of linking heterogeneous

data resources in a single organisation together or linking data sources between organisa-

tions which are separated geographically. Linked Data is machine readable data which is

published on the Web. The meaning of the data is explicitly defined and links to external

data sources are provided, which may in turn link to other external data sources and so

on. While the Hypertext Web is based on HTML, which connects documents via untyped

links, Linked Data is dependent on documents containing data in RDF format.

As opposed to merely connecting documents with each other, Linked Data proposes

to exploit RDF in order to make typed statements about the world, resulting in the Web

of Data . For the novice reader, it may be unclear as to how to distinguish the Semantic

Web from Linked Data. The Semantic Web conforms to the notion of a Web of machine

processable data or the Web of Data. This is still the end goal, however the publishing

practices of Linked Data data are considered as the means or the process for reaching this

goal [Bizer et al., 2009].

Linked Data is based on a set of rules or principles outlined by Sir Tim Berners

Lee in 2006 [Berners-Lee, 2006a]. The Linked Data Principles have become a recipe for

publishing and connecting data using the infrastructure of the Web while also respecting

its architecture and standards. The principles are as follows:

1. use URIs as names of things.

2. use HTTP URIs so that people can look up those names.

3. provide useful information for when someone looks up a URI, using standards such

as RDF and SPARQL.

4. include links to other URIs, so that clients can discover more things.

With respect to publishing, it involves three basic steps:

1. Assign URIs to the entities described by the data set and provide for dereferencing

of given URIs over the HTTP protocol into RDF representations. In other words,

23

the URI should be able to be dereferenced in order to get the information about

the thing it represents in RDF and not a web page; the URI should act as global

identifier for a thing in the world.

2. Point RDF links to other data sources on the Web. This permits clients to navigate

the Web of Data as a whole by following links.

3. Provide metadata about published data in order for clients to assess the quality of

the published data as well as to choose between different forms of access.

The most prominent examples of the adoption and application of Linked Data is

the Linked Open Data Project. It is a grass roots community effort founded in 2007

supported by the W3C Semantic Web Education and Outreach Group. The ongoing

aim of this community is to bootstrap the Web of Data by lifting existing datasets into

RDF according to Linked Data principles and publishing them on the Web. Participants

were initially community researchers and developers, but this community has grown to

include significant input from large organisations such as the BBC, Thompson Reuters

and the Library of Congress. The growth has been precipitated by the open nature of the

project whereby anyone can participate so long as they adhere to the principles of Linked

Data. Content ranges from diverse sources such as data about locations, companies,

books, persons, television, media, music, scientific publications, health and life sciences,

government and much more (See Figure 2.2).

24

Figure 2.2: Linking Open Data cloud diagram, by Richard Cyganiak and Anja Jentzsch.

http://lod-cloud.net/, Retrieved Tue 23 Jul 2013 14:36:02 IST

2.2 Human Language Technology

A tension currently exists between rich semantic models in knowledge management sys-

tems and the continued prevalence of human language materials on the Web or within the

intranets of large organisations. For instance 80% of corporate data stores are expected

to consists of natural language material [Perna and Spector, 2004] and Gartner reported

in 2002 that for at least the next decade more than 95% of human -computer input will

involve natural language18.

Human Language Technology(HLT) involves the analysis, mining and production of

natural language and it has matured over the last decade to the point at which robust and

scalable applications are possible in a variety of areas, including Semantic Web/Linked

Data projects [Bontcheva et al., 2008]. Hence Semantic Web applications are now poised

to exploit HLT.

18http://www3.gartner.com/DisplayDocument?id=379859, Retrieved Wed 16 Jan 2013 17:56:45 GMT

25

This section is not an exhaustive review of HLT for the Semantic Web rather it seeks to

provide the foundations of enabling language technologies for enriching the Semantic Web.

Section 2.2.1 provides an overview of HLT origins vis a vis Language Engineering(LE).

We are particularly concerned with LE as it successfully converted scientific output from

both Computational Linguistics(CL) and Natural Language Processing(NLP) into real

world applications that are robust and scalable. Information Extraction(IE) and applied

Natural Language Generation(NLG) are examples of NLP research which have evolved

into HLT/LE products and disciplines. Hence, Section 2.3 defines IE and the subtasks

involved as well as metrics for measuring the performance of language analysers in IE

systems. In particular, we are concerned with finite-state parsing tools used in IE as

they are a core enabling technology for our controlled language tools and the research

contribution of this thesis. In Section 2.4 we discuss briefly Ontology Based IE (OBIE),

highlighting the role traditional IE plays in enriching ontologies, and likewise how ontolo-

gies can inform the IE process. Furthermore we discuss emerging performance evaluation

techniques for OBIE systems. Finally, in Sections 2.5 and 2.6, we provide an overview of

NLG and briefly review emerging research with respect to NLG for ontologies and offer

conclusions in Section 2.7.

2.2.1 History and Definitions

Firstly, we shall begin with a concrete definition of Language Technology also referred

to as Human Language Technology (HLT) which “comprises of computational methods,

computer programs and electronic devices that are specialised for analysing, producing or

modifying texts and speech. These systems must be based on some knowledge of human

language. Therefore language technology defines the engineering branch of computational

linguistics”19. HLT is a broad term for technologies that enable communication between

humans and computers. Furthermore, it is the term used for tools that mediate between

the human user and the machine. The technologies use knowledge about spoken and

19http://www.dfki.de/lt/lt-general.php, Extracted Mon Aug 18 12:28:42 IST 2008

26

written language and about developing computer software to recognise, analyse, interpret

and generate language20.

Historically, the term HLT owes its origins to the Telematics Applications Programme,

specifically the Language Engineering Project Directory supported by the European Com-

mission 21. This leads us to the term Language Engineering (LE), which is defined as “the

discipline or act of engineering software systems that perform tasks involving processing

human language. Both the construction process and its outputs are measurable and pre-

dictable. The literature of the field relates to both application of relevant scientific results

and a body of practice”. Essentially LE is concerned with scalable and robust language

processing applications, algorithmic and data/language resource reuse, performance mea-

surement of language processing algorithms and applications and efficacy. Furthermore,

LE does not concern itself with paradigm conflicts, such as empiricism vs rationalism

or linguistic competence vs linguistic performance models, which continue to simmer

within the NLP/CL communities. LE will apply or combine the most effective theoretical

model(s) for a given task, as it is concerned with measurable and predictable engineering

costs and outputs when constructing a language processing application. While the ori-

gin of the term LE can be traced back to COLING -88 [Cunningham, 1999], it was not

until the early 1990’s that the term become common across Europe, as a result of the

funding programme mentioned earlier, whereby the EC reported in 1996 that “Language

Engineering (LE) has successfully promoted a shift from long-term research activities to

more immediately feasible and industrially relevant research technology and development

themes by supporting projects aiming at market opportunities in the short term and the

medium term”. In the late 1990s the EC changed the title of the programme to Human

Language Technologies, a term which we can regard as roughly synonymous with LE

[Cunningham, 1999].

20http://www.itri.brighton.ac.uk/projects/euromap/explained.html Extracted Mon Aug 18
12:30:47 IST 2008

21European Commission Directorate General XIII, Luxembourg, 1996, See http://ec.europa.eu/dgs/
education_culture/valorisation/biblio-others_en.htm

27

2.3 Information Extraction

Information Extraction (IE) is a technology which analyses natural language texts in

order to extract useful snippets of information or facts. It may take written or spoken

text as input, and output fixed form, unambiguous structured data. The output can be

stored in a database, spreadsheets or displayed directly to the user [Cunningham, 2005].

A recent endeavour has been the linking of IE output to ontologies and their subsequent

population in order to produce a knowledge base. Ontology population is one outcome

of the recent application of IE to the Semantic Web called Ontology Based Information

Extraction (OBIE). The association and linking of semantic metadata to snippets of text

identified by IE is called Semantic Annotation. OBIE will be described later in Section

2.4 while Semantic Annotation will be reviewed in full in Chapter 3.

IE output can also be used as a preprocessing step within an Information Retrieval (IR)

engine such as Google i.e. at the indexing stage. Alternatively, the semantically typed

output or annotations within an IE system can be indexed themselves thus enabling a

form of Semantic Search. The system searches over semantic annotations of text snippets

; over types rather than over a bag of words. One should not confuse IR with IE. Classic

IR finds relevant texts for a given query, usually in the form of keywords and returns

them to the user, while IE analyses the text and presents only specific information,

based on predefined user specification or schema. So while IR returns documents for

a given domain, which would require subsequent manual analysis in order to create a

database or spreadsheet, IE can populates a record or spreadsheet automatically. IE

systems are more knowledge intensive to engineer than IR systems, and their efficacy is

dependent on the extraction task, the target domain or scenario. However, as the volume

of raw text continues to grow on the Web and within organisations, IE has the potential

to dramatically reduce the cognitive overload and time required to read through texts

retrieved via IR. In addition, the unambiguous output produced by IE has multilingual

implications whereby the structured snippets outputted by an IE systems are easier to

automatically translate as opposed to engaging in broad coverage machine translation of

28

documents returned via IR [Cunningham, 2005].

Historically, IE grew out of work in the late 1980s and 1990s in the Message Under-

standing Conferences(MUC) [?]. It dates back to early language computation task in the

1960’s collectively know as fact extraction. MUC was unusual at the time of its concep-

tion in that it employed strict quantitative evaluation and injected empiricism and proper

evaluation procedures into NLP research. Although, one could presume that this should

have been common practice as with other sciences, NLP was largely influenced then by

rationalism and linguistic theories and less so by empiricism or engineering practice.

The MUC competitions accelerated progress in IE. This has resulted in the produc-

tion of present day commercial tools such as Temis22, IBM Content Analytics23 and most

recently an association to the Semantic Web and Linked Data fields with semantic anno-

tation platforms and services such as KIM24 and OpenCalais25. Over the last 20 years

IE has matured with work on adaptive IE, applications within the contexts of business,

health care and marketing. This is also a renewed interest in opinion orientated IE with

the advent of social media [Cunningham, 2005]. This has culminated with the recent high

publicity of the IBM Watson Deep Question Answering project26 and the emergence of

Big Data Analytics (as the new hot topic). The beginning of the 21st century has seen

IE re-branded, re-marketed or subsumed under new buzz words such as Text Analytics,

Content Analytics, Next Generation Analytics with the most recent being Deep Analyt-

ics! Perhaps it is more so the case that IE has matured as a field both with respect

to tools and methodologies over the last 20 years and it is now poised to deliver useful

and cost-effective applications. Moreover, lessons learned from efforts such as MUC and

its successors in IE research and development have built up a community that can now

22http://www.temis.com/, Accessed Wed 24 Jul 2013 15:48:21 IST

23http://www-01.ibm.com/software/ecm/content-analytics/, Accessed Wed 24 Jul 2013 15:48:21
IST

24http://www.ontotext.com/kim, Accessed Wed 24 Jul 2013 15:48:21 IST

25http://www.opencalais.com/, Accessed Wed 24 Jul 2013 15:48:21 IST

26http://www.research.ibm.com/deepqa/, Accessed Wed 24 Jul 2013 15:48:21 IST

29

Figure 2.3: Performance trade-off relative to specificity and complexity for IE (extracted

from [Cunningham, 2005], Fri 18 Jan 2013 11:24:39 GMT

accurately predicate the cost effectiveness of the technology. This is summarised in Fig-

ure 2.3, whereby acceptable IE performance is measured as a trade off between domain

specificity and task complexity. The more complex the IE task e.g. entity extraction, re-

lation extraction or event extraction, the more specific the domain must be. Performance

in IE degrades when moving towards both higher levels of complexity and specificity.

Conversely, the simpler the data to be extracted, the easier algorithms can be retargeted.

In [Cunningham, 2005] the author describes how specificity is also multidimensional,

where the IE task is influenced by the text and genre i.e. whether the text is edited

newswire or business reports vs historical texts or user generated content or microblogging

content. We move now to describe five generic tasks in IE based on [Cunningham, 2005].

They are derived from the MUC-7 competitions [?] . The definitions of each task have

changed naming conventions and merged over time but the core tasks have remained

consistent and consist of:

• Named Entity Recognition (NE) or (NER) - the purpose of which is find and

classify names of locations, dates and organisations, amounts of money. In practice,

30

of course, the notion of what is a NE can be quite specific to the domain.

• Coreference resolution (CO), attempts to find identify relations of references be-

tween entities. Both NE and CO tasks were merged into a single entity detection

and tracking task (EDT) in the Automatic Content Extraction program - ACE

[Consortium, 2008], the successor to the MUC competitions.

• Template element construction (TE) which adds additional descriptive information

to NE output based on coreference.

• Template relation construction(TR), finds relations between entities. Both TE and

TR were collapsed into a relation detection and tracking task in ACE [Consortium, 2008]

and are described as relation extraction (RE) within the literature.

• Scenario template production (ST), which merges TE and TR results into predefined

event scenarios. It was renamed as Event Detection in ACE [Consortium, 2008]

If we take the following example fictitious text below as an example:

Eponymous Weyland corp acquires Microsoft. It was founded in 2014

by Sir Peter Weyland, industrialist, technoevangelist, who won the

Nobel Prize for Science in 2024.

NE would discover that Weyland corp and Microsoft are companies and that Sir

Peter Weyland is a person as well as the mentions of dates 2014 and 2024 and perhaps

that the Nobel Prize for Science is an award. CO would link the pronominal it to its

antecedent Weyland corp. The RE task would add information either to entity Sir Peter

Weyland as properties such that the entity is and industrialist and a techno-evangelist in

the form of is-a relations and perhaps even a royal title. Furthermore, it would discover

that Weyland Corp had acquired Microsoft and that its owner is Peter Weyland. Finally

event detection would pull the relations and entities and temporal information together

based on a predefined template scenario.

31

2.3.1 Performance and Metrics

As mentioned earlier, the MUC conferences were succeeded by ACE and the tasks became

more complex. In addition, ACE 2003 began to include hierarchical types such as entity

subtypes and relation subtypes which was an important step, whereby the community has

begun to recognise the need to factor the hierarchy of an ontology into IE competitions.

Since then, ACE has been replaced by the Text Analysis Conference(TAC)27. The original

MUC/ACE tasks are still are present under different categories but new tasks focus on

knowledge base population. New tasks can be proposed for review and inclusion annually,

which accommodates changes in the IE field. Event detection is not explicitly mentioned

in TAC 2012, however the announcement of the recent of 2012 Cold Start task 28 has

seen the inclusion of Semantic Web ontologies and query languages as well as Ontology

Based IE as a task within the IE field and community.

Evaluation metrics consist of the traditional IR precision and recall metrics adapted for

IE, in which precision is the number of correct answers divided by the number of answers

produced (See Equation (2.1)) and recall is the number of correct answers divided by all

answers in the gold standard(See Equation (2.2)).

The term gold standard or Key set, owes its origins to MUC. The gold standard

can be a human annotated corpus for a given task or templates created manually by

analysts [?]. Good practice is to conduct inter-annotator agreement with a minimum

of three annotators and adjudicate the annotations into a gold standard. For more in-

formation on inter-annotator metrics, we refer the reader to [Appelt and Israel, 1999].

As Appelt reports, inter-annotator agreement can be quite revealing with respect to the

task difficulty, where agreement between humans with regard to annotations can range

from 60% to 80%, despite considerable manual efforts, which may include many person

months. Consequently, when measuring the success of an IE task, one should factor in

inter-annotator agreement scores. IE (and IR) systems tend to experience a trade off

27http://www.nist.gov/tac/, Accessed Wed 24 Jul 2013 15:48:21 IST

28http://www.nist.gov/tac/2012/KBP/task_guidelines/, Accessed Wed 24 Jul 2013 15:48:21 IST

32

between precision and recall. This may also be driven by needs of the IE application.

More results may preferred than correct ones. so higher recall or coverage and vice versa

accuracy may take precedence. So the facts returned they must be correct or have high

precision even at the risk of missing possible facts. This trade-off is measured in the form

of the harmonic mean of F- Measure. It is the weighted average of both precision and re-

call. The equation is presented below, where β is a adjustable parameter representing the

relative importance of precision and recall (See Equation (2.3)) [Appelt and Israel, 1999]:

Precision =
Correct Answers

Answers Produced
(2.1)

Recall =
Correct Answers

Total Correct Answers
(2.2)

Fβ = (1 + β2) ·
R · P

(β2 · P) +R
(2.3)

In [Cunningham, 2005] the author argues that IE as a task has plateaued at 60% of

human performance. The F-Measure varies depending on the IE task. Though this may

initially come across as not very optimistic, one needs to factor in the upper bounds of

inter annotator agreement. Furthermore the F-Measure varies for each IE task, with NE

maintaining on average an F measure of 95% and CO at 50 -60%. The RE task can reach

75% F-Measure, while the event extraction/scenario template tasks score at 60%. We

note that human inter-annotator scores for this task can be as low as 80%.

2.3.2 Approaches to developing IE systems

IE systems have been historically developed using either one of two methods: the (1)knowl-

edge based approach or (2) the trainable/machine learning systems approach. In practice

a hybrid approach is often taken. Furthermore, deciding on which approach to take de-

pends on the IE task, available resources and time constraints. The knowledge based

IE approach which is rule based/linguistic pattern based, requires basic preprocessing

33

and shallow natural language analysis techniques, i.e. tokenisation, sentence splitting,

lemmatisation, part-of-speech(POS) tagging and will use finite state dictionary/gazetteer

lookup for important domain specific trigger phrases and terms.

With respect to trainable IE systems, they can be based on statistical/probabilistic

models or machine learning approaches, which are data driven. These systems learn

rules/patterns from training data and interaction from users, but they require large

amounts of quality training data.

As mentioned earlier, neither approach is preferred and in practice a hybrid approach

is best. Furthermore, the knowledge based approach can be used to bootstrap the creation

of a gold standard training set where none exists. In addition, rule based linguistic infor-

mation can be converted into features for learning algorithms. For further details, with

respect to choosing the best approach, we refer the reader to [Appelt and Israel, 1999]. In

the work presented in this thesis, we take a rule based approach for building our CNL sys-

tems. We enforce determinism into our partial parsing tools and build a set a Controlled

Language IE or CLIE tools (see Chapter 4). In the next section, we describe briefly a real

world NLP framework for IE - GATE and discuss partial parsing methods using GATE’s

pattern matching over annotations engine - JAPE. Both GATE and JAPE play a crucial

role in the development of the CNL based tools described later in this thesis.

2.3.3 GATE - Information Extraction in practice

GATE(General Architecture for Text Engineering)[Cunningham et al., 2002] is an frame-

work for developing and deploying software components that process human language.

It provides a set of NLP tools such as: a tokenizer, a gazetteer, POS(Part of Speech)

taggers, chunkers and parsers - collectively called Processing Resources (PRs). Language

Resources (LR)s on the other hand consist of corpora, documents, ontologies and anno-

tation schemas. The architecture supports plugins for managing and extending PR and

LRs, called CREOLE (Collection of Reusable Objects for Language Engineering). GATE

also provides for a graphical user interface for developing NLP applications. It is an ex-

34

tremely widely used and recognised open source NLP tool for reusable experiments and a

de-facto standard for NLP applications. GATE was chosen as the platform to carry out

this research in this thesis because it is one of the few (if any) open source frameworks

with ontology aware IE capabilities.

2.3.4 Partial Parsing for IE

Partial or shallow parsing is often applied to many IE tasks, in particular the NER task.

IE systems do not aim for full text understanding and do not extract all possible in-

formation, rather they aim to identify and classify segments of text containing valuable

information. Consequently, complete and complex parsing is not always required to per-

form extraction and furthermore to do so would not be cost-effective both with respect to

speed and robustness of the IE system. In addition, the majority of the output produced

from full parsing may ultimately be discarded. Furthermore, with respect to performance

this would also be a waste of processing time.

One approach to partial parsing is applying a cascade of finite state transducers or

(FST)s. An FST is a finite state machine (FSM) which maps between two sets of symbols.

While a FSM defines a formal language by defining a set of strings, FST defines the

relation between two sets of strings.

A major advantage is that output from an earlier transducer can be passed as output

to another transducer for further use, constituting a cascade of finite state transducers.

An FST can be equivalent in recognition power to a regular or Type 3 language in the

Chomsky hierarchy [Chomsky, 1956]. A context free grammar or Type 2 grammar is

required to recognise most fragments of English, however a cascade of FSTs can more

closely approximate a context free grammar.

The intent is to produce flat syntax trees or chunks as oppose to a deep tree structure

produced with deep parsing. Parse trees within FSTs are produced in a bottom up fashion

and links are created between all the major constituents.

Cascaded finite state transducers form the parsing engine of the FASTUS IE system,

35

which was crafted for the MUC-3 competition [Onyshkevych et al., 1993]. It performed

extremely well in the competition [Hobbs et al., 1996]. FASTUS was influenced by work

on finite state approximations of context free grammars [Pereira and Wright, 1991]. An

interesting observation was that complex verbs could be collapsed into a single category

for parsing. So for example “to attack” could be paraphrased as ” to conduct an attack”

or ” engage in an attack”. Rather than attempting to write rules to cater for all the

examples above. Each variation was stored in a list and collapsed into a VG-Attack

category. Hence, only one pattern was required which was subsequently exploited by

later transducers within the cascade. The parsing tools used in our controlled natural

language systems are similar to those used in FASTUS.

JAPE - Java Annotation Patterns Engine is the pattern matching over annotations lan-

guage used in GATE. JAPE is compiled into a cascade of finite-state transducers. It pro-

vides finite state transduction over annotations based on regular expressions and is based

on Common Pattern Specification Language (CPSL)[Appelt and Onyshkevych, 1998], de-

veloped by Doug Appelt, the lead developer of FASTUS, which we described earlier.

While typically regular expressions are applied to character strings, a simple linear

sequence of items, in the case of JAPE matches over annotations produced from previous

linguistic analysis steps within a GATE pipeline. JAPE can be applied to several lan-

guage analysis tasks such as lexico-semantic patterns [Jacobs et al., 1991], finding named

entities as well as Noun Phrase (NP) and Verb Phrase(VP) chunking. However, it can

also act as a utility language for manipulating annotation output of other language anal-

ysers such as a deep parser or other types of processing i.e. bootstrapping and preparing

a manually annotated a corpus for processing by a machine learning algorithm.

In certain cases, the matching process is non-deterministic. This is the result of

varying in memory addresses of annotation data stored in the Java Virtual Machine

(JVM), however the majority of patterns can be matched deterministically. One can also

manipulate the control over matching in JAPE, essentially enforcing determinism, which

results in a sequential transducer.

36

A JAPE grammar consists of a set of phases, each of which consists of a set of pat-

tern/action rules. The phases run sequentially and constitute a cascade of finite state

transducers over annotations. The left-hand-side (LHS) of the rules consist of an annota-

tion pattern description (including standard regular expression operators such as optional

(?), or match zero or more (*), one or more (+), or some specified number of times and

‘|’ for logical or) . The right-hand-side (RHS) consists of annotation manipulation state-

ments. Annotations matched on the LHS of a rule may be referred to on the RHS by

means of labels that are attached to pattern elements. Consider the following example:

Phase: University

Input: Token Lookup

Options: control = appelt debug == true

Rule: University1

(

{Token.string == "University"}

{Token.string == "of"}

({Lookup.minorType == city}):cityName

):orgName

-->

:orgName.Organisation = {kind = "university", rule = "University1"}

The LHS is the part preceding the → and the RHS is the part following it. The

LHS specifies a pattern to be matched to an annotated GATE document, whereas the

RHS specifies what is to be done to the matched text. In this example, we have a

rule entitled University1, which will match text annotated with two Token annotations

37

with a string feature of University and of, followed by additional text annotated as a

Lookup with minorType of city. A typical GATE IE pipeline would normally consist of

a finite state gazetteer lookup of common named entities and as well as trigger phrases.

Lookup.majorType==city, corresponds to a mention of a major city found in the task

i.e. Dublin, Sheffield, Galway, Berlin. A Lookup corresponds to any gazetteer generated

dictionary lookup annotation. In this case we are constrained to the flat taxonomy of the

gazetteer to only match cities via the feature minorType==city. With respect to Token

annotations, these are outputted by a standard tokeniser, executed in a earlier stage of

the pipeline. The rule mixes both lexical and flat semantics, hence it is an example of a

lexico-semantic pattern for named entity recognition.

Once this rule has matched a sequence of text, the entire sequence is allocated a

label by the rule, and in this case, the label is orgName. On the RHS, we refer to this

span of text using the label given in the LHS; orgName. Hence, this text is assigned an

annotation of type Organisation and a rule feature set to University1 and another

feature kind with the value set to university . Features in GATE are arbitrary attribute

value pairs. The values can be primitives in JAVA such as integers, booleans or string

values or references to annotation objects or any Java object i.e. a list. They are useful

for storing linguistic or semantic information, additional context information as well as

debugging information, such as which JAPE rule fired to create the annotation, in this

case University1.

The beginning of the JAPE grammar contains a phase name, e.g. Phase:Organisation1.

JAPE grammars can be cascaded, and so each grammar is considered to be a ‘phase’.

The phase name makes up part of the JAVA class name for the compiled RHS actions.

The list of the annotation types to be uses in the grammar is specified using Input:

Lookup Token because the only annotation types we use on the LHS are Lookup and

Token respectively. If no annotations are defined, all annotations will be considered for

matching. Although it is not visible in this case, one can embed JAVA code in the RHS of

a JAPE rule. Consequently one can manipulate and even delete matched annotations or

38

access the entire annotation set and any annotations produced by preceding JAPE phases

or any other language processors. The ability to manipulate the annotation set, can in-

troduce a form of memory and even backtracking for each rule so the JAPE language can

approximate the recognition power of a context free grammar.

With respect to options in a JAPE grammar there are the following options:

• Control; in this case, appelt. This defines the method of rule matching which is

longest match

• Debug. When set to true, if the grammar is running in Appelt mode and there

is more than one possible match, the conflicts will be displayed on the standard

output.

Of particular interest is the Control option, of which there are the following different

settings:

• appelt, only one rule can be fired for the same region of text, according to a set of

priority rules. Priority operates in the following way:

– From all the rules that match a region of the document starting at some point

X, the one which matches the longest region is fired.

– If more than one rule matches the same region, the one with the highest priority

is fired

– If there is more than one rule with the same priority, the one defined earlier

in the grammar is fired.

• first - the rule fires for the first match that’s found. This makes it inappropriate

for rules that end in ‘+’ or ‘?’ or ‘*’. Once a match is found the rule is fired; it

does not attempt to get a longer match.

• once - style, once a rule has fired, the whole JAPE phase exits after the first match.

39

• brill - fire all matches on a segment of text. Hence text segments could be allocated

more than one entity type. No priority ordering is necessary. Brill will execute

all matching rules starting from a given position and will advance and continue

matching from the position in the document where the longest match finishes.

• all - is similar to Brill, in that it will also execute all matching rules, but the

matching will continue from the next offset to the current one.

What is important is the the control options above, if combined appropriately, can

enforce deterministic finite state transduction over annotations. This forms the basis for

parsing for Controlled Language IE tools - CLIE in GATE, which, as we will show in

Chapters 4 and 5, allows us to parse the CLOnE language and author an ontology. CLIE

also serves as an enabling technology for our controlled annotation tools in Chapter 6.

2.4 Ontology based Information Extraction (OBIE)

Ontology based Information Extraction (OBIE) has recently begun to emerge as a subfield

of IE. The term was roughly conceived a few years ago [Wimalasuriya and Dou, 2010],

although work was carried out by Hwang on ontologies from text as early as 1999

[Hwang, 1999]. Recently there have been many publications produced concerning OBIE,

including a workshop [Adrian et al., 2008]. Many of these systems are related to ongoing

projects. An ontology based IE system is a system that processes unstructured or semi

structured natural language text, while guided by an ontology, in order to extract use-

ful facts or snippets of information and subsequently present the output as an ontology

[Wimalasuriya and Dou, 2010]. While OBIE is a new field, there is a general consensus

that is has significant potential. Although IE, and by extension OBIE, is critical for

converting a large portion of unstructured text on the Web into structured facts, OBIE

also has a crucial role with respect to bootstrapping the Semantic Web, which is critically

dependent on the creation of semantic content. While the Linked Data movement has

been extremely successful at converting non semantic web structured data into semantic

40

web data formats, the progress of creating of semantic content from unstructured text

has been slow. As discussed by Popov et al [Popov et al., 2004], “it is difficult to imagine

that the creation of semantic content will happen in a manual fashion and consequently

automatic metadata generation is essential in order to make the Semantic Web real”.

Hence web pages must be embellished with semantic metadata a process know as se-

mantic annotation [Handschuh, 2005, Cimiano et al., 2004]. While there is considerable

overlap between Semantic Annotation and OBIE, a strict distinction can be made be-

tween both of them, in that at OBIE is concerned with populating the ontology and

knowledge base from text (and also, as mentioned earlier the ontology’s hierarchy is used

to guide and inform the extraction process), while Semantic Annotation is concerned with

associating ontological information to portions of the text i.e. associating the URI of a

concept in an ontology to a mention of that same concept in text. Mentions are captured

typically in IE systems as standoff-markup or annotations. Hence, OBIE will modify the

ontology while Semantic Annotation will modify the text. Note that there is a many to

one relationship between multiple mentions of an instance in ontology in text and the

actual single instance in the ontology, which may have been extracted from text (this

is is not limited to instances of classes, but may occur at the class level, datatype and

object property levels). Typically, if an instance is not in the ontology, the portion of text

contained in the discovered mention is extracted and used to populate the ontology with a

new instance. Subsequent mentions or referents in text to the instance are also extracted

but are stored as additional labels of the instance. Labels of instances can be used for

further re-identification of the instance in text. Additionally, semantic annotation serves

as quality assurance process for the ontology by:

1. tracking the provenance of a newly created instance of relation in the ontology.

Hence the original source of the extraction can be traced for any errors in the

ontology.

2. testing whether an ontology is, at the class level, a good representation of the target

41

domain.

Providing a review of OBIE systems is beyond the scope of this section, but rather

OBIE systems will be reviewed in the context of automatic semantic annotation platforms

in Chapter 3. We move next to provide an overview of OBIE tools in the GATE platform

as they provide the backbone for the Controlled Language IE (CLIE) tools on which the

CNL research for ontology authoring and semantic annotation in this work is based.

2.4.1 Ontology Based IE tools in GATE

There are several resources available in GATE to support working with ontologies as

well as enriching linguistic analysis with the hierarchical properties of an ontology. They

consist of the following:

• The Ontogazeteer29 is a hierarchical gazetteer, which associates the entities from a

specific gazetteer list with a class in an ontology loaded in GATE. The ontogazeteer

contains mappings between lists and class URIs. When the ontogazeteer is executed

on text, for a given mention of a class or instance, a Lookup annotation is created

and a feature is attached which contains a URI reference to the corresponding

ontology resource. The ontogazeteer is useful for small ontologies, where accuracy

is critical and in addition the IE developer is not constrained by time, since the

mapping file must be created manually.

• The OntoRootgazeteer30 is a type of a dynamically created gazetteer. It combines

with few other generic GATE resources such as the tokeniser, sentence splitter, POS

tagger and morphological analyser. It is capable of producing ontology-based anno-

tations over the given content when provided with an ontology. In order to produce

annotations, it is essential to pre-process the ontology resources (e.g., classes, in-

stances and properties) and extract their human readable lexicalisations. The names

29http://gate.ac.uk/sale/tao/#x1-32900013.3

30http://gate.ac.uk/sale/tao/#x1-33800013.8, Accessed Wed 24 Jul 2013 15:48:21 IST

42

and labels for all resources from the ontology are processed using the generic GATE

processing resources mentioned above in order to create an in memory gazetteer.

Similar to the Ontogazeteer, when the OntoRootGazeteer is executed over text, a

Lookup annotation for the corresponding mention of a class or instance is created

and a feature is attached which contains a URI reference to the corresponding on-

tology resource. The ontogazeteer is useful for small to medium size ontologies,

but may over-generate lexicalisations and sacrifices accuracy over coverage. It is an

extremely useful preprocessing tool if the IE developer is constrained by time and if

the manual mapping process necessary to use OntoGazeteer is too time consuming.

• The Large-Knowledge Based Gazetteer31 provided by Ontotext32 provides support

for ontology-aware NLP. One can load any ontology from RDF and then use the

gazetteer to obtain Lookup annotations that have both instance and class URI

features. Currently, the large KB gazetteer does not use GATE ontology language

resources. Instead, it uses its own mechanism to load and process ontologies. The

Large KB gazetteer grew out of the semantic search platform Ontotext KIM and

was developed by the KIM team33. In order to use the gazetteer, one must create an

empty dictionary, create a configuration file to connect to the local RDF ontology or

remote Sesame RDF database to be used and specify a SPARQL or SERQL query

that will retrieve a subset of that ontology as a dictionary. It is extremely suitable

for enabling ontology aware lookup in text, using resources from the Linked Data

Cloud.

• Ontology Aware Finite State Transduction34combines the power of ontologies with

JAPE’s pattern matching mechanisms and can ease the creation of applications.

It is example of using an ontology to aid the IE task. An ontology aware JAPE

31http://gate.ac.uk/sale/tao/#x1-34400013.9, Accessed Wed 24 Jul 2013 15:48:21 IST

32www.ontotext.com, Accessed Wed 24 Jul 2013 15:48:21 IST

33http://www.ontotext.com/kim, Accessed Wed 24 Jul 2013 15:48:21 IST

34http://gate.ac.uk/sale/tao/#x1-38600014.10, Accessed Wed 24 Jul 2013 15:48:21 IST

43

transducer will treat all occurrences of annotations with the feature class differ-

ently from other features. In ontology-aware mode the matching between two class

values will not be based on simple equality but rather hierarchical compatibility.

For example if the ontology contains a class named ‘Politician’, which is a sub class

of the class ‘Person’, then a pattern of Entity.class == ‘Person’ will success-

fully match an annotation of type Entity with a feature class having the value

‘Politician’. If the JAPE transducer were not ontology-aware, such a test would

fail. This permits the IE expert to right generic rules for pattern matching as rules

that apply to several types of entities mentioned in the text can be written using

the most generic class they apply to and the rules do not need to be repeated for

each subtype of entity.

• The GATE Ontology API 35 hides the details of the actual back-end implementa-

tion and allows for the simple manipulation of ontologies by modelling ontology

resources as easy-to-use Java objects. Ontologies can be loaded from and saved to

various serialisation formats i.e. RDF/XML, N3, N-triples or Turtle syntax. The

GATE ontology support roughly conforms to the representation, manipulation and

inference of OWL-Lite.

• The Ontology Annotation Tool - OAT 36 is a GATE plugin, which enables a user

to manually annotate a text with respect to one or more ontologies. The required

ontology must be selected from a pull-down list of available ontologies. The OAT

tool supports annotation with information about the ontology classes, instances

and properties. In addition, it allows the user to manually populate ontologies from

text. Furthermore, there is a Relation Annotation Tool - RAT, which is designed

to annotate a document with ontology instances and to create relations between

annotations with ontology object properties. It is compatible with OAT, but the

35http://gate.ac.uk/sale/tao/#x1-35300014, Accessed Wed 24 Jul 2013 15:48:21 IST

36http://gate.ac.uk/sale/tao/#x1-35300014, Accessed Wed 24 Jul 2013 15:48:21 IST

44

focus is on relations between annotations.

As mentioned earlier, this section does not provide an exhaustive review of OBIE

systems, rather we survey them in Chapter 3, under automatic semantic annotation sys-

tems. However, worth noting, are recent developments with respect to ontology driven

approaches using learning systems for entity and relation extraction. Regarding entity

extraction, recent work uses a machine learning algorithm, modified to take advantage

of the hierarchical structure of the ontology [Li and Bontcheva, 2007]. The OBIE learn-

ing algorithm is based on the Hieron large margin learning algorithm for hierarchical

classification [Dekel et al., 2004]. It exploits the class label structure by learning a Per-

ceptron model for each class and ensures that the proportion of distance between two

classes is close in the tree hierarchy. The authors evaluated their systems on a corpus

of almost 300 news articles within the business, international and UK political domains.

The corpus was manually annotated according to the Proton ontology37. As no baseline

OBIE systems was available, they compared the modified Hieron algorithm to two tradi-

tional learning algorithms, Support Vector Machines - SVM and Perceptron with Uneven

Margins - PAUM [Li et al., 2005]. The modified Hieron engine outperformed learning

algorithms with respect to conventional F-measure.

OBIE research has tended to focus efforts on populating ontologies with concept in-

stances, but recently methods for extracting properties between instances using ontologies

as as a guide have began to emerge. In [Wang et al., 2006], the authors, provide a learn-

ing approach for ontology based relation extraction. The Support Vector Machine(SVM)

algorithm is chosen for the relation extraction task [Wang et al., 2006] and GATE NLP

tools are applied to the corpus (taken from the ACE2004 data), to create a set of up

to ninety-four features. Using the SVM engine, the relation extraction problem is con-

verted into a multi-class problem, so SVM, being a binary classifier is converted into one

against many (a combination of binary classifiers). The features used for the learning al-

gorithm include shallow features such as word features, part of speech (POS) categories,

37http://proton.semanticweb.org/, Accessed Wed 24 Jul 2013 15:48:21 IST

45

entity subtypes and class information. Deeper features consisted of chunk parse informa-

tion, full syntactic parse information and dependency trees as well as Wordnet features

[Oram, 2001]. For the relation extraction task, they assume the presence of two entities

as arguments per candidate relation and in addition they assume that the entities per

relation are correct. They found that a liner SVN kernel gave the best precision. The

performance of the systems with word features only gave an F1 measure of 31%, while

when augmented with additional part of speech and entity features, F measure increased

to 56.78%. This is comparable to the best reported results of 55% in the ACE 2003 com-

petition. Entity features including the hierarchical features, which were available from

the test corpus used from the ACE 2004 competition, gave the best improvements. In-

terestingly, the authors noticed a trade off between computational and training resources

and an improvement of only 2% for deep features.

2.5 Natural Language Generation

Natural Language Generation(NLG) is the production of natural language text from

some non-linguistic source such as knowledge base or database [Reiter and Dale, 2000].

NLG systems combine linguistic knowledge and application domain knowledge to auto-

matically produce reports, support authoring aids, provide textual explanations and help

messages as well as generate technical documentation. One example of an NLG system is

FOG [Goldberg et al., 1994], which produces weather reports in English and French when

provided input in the form of a graphical weather depiction. NLG is closely related to

Natural Language Understanding (NLU), the study computer systems that understand

human language. Both NLU and NLG fields combine to form the field of NLP. While

one could view NLG at an abstract level as the inverse of NLU, the internal operations

and tasks differ for both. As described by McDonald [McDonald and Bolc, 1988], NLU

is concerned with hypothesis management, in other words, finding the appropriate inter-

pretations from multiple hypothesis at any given stage within the NLU process. NLG on

the other hand is concerned with choice, in otherwords it is goal driven, so given several

46

different methods available for achieving a desired goal which one should be used?

While reversible NLU/NLG systems have an intuitive appeal and have been the subject

of some research [Pereira and Warren, 1980], they are in fact difficult to construct in

practice. This is because important in issues in NLU do not necessarily always have a

direct equivalent in NLG i.e. poor spelling and grammatical errors are not of concern to

NLG. In addition, the representations produced by parsers differ from the input formats

required by most realisers. Hence, these fundamental incompatibilities make it difficult to

build a systems that can both parse and realise natural language [Reiter and Dale, 2000].

Consequently, it is unlikely that NLG can ever be viewed as NLU in reverse.

There are a number of options to consider when deciding on whether NLG techniques

are appropriate such as: whether or not graphical visualisations would provide a better

user experience? Whether text is the right presentation medium? What is the degree of

variation in the text? Finally, whether automation is justifiable with respect to volume,

speed and consistency requirements? Analysis requirements, when building an NLG

system, aside from analysing the clients and the proposed functionality, require a corpus

based approach, which consists of providing text examples of output for the proposed NLG

system. An initial human authored corpus is assembled consisting of output examples

which are aligned to non linguistic input data. Then the corpus is analysed in terms of

input data and corpus content. A target text corpus is developed and a formal functional

specification is created. Factors to be considered are unchanging text (canned text),

directly available data (facts in the knowledge base), computable data (knowledge that

can be inferred) and unavailable data(where additional external knowledge is required).

Current NLG systems can be classified into two modes of user interaction:

• static systems that produce texts as a whole which are read later by users i.e.

technical documentation. These systems do not receive direct user feedback.

• Interactive systems that generate explanations or dialogue. They track user in-

teraction history and build up a user model and adapt to user feedback.

47

Another factor to take into consideration is the modality of the system i.e. whether

the generated output is multimodal in that it contains graphics, sounds, gestures videos

and other media? Document formatting of output is also an issue particularly when

generating hypertext. This becomes even more complex when generating a combination

of both multimedia and hypertext or hypermedia.

2.5.1 Generation Architectures and Tasks

With respect to generation component tasks, although researchers differ on when to

include or exclude each one, the consensus is that the NLG common tasks are:

• Content determination, which is the process of deciding what entities, concepts

and relations to choose from the knowledge base to present to the user. Messages

are constructed from the underlying knowledge base/input data source. Messages

are aggregations of data that may correspond to the meaning of a word or phrase.

Messages are based on entities, concepts and relations.

• Discourse planning, which involves organising, ordering and structuring the

propositional content into coherent units, paragraphs, documents. The task is

concerned with issues such as conceptual grouping and rhetorical relations. Both

content determination and discourse planning output messages in the form of text

plans.

• Sentence aggregation or planning: One to one mapping from messages to

sentences can result in influent text. Hence, messages must be combined to larger

more complex sentences. The output of this task is a sentence specification or

sentence plan. Sentence planning involves both combining or eliminating linguistic

structures to produce more fluent/concise texts.

• Referring expression generation involves choosing appropriate expressions to

identify entities (e.g. choosing between the woman at the window and the pronoun

48

she). A major issue is the avoidance of introducing any ambiguous referent in

order to ensure that the hearer/reader recognises what entity is being talked about.

However, there is a trade off between avoiding introducing ambiguity and reducing

text fluidity.

• Lexicalisation is concerned with choosing particular words within the system lex-

icon for a particular language in order to express concepts, relations.

• Linguistic realisation is concerned with the grammatical rules for forming words

- morphological realisation (such as walk + ed to realise the past tense of to

walk) and sentence aggregation is concerned with syntax realisation, which is

the rules for sentence formation. So whether the subject should proceed the verb

and when both subject and verb should agree in number. Finally, orthographic

realisation is concerned with issues such case, punctuation, font, column width

and rules such as all sentences should start with an upper case letter and that

sentences should merge when an abbreviation symbol is encountered.

Aside from text oriented tasks, others issues that should be taken into consideration

are speech and multimedia tasks such as ordering, segmentation, media allocation and

generation. For related work, with respect to multimodal generation systems, we refer

the reader to [Maybury, 1995]. While researchers differ with respect to generation tasks

and their place in system architecture, the general consensus is that NLG architecture

can be broken down into a pipelined architecture consisting of the following components

[Reiter, 1994]:

• Content Section and Discourse Planning (Text Planning): This component

involves starting with the communicative goal and making all the necessary choices

to select content from the knowledge base. Both content selection and discourse

planning are not always clearly separated. In addition, some systems perform se-

mantic and conceptual aggregation at this stage. The most common approach to

discourse planning or text planning is to use text schemas. It is used quite often

49

in applied NLG systems because of its efficiency. Text schemas encode and plan

the structure of the text in a template. The output of the stage within the NLG

pipeline is an intermediate representation called a sentence plan.

• Sentence Planning or micro planning is concerned with expressing the content

chosen from the knowledge base as sentences. The task of sentence planning is to

map conceptual structures into linguistic ones by selecting the corrected syntac-

tic structure, aggregating sentences and paragraphs, selecting the correct content

words(lexicalisation) and choosing the correct referring expression for a content

word. The output at this stage is called a sentence plan

• Surface Realisation: the purpose here is to use syntactic information to convert

sentence plans into actual text. A grammar of the target language is used to realise

correct output i.e. subject verb agreement, handling of reflexives and generation of

correct morphology.

NLG tasks use input from several knowledge sources, in order to generate correct

output. The most fundamental knowledge source is the knowledge base itself which

contains all the necessary information to realise the desired communicative goal. This

knowledge may be domain specific or domain independent and may be derived from ex-

isting external sources such as the upper ontologies. Furthermore, the knowledge may

have been crafted manually by an ontology engineer or acquired via a knowledge extrac-

tion application. Another source of knowledge can be the discourse interaction history,

whereby cached generated text can be reused to avoid repetitious processing. In addi-

tion, user models can also serve as an input knowledge source, whereby the beliefs, goals,

intentions and profile of the user can influence each stage in the NLG pipeline. Further-

more, linguistic knowledge, in the form of grammars, also plays a crucial role. Types of

grammars are systemic grammars [Mann et al., 1983], unification grammars such as Func-

tional Unification Grammar(FUG) [McKeown et al., 1990] and General Phrase Structure

Grammar(GPSG) and GPSG augmented with referents [Sigurd, 1991], Tree Adjoining

50

Grammars (TAG)s [Joshi, 1987] bidirectional or reversible grammars [Wilks, 1990]. Fi-

nally, grammars can be encoded as templates (modern template systems are XML based)

[Reiter, 1995, Wilcock, 2005], which have been enriched with some morphological and

lexicalisation tools. Finally, lexicons also play an important role. Typically a lexicon

will contain information such as part of speech categories for a lexical entry as well word

senses and morphological derivational and inflectional rules for each entry. Ontology-

lexica [Buitelaar et al., 2009a] will begin to play an important role here, whereby an

ontology can be lexicalised and compiled into internal dictionary resources of NLG ap-

plications i.e. ontology verbalisation of controlled language [Davis et al., 2012].

2.5.2 Shallow versus Deep Generation

Shallow NLG involves the use of canned text and templates. Such NLG systems are

highly domain dependent. They are efficient and fast, easy to implement by non NLG

specialists and in particular the experts of the knowledge domain. However, the the

disadvantage is that they can become difficult to maintain. For instance, if a system is

retargeted to a new domain of knowledge, linguistic resources must be redesigned from

scratch, or alternatively if there is an extension to the knowledge base or a linguistic

resource is required, additional templates must be written. Hence, as more templates are

added to the existing database over time, they can become difficult to maintain. This is

obvious when more syntactic variability is required, as more templates must be written.

In addition, both text planning and sentence planning capabilities can be quite restricted

in template based NLG system [Reiter, 1995]. Furthermore, shallow NLG systems have

more difficulty coping with a domain shift.

Deep Generation systems on the other hand are very maintainable with regard to ex-

tending the linguistic output of the system. Usually this can be done with minimal effort

in contrast to template systems. As they are based on linguistically well informed knowl-

edge and grammars, there is a risk of over-generation, however these systems produce

higher quality text output and are flexible with regard to sentence aggregation. They

51

can handle low level linguistic phenomena such as morphology and number agreement

with ease while with shallow/template NLG systems, the ability to handle such syntactic

realisation can be programmatically expensive. However, NLG expertise is required to

maintain the systems, which may be difficult to obtain. Although, deep NLG systems can

also offer high quality multilingual output, this may not be cost-effective to implement

in particular if localised strings within a template NLG system are deemed sufficient.

However, other scenarios may view quality output as a crucial requirement. Finally, deep

NLG systems can play a role in enforcing document standards such as writing standards

for AECAM Simplified English38 or controlled languages used in technical writing.

More recent approaches to NLG involve the use of XSLT [Reiter, 1995](discussed ear-

lier), which is essentially template based generation but has more powerful language

processing capabilities. Stochastic approaches are also in use where the deep generation

grammar is replaced by a stochastic language model [Oh and Rudnicky, 2000]. Finally,

the third modern approach to NLG is that of hybrid NLG [Klarner, 2004b]. Hybrid NLG

can take the following forms:

• i)Template/shallow based NLG with embedded elements of deep NLG or

• ii) Deep NLG with embedded elements of Shallow NLG, or

• iii)Concurrent Deep and Shallow NLG.

HyperBug [Klarner, 2004a] is an example of (iii), where tactical generation or linguistic

realisation is achieved by means of either deep generation or surface generation based on

a decision module. Both approaches return a surface structure, however in the case of the

deep generation part, the module supplies an additional third bootstrapping quality to

the system, whereby the module in addition to the outputted surface structure, returns

a template for storage within the shallow NLG database and a reference to the decision

module. Hence, subsequent input with a similar semantic structure can be realised faster

by using a template without having to call the deep generation module again.

38http://www.asd-ste100.org/, Accessed Wed 24 Jul 2013 15:48:21 IST

52

With respect to evaluating NLG systems, increased efforts towards improving evalu-

ation methodologies are needed. The problem is largely due to less activity in the NLG

field in comparison to NLU. Another problem, is the lack of well defined input and out-

put for NLG systems [Wilks, 1990]. NLG systems vary in their input, domain, tasks

and target media, and furthermore evaluation techniques within NLU cannot be simply

transferred across to NLG [Bontcheva, 2003, Wilks, 1990]. Consequently, it is difficult

to objectively compare NLG systems. NLG systems tend to be evaluated in a extrinsic

or black-box manner. This type of evaluation does not focus on any particular module

in the NLG system but evaluates the system in its entirety. This may involve asking

users to judge the quality of the NLG output. Users may be asked to conduct a repeated

measures task based evaluation, whereby they are requested to interact with two versions

of the system and complete a set of tasks. Typically, they are provided with some back-

ground knowledge and set of multiple choice questionnaires in order to quantitatively

measure the results. Other types of evaluation are glass-box testing where, a particular

module in the NLG system is targeted for evaluation. In the context of this thesis, we

apply a black-box technique, as the NLG component within RoundTrip Ontology Au-

thoring (ROA) (See Chapter 5) generates controlled language, so we are not concerned

with fluidity of NL output as choice with respect to lexicalisation is restricted and we

do not generate referring expressions. For full NLG systems, there are numerous metrics

available to measure accuracy and text fluidity, some of which are based on metrics for

Machine Translation (MT) as well as string edit distance and tree edit metrics. We refer

the reader to [Mellish and Dale, 1998, Bontcheva, 2003] for related work with respect to

evaluation of NLG systems.

2.6 Natural Language Generation from Ontologies

Natural Language Generation (NLG) takes structured data in a knowledge base as input

and produces natural language text, tailored to the presentational context and the target

reader [Reiter and Dale, 2000]. NLG techniques build user context models and use them

53

to select appropriate presentation strategies. For example, delivering short summaries to

the user’s WAP phone or a longer multimodal text if the user is using their PC desktop.

In the context of Semantic Web or knowledge management, NLG can be applied to

provide automated documentation of ontologies, knowledge base or metadata summari-

sation. Unlike human-written texts, an automatic approach will constantly keep the text

up-to-date which is vitally important in the Semantic Web context where knowledge is

dynamic and is updated frequently. NLG also allows for generation in multiple languages

without the need for human or automatic translation [Aguado et al., 1998]. The advan-

tage of automatically producing textual documentation from ontologies, is that it is more

readable than the corresponding formal notations. Hence, users, who are not knowledge

engineers, can more easily understand and use ontologies. Secondly, a number of ap-

plications have now started using ontologies to encode and reason with internally, but

this formal knowledge needs to be also expressed in natural language in order to produce

reports, letters, etc. In other words, NLG can be used to present structured information

in a user-friendly way. There are several advantages to using NLG rather than using fixed

templates where the query results are filled in: NLG can use different sentence structures

depending on the number of query results, e.g., conjunction vs itemised list. Depending

on the user’s profile of their interests, NLG can include different types of information –

affiliations, email addresses, publication lists, indications on collaborations (derived from

project information). Given this variety of what information from the ontology can be in-

cluded and how it can be presented, depending on its type and amount, writing templates

will be unfeasible because there will be too many combinations to be covered.

This variation comes from the fact that it is expected that each user of the system

will have a profile comprising of user supplied (or system derived) personal information

(name, contact details, experience, projects worked on), plus information derived semi-

automatically from the user’s interaction with other applications. Therefore, there will

be a need to tailor the generated presentations according to user’s profile. NLG systems

that are specifically targeted towards semantic web ontologies have started to emerge only

54

recently. Initial ones were based on templates, verbalising closely the ontology structure.

More recent ones generate more fluent reports, oriented towards end-users, not ontology

builders. In contrast to these applied NLG approaches, at the other end of the spectrum

are sophisticated ones, which offer tailored output based on user models. There is a trade-

off between applied approaches, which explore generalities in the domain ontology with

low customisation overheads, and, on the other hand, more sophisticated, flexible and

expressive systems, which, tend to be difficult to adapt by non-NLG experts. Experience

shows that knowledge management and semantic web ontologies tend to evolve over time,

so it is essential to have an easy-to-maintain NLG approach.

2.6.1 Generation from Semantic Web Ontologies

The ONTOGENERATION project [Aguado et al., 1998] explored the use of a linguisti-

cally oriented ontology (the Generalised Upper Model (GUM))(Bateman et al. 1995) as

an abstraction between generators and their domain knowledge base (chemistry in this

case). The Generalised Upper Model (GUM) is a linguistic ontology with hundreds of

concepts and relations, e.g., part-whole, spatio-temporal, cause-effect. The types of text

that were generated are: concept definitions, classifications, examples, and comparisons

of chemical elements. However, the size and complexity of GUM make customisation

more difficult for non-experts. On the other hand, the benefit of using GUM is that it

encodes all linguistically-motivated structures away from the domain ontology and can

act as a mapping structure in multilingual generation systems.

2.6.2 Modern Shallow Generation

Wilcock [Wilcock, 2005] provides an overview of shallow XML-based Natural Language

Generation from ontologies. His work provides descriptions of XML based pipelined ar-

chitectures for NLG, involving: Text Planning, Micro Planning and Surface Realisation.

The research is based on practical experience which applies NLG to a spoken dialog sys-

tem. The author claims that XML as a generation tool fits into the pipeline model for

55

NLG. He argues that powerful methods for processing XML already exist. In Wilcock’s

approach, XML transformations are performed on text plan trees in order to produce text

specification trees using Extensible Stylesheet Language Transformations (XSLT). The

author [Wilcock, 2005] emphasises that the role played by XML transformations across

text plans as a consequence of using XML templates implies template based text planning

and not just template based generation, whereby the text plan is passed through various

stages of the NLG pipeline for processing using XSLT. The author maintains that the

template based approach to text planning offers an efficient alternative to AI planning

techniques traditionally used within Deep NLG, which can be expensive and complex,

involving potentially exponential amounts of backtracking. However, Wilcock maintains

XSLT alone is not suitable for the surface realisation of all languages, especially where

complex morphological processing is required as is the case in Finnish. One can however

use XSLT with extension functions for JAVA or reuse existing morphological processing

resources. An interesting avenue proposed, is a hybrid combination of shallow XML-

based methods in combination with traditional deeper NLG methods such as OpenCCG

[Foster and White, 2004, White and Baldridge, 2003, White, 2004] (which in itself com-

bines both unification based and statistical approaches). Such a hybrid approach is likely

to fulfil needs for producing scalable, efficient and high quality methods of generating

texts from ontologies.

2.6.3 NLG in CLEF - Clinical E-Science Framework

CLEF [Rector et al., 2003] focuses on integrating clinical care with biomedical research.

It aims to develop methods for managing and using pseudonymised repositories of long-

term patient histories, which contain and link information relating to genetic, genomatic

and image information. It has applications for clinical research and can be used to sup-

port patient care. The project involves involves the use of HLT for IE and NLG from

metadata CLEF aims to create an Electronic Patient Repository. In order for the data

to be of use to a scientist or clinician, it must be easily accessible and user friendly.

56

Techniques from language generation are applied to produce reports from integrated in-

formation and metadata in the repository and to provide an electronic health care record

for the medical specialist. In addition, the NLG contribution to CLEF aims to provide a

Natural Language Window into the Knowledge base in order to aid knowledge engineers

to build and maintain the knowledge base and furthermore to permit clinical experts to

provide quality assurance across the the knowledge base while still being shielded by the

underlying complex formalisms. The initial CLEF [Rector et al., 2003] work references

WYSIWYM technology and natural language directed feedback [Power et al., 1998a] as

the basis for NLG. The paper [Hallett et al., 2006] also focuses on the problems of pre-

senting aggregated clinical data, in the form of comprehensible textual reports, from a

vast and rich source of varying clinical knowledge. The authors discuss the system re-

quirements gathered from clinicians and summarise the results as different report types,

depending on user requirements. Input to the report generator is a user selected type

of report or selected events in a timeline. Hence the input from the knowledge base (

implemented using DAML+OIL) for generation is a chronicle, which is a highly struc-

tured representation of a patient record stored in semantic nets (no other details are

provided with respect to the knowledge representational language). A chronicle contains

facts and relations and relations are categorised into three types according to their role:

rhetorical relations, ontological relations and attribute relations. The system follows a

classical NLG architecture: Content Selector, Content planner and Syntactic realiser.

The Content planner is tightly coupled with the content selector as document structure

is decided when a user selects an event or collection of events. Sentence Aggregation

occurs primarily at the conceptual level at the content planning stage rather than the

syntactic stage. The document planner uses a combination of schemas with a bottom-up

approach. Rhetorical relations holding between a simple event are often realised as a

single sentence. Complex individual events are realised as individual clauses or sentences,

which are connected via the appropriate rhetorical relation. Depending on the type of

report, the focus may move to different events, which consequently has an effect at the

57

syntactic realisation stage. Other solutions to aggregation are to restrict information to

events that deviate from the norm i.e. abnormal test results.

2.6.4 Summary Generation from Ontologies

This section focuses on the summary generation problem, addressed in the ONTOSUM

system [Bontcheva, 2005], developed in the context of the SEKT research project. Sum-

mary generation starts off by being given a set of statements regarding instances in the

ontology. (i.e., triples), in the form of RDF/OWL. Since there is some repetition, these

triples are first pre-processed to remove already said facts. In addition to triples that

have the same property and arguments, the system also removes triples involving in-

verse properties with the same arguments as those of an already verbalised one. The

information about inverse properties is provided by the ontology (if supported by the

representation formalism). The ONTOSUM system is implemented as a set of compo-

nents in the GATE infrastructure [Bontcheva et al., 2004]. In particular, GATE makes

use of its ontology support, which provides language-independent access to ontologies.

The lexicalisations of concepts and properties in the ontology can be specified by the

ontology engineer, be taken to be the same as concept names themselves, or added man-

ually as part of the customisation process. ONTOSUM is parameterised at run time

by specifying which properties are to be used for building the lexicon. A similar ap-

proach was first implemented in a domain- and ontology-specific way in the MIAKT

system [Bontcheva and Wilks, 2004]. In ONTOSUM, it is extended towards portability

and personalisation. Similar to the PEBA system, summary structuring is done using

discourse/text schemas [Reiter, 1994], which are script-like structures which represent

discourse patterns. They can be applied recursively to generate coherent multi-sentential

text. The schemas are independent of the concrete domain and rely only on a core set

of four basic properties – active-action, passive-action, attribute, and part-whole. When

a new ontology is connected to ONTOSUM, properties can be defined as a sub-property

of one of the four basic ones. Consequently, ONTOSUM will be able to verbalise them

58

without any modifications to the discourse schemas. However, if more specialised treat-

ment of some properties is required, it is possible to enhance the schema library with new

patterns that apply only to a specific property. ONTOSUM then performs semantic ag-

gregation, i.e., it joins RDF statements with the same property name and domain as one

conceptual graph. Without this aggregation step, there will be three separate sentences

instead of one bullet list, resulting in a less coherent text. Finally, ONTOSUM verbalises

the statements using the HYLITE+ surface realiser. The output is a textual summary.

2.7 Conclusions

This purpose of this chapter has been to review the core technologies underlying this

thesis. Section 2.1 provided a brief history of the Web as well as an overview of the

Semantic Web, Ontologies and Linked Data. We have discussed briefly, the history and

origins of Human Language Technology (HLT) in Section 2.2. We have also provided

detailed summaries of the the core technologies and techniques with respect to Informa-

tion Extraction (IE) and Natural Language Generation (NLG), both of which are the

key language technologies used in this thesis. We have furthermore discussed HLT with

respect to the Semantic Web under the context of Ontology Based IE (OBIE)(see Section

2.4 and Natural Language Generation(NLG) from ontologies (See Section 2.6). Finally,

we have reviewed key recent work with respect to both fields and their applications to

the Semantic Web. With respect to OBIE, we can make the following observations:

• We note some increasing awareness within the IE community (and the larger NLP/CL

community) of the potential benefits of Semantic Web technologies when building

their respective language processing systems. The Semantic Web community on

the other hand has been well aware of the important role NLP, particularly IE, has

to play in bootstrapping the creation of semantic data i.e. semantic annotation

of web pages and ontology population and learning from text. Moreover, there

has been the recent acceptance of workshops at the Language Resources and Eval-

59

uation Conference (LREC) involving Semantic Web technologies39 . Conversely,

at the International Semantic Web Conference(ISWC) conference series, there are

now regular workshops with an NLP focus40. Furthermore, the Linguistic Linked

Data initiative is also gaining momentum41. Finally, uptake, in the IE commu-

nity has become evident, with the recent inclusion of OBIE in the Text Analysis

Conference(TAC) via the 2012 Cold Start task.

• Few NLP frameworks aside from GATE, provide built-in Ontology support. Al-

though many IE systems can export their output to Semantic Web languages, IE

developers are still not fully aware of how Semantic Web ontologies can inform and

drive IE tasks such NER, RE and CO. More research effort is required to investi-

gate how the subsumption hierarchy and properties of ontologies can play a role in

crafting extraction rules or training classifiers for IE subtasks. Ontology Lexicalisa-

tion, which is the enrichment of ontology labels with proper linguistic descriptions,

can have a role to play in the automatic bootstrapping of IE systems with ontology

aware language resources (see Chapter 7).

• Finally, many OBIE and Semantic Annotation performance metrics still have a ten-

dency not to factor in the distance of an ontology resource in their metrics. In other

words, the identification of correct entities should occur in scalar manner, rather

than a binary classification, i.e. correct or incorrect value [Maynard et al., 2008].

Hence, a system classified entity may still be partially correct if it is within the class

hierarchy of the correct entity.

With respect to NLG from ontologies, we make the following observations:

• NLG research in general, is still underinvested in comparison to NLU. More research

39http://www.dcs.shef.ac.uk/~diana/courses/lrec-nlp-semweb-tutorial.html, Accessed Thu 25
Jul 2013 15:38:22 IST

40http://nlp-dbpedia2013.blogs.aksw.org/2013/, Accessed Thu 25 Jul 2013 15:38:22 IST

41http://www.ldl2013.org/, Accessed Thu 25 Jul 2013 15:38:22 IST

60

is needed with respect to methodologies and reusable tools and language resources

for building and evaluating NLG systems. The is largely due to the continued focus

within the NLP community towards NLU and MT. For instance, the first edition of

the International Conference on Natural Language Generation Systems42 was only

held in 2000 (after upgrading from a workshop series), demonstrating the size of

the NLG community. There are number of factors, ranging from misunderstanding

within the NLP community of the NLG task, in other words, the presumption being

the NLG is simply the reverse of NLU, to the difficulty of the task itself in that it

is goal driven and concerned with choice rather than hypothesis management.

• Despite efforts to create a reference architecture for generation systems (not dis-

cussed in this chapter) [Mellish et al., 2006], there is still no consensus on the

architecture of NLG systems, let alone a commonly used reference implementa-

tion. So while GATE serves arguably as an NLP architecture for NLU/IE tasks

and Moses may serve many researchers as common architecture for MT tasks

[Koehn et al., 2007], no such framework is available for integrating and evaluating

heterogeneous NLG components.

• While there is less activity with respect to NLG research in comparison to NLU,

there is even more so less activity with respect to NLG for the Semantic Web, largely

due to the relatively newness of the Semantic Web field. NLG efforts within the

Semantic Web is still quite limited to ontology verbalisation. There is limited work

on full NLG from knowledge bases i.e generating tailored reports or summaries,

but there have been some efforts to explore the use of Semantic Web ontologies to

drive the content selection task [Mellish and Pan, 2008]. Moreover, Ontology Lexi-

calisation can again play a role in the lexicalisation subtask for NLG (See Chapter

7). Finally, increasing activities with regard to the Multilingual Semantic Web may

reinvigorate research efforts with respect to multilingual NLG [Gracia et al.,].

42http://www.cs.bgu.ac.il/~nlg2000/, Accessed, Thu 25 Jul 2013 16:54:32 IST

61

In summary, NLG and OBIE techniques and tools act as platforms for our research

work on CNL for Ontology Authoring and Semantic Annotation respectively. Conse-

quently, having provided the necessary foundations, we proceed to Chapter 3 to review

both of the aforementioned fields in more detail.

62

3 Controlled Natural Languages and Semantic Annotation

This Chapter surveys the fields of both Controlled Natural Languages and Semantic

Annotation. Section 3.1, provides a brief history and overview of Controlled Natural

Languages. We also review two core CNLs which are active in the Semantic Web field,

specifically Attempto Controlled English - ACE (Section3.1.1), Rabbit (Section 3.1.2)

and CNL applications of the GF (Grammatical Framework) toolkit (Section 3.1.3). Fi-

nally, Section 3.1.5 provides a summary of other CNL work. With respect to Semantic

Annotation, Section 3.2, provides an overview of the field and Section 3.2.1 discusses

annotation frameworks. Annotation tools are categorised into three parts: manual se-

mantic annotation (Section 3.2.2), semi-automatic semantic annotation (Section 3.2.3),

automatic semantic annotation and (Section 3.2.4). Furthermore, we provide a brief

overview of related applications to semantic annotation in Section 3.2.5. Finally Section

3.3 concludes the entire chapter, and provides a summary analysis with respect to our

research goals concerning both Controlled Natural Languages and Semantic Annotation.

3.1 Control Natural Languages for the Semantic Web

“Controlled Natural Languages are subsets of natural language whose grammars and

dictionaries have been restricted in order to reduce or eliminate both ambiguity and

complexity”[Schwitter, 2007]. The original concept of CNL arose during the 1930s, when

a number of influential linguists and scholars devoted considerable effort to establishing

a ‘minimal’ variety of English’; The purpose being to make English accessible and usable

by as many individuals as possible world wide [Schwitter, 2007]. Although, as stated by

63

Kuhn [Kuhn, 2010a], CNLs are as old as logic itself and dates back as far as Aristotle’s

syllogisms [Aristotle, 350] and the work of Frege [Frege, 1879]. An early CNL, was Basic

English, described in 1932 [Ogden, 1935] as a restricted grammar with only 850 English

words. It was developed by linguist and philosopher Charles Kay Ogden as an inter-

national auxiliary language, and as an aid for teaching English as a Second Language.

Another example is Special English 43, first used on October 19, 1959 and still presented

daily by the United States broadcasting service Voice of America (VOA). The intended

audience is intermediate to advanced learners of English. Seaspeak is a simplified form

of English [Strevens and Johnson, 1983]. Its purpose was to facilitate communication be-

tween ships whose captains’ native tongues differ. It has now been formalised as Standard

Marine Communication Phrases (SMCP) [Strevens and Johnson, 1983].

An early CNL within the technical domain included Caterpillar Fundamental English

(CFE) [Caterpillar Corporation, 1974] . Since then, CNLs have evolved into many vari-

ations and flavours such as Smart’s Plain English Program (PEP), Whites International

Language for Serving and Maintenance (ILSAM) [Adriaens and Schreors, 1992] and Sim-

plified English44, which in 2005 became ASD(Aerospace and Defence Industries Associ-

ation of Europe) Simplified Technical English45. CNLs have found particular favour in

large multi-national corporations such as IBM, Rank, Xerox and Boeing amongst others

usually within the context of user-documentation production and machine translation

[Adriaens and Schreors, 1992, Schwitter, 2007, O’Brien, 2003].

Traditionally, Controlled Natural Languages (CNL)s are split into two major cate-

gories: (1) CNLs that improve human readability, mainly for non-native speakers, and

(2) those that constrain the text for computational treatment. In [O’Brien, 2003], O’

Brien, provides a comparison of CNLs and offers the conclusion that no common core

rules within her survey of CNLs can be be identified. The work demonstrates that CNLs

43http://learningenglish.voanews.com/, Accessed, Thu 25 Jul 2013 16:54:32 IST

44http://www.simplifiedenglish-aecma.org/Simplified_English.htm, Accessed, Thu 25 Jul 2013
16:54:32 IST

45http://www.asd-ste100.org/, Accessed, Thu 25 Jul 2013 16:54:32 IST

64

exist in a continuum ranging from informal(human-orientated) to completely formal se-

mantics(machine processable).

Computer Processable Language (CPL) was an early machine processable CNL, de-

veloped at Boeing and it included an interpreter, and a reasoner, with up to one thousand

general and domain-specific rules. The application was to create a knowledge base for

semantic retrieval of video clips based on their captions which were expressed in CPL

[Clark et al., 2005].

With respect to knowledge representation via CNLs, early work included Processable

English(PENG). Texts written in PENG were deterministically parsed and translated

into discourse representations structure, discourse representation structures, and also

into first-order predicate logic for theorem proving [Schwitter, 2002]. Furthermore, the

work is influential in that is was one of the first CNLs, designed with an incremental

parsing approach. It had an editor with lookahead features in order to guide the user

[Schwitter et al., 2003]. With respect to CNLs for the Semantic Web, early efforts in-

volved extending PENG in [Schwitter and Tilbrook, 2004], whereby the authors present

and discuss PENG-D, a variation of PENG, which targets the CNL to a knowledge rep-

resentation language (via First Order Logic (FOL)) such as RDFS or OWL.

3.1.1 Attempto Controlled English -ACE

A well known approach involving CNL translation into FOL is the popular CNL, Attempto

Controlled English46 (ACE) [Fuchs and Schwitter, 1996a]. It is a subset of standard En-

glish designed for knowledge representation and technical specifications, and constrained

to be unambiguously machine-readable into discourse representation structures, a form

of first-order logic (ACE can also be translated into other formal languages.)

ACE is a mature CNL and has been in development since 1995 for over fourteen years

[Kuhn, 2010a]. It was first introduced by Fuchs and Schwitter [Fuchs and Schwitter, 1996b].

Over forty articles have been published by the Attempto group and over 500 articles listed

46http://www.ifi.unizh.ch/attempto/, Accessed, Thu 25 Jul 2013 16:54:32 IST

65

on Google Scholar, containing the term “Attempto Controlled English” [Kuhn, 2010a].

ACE is a general purpose CNL and is not restricted to any specific domain. The gram-

mar of ACE is perhaps the most expressive in that it can parse a variety of syntactic

phenomena in comparison to other CNLs. ACE caters for instance for relative clauses,

coordinated noun phrases, coordinated adverbial and adjectival phrases, numerical and

distributed quantifiers, negation, conditional sentences and some anaphoric pronouns47

ACE was adopted as the controlled language for the EU FP6 Network of Excellence

REWERSE48 (Reasoning on the Web with Rules and Semantics) [Fuchs et al., 2006]. The

Attempto Parsing Engine (APE) consists principally of a definite clause grammar, aug-

mented with features and inheritance and is written in Prolog [Hoefler, 2004]. This tool

can be tested and demonstrated with a web browser through the APE Web-interface49.

APE web service clients are also available50.

REWERSE also proposed ACE OWL, a sublanguage of ACE, as a means of writ-

ing formal, simultaneously human- and machine-readable summaries of scientific papers

[Kaljurand and Fuchs, 2006, Kuhn, 2006]. ACE itself however prohibits certain very nat-

ural constructions such as the use of only as an adverb. Since ACE OWL also aims to

provide reversibility (translating OWL DL into ACE), OWL’s allValuesFrom must be

translated into a similar construction which can be rather difficult for humans to read.

Furthermore, ACE OWL does not currently support enumerations (OWL’s oneOf) and

has limited support for datatype properties [Kaljurand, 2006]. ACE OWL also imposes

several further restrictions on ACE, such as the elimination of plural nouns. Although

ACE itself has a predefined lexicon, unknown words can be used if they are annotated

with a part of speech tag, but this does require the user to be familiar with the lexicon

47http://attempto.ifi.uzh.ch/site/docs/ace/6.5/ace_constructionrules.html,Accessed, Thu
25 Jul 2013 16:54:32 IST

48http://rewerse.net/, Accessed, Thu 25 Jul 2013 16:54:32 IST

49http://www.ifi.unizh.ch/attempto/tools/, Accessed, Thu 25 Jul 2013 16:54:32 IST

50http://www.ifi.unizh.ch/attempto/documentation/ape_webservice.html, Accessed, Thu 25 Jul
2013 16:54:32 IST

66

[Kaljurand, 2006].

ACEView is a plugin for the Protégé editor51 [Kaljurand, 2008]. It empowers Protégé

with additional interfaces based on the ACE CNL in order to create, browse and edit

an ontology. The user can also query the ontology using ACE questions to access newly

asserted facts from the knowledge base. ACE has also served as the basis for other appli-

cations such as interface language for a first-order reasoner [Fuchs and Schwertel, 2003],

a query language for the Semantic Web [Bernstein et al., 2004], an application for the

partial annotation of Webpages [Fuchs and Schwitter, 2007] and the usage of ACE for

producing summaries within the biomedical domain [Kuhn et al., 2006].

A recent development is the translation of a complete collection of paediatric guideline

recommendations into ACE. In [Shiffman et al., 2010], one paediatrician, one physician

and one knowledge engineer assessed an extended version of ACE, to see, if it could

correctly represent clinical concepts and guideline actions. Crucial Urinary Tract Infec-

tion(UTI) action statements were translated into an extended form of ACE. The three

experts concluded that ACE was capable of accurately stating the clinical concepts and

actions described in the guidelines. Medical terminology was an issue raised by the

authors and they discuss the feasibility of incorporating medical vocabularies such as

SNOWMED52 and UMLS53 into the ACE lexicon. The authors plan to target the ACE

rules for a clinical care decision support system to guide clinicians regarding best practice.

3.1.2 The RABBIT Controlled Language

The Rabbit CNL is a another well known implementation [Hart et al., 2008]. It is essen-

tially an extension of CLOnE implementation (see Chapter 4) but is much more pow-

erful with respect to grammar expressiveness and ontology authoring capabilities. Like

51http://protege.stanford.edu/, Accessed, Thu 25 Jul 2013 16:54:32 IST

52Systematised Nomenclature of Medicine. See http://www.ihtsdo.org/snomed-ct/, Accessed, Thu
25 Jul 2013 16:54:32 IST

53Unified Medical Language System See http://www.nlm.nih.gov/research/umls/, Accessed, Thu 25
Jul 2013 16:54:32 IST

67

CLOnE, Rabbit is implemented using the GATE framework. Rabbit was developed by the

national mapping agency in Great Britain - Ordnance Survey. Rabbit can be converted

in OWL54 to provide natural language support for ontology authoring. OWL develop-

ment is not the primary objective of Rabbit and not all OWL expressions can be mapped

into OWL. Rabbit is primarily a vehicle for capturing, representing and communicating

knowledge in a form that is easily understood by domain experts. In [Hart et al., 2007],

the authors argue that Rabbit should be considered as the authoritative source for knowl-

edge representation. There are three broad types of sentences in Rabbit - declarations,

axioms and import statements. Interestingly, a given class or concept can refer to a spe-

cific ontology in Rabbit i.e. one can refer to the animal Duck within a specific ontology

- Waterfowl as opposed to a default ontology. So more than one ontology can be refer-

enced in the Rabbit language [Hart et al., 2008]. Rabbit attempts to cater for property

restrictions such as transitivity and symmetry, but as the authors themselves argue the

such concepts are “not aligned to the way people think” and that there is no ideal solution

to creating natural language equivalents to property restrictions. Arguably, these issues

should be dealt with by support from the ontology engineer and not the domain expert

directly.

The ROO - Rabbit to OWL Ontology authoring tool seeks to cater for the entire

ontology engineering process [Dimitrova et al., 2008]. It was developed by the University

of Leeds and is an open source Java based plugin for Protégé. ROO supports a domain

expert in creating and editing ontologies using Rabbit. The authors argue that CNL

interfaces tend to ignore the ontology construction process. The design of the ROO inter-

face is based on Ordnance Survey’s proposed ontology development methodology called

Kanga. Domain experts are involved in the early stages of the ontology engineering pro-

cess and engage in the conceptualisation of the ontology, while the ontology engineer is

involved at the end stages and focus on the logical level of the ontology. The work of

[Dimitrova et al., 2008], gives a good overview of Rabbit’s expressiveness with respect to

54http://www.w3.org/TR/owl-features/, Accessed, Thu 25 Jul 2013 16:54:32 IST

68

Rabbit syntax patterns and their corresponding ontology mappings such as existential

quantifiers, union, disjointness and cardinality. ROO is based on the experiences of the

Ordnance Survey(OS) agency with creating large-scale geo-spacial ontologies. The OS

identified a number of factors based on their experiences, such as: (1) the difficulty in

expressing knowledge constructs in a formal language,(2) the lack of appropriate method-

ology for capturing the knowledge of domain experts and (3) the poor usability of existing

ontology editing tools.

The ROO interface is based on the manipulation of Rabbit statements and not OWL

constructs. The technical details of OWL are hidden from the end user. ROO monitors

user activity as well as the state of the underlying knowledge base. It provides the appro-

priate contextual suggestions and assistance to users in the form of ontology construction

feedback, syntax highlighting of Rabbit statements and error messages. With respect to

user evaluations of ROO and Rabbit, see related work in Chapter 4.

3.1.3 Grammatical Framework -GF

A recent addition to the CNL field is GF - Grammatical Framework which is actu-

ally an implementation framework for multiple CNLs [Angelov and Ranta, 2009] and

[Ranta, 2004]. The authors claim that GF can cope with a variety of CNLs as well

as boost the development of new ones. In [Angelov and Ranta, 2009], the authors re-

verse engineer ACE for GF in order to demonstrate how portable CNLs are to the GF

framework as well as how CNLs can be targeted to other natural languages. ACE is

ported from English to five other natural languages. In short, the core advantage of

GF is its multilingualism in that its primary task is domain specific knowledge based

Machine Translation (MT) of controlled natural languages. GF follows the functional

programming paradigm and began as an experimental system in 1998 at XEROX Eu-

rope55[Dymetman et al., 2000]. The GF framework uses a logical framework based on

Martin Loef’s type theory [Nordstrom et al., 1990] for building semantic models of lan-

55http://www.xrce.xerox.com/, Accessed, Thu 25 Jul 2013 16:54:32 IST

69

guages. It adds a syntax formalism to the logical framework which defines realisations

of formal meanings as concrete linguistic expressions. The semantic model is called the

abstract syntax while the syntactic realisation functionality is called concrete syntax. The

authors state that GF is multilingual, in that one abstract syntax, acting as an interlin-

gua, can be (given a concrete syntax for one or more source languages) be retargeted to

several languages. So the source language sentence is first parsed using a concrete gram-

mar into an abstract syntax which is meaning preserving and reflects the semantics of a

given domain (rather than the source concrete syntax). This abstract syntax can then

be linearised into the target language(s). A substantial of amount linguistic competence

and domain expertise is needed to define a concrete syntax for a given source/target

language. Consequently, the authors developed a collection of GF resource libraries to

provide a language engineering solution to this issue. The engineering effort is split be-

tween domain experts and linguists. The GF libraries now contain a collection of wide

coverage grammars for over 15 natural languages. One could view GF as a general frame-

work for developing and extending controlled languages, similar to NLP architectures

such as GATE (See Chapter 2). There is increased activity with respect to the GF de-

velopment and a vibrant open source community, which continues to create language

resources for GF. The success is also due to the European project, MOLTO (Multilin-

gual On-Line Translation)56. This has boosted the uptake of GF and resulted in many

more comprehensive applications. Applications of GF range from mathematical proof-

ing, dialog systems, patent translation [España-Bonet et al., 2011], multilingual wikis

and multilingual generation in the culture heritage domain [Angelov and Ranta, 2009,

Dannélls, 2008]. In addition, there have been recent efforts to cater for semantic web

ontologies in GF. In [Angelov and Enache, 2010] the authors develop a conversion tool

for compiling axioms in the SUMO ontology [Niles and Pease, 2001] written in the KIF

language [Genesereth et al., 1992] to GF abstract syntax. In addition, the authors pro-

duce CNL from the ontology and allow users to edit SUMO axioms in CNL. SUMO

56http://www.molto-project.eu/, Accessed, Thu 25 Jul 2013 16:54:32 IST

70

contains natural language templates for natural language generation, which were pro-

cessed and covered into GF concrete syntax. SUMO permits language generation for up

to 10 languages, but the templates were lacking with respect to morphological realisation

for languages other than English. GF compensates for these deficits and a fraction of the

English CNL generated was ported to both French and Romanian. Other work in this con-

text involves multilingual generation from a knowledge base within the cultural heritage

domain. The authors in [Dannélls et al., 2012], describe their objective of trying to build

an ontology based multilingual application for museum information on the Web. The

Museum Reason-able View application integrates independent data sets, which are used

as a single body of knowledge for reasoning and querying evaluation. The knowledge base

is built and stored using BIGOWLim [Bishop et al., 2011] as a set a of RDF triples - each

resource is linked to a corresponding lexical unit in a GF lexicon. In addition, the Oxford

English Dictionary and an LMF (Lexical Markup Framework) [Francopoulo et al., 2006]

version of the Swedish Association Lexicon (SALDO) [Borin et al., 2008] were also im-

ported into GF. The work is prototypical and the primary goal is to generate Wikipedia

like articles in five languages. Although GF has no specific CNL, one could argue the

its growing open source community may result in GF becoming the de-facto open source

general framework for developing resources for engineering multilingual CNLs and in that

sense it is quite similar to GATE [Cunningham et al., 2002].

3.1.4 A note on Design Principles for CNLs

With respect to designing CNLs, Kuhn in his doctoral thesis describes four principles of

design which are generally accepted [Kuhn, 2010a]. They are described as:

• Clearness, whereby all statements in a CNL should have a clear meaning. Meaning

with respect to a CNL should be described in a systematic and coherent manner

and should ideally be mapped into some formal semantics or formal logic. All (or

as much as possible) ambiguity should be eliminated from the CNL.

71

• Naturalness implies that statements within a CNL should be as close to natural

language as possible. CNLs statements should be acceptable and intuitive to native

speakers of the target controlled language. Understandability of a CNL with respect

to the user should be aligned to the defined goals or meaning of the CNL.

• Simplicity means that a CNL should be easy to describe, teach and learn. Valid

CNL statements should be easy to detect and discern by both human and machine.

• Expressivity indicates that ideally a CNL should have as broad a coverage as

possible for the target domain. The CNL should cover as many possible situations

and problems with respect to the domain.

As aptly noted by Kuhn, no CNL can truly satisfy all four principles equally and all

four are often in conflict with each other. Clearness may conflict with naturalness so a

natural language sentence may be unambiguous to the user but ambiguous or unclear to

the CNL processor. Conversely, by restricting the statement in order to remove ambiguity

for the machine, the statement may seem less natural to the user (For a more in depth

discussion on the four design principles, we refer the reader to [Kuhn, 2010a]). The most

obvious orthogonal relation is between expressivity and simplicity, whereby the more

semantic coverage the developer tries to build into the CNL, she runs the risk of having a

negative impact on usability and uptake of the CNL. Much of the CNL work in this thesis

is focused on attempting to uncover the right balance between clearness and expressivity.

3.1.5 CNLs -Related Work

With respect to ontology driven driven generation of CNLs or conceptual authoring, a

well-known implementation which employs the use of NLG to aid the knowledge creation

process is WYSIWYM - What you see is what you meant) [Power et al., 1998b].

It involves direct knowledge editing with natural language directed feedback. A domain

expert can edit a knowledge based reliably by interacting with natural language menu

72

choices and the subsequently generated natural language feedback which can then be

extended or re-edited using the menu options.

Similar to WYSIWYM, GINO (Guided Input Natural Language Ontology Editor)

provides a guided, controlled NLI (natural language interface) for domain-independent

ontology editing for the Semantic Web. GINO incrementally parses the input not only to

warn the user as soon as possible about errors but also to offer the user (through the GUI)

suggested completions of words and sentences—similarly to the“code assist” feature of

Eclipse57 with respect to morphological realisation and other development environments

[Bernstein and Kaufmann, 2006]. GINO translates the completed sentence into triples

(for altering the ontology) or SPARQL58 queries and passes them to the Jena Semantic

Web framework 59. Although the guided interface facilitates input, the sentences are quite

verbose and do not allow for aggregation. Static grammar rules exist for the controlled

language but in addition, dynamic grammar rules are generated from the ontology itself,

however this does not constitute surface realisation in the context of natural language

generation, but the amendment of additional parsing rules to GINO’s grammar to guide

the user. This permits the system to handle a domain shift, however this is heavily

dependent on any linguistic data or RDF label data encoded the ontology.

Finally, [Namgoong and Kim, 2007] presents an ontology based CNL editor, similar to

GINO, which uses a CFG (Context-free grammar) with lexical dependencies - CFG-DL

to generate RDF triples. To our knowledge the system ports only to RDF and does not

cater for other ontology languages.

Other related work involves the application of CNL to knowledge base querying, which

represent a different task than that of knowledge creation and editing but is worth men-

tioning for completeness sake. Most notably AquaLog60 is an ontology-driven, portable

57http://www.eclipse.org/, Accessed, Thu 25 Jul 2013 16:54:32 IST

58http://www.w3.org/TR/rdf-sparql-query/, Accessed, Thu 25 Jul 2013 16:54:32 IST

59http://jena.apache.org/, Accessed, Thu 25 Jul 2013 16:54:32 IST

60http://kmi.open.ac.uk/technologies/aqualog/, Accessed, Thu 25 Jul 2013 16:54:32 IST

73

question-answering (QA) system built for the goal of providing a natural language query

interface to semantic mark-up stored in knowledge base. By using tools from the GATE

framework [Cunningham et al., 2002], AquaLog translates controlled natural language

queries into a triple representation called Query-Triples. GATE provides a set of linguis-

tic annotations and additional JAPE (Java Annotation Pattern Engine) grammars are

created in order to perform shallow parsing across the user’s questions. However the sys-

tem is implemented using a simple triple-based intermediate representation as opposed

to DRS (discourse representation structure) or fully formed FOPL (first-order predicate

logic). Further processing is conducted by the Relation Similarity Service (RSS) mod-

ule. The role of the RSS module is crucial as it maps CNL questions into ontology

compliant queries. It structurally checks the generated query triples against the under-

lying ontology. If the RSS fails to discover matching relations or concepts within the

KB, it requests, as last resort, the user to disambiguate the relation or concept from

a given set of candidates. Furthermore this module invokes the use of string similarity

metrics, lexical resources such as WordNet [Fellbaum, 1998] and domain-dependent lex-

icons in order to generate query-triples that are compliant with the underlying ontology

[Lopez and Motta, 2004]. However, existing linguistic rules pose difficulties with respect

to complex queries, requiring extension of the NLP component, which the authors plan to

remedy in future work. An additional key limitation of AquaLog is that only a single on-

tology can be used at a time. This is addressed in PowerAqua [Lopez et al., 2006], which

aims to find answers from distributed, ontology-based semantic markup. PowerAqua

[Lopez et al., 2006] extends AquaLog, allowing for an open domain question-answering

for the semantic web. The system dynamically locates and combines information from

multiple domains.

3.2 Semantic Annotation

The process of providing semantic data is called Semantic Annotation, which involves the

embellishment of existing data, i.e. the text, with semantic metadata, which can subse-

74

quently describe the associated text. In order for the Semantic Web to become a reality,

we need, as a primer inter pares61, semantic data. We describe Semantic Annotation as

“a process as well as the outcome of the process”. Hence it describes i) “the process of

adding semantic data or metadata to content given an agreed ontology and ii) it describes

the semantic data or metadata itself as a result of this process”[Handschuh, 2005]. Of par-

ticular importance here is the notion of the addition or association of semantic metadata

to content. Semantic Annotation can be categorised into (i) manual semantic annotation

and (ii) semi-(automatic) annotation. With respect to the modifier semi-automatic, we

surround automatic with ‘(’ ‘)’, as annotation is rarely fully automatic. In fact semi-

automatic and automatic annotation systems exist on a continuum and in general most

systems which claim to be automatic require some form of human intervention in order

to adapt and maintain the system. This largely a consequence of the underlining IE tech-

nology which drives semi-(automatic) annotation. In the next sections, we will discuss

annotation frameworks in brief review manual and semi-(automatic) annotation systems,

and finally we conclude with related applications of Semantic Annotation.

3.2.1 Annotation Frameworks

Annotea is a W3C62 LEAD(Live Early Adoption and Demonstration)63 project under

the remit of the Semantic Web Advanced Development (SWAD) 64 [Kahan et al., 2001,

Koivunen, 2005]. It describes an infrastructure for collaborative annotation of Web doc-

uments via shared metadata. Aside from semantic annotations, shared bookmarks can

also be associated to documents to aid users in organising their documents under differ-

ent topics. As a W3C project, it naturally has an emphasis on open standards in order

to promote interoperability and extensibility. The main metadata format is RDF based

61Latin to English translation: ’first among his/her equals’

62http://www.w3.org/, Accessed, Thu 25 Jul 2013 16:54:32 IST

63http://www.w3.org/2001/Annotea/, Accessed, Thu 25 Jul 2013 16:54:32 IST

64http://www.w3.org/2000/01/sw/, Accessed, Thu 25 Jul 2013 16:54:32 IST

75

annotation schema, however the document formats for annotation are limited to XML

and HTML. Annotea relies heavily on XPointer65 for locating and referring annotations

in a document and annotations are kept separate from the document - a form of stand-off

markup. XPointer is the W3C recommendation for identifying fragments in URIs. As

annotations are kept separate from content. The benefit of the XPointer approach is

that it supports heterogeneous document formats. In principle, XPointer can handle any

robust changes to the document as long as the portion of text it is anchored too is not

interfered with, however major changes to the document will disrupt Xpointer reference.

This can be problematic as naturally both the document and its annotations will evolve

over time.

Annotea promotes a semi-formal approach, whereby annotations may be free text

comments about documents but the these comments must have RDF metadata such as

author, creation time etc. The metadata is typed according to the RDF schema. So

while, Annotea may promote user uptake in that users are shielded to a certain degree

from semantic web ontologies, the approach results in metadata loss with respect to the

machine processability of the annotations. The Annotea specification was adopted by

tools below such as Amaya, Annozilla and Vannotea (See Section 3.2.2), however to our

knowledge there has been little activity in the project since 2003.

CREAM is a an annotation framework which takes into account the context of an-

notations as well as the format of annotations [Handschuh et al., 2003a]. It specifies the

components of an annotation system including: annotations’ interface support, document

format support, support for automation, document management and annotation infer-

ence servers. As with Annotea, CREAM adheres to W3C standards such as RDF, OWL

and Xpointer for referencing annotations. The disadvantage is that the usage of Xpointer,

(as with Annotea) restricts CREAM to XML and HTML input formats. However, the

user does have the option to store annotations separately or embed them into the doc-

ument. CREAM was novel in that it also took into consideration annotation for the

65http://www.w3.org/TR/xptr/, Accessed, Thu 25 Jul 2013 16:54:32 IST

76

deep web, which involves annotating databases based on server-side Web page markup

according to the database’s information structures (produced by the database owner)

[Handschuh et al., 2003b] . The annotator produces client-side annotations that conform

to the client ontology and the server-side markup as well as publishing the ontology and

mapping rules to the database schema. Consequently, based on the mapping rules from

ontology to database (derived from the annotations), a user can query the database via

the published ontology. Annotation of the deep web is an important step as it has im-

plications for lifting of legacy corporate data into the Semantic Web. Finally, CREAM

also supports the annotation of relation metadata which is essential for building knowl-

edge bases. S-CREAM and M-OntoMat-Annotizer are both tools based on the CREAM

framework (see Section 3.2.2).

3.2.2 Manual Semantic Annotation

Most basic annotation tools permit users to create manual annotations. While they are

closely related to purely textual annotation tools, an ontology is interwoven into the an-

notation process in some form or another. Many of these tools produce Annotea RDF

markup. For instance the W3C web browser and editor Amaya allows for the mark up of

either HTML or XML Web documents [Quint and Vatton, 1997]. Users are able annotate

and edit text using the same tool. It is mainly an authoring tool with browsing facilities. It

does not facilitate any semi-automatic annotation. but has support for RDF and XPointer

and Xlink66 as well as collaborative annotation. Annozilla67 is a browser, which supports

the Mozilla browser with readable Amaya annotations. The intention of Annozilla is to

use Mozilla’s native facilities to manipulate annotation data - by using its built-in RDF

handling to parse the annotations, and nsIXmlHttpRequest to submit data when creating

annotations. The project seeks to make Amaya inter-operable with Mozilla. The last ac-

tivity to our knowledge on the project website appears to be June 2009. Mangrove is an-

66http://www.w3.org/TR/xlink11/, Accessed, Thu 25 Jul 2013 16:54:32 IST

67http://annozilla.mozdev.org/, Accessed, Thu 25 Jul 2013 16:54:32 IST

77

other manual annotation tool which is aimed at user friendliness [McDowell et al., 2003].

Mangrove seeks to “entice” users to annotate HTML based on data generated from a

number of semantic services such as calendar events and departmental contact informa-

tion. It is a simple GUI which allows users to link a selection of tags as they highlight the

text. Developments in [McDowell et al., 2004] involved the integration of Mangrove into

semantic email processes and represents early steps towards semantic email [Scerri, 2010].

Vannotea seeks to bring semantic annotation to the next stage of evolution beyond by

enabling users to mark up videos, images and audio [Schroeter et al., 2003]. It permits

users to add MPEG-2 metadata to video, JPEG2000 to images and Direct 3D to regions

of images or mesh files. It allows input from distributed users and for example has been

deployed as collaboration annotation tool for the cultural heritage domain allowing both

museum curators and indigenous groups to annotate cultural artefacts. Co-Annotea

builds on Vannotea and permits users to annotate multiple mixed-media objects the

relationships between them and enables fast and efficient ontology based tagging and

correlation of multimedia collections [Hunter and Schroeter, 2008]. It seeks to address

the need for to share and compare interpretations and associations across the commu-

nity over distributed annotation servers. Other work with respect to Vannotea, involves

embedding synchronous annotations attachments [Schroeter et al., 2006], using Jabber68

message conferencing as well as secure collaborative annotation via Shibboleth identity

management69 and XACML 70 access policies [Lorch et al., 2003]. In summary, although

some manual annotation tools are no longer actively supported, the Annotea model is

emerging as a de-facto standard for modelling annotations and tags and has been adopted

by many tools [Hunter and Schroeter, 2008].

68http://www.jabber.org/, Accessed, Thu 25 Jul 2013 16:54:32 IST

69http://shibboleth.net/, Accessed, Thu 25 Jul 2013 16:54:32 IST

70eXtensible Access Control Markup Language

78

3.2.3 Semi-Automatic Semantic Annotation

Many annotation tools involve some degree of semi-automatic annotation services. The

OntoMat Annotizer is an example of a manual annotation tool and an instance of

the CREAM framework described earlier. It provides user friendly functionality for

marking up and annotating web pages in a highlight, drag and drop fashion. On-

toMat was extended for semi-automatic support. The extensions were called S-CREAM

[Handschuh et al., 2002] and included to the adaptive IE system - Amilcare, whereby,

based on initial user annotations, the system attempts to automatically suggest new an-

notations [Ciravegna and Wilks, 2003]. OntoMat allows deep annotation i.e. annotation

web pages generated from a database [Handschuh et al., 2003b]. Extensions to OntoMat

included M-OntoMat Annotizer, which extends the annotation tool for manual anno-

tation of multimedia formats such as video and images [Bloehdorn et al., 2005]. It was

designed for users with little multimedia experience and provides automatic extraction

of of low level features to describe objects within multimedia content. Furthermore, On-

toMat was extended with PANKOW (Pattern based Annotation through Knowledge On

the Web) functionality [Cimiano et al., 2004]. PANKOW take proper nouns from the IE

phase and generates hypothesis phrases based on linguistic patterns specified in the on-

tology [Hearst, 1992]. So Brian is a Researcher would be generated as a pattern, where

both ‘Brian’ and ‘Researcher’ are concepts in the ontology. The phrases are sent to a

Google web service whereby phrases with the highest count are used to annotate the text

with the appropriate concept. The PANKOW process follows the principle of “disam-

biguation by maximal evidence”[Cimiano et al., 2004] and a similar approach is taken by

the system Armadillo (See Section 3.2.4).

The SHOE (Simple HTML Ontology Extensions) Knowledge Annotator was

an early system for marking up HTML pages with SHOE resources, guided by either lo-

cally or remotely available ontologies [Heflin and Hendler, 2001]. Users are promted for

input by the annotator. Running SHOE allowed users to build wrappers for automatic

annotation of webpages by permitting them to create lists for entities as well as regular

79

expressions [Heflin and Hendler, 2001]. SMORE71 is another annotation tool the allowed

users to markup web documents with limited knowledge of OWL terms and syntax. It

has facilities for ontology creation and authoring and the goal was to provide the a flexi-

ble environment to create simple web page simultaneously with markup. It also provides

an editor which uses domain and range restrictions to present a list of eligible targets

for all object property links from an instance. Development, however, with respect to

both tools appear to be inactive since 2005. The COHSE Annotator is an example of

another tool which produce annotations that were compliant with Annotea standards

[Goble et al., 2003], though annotations are conceived as hyperlinks stored using a Dis-

tributed Links Service. The only automation reported was a word matching service for

ontology terms. The annotator is deployed as plugin for both Mozilla and Internet Ex-

plorer browsers. COHSE had a number of domain applications including supporting

visually impaired users [Goble et al., 2003] and a Java Tutorial site.

3.2.4 Automatic Semantic Annotation

Automatic annotation systems are tools that provide automatic suggestions for annota-

tions. They may require some intervention by knowledge workers or alternatively acquire

annotations on a large scale. Some automatic tools must be developed by specialists while

others are targeted to knowledge workers [Uren et al., 2006]. These tools factor in user

interface design are reduce intrusiveness while maintaining high accuracy. They may be

supervised or unsupervised. Supervised approaches require sample annotations as input

for learning algorithms. The problem is that such approaches may require large samples

of quality training data which is error prone and labour intensive. Unsupervised ap-

proaches attempt to tackle this problem by reducing or eliminating the required amount

of training data. However, they must be implemented by specialists.

Lixto is an IE system which requires users to define wrapper rules for mapping un-

71SMORE: Semantic Markup, Ontology and RDF Editor, See http://www.mindswap.org/2005/SMORE/,
Accessed, Thu 25 Jul 2013 16:54:32 IST

80

structured resources in structured facts [Baumgartner et al., 2001]. Users can visually

build wrappers by selecting the appropriate pieces for information. The system is dis-

tributed as part of the Lixto Software GmbH72 and was originally developed by the

Technical University of Vienna.

Armadillo is an annotation tool which permits unsupervised creation of knowledge

bases from large repositories such as the Web or internal legacy document repositories

[Dingli et al., 2003]. The system bootstraps learning from seed examples and exploits

redundant information from repositories. So web services such as Google are used to

query the validity of an entity and verify its correctness. This is a similar approach

to the PANKOW algorithm, described earlier [Cimiano et al., 2004]. Seeds are derived

from the repository. An adaptive IE strategy is applied to generalise over examples and

to uncover new facts. The documents as well as other sources are exploited to assess

and confirm the quality of the annotations. No manual annotations are required. Once

confirmed, a new cycle of learning can be initiated. Bootstrapping can be repeated until

the user is satisfied with the quality of learning. Armadillo also uses keyword based

search techniques in addition to adaptive IE. Manual patterns are also applied to the

named entity extraction task. Similar to both PANKOW and Armadillo is OntoSyphon

[McDowell and Cafarella, 2006], which is not just ontology based but ontology driven.

Instead of trying to learn all possible information from the document, the systems focuses

on parts the ontology and seeks to learn all possible information about the ontology from

the Web. In addition, as opposed to just counting hits, the ontology is also taken into

account when verifying content.

MnM is a system designed for creating training data for IE systems rather the direct

annotations [Vargas-Vera et al., 2002]. So the mark up created by the system is not

stored in RDF format. It provides for a user interface, ontology support and open APIs

for linking to ontology servers and permits the integration information extraction tools.

Users manually annotate the corpus and then feed the data into rules in order to induce

72http://www.lixto.com/, Accessed, Thu 25 Jul 2013 16:54:32 IST

81

wrappers. Rule writing takes a lazy-NLP approach, whereby rules are generated based

on conjunction conditions of adjacent words. Rules can be corrected by performing an

insertion which causes the tags to shift location based on the training information.

Melita is a user centric automatic annotation system [Ciravegna et al., 2002]. It

has two annotation strategies available to the user. The first strategy uses adaptive

IE based on the Amilcare system, which is a machine learning system that adapts the

classification of the annotations based on user interaction [Ciravegna and Wilks, 2003].

Consequently, a large manual annotation effort is required at the initial stages, which

over time as the system learns, is reduced to verification of suggested annotations. The

second strategy is rule based, whereby Melita permits more specialist users to write rules

based on regular expressions allowing more customisation. Interestingly documents are

not selected randomly by the tool but are suggested to the user based on their expected

usefulness. Amilcare was also incorporated into theK@ system which is a legal knowledge

management system with RDF semantic capabilities [Gilardoni et al., 2005].

KnowItAll is quite similar to Armadillo (discussed earlier) [Etzioni et al., 2005]. It

differs however with respect to assessing the plausibility and quality of candidate extrac-

tions. It applies the PMI(Pointwise Mutual Information) measure rather the weighting

the candidate based on evidence from multiple sources. PMI is used between words and

phrases, estimated from web search engine hit counts and functions in a similar manner

to Turney’s PMI-IR algorithm [Turney, 2001]. For example, suppose that the extraction

stage proposes “Liege” as the name of a city. If the PMI between “Liege” and a phrase

like ”city of Liege” is high, this gives evidence that ”Liege” is indeed a valid instance of

the class City. KnowItall is does not require an initial set of seeds to bootstrap the system.

Additional extensions to the system include, pattern learning, subclass extraction and list

extraction, all of which have contributed to improving performance [Etzioni et al., 2005].

The SmartWeb project also investigated unsupervised approaches by using the ontol-

ogy class and subclass labels to construct examples for learning. So instances were identifi-

able based on the contexts learned from the initial examples [Buitelaar and Ramaka, 2005].

82

AeroSWARM73, is an automatic annotation tool which uses OWL ontologies based

on those used by the annotator, AeroDAML [Kogut et al., 2001]. A client server version

and a web based demonstrator are available, whereby the user supplies a URI and the

system returns a file of annotations. However, the user must save the RDF annotations

to an annotation server and view the results in an annotation friendly browser such as

Amaya. Its uses AeroText for information extraction. The AeroText API used the back-

end ontology as a guide to map extracted facts to RDF. The default ontology consists

of two parts: The upper level uses Wordnet [Oram, 2001], while the lower level uses a

knowledge base provided by the AeroText system [Kogut et al., 2001]

SemTag is an automatic semantic annotation tool based on IBM’s text analysis plat-

form Seeker [Dill et al., 2003]. Its entity extraction is based on similarity functions and

factors in the contexts similar to previously provided examples. It attempts to tackle

entity disambiguation by using a taxonomy based disambiguation technique. The tax-

onomy covers a range popular items such as movies, music, authors, sports health etc.

SemTag is intended to bootstrap an annotation platform, however the tool is intended for

specialists as opposed to knowledge workers as such. Semtag operates in three phases (i)

Spotting, (ii) Learning and (iii) Tagging. The Spotting pass tokenises input and attempts

to match tokens with labels from the ontology, while the learning pass examines a sample

corpus in order to find corpus-wide distribution of terms for each node in the taxonomy.

Finally the tagging pass is executed, which scans all windows from the learning pass and

attempts to disambiguate matches.

KIM (Knowledge and Information Management) [Popov et al., 2004] is a au-

tomatic semantic annotation platform based on the GATE [Cunningham, 2002]. KIM

takes a knowledge base approach for the extraction task, whereby the system is based on

a combination of gazetteers and partial parsing over annotations. Named entities in KIM

were initially embellished with semantic metadata from the KIM ontologies. Annotations

are quite generic such as persons, places and locations similar to the GATE named entity

73http://ubot.lockheedmartin.com/ubot/hotdaml/aeroswarm.html, now inactive

83

schema. KIM uses the PROTON74 ontology, which is is a lightweight upper-level ontology

defining about 300 classes and 100 properties in OWL Light. It provides coverage of the

most general concepts, with a focus on named entities (people, locations, organisations)

and concrete domains (numbers, dates, etc.). In addition, the platform uses the KIM

World Knowledge Base (WKB), which aims to cover the common knowledge that we

normally have beyond our cultural context (e.g. country and hobby). Most applications

of the KIM require extending the conceptual models with domain ontologies and the un-

derlying knowledge base with domain specific entities and facts. Custom knowledge bases

have been engineered in each of the domains where KIM has been applied. PROTON can

also be aligned to DBpedia and other linked datasets. KIM pipelines are also capable of

generating efficient in-memory lookup of entities based on the Linked Data Cloud as well

as enrichment of semantic annotations with addition related metadata from the Cloud.

Other resources available include MIMIR75, which is a semantic search engine that

combines a fast full-text index and a high-capacity semantic repository, allowing boolean,

SPARQL and annotation pattern searching in a single query [Cunningham et al., 2011].

In addition, KIM is supported by OWLIM [Bishop et al., 2011],which is a family of se-

mantic repositories with the following characteristics: native RDF engines, implemented

in Java delivering full performance through both Sesame and Jena, robust support for the

semantics of RDFS, OWL 2 RL and OWL 2 QL. OWLIM claims the best scalability, load-

ing and query evaluation performance. Aside from KIM, other GATE based semantic an-

notation systems include MUSE [Maynard, 2003] and h-Techsight [Maynard et al., 2005]

which used GATE to inform the users of the dynamics of concepts and instances, which

aid in the manual evolution of the ontology.

DBpedia Spotlight is a tool for annotating mentions of DBpedia resources in text

[Mendes et al., 2011]. It attempts to link unstructured information sources to the Linked

Open Data cloud through DBpedia. DBpedia Spotlight performs named entity extraction,

74http://proton.semanticweb.org/, Accessed, Thu 25 Jul 2013 16:54:32 IST

75http://gate.ac.uk/mimir/, Accessed, Thu 25 Jul 2013 16:54:32 IST

84

including entity detection and name entity (or identity) resolution. Although the system

claims to use information extraction techniques, it is heavily reliant on dictionary lookup,

however the entities’ lists that are regenerated from DBpedia appear to disambiguate

very well. Information retrieval techniques are used to disambiguate mentions based on

neighbouring DPBepdia resource mentions of DBpedia resources. The system does not

appear to cater for coreference of mentions, unlike GATE or KIM. It is based on the

Lingpipe tools, specifically the Exact Dictionary Based Chunker 76 which relies on the

Aho-Corasick string matching algorithm [Aho and Corasick, 1975]. Spotlight is novel in

that it is an excellent example of leveraging evolving linked data derived from the Web (

i.e Wikipedia) for semantic annotation.

3.2.5 Other Types of Annotation

Social annotation systems such as Delicious77 and Flickr78 have laid the fundamentals

for Web 2.0. They are extremely popular among web users due to the fact that the

underlying annotation model is quite simple, usually consisting of a tag and a resource

[Andrews et al., 2012]. However, due to the underlying natural language nature of the

annotation model, social annotation systems are often criticised for not taking into ac-

count the explicit semantics of each tag. Problems such as synonymy, homonymy and

morphological variance are not catered for and their is ambiguity over the interpretation

of a tag i.e. whether John is a person or a photographer. Despite these limitations, such

systems have had massive user uptake with Yahoo reporting in June 2011 that Flickr

had a total of 51 million registered members and 80 million unique visitors79 . In August

2011, the site reported that it was hosting more than 6 billion images and this number

76Alias-i.LingPipe4.0.0.http://alias-i.com/lingpipe, Retrieved on 24.08.2010, 2008

77https://delicious.com/, Accessed, Thu 25 Jul 2013 16:54:32 IST

78http://www.flickr.com/, Accessed, Thu 25 Jul 2013 16:54:32 IST

79http://advertising.yahoo.com/article/flickr.html, ”Flickr - Advertising Solution”. Yahoo!.
After June 2011. Retrieved 20 September 2011.

85

continues to grow steadily according to reporting sources 80. However, formal seman-

tics are sacrificed for usability, the result being that such systems have basic search and

retrieval services [Andrews et al., 2012]. Examples of such systems include Youtube81,

Last.fm82and LiveJournal83. We note that the Subject-Predicate-Object (SPO) model,

used in semantic annotation systems is of higher structural complexity than tags. So a

resource can have relation in the form of attributes such as “location”, “start date” and

“event” all of which have values which are not resources. Most social networks such as

MySpace and Facebook view the user as the resource or subject and use an attribute

annotation model to represent profile data. So these systems do use some type of SPO

annotation model, however the resource is not aligned to any formal conceptual model

or ontology. Relations take this a step further where the annotator is expected to deal

with more than one resource as a subject, hence the annotator is expected to bear a

higher mental load [Andrews et al., 2012]. Examples include Facebook, MySpace, Bib-

Sonomy84 and Upcomming.org85. Relations are typed links between resources and a user

can navigate from one resource to another via these relation links.

Other applications which involve semantic annotation are Semantic Authoring ap-

plications. Although these applications perform semantic annotation, the primary task

is to semantically enable the authoring environment and assist in authoring the publi-

cation using previously captured annotations i.e. the tools apply annotation templates

for reuse when authoring or retrieving additional information as well as tag based con-

tent visualisation. Such tools have been applied to MS Word as well LATEX. They differ

however with respect to their conceptual modelling. Some target domain knowledge

80http://news.softpedia.com/news/Flickr-Boasts-6-Billion-Photo-Uploads-215380.shtml, Ac-
cessed Sun 27 Jan 2013 16:52:22 GMT

81www.youtube.com, Accessed, Thu 25 Jul 2013 16:54:32 IST

82http://www.last.fm/, Accessed, Thu 25 Jul 2013 16:54:32 IST

83http://www.livejournal.com/, Accessed, Thu 25 Jul 2013 16:54:32 IST

84http://www.bibsonomy.org/, Accessed, Thu 25 Jul 2013 16:54:32 IST

85http://upcoming.yahoo.com/, Accessed, Thu 25 Jul 2013 16:54:32 IST

86

[Carr et al., 2004, Tallis, 2003] while others target rhetorical and argumentation struc-

tures and make them explicit for scientific publications i.e. SALT - Semantically An-

notated LATEX[Groza et al., 2011]. A thorough review of this field is beyond the scope

of this thesis, but we refer the reader to [Groza, 2012], for emerging trends in Semantic

Authoring.

Semantic wikis, which have become a somewhat popular way of adding semantics

to user generated wiki pages. The term Semantic Wiki often implies either ontology

authoring or the semantic annotation of wiki content. A traditional wiki creates links

between pages without defining the kind of linkage between pages. Semantic Media Wiki

[Krötzsch et al., 2006] allows a user to define the links semantically, thereby adding mean-

ing to links between pages. Each concept or an instance has a page in Semantic Media

Wiki, and each outgoing link from the page is annotated with well-defined properties

as links. Relational meta-data represented in a Semantic Media Wiki always has the

corresponding page as its subject. Other flavours of semantic wikis include IkeWiki86

[Schaffert, 2006] and KiWi87.

3.3 Conclusions

In Section 3.1, we provided a brief history of Controlled Natural Languages, while in

Section 3.1.1 and Section 3.1.2, we reviewed the existing work wrt CNLs for the Semantic

Web. Finally, Section 3.1.5 summarised additional related work concerning CNL. With

respect to CNLs for the Semantic Web, we can make the following observations:

• Grammatical Framework, (GF) appears to be gaining momentum in the CNL re-

search community. It is possible that GF, may take on the role of a general archi-

tecture for developing controlled languages. Furthermore, research within the CNL

community is turning its attention towards multilingual controlled languages, with

recent efforts to generate ACE, using GF, for several european languages.

86http://ikewiki.salzburgresearch.at/, Accessed, Thu 25 Jul 2013 16:54:32 IST

87http://www.kiwi-project.eu/, Accessed, Thu 25 Jul 2013 16:54:32 IST

87

• There has been an increased tendency towards conducting proper user evaluation

for CNLs. Recall, that a CNL is type of Natural Language Interface, (NLI). In

general, the tendency in the CNL research community has been to focus on how

much natural language or knowledge to model in the CNL under construction, so

much so that research on usability has suffered. The introduction of more complex

knowledge modelling such as rules and axioms for instance can have an impact on

the design of the CNL and its subsequent usability. One could argue, as does Smart

et al [Smart, shed], that user could become “lost in logic”, in that the resulting

complex CNL becomes no more user friendly than the ontology editor it is trying

to replace. While some CNL researchers have conducted task based evaluations,

there have been little or no comparative evaluations across tools. The evaluation

of CLOnE against a well know ontology editor - Protégé in Chapter 4, is arguably

one of the first concrete task based comparative evaluations between a CNL and an

ontology editor. In general, the CNL community should invest more in conducting

strong user evaluations and not to lose track of the end goal - the creation of more

user friendly ontology editing interfaces.

• A major question is whether a CNL is appropriate for the task? Although, in

the context of ontology authoring, CNLs like CLOnE and ACE offer an attractive

alternative to ontology editors, we argue that a CNL is not a panacea for resolving

ambiguity when processing natural language. This is particularly true, with respect

to authoring fluid natural language texts completely in CNL such as technical or

clinical documentation. We argue that for these scenarios, there should be a pre-

existing use case for a human orientated CNL, in other words a restricted vocabulary

or syntax for a technical domain either legal, clinical or aeronautics such as ASD

Simplified Technical English88. Without such a use case (despite it being possible

to adapt a human-orientated CNL to a machine processable CNL), there would

be little incentive for users to interact with it. Factors to be taken into account

88http://www.asd-ste100.org/, Accessed, Thu 25 Jul 2013 16:54:32 IST

88

when designing CNLs include, the knowledge creation task complexity, target user

(specialist or non expert), the domain (open or specific), available corpora, sample

texts, pre-existing language resources or vocabularies, ontologies, multilingualism,

requirements for language generation capabilities, and finally, availability of an NLP

engineer or computational linguist for development of general purpose CNLs.

• Other issues include whether to adopt a shallow or deeper NLP approach? CLOnE

and RABBIT [Hart et al., 2008] are based on a suite of shallow linguistic analy-

sis tools while Grammatical Framework (GF) [Angelov and Ranta, 2009] and At-

tempto Controlled English (ACE) [Fuchs and Schwitter, 1996a] are more lexicalised.

Furthermore, they are both more powerful with respect to knowledge modelling.

Both GF and ACE are bidirectional, which is extremely useful for surface realisa-

tion. In addition, GF, which is based on the functional language paradigm, can

exploit subsumption for free and moreover has an exhaustive bank of application

grammars for multiple languages. ACE on the other hand is logic based and has

built-in discourse representation structures which are unification based. However,

both RABBIT and CLOnE, respectively, as GATE applications, have a number of

Semantic Web and Linked Data processing resources available as GATE resources

[Cunningham et al., 2002]. This would permit the two CNLs to expose semantic

data from text, whereas knowledge encoded in GF or ACE is represented in either

of their respective functional or logic based intermediate structures. Consequently,

the knowledge must be exported to Semantic Web languages for further exploita-

tion. In addition, Semantic Web ontologies cannot easily be imported and exploited

by GF or ACE. In summary, deciding on what CNL or tools to use depends very

much on the complexity of both the knowledge creation task and the language mod-

elling task of the CNL as well as the target knowledge representation language and

whether there is a need to reuse existing ontologies or vocabularies.

• As research into controlled languages has been invigorated to a certain degree

89

by the Semantic Web initiative, Semantic Web researchers should observe lessons

learned by previous work in designing CNLs. Corpus analysis and empirical ap-

proaches should be a necessary step when designing a CNL [Grover et al., 2000,

Mitamura, 1999]

In Section 3.2, we moved to a definition of Semantic Annotation, while Section 3.2.1,

discussed abstract frameworks for annotation that are still valid today. Section 3.2.2,

Section 3.2.3 and Section 3.2.4 surveyed manual, semi-automatic and automatic annota-

tion tools respectively, while in Section 3.2.5, we explored briefly Social Annotation and

Semantic Annotation in the context of Semantic Authoring and finally Semantic Wikis.

With respect to Semantic Annotation, we make the following observations:

• In general across the literature, up-to-date surveys with respect to Semantic An-

notation are lacking. A comprehensive review of the state of the art of the field is

needed.

• While there are plethora of evaluation tools available, there appears to be an absence

in general with respect to quantitative user interface studies of manual or semi

automatic annotation tools.

• Annotation ontologies should be revisited in particular with the current focus on

entity linking within the Linked Data community. Annotation is more sophisticated

than linking an entity mention in text to a URI i.e. it may involve the association

of richer metadata to an entity mention.

• Arguably, the success of the Linked Open Data initiative may reinvigorate interest in

the field of Semantic Annotation, whereby existing research on Semantic Annotation

may provide further insights to the entity linking problems with respect to Linked

Data.

The purpose of this chapter has been to review related work with respect to Con-

trolled Natural Languages and Semantic Annotation. We have provided the necessary

90

background and clarified the state of the art with respect to both fields. We move now to

describe the CNL - CLOnE in the next chapter because it forms the basis for the research

contributions of this thesis.

91

Part III

Core Research

92

4 CLOnE - Controlled Language for Ontology Editing

This Chapter discusses Controlled Language for Ontology Editing (CLOnE), which

forms the basis for the research contributions of this thesis. The CLOnE language and its

software were originally developed by the Sheffield Natural Language Processing group at

the University of Sheffield. In Chapter 5 and Chapter 6, we extend CLOnE for the pur-

poses of exploring and experimenting with RoundTrip Ontology Authoring and Semantic

Annotation respectively. We describe CLOnE, its experimental results and limitations as

a prelude to our research contribution.

References: This chapter is based on my contribution for [Funk et al., 2007]. The

particular contribution was a survey review of related work with respect to CNLs.

4.1 Introduction

Formal data representation can be a significant deterrent for non-expert users or small

organisations seeking to create ontologies and subsequently benefit from adopting seman-

tic technologies. Existing ontology authoring tools such as Protégé 89 attempt to resolve

this, but they often require specialist skills in ontology engineering on the part of the

user. This is even more problematic for domain specialists, such as clinicians, business

analysts, legal experts, etc. As such professionals cannot be expected to train themselves

to comprehend Semantic Web formalisms and the process of knowledge gathering; involv-

ing both a domain expert and an ontology engineer can be time-consuming and costly.

Controlled Natural Languages (CNLs) for knowledge creation and management offer an

89http://protege.stanford.edu, Accessed, Thu 25 Jul 2013 16:54:32 IST

93

attractive alternative for naive users wishing to develop small to medium sized ontologies

or a first draft ontology which can subsequently post-edited by an Ontology Engineer.

We have already mentioned the Controlled Language for Ontology Editing (CLOnE)

which was developed by the Sheffield Natural Language Processing group at the Uni-

versity of Sheffield. In Chapter 5 and Chapter 6, we extend and adapt CLOnE for the

purposes of exploring and experimenting with Round Trip Ontology Authoring and Se-

mantic Annotation respectively. Consequently, it is necessary to describe CLOnE, its

experimental results and limitations as it forms the basis of our research contribution.

CLOnE is a CNL which allows users to design, create, and manage information spaces

without knowledge of complicated standards such as XML, RDF and OWL, or ontol-

ogy engineering tools such as Protégé. Its implementation, CLIE - Controlled Language

Information Extraction, is a simplified natural language processor that allows the spec-

ification of logical data for Semantic Web technology purposes in normal language, but

at the same time attains the high accuracy levels necessary for high reliability in appli-

cations. CLIE is based on GATE’s existing cascade of finite state transducers (FSTs)

for IE [Cunningham et al., 2002]. CLIE is configured so that it either accepts input as

valid (in which case accuracy is generally 100%) or rejects it and will warn the user of

needed repairs to the syntax. Because the parsing process is deterministic, the usual IE

performance measures (precision and recall) are not relevant.

While the CLOnE language and the CLIE applications are themselves not overly

complex in comparison to other CNLs, the main contribution of this work is a repeated-

measures task-based evaluation of CLOnE/CLIE compared to a standard Ontology En-

gineering Editor -Protégé. The contribution is important as it represents the first com-

parative user evaluation between a CNL and an ontology editing tool.

The remainder of this chapter is as follows: Section 4.2 discusses the CLOnE CNL

and its implementation CLIE, Section 4.3 describes the user evaluation and discusses

our quantitative findings, while Section 4.4 compares CLOnE to related work within the

context of user evaluation. Finally, Section 4.5 offers conclusions and as a prelude to

94

Chapter 5, discusses future work involving language generation and CLOnE .

4.2 Requirements and Implementation

4.2.1 Requirements

Taking into consideration the strengths and weaknesses of other controlled language sys-

tems discussed above, the CLOnE language and the implementation CLIE were designed

to meet the following requirements:

1. CLIE requires only one programming language or runtime environment, Java 1.5.

2. CLOnE is a sublanguage of English.

3. As far as possible, CLOnE is grammatically lax; in particular it does not matter

whether the input is singular or plural (or even in grammatical agreement). For

example, the lines of input within each group in Table 4.1 have the same semantics.

It is also case-insensitive.

4. CLOnE is compact; the user can create any number of classes or instances in one

sentence.

5. CLOnE is easy to learn by following examples and a few guiding rules, without

having to study formal expressions of syntax; nonetheless, the basic (declarative)

implementation of CLOnE uses only 11 syntactic rules.

Table 4.1: Groups of equivalent sentences in CLOnE

Book is a type of document. Alice is a person. Bob is a person.

Books is a type of document. Alice and Bob are person.

Books are types of document. Alice and Bob are persons.

Books are types of documents.

95

6. Any valid sentence of CLOnE can be unambiguously parsed.

CLOnE and CLIE are limited to the to following ontology operations:

• the creation and deletion of new classes and instances

• the creation and deletion of subclasses.

• the creation and deletion of class (and instance) level properties

• and the creation and deletion of datatype properties.

The goal of building CLOnE (and CLIE) was to design a CNL to simplify ontology

authoring in that the simplest solution could provide the most useful results with minimal

or no training for users. If CLOnE were enhanced with to cover more complex ontology

operations in OWL such as rules and axioms or other features such as cardinality and

special characteristics for relations (i.e. transitivity or inverse properties), than it may

become difficult to both learn and use which would be undesirable.

4.2.2 Implementation

The syntax of the controlled language is based principally on chunks, which are used to

name classes, instances, properties and values; and keyphrases. POS (part-of-speech) tags

and morphological analysis (lemmatisation) also play a role.

Procedurally, CLIE’s analysis consists of a GATE pipeline of Processing Resources

(PRs) as illustrated in Figure 5.1. The pipeline starts with a series of fairly standard

NLP tools which (as implemented in GATE) add annotations and annotation features to

the document.

These are followed by three PRs developed particularly for parsing CLOnE: a gazetteer

of keywords and phrases fixed in the CLOnE syntax and two JAPE90 transducers which

90JAPE (Java Annotation Pattern Engine) is an applied language used in GATE for with writing
regular expressions over annotations and subsequent annotation manipulation of bound patterns using
executable Java code.

96

Figure 4.1: The CLIE pipeline

identify quoted and unquoted chunks. (Names enclosed in pairs of single or double quota-

tion marks can include reserved words, punctuation, prepositions and determiners, which

are excluded from unquoted chunks in order to keep the syntax unambiguous.)

4.2.3 Syntax and semantics

An input document to CLIE consists of a series of CLOnE sentences. Each each sentence

consists of chunks, list separators, prepositions, determiners and keyphrases and ends with

a full stop. A parseable sentence matches the pattern (similar to a regular expression)

left-hand side (LHS) of one of the rules in the CLIE JAPE transducer and the sentence’s

semantics are determined by the rule’s right-hand side (RHS), which contains Java code

to manipulate the ontology.

We now present the full current list of CLOnE syntactic rules, for each of which is

given the following details:

• an informal statement of the pattern, using variables such as class and instance

97

(and classes, for example, to indicate a list of one or more);

• one or more examples of CLOnE input in typewiter font; and

• an explanation of the rule’s semantics, i.e. what CLIE does when an CLOnE input

matches the rule.

Many of the sentences also have negative forms with the keyphrase Forget that at

the beginning. The negative forms (Forget) can be used to correct input errors (a form

of “undo”-function) as well as to delete obsolete or erroneous information while editing

an existing ontology.

Rule 1. There is/are classes.

Forget that there is/are classes.

There are agents and documents.

Create a new class immediately under the top class for each chunk in the list. If

negated, delete each class named in the list.

Rule 2. instances0 is a/are class1.

Forget that instances0 is a/are class1.

‘University of Sheffield’ is a university.

Alice Jones and Bob Smith are persons.

For each chunk in list instances0, create an instance of class1. If negated,

delete each instance. If class1 does not name an existing class, generate an

error.

Rule 3. classes0 is/are a type/types of class1.

Forget that classes0 is/are a type/types of class1.

Universities and persons are types of agent. Dogs are a type of mammal.

Forget that dogs are a type of cat.

For each chunk in list classes0, if it already exists as a class, make it a subclass

98

of the class1 if it does not exist, create a new class as a subclass of class1.91

If the sentence is negated, unlink the subclass-superclass relationship (but do not

delete the subclass).

If class 1 does not name an existing class, generate an error.

Rule 4. classes/instances0 have classes/instances1.

Forget that classes/instances0 have classes/instances1.

Journals have articles. ‘Journal of Knowledge Management’ has ’Crossing

the Chasm’.

Iterate through the cross-product of chunks in list classes/instances0 and

chunks in list classes/instances1. For each pair, if both are classes, create a

property of the form Domain has Range. If both are instances, find a suitable

property and instantiate it with those instances; if there is a class-instance mis-

match or a suitable property does not exist, generate an error.

Rule 5. classes0 have datatype description.

Forget that classes0 have datatype description.

Projects have string names. Deliverables and conferences have dates

as deadlines.

For each class named in list 0, create a datatype property of the form Do-

main has Description.

Rule 6. instance0 has description with value value.

Forget that instance0 has description with value value.

SEKT has name with value ‘Semantically-Enabled Knowledge Technology’.

D2.2.2’ has deadline with value ’M36’.

For each instance named in list instance0, find a suitable datatype property

with a matching description and instantiate it with the specified data value.

91CLIE and the GATE Ontology API support multiple inheritance.

99

Rule 7. class/instance0 is/are also called/known as synonyms1.

Forget that class/instance0 is/are also called/known as synonyms1.

Dogs are also called canines. Bob Smith is also called Bob.

Add all the chunks in list synonyms1 as synonyms of the class or instance named

by chunk class/instance0 . The synonyms are indexed and can be used in

subsequent statements of CLOnE, although they do not affect the classes’ and

instances’ primary names in the ontology. If negated, delete the synonyms in list

synonyms1 from the class or instance in chunk synonyms1.

Synonyms are implemented as RDF-labels so they are saved in the OWL-Lite

file that CLIE exports and can be used again when the same file is re-loaded.

Rule 8. There are classes0, which have classes1.

There are projects, which have workpackages and deliverables.

Create a class under the top class for each chunk in list classes0, and create

properties of the form Domain has Range for the cross-product of new classes in

list classes1 and existing classes in list classes0.

Rule 9. classes/instances0 are description preposition classes/instances1.

Forget that classes/instances0 are description preposition classes/in-

stances1.

Persons are authors of documents. Carl Pollard and Ivan Sag are the

authors of ’Head-Driven Phrase Structure Grammar’.

Iterate through the cross-product of chunks in lists classes/instances0 and

classes/instances1. For each pair, if both name classes, create a property of

the form Domain Description Prep Range.

If both name instances and a suitable property can be found, instantiate the

property between the given instances. If there is a class-instance mismatch or

one of the names cannot be dereferenced, an error message is produced.

This rule is a particularly good example of CLIE’s use of information from the

100

ontology to interpret the input sentences.

Rule 10. Forget everything.

Clear the whole ontology (and start over).

Rule 11. Forget classes/instances.

Forget projects, journals and ’Crossing the Chasm’.

For each chunk listed, delete the named class or instance. (The GATE ontology

API will automatically delete subclasses and instances of named classes, and

properties and property definitions referring to named classes and instances.)

4.3 Evaluation

As mentioned earlier, the main contribution of this work is a repeated-measures task-

based evaluation of the CLOnE system compared to a standard Ontology Engineering

Editor-Protégé. The contribution is important as it represents the first solid comparative

user evaluation between a CNL and ontology editing tool. It its important to review the

methodology and results of this work as it forms the basis for the research contributions

of this thesis (See Chapters 5 and 6). For the remainder of this chapter, when we refer to

“CLOnE” in our statistical results, we are referring to both the CLOnE CNL and CLIE

system simultaneously.

4.3.1 Methodology

We prepared the following documents for the users.

• The pre-test questionnaire asks for background information: how much each sub-

ject already knows about ontologies, the Semantic Web, Protégé and controlled

languages. We scored this questionnaire by assigning each answer a value from 0

to 2 and dividing the total by 12 to obtain a score of 0–100

101

• The short manual introduces ontologies and provides “quick start” instructions

for both pieces of software. The manual was inspired by Protégé’s Ontology 101:

Creating your First Ontology documentation [Noy and McGuinness, 2001]. (See

Appendix A for details of the manual and CLOnE language and CLIE interface.)

• The post-test questionnaire for each tool is the System Usability Scale, which also

produces a score of 0–100 [Brooke, 1996].

• We devised a comparative questionnaire to measure each user’s preference for one

of the two tools. This form is scored similarly to SUS so that 0 would indicate a

total preference for Protégé, 100 would indicate a total preference for CLOnE, and

50 would result from marking all the questions neutral. On the reverse side and

in discussion with the facilitator, we offered each user the opportunity to provide

comments and suggestions.

• We prepared two lists of ontology-editing tasks (Task list A and Task list B). Each

task list was divided into three sublists covering the following task types:

– creating classes and subclasses,

– creating instances, and

– creating and defining properties.

We recruited 15 volunteers with varying experience levels and asked each volunteer to

complete the pre-test questionnaire, to read the manual, and to carry out each of the two

task lists with one of the two tools. Approximately half the users (8 of 15) carried out

Task List A with CLOnE and then Task List B with Protégé; the others (7 of 15) carried

out A with Protégé and then B with CLOnE.

We measured each user’s time for each task list and in most cases (12 of 15) for

each sublist. After each task list we asked the user to complete the SUS questionnaire

for the specific tool used, and finally we asked the them to complete the comparative

questionnaire.

102

4.3.2 Background

The methodology constitutes a repeated-measures, task-based evaluation: each participant

carries out a similar list of tasks on both tools being compared.

We chose the SUS questionnaire as our principal measure of software usability because

it is a de facto standard in this field. Although it superficially seems subjective and its

creator called it “quick and dirty”, it was developed according to the proper techniques

for a Likert scale [Brooke, 1996].

Furthermore, researchers at Fidelity Investments carried out a comparative study of

SUS, three other published usability questionnaires and an internal questionnaire used

at Fidelity, over a population of 123 subjects, to determine the sample sizes required

to obtain consistent, accurate results [Tullis and Stetson, 2004]. They found that SUS

produced the most reliable results across all sample sizes; they noted a jump in accuracy

to 75% at a sample size of 8, but recommended a sample of at least 12–14 subjects. As a

reference for interpreting the results, average SUS scores are usually between 65 and 70

[Bailey, 2006].

4.3.3 Hypothesis statements and statistical measures

With respect CLOnE SUS scores we state the our first hypothesis pair as:

4.1H0: It is predicated that CLOnE usability (SUS) scores will not be greater than

neutral (µ � 65).

4.1H1: It is predicated that CLOnE usability (SUS) scores will be greater than neutral

(µ > 65) .

To clarify, we are stricter in our interpretation of ’neutral’ in that only SUS values of

>0.65 are considered to be strong SUS scores as they are above the threshold of neutral

or weak values [Bailey, 2006].

In addition, with respect to the CLOnE/Protege preference we have the second hy-

pothesis pair:

103

4.2H0: It is predicated that the CLOnE/Protégé preference score will not be greater

than neutral (µ � 65)

4.2H1: It is predicated that the CLOnE/Protégé preference score will be greater than

neutral (µ > 65)

Before presenting and interpreting the findings from the experimental data, we briefly

explain the statistical measures used in the following sections.

A z-score is a standard score which indicates the (signed) number of standard devia-

tions an observation or datum is above the mean [John L. Phillips, 1996].

A 95% confidence interval calculated from a data sample is a range which is 95%

likely to contain the mean score of the whole population which the sample represents

[John L. Phillips, 1996].

A correlation coefficient over a set of pairs of numeric data is analogous to the appear-

ance of a scatter graph or X-Y plot. +1 signifies a perfect correlation and corresponds to

a graph in which all points lie on a straight line with a positive slope; −1 signifies a per-

fect inverse correlation (the points lie on a straight line with a negative slope); 0 indicate

a complete lack of correlation (random distribution of the points). Values > +0.65 and

< −0.65 are generally considered to indicate strong correlations.

The formula for Pearson’s coefficients assumes that the two variables are linearly

meaningful; physical measurements such as length and temperature are good examples

of such variables. The formula for Spearman’s coefficients, on the other hand, stipulates

only ordinal significance (ranking) and is often considered more appropriate for subjec-

tive measurements (such as many in the social sciences) [Connolly and Sluckin, 1971,

Hildebrand et al., 1977, John L. Phillips, 1996, Calder, 1996, Simon, 2006].

4.3.4 Results and Data Analysis

As the descriptive statistics in Table 4.2 show, the SUS scores for CLOnE are generally

above the baseline and distributed generally higher than those for Protégé, and scores

on the comparative questionnaire are generally favourable to CLOnE. The scores are

104

Table 4.2: Summary of the questionnaire scores

Measure min mean median max

Pre-test scores 25 55 58 83

CLOnE SUS rating 65 78 78 93

Protégé SUS rating 20 47 48 78

CLOnE/Protégé preference 43 72 70 93

also broken down according to the tool used and the task list (A or B) carried out and

calculate confidence intervals as shown in Table 4.3; these indicate that for each task list

and for the combined results, the larger population which our sample represents will also

produce mean SUS scores for CLOnE that are both higher than those for Protégé and

above the SUS baseline.

Table 4.3: Confidence intervals (95%) for the SUS scores

Task List Tool Confidence interval

A Protégé 33–65

A CLOnE 75–93

B Protégé 30–58

B CLOnE 67–79

A&B Protégé 37–56

A&B CLOnE 73–84

With respect to

4.1H0: It is predicated that CLOnE usability (SUS) scores will not be greater than

neutral (µ � 65),

we can reject the null hypothesis with z=5 p< 0.5.

With respect to:

105

4.2H0: It is predicated that the CLOnE/Protégé preference score will not be greater

than neutral (µ � 65),

even though the preference score is favourable towards CLOnE, we cannot reject the

null hypothesis with z=1 p< 0.5.

For our post-hoc data analysis, we also generated Pearson’s and Spearman’s corre-

lations coefficients from a wide range of data; Table 4.4 shows the highlights of these

calculations. In particular, we note the following points.

Table 4.4: Correlation coefficients

Measure Measure Pearson’s Spearman’s

Pre-test CLOnE time -0.06 -0.15

Pre-test Protégé time -0.13 -0.27

CLOnE time Protégé time 0.78 0.51

CLOnE SUS Protégé SUS -0.31 -0.20

CLOnE SUS C/P Preference 0.68 0.63

Protégé SUS C/P Preference -0.62 -0.63

Pre-test CLOnE SUS -0.17 -0.17

Pre-test Protégé SUS -0.16 -0.15

CLOnE time CLOnE SUS 0.26 0.15

Protégé time Protégé SUS -0.17 -0.24

CLOnE time Protégé SUS 0.19 -0.01

Protégé time CLOnE SUS 0.42 0.44

• The pre-test score has no correlation with task times or SUS results.

• The task times for both tools are moderately correlated with each other but there

are no significant correlations between task times and SUS scores, so both tools are

technically suitable for carrying out both task lists.

106

• As expected, the C/P preference score has a moderately strong correlation with the

CLOnE SUS score and a moderately strong negative correlation with the Protégé

SUS score. (The SUS scores for the two tools also show a weak negative correlation

with each other.) These figures confirm the coherence of the questionnaires as a

whole.

4.3.5 Sample quality

Although our sample size (n = 15) satisfies the requirements for reliable SUS evaluations

(as discussed in Section 4.3.2), it is also worthwhile to establish the consistency of the

two partitions of our sample, as enumerated in Table 4.5:

by tool order and task-tool assignment: subjects who carried out task list A on

CLOnE and then B on Protégé, in comparison with those who carried out A on

Protégé then B on CLOnE; and

by sample source: subjects drawn from the GATE development team, in comparison

with others.

Table 4.5: Groups of subjects by source and tool order

Source Tool order Total

PC CP

G GATE team 4 5 9

NG others 4 2 6

Total 8 7 15

Tool order was divided almost evenly among our sample. Although the SUS scores

differed slightly according to tool order (as indicated in Table 4.3), the similar task times

suggest that task lists A and B required similar effort. We note that the SUS scores for

107

each tool tend to be slightly lower for task list B than for A, and we suspect this may have

resulted from the subjects’ waning interest as the evaluation progressed.92 But because

Table 4.3 in particular shows consistent results between CLOnE and Protégé for each

task list, we believe that our study was fair.

One must also consider the possibility of biased subjects drawn from colleagues of the

developers and facilitator. As Table 4.5 shows, members of the GATE team constituted

60% of the user sample. The measures summarised in Table 4.6, however, show in par-

ticular that although members of group G generally rated their own expertise higher (in

the pre-test questionnaire) than those in group NG, both groups produced very similar

ranges of SUS scores for each tool and of C/P preferences scores. These measures allay

concerns about biased subjects: we conclude that groups G and NG were equally reliable

so the sample as a whole is satisfactory for the SUS evaluation.

Table 4.6: Comparison of the two sources of subjects

Measure Group min mean median max

Pre-test G 25 62 67 83

NG 33 44 42 58

CLOnE SUS G 65 78 78 90

NG 65 78 78 93

Protégé SUS G 25 46 48 70

NG 20 47 46 78

C/P Preference G 50 71 68 90

NG 43 74 79 93

92To eliminate the possibility of this effect with the same reliability, we would need twice as many
subjects, each carrying out one task list with one tool (a between-subject experiment, in contrast to our
within-subject experiment).

108

4.3.6 Subjects’ suggestions and comments

The test users made several suggestions about CLOnE.

• Several subjects complained that they needed to spell and type correctly the exact

names of the classes and instances, such as “Journal of Knowledge Management”

and that CLOnE is intolerant of typos and spelling mistakes. They suggested spell-

checking and hinting (as provided in the Eclipse93 UI) to alleviate this cognitive

load.

• A related suggestion is to highlight the input text with different colours for classes,

instances and properties, perhaps after the user clicks a Check button, which would

be provided in addition to the Run button. The Check button could also suggest

corrections and give error messages without affecting the ontology.

• Users complained that it was difficult to tell why some input sentences failed to

have any effect, because CLOnE does not explicitly indicate unparsable sentences.

• Some suggested that CLOnE should automatically clear the input text box after

each run, but they also realised this would make it more difficult to correct errors,

because it is currently easy to prefix the keyword forget to incorrect sentences

from the previous input without having to retype them.

• Some suggested making the Run button easier to find and putting the ontology

viewer and the input box on the screen at the same time instead of in alternative

panes.

• A few users said it would be useful to have an Undo button that would simply reverse

the last input text, instead of having to forget all the sentences individually.

93http://www.eclipse.org/, Accessed, Thu 25 Jul 2013 16:54:32 IST

109

4.3.7 Limitations of the evaluation

There are limitations with respect to the evaluation discussed above. Most notably, the

correlations were not tested for significance, hence one cannot infer beyond the sample

to the general population. Secondly, although the evaluation addresses bias concerning

participants who are members of the GATE team, ideally further evaluations involving

CLOnE should have tighter control over bias.

4.4 Related Work

With respect to related work, we will review existing CNL research, but in the con-

text of user evaluation. (For a thorough survey of controlled languages, we refer the

reader to Chapter 3). As discussed in Chapter 3, Attempto Controlled English (ACE)

is a well known CNL [Fuchs and Schwitter, 1996a]. However, to our knowledge no task

based evaluations which compare ACE against another ontology authoring tool have been

conducted, however much of ACE evaluation has focused on comprehension of the lan-

guage itself. Recently Kuhn [Kuhn, 2010b] described an evaluation framework for CNLs

based on Ontographs. Ontographs are a graphical notation to enable tool independent

and reliable evaluation of the human understanding of a given knowledge representation

language. The author categorises CNLs evaluations into (1)task-based, whereby users

are provided with a specific task to complete and (2) paraphrase-based which are are

concerned with testing the understandability of the CNL. Ontographs serve as a common

basis for testing and comparing the understandability of two different formal languages

and facilitate the design of tool-independent and reliable experiments. The author claims

that Ontographs are simple and intuitive. They are useful for representing simple logical

forms but they do not cater for functions and are restricted to unary and binary predi-

cates. In short, Ontographs serve to test the relative understanding of the core logic for

two different formal languages.

In [Engelbrecht et al., 2009], the authors undertake a paraphrase-based evaluation to

110

assess whether domain experts without any ontology authoring development can author

and understand declaration and axiom sentences in Rabbit. The experiment included

21 participants from the ordnance survey domain and a Rabbit language expert. The

participants were given a text that describes a fictional world and were asked to make

knowledge statements which were then compared to equivalent statements created by

the Rabbit expert. The sentences produced by non-experts were analysed for correctness

(with regard to the knowledge captured) by independent experts and were compared to

those produced by the Rabbit expert. Interestingly, on average 51% of the sentences

generated at least one error. Furthermore, the most common error was the omission of

the quantifier “every” at the beginning of a sentence. This observation was of statistical

significance. Other user errors included: confusing instances with subclass declarations,

a tendency to omit intensional information as well difficulties modelling knowledge under

the open world assumption. The work of [Hart et al., 2008] and [Engelbrecht et al., 2009]

is important in the context of CNL evaluation in that it represents the advent of the

paraphrase-based approach to evaluating CNLs.

We discussed ROO [Dimitrova et al., 2008], which was developed by the University of

Leeds, is an open source java based plugin to Protege which supports a domain expert

to create and edit ontologies using Rabbit. The tool is based on the experiences of the

Ordnance Survey(OS) agency with creating large-scale geo-spacial ontologies. An evalua-

tion study of ROO was conducted against ACEView [Kaljurand, 2008] where participants

from the domains of geography and environmental studies were asked to create ontolo-

gies based on hydrology and environmental models respectively. Both ontology creation

tasks were designed to resemble real tasks performed by domain experts at OS. Controls

were put in place to eliminate bias and ontologies for both domains were also produced

by the OS to compare against the ROO generated ontologies. The quantitative results

were favourable. Although ACEView users were more productive (not in the statistically

significant sense), they tended to create more errors in the resulting ontologies. Further-

more with respect to ROO users, their understanding of ontology modelling improves

111

significantly in comparison to ACEView. Interestingly, but not surprisingly, none of the

ontologies produced were usable without post editing. Even though one could argue that

the user experience is significantly improved with either ACE or ROO over a non CNL

supported standard ontology editing tool, users would still require some formal training

knowledge modelling techniques to author quality ontologies.

GINO (Guided Input Natural Language Ontology Editor) provides for guided, con-

trolled NLI for domain-independent ontology editing for the Semantic Web. GINO incre-

mentally parses the input not only to warn the user as soon as possible about errors but

also to offer the user (through the GUI) suggested completions of words and sentences—

similarly to the “code assist” feature of Eclipse and other development environments.

GINO translates the completed sentence into triples (for ontology editing) or SPARQL

94 statements (for queries) and passes them to the Jena Semantic Web framework. (The

JENA Eyeball 95 model checker verifies the OWL for consistency.) Although the guided

interface facilitates input, the sentences are quite verbose and do not allow for aggrega-

tion [Bernstein and Kaufmann, 2006]. Furthermore, similar, to our evaluation, a small

usability evaluation was conducted using SUS - System Usability Scale [Brooke, 1996],

however the sample set of six was too small to infer any statistically significant results

[Tullis and Stetson, 2004]. In addition, GINO was not compared to any existing Ontol-

ogy editor during the evaluation. Finally, [Namgoong and Kim, 2007] presents an On-

tology based Controlled Natural Language Editor, similar to GINO, which uses a CFG

(Context-free grammar) with lexical dependencies - CFG-DL to generate RDF triples.

To our knowledge the system ports only to RDF and does not cater for other Ontology

languages. Furthermore no quantitative user evaluation is provided.

Finally, with respect to Grammatical Framework [Angelov and Ranta, 2009] although

the work is very impressive, to our knowledge there have been no evaluations con-

ducted with respect to the usability or comprehension of CNL applications for GF,

94http://www.w3.org/TR/rdf-sparql-query/, Accessed, Thu 25 Jul 2013 16:54:32 IST

95http://jena.sourceforge.net/Eyeball/full.html, Accessed, Thu 25 Jul 2013 16:54:32 IST

112

rather the evaluation work has been focused towards the machine translation context

[España-Bonet et al., 2011].

4.5 Conclusion

In this chapter we have presented the CLOnE language and its implementation - CLIE, as

well as empirical evidence to support their combined suitability for basic ontology editing

tasks as well its comparable usability to a standard ontology editing tool.

The user evaluation consistently indicated that our subjects found CLOnE/CLIE sig-

nificantly more usable and preferable than Protégé for the straightforward tasks that we

assigned. (Of course we make no claims about the more complicated knowledge engi-

neering work for which Protégé but not CLIE is designed and intended for.). CLIE was

designed to create small to medium sized ontologies or an initial first draft of an ontology.

The point being that the majority of knowledge in an ontology will be taxonomic as well

relationships between classes, leaving the more complex axiom and rules to the ontology

engineer. The main contribution of this work is the evaluation of CLOnE/CLIE com-

pared to a standard Ontology Engineering Editor - Protégé, which represents the first

comparative user evaluation between a CNL and an ontology editing tool.

The participants made several interesting and useful suggestions for improvements

to CLOnE/CLIE many of which we already envisage developing in future work. In

particular, the notion of embedding CLOnE or CNL in semantic wikis or other user

interfaces which would eliminate some of the constraints imposed by running it in the

GATE GUI, which is really intended for developing language engineering applications

(such as CLIE itself) rather than for interactively editing language resources (such as

documents and ontologies). Other work involves to adaptation of CLOnE for semantic

annotation, already mentioned in Section 1.1.2 , but which is explored in detail in Chapter

6. In this chapter, we have discussed using CLOnE to generate ontologies from input text.

The reverse of the process involves the generation of CLOnE from an existing on ontology

by Natural Language Generation (NLG), specifically shallow NLG. Combining both NLG

113

and CLIE enables a RoundTrip Ontology Authoring(ROA) environment: a user can start

with an existing imported ontology or one originally produced using CLOnE, (re)produce

the Controlled Language using the text generator, modify or edit the text as required and

subsequently parse the text back into the ontology using the CLOnE environment. The

process can be repeated as necessary until the required result is obtained. The purpose

of introducing NLG is to ease the learning curve associated with writing CLOnE. On this

note, we move to Chapter 5, to explore this further.

114

5 Round Trip Ontology Authoring

This Chapter discusses the design and implementation of the Round Trip Ontology

Authoring (ROA) environment (See Section 5.2). We focus in particular on text generator

component (See Section 5.2.3). The chapter provides the first comparative task-based

evaluation between a generation driven Controlled Natural Language (CNL) tool and a

standard ontology editor - Protégé [Knublauch et al., 2004] and discusses the quantitative

findings (See Section 5.3).

References: This chapter is based mainly on [Davis et al., 2008].

5.1 Introduction

The previous chapter presented CLOnE - Controlled Language for Ontology Editing which

allowed naive users to design, create, and manage information spaces without knowledge

of technical standards (such as XML, RDF and OWL) or ontology engineering tools. The

CLOnE software - CLIE (Controlled Language IE) is based on GATE’s existing tools for

IE (Information Extraction) and NLP (Natural Language Processing) (Henceforth, when

we refer to CLOnE, we are also including CLIE)[Cunningham et al., 2002].

CLOnE was evaluated using a task-based methodology in comparison with a standard

ontology editor – Protégé. CLOnE performed favourably with test users in comparison to

Protégé. Despite the benefits of applying Controlled Natural Language (CNL)technology

to ontology engineering, a frequent criticism against its adoption, is the learning curve

associated with following the correct syntactic structures and/or terminology in order to

use the CNL properly. Adhering to a controlled language can be, for some non expert

115

users, time consuming and annoying. These difficulties are related to the habitability

problem, whereby users do not really know what commands they can or cannot specify

to the NLI (Natural Language Interface) [Thompson et al., 2005]. Where the CLIE sys-

tem uses natural language analysis to unambiguously parse CLOnE in order to create

and populate an ontology, the reverse of this process, NLG (Natural Language Gener-

ation), involves the generation of the CLOnE language from an existing ontology. The

text generator and CLOnE authoring processes combine to form a RoundTrip Ontology

Authoring(ROA) environment: a user can start with an existing imported ontology or

one originally produced using CLOnE, (re)produce the CNL using the text generator,

edit the text as required and subsequently parse the text back into the ontology using

the CLOnE environment. The process can be repeated as necessary until the required

result is obtained. Building on previous methodology(Chapter 4, Section 4.3.1), we un-

dertook a repeated-measures, task-based evaluation, comparing the RoundTrip Ontology

Authoring process with Protégé. In the previous chapter, we required a reference guide

in order to use the controlled language. In this chapter, however, we investigate whether

the substitution of NLG can reduce the learning curve for users, while simultaneously

improving upon existing results for basic ontology editing tasks.

A well-known implementation which employs the use of NLG to aid the knowledge

creation process is WYSIWYM (What you see is what you meant)(See Chapter 3 and

[Power et al., 1998b]). It involves direct knowledge editing with natural language directed

feedback. A domain expert can edit a knowledge based reliably by interacting with natural

language menu choices and the subsequently generated natural language feedback, which

can then be extended or re-edited using the menu options. The work is conceptually

similar to RoundTrip Ontology Authoring, however the process is more sophisticated

as natural language generation occurs as a feedback to guide the user, whereas ROA

generates the CNL text out as a whole. Hence, the directed knowledge editing is not

made explicit. While user evaluations with respect to WYSIWYM have been favourable

(See Section 5.4), the evaluations do not compare the system to a standard ontology

116

editing tool. Consequently, the main research contribution of this chapter is the first

comparative task-based evaluation between a generation driven CNL tool and

a standard ontology editor - Protégé. The specific thesis contributions made by the

author with respect to ROA are:

• extending the CLOnE grammar to cater for simple relations such as: Brian studies

at DERI.

• engineering of the CLIE Java backend to cater for the new GATE 4.0 ontology API.

• reengineering of the ROA text generator cater for the new GATE 4.0 ontology API.

• modification of the ROA text generator XML template for CLOnE output.

• lead authorship with respect to the publication, on which this chapter is based

[Davis et al., 2008].

• design and execution of evaluation and statistical analysis presented in Section 5.3.

The remainder of this chapter is organised as follows: Section 5.2 discusses the design

and implementation of the ROA pipeline focusing on the NLG component - the ROA text

generator, Section 5.3 presents our evaluation and discusses our quantitative findings.

Section 5.4 discusses related work. Finally, Section 5.5 offers conclusions and future

work, with a particular focus on the application of CNL to semantic annotation, which

is explored in the next chapter.

5.2 Design and Implementation

In this section, we describe the overall architecture of the Round Trip Ontology Authoring

(ROA) pipeline which is implemented in GATE [Cunningham et al., 2002]. We discuss

briefly extensions to existing CLOnE components of ROA, but focus the attention of

this section towards describing the CLOnE text generator, the algorithm used and the

XML configuration file containing templates needed to configure the controlled language

output of the generator.

117

5.2.1 RoundTrip Ontology Authoring (ROA) and CLOnE

ROA builds on and extends the existing advantages of the CLOnE software and input

language, which are described below:

1. ROA requires only one interpreter or runtime environment, the Java Runtime En-

vironment.

2. ROA like CLOnE, uses a sub-language of English.

3. As far as possible, CLOnE is grammatically lax; in particular it does not matter

whether the input is singular or plural (or even in grammatical agreement).

4. Like CLOnE, ROA can be compact; the user can create any number of classes or

instances in one sentence.

5. ROA is more flexible and easier to learn by using simple examples of how to edit the

controlled language generated by the text generator in order to modify the ontology.

It reduces the need to learn the Controlled Language by following examples, style

guides or CLOnE syntactic rules. Instead, a user can create or modify various

classes and instances in one (generated) sentence or (using simple copy and paste)

create new properties between new or existing classes and instances.

6. The CLOnE grammar within ROA has been extended to handle simple verbs and

phrasal verbs.

7. Like CLOnE any valid sentence of ROA can be unambiguously parsed.

8. The advantage of the GATE Ontology API allows users to import existing ontologies

for generation, subsequent editing in ROA and export the result to different ontology

formats.

9. SimpleNLG [Gatt and Reiter, 2009] has been added into the ROA text generator

to lexicalise unseen properties.

118

Figure 5.1: The ROA RoundTrip Ontology Authoring pipeline

Procedurally, CLOnE’s analysis consists of the ROA pipeline of processing resources

(PRs) shown in Figure 5.1 (left dotted box). This pipeline starts with a series of standard

GATE NLP tools which add linguistic annotations and annotation features to the docu-

ment. These are followed by three PRs developed particularly for CLOnE: the gazetteer

of keywords and phrases fixed in the controlled language and two JAPE96 transducers

which identify quoted and unquoted chunks. Names enclosed in pairs of single or double

quotation marks can include reserved words, punctuation, prepositions and determiners,

which are excluded from unquoted chunks in order to keep the syntax unambiguous. The

last stage of analysis, the CLIE JAPE transducer, refers to the existing ontology in sev-

eral ways in order to interpret the input sentences. Table 5.1 below provides an excerpt

of the grammar rules of the CLOnE language (including the extension for verbs). We

refer the reader to 4.2.3 for additional rules and examples.

5.2.2 Round Trip Ontology Authoring (ROA) - Interface

At startup, both the CLIE (Controlled Language for Information Extraction) tools and

ROA text generator are loaded, including the initial textual data. The user will have a

96GATE provides the JAPE (Java Annotation Pattern Engine) language for matching regular expres-
sions over annotations, adding additional annotations to matched spans, and manipulating the match
patterns with Java code.

119

Table 5.1: Excerpt of CLOnE grammar with examples

Sentence Pattern Example Usage

Forget everything. Forget everything. Clear the whole ontology cor-

pus to start with the new on-

tology.

(Forget that) There is/are

<classes>.

There are researchers,

universities and

conferences.

Create or delete (new)

classes.

(Forget that) <instances>

is a/are <class>.

Ahmad Ali Iqbal and

Brian Davis are ’Ph.D.

Scholar’.

Create (or delete) instances

of the class.

(Forget that) <sub-

classes> is/are a type/

types of <super-class>.

’Ph.D. Scholar’ is a

type of Student.

Make subclass(es) of an exist-

ing super-class. ’Forget that’

only unlinks the the subclass-

superclass relationship.

(Forget that) <classes/

instances> <verb

property> <classes/

instances>.

Professor supervises

student.

Create the property of the

form Domain verb Range ei-

ther between two classes or

instances.

window like the one shown in Figure B.2 to work with and can click on the buttons or

tabs across the top to bring up the following panes.

Messages This pane explains in detail what CLIE has just done and includes error

messages. The user can distinguish the error messages by the word WARNING,

and probably ignore the INFO messages.

Text input In this pane (shown in Figure 5.2) the user can edit statements in CLOnE.

To clear any input, the user can select all the text with the mouse and press the

backspace key. It is recommended to edit individual parts. This can be achieved as

120

Figure 5.2: Generated CLOnE output

one would edit text normally using the arrow and backspace keys and the mouse.

Ontology This pane (shown in Figure 5.3) shows you the state of the ontology, repre-

sented by a class and instance diagram (top left), a general list of properties (below),

and information about the selected class or instance (right). Click on classes or in-

stances to change the information in the right-hand section. Before beginning any

tasks, the user might wish to look at the initial ontology to become familiar with

it.

121

To enable RoundTrip Ontology Authoring on your current input text, right click on

the word CLIE near the top of the left-hand pane and click Run in the menu that

appears. For further details with respect to the ROA user interface, we refer the reader

to Appendix B.

5.2.3 Text generation of CLOnE

The text generation component in Figure 5.1 (right dotted box) displayed in the ROA

pipeline is essentially an Ontology Verbaliser. Unlike some NLG systems, the commu-

nicative goal of the text generator is not to construct tailored reports for specific content

within the knowledge base or to respond to user specific queries. Hence no specific content

selection subtask or ”choice” is performed since our goal is to describe and present the

Ontology in textual form as unambiguous subset of English - the CLOnE language for

reading, editing and amendment. We select the following content from the Ontology: top

level classes, subclasses, instances, class properties, their respective domain and ranges

and instance properties. The text generator is configured using an XML file, whereby

text templates are instantiated and filled by the values from the Ontology. This file is

decoupled from the text generator PR. Examples of two templates used to generate top

level classes and class properties are displayed in Figure 5.4. The text generator (See

Generator in Figure 5.1) is realised as a GATE PR and consists of three stages:

Stage 1 within the text generator converts the input ontology into an internal GATE

ontological resource and flattens it into RDF style triples. This is executed in a breadth-

first manner—so lists are created where super-classes always precede their corresponding

subclasses—in the following order: top-level classes, subclasses, instances, class proper-

ties, and instance properties.

Stage 2 matches generation templates from the configuration file based on textual

order (See Figure 5.4) with the triples list derived from the Ontology in Stage 1. A

generation template has three components: (1) an in element containing a list of triple

specifications, (2) an out element containing phrases that are generated when a successful

122

Figure 5.3: ROA Ontology viewer

123

match has occurred and (3) an optional ignoreiIf element for additional triple speci-

fications that cause a match specified in the in element to be ignored if the conditions

are satisfied. The triple specifications contained within the in portion of the template

can have subject, property and object XML elements. The triple specifications act as

restrictions or conditions, such that an input triple generated from the Ontology must

match this template. If more than one triple is included in the in element they are

considered as a conjunction of restrictions, hence the template will only match if one or

more actual triples for all triple specifications within the in element are found. One triple

can reference another, i.e., a specification can constrain a second triple to have the same

object as the subject of the first triple. Only backward referencing is permitted since

the triples are matched in a top down fashion according to their textual ordering. An

example of referencing can be seen in line 188 of the out element of the template shown

in Figure 5.4 for generating class properties.

In Stage 3 the out section of the template describes how text is generated from a

successful match. It contains phrase templates that have text elements and references

to values matched within the in elements. Phrases are divided into singular and plural

forms. Plural variants are executed when several triples are grouped together to generate

a single sentence (Sentence Aggregation) based on a list of Ontology objects (i.e., There

are Conferences, Students and Universities). Text elements within a template are

simply copied into the output while reference values are replaced with actual values based

on matching triple specifications. We also added a small degree of lexicalisation into the

Text Generator PR, whereby, for example, an unseen property, which is treated as a verb

is inflected correctly for surface realisation i.e. study and studies. This involves a small

amount of dictionary look-up using the SimpleNLG Library[Gatt and Reiter, 2009] to

obtain the third person singular inflection studies from study to produce Brian Davis

studies at NUIG. A new object of type Lexicon is created and the base or infinitive form

of the verb study can be passed as parameter to the method getPresent3SG(String

lemma). In addition, we might wish to concatenate a preposition such as at or with in

124

order to produce a phrasal verb such as studies at or studies with.

Lexicon lex=new Lexicon();

verb = lex.getPresent3SG(lemma);

result = verb.concat("_"+prep);

The out elements of the generation template also provide several phrase templates for

the singular and plural sections. These are applied in rotation to prevent tedious and

repetitious output.

Stage 2 also groups matches together into sets that can be expressed together in a

plural form. For this to proceed, the required condition is that the difference between

matches, occurs in only one of the references used in the phrase templates, i.e., if singular

variants would only differ by one value. A specialised generation template with no in

restrictions is also included in the configuration file. This allows for the production of

text where there are no specific input triple dependencies.

125

Figure 5.4: Example of a generation template

126

5.3 Evaluation

5.3.1 Methodology

Our evaluation methodology is based on the criteria previously used to evaluate CLOnE

(See Section 4.3.1), so that we can fairly compare the earlier results using the CLOnE

software with the newer RoundTrip Ontology Authoring(ROA) process. The methodol-

ogy involves a repeated-measures, task-based evaluation: each subject carries out a similar

list of tasks on both tools being compared. Unlike our previous experiment, the CLOnE

reference guide list and examples are withheld from the participants, so that we can mea-

sure the benefits of substituting the text generator for the reference guide and determine

its impact on the learning process and usability of CLOnE. Furthermore, we used a larger

sample size and more controls for bias. All evaluation material and data are available on-

line for inspection, including the CLOnE evaluation results for comparison in Appendices

A and B The evaluation contained the following:

• A pre-test questionnaire asking each subject to test their degree of knowledge with

respect to ontologies, the Semantic Web, Protégé and Controlled Languages. It was

scored by assigning each answer a value from 0 to 2 and scaling the total to obtain

a score of 0–100.

• A short document introducing Ontologies, the same ‘quick start’ Protégé instruc-

tions as used in Chapter 4, Section 4.3.1 (partly inspired by Protégé’s Ontology 101

documentation [Noy and McGuinness, 2001]), and an example of editing CLOnE

text derived from the text generator. The CLOnE reference guide and detailed

grammar examples used in for the previous experiment in Chapter 4, Section 4.3.1

were withheld. The participants were allowed to refer to an example of how to edit

generated Controlled Language but did not have access to CLOnE reference guide.

(See Appendices A and B for details of the manual and CLOnE language and ROA

interface respectively.)

127

• A post-test questionnaire for each tool, based on the System Usability Scale (SUS),

which also produces a score of 0–100 to compare with previous results [Brooke, 1996].

• A comparative questionnaire similar to the one used in in Chapter 4, Section 4.3.1

was applied to measure each user’s preference for one of the two tools. It is scored

similarly to SUS so that 0 would indicate a total preference for Protégé, 100 would

indicate a total preference for ROA, and 50 would result from marking all the

questions neutral. Subjects were also given the opportunity to make comments and

suggestions.

• Two equivalent lists of ontology-editing tasks, each consisting of the following sub-

tasks:

– creating two subclasses of existing classes,

– creating two instances of different classes, and

– either (A) creating a property between two classes and defining a property

between two instances, or (B) extending properties between two pairs of in-

stances.

For both task lists, an initial ontology was created using CLOnE. The same ontology

was loaded into Protégé for both tasks and the text generator was executed to

provide a textual representation of the ontology for editing purposes(see Figure 5.5),

again for both tasks.

For example, Task List A is as follows.

• Create a subclass Institute of University.

• Create a subclass Workshop of Conference.

• Create an instance International Semantic Web Conference of class Conference.

• Create an instance DERI of class Institute.

128

Figure 5.5: Text Generated by ROA

• Create a property that Senior Researchers supervise Student.

• Define a property that Siegfried Handschuh supervises Brian Davis.

5.3.2 Sample quality

We recruited 20 volunteers from the Digital Enterprise Research Institute, Galway97. The

sample size (n = 20) satisfies the requirements for reliable SUS evaluations, according to

[Tullis and Stetson, 2004]. We recruited subjects with an industrial background (I) and

participants with a research background (R). See (in Table 5.6) for details. In addition

we attempted to control bias by selecting volunteers who were either:

• Research Assistants/Programmers/Post-Doctoral Researchers with an industrial

background either returning (or new) to Academic Research respectively(I),

• Postgraduate Students who were new to the Semantic Web and unfamiliar with

Ontology Engineering(R),

97http://www.deri.ie, Retrieved 2008-05-22

129

• Researchers from the E-learning and Sensor Networks lab but not from the Semantic

Web Cluster(R),

• Researchers with no background in Natural Language Processing or Ontology En-

gineering(R) or

• Industrial Collaborators (I).

In all cases, we tried to ensure that participants had limited or no knowledge of GATE

or Protégé. First, subjects were asked to complete the pre-test questionnaire, then they

were permitted time to read the Protégé manual and Text Generator examples, and lastly

they were asked to carry out each of the two task lists with one of the two tools. (Half

the users carried out task list A with ROA and then task list B with Protégé; the others

carried out A with Protégé and then B with ROA.) Each user’s time for each task list was

recorded. After each task list the user completed the SUS questionnaire for the specific

tool used, and finally the comparative questionnaire. Comments and feedback were also

recorded on the questionnaire forms.

5.3.3 Hypothesis statements

With respect ROA SUS scores we state the our first hypothesis pair as:

4.1H0: It is predicated that ROA usability (SUS) scores will not be greater than

neutral(µ � 65).

4.1H1: It is predicated that ROA usability (SUS) scores will be greater than neutral

(µ > 65) .

To clarify, we are stricter in our interpretation of neutral’ in that only SUS values of

>0.65 are considered to be strong SUS scores as they are above the threshold of neutral

or weak values [Bailey, 2006].

In addition with respect to ROA/Protégé preference scores, we have the second hy-

pothesis pair:

130

4.2H0: It is predicated that the ROA/Protégé preference score not be greater than

neutral (µ � 65).

4.2H1: It is predicated that the ROA/Protégé preference score will be greater than

neutral (µ > 65).

Finally, with respect to the ROA/Protégé times we have the third hypothesis pair:

4.3H0: It is predicated that the ROA times will not differ significantly than the

Protégé times.

4.3H1: It is predicated that the ROA time will differ significantly than the Protégé

times.

5.3.4 Results and Data Analysis

Table 5.2 and Table 5.3 summarise the main measures obtained from our evaluation. We

used SPSS98 to generate all our statistical results. In particular the mean ROA SUS score

is above the baseline of 65–70% while the mean SUS score for Protégé is well below the

baseline [Bailey, 2006]. In the ROA/Protégé Preference (R/P Preference) scores, based

on the comparative questionnaires, we note that the scores also favour on average ROA

over Protégé. Confidence intervals are displayed in Table 5.4.99

With respect to

4.1H0: It is predicated that ROA usability (SUS) scores will not be greater than

neutral (µ � 65),

we can reject the null hypothesis with z=3.5 p< 0.5.

Additionally, with respect to:

4.2H0: It is predicated that the ROA/Protégé preference score will not be greater

than neutral (µ � 65),

we can reject the null hypothesis with z=2 p< 0.5.

98SPSS 2.0, http://www.spss.com, Retrieved 2013-05-22

99A data sample’s 95% confidence interval is a range 95% likely to contain the mean of the whole
population that the sample represents [John L. Phillips, 1996].

131

Table 5.2: Summary of the questionnaire scores

Measure min mean median max

Pre-test scores 17 42 42 75

ROA SUS rating 48 74 70 100

Protégé SUS rating 10 41 41 85

R/P Preference 40 72 79 95

Table 5.3: Summary of the Task per Tool times

Task Tool min mean median max

A ROA 4.08 6.25 6.12 9.90

A Protégé 3.57 7.05 7.33 10.38

A Both 3.57 6.65 6.23 10.38

B ROA 2.15 4.27 4.43 6.20

B Protégé 4.45 9.22 10.00 11.82

B Both 6.75 6.75 6.12 11.82

A&B ROA 2.15 5.27 5.47 9.90

A&B Protégé 3.57 8.13 8.15 11.82

We also conducted one way repeated measures ANOVA between ROA and Protégé

times respectively. With respect to:

4.3H0: It is predicated that the ROA times will not differ significantly than the

Protégé times,

we can reject the null hypothesis as the compared groups differed significantly, F(1,19)

= 42.36, p< 0.5, multivariate partial eta squared =.70.

For post-hoc data analysis, we generated Pearson’s and Spearman’s correlations coef-

ficients [John L. Phillips, 1996, Connolly and Sluckin, 1971]. Table 5.5 displays the coef-

132

Table 5.4: Confidence intervals (95%) for the SUS scores

Tool Confidence intervals

Task list A Task list B Combined

Protégé 28–55 29–51 32–49

ROA 63–77 69–84 68–79

ficients. In particular, we note the following results:

• The pre-test score has a weak negative correlation with ROA task time.

• There are no correlations with pre-test score and the ROA SUS score.

• The pre-test score has a weak negative correlation with the Protégé SUS score.

• There are no correlations with pre-test score and the Protégé time.

• In previous results in comparing CLOnE and Protégé, the task times for both

tools were more positively correlated with each other while in the case of ROA and

Protégé, there correlation has being weakened by a significant 32% of its original

value (of 78%) reported for CLOnE in Section 4.3.1, indicating that the users tended

not spend the equivalent time completing both ROA and Protégé tasks.

• There is a moderate correlation with Protégé task time and Protégé SUS scores.

• There is a strong negative correlation of -0.65 between the ROA task time and the

ROA SUS scores. Our previous work reported no correlation between the CLOnE

task time and CLOnE SUS time. A strong negative or inverse correlation implies

that users who spent less time completing a task using ROA tended to produce high

usability scores - favouring ROA. More importantly, we noted that the associated

probability reported by SPSS, was less then the typical 5% cut-off point used in

social sciences.

133

Table 5.5: Correlation coefficients

Measure Measure Pearson’s Spearman’s Correlation

Pre-test ROA time -0.41 -0.21 weak −

Pre-test Protégé time -0.28 -0.35 none

Pre-test ROA SUS -0.02 -0.00 none

Pre-test Protégé SUS -0.32 -0.29 weak −

ROA time Protégé time 0.53 0.58 +

ROA time ROA SUS -0.65 -0.52 −

Protégé time Protégé SUS 0.53 0.56 +

ROA time Protégé SUS -0.14 -0.10 none

Protégé time ROA SUS -0.02 -0.09 none

ROA SUS Protégé SUS 0.04 -0.01 none

ROA SUS R/P Preference 0.58 0.56 +

Protégé SUS R/P Preference -0.01 0.10 none

Hence the correlation, revealed for the data that user preference for RoundTrip

Ontology Authoring over Protégé and decreased time spent completing ontology

editing tasks were significantly related, r=-.65, n=20, p <.05, two tails. (Note,

alpha was actually adjusted to .004 from .05 as per the Bonferroni correction100 to

cater multiple correlations) however p was still below this value).

• The R/P Preference score correlates moderately with the ROA SUS score, similar

to previous results, but no longer retains a significant inverse correlation with the

Protégé SUS score. The reader should note the R/P Preference scores favour ROA

over Protégé.

We also varied the tool order evenly among our sample. As noted in the previous chap-

100See http://en.wikipedia.org/wiki/Bonferroni_correction, Retrieved 2013-05-22

134

ter, specifically Section 4.3.1, once again the SUS scores differ slightly according to tool

order (as indicated in Table 5.4). Previous SUS scores for Protégé tended to be slightly

lower for B than for A, which we believe may have resulted from the subjects’ decrease

in interest as the evaluation progressed. While in previous results there was a decrease in

SUS scores for CLOnE (yet still well above the SUS baseline), in the case of ROA however,

the SUS scores increased for task B (see Table 5.4), implying that if waning interest was

a factor in the decrease in SUS scores for CLOnE, it does not appear to be the case for

ROA. What is of additional interest is that group I, subjects with industrial background

scored on average 10% higher for both ROA SUS and ROA/Protégé, which implies that

Industrial collaborators or professionals with an Industrial background favoured a natural

language interface over a standard ontology editor even more than Researchers.

Table 5.6: Groups of subjects by source and tool order

Source Tool order Total

PR RP

R Researcher 5 7 12

I Industry 5 3 8

Total 10 10 20

5.3.5 User Feedback

The participants also provided several suggestions/comments about ROA.

• “RoundTrip Ontology Authoring becomes much easier, once the rules are learnt”.

(This is very interesting considering that no syntax rules, extended examples or

restricted vocabulary list were provided).

• Use of inverted commas should be used only once and afterwards, if same the class

/instance is reused, the system should automatically recognise it as the previous

135

Table 5.7: Comparison of the two sources of subjects

Measure Group min mean median max

Pre-test R 17 38 38 58

I 17 47 50 75

ROA SUS R 48 69 70 82

I 65 80 80 100

Protégé SUS R 10 30 28 52

I 12 48 49 85

R/P Preference R 40 68 72 88

I 65 78 78 95

word.

• Many participants suggested displaying the ontology pane on the right hand side of

the text pane, where test users edit the text instead of moving between two separate

panes.

• Some users suggested dynamic ontology generation, once a user finishes typing a

sentence, the changes should be displayed automatically in the ontology pane.

• Similar suggestions to the previous evaluation were provided for user auto-completion,

syntax highlighting, options about available classes, instances or property names

and keywords should be displayed, a similar concept to modern Word Processor or

programming IDEs such as Eclipse.

• Some participants with an industrial background demonstrated concern regarding

scalability and ROA using with a larger business related ontology and suggest ca-

pabilities for verbalising a portion of the ontology tree within the Ontology viewer,

using text generation for subsequent editing.

136

• Some test users appreciated the singular/plural forms and sentence handling of

ROA (e.g., study, studies).

5.4 Related work

With respect to related work, we will focus our review on tools which generate CNL. For a

more thorough review of Controlled Natural Languages, we refer the reader to Chapter 3.

ACE OWL, a sublanguage of Attempto Controlled English (ACE), proposes a means

of writing formal, simultaneously human- and machine-readable summaries of scien-

tific papers [Kaljurand and Fuchs, 2006, Kuhn, 2006]. Similar to RoundTrip Ontology

Authoring, ACE OWL also aims to provide reversibility (translating OWL DL into

ACE). The application NLG to ACE OWL is for the purposes editing existing ACE

text [Kaljurand and Fuchs, 2007]. The paper discusses the implementation of a shallow

NLG system - an OWL Verbaliser, focusing primarily on the OWL to ACE rewrite rules,

however no evaluation or quantitative data is provided in an attempt to measure the

impact of NLG in the authoring process.

As mentioned at the beginning of this chapter, a well-known implementation which

employs the use of NLG to aid the knowledge creation process is WYSIWYM (What

you see is what you meant)(See Chapter 3 and [Power et al., 1998b]). It involves direct

knowledge editing with natural language directed feedback. A domain expert can edit

a knowledge base reliably by interacting with natural language menu choices and the

subsequently generated feedback, which can then be extended or re-edited using the menu

options. The method is also known as Conceptual Authoring [Hallett et al., 2007] One

application of WYSIWYM has been in the context of querying and creating metadata for

the Semantic Grid within the social sciences domain [Hielkema et al., 2008] . The research

is supported by the PolicyGrid project [Hielkema et al., 2007b] which aims to investigate

how best to support social scientists via the Semantic Grid. Non-experts in the form of

social scientists attempt to create and share resources as well as their associated RDF

metadata usingWYSIWYM [Hielkema et al., 2007a]. Users are presented with text which

137

is an expansion point or anchor for an object mention, which triggers a menu listing all

possible properties associated with that object. The WYSIWYM interface is built using

the Google Web toolkit and a the information the user is editing is stored in a semantic

graph. The domain ontology is consulted throughout the graph construction, specifically

the domain and range of properties in each anchor menu. Finally, the semantic graph

is translated into RDF triples. The language generation component maps the semantic

graph to HTML text. In addition, the tool also attempts to identify incoming sentence

types for transformation into templates. Sentence generations from a property in the

ontology are produced and the user may select the desired sentence and edit, if needed.

Once the user is satisfied with the selection the corresponding dependency tree is stored

in the lexicon for realising future instances of the property.

An evaluation of WYSIWYM was carried out with 16 researchers and PhD students

from the social sciences domain. Users were shown a six minute background video which

described the main functionalities of the WYSIWYM interface [Hielkema et al., 2008].

Descriptions of four resources (documents to associate metadata to) were provided to the

users. These descriptions were described as paragraphs of English. The goal being to

reproduce the descriptions using the WYSIWYM tool. Each subject also received the

descriptions in varied order. Four descriptions were given, which were further decided in

eight to ten sub tasks. The successful completion of certain sub tasks was dependent on

the preceding subtask. Task completion times, number of operations as well as errors ,

including “avoidable” errors (which imply the result of an error introduced from a previous

subtask), were measured. The results were encouraging, where users mean completion

times decreased significantly. Hence, users gained speed over time. In addition, user

feedback was positive, however the results were less positive in comparison to an earlier

evaluation of WYSIWYM [Hallett et al., 2007], whereby users completion of tasks was

less accurate [Hielkema et al., 2008]. Note that the domain ontology was medical as it was

in the context for the CLEF101 project. Furthermore, the evaluation involved composing

101http://www.clinical-escience.org/, Retrieved 2008-05-22

138

SQL queries to a relational database. More importantly,users from the social sciences

field reported that they were overwhelmed by the large number of options available i.e.

thirty properties per one object. CLEF was also developed for the well structured domain

of medicine while social sciences tends to be more varied with many different theories and

approaches. Consequently, the underlying domain ontology can have a large a significant

impact on usability.

The advantage of WYSIWYM is that it eliminates possibilities of interpretation error,

and, similar to ROA, training requirements are minimal. Originally, WYSIWYM was

targeted to the instance level but recent efforts have targeted it towards authoring at

the class and axiom level [Power et al., 2009], where sentences denote axioms and major

sentence constituents denote classes. With respect to the initial prototype, classes may

be count and proper nouns whereas properties may be represented as transitive verbs.

Another WYSIWYM inspired CNL is OWL Simplified English [Power, 2012]. It is

a finite state language for ontology editing. It seeks to maximise on Kuhn’s notions

of simplicity and naturalness (See Chapter 3) at the expense of expressiveness. The

argument for the finite state approach is that the majority of OWL expression created

by ontology developers are invariably right branching and hence can be recognised by

a a finite state grammar. Based on previous studies of ontology corpora, the authors

show how the individuals, classes and properties tend to have distinct part of speech

(POS) tags. Individuals or instances tend to be either proper nouns, common nouns or

numbers, while classes are composed mostly of common nouns, adjectives and proper

nouns. Finally, properties tend to open with a verb or auxiliary verb in the present

tense. In their paper [Power, 2012], they describe a finite state network that is capable

of interpreting the CNL sentences in the grammar with minimal knowledge of content

words. Similar the work in this thesis (See Chapter 6) OWL Simplified English permits

the acceptance of some technical phrases that violate normal English. The language can

capture ontology operations such as simple negation, cardinality, object intersection but

aims to reduce or eliminate structural ambiguity. In order to support their theory that

139

ontology developers in general tend to favour right branching statements, they conducted

analysis on an ontology corpus of 500 ontologies containing some 500,000 axioms. They

derived class patterns of low complexity levels and conducted analysis of the corpus

and concluded that there are some 300 axioms that cannot be verbalised in their CNL.

These results apply to ontology classes constructed from intersection and restriction. As

more complexity, such as union and compliment is added, the portion of unverbalised

axioms rises. Hence, there is the risk of reduced coverage of expressivity within the CNL,

however their analysis confirms that ontology developers tend to favour right branching

statements. OWL Simplified is similar to CLOnE in that it is implemented finite state

parsing techniques and likewise simplicity and naturalness are preferred at the expense

of expressiveness. We include OWL simplified English in this chapter as the interface,

under construction, is a WYSIWYM based interface.

As mentioned in the previous chapter, GINO (Guided Input Natural Language On-

tology Editor) provides a guided, controlled NLI (natural language interface) for domain-

independent ontology editing for the Semantic Web. However, unlike ROA, a full textual

description of the Ontology is not realised [Bernstein and Kaufmann, 2006].

While much of the applications described involve verbalising ontologies as CNLs, the

work of [Stevens et al., 2011] takes this a step further by attempting to verbalise coher-

ent text paragraphs. The approach tries to automatically provide text based definitions

from an ontology. Rather than verbalising axioms as individual sentences the approach

groups axioms into common structures and attempts to generate a coherent text in the

form of a paragraph of English text. The natural language output is generated from

the Experiment Factor Ontology, which is an application ontology used to describe ex-

perimental variables in functional genomics data [Malone et al., 2010]. EFO uses OWL

to produce a rich axioms description of classes in the domain. Surveys were conducted

involving the developers of EFO, who were sufficiently satisfied with the output of the

generated definitions such that they were incorporated into the EFO. While the gener-

ated definitions do not substitute for hand-written textual definitions, they are a good

140

starting point. With respect to generating paragraphs, the justification for taking this

approach is informed by related work in psycholinguistics, in that unordered collections of

sentences are difficult to understand. Text comprehension depends on on inferences made

by the reader based on the organisation of sentences into structured units or paragraphs

So one concept in an ontology can correlate to one paragraph. Issues which arise from

such an approach are grouping and aggregation as well as uncovering the optimal balance

between preserving OWL semantics and producing readable English. The authors con-

ducted two informal surveys by verbalising fifty cells lines from EFO. Participants were

asked to judge the readability of ten text definitions. While results of the surveys were

not statistically significant, the feedback received, suggested that text descriptions of the

definitions were useful in the context of an ontology which contained sparse definitions.

Feedback from users indicated that making semantics explicit in initial verbalisations was

obtrusive as well as the explicit verbalisation. The system has some limitations in that

the coverage is restricted to a subset of OWL which excludes inverse properties, enumer-

ation of classes with multiple arguments and datatypes. The NLG approach is part of

their overall SWAT (Semantic Web Authoring Toolkit)102 tools suite. The SWAT tools

take document structuring to a more sophisticated level than other ontology verbalisers

[Stevens et al., 2011].

In addition, the system is implemented in SWI Prolog a language that is very suitable

for NLP tasks but can under-perform [Gazdar and Mellish, 1989]. The process for gener-

ating descriptions has five phases: translation or transcoding from OWL into Prolog struc-

tures, construction of a lexicon for atomic entities, selecting relevant axioms for describing

each class, aggregating axioms with a similar structure and surface realisation of sentences

from input axioms including aggregation. The evaluation in [Stevens et al., 2011] also

explored the generation of varied form of properties used in EFO, as well as variations

with or without aggregation and various degrees of elision of repeated noun phrases and

‘something that’ phrases.

102http://mcs.open.ac.uk/nlg/SWAT/editor.html, Retrieved 2011-05-22

141

A related evaluation involves the application of the same system to generate organised

text similar to an online encyclopaedia or glossary. In [Williams et al., 2011], the authors

investigate whether such a hierarchical organisation improves on text comprehension and

navigation. The same implementation, based on Definite Clause Grammars (DCG)s in

Prolog is used. The DCGs have coverage for the majority of OWL-DL. The evaluation

was conducted over fifty seven participants across special interest groups in the Associ-

ation of Computational Linguists (ACL)103 , specifically SIGGEN104 and SIGDIAL105.

The purpose was to assess whether the paragraph organisation despite its longer length

was able to help people understand and navigate the text. The domain ontology chosen

was that of spider anatomy. One group was provided with the encyclopaedia style hyper-

text, while the other group was provided with a list of verbalised unaggregated sentences.

Subjects were asked for feedback regarding the usability of the navigation using a likert

scale based questionnaire. In addition, they were asked to provide feedback on the var-

ious textual features such as headings, typology subheadings, description subheadings,

hyperlinks within entries etc. Finally, their knowledge of the spider ontology was also

tested. In summary, the evaluation indicated that the hierarchical organisation of texts

is more user friendly then unorganised text with no loss in performance.

Finally, while RABBIT [Engelbrecht et al., 2009](see Chapter 3) is quite a similar im-

plementation to CLONE, there are no generation capabilities in the RABBIT system.

Likewise, there have been a lot of NLG efforts in GF, with respect generating tailored

summaries for semantic repositories [Angelov and Ranta, 2009, Dannélls, 2008]. How-

ever, the notion of round tripping for ontology authoring in GF has not been evaluated,

although GF like ACE is bidirectional because of its declarative nature.

103http://aclweb.org/, Retrieved 2013-05-22

104http://www.siggen.org/, Retrieved 2013-05-22

105http://www.sigdial.org/, Retrieved 2013-05-22

142

5.5 Conclusion & Discussion

The main research goal of this chapter is to assess the effect of introducing Natural

Language Generation (NLG) into the CLOnE Ontology authoring process to facilitate

RoundTrip Ontology Authoring. The underlying basis of our research problem is the

habitability problem (See Section 5.1): How can we reduce the learning curve associated

with Controlled Languages? And how can we ensure their uptake as a Natural Language

Interface (NLI)? Our contribution is empirical evidence to support the advantages of

combining of NLG with ontology authoring, a process known as RoundTrip Ontology

Authoring (ROA). In summary, with respect to the research questions OA1, OA2 and

OA3 outlined in Chapter 1, Section 1.2, this chapter makes the following contributions:

• OA1: Statistical evidence that ROA is more user friendly than a standard ontology

editor for basic ontology editing tasks.

• OA2: Statistical evidence that users take less time to complete ontology editing

tasks using ROA in comparison to Protégé.

• OA3: Evidence that ROA is more user friendly than CLOnE for basic ontology

editing tasks.

The readers should note that we compared Protégé with ROA because Protégé is the

standard tool for ontology authoring. In the previous chapter, we compared CLOnE with

Protégé. Hence, in order to compare ROA with CLOnE, it was necessary to repeat the

experiment and use Protégé as the baseline. We make no claims that Protégé should be

replaced with ROA, the point is that ROA can allow for the creation of a quick easy first

draft of a complex ontology by domain experts or the creation of small to medium sized

ontologies by novice users. Furthermore, a large percentage of an initial ontology would

naturally consists of taxonomic relations and simple properties/relations.

Our user evaluation consistently indicated that our subjects found ROA (and continue

to find CLOnE) significantly more usable and preferable than Protégé for simple ontology

143

editing tasks (See hypotheses 4.1H1 and 4.2H1). Furthermore, users spent significantly

less time completing ontology editing using ROA in comparison to Protégé (See hypothesis

4.3H1) .

In addition, our evaluation differs, in that we implemented more tighter restrictions

during our selection process, to ensure that users had no background in NLP or Ontology

Engineering. Furthermore, 40% of our subjects with an industrial background, scored

ROA 10% higher then researchers indicating that a NLI to a Ontology Editor might be

a preferred option for Ontology development within industry.

In detail, this evaluation differs from Chapter 4, Section 4.3.1 by two important factors:

(1) we excluded the CLOnE reference manual from the training material provided in the

previous evaluation; and (2) we introduced a text generator, verbalising CLOnE text

from a given populated ontology and asked users to edit the ontology, using the generated

CLOnE text based on an example provided. In our post-hoc analysis, we observed two

new significant improvements in our results: (1) the previous evaluation indicated a

strong correlation between CLOnE task times and Protégé task times, this correlation

has significantly weaken by 32% between ROA and Protégé task times. Hence, where

users previously required the equivalent time to implement tasks both in CLOnE and

Protégé, this is no longer the case with ROA (the difference being the text generator);

and (2) our previous evaluation indicated no correlation between either CLOnE/Protégé

task times and their respective SUS scores. However, with ROA, the data revealed that

user preference for RoundTrip Ontology Authoring over Protégé and decreased time spent

completing ontology editing tasks were significantly related, r=-.65, n=20, p <.05, two

tails. Furthermore, ROA tended to retain user interest, which CLOnE did not. While

Protégé is intended for more sophisticated knowledge engineering work, this is not the

case for ROA. Scalability, both in performance and usage, was also an issue raised by

our test subjects. From a performance perspective, when loading large Ontologies, we

do not foresee any major issues. ROA was recently ported to a newer release of GATE

which contains a completely new ontology API that utilises the power of OWLIM -

144

OWL in Memory, a high performance semantic repository developed at Ontotext106.

Finally, from a user perspective, authoring memory frequently used in translation memory

systems or text generation of selective portions of the ontology (using a Visual Resource)

could significantly aid the navigation and authoring of large ontologies. For more details,

however, with respect to future work and ROA, we refer the reader to Chapter 7.

We have already mentioned adapting CLOnE for semantic annotation, whereby the

task differs from ontology authoring in that semantic annotation is concerned with the

association of semantic metadata to text. We move now to Chapter 6, which explores

our notion of CNL from semantic annotation, two prototypes and their respective user

evaluations.

106http://www.ontotext.com/owlim/, Retrieved 2011-05-22

145

6 Towards Controlled Natural Language for Semantic

Annotation

This Chapter discusses the application of Controlled Natural Language (CNL) to the

process of Semantic Annotation or Controlled Annotation. It describes implementations

for two prototypes of Controlled Language ANNotator – CLANN, both varying in expres-

siveness (See Section 6.2). We also describe the domain ontology, based on the domain use

case which involves the authoring and annotation of project minutes and status reports

(See Section 6.2.1). Finally, the chapter describes a user evaluation which compares

both CLANN prototypes with a standard manual semantic annotation tool - Ontomat

[Handschuh et al., 2002] (See Section 6.3).

References: This chapter is based mainly on [Davis et al., 2010].

6.1 Introduction

The previous two chapters (See Chapters 4 and 5) discussed Controlled Natural Languages

(CNL)s in the context of ontology authoring. Ontologies form the crucial backbone of

the Semantic Web. The process of creating, extending and adapting ontologies can be de-

scribed as the knowledge meta process [Sure, 2003]. The subsequent creation of metadata

to describe a web resource using an ontology is called the knowledge process [Sure, 2003].

The actual method for the creation of metadata and its subsequent association to a re-

source is called Semantic Annotation, which is one of the core challenges for building the

Semantic Web.

Semantic Annotation as a process may be either manual, semi-automatic or automatic

146

(See Chapter 3, Section 3.2). Manual semantic annotation is a complex and laboured

task, which is both time-consuming, expensive and often requires specialist annotators

or the subsequent training of such annotators. This may require (an arguably unneces-

sary) exposure to formal ontological description. Such formal data representation can

act as a significant deterrent for non-expert users or organisations seeking to annotate

resources as part of their daily activity, thus allowing them to fully benefit from the adop-

tion of Semantic Web technologies. While (Semi)-automatic annotation tools attempt to

remove this constriction, which is commonly known as the knowledge acquisition bottle-

neck, their application often requires access to specialists who can combine Natural Lan-

guage Processing(NLP)/Machine Learning(ML) and Semantic Web ontology languages.

Such specialists are costly and rare and furthermore the creation or acquisition of qual-

ity language resources to bootstrap such approaches may require significant investment,

which for a small to medium enterprises may not be justifiable. Consequently, this chal-

lenges researchers to develop user-friendly manual annotation environments to support

the knowledge acquisition process.

CNLs offer an incentive to the novice user to annotate, while simultaneously authoring,

her respective documents in a user-friendly manner, yet at the same time shielding her

from the underlying complex knowledge representation formalisms of ontology languages.

A natural overlap exists between tools used for both ontology creation and semantic

annotation. Despite such efforts, very little research has focused on applying CNLs to

semantic annotation The specific thesis contributions made by the author with respect

to this chapter are:

• conceptualisation and definition of controlled annotation

• grammar design and engineering of Controlled Language ANNotator (CLANN)

Type I and Type II (See Section 6.2).

• lead authorship of the publication on which this chapter is based [Davis et al., 2010].

• design and execution of user evaluation and analysis (See Section 6.3).

147

The reader should note that there is a subtle difference between the process of ontology

creation and population and that of Semantic Annotation. We describe Semantic Annota-

tion as “a process as well as the outcome of the process”. Hence it describes i) “the process

of adding semantic data or metadata to content given an agreed ontology and ii) it de-

scribes the semantic data or metadata itself as a result of this process”[Handschuh, 2005].

Of particular importance here is the notion of the addition or association of semantic

metadata to content. Semantic annotations are typically indexed into a semantic search

engineer for more efficient search and retrieval. The benefits of creating semantic anno-

tations associated to CNL statements is that we can retrieve the context surrounding a

CNL statement. Although, the CNL statement is stored as a fact in the knowledge base,

its surrounding context is not. The same fact may have have multiple contexts across

documents. Traditional CNLs are not concerned with the surrounding context of a fact

derived from a CNL statement.

6.1.1 Annotation as Authoring

As with any annotation environment, a major drawback is that in order to create meta-

data about a document, the author must first create the content and second annotate the

content, in an additional a posteriori, annotation step. In the context of our application

of CNL to semantic annotation, we seek to merge both authoring and annotation steps

into one.

6.1.2 Towards a definition of Controlled Language for Semantic Annotation

We hereby refer to the application of CNL to semantic annotation as controlled (natural

language) annotation which reflects how traditional CNL intersects but also differs from

our approach, whereby:

Controlled (Natural Language) Annotation or Controlled Annotation is the application

of CNL technologies to the process of semantic annotation. Controlled Annotation aims

to reduce or eliminate ambiguity with respect to the semi-automatic/manual semantic

148

annotation of textual resources. It may include the creation of semantic data or metadata

from machine processable content as in traditional CNL or apply CNL techniques that

act as an interface to associate semantic data or metadata with free or uncontrolled

text. Unlike traditional CNL, content in Controlled Annotation can be independent of the

process.

The above definition is clarified based on the following categories. Each one is elaborated

on below:

• Degree of Control: This refers to the degree of restriction with respect to the

language used to author and annotate content. CNLs (although this may seem

counterintuitive) in practice actually vary with respect to their degree of restric-

tion on vocabulary and syntax. Usually a balance between reducing or removing

ambiguity and user friendliness is sought. Controlled Annotation is similar in this

respect in that a sentence may be syntactically constrained but may be more le-

nient with regards to the type of vocabulary that can be used i.e. (nouns or proper

nouns), but CNL sentences or CNL snippets, (as we shall see in the section on de-

sign and implementation), may be embedded in free text. This overlaps with what

Kaufmann describes as the Formality Continuum for Natural Language Inter-

faces [Kaufmann, 2007] and furthermore relates to Kuhn’s CNL design principle of

Clearness [Kuhn, 2010a].

• Knowledge Capture: While CNLs usually focus on the creation of intensional,

axiomatic or assertional knowledge statements, controlled annotation focuses on the

creation of facts in the knowledge-base as well as the retention of provenance data

and the maintenance of links or pointers to the original content. The creation of

some intensional knowledge maybe permitted but this is reserved usually for the

more confident or specialist user. In fact one may wish to prevent a casual user

from altering an ontology at the class level as this could result in corruption of the

ontology. On the other hand, one can argue that an annotation process with such

ontology authoring features could serve as a quality assurance step for the ontology.

149

In other words, if an ontology is truly well designed and representative of the domain

vocabulary, there should be very little need to alter it at the class level. The creation

of rules or axioms during annotation is not common practice. Consequently, in order

to apply controlled annotation to a textual resource, the annotation environment

must be pump primed with an ontology consisting, at minimum, of intensional or

axiomatic knowledge. This relates to Kuhn’s CNL design principle of Expressivity

[Kuhn, 2010a].

• Provenance: This refers to the creation of metametadata to record data about

the metadata/knowledge which has been captured: i.e. Where an RDF statement

has come from? Who made it? When was it created? Which document and

where is it located in the original (textual) resource - position and offset within the

document or webpage, the name of the resource, date of creation and author. CNLs

are traditionally not concerned with provenance, however Controlled Annotation is,

since annotations will be indexed for semantic search.

• Comprehension and Context: A subtle difference between traditional Con-

trolled Annotation and CNL is that for Controlled Annotation content can be in-

dependent of the process. We argue that content, which Controlled Annotation has

been applied to, is independent of any facts that have been captured from it. Con-

sequently, controlled annotated content is arguably implicitly understood by the

average user regardless whether they are aware or not that the content was orig-

inally authored and annotated in a controlled manner. So a controlled annotated

document will look reasonably like any other document on the Web, while on the

other hand, a document written in CNL (although written in “natural language”)

would still read as a collection of knowledge statements in natural language, which

can be counterintuitive to the casual user. Hence, a CNL document should be

viewed as a document in its own right i.e. subject to annotation and indexing into

a semantic search engine. The benefit of retrieving (via semantic search) the por-

150

tion of text containing an annotated CNL statement is that the user can retrieve

the surrounding context. This leads to a better information retrieval experience for

the user. Although a processed CNL statement may not change in the knowledge

base, its context will vary across documents even if that context contains other CNL

statements. A related issue, argued by Smart et al [Smart, shed] is that despite the

fact that knowledge statements can be described in CNL, users will still have the

tendency to become “lost in logic”. Although a user is shielded by the underlying

formalisms of some logic notation, they will still require some minimal introduction

to formal logic to comprehend certain knowledge statements in CNL. However, this

is an inevitable consequence of attempting to author an ontology from scratch, in

that knowledge statements at the class and perhaps axiom level are necessary be-

fore instance population can proceed. Controlled Annotation is however, from a

knowledge modelling perspective, a less complex task as it operates primarily at

the instance level. In summary, Controlled Annotation sacrifices Expressivity over

Clearness [Kuhn, 2010a].

• Target User: Fundamentally, the tasks differ when considering controlled anno-

tation and CNLs for ontology authoring. The purpose of annotation is to associate

metadata to content, which will subsequently be discovered by a semantic agent

active on the Web. The provenance metadata will point to the original resources

from which it was derived. The agent will retrieve this content for the human user.

In short, the final benefactor is the human. In contrast, with respect to CNL for

ontology authoring, the human benefits more indirectly. Although CNLs act as a

user friendly interface to the ontology, it is the semantic agent which exploits the

CNL generated machine-processable vocabulary. Hence the ontology is applied to

semantic metadata by the agent to perform reasoning and search over semantically

annotated Web resources. With respect to Controlled Annotation we argue that

the target user is a typical Social Web user who is comfortable with CMS systems

or Wikis. No knowledge of Semantic Web formalisms is expected. In contrast, with

151

Figure 6.1: Controlled Annotation and the Semantic Web Information Food Chain

respect to CNLs, the user is a domain expert who will require some basic founda-

tion in ontologies and formal logic in order to author an ontology in CNL. Figure

6.1 below describes the role of controlled annotation with respect to CNL. This

visualisation incorporates what [Sure, 2003] describe as the duality of ontology and

metadata, in other words (i)the knowledge meta-process - the development of an

ontology and (ii) the knowledge process - the subsequent creation of a knowledge

base. CNLs for ontology authoring assign themselves to the role of the knowledge

meta-process - the creation, continued extension and adaptation of the ontology,

while Controlled Annotation is concerned with the knowledge process - the steps

for the creation and processing ontology based metadata. Figure 6.1 is also based

on a variation of the information food chain for the Semantic Web described in

[Decker, 2002].

152

6.1.3 Two approaches to Controlled Annotation - CLANN I and CLANN II

This chapter describes the design and implementation of two user friendly approaches to

applying CNL to Semantic Annotation, which we call CLANN - Controlled Language

ANNotator versions I and II, both of which are based on the Controlled Language IE

software - CLIE (see Chapter 4). Both CLANN I and CLANN II permit non-expert

users to semi-automatically and simultaneously author and annotate meeting minutes

and/or status reports using controlled natural language. The motivation to develop two

CLANN annotators was for exploratory purposes in order to assess which approach(or

a combination of the two) would be more user friendly. Both CLANN annotators are

essentially pathfinders to a final CNL annotator - CLANN III (See Chapter 7 for an

initial description of CLANN III).

CLANN I is more automatic and aims to sacrifice expressiveness (with respect to

controlling, manipulating and creating metadata) over naturalness while in contrast

CLANN II prioritises expressiveness,(as in control over metadata manipulation), over

naturalness. Uncovering the correct balance between expressiveness and naturalness is

related to the habitability problem [Watt, 1968]. A Natural Language Interface(NLI) is

considered habitable if users can express everything needed to complete a task using lan-

guage they would expect the system to understand. The second aspect of the habitability

problem, an aspect sometimes overlooked within the CNL community itself, is that of

Chomsky’s distinction between competence vs. performance [Chomsky, 1965]. Human

linguistic competence can be described as a set of strict rules of a language’s grammar(

in this case English grammar) while performance consists of the uses we make of com-

petence. In simpler terms, how information is written using the grammar is a measure

of competence and what information can be written using the grammar is a measure of

performance. We argue that the design of CNLs is often driven by competence while the

second aspect of habitability states that an NLI should also attempt to account for both.

Although the majority of work within the field of CNL for knowledge creation has

focused on ontology authoring, as far as we are aware, no other work has sought to

153

apply CNL to semantic annotation. This chapter makes three original contributions and

addresses the research questions SA1 and SA2 in Chapter 1.

1. An novel approach to manual annotation, using CNL, called Controlled Annota-

tion, where we move away from traditional a-posteriori annotation by merging both

authoring an annotations steps together(SA1).

2. Two Controlled Language ANNotator - CLANN prototypes, each varying in ex-

pressiveness and usability(SA1) .

3. Statistical evidence that for certain scenarios, controlled annotation can be more

user friendly than standard manual semantic annotation approach(SA2) .

Building on previous methodology [Funk et al., 2007], we undertook an evaluation,

comparing both types of CLANN annotator with each other. Furthermore we investi-

gated issues of usability and habitability for each tool’s respective CNL. We also included

OntoMat [Handschuh et al., 2002], a standard manual semantic annotation tool. Our

quantitative results demonstrate that controlled annotation can for certain use cases of-

fer an attractive alternative to non experts over a standard manual annotation tool.

The remainder of this chapter is organised as follows: Section 6.2 discusses our use

case and target domain and the design and implementation of both types of CLANN

annotators and their corresponding CNLs. Section 6.3 presents our evaluation and dis-

cusses our quantitative findings. Section 6.4 discusses the current literature. Finally 6.5

Section offers conclusions, and as a prelude to Chapter 7, discusses further work involving

controlled annotation.

6.2 CLANN: Design and Implementation

6.2.1 Use Case and Application Domain

The reader should note that controlled annotation cannot necessarily offer a panacea for

manual semantic annotation as a whole since it is unrealistic to expect users to annotate

154

every textual resource using CNL. However there are certain use-cases in which CNL can

offer an attractive alternative as a means for manual semantic annotation, particularly

in contexts where controlled vocabulary or terminology is implicit such as health care

patient records, business vocabulary and reporting. Our domain use case focuses on

project administration tasks such as taking minutes during a project team meeting and

writing weekly status reports. Very often such note taking tasks can be repetitive and

boring. In our scenario the user is a member of a research group which is part of an

integrated EU research project. We chose this domain because: (1) we observed the size

of meeting minutes and status reports was quite limited and in addition sentences within

such artefacts tended to be short, repetitious and more importantly tended to follow

a “subject, predicate, object pattern”, making them good candidates from controlled

annotation, and (2) we were able to construct our own small corpus of real-world meeting

minutes and status reports generated over the three year period from the Nepomuk107

project (271 reports).

One scenario could employ the use of pre-defined templates, whereby the user si-

multaneously authors and annotates his/her meeting minutes or status reports in CNL,

using a semantic note taking tool - SemNotes108, which is an application available for

Nepomuk-KDE109 - the KDE instance of the Social Semantic Desktop. The metadata

would available for immediate use after creation for querying and aggregation. The sce-

nario is not limited to the KDE Desktop or the Semantic Desktop. Other scenarios could

involve integrating controlled annotation into a Semantic Wiki.

Both CLANN tools are bootstrapped via the Nepomuk Core Ontologies110 . More

specifically our domain is modelled using a meeting minutes/status report ontology

107http://www.semanticdesktop.org, Retrieved 2008-05-22

108http://smile.deri.ie/projects/semn, Retrieved 2008-05-22

109http://nepomuk.kde.org/, Retrieved 2008-05-22

110http://www.semanticdesktop.org/ontologies/,Retrieved 2008-05-22

155

MEMO111, which references the users Personal Information Model Ontology(PIMO) 112.

The MEMO ontology was initially engineered for purposes of building both CLANN pro-

totypes and was designed as a proof of concept. Since then we have completely redesigned

and reengineered our domain ontology in accordance with proper ontology engineer-

ing methodologies, specifically the METHONTOLOGY [Fernandez-Lopez et al., 1997]

methodology

We applied Word Smith Tools 5.0113 to our corpus in order to identify common lin-

guistic patterns and vocabulary which could be applied to both CLANN annotators but

more specifically CLANN I. We applied the results of our corpus analysis to the design of

CLANN I in conjunction with linguistic introspection - a common requirements analysis

step within language engineering. In addition, recall that CLANN I seeks to address some

aspects of linguistic performance. Hence a further justification for corpus analysis. This

will be elaborated where appropriate in detail within the next sections.

6.2.2 CLANN I and II Overview

As mentioned earlier this work focuses on two systems Controlled Annotation CLANN (

Controlled Languages ANNotator) I and II. Both CLANN annotators are implemented in

GATE114 and build on the existing advantages of the CLIE software and input controlled

language, CLOnE, (see Chapter 4) and share the common features below

1. Both annotators require only one interpreter or runtime environment, the Java

Runtime Environment.

2. As far as possible, CLANN I and CLANN II snippets are grammatically lax; in

particular it does not matter whether the input is singular or plural (or even in

grammatical agreement).

111http://ontologies.smile.deri.ie/2009/02/27/docs/, Retrieved 2008-05-22

112http://www.semanticdesktop.org/ontologies/2007/11/01/pimo/, Retrieved 2008-05-22

113http://www.lexically.net/wordsmith/version5/index.html, Retrieved 2008-05-22

114General Architecture for Text Engineering, See http://gate.ac.uk/, Retrieved 2008-05-22

156

3. Both types of CLANN are relatively easy to learn by following examples and a small

style guide, without having to study elaborate expressions of formal syntax.

4. Both CLANN annotators merge the authoring and annotation steps together.

5. Both annotators share a common template for meeting minutes.

6. Finally both CLANN annotators share a common ontology API similar to CLOnE.

In our scenario each CLANN annotator is anchored to existing semi-structured data such

as a AgendaTitle, Scribe or ActionItem based on predefined meeting minutes or sta-

tus report templates described (See Figure 6.2). The templates were constructed based

on linguistic introspection and corpus analysis, which was conducted over the previously

mentioned corpus of status reports and meeting minutes derived from the Nepomuk

project. We choose to use a template for the CLANN prototypes for practical reasons, so

the template could be easily applied to any note-taking environment or for instance em-

ulated in a semantic wiki. For instance the application of extracting semantic metadata

from wiki templates in Wikipedia was researched in [Auer and Lehmann, 2007]. Further-

more, it would be inefficient to apply CLANN for creation of this template rather the

focus here is the usage of CLANN for authoring and annotating natural language sen-

tences contained within in the template (See Figure 6.2).

6.2.3 GATE interface for CLANN I and CLANN II

At startup, CLANN I or CLANN II are loaded, including the initial textual data, into

GATE. The user will have a window like the one shown in Figure 6.3 to work with.

He/she can click on the buttons or tabs across the top to bring up the following panes.

Messages This pane explains in detail what a CLANN annotator has just done and

includes error messages. The user can distinguish the error messages by the word

WARNING, and probably ignore the INFO messages.

157

Meeting Date:<date>

Project Name:<project name>

Attendees:<attendee1>(,<attendee2>)+

Chair:<chair>

Scribe:<scribe>

Agenda Items:

Agenda Title:<title>

(Comment:<comment>.)+

RoundTable:

(Comment:<comment>.)+

Figure 6.2: Meeting Minutes Template for CLANN I and II

158

Figure 6.3: Overview of CLANN I and II in GATE

Text input In this pane (shown in Figure 6.3 the user can edit statements in the in

either the CLANN I or CLANN II syntax, explained below. To clear any input,

the user must select all the text with the mouse and press the backspace key. It is

recommend to edit individual parts. This can be achieved as one would edit text

normally using the arrow and backspace keys and the mouse.

Annotation This pane (shown in Figure 6.3 on the right hand side) shows you the

semantic annotations created by either CLANN I or CLANN II. Example semantic

annotations of type Mention can be viewed in both Figure 6.6 and Figure 6.9

respectively. See also Appendix B for details on how to inspect an ontology in

159

GATE .

To execute an annotator on the current input text, the user must right click either on

the word CLANN I or CLANN I near the top of the left-hand pane and click Run in the

menu that appears.

6.2.3.1 CLANN I: Design and Implementation:

The annotator architecture contains a standard GATE pipeline(see Figure 6.4) which

includes the following language processing resources: The GATE English tokenizer, the

Hepple POS tagger, a morphological analyser, a gazetteer list component for recognising

useful key-phrases, such as structured elements from the templates and reserved CNL

phrases. Any sentences for example, preceded by a Comment: element are considered

candidates for controlled language parsing. Any remaining tokens from the CNL sentence

which are not recognised as reserved CNL key-phrases are used as names to generate links

to ontological objects. This is followed by a standard Named Entity(NE) transducer in

order to recognise useful NEs, a preprocessing JAPE115 finite state transducer(FST) for

identifying quoted strings, chunking Noun Phrases(NPs) and additional preprocessing.

A second gazetteer list lookup is applied to identify trigger phrases associated with NEs

which intersect with quoted and unquoted NP annotation spans. Additional feature

values are then added to the NP chunks to indicate the appropriate class to link an NP

chunk as an instance to. The last FST parses the CNL from the text and generates

the metadata. The current tool is bootstrapped via the Nepomuk Core Ontologies and

currently the application populates a meeting minutes/status report ontology MEMO

which references a user’s Personal Information Model Ontology(PIMO), via the GATE

Ontology API. Each meeting minute note follows a pre-defined template(See Figure 6.2

). The template is parsed initially to extract the inherent metadata about the meeting.

Each valid sentence in CLANN I matches exactly one syntactic rule and as mentioned

115Java Annotations Pattern Engine

160

Figure 6.4: CLANN I pipeline

earlier consists of reserved key-phrases (verb phrases, fixed expressions and punctuation

marks) as well as chunks(which similar to noun phrases are used to name instances).

Similar to CLOnE, the language has quoted chunks, a series of words which are enclosed

in quotes (Eg. ”the PhD proposal”). Quoted chunks permit the capture of multi-word

expressions as instances. They also permit the use of reserved words that would other

wise be detected by the reserved word gazetteer lookup.

An example syntactic rule is contained below:

• <NP><VP>(<Prep>? <NP>)+

where <NP> corresponds to chunk or quoted chunk and <VP> corresponds to re-

served verb phrases (infinitive) and paraphrases derived from corpus analysis. Further-

more <Prep> corresponds to any preposition annotated using the POS tagger. Finally

(<Prep>? <NP>)+ matches one or more prepositional adjuncts i.e. ”for the EU”

or”in Work Package 3000”. Hence the above rule would match the following sentences.

Comment: Marco to visit “University of Karlsruhe”.

Comment: Dirk to complete paper by “Sunday 21st June” for “International Semantic

Web Conference”.

The above rule extracts the instances as arguments. The reader should note that

161

Figure 6.5: CLANN I visualised in GATE

162

Figure 6.6: An example of a semantic annotation of type Task in CLANN I

163

prior to this stage that standard NE transducer and post-processing NP transducer (see

Figure 6.4) will have collected additional information about each chunk. So Marco and

Dirk are associated to a Person, while ‘‘Sunday 21st June’’ will be recognised as a

Date. Using similar techniques ‘‘University of Karlsruhe’’ would be recognised as

an Organisation and ‘‘International Semantic Web Conference’’ would be recog-

nised as a Conference. The verb phrases to visit and to complete are then used to

identify the relevant properties to link the instances recognised.

CLANN I also creates annotations of type Mention where each annotation contains a

list of key/value features such as class and the corresponding URI for the resource in

the ontology - http://www.owl-ontologies.com/2008/10/14/MeetingMinutes.owl\

#Task (See Figure 6.6). The annotation is anchored to the chunk of text:

Comment: Dirk to complete “CII Deliverable II” by “25th June 09”.

Additional information such as ARG1-Anno-ID=563 and ARG1-Anno-ID=587 is also

associated to the Mention annotation. Both feature values correspond to the unique

numeric identifiers of the annotations, which mention Dirk, who is of type Person and

‘‘25th June 09’’, which is of type Date. Hence our Mention annotation takes two an-

notation identifiers as arguments, the person responsible for the Task and the completion

date of the task. Note that, both annotations are within the same span as Mention.

For additional details on the the interface and usage of CLANN I, we refer the reader to

Appendix C.

Other features of CLANN I include simple co-reference using the Alias: rule, which

allows the user to express the same instance in varied forms. It also enables the usage of

a shorthand by the user when taking minutes.

CLANN I also incorporates simple elements of language performance in order to make

the controlled language more habitable. See the introductory section for a discussion on

the term habitability. In order to engineer elements of linguistic performance into CLANN

I, we applied corpus analysis to generate lexicalisations for common properties within the

MEMO ontology. These were then added to the the gazetteer list component within the

164

CLANN I pipeline as CNL reserved phrases. We applied mutual information statistics

to word frequencies within our corpus to assess the strength of collocation relationships

within text. We used the output to generate lists of common trigger phrases which could

be aligned to properties within the MEMO ontology. For example:

Comment: Dirk to complete paper by “Sunday 21st June” for ”International Semantic

Web Conference”. can be paraphrased as:

Comment: Dirk to finish up work on paper by “Sunday 21st June” for “International

Semantic Web Conference”. or

Comment: Dirk to wrap up paper by “Sunday 21st June” for ”International Semantic

Web Conference”. where to finish up work on and to wrap up are lexicalisations

of the property toComplete. On initial inspection, the reader may inclined to view such

paraphrases as grammatically incorrect or stylistically inelegant, but recall that CLANN

I is language performance driven and seeks to ease the user experience by incorporating

such lexicalisations within the controlled language thus making it more habitable. In

our evaluation section we will show how this design decision impacts favourably on user

satisfaction. For additional examples of the CLANN I language and grammar, we refer

the reader to Table 6.1.

6.2.3.2 CLANN II: Design and Implementation

The CLANN II architecture (see Figure 6.7 and Figure 6.8) is similar in design to CLANN

I in that it shares the same language processing resources for tokenisation, sentence

splitting, POS tagging and morphological analysis. CLANN II uses an identical template

as CLANN I, however the Comment: element is non existent and furthermore sentences

themselves are not written in controlled language. In CLANN II the user can write

any sentence without restriction under the heading of an Agenda Item. What differs in

CLANN II is that the user can use snippets of controlled language to associate metadata

to a particular piece of text. Snippets of CNL are identified within square brackets

using [....]. The CLANN II CNL snippets themselves are similar to the CLOnE

165

Table 6.1: Excerpt of CLANN I grammar with examples

Sentence Pattern Example Parsed pattern

<NP><VP><PP>+ Ambrosio to

submit "her PhD

Proposal" during

"the next week".

(Ambrosia <NP>)

(to submit <VP>)

((her PhD Proposal <NP>)<PP>)

(during (the next week

<NP>)<PP>).

Dirk to work on

"the E-Health

Proposal" with

Ambrosia

(Dirk <NP>)

(to work <VP>)

(on(the E-Health

Proposal<NP>)<PP>)

(with (Ambrosia <NP>)<PP>).

Alias:<Text>;<alias> Alias:<"CII

Deliverable

6.7">;<"D6.7">

Creates ”D6.7”’ as an alias for ”CII De-

liverable 6.7”.

language. A preprocessing finite state transducer(FST) similar to CLANN I is applied

to extract values associated with template elements. In addition, text associated to the

CNL snippets is also parsed at this stage. The final stage in the pipeline consists of a

JAPE transducer which pulls the instances and properties to parse triples, ignoring the

unassociated text. CLANN II shares the same API with respect to ontology manipulation

as CLANN I and consults the ontology in similar manner. Similar to CLOnE and CLANN

I, the language in CLANN II has quoted chunks, a series of words which are enclosed in

quotes (“...”). This allows the user to associate metadata to more than one word.

Example syntactic rules are shown below: <Text>‘[’is a classname‘]’

where [is a classname] corresponds to a snippet of CNL. Hence:

Dirk[is a Person] to complete paper by “Sunday 21st June”[is a Date] for “International

Semantic Web Conference”[is a Conference].

The rule below allows the user to simply embed a sentence in CNL in order to create

relation metadata:

166

‘[’Chunk Property Chunk‘]’

This approach also allows users to handle adjuncts with much greater ease, such as

associating the Date instance ’’Sunday 21st June’’ with paper i.e.

[“to complete” same as toComplete].

Dirk[is a Person] to complete paper[is a Document] by “Sunday 21st June”[is a Date] for

“International Semantic Web Conference”[is a Conference].

[Dirk “to complete” paper].

[Paper hasEndDate “Sunday 21st June”].

Note, that when creating instances of properties, the controlled language will recognise

pre-existing mentions i.e. paper and ‘‘Sunday 21st June’’. In order to use a property

in the CLANN II CNL, the user must either use the appropriate label for the property

on inspection of the ontology (in this case to complete is a part of the ontology) or

alternatively they can use the alias preprocessing command to create a more natural

substitute for the property.

CLANN II also creates annotations of type Mention , where each annotation contains

a list of key/value features such as class and the corresponding URI for the resource in

the ontology - http://www.owl-ontologies.com/2008/10/14/MeetingMinutes.owl\

#Conference. The annotation is anchored to the chunk of text “International Semantic

Web Conference” (See Figure 6.9). The correct instance feature value for ISWC2009 will

also be associated to the Mention annotation. For additional details on the the interface

and usage of CLANN II, we refer the reader to Appendix C.

Another major difference between CLANN II and CLANN I is that the user can

also create and manipulate classes, subclasses and class properties. Suppose the user

is unsatisfied with the association of paper to Document and would prefer to associate

the text to instance of a non existent class ConferencePaper. CLANN II permits the

creation of new classes on an ad hoc basis using the following rules:

‘[’<chunk> is a subclass of <classname>‘]’

resulting in the following:

167

Table 6.2: Excerpt of CLANN II grammar with examples

Sentence Pattern Example

<text>‘[’is a <Class>‘]’. Dirk[is a Person]

Creates an object of the class Person with label

Dirk.Note the the label is taken from the docu-

ment content.

<text>‘[’is a subclass of

<Class>‘]’.

Proposal [is a subclass of Document] or

[Proposal is a subclass of Document]

Creates a new class with label Proposal as a sub-

class of the class Document.

<text>‘[’<property> <ob-

ject>‘]’.

Dirk[to complete "PhD Proposal"] or [Dirk

to complete "PhD Proposal"]

Creates a triple which links the instances of Dirk

and PhD Proposal with the property toComplete.

[“Conference Paper” is a subclass of Document]

Dirk[is a Person] to complete paper[is a “Conference Paper”] by “Sunday 21st June”[is a

Date] for “International Semantic Web Conference”[is a Conference].

[Dirk to complete paper].

We refer the reader to Table 6.2 for further examples of the CLANN II language.

Both CLANN I and CLANN II differ in the following ways:

• The CLANN II language is portable, while CLANN I must be re-targeted for a new

Figure 6.7: CLANN II pipeline

168

Figure 6.8: CLANN II visualised in GATE

Figure 6.9: An example of a semantic annotation of type Conference in CLANN II

169

domain. This is an inherent disadvantage of attempting to cater for some linguistic

performance in CLANN I.

• CLANN I incorporates some linguistic performance while CLANN II does not. Lin-

guistic Performance is the result of conducting basic simple corpus analysis(mentioned

earlier).

• CLANN I cannot create terminological component(TBox) statements. This option

is available to CLANN II users. This raises interesting research questions: Should

a proper annotation tool permit users to alter the ontology at the class level etc?

Would annotators then invariably corrupt the ontology?

• CLANN II is more in line with the traditional spirit of semantic annotation. The

CNL snippets act as the “glue” between free text and the knowledge base. This is

similar to approach taken in some semantic wikis notably Semantic Media Wiki116

but the we believe that the CLANN II language is more natural and human readable.

• In theory, CLANN II can be applied to a legacy text which is not the case for

CLANN I.

• The user must be somewhat familiar with the ontology to use CLANN II, while the

ontology is hidden in CLANN I.

Other points in relation to CLANN vs CNL:

• The reader may feel that CLANN I is simply applied CNL for fact creation, however

the subtle but crucial distinction here is that CLANN I retains provenance data

regarding an extracted instance or relation which point back to original span of

text and document source it from where it was extracted. Recall that we retain

this data so it can be discovered at a later stage by a semantic agent on the Web

or indexed into a semantic search engine. Provenance is arguably irrelevant for

116http://semantic-mediawiki.org/wiki/Semantic_MediaWiki

170

traditional CNL as the task differs and the role of the content is to interface with

the ontology for authoring and population while with respect to CLANN, while

modify the ontology, unlike traditional CNLs we also modify the text by creating

annotations. Recall, the benefit of retrieving (via semantic search) the portion

of text surrounding an annotated CNL statement is that the user can retrieve the

surrounding context. This leads to improved understanding of search results by

focusing the users attention on the anchor text captured by an annotation rather

than then returning an entire document.

• The meeting minute is a human-readable account of a meeting and not merely

CNL input for instance creation. Hence the annotated document when published

on the Web should be implicitly understood by the casual user or should read

naturally while as mentioned earlier in Section 6.1 some traditional CNL knowledge

statements may seem unnatural or may even require some introduction to logic.

6.3 Evaluation

6.3.1 Research Questions

The aim of our evaluation is to answer the following research questions:

1. SA1: Can Controlled Annotation effectively substitute for a standard manual se-

mantic annotation tool in certain scenarios?

2. SA2: Is Controlled Annotation more user friendly than standard manual semantic

annotation tool in certain scenarios?

6.3.2 Methodology

Our methodology is based on the criteria used to evaluate CLOnE (See Chapter 4) which

has previously proven reliable. The methodology involves a repeated-measures, task-based

evaluation: each subject carries out a similar list of tasks on all tools being compared.

171

We undertook an evaluation, comparing CLANN I and CLANN II with each other. We

also included OntoMaT [Handschuh et al., 2002], a standard manual semantic annotation

tool, resulting in a three way comparison of tools. Furthermore we investigated issues

of expressivity and naturalness between CLANN I and II in a post hoc manner. The

evaluation material and results are available for inspection in Appendix C. The evaluation

methodology involved the following across all three (CLANN I, CLANN II and OntoMaT)

tools :

• A pre-test questionnaire of 6 questions asking each subject to test their degree of

knowledge with respect to semantic annotation tools, ontologies, and controlled

natural languages. It was scored by assigning each answer a value from 0 to 2.

• A short document introducing ontologies and semantic annotation (partly inspired

by Protégé’s Ontology 101 documentation [Noy and McGuinness, 2001] and [Handschuh, 2005]

for semantic annotation respectively). Subjects were provided with reference guides

and examples for both CLANN annotators and OntoMat. The reader should note

the that both CLANN annotators were not integrated into a specialised interface,

rather the texts containing their respective CNLs were loaded into GATE as docu-

ments. Our research goals are concerned with exploring the user reaction to using a

controlled annotation languages while authoring as well measuring the comparison

between our approaches and the standard manual annotation paradigm.

• A post-test questionnaire for each annotation tool, based on the System Usability

Scale (SUS), which produces a score of 0–100 to compare with previous results

[Brooke, 1996].

• A comparative questionnaire similar to the one used in [Funk et al., 2007]was ap-

plied to measure each user’s preference for each of the tools over the other i.e

CLANN I vs OntoMat and CLANN II vs OntoMat and CLANN I vs CLANN II)

They were scored scored similarly to SUS so that for instance 0 would indicate a

total preference for OntoMat, 100 would indicate a total preference for CLANN

172

I, and 50 would result from marking all the questions neutral. Subjects were also

given the opportunity to make comments and suggestions.

• Three equivalent annotation tasks in the form of a meeting minutes note, each

consisting of the following two subtasks:

– create where necessary and associate instances within the text to classes,

– create where necessary and associate instance properties within the text to

instances.

For all three task lists, the same MEMO ontology was used. The same ontology was

loaded into OntoMat for all three tasks. Again for both CLANN annotators the same

ontology was used for all three tasks. See Appendix C for an example of all tasks. Note

that the task text files contain no CNL language elements from either CLANN I or

CLANN II. Templates elements were left partially incomplete across all three tasks.

6.3.3 OntoMat

OntoMat-Annotizer is an interactive webpage annotation tool [Handschuh et al., 2002].

It supports the user with the task of creating and maintaining ontology-based OWL-

markups i.e. creation of OWL-instances, attributes and relationships. It includes an

ontology browser for the exploration of the ontology and instances and a HTML browser

that will display the annotated parts of the text. The intended user is the individual

annotator. OntoMat allows the annotator to highlight relevant parts of a web page and

create new instances via drag and drop interactions. It is representative of a conventional

manual semantic annotation tool.

6.3.4 Sample quality

We recruited 18 volunteers. The sample size (n = 18) satisfies the requirements for reliable

SUS evaluations [Tullis and Stetson, 2004]. We recruited subjects with both industrial

173

(I) and Academic (A) backgrounds. See (in Table 6.3) for details.

Table 6.3: Groups of subjects by source and tool order

Tool order Background Total

Academia Industry

1-2-Ont 2 1 3

2-Ont-1 2 1 3

Ont-1-2 3 0 3

Ont-2-1 2 1 3

2-1-Ont 2 1 3

1-Ont-2 0 3 3

Total 11 7 18

In addition we attempted to control bias by selecting volunteers who were either:

• Research Assistants/Programmers/Post-Doctoral Researchers with an industrial

background either returning (or new) to Academic Research respectively(I),

• Postgraduate Students who were new to the Semantic Web and unfamiliar with

Ontology Engineering or Semantic Annotation(A),

• Researchers with no background in Natural Language Processing or Ontology En-

gineering(A) or

• Industrial Collaborators (I).

In all cases, we ensured that participants had limited or no knowledge of GATE or

OntoMat. First, subjects were asked to complete the pre-test questionnaire, then they

were permitted time to read the initial Ontology and semantic annotation guide, as well

the reference guide for tool in question, and lastly they were asked to carry out each

of the three annotation tasks with a different tool. For instance, a sixth of users(three

users) carried out task document A with CLANN I, then task document B with CLANN

174

II and finally task document C with OntoMat; the second group of three users undertook

task document A with OntoMat, then task document B with CLANN I and finally task

document C with CLANN II and so on. The process of varying the tool order resulted

in six permutations overall (See Table 6.3). Each user’s time for each task document was

recorded. After each task the user completed the SUS questionnaire for the specific tool

used, and finally a comparative questionnaire depending on the preceding tool. Comments

and feedback were also recorded on the questionnaire forms.

6.3.5 Hypothesis statements

With respect CLANN I and CLANN II and OntoMat SUS scores, we state the our first

hypothesis pair as:

5.1H0: It is predicated that mean usability scores (SUS) for either CLANN I, CLANN

II and OntoMat will not differ significantly.

5.1H1: It is predicated that at least one mean usability score (SUS) for either CLANN

I, CLANN II and OntoMat will differ from the other.

In addition, with respect CLANN I and CLANN II and OntoMat SUS times we have

the second hypothesis pair:

5.2H0: It is predicated that mean task times for either CLANN I, CLANN II and

OntoMat will not differ significantly.

5.2H1: It is predicated that at least one mean task time for either CLANN I, CLANN

II and OntoMat will differ from the other.

6.3.6 Results and Data Analysis

Table 6.4 and Table 6.8 summarises the main measures obtained from our evaluation.

We used SPSS117 to generate all our statistical results.

In particular the mean CLANN I SUS score is above the baseline of 65–70% while

117SPSS 15.0, http://www.spss.com, Retrieved 2013-05-22

175

Table 6.4: Summary of the questionnaire scores

Measure min mean median max confidence interval

Pre-test scores 0 4.28 4.5 10 2.7 - 5.8

CLANN 1 SUS rating 22.5 69.2 71.3 90 61.8 - 76.5

CLANN 2 SUS rating 5 55.6 61.3 85 46.6 - 64.5

Ontomat SUS rating 0 32.1 25 75 22.1 - 42.1

CLANN 1 Vs Ontomat Preference 42.5 67.5 65 100 60.1 - 74.9

CLANN 2 Vs Ontomat Preference 37.5 62.2 58.8 92.5 54.6 - 69.8

CLANN 1 Vs CLANN 2 Preference 30 54 56.3 80 47.8 - 60.3

Table 6.5: Summary statistics for tool times

Tool min mean median max confidence interval

CLANN I 2 9.33 8 25 6.4 - 12.3

CLANN II 3 13.17 14 22 10 - 16.3

Ontomat 15 24.28 25 25 23.2 - 25.4

176

the mean SUS score for OntoMat is well below the baseline. In the CLANN I/OntoMat

Preference scores, based on the comparative questionnaires, we note that the scores also

favour on average CLANN I over OntoMat. Furthermore with respect to CLANN II the

mean SUS score is relatively neutral. In addition, although the CLANN II/OntoMat

preference score is high, it is not above the SUS baseline. Interestingly the CLANN I/-

CLANN II preference is neutral, indicating that users were undecided with regard to the

preference of one CLANN tool over the other. Finally the mean Pre-test score is rela-

tively neutral, indicating no particular bias with respect to prior knowledge. Confidence

intervals are also displayed in Table 6.4.118

We conducted a one-way repeated measures ANOVA was conducted to compare SUS

scores and times across each tool. With respect to:

5.1H0: It is predicated that mean usability scores (SUS) for either CLANN I, CLANN

II and OntoMat will not differ significantly,

we can reject the null hypothesis as the compared groups differed significantly, F(2,34)

= 21.605, p< 0.5, multivariate partial eta squared =.55.

Furthermore, with respect to:

5.2H1: It is predicated that at least one mean task time for either CLANN I, CLANN

II and OntoMat will differ from the other,

we can reject the null hypothesis as the compared groups differed significantly, F(2,34)

=45.163, p< 0.5, multivariate partial eta squared =.72.

We note that, when engaging in tasks with OntoMat, 14 out of 18 participants re-

quested to withdraw from their assigned annotation tasks due to waning interest. Hence,

we choose to penalise the participants by assigning them the maximum time of 25 minutes.

For post-hoc data analysis, we also generated Pearson’s coefficients [John L. Phillips, 1996].

Table 6.6 displays the most important coefficients. We note the most important results:

• There is a moderate correlation between the CLANN I SUS score and the CLANN

118A data sample’s 95% confidence interval is a range 95% likely to contain the mean of the whole
population that the sample represents [John L. Phillips, 1996].

177

Table 6.6: Correlation coefficients

Measure Measure Pearson’s Correlation

CLANN 1 time Ontomat time -0.12 none

CLANN 2 time Ontomat time -0.19 none

CLANN 1 time CLANN 2 time 0.61 strong +

CLANN 1 SUS score CLANN 1 Vs Ontomat -0.02 none

CLANN 1 SUS score CLANN 1 Vs CLANN 2 0.49 moderate +

CLANN 2 SUS score CLANN 2 Vs Ontomat 0.25 none

CLANN 2 SUS score CLANN 1 Vs CLANN 2 -0.03 none

Ontomat SUS score CLANN 1 Vs Ontomat -0.43 weak −

Ontomat SUS score CLANN 2 Vs Ontomat -0.48 moderate −

CLANN 1 Vs Ontomat CLANN 1 Vs CLANN 2 0.5 none

CLANN 2 Vs Ontomat CLANN 1 Vs CLANN 2 -0.1 none

CLANN 1 Vs Ontomat CLANN 2 Vs Ontomat 0.65 strong +

I/CLANN II preference score, with an associated probability of 5%, however the

value of the correlation itself is not particularly significant.

• There is also a moderate correlation between the CLANN II SUS score and the

OntoMat SUS score, with an associated probability of 5%, however the value of the

correlation itself is again not particularly significant.

• There is a relatively strong positive correlation between CLANN I task times and

CLANN II task times and furthermore they are not significantly related.

• However there is a strong positive correlation between CLANN II/OntoMat pref-

erence scores and CLANN II/OntoMat preference scores and furthermore they are

significantly related,r=+.65, n= 18, p<.01, two tails. (Note, alpha was actually

adjusted to .004 from .05 as per the Bonferroni correction119to cater multiple cor-

119See http://en.wikipedia.org/wiki/Bonferroni_correction, Retrieved 2013-05-22

178

relations) however p was still below this value).

Hence, we can infer that users with little or no experience or knowledge of controlled

languages, semantic annotation or ontologies who favour CLANN I over a standard

manual semantic annotation tool will also tend to prefer CLANN II to a standard

manual semantic annotation tool.

A comparison of SUS scores against user background is shown in Table 6.7. Inter-

estingly users with an industrial background scored CLANN I higher than academics by

an additional 5 points. Furthermore, industry type users scored CLANN II higher than

academics by an additional 8 points. With respect to the CLANN I/OntoMat preference

scores, industrial users scored an extra 8 points higher than academics for CLANN I. Fur-

thermore, users of an academic background scored 3 points higher than industry types

in the CLANN II/OntoMat comparative questionnaire. Finally, the most interesting ob-

servation is the CLANN I/CLANN II preference score, whereby industrial users scored

their questionnaires roughly 13 points higher than academic users. More importantly,

the relatively neutral CLANN I/CLANN II preference score of 48.9 is inconsistent with

the high mean SUS score of 67.3 provided by academics for CLANN I. This implies that

while academics liked using CLANN I, when asked to score preference of CLANN I and

CLANN I, they were undecided. This was not the case for industrial users.

Finally, a comparison of tasks times against backgrounds is available in Table 6.8.

Academic users were in general slightly faster that industrial users with respect to both

CLANN tools. In general users were 3-4 minutes faster using CLANN I, depending on

their background, and in general OntoMat was the most time consuming tool averaging

23-25 minutes regardless of the user’s background. The is due to the fact that 14 partici-

pants out of 18 requested to withdraw from their assigned annotation tasks due to waning

interest. Consequently, we penalised the subjects by assigning them the maximum time

of 25 minutes. We also note that the 14 participants, who withdrew while using OntoMat,

did not complete their respective annotation tasks fully. However, we ensured that they

created sufficient metadata to complete the core tasks of creating or linking instances and

179

Table 6.7: Comparison of SUS scores against backgrounds

Measure Background mean median standard deviation

Pre-test scores Academia 3.3 2 3.3

Industry 5.7 5 2.9

CLANN 1 SUS rating Academia 67.3 70 18.9

Industry 72.1 75 10.2

CLANN 2 SUS rating Academia 52.5 50 22.7

Industry 60.4 62.5 12.4

Ontomat SUS rating Academia 28.4 22.5 20.4

Industry 37.9 35 23.8

CLANN 1 Vs Ontomat Preference Academia 64.3 62.5 14.8

Industry 72.5 70 17.9

CLANN 2 Vs Ontomat Preference Academia 63.4 60 16.4

Industry 60.4 57.5 17.7

CLANN 1 Vs CLANN 2 Preference Academia 48.9 52.5 10.7

Industry 62.1 65 14.2

instance properties. Of those 14 subjects that withdrew, 9 were academics and 5 were

from an industrial background.

6.3.7 User Feedback

The test users also provided several suggestions/comments about both CLANN annota-

tors:

• Many subjects requested a feature-rich graphical editor to assist the annotation

process i.e. grammar correction, syntax highlighting and auto-completion. This,

they argued would improve the speed of annotation and hence the usability of the

tools.

180

Table 6.8: Comparison of task times against backgrounds

Measure Background mean median standard deviation

CLANN 1 time Academia 9 8 5.2

Industry 9.9 4 8.5

CLANN 2 time Academia 12.5 12 7.7

Industry 14.3 14 5.7

Ontomat time Academia 24.5 25 0.6

Industry 23.4 25 3.7

• Most users requested features specific to the CLANN I editor include automatic

template generation, auto-suggestion of verb phrases and instance labels and smart

examples assiting the user.

• Most subjects requested features specific to the CLANN II editor included: auto-

matic or assisted generation of snippets, machine learning capabilities to automat-

ically recognise instances and an ontology visualisation layer.

6.3.8 Discussion

Our user evaluation consistently indicated that our subjects found CLANN I signifi-

cantly more usable than OntoMat for annotation tasks. In addition, we observed that

participants took significantly more time completing annotation tasks using OntoMat in

comparison to CLANN I or CLANN II. Hence our observations address our research ques-

tions (See SA1 and SA2 in Chapter 1) that for certain scenarios, CNLs can effectively

substitute for manual semantic annotation and are also considered more user friendly. In

addition post-hoc analysis revealed novice users who preferred using CLANN I over On-

toMat also tended to prefer using CLANN II over OntoMat. Our data also revealed that

this observation was statistically significant. Although, CLANN I SUS scores were higher

than CLANN II SUS scores, the CLANN I/CLANN II preference scores were scored as

181

neutral and/or undecided and were inconsistent with the CLANN I SUS score. Hence it

is unclear which CLANN annotator was preferred by our sample users. However, inter-

estingly, we noticed that industrial users in general had high usability scores for CLANN

I consistent with CLANN I/CLANN II preference scores. The reader should note that

the ontology is completely hidden in CLANN I, requiring no interaction in order to create

metadata. It is possible that industrial users appreciated CLANN I’s tendency towards

habitability because of its corpus driven design and subsequent language performance

features. In contrast, although academics gave high usability scores for CLANN I, their

CLANN 1/CLANN 2 preference scores were inconsistent with this, indicating that they

were undecided with respect to which CLANN tool they preferred. Again recall that

CLANN II is more expressive and powerful with regard to metadata creation and ma-

nipulation and is less habitable. The tool also requires inspection of the ontology. It is

possible that academic users may have had a conflict with respect to deciding between

a more formally expressive CNL and more a habitable CNL. Hence industrial users may

favour habitability over expressiveness regarding metadata manipulation, while academics

would perhaps rather sacrifice habitability for control over metadata and the ontology.

We speculate that this may be also the case across industrial and academic groups within

the true population of novice users, however our sample size is too small to make any

statistical inferences about the population with regard to two subgroups.

6.3.9 Limitations of the evaluation

We compared OntoMat with both CNL annotators, because OntoMat is a standard tool

for manual semantic annotation. Furthermore OntoMat permits a user to easily import

an external ontology. In addition, OntoMat was capable of emulating the structural

annotation associated with the meeting minutes template used by both CLANN annota-

tors. Another possible candidate was Semantic Media WiKi. However, firstly there are

known issues with respect to importing external ontologies. Secondly and more impor-

tantly, Semantic Media Wiki associates metadata to wiki links and not text directly and

182

was consequently not directly comparable to controlled annotation120. GATE was also a

possible choice, but the Ontology Annotation Tool(OAT) in GATE is not as explicit as

OntoMat with respect to annotating relational metadata121 and in addition as CLANN

is implemented in GATE, comparing it to OAT would have biased the evaluation.

With respect to the SUS questionnaire, we acknowledge that its high level nature

makes the questionnaire quite general, however it is widely used, technologically agnostic

and flexible, making it very suitable for general usability assessments. Although the

majority of the participants were native speakers, we did not explicitly test for English

proficiency among our sample users (as is the case in other work [Dimitrova et al., 2008]).

This is due to the fact that knowledge capture task is less complex than typical CNL tasks

in that our users were not required to author axiomatic or intensional knowledge in CNL.

Efforts were made to exclude individuals with knowledge of ontologies and semantic

annotation. One user had been exposed to GATE before, however our pretest scores were

quite neutral. We argue that this was sufficient as a pilot study.

6.3.10 Annotation Metrics

It is important to understand that by comparing information extraction metrics across

each tool, it results in an unfair comparison with respect to Ontomat. This is because

CLANN I, by its restricted nature, is deterministic and would always have 100% precision

and recall. Hence the focus of our evaluation was on usability. The participants were

given the meeting minutes in free text for all three tools. The sentences were examples

taken from the aforementioned corpus we had gathered.

For both CLANN Tools in GATE:

• Where GATE indicated parsing errors in the message viewer, users were asked to

rewrite the statements.

120At the time evaluation, the SMWWriter API had not been developed. See http://

semantic-mediawiki.org/wiki/Help:SMWWriter, Retrieved 2013-05-22

121This has improved in GATE 6.0

183

Table 6.9: Summary of the Precision and Recall scores for each tool

Tool Precision Recall F-measure

CLANN I 1 1 1

CLANN II .9 1 .94

Ontomat 1 .53 .69

• We checked that the ontology was correctly populated after each user, which was

the case.

In the case of CLANN II:

• Since users were given some freedom with respect to CLANN II, we noticed that

they sometimes linked to a super class rather than to the class instructed.

• For instance one user linked a chunk of text to the Document superclass instead of

the class Deliverable. This is not incorrect rather inexact.

• The above mentioned “error” occurred with 40% of users.

Finally, with respect to Ontomat:

• 14 out 18 participants requested to stop their task, usually after 5-10 minutes.

• We ensured that for each user who withdrew, they completed at least 7/18 anno-

tations, correctly.

• The other remaining 4 participants completed there annotations correctly.

Table 6.9 summaries the standard precision and recall metrics for each tool.

6.4 Related work

A plethora of tools exist for the manual or (semi-)automatic semantic annotation of

free text. For a thorough survey of manual and (semi-)automatic semantic annotation

184

tools and platforms, we refer the reader to Chapter 3, Section 3.2. In addition, the idea

of blurring the lines between authoring and annotation, has its origins in the CREAM

(CREAting Metadata) framework for semantic annotation [Handschuh and Staab, 2002].

However, the implementation is simplistic and implies dragging an RDF Label for a given

concept from the ontology viewer and essentially pasting the label into the document. To

our knowledge, however, very little research exists involving the application of CNL to

semantic annotation. For a thorough review of CNL in the context of ontology authoring,

we refer the reader to Chapter 3, Section 3.1.

The most closely related technologies to controlled annotation(specifically the CLANN

II syntax) are semantic wikis, which have become a somewhat popular way of adding

semantics to user generated wiki pages. The term semantic wiki often implies either on-

tology authoring or the semantic annotation of wiki content. A traditional wiki creates

links between pages without defining the kind of linkage between pages. Semantic Media

Wiki [Krötzsch et al., 2006] allows a user to define the links semantically, thereby adding

meaning to links between pages. Each concept or an instance has a page in Semantic

Media Wiki(SMW), and each outgoing link from this page is annotated with well-defined

properties as links. However this kind of approach differs to the kind of semantic anno-

tation that we aim for. The Semantic Media Wiki model forces the users to use the wiki

pages for content creation and to create a new page for each instance122. Moreover, the

relational meta-data represented in a Semantic Media Wiki always has the correspond-

ing page as its subject, thereby restricting the creation and description of other relevant

entities.

With respect to user evaluation,[Krötzsch et al., 2007] describe observations regarding

SMW usage. They state first and foremost that the ‘majority of users will neglect annota-

tion as it does not bear immediate benefit”. This is understandable given any annotation

context, whereby the benefits of annotation are not recognised until the semantic search

122At the time of evaluation, the SMWWriter API had not been developed http://

semantic-mediawiki.org/wiki/Help:SMWWriter, Retrieved 2013-05-22

185

stage. In addition, they argue that “without conclusive studies on the usage of wikis in

general, any prediction on the effect of introducing semantics in the (wikipedia) environ-

ment lacks justifications”. In [Krötzsch et al., 2007], the authors base their wiki usage

experiments on ontoworld.org, which is itself maintained by the authors. The site’s

function is to collect information about semantic web researchers, events and projects.

The authors record 930 registered users, the majority of which have contributed little

to the total recorded 37,880 edits. The semantic knowledge base of ontoworld.org,

at the time, counted 17,562 property annotations for 808 property edits. The majority

of the properties have a page in the wiki, while 50% are of type Page and are used to

annotate hyper-links. With respect to the usage of properties, they noted that 5% of

the properties accounted for over 74% of the annotations, whereas the least used 80%

of the properties accounted for less than 9% of all semantic statements. The authors

state that these results have very similar power-law distributions to those of Wikipedia’s

categories[Krötzsch et al., 2007]. In conclusion, they argue that SMW features are at

least equivalent to Media WiKi functionality, however as the authors themselves state

“one cannot conclude whether or not the requested (annotation)functions are actually

considered useful for a given purpose” and that additional research is needed to obtain

definitive results. While the research is very important in that it records observations

with respect to SMW usage over a large user populations, one cannot conclude any spe-

cific user satisfaction rating with respect to the users and further more the user group is

arguably extremely biased to that of the semantic web community.

Recent work by Pfisterer et al [Pfisterer et al., 2008] reports better results, but it is in

the context of the interface extensions to SMW by AIFB123 in collaboration with Onto-

prise GmbH124. The interface enhancements include: (1) a fact-box which summarises all

facts, linked to a given article, (2) a semantic query interface with strong auto-completion

123Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB) http://www.aifb.
kit.edu, Retrieved 2013-05-22

124http://www.ontoprise.de/, Retrieved 2011-05-22

186

features, (3) an ontology browsing interface and (4) a Semantic Tool-Bar, which seeks to

ease the semantic annotation process, but a classical a posteriori fashion and not at the

editing/authoring stage. The Semantic Tool-Bar, which is enabled by software derived

from the HALO125 project, allows users to add/change annotations, whereby the changes

are written directly to the wiki source text. They conducted two evaluations, whereby

the shared scenario is the creation of a scientific Semantic Wikipedia. They recruited

seven test subject matter experts consisting of two experts in physics, three in chemistry

and two in biology. The experts had little or no familiarity with semantic wikis and

had never edited a Wiki article before the evaluation. They participated in the design

and development of the enhanced SMW over a period of seven months. With respect

to both evaluations, they are more aligned to usability testing rather than being able

to make and statistically significant inferences about the general target user population

regarding the usability of their Wiki. A SUS[Brooke, 1996] questionnaire was adminis-

tered to the group, once before and once after user feedback had been integrated into

the enhanced Wiki. The user satisfaction was low prior to the enhancements and high,

upon re-administration of the questionnaire. The sample size, at seven, was too small to

make any statistically significant claims. More importantly, as the authors note, there

are flaws in the evaluation in that a portion of first questionnaire group intersected with

the second questionnaire group. This portion had been exposed to the enhanced SMW

for a few months, so the high user satisfaction observed is inaccurate.

With respect to the second of the two aforementioned user evaluations, forty-two

students from an introductory human-computer interaction class served as the sample

user population. Each subject, after being provided introductory material, were asked

to annotate a random wiki page in the enhanced SMW. In addition, after completing

this task they were asked to formulate a number of queries to the SMW. This was fol-

lowed by a SUS usability questionnaire. The resulting user satisfaction score was below

the SUS baseline at 54.8%. In addition, on average each student created 4.2 annota-

125http://www.projecthalo.com/, Retrieved 2011-05-22

187

tions and only 50.3% were fully correct. Errors were caused primarily by unrecognised

characters or date formats, which are rectifiable. The speed of the systems reaction ac-

counted for a large amount of negative feedback. However, performance limitations in

speed were undoubtably caused by over 20 users editing the SMW at the same time.

This would invariably have had an impact on user satisfaction scores. Nevertheless, no

statistical tests are performed on the SUS results and no inferences are made about the

general target population. Despite the weak empirical results, the work presented in

[Pfisterer et al., 2008] is very important in that in represents a shift towards proper user

evaluation and user centred design within the the semantic wiki community. The authors

themselves acknowledge that there is still a need to provide more “concrete examples”

with respect to application of user centred design to semantic wikis.

Other flavours of semantic wikis include IkeWiki126[Schaffert, 2006] and KiWi127. One

could argue that Semantic Wikis are only usable by the Semantic Web community and

retain a significant formal barrier to a casual user or even an IT professional in the

industry. ACEWiki[Kuhn, 2008] attempts to circumvent this using the CNL ACE in

combination with a predictive editor as an interface to a Semantic Wiki. Other work

involves integrating the Rabbit CNL (as well as support for ACE) into Semantic Media

Wiki The purpose of which is user friendly collaborative ontology authoring using multiple

CNLs and template based language generation capabilities [Bao et al., 2009]. However,

in both cases, the task here is collaborative ontology authoring and not (controlled)

annotation, which seeks to provide wiki content with a semantic backbone.

6.5 Conclusion and Future Work

The research contributions of this chapter can be summarised as follows:

1. An novel approach to manual annotation, using CNL, called Controlled Annota-

tion, where we move away from traditional a-posteriori annotation by merging both

126http://ikewiki.salzburgresearch.at/, Retrieved 2011-05-22

127http://www.kiwi-project.eu/, Retrieved 2011-05-22

188

authoring an annotations steps together(SA1).

2. Two Controlled Language ANNotator - CLANN prototypes, each varying in ex-

pressiveness and usability(SA1) .

3. Statistical evidence that for certain scenarios, controlled annotation can be more

user friendly than standard manual semantic annotation approach(SA2) .

One could argue that our notion of merging authoring and annotation is not novel.

Semantic Media Wiki also merges both authoring and annotation steps. However we

believe that an annotation syntax (particularly in the context of CLANN II) should be as

close to natural language as possible. So one could view the comparison as an annotation

syntax problem. We argue that, for semantic wikis, the use of a formal syntax to link to

facts to wiki pages represents a significant barrier to non-semantic users. This is supported

by the weak results of user studies reported in the section on related work. Furthermore,

in the context of the enhanced Semantic Media Wiki presented in [Krötzsch et al., 2007],

the “ annotation as authoring” approach or standard semantic annotation syntax of the

Wiki, is essentially abandoned for a Semantic Tool-Bar, which takes a traditional drag and

drop a posteriori approach similar to a standard manual annotation tool. The purpose of

this is to shield users from the formal annotation syntax of the Wiki. Despite this, the user

satisfaction results are not favourable. In summary, there are still open questions with

regard to the usability of Semantic Media Wiki, particularly in the context of creating

annotation either at the authoring stage or following content creation.

Although the JAPE parsing process is quite robust, the parsing error messaging pro-

vided in GATE is insufficient. Clearly, it is evident that a proper interface is required

to improve the usability of both CLANN annotators as they are quite prototypical. A

possible CLANN III prototype would use link grammar128. GATE is ideal for rapid pro-

totyping in this context but the JAPE language has disadvantages inherent to finite-state

parsing. Link grammar has more recognition power (particularly due to its context free

128http://www.link.cs.cmu.edu/link/, Retrieved 2011-05-22

189

parsing capabilities allowing us to model the reification of triples properly) and further-

more it would provide CLANN with free predictive parsing/editing capabilities to improve

usability. These topics along with other future work will be discussed in the following

Chapter.

190

Part IV

Conclusion and Future Work

191

7 Conclusions and Future Work

This thesis began with the statement that both Ontology Authoring and Semantic An-

notation are two of the core challenges for building the Semantic Web. We have shown

how Controlled Natural Languages (CNL)s can assist in easing the knowledge acquisi-

tion bottleneck, which is inherent to both of the above challenges. We have presented a

user friendly means for ontology authoring using a lightweight CNL called CLOnE. We

have also presented an enhanced version of the tool, which augments the user friendliness

of CLOnE using shallow Natural Language Generation (NLG). The addition of shallow

NLG to CLOnE, produces a RoundTrip Ontology Authoring (ROA) environment. Fi-

nally, we have provided prototypes for user friendly semantic annotation based on CNL,

called Controlled Language Annotator - CLANN, which intersects the fields of CNL with

Semantic Annotation. The resulting output is Controlled Annotation, which is a type of

latent annotation, whereby both authoring and annotation steps are merged into one as

opposed to classic a posteriori annotation.

This concluding chapter is divided into five sections: (1) we revisit the research con-

tributions of this thesis, including (2) open questions, (3) ongoing work with respect to

evolving Controlled Annotation and (4) additional future work.

7.1 Research Contributions

The contributions of this thesis can be categorised as follows:

• Round Trip Ontology Authoring is the addition of a shallow NLG generator

to the CLOnE implementation. Controlled Language for Ontology Editing

192

- CLOnE is a compact CNL which enables non-experts to solve basic ontology

editing tasks. CLOnE was implemented in the GATE framework by the Sheffield

NLP group and is based on GATEs linguistic analysis tools for Information Ex-

traction(IE). CLOnE is a subset of natural language, which can be unambiguously

parsed and converted into an ontology. While CLOnE can be unambiguously parsed

in order to author an ontology. The reverse of this process NLG, verbalises a given

ontology in CLOnE CNL. Combining both CLOnE and the text generator, results

in a round trip ontology authoring environment whereby the user (re)produces the

controlled language using the text generator, modify or edit the text as required,

and subsequently parse the text back into the ontology using the CLIE environ-

ment. The process can be repeated, or round-tripped, until the desired effect is

achieved. The text generator is a modern XML based shallow NLG application. It

is somewhat a hybrid system, in that it has some deep NLG functionality contained

in the lexicalisation process, which is informed by the SimpleNLG129 lexicon and

morphological realisation functionality.

• While one portion of the contribution of this thesis has focused on the applications of

CNL to ontology authoring, the remaining portion is concerned with exploring the

application of CNLs to semantic annotation. This thesis has proposed Controlled

Annotation, which is an approach to manual semantic annotation based on CNL.

A definition of Controlled Annotation was provided in Chapter 6 which outlines

the intersection between traditional CNLs for ontology authoring and the process

of Semantic Annotation. Controlled Annotation is a type of latent annotation,

whereby the annotation step is not executed in an a-posteriori fashion, after the

document authoring, but is rather merged with the authoring stage. As a means of

realising our approach, we provided two implementations of controlled annotation

– Controlled ANNotator(CLANN) I and II.

129https://code.google.com/p/simplenlg/, Retrieved 2013-05-22

193

• Evaluation of CNLs for Ontology Authoring and Semantic Annotation

With respect to the evaluation we have provided empirical evidence that:

– ROA is more user friendly than a standard ontology editor for basic ontology

editing tasks.

– ROA is more user friendly than CLOnE for basic ontology editing tasks.

– For certain scenarios, Controlled Annotation can be more user friendly than a

standard manual semantic annotation approach.

• Questions and Design issues with respect to CNLs. Our quantitative eval-

uation has shown that a compact CNL can effectively substitute for a standard

ontology editing tool, with respect to ontology editing tasks. However, the intro-

duction of more complex knowledge modelling such as rules and axioms would have

an impact on the design of the CNL and its subsequent usability. One could argue,

as does Smart et al [Smart, shed], that user could become “lost in logic”, in that

the resulting complex CNL becomes no more user friendly than the ontology editor

it is trying to replace. A major question is whether a CNL is appropriate for the

task? Although, in the context of ontology authoring, CNLs like CLOnE and ACE

offer an attractive alternative to ontology editors, we argue that a CNL is not a

panacea for resolving ambiguity when processing natural language. This is particu-

larly true, with respect to authoring fluid natural language texts completely in CNL

for fact creation (as in CLANN I), such as technical or clinical documentation. We

argue that for these scenarios, there should be a pre-existing use case for a human

orientated CNL, in other words a restricted vocabulary or syntax for a technical do-

main either legal, clinical or aeronautics such as ASD Simplified Technical English.

Without such a use case, despite it being possible to adapt a human-orientated CNL

to a machine processable CNL, there would be little incentive for users to interact

with it.

194

7.2 Open Questions

• Firstly, there is the issue of scalability for RoundTrip Ontology Authoring. If

we have larger semantic repositories such OWLIM-SE (previously BigOWLIM)130,

which can handle large ontologies and we generate CLOnE output from this knowl-

edge, the important question is how can we present it to the user in an accessi-

ble manner? We would risk information and cognitive overload by producing large

amounts of CNL text. Data Visualisation tools would be needed to effectively select

portions of the ontology for generation and editing in CLOnE and more importantly

to permit ease of interaction.

• Secondly, there are open research questions with respect to ontology lexicali-

sation, which is concerned with integrating ontologies and lexicons or enriching

ontologies with a lexical layer [Buitelaar et al., 2009b]. A lexical layer within an

ontology can be exploited in order to automatically generate language resources for

NLP applications, such as Cross Lingual Ontology Based Information Extraction,

Semantic Annotation, Knowledge Based Machine Translation and finally (multi-

lingual) NLG and CNL applications for the Semantic Web. While a substantial

amount of work has been done with respect to creating formal models for ontology

lexicalisation, notably the lemon model [Buitelaar et al., 2009b], more research is

needed with respect to tool development for automatically creating language re-

sources and their integration with ontology aware NLP open source frameworks

such as GATE. This is necessary for ontology lexicalisation to become a standard

engineering step within NLP applications for the Semantic Web.

• Thirdly, there is the question of integrative approaches to semantic annota-

tion. One could view controlled annotation naively as a solution to all annotation

problems. It may prove easy to create instance data for novice users using controlled

annotation or even relation metadata where the text to be annotated is completely

130http://www.ontotext.com/owlim, Retrieved 2013-05-22

195

restricted. However, with respect to CLANN II, creating relational metadata using

CNL snippets could prove cumbersome. Here, it is worth augmenting the CLANN II

approach with traditional manual semantic annotation techniques (drag and drop or

highlight) and more importantly semi-automatic annotation, whereby active learn-

ing could be applied to detect relation metadata across instance metadata created

using controlled annotation, in particular the CLANN II approach.

• Finally, we discussed in Chapter 6, user evaluations with respect to Semantic Media

Wiki. Clear empirical evidence is still needed with respect to the user friendliness of

semantic wikis. Exploring the usability of controlled annotation in a semantic wiki

is also an open issue. Another platform for annotation research is Google Docs131.

Finally, collaborative controlled annotation is also another avenue of unexplored

work.

7.3 Ongoing Work with CLANN

As mentioned in Chapter 6, based on the results of our evaluation, future work would

involve merging best practices of both CLANN annotators into a hybrid annotator -

CLANN III. Although the shallow parsing process used by GATE is quite robust, the

parsing error messaging provided in the GATE Developer is not user friendly. Hence,

a proper interface is needed to improve the usability of both CLANN annotators. In

[Dantuluri et al., 2012] we describe initial efforts to build CLANN III using link grammar

[Sleator and Temperley, 1991]. Link grammar can provide us with more natural language

recognition power and predictive parsing/editing capabilities to improve usability. The

paper [Dantuluri et al., 2012] also outlines initial steps for integrating CLANN III into a

semantic wiki.

131http://en.wikipedia.org/wiki/Google_Docs, Retrieved 2013-05-22

196

7.4 Future Work

• Ontology Lexicalisation and Controlled Languages: Grammatical Frame-

work [Angelov and Ranta, 2009, Ranta, 2004] is an implementation framework which

the authors claim can cope with a variety of CNLs as well as boost the development

of new ones. The core advantage of GF is its multilingualism in that its primary task

is domain specific knowledge based Machine Translation (MT) based on Controlled

Natural Language. A substantial amount of linguistic competence and domain ex-

pertise is needed to define a concrete syntax for a given source/target language.

Consequently the authors developed a collection of GF resource libraries to provide

a language engineering solution to this issue. The GF libraries now contain a col-

lection of wide coverage grammars for over 15 natural languages. However, despite

such efforts, costly grammar engineering needs to be reduced. Ontology lexicalisa-

tion can play role here whereby, emerging ontology lexicon models such as lemon

can automatically bootstrap the creation of language resources from ontologies for

exploitation by NLP systems. Some of our initial efforts with respect to mapping

lemon lexica to GF application grammars are described in [Davis et al., 2012].

• Multilingual Round Trip Ontology Authoring: With respect to Roundtrip

Ontology authoring, the current CLOnE language is targeted to English, however

as GATE permits the creation of multilingual information extraction pipelines. So

language specific resources can be replaced relatively easily [Bontcheva et al., 2003].

Hence, re-targeting the CLOnE language for other European languages, i.e. Ger-

man or French, is achievable. This would involve replacing the part-of-speech tagger

and localising the gazetteer lists. With respect to the text generator component in

ROA, as a first step, lexicalising the Ontology using the lemon source tools132 would

ease the development of re-targeting the generator to other European languages.

We completed some initial work with respect to this task in [Davis et al., 2011],

132http://monnetproject.deri.ie/lemonsource/, Retrieved 2013-05-22

197

whereby the lemon source API was manipulated to automatically generate ontol-

ogy aware GATE gazetteers. The code was wrapped as a custom GATE plugin -

lemonGazeteerGenerator, allowing us to load a lemon ontology-lexicon for a given

ontology into GATE in order to generate hierarchical gazetteer entries.

• Generating Tailored Reports: With respect to our with NLG, we have focused

only on ontology verbalisation i.e.verbalising the outcomes of the knowledge meta

process (via RoundTrip Ontology Authoring) as opposed to generating a summary of

the facts created in the knowledge base (via Controlled Annotation), in other words

the knowledge process [Sure, 2003]. NLG can be applied to create tailored reports

from a knowledge base. So in the context of the meeting minutes use case in Chap-

ter 6. This could involve a tailored report for a period of a month based on the tasks

completed by a particular user i.e. All engineering task status completed by

Brian Davis for June 2012 with respect to the Nepomuk project. NLG has

the potential to keep documentation of formal knowledge up-to-date in automatic

manner. The challenge posed by the Semantic Web for NLG systems is to provide

tools and techniques that are extensible and maintainable, especially as most deep

NLG systems are developed and extended by specialists [Bontcheva and Davis, 2008].

NLG tools can present reports that are context sensitive and user profile centric.

In addition, reports generated by NLG can summarize the knowledge in natural

language, whereby the appropriate level granularity can be presented to the user de-

pending on their role and expertise. Within NLG research itself, interesting avenues

of research that hold promise and worth exploration include, modern XML genera-

tion system [Wilcock, 2000], hybrid NLG systems [Klarner, 2004b, Klarner, 2004a],

as well as the increasing application of machine learning approaches for adaptive

interaction with users [Bontcheva and Cunningham, 2003]. Finally, reference archi-

tectures for NLG such as RAGS are worth revisiting, especially with respect to the

role semantic web languages can play across data interchange between components

within NLG infrastructures[Mellish, 2010].

198

• Round Trip Annotation: While respect to CLANN II, we explored the no-

tion of annotating free text with embedded snippets of Controlled Language. In

[Dantuluri et al., 2012], we explore some of the steps required to embed controlled

annotation into a semantic wiki. We would envisage using predictive parsing and

auto completion to aid in the creation of controlled annotations while authoring

an article. However, if an annotated article must be edited, simple text generation

could play a role here in automatically generating out the original CNL for manip-

ulation and re-annotation. Consequently, this feed back loop would result in a type

of Round Trip Annotation. Finally, there is the issue of evaluating a semantic wiki

with controlled annotation features. While a task based user evaluation comparing

such a wiki with a baseline semantic wiki is appropriate, we believe that controlled

annotation would not replace classical a posteriori annotation but could in fact be

complimentary. Annotating relational metadata is particularly cumbersome, and

likewise our CLANN II syntax does not adequately deal with complex relations

as metadata. We would envisage a multi-model approach to semantic annotation,

whereby mixed manual highlight and click a posteriori annotation and controlled

annotation could be used to effectively create annotations at the instance level, leav-

ing the detection of relations to machine learning driven semi-supervised semantic

annotation. Correct automatic annotation at the relational level would of course be

highly dependent on the correct identification of instances of both subjects and ob-

jects for a given relation. Controlled Annotation could play a role here in enforcing

correct annotations at the instance level.

7.5 Summary

Both (i) ontology authoring and (ii) semantic annotation are core challenges for building

the Semantic Web. With respect to (i), this thesis described and evaluated a user friendly

way for non-experts to author ontologies using a combination of controlled language

technology and shallow natural language generation techniques. The evaluation results

199

of our approach have proven favourable in comparison to a standard ontology editing tool

in the context of simple ontology editing tasks. In regard to (ii), we have explored the

application of controlled language technology to the process of semantic annotation, in

particular drawing attention to design issues, the trade off between, usability, knowledge

capture and complexity of language modelling. Both tools for controlled annotation were

evaluated and compared to a standard manual annotation tool. The outcome of the

evaluation was also favourable with respect to both implementations.

The work in this thesis focused primarily on language design issues with respect to

the application of CNLs to ontology authoring and semantic annotation. Future research

challenges, regarding our CNL work, will require richer tool interactivity. This will result

in more complex human computer interaction challenges when augmenting and testing

our tools for more scalable collaborative knowledge creation, regardless of whether the

task is ontology authoring or semantic annotation.

200

Bibliography

[Kou, 2002] (2002). In Gómez-Pérez, A., editor, Knowledge Engineering and Knowledge

Management: Ontologies and the Semantic Web, volume 2473 of Lecture Notes in

Computer Science.

[Adida et al., 2008] Adida, B., Birbeck, M., McCarron, S., and Pemberton, S. (2008).

RDFa in XHTML: Syntax and Processing — A collection of attributes and processing

rules for extending XHTML to support RDF. W3C Recommendation, W3C. http:

//www.w3.org/TR/rdfa-syntax/.

[Adriaens and Schreors, 1992] Adriaens, G. and Schreors, D. (1992). From cogram to

alcogram: toward a controlled english grammar checker. In Proceedings of the 14th

conference on Computational linguistics, pages 595–601, Morristown, NJ, USA. Asso-

ciation for Computational Linguistics.

[Adrian et al., 2008] Adrian, B., Neumann, G., Troussov, A., and Popov, B. (2008).

Ontology-based information extraction systems (obies 2008).

[Aguado et al., 1998] Aguado, G., Bañón, A., Bateman, J. A., Bernardos, S., Fernández,

M., Gómez-Pérez, A., Nieto, E., Olalla, A., Plaza, R., and Sánchez, A. (1998). On-

togeneration: Reusing domain and linguistic ontologies for spanish text generation.

In Proceedings of the ECAI’98 Workshop on Applications of Ontologies and Problem

Solving Methods, Brighton, U.K. European Conference on Artificial Intelligence.

[Aho and Corasick, 1975] Aho, A. V. and Corasick, M. J. (1975). Efficient string match-

ing: an aid to bibliographic search. Commun. ACM, 18(6):333–340.

201

[Andrews et al., 2012] Andrews, P., Zaihrayeu, I., and Pane, J. (2012). A classification

of semantic annotation systems. Semantic Web, 3(3):223–248.

[Angelov and Enache, 2010] Angelov, K. and Enache, R. (2010). Typeful ontologies with

direct multilingual verbalization. In Rosner, M. and Fuchs, N. E., editors, CNL, volume

7175 of Lecture Notes in Computer Science, pages 1–20. Springer.

[Angelov and Ranta, 2009] Angelov, K. and Ranta, A. (2009). Implementing controlled

languages in gf. In CNL, pages 82–101.

[Antoniou et al., 2005] Antoniou, G., Franconi, E., and Harmelen, F. V. (2005). Intro-

duction to semantic web ontology languages. In Reasoning Web, Proceedings of the

Summer School, Malta, 2005. Number 3564 in Lecture Notes in Computer Science.

Springer.

[Appelt and Israel, 1999] Appelt, D. E. and Israel, D. J. (1999). Introduction to infor-

mation extraction technology: A tutorial prepared for IJCAI99.

[Appelt and Onyshkevych, 1998] Appelt, D. E. and Onyshkevych, B. (1998). The com-

mon pattern specification language. In Proceedings of a workshop on held at Baltimore,

Maryland: October 13-15, 1998, TIPSTER ’98, pages 23–30, Stroudsburg, PA, USA.

Association for Computational Linguistics.

[Aristotle, 350] Aristotle (ca. 350). Prior analytics.

[Auer and Lehmann, 2007] Auer, S. and Lehmann, J. (2007). What have innsbruck and

leipzig in common? extracting semantics from wiki content. In ESWC, pages 503–517.

[Bailey, 2006] Bailey, B. (2006). Getting the complete picture with usability testing.

Usability updates newsletter, U.S. Department of Health and Human Services.

[Bao et al., 2009] Bao, J., Smart, P., Braines, D., and Shadbolt, N. (2009). A controlled

natural language interface for semantic media wiki using the rabbit language. In Work-

shop on Controlled Natural Language (CNL’09).

202

[Baumgartner et al., 2001] Baumgartner, R., Flesca, S., and Gottlob, G. (2001). Visual

web information extraction with lixto. In Proceedings of the 27th International Confer-

ence on Very Large Data Bases, VLDB ’01, pages 119–128, San Francisco, CA, USA.

Morgan Kaufmann Publishers Inc.

[Bechhofer et al., 2004] Bechhofer, S., Van Harmelen, F., Hendler, J., Horrocks, I.,

McGuinness, D. L., Patel-Schneider, P. F., and Stein, L. A. (2004). Owl web ontology

language reference. W3C Recommendation, 10.

[Beckett, 2004] Beckett, D. (2004). RDF/XML Syntax Specification (Re-

vised). W3C Recommendation, W3C. http://www.w3.org/TR/2004/

REC-rdf-syntax-grammar-20040210/.

[Beckett, 2007] Beckett, D. (2007). Turtle — Terse RDF Triple Language. http://www.

dajobe.org/2004/01/turtle/.

[Berners-Lee, 1993] Berners-Lee, T. (1993). A Brief History of theWeb. W3C Design

Issues.

[Berners-Lee, 2006a] Berners-Lee, T. (2006a). Linked data. http://www.w3.org/

DesignIssues/LinkedData.html.

[Berners-Lee, 2006b] Berners-Lee, T. (2006b). Notation 3. http://www.w3.org/

DesignIssues/Notation3.

[Berners-Lee et al., 2001a] Berners-Lee, T., Hendler, J., and Lassila, O. (2001a). The

semantic web. Scientific American, 284(5):34–43.

[Berners-Lee et al., 2001b] Berners-Lee, T., Hendler, J., and Lassila, O. (2001b). The

Semantic Web. Scientific American, 284(5).

[Bernstein and Kaufmann, 2006] Bernstein, A. and Kaufmann, E. (2006). GINO—a

guided input natural language ontology editor. In 5th International Semantic Web

Conference (ISWC2006).

203

[Bernstein et al., 2004] Bernstein, A., Kaufmann, E., Fuchs, N., and von Bonin, J. (2004).

Talking to the semantic web: a controlled english query interface for ontologies. In 14th

Workshop on Information Technology and Systems, pages 212–217.

[Bishop et al., 2011] Bishop, B., Kiryakov, A., Ognyanoff, D., Peikov, I., Tashev, Z., and

Velkov, R. (2011). Owlim: A family of scalable semantic repositories. Semantic Web,

2(1):33–42.

[Bizer et al., 2007] Bizer, C., Cyganiak, R., and Heath, T. (2007). How to Publish

Linked Data on the Web. http://sites.wiwiss.fu-berlin.de/suhl/bizer/pub/

LinkedDataTutorial/.

[Bizer et al., 2009] Bizer, C., Heath, T., and Berners-Lee, T. (2009). Linked data - the

story so far. Int. J. Semantic Web Inf. Syst., 5(3):1–22.

[Bloehdorn et al., 2005] Bloehdorn, S., Petridis, K., Saathoff, C., Simou, N., Tzouvaras,

V., Avrithis, Y., Handschuh, S., Kompatsiaris, Y., Staab, S., and Strintzis, M. G.

(2005). Semantic annotation of images and videos for multimedia analysis. In Gómez-

Pérez, A. and Euzenat, J., editors, The Semantic Web: Research and Applications:

Proceedings of the Second European Semantic Web Conference, ESWC 2005, Herak-

lion, Crete, Greece, May 29-June 1, 2005, volume 3532 of Lecture Notes in Computer

Science, pages 592–607. Springer.

[Bontcheva, 2003] Bontcheva, K. (2003). Reuse and challenges in evaluating language

generation systems: position paper. In Proceedings of the EACL 2003 Workshop on

Evaluation Initiatives in Natural Language Processing: are evaluation methods, met-

rics and resources reusable?, Evalinitiatives ’03, pages 3–9, Stroudsburg, PA, USA.

Association for Computational Linguistics.

[Bontcheva, 2005] Bontcheva, K. (2005). Generating tailored textual summaries from

ontologies. The Semantic Web: Research and Applications, pages 531–545.

204

[Bontcheva and Cunningham, 2003] Bontcheva, K. and Cunningham, H. (2003). The se-

mantic web: A new opportunity and challenge for human language technology. Second

Workshop on Human Language Technology for the Semantic Web and Web Services.

[Bontcheva and Davis, 2008] Bontcheva, K. and Davis, B. (2008). Semantic Knowledge

Management: Integrating Ontology Management, Knowledge Discovery and Human

Language Technologies, chapter Natural Language Generation from Ontologies, pages

20–30. In [Davies et al., 2008], 1st edition.

[Bontcheva et al., 2008] Bontcheva, K., Davis, B., and andYaoyong Li, A. F. (2008). Se-

mantic Knowledge Management: Integrating Ontology Management, Knowledge Dis-

covery and Human Language Technologies, chapter Human Language Technologies,

pages 20–30. In [Davies et al., 2008], 1st edition.

[Bontcheva et al., 2003] Bontcheva, K., Maynard, D., Tablan, V., and Cunningham, H.

(2003). Gate: A unicode-based infrastructure supporting multilingual information

extraction. In In Proceedings of Workshop on Information Extraction for Slavonic and

other Central and Eastern European Languages (IESL03), Borovets.

[Bontcheva et al., 2004] Bontcheva, K., Tablan, V., Maynard, D., and Cunningham, H.

(2004). Evolving gate to meet new challenges in language engineering. Natural Lan-

guage Engineering, 10(3-4):349–373.

[Bontcheva and Wilks, 2004] Bontcheva, K. and Wilks, Y. (2004). Automatic report

generation from ontologies: the miakt approach. Natural Language Processing and

Information Systems, pages 1–19.

[Borin et al., 2008] Borin, L., Forsberg, M., and Lönngren, L. (2008). Saldo 1.0 (svenskt

associationslexikon version 2). Spr̊akbanken, University of Gothenburg.

[Breslin et al., 2005] Breslin, J. G., Harth, A., Bojārs, U., and Decker, S. (2005). Towards

Semantically-Interlinked Online Communities. In Proceedings of the 2nd European

Semantic Web Conference (ESWC2005).

205

[Brickley and Guha, 2004] Brickley, D. and Guha, R. (2004). RDF vocabulary descrip-

tion language 1.0: RDF schema. W3C Recommendation, W3C. http://www.w3.org/

TR/rdf-schema/.

[Brickley and Miller, 2005] Brickley, D. and Miller, L. (2005). FOAF vocabulary specifi-

cation. http://xmlns.com/foaf/0.1/.

[Broekstra and Kampman, 2003] Broekstra, J. and Kampman, A. (2003). The SeRQL

Query Language. Technical report, Aduna.

[Brooke, 1996] Brooke, J. (1996). SUS: a “quick and dirty” usability scale. In Jordan,

P., Thomas, B., Weerdmeester, B., and McClelland, A., editors, Usability Evaluation

in Industry. Taylor and Francis, London.

[Buitelaar et al., 2009a] Buitelaar, P., Cimiano, P., Haase, P., and Sintek, M. (2009a).

Towards linguistically grounded ontologies. In Proceedings of the 6th European Seman-

tic Web Conference on The Semantic Web: Research and Applications, ESWC 2009

Heraklion, pages 111–125, Berlin, Heidelberg. Springer-Verlag.

[Buitelaar et al., 2009b] Buitelaar, P., Cimiano, P., Haase, P., and Sintek, M. (2009b).

Towards linguistically grounded ontologies. In Aroyo, L., Traverso, P., Ciravegna, F.,

Cimiano, P., Heath, T., Hyvönen, E., Mizoguchi, R., Oren, E., Sabou, M., and Simperl,

E. P. B., editors, ESWC, volume 5554 of Lecture Notes in Computer Science, pages

111–125. Springer.

[Buitelaar and Ramaka, 2005] Buitelaar, P. and Ramaka, S. (2005). Unsupervised

ontology-based semantic tagging for knowledge markup. Learning in Web Search (LWS

2005), page 26.

[Buraga et al., 2006] Buraga, S. C., Cojocaru, L., and Nichifor, O. C. (2006). Survey on

web ontology editing tools. Transactions on Automatic Control and Computer Science,

Romania, pages 1–6.

206

[Bush and Wang, 1945] Bush, V. and Wang, J. (1945). As we may think. Atlantic

Monthly, 176:101–108.

[Calder, 1996] Calder, J. (1996). Statistical techniques. In Sapsford, R. and Jupp, V.,

editors, Data Collection and Analysis, chapter 9. Open University.

[Cardoso and Escórcio, 2007] Cardoso, J. and Escórcio, A. L. N. (2007). Editing tools

for ontology construction. Idea, March, pages 1–27.

[Carr et al., 2004] Carr, L., Miles-Board, T., Wills, G., Woukeu, A., and Hall, W. (2004).

Towards a knowledge-aware office environment. Practical Aspects of Knowledge Man-

agement, pages 129–140.

[Caterpillar Corporation, 1974] Caterpillar Corporation (1974). Dictionary for Caterpil-

lar Fundamental English. Caterpillar Corporation.

[Chomsky, 1956] Chomsky, N. (1956). Three models for the description of language.

Information Theory, IRE Transactions on, 2(3):113–124.

[Chomsky, 1965] Chomsky, N. (1965). Aspects of the theory of syntax. MIT Press, Cam-

bridge, Massachusetts.

[Cimiano et al., 2004] Cimiano, P., Handschuh, S., and Staab, S. (2004). Towards the

self-annotating web. In Proceedings of the 13th international conference on World Wide

Web, WWW ’04, pages 462–471, New York, NY, USA. ACM.

[Ciravegna et al., 2002] Ciravegna, F., Dingli, A., Petrelli, D., and Wilks, Y. (2002).

User-system cooperation in document annotation based on information extraction.

Knowledge Engineering and Knowledge Management: Ontologies and the Semantic

Web, pages 122–137.

[Ciravegna and Wilks, 2003] Ciravegna, F. and Wilks, Y. (2003). Designing adaptive

information extraction for the semantic web in amilcare. Annotation for the Semantic

207

Web, in the Series Frontiers in Artificial Intelligence and Applications, IOS Press,

Amsterdam.

[Clark et al., 2005] Clark, P., Harrison, P., Jenkins, T., Thompson, J. A., and Wojcik,

R. H. (2005). Acquiring and using world knowledge using a restricted subset of english.

In Russell, I. and Markov, Z., editors, FLAIRS Conference, pages 506–511. AAAI Press.

[Connolly and Sluckin, 1971] Connolly, T. G. and Sluckin, W. (1971). An Introduction

to Statistics for the Social Sciences. Macmillan, third edition.

[Consortium, 2008] Consortium, L. D. (2008). Ace (automatic content extraction) english

annotation guidelines for relations (version 6.2).

[Corcho et al., 2003] Corcho, O., Fernández-López, M., and Gómez-Pérez, A. (2003).

Methodologies, tools and languages for building ontologies: where is their meeting

point? Data Knowl. Eng., 46(1):41–64.

[Cunningham, 1999] Cunningham, H. (1999). Information extraction - a user guide. Tech-

nical Report CS-99-07, University of Sheffield, UK.

[Cunningham, 2002] Cunningham, H. (2002). GATE, a General Architecture for Text

Engineering. Computers and the Humanities, 36:223–254.

[Cunningham, 2005] Cunningham, H. (2005). Information extraction, automatic. Ency-

clopedia of Language and Linguistics,.

[Cunningham et al., 2002] Cunningham, H., Maynard, D., Bontcheva, K., and Tablan,

V. (2002). GATE: A Framework and Graphical Development Environment for Robust

NLP Tools and Applications. In Proceedings of the 40th Anniversary Meeting of the

Association for Computational Linguistics (ACL’02).

[Cunningham et al., 2011] Cunningham, H., Tablan, V., Roberts, I., Greenwood, M., and

Aswani, N. (2011). Information extraction and semantic annotation for multi-paradigm

208

information management. Current Challenges in Patent Information Retrieval, pages

307–327.

[Dannélls, 2008] Dannélls, D. (2008). Generating tailored texts for museum exhibits. In

Proceedings of the 6th edition of LREC 2008, Workshop on Language Technology for

Cultural Heritage Data (LaTeCH), Marrakech, Morocco., pages 17–20.

[Dannélls et al., 2012] Dannélls, D., Damova, M., Enache, R., and Chechev, M. (2012).

Multilingual online generation from semantic web ontologies. In Proceedings of the 21st

international conference companion on World Wide Web, pages 239–242. ACM.

[Dantuluri et al., 2012] Dantuluri, P., Davis, B., Ludwick, P., and Handschuh, S. (2012).

Engineering a controlled natural language into semantic mediawiki. Controlled Natural

Language, pages 53–72.

[Davies et al., 2008] Davies, J., Grobelnik, M., and Mladenic, D., editors (2008). Seman-

tic Knowledge Management: Integrating Ontology Management, Knowledge Discovery

and Human Language Technologies. Springer Publishing Company, Incorporated, 1st

edition.

[Davis et al., 2011] Davis, B., Badra, F., Buitelaar, P., Wunner, T., and Handschuh, S.

(2011). Squeezing lemon with gate. In Proceedings of the 2nd International Workshop

on the Multilingual Semantic Web (MSW 2011), Workshop at ISWC 2011.

[Davis et al., 2010] Davis, B., Dantuluri, P., Handschuh, S., and Cunningham, H. (2010).

Towards controlled natural language for semantic annotation. International Journal

on Semantic Web and Information Systems (IJSWIS), 6(4):64–91.

[Davis et al., 2012] Davis, B., Enache, R., van Grondelle, J., and Pretorius, L. (2012).

Multilingual verbalisation of modular ontologies using gf and lemon. In CNL 2012,

volume LNCS. Springer, Springer.

209

[Davis et al., 2008] Davis, B., Iqbal, A. A., Funk, A., Tablan, V., Bontcheva, K., Cun-

ningham, H., and Handschuh, S. (2008). Roundtrip ontology authoring. In Sheth,

A. P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T. W., and Thirunarayan,

K., editors, International Semantic Web Conference, volume 5318 of Lecture Notes in

Computer Science, pages 50–65. Springer.

[Decker, 2002] Decker, S. (2002). Semantic web methods for knowledge management. PhD

thesis, Universität Karlsruhe.

[Dekel et al., 2004] Dekel, O., Keshet, J., and Singer, Y. (2004). Large margin hierarchi-

cal classification. In Proceedings of the twenty-first international conference on Machine

learning, ICML ’04, pages 27–, New York, NY, USA. ACM.

[Dill et al., 2003] Dill, S., Eiron, N., Gibson, D., Gruhl, D., Guha, R., Jhingran, A., Ka-

nungo, T., Rajagopalan, S., Tomkins, A., Tomlin, J., et al. (2003). Semtag and seeker:

Bootstrapping the semantic web via automated semantic annotation. In Proceedings

of the 12th international conference on World Wide Web, pages 178–186. ACM.

[Dimitrova et al., 2008] Dimitrova, V., Denaux, R., Hart, G., Dolbear, C., Holt, I., and

Cohn, A. (2008). Involving Domain Experts in Authoring OWL Ontologies. In Pro-

ceedings of the 7th International Semantic Web Conference (ISWC 2008), Karlsruhe,

Germany. Springer.

[Dingli et al., 2003] Dingli, A., Ciravegna, F., and Wilks, Y. (2003). Automatic semantic

annotation using unsupervised information extraction and integration. In Proceedings

of SemAnnot 2003 Workshop.

[Dymetman et al., 2000] Dymetman, M., Lux, V., and Ranta, A. (2000). Xml and multi-

lingual document authoring: convergent trends. In Proceedings of the 18th conference

on Computational linguistics - Volume 1, pages 243–249, Morristown, NJ, USA. Asso-

ciation for Computational Linguistics.

210

[Engelbart, 1962] Engelbart, D. C. (1962). Augmenting Human Intellect: A Conceptual

Framework. Summary Report AFOSR-3223 - Contract AF49(638)-1024, SRI Project

3578, Air Force Office of Scientific Research, Stanford Research Institute, Menlo Park,

CA.

[Engelbart and English, 1968] Engelbart, D. C. and English, W. K. (1968). A research

center for augmenting human intellect. In Proceedings of the December 9-11, 1968, fall

joint computer conference, part I, AFIPS ’68 (Fall, part I), pages 395–410, New York,

NY, USA. ACM.

[Engelbrecht et al., 2009] Engelbrecht, P. C., Hart, G., and Dolbear, C. (2009). Talking

rabbit: A user evaluation of sentence production. In CNL, pages 56–64.

[España-Bonet et al., 2011] España-Bonet, C., Enach, R., Slaski, A., Ranta, A., Mar-

quez, L., and Gonzalez, M. (2011). Patent translation within the molto project. In

Workshop on Patent Translation, MT Summit XIII, pages 70–78.

[Etzioni et al., 2005] Etzioni, O., Cafarella, M., Downey, D., Popescu, A., Shaked, T.,

Soderland, S., Weld, D., and Yates, A. (2005). Unsupervised named-entity extraction

from the web: An experimental study. Artificial Intelligence, 165(1):91–134.

[Fellbaum, 1998] Fellbaum, C., editor (1998). WordNet - An Electronic Lexical Database.

MIT Press.

[Fernandez-Lopez et al., 1997] Fernandez-Lopez, M., Gomez-Perez, A., and Juristo, N.

(1997). Methontology: from ontological art towards ontological engineering. In Pro-

ceedings of the AAAI97 Spring Symposium, pages 33–40, Stanford, USA.

[Foster and White, 2004] Foster, M. E. and White, M. (2004). Techniques for text plan-

ning with xslt. In Proceedings of the Workshop on NLP and XML (NLPXML-2004):

RDF/RDFS and OWL in Language Technology, NLPXML ’04, pages 1–8, Stroudsburg,

PA, USA. Association for Computational Linguistics.

211

[Francopoulo et al., 2006] Francopoulo, G., George, M., Calzolari, N., Monachini, M.,

Bel, N., Pet, M., Soria, C., et al. (2006). Lmf for multilingual, specialized lexicons. In

International Conference on Language Resources and Evaluation-LREC 2006.

[Frege, 1879] Frege, G. (1879). Begriffsschrift, eine der arithmetischen nachgebildete

formelsprache des reinen denkens.

[Fuchs and Schwertel, 2003] Fuchs, N. and Schwertel, U. (2003). Reasoning in attempto

controlled english. Principles and Practice of Semantic Web Reasoning, pages 174–188.

[Fuchs and Schwitter, 1996a] Fuchs, N. and Schwitter, R. (1996a). Attempto controlled

english (ace). See citeseer.ist.psu.edu/article/fuchs96attempto.html.

[Fuchs and Schwitter, 1996b] Fuchs, N. and Schwitter, R. (1996b). Attempto Controlled

English (ACE). In CLAW96: Proceedings of the First International Workshop on

Controlled Language Applications, Leuven, Belgium.

[Fuchs and Schwitter, 2007] Fuchs, N. and Schwitter, R. (2007). Web-annotations for

humans and machines. The Semantic Web: Research and Applications, pages 458–472.

[Fuchs et al., 2006] Fuchs, N. E., Kaljurand, K., Kuhn, T., Schneider, G., Royer, L., and

Schröder, M. (2006). Attempto Controlled English and the semantic web. Deliverable

I2D7, REWERSE Project.

[Funk et al., 2007] Funk, A., Tablan, V., Bontcheva, K., Cunningham, H., Davis, B.,

and Handschuh, S. (2007). Clone: Controlled language for ontology editing. In

ISWC/ASWC, pages 142–155.

[Gatt and Reiter, 2009] Gatt, A. and Reiter, E. (2009). Simplenlg: a realisation engine

for practical applications. In Proceedings of the 12th European Workshop on Natural

Language Generation, ENLG ’09, pages 90–93, Stroudsburg, PA, USA. Association for

Computational Linguistics.

212

[Gazdar and Mellish, 1989] Gazdar, G. and Mellish, C. (1989). Natural Language Pro-

cessing in Prolog. Addison-Wesley, Reading, MA.

[Genesereth et al., 1992] Genesereth, M., Fikes, R., et al. (1992). Knowledge interchange

format-version 3.0: reference manual.

[Gilardoni et al., 2005] Gilardoni, L., Biasuzzi, C., Ferraro, M., Fonti, R., and Slavazza,

P. (2005). Machine learning for the semantic web: Putting the user into the cycle. In

Dagstuhl Seminar.

[Goble et al., 2003] Goble, S. B. C., Carr, L., Hall, W., Kampa, S., and De Roure, D.

(2003). Cohse: Conceptual open hypermedia service. Annotation for the semantic

Web, 96:193.

[Goldberg et al., 1994] Goldberg, E., Driedger, N., and Kittredge, R. (1994). Using nat-

ural language to produce weather forecasts. IEEE Expert, April ’94, pages 45–53.

[Goldfarb, 1996] Goldfarb, C. F. (1996). The Roots of SGML - A Personal Recollection.

Retrieved 2007-07-07.

[Gómez-Pérez et al., 2007] Gómez-Pérez, A., Fernández-López, M., and Corcho, O.

(2007). Ontological Engineering: with examples from the areas of Knowledge Man-

agement, e-Commerce and the Semantic Web. (Advanced Information and Knowledge

Processing). Springer-Verlag New York, Inc., Secaucus, NJ, USA.

[Gracia et al.,] Gracia, J., Montiel-Ponsoda, E., Cimiano, P., and Asunción. Challenges

for the multilingual web of data. Web Semantics: Science, Services and Agents on the

World Wide Web, 11(0):63 – 71.

[Grant and Beckett, 2004] Grant, J. and Beckett, D. (2004). RDF test cases. W3C Rec-

ommendation, W3C. http://www.w3.org/TR/2004/REC-rdf-testcases-20040210/.

[Grover et al., 2000] Grover, C., Holt, A., Holt, E., Klein, E., and Moens, M. (2000).

Designing a controlled language for interactive model checking.

213

[Groza, 2012] Groza, T. (2012). Advances in semantic authoring and publishing, vol-

ume 13. Akademische Verlagsgesellschaft AKA; IOS Press.

[Groza et al., 2011] Groza, T., Handschuh, S., and Decker, S. (2011). Capturing rhetoric

and argumentation aspects within scientific publications. Journal on data semantics

XV, pages 1–36.

[Gruber, 1993] Gruber, T. R. (1993). A translation approach to portable ontology spec-

ifications. Knowledge Acquisition, 5(2):199–220.

[Guarino, 1998] Guarino, N. (1998). Formal Ontology in Information Systems: Proceed-

ings of the 1st International Conference June 6-8, 1998, Trento, Italy. IOS Press,

Amsterdam, The Netherlands, The Netherlands, 1st edition.

[Haase et al., 2008] Haase, P., Lewen, H., Studer, R., Tran, D. T., Erdmann, M., dAquin,

M., and Motta, E. (2008). The neon ontology engineering toolkit. WWW.

[Hallett et al., 2006] Hallett, C., Power, R., and Scott, D. (2006). Summarisation and

visualisation of e-health data repositories.

[Hallett et al., 2007] Hallett, C., Scott, D., and Power, R. (2007). Composing questions

through conceptual authoring. Comput. Linguist., 33(1):105–133.

[Handschuh, 2005] Handschuh, S. (2005). Creating Ontology-based Metadata by Annota-

tion for the Semantic Web. PhD thesis.

[Handschuh and Staab, 2002] Handschuh, S. and Staab, S. (2002). Authoring and anno-

tation of web pages in cream. In WWW, pages 462–473.

[Handschuh et al., 2002] Handschuh, S., Staab, S., and Ciravegna, F. (2002). S-cream -

semi-automatic creation of metadata. In Proc. of the European Conference on Knowl-

edge Acquisition and Management - EKAW-2002. Madrid, Spain, October 1-4, 2002,

LNCS. Springer.

214

[Handschuh et al., 2003a] Handschuh, S., Staab, S., and Studer, R. (2003a). Leveraging

metadata creation for the semantic web with cream. In Günter, A., Kruse, R., and

Neumann, B., editors, KI, volume 2821 of Lecture Notes in Computer Science, pages

19–33. Springer.

[Handschuh et al., 2003b] Handschuh, S., Volz, R., and Staab, S. (2003b). Annotation

for the deep web. IEEE Intelligent Systems, 18(5):42–48.

[Hart et al., 2007] Hart, G., Dolbear, C., and Goodwin, J. (2007). Lege feliciter: Using

structured english to represent a topographic hydrology ontology. In OWLED.

[Hart et al., 2008] Hart, G., Johnson, M., and Dolbear, C. (2008). Rabbit: Developing

a control natural language for authoring ontologies. In 5th European Semantic Web

Conference (ESWC2008), pages 348–360.

[Hayes-Roth et al., 1983] Hayes-Roth, F., Waterman, D. A., and Lenat, D. B. (1983). An

overview of expert systems. In Hayes-Roth, F., Waterman, D. A., and Lenat, D. B.,

editors, Building Expert Systems, pages 3–29. Addison-Wesley, London.

[Hearst, 1992] Hearst, M. A. (1992). Automatic acquisition of hyponyms from large text

corpora. In Proceedings of the 14th conference on Computational linguistics - Volume

2, COLING ’92, pages 539–545, Stroudsburg, PA, USA. Association for Computational

Linguistics.

[Heflin and Hendler, 2001] Heflin, J. and Hendler, J. (2001). A portrait of the semantic

web in action. IEEE Intelligent Systems, 16(2):54–59.

[Hielkema et al., 2007a] Hielkema, F., Edwards, P., Mellish, C., and Farrington, J.

(2007a). A flexible interface to community-driven metadata, to appear. In in Pro-

ceedings of the e Social Science conference 2007, Ann Arbor, Michigan.

[Hielkema et al., 2007b] Hielkema, F., Mellish, C., and Edwards, P. (2007b). Using wysi-

wym to create an open-ended interface for the semantic grid. In Proceedings of the

215

Eleventh European Workshop on Natural Language Generation, ENLG ’07, pages 69–

72, Stroudsburg, PA, USA. Association for Computational Linguistics.

[Hielkema et al., 2008] Hielkema, F., Mellish, C., and Edwards, P. (2008). Evaluating an

ontology-driven wysiwym interface. In White, M., Nakatsu, C., and McDonald, D.,

editors, INLG. The Association for Computer Linguistics.

[Hildebrand et al., 1977] Hildebrand, D. K., Laing, J. D., and Rosenthal, H. (1977). Anal-

ysis of Ordinal Data. Quantititate Applications in the Social Sciences. Sage.

[Hobbs et al., 1996] Hobbs, J. R., Appelt, D., Bear, J., Israel, D., Kameyama, M., Stickel,

M., and Tyson, M. (1996). Fastus: A cascaded finite-state transducer for extracting

information from natural-language text. In Roche, E. and Schabes, Y., editors, Finite

State Devices for Natural Language Processing. MIT Press.

[Hoefler, 2004] Hoefler, S. (2004). The syntax of Attempto Controlled English: An ab-

stract grammar for ACE 4.0. Technical Report ifi-2004.03, Department of Informatics,

University of Zurich.

[Hunter and Schroeter, 2008] Hunter, J. and Schroeter, R. (2008). Co-annotea: A system

for tagging relationships between multiple mixed-media objects. Multimedia, IEEE,

15(3):42–53.

[Hwang, 1999] Hwang, C. H. (1999). Incompletely and imprecisely speaking: Using dy-

namic ontologies for representing and retrieving information. In Franconi, E. and Kifer,

M., editors, KRDB, volume 21 of CEUR Workshop Proceedings, pages 14–20. CEUR-

WS.org.

[Jacobs et al., 1991] Jacobs, P., Krupka, G., and Rau, L. (1991). Lexico-semantic pattern

matching as a companion to parsing in text understanding. In Fourth DARPA Speech

and Natural Language Workshop, volume 337, page 342.

216

[John L. Phillips, 1996] John L. Phillips, J. (1996). How to Think about Statistics. W.

H. Freeman and Company, New York.

[Joshi, 1987] Joshi, A. K. (1987). The relevance of Tree Adjoining Grammar to genera-

tion. In Kempen, G., editor, Natural Language Generation. Martinus Nijhoff Publish-

ers, Dordrecht.

[Kahan et al., 2001] Kahan, J., Koivunen, M.-R., Prud’Hommeaux, E., and Swick, R. R.

(2001). Annotea: An open rdf infrastructure for shared web annotations. In Proceedings

of the Tenth International World Wide Web Conference, pages 623–632, Hong Kong.

ACM Press.

[Kaljurand, 2006] Kaljurand, K. (2006). Writing owl ontologies in ace. Technical report,

University of Zurich.

[Kaljurand, 2008] Kaljurand, K. (2008). ACE View — an ontology and rule editor based

on Attempto Controlled English. In 5th OWL Experiences and Directions Workshop

(OWLED 2008), Karlsruhe, Germany. 12 pages.

[Kaljurand and Fuchs, 2007] Kaljurand, K. and Fuchs, N. (2007). Verbalizing OWL in

Attempto Controlled English. In Proceedings of OWL: Experiences and Directions

(OWLED 2007).

[Kaljurand and Fuchs, 2006] Kaljurand, K. and Fuchs, N. E. (2006). Bidirectional map-

ping between OWL DL and Attempto Controlled English. In Fourth Workshop on

Principles and Practice of Semantic Web Reasoning, Budva, Montenegro.

[Kalyanpur et al., 2006] Kalyanpur, A., Parsia, B., Sirin, E., Grau, B., and Hendler, J.

(2006). Swoop: A web ontology editing browser. Web Semantics: Science, Services

and Agents on the World Wide Web, 4(2):144–153.

217

[Karvounarakis et al., 2002] Karvounarakis, G., Alexaki, S., Christophides, V., Plex-

ousakis, D., and Scholl, M. (2002). RQL: A Declarative Query Language for RDF.

In Proceedings of the International World-Wide Web Conference (WWW2002).

[Kashyap et al., 2008a] Kashyap, V., Bussler, C., and Moran, M. (2008a). The Semantic

Web: semantics for data and services on the Web. Data-centric systems and applica-

tions. Springer.

[Kashyap et al., 2008b] Kashyap, V., Bussler, C., and Moran, M. (2008b). The Semantic

Web: Semantics for Data and Services on the Web. Springer, Berlin.

[Kaufmann, 2007] Kaufmann, E. (2007). Talking to the semantic web : natural language

query interfaces for casual end-users. PhD thesis, Universität Zürich.

[Klarner, 2004a] Klarner, M. (2004a). Hybrid nlg in a generic dialog system. Natural

Language Generation, pages 205–211.

[Klarner, 2004b] Klarner, M. (2004b). Hyperbug: A scalable natural language generation

approach. In Porzel, R., editor, HLT-NAACL 2004 Workshop: 2nd Workshop on

Scalable Natural Language Understanding, pages 65–71, Boston, Massachusetts, USA.

Association for Computational Linguistics.

[Klyne and Carroll, 2004] Klyne, G. and Carroll, J. J. (2004). Resource Description

Framework (RDF): Concepts and Abstract Syntax. W3C Recommendation, W3C.

http://www.w3.org/TR/rdf-concepts/.

[Knublauch et al., 2004] Knublauch, H., Fergerson, R. W., Noy, N. F., and Musen, M. A.

(2004). The Protégé OWL Plugin: An Open Development Environment for Semantic

Web Applications. In McIlraith, S. ., Plexousakis, D., and van, Harmelen, r. a. n. k.,

editors, The Semantic Web ISWC 2004, volume 3298 of Lecture Notes in Computer

Science, chapter 17, pages 229–243. Springer Berlin / Heidelberg, Berlin, Heidelberg.

218

[Koehn et al., 2007] Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M.,

Bertoldi, N., Cowan, B., Shen, W., Moran, C., Zens, R., Dyer, C., Bojar, O., Con-

stantin, A., and Herbst, E. (2007). Moses: open source toolkit for statistical machine

translation. In Proceedings of the 45th Annual Meeting of the ACL on Interactive

Poster and Demonstration Sessions, ACL ’07, pages 177–180, Stroudsburg, PA, USA.

Association for Computational Linguistics.

[Kogut et al., 2001] Kogut, P., Holmes, W., et al. (2001). Aerodaml: Applying informa-

tion extraction to generate daml annotations from web pages. In First International

Conference on Knowledge Capture (K-CAP 2001). Workshop on Knowledge Markup

and Semantic Annotation, Victoria, BC, Canada.

[Koivunen, 2005] Koivunen, M. (2005). Annotea and semantic web supported collabora-

tion. In Invited talk at Workshop on User Aspects of the Semantic Web (UserSWeb),

at European Semantic Web Conference (ESWC 2005) Heraklion, Greece, volume 29.

[Krötzsch et al., 2006] Krötzsch, M., Vrandecić, D., and Völkel, M. (2006). Semantic

MediaWiki. In The Semantic Web - ISWC 2006, volume 4273, chapter 68, pages

935–942. Springer Berlin Heidelberg, Berlin, Heidelberg.

[Krötzsch et al., 2007] Krötzsch, M., Vrandečić, D., Völkel, M., Haller, H., and Studer,

R. (2007). Semantic Wikipedia. Journal of Web Semantics, 5(4):251–261.

[Kuhn, 2006] Kuhn, T. (2006). Attempto Controlled English as ontology language. In

Bry, F. and Schwertel, U., editors, REWERSE Annual Meeting 2006.

[Kuhn, 2008] Kuhn, T. (2008). AceWiki: Collaborative Ontology Management in Con-

trolled Natural Language. In Proceedings of the 3rd Semantic Wiki Workshop. CEUR

Workshop Proceedings.

[Kuhn, 2010a] Kuhn, T. (2010a). Controlled English for Knowledge Representation(to

Appear). PhD thesis, University of Zurich.

219

[Kuhn, 2010b] Kuhn, T. (2010b). An evaluation framework for controlled natural lan-

guages. In Fuchs, N. E., editor, Proceedings of the Workshop on Controlled Natural

Language (CNL 2009), volume 5972 of Lecture Notes in Computer Science, pages 1–20,

Berlin / Heidelberg, Germany. Springer.

[Kuhn et al., 2006] Kuhn, T., Royer, L., Fuchs, N., and Schroeder, M. (2006). Improving

text mining with controlled natural language: A case study for protein interactions. In

Data Integration in the Life Sciences, pages 66–81. Springer.

[Lassila and Swick, 1999] Lassila, O. and Swick, R. R. (1999). Resource Description

Framework (RDF) Model and Syntax Specification. W3C Recommendation, W3C.

http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/.

[Li and Bontcheva, 2007] Li, Y. and Bontcheva, K. (2007). Hierarchical, perceptron-

like learning for ontology-based information extraction. In Proceedings of the 16th

international conference on World Wide Web, WWW ’07, pages 777–786, New York,

NY, USA. ACM.

[Li et al., 2005] Li, Y., Bontcheva, K., and Cunningham, H. (2005). Using uneven mar-

gins svm and perceptron for information extraction. In Proceedings of the Ninth Confer-

ence on Computational Natural Language Learning, CONLL ’05, pages 72–79, Strouds-

burg, PA, USA. Association for Computational Linguistics.

[Lopez and Motta, 2004] Lopez, V. and Motta, E. (2004). Ontology driven question

answering in AquaLog. In NLDB 2004 (9th International Conference on Applications

of Natural Language to Information Systems), Manchester.

[Lopez et al., 2006] Lopez, V., Motta, E., and Uren, V. (2006). Poweraqua: Fishing the

semantic web. In ESWC, pages 393–410.

[Lorch et al., 2003] Lorch, M., Proctor, S., Lepro, R., Kafura, D., and Shah, S. (2003).

First experiences using xacml for access control in distributed systems. In Proceedings

220

of the 2003 ACM workshop on XML security, XMLSEC ’03, pages 25–37, New York,

NY, USA. ACM.

[Malone et al., 2010] Malone, J., Holloway, E., Adamusiak, T., Kapushesky, M., Zheng,

J., Kolesnikov, N., Zhukova, A., Brazma, A., and Parkinson, H. (2010). Modeling

sample variables with an experimental factor ontology. Bioinformatics, 26(8):1112–

1118.

[Mann et al., 1983] Mann, W. C., Matthiessen, Christian M. I. M, a., and University of

Southern California, M. d. R. I. S. I. (1983). Nigel : A systemic grammar for text

generation / william c. mann and christian m. i. m. matthiessen. [microform].

[Maybury, 1995] Maybury, M. T. (1995). Research in multimedia and multimodal parsing

and generation. Artif. Intell. Rev., 9(2-3):103–127.

[Maynard, 2003] Maynard, D. (2003). Multi-source and multilingual information extrac-

tion. Expert Update, 6:11–15.

[Maynard et al., 2008] Maynard, D., Peters, W., and Li, Y. (2008). Evaluating evaluation

metrics for ontology-based applications: Infinite reflection. In LREC.

[Maynard et al., 2005] Maynard, D., Yankova, M., Kourakis, A., and Kokossis, A. (2005).

Ontology-based information extraction for market monitoring and technology watch.

In ESWC Workshop End User Aspects of the Semantic Web), Heraklion, Crete.

[McDonald and Bolc, 1988] McDonald, D. D. and Bolc, L., editors (1988). Natural lan-

guage generation systems. Springer-Verlag New York, Inc., New York, NY, USA.

[McDowell and Cafarella, 2006] McDowell, L. and Cafarella, M. (2006). Ontology-driven

information extraction with ontosyphon. The Semantic Web-ISWC 2006, pages 428–

444.

[McDowell et al., 2003] McDowell, L., Etzioni, O., Gribble, S., Halevy, A., Levy, H.,

Pentney, W., Verma, D., and Vlasseva, S. (2003). Mangrove: Enticing ordinary people

221

onto the semantic web via instant gratification. In Fensel, D., Sycara, K., and My-

lopoulos, J., editors, The Semantic Web - ISWC 2003, volume 2870 of Lecture Notes

in Computer Science, pages 754–770. Springer Berlin Heidelberg.

[McDowell et al., 2004] McDowell, L., Etzioni, O., and Halevy, A. (2004). Semantic

email: theory and applications. Web Semant., 2(2):153–183.

[McKeown et al., 1990] McKeown, K. R., Elhadad, M., Fukumoto, Y., Lim, J., Lom-

bardi, C., Robin, J., Smadja, F., and Smadja, F. (1990). Natural language generation

in comet. In Current Research in Natural Language Generation, pages 103–139.

[Mellish, 2010] Mellish, C. (2010). Using semantic web technology to support nlg. case

study: Owl finds rags. In INLG’10, pages –1–1.

[Mellish and Dale, 1998] Mellish, C. and Dale, R. (1998). Evaluation in the context of

natural language generation. Computer Speech and language, 12(4):349–374.

[Mellish and Pan, 2008] Mellish, C. and Pan, J. Z. (2008). Natural language directed

inference from ontologies. Artif. Intell., 172(10):1285–1315.

[Mellish et al., 2006] Mellish, C., Scott, D., Cahill, L., Paiva, D., Evans, R., and Reape,

M. (2006). A reference architecture for natural language generation systems. Natural

language engineering, 12(01):1–34.

[Mendes et al., 2011] Mendes, P., Jakob, M., Garćıa-Silva, A., and Bizer, C. (2011). Db-

pedia spotlight: Shedding light on the web of documents. In Proceedings of the 7th

International Conference on Semantic Systems, pages 1–8. ACM.

[Miles and Bechhofer, 2009] Miles, A. and Bechhofer, S. (2009). SKOS Simple Knowledge

Organization System Reference. W3C Recommendation, W3C. http://www.w3.org/

TR/skos-reference/.

[Mitamura, 1999] Mitamura, T. (1999). Controlled language for multilingual machine

translation. In Proceedings of Machine Translation Summit VII, pages 46–52.

222

[Mizoguchi et al., 1995] Mizoguchi, R., Vanwelkenhuysen, J., and Ikeda, M. (1995). Task

ontology for reuse of problem solving knowledge. In In Proc. of KB&KS ’95, pages

46–59.

[Namgoong and Kim, 2007] Namgoong, H. and Kim, H. (2007). Ontology-based con-

trolled natural language editor using cfg with lexical dependency. In ISWC/ASWC,

pages 353–366.

[Nelson, 1965] Nelson, T. H. (1965). Complex information processing: a file structure

for the complex, the changing and the indeterminate. In Proceedings of the 1965 20th

national conference, ACM ’65, pages 84–100, New York, NY, USA. ACM.

[Niles and Pease, 2001] Niles, I. and Pease, A. (2001). Towards a standard upper ontol-

ogy. In Proceedings of the international conference on Formal Ontology in Information

Systems - Volume 2001, FOIS ’01, pages 2–9, New York, NY, USA. ACM.

[Nilsson et al., 2008] Nilsson, M., Powell, A., Johnston, P., and Naeve, A. (2008). Ex-

pressing Dublin Core metadata using the Resource Description Framework (RDF)0.

DCMI Recommendation, DCMI. http://dublincore.org/documents/dc-rdf/.

[Nordstrom et al., 1990] Nordstrom, B., Petersson, K., and Smith, J. M. (1990). Pro-

gramming in Martin-Löf ’s Type Theory: An Introduction. Oxford University Press,

USA.

[Norta et al., 2010] Norta, A., Carlson, L., and Yangarber, R. (2010). Utility survey of

ontology tools. Department of Computer Science, Department of Linguistics-University

of Helsinki, Finland, 62:63–65.

[Noy and McGuinness, 2001] Noy, N. F. and McGuinness, D. L. (2001). Ontology de-

velopment 101: A guide to creating your first ontology. Technical Report KSL-01-05,

Stanford Knowledge Systems Laboratory.

223

[O’Brien, 2003] O’Brien, S. (2003). Controlling controlled english. an analysis of several

controlled language rule sets. Proceedings of EAMT-CLAW, 3:105–114.

[Ogden, 1935] Ogden, C. K. (1935). The A B C of basic English (in Basic) / by C. K.

Ogden ; with an account of the sounds of basic English by A. Lloyd James. K. Paul,

Trench, Trubner, London :.

[Oh and Rudnicky, 2000] Oh, A. H. and Rudnicky, A. I. (2000). Stochastic language

generation for spoken dialogue systems. In Proceedings of the 2000 ANLP/NAACL

Workshop on Conversational systems - Volume 3, ANLP/NAACL-ConvSyst ’00, pages

27–32, Stroudsburg, PA, USA. Association for Computational Linguistics.

[Onyshkevych et al., 1993] Onyshkevych, B., Okurowski, M. E., and Carlson, L. (1993).

Tasks, domains, and languages. In Proceedings of the 5th conference on Message un-

derstanding, MUC5 ’93, pages 7–17, Stroudsburg, PA, USA. Association for Compu-

tational Linguistics.

[Oram, 2001] Oram, P. (2001). Wordnet: An electronic lexical database. christiane fell-

baum (ed.). cambridge, ma: Mit press, 1998. pp. 423. Applied Psycholinguistics,

22(01):131–134.

[Pereira and Warren, 1980] Pereira, F. C. N. and Warren, D. H. D. (1980). Definite

clause grammars for language analysis - a survey of the formalism and a comparison

with augmented transition networks. Artif. Intell., 13(3):231–278.

[Pereira and Wright, 1991] Pereira, F. C. N. and Wright, R. N. (1991). Finite-state ap-

proximation of phrase structure grammars. In Proceedings of the 29th annual meeting

on Association for Computational Linguistics, ACL ’91, pages 246–255, Stroudsburg,

PA, USA. Association for Computational Linguistics.

[Perna and Spector, 2004] Perna, J. and Spector, A. (2004). Introduction to IBM Systems

Journal, Special Issue on Unstructured Information Management, 43(3):p447–448.

224

[Pfisterer et al., 2008] Pfisterer, F., Nitsche, M., Jameson, A., and Barbu, C. (2008).

User-Centered Design and Evaluation of Interface Enhancements to the Semantic Me-

diaWik. In Proceedings of Semantic Web User Interaction at CHI 2008: Exploring

HCI Challenges. CEUR Workshop Proceedings.

[Popov et al., 2004] Popov, B., Kiryakov, A., Kirilov, A., Manov, D., Ognyanoff, D., and

Goranov, M. (2004). Kim - semantic annotation platform. Journal of Natural Language

Engineering, 10(3-4):375–392.

[Power, 2012] Power, R. (2012). Owl simplified english: A finite-state language for on-

tology editing. In CNL, pages 44–60.

[Power et al., 1998a] Power, R., Scott, D., and Evans, R. (1998a). What you see is what

you meant: direct knowledge editing with natural language feedback. In Proceedings

of the 13th Biennial European Conference on Artificial Intelligence, pages 675–681.

[Power et al., 1998b] Power, R., Scott, D., and Evans, R. (1998b). What you see is what

you meant: direct knowledge editings with natural language feedback. In Prade, H.,

editor, 13th European Conference on Artificial Intelligence (ECAI’98), pages 677–681.

John Wiley and Sons, Chichester, England.

[Power et al., 2009] Power, R., Stevens, R., Scott, D., and Rector, A. (2009). Editing owl

through generated cnl.

[Prud’hommeaux and Seaborne, 2008] Prud’hommeaux, E. and Seaborne, A. (2008).

SPARQL query language for RDF. W3C Recommendation, W3C. http://www.w3.

org/TR/rdf-sparql-query/.

[Quint and Vatton, 1997] Quint, V. and Vatton, I. (1997). An introduction to amaya.

World Wide Web Journal, 2(2):39–46.

[Ranta, 2004] Ranta, A. (2004). Grammatical Framework: A Type-Theoretical Grammar

Formalism. Journal of Functional Programming, 14(02):145–189.

225

[Rector et al., 2003] Rector, A., Rogers, J., Taweel, A., Ingram, D., Kalra, D., Milan, J.,

Singleton, P., Gaizauskas, R., Hepple, M., Scott, D., et al. (2003). Clef: joining up

healthcare with clinical and post-genomic research.

[Reiter, 1994] Reiter, E. (1994). Has a consensus nl generation architecture appeared,

and is it psycholinguistically plausible? In Proceedings of the Seventh International

Workshop on Natural Language Generation, INLG ’94, pages 163–170, Stroudsburg,

PA, USA. Association for Computational Linguistics.

[Reiter, 1995] Reiter, E. (1995). Nlg vs. templates. In In Proceedings of the Fifth Euro-

pean Workshop on Natural Language Generation, pages 95–106.

[Reiter and Dale, 2000] Reiter, E. and Dale, R. (2000). Building natural language gener-

ation systems. Cambridge University Press, New York, NY, USA.

[Scerri, 2010] Scerri, S. (2010). Supporting Email-based Collaborative Work across a So-

cial Semantic Space (PhD Thesis). NUI Galway.

[Schaffert, 2006] Schaffert, S. (2006). Ikewiki: A semantic wiki for collaborative knowl-

edge management. In In 1st International Workshop on Semantic Technologies in

Collaborative Applications (STICA06.

[Schroeter et al., 2006] Schroeter, R., Hunter, J., Guerin, J., Khan, I., and Henderson,

M. (2006). A synchronous multimedia annotation system for secure collaboratories. In

e-Science and Grid Computing, 2006. e-Science’06. Second IEEE International Con-

ference on, pages 41–41. IEEE.

[Schroeter et al., 2003] Schroeter, R., Hunter, J., and Kosovic, D. (2003). Vannotea:

A collaborative video indexing, annotation and discussion system for broadband net-

works. In Knowledge capture, pages 1–8. ACM Press (Association for Computing

Machinery).

226

[Schwitter, 2002] Schwitter, R. (2002). English as a formal specification language. In

Proceedings of the 13th International Workshop on Database and Expert Systems Ap-

plications, DEXA ’02, pages 228–232, Washington, DC, USA. IEEE Computer Society.

[Schwitter, 2007] Schwitter, R. (2007). Controlled natural languages. Technical report,

Centre for Language Technology, Macquarie University.

[Schwitter et al., 2003] Schwitter, R., Ljungberg, A., and Hood, D. (2003). Ecole–a look-

ahead editor for a controlled language. EAMT-CLAW03, pages 141–150.

[Schwitter and Tilbrook, 2004] Schwitter, R. and Tilbrook, M. (2004). Controlled nat-

ural language meets the semanticweb. In Proceedings of the Australasian Language

Technology Workshop 2004, pages 55–62, Sydney, Australia.

[Seaborne, 2004] Seaborne, A. (2004). RDQL – A Query Language for RDF. W3C

Member Submission, W3C.

[Shiffman et al., 2010] Shiffman, R. N., Michel, G., Krauthammer, M., Fuchs, N. E.,

Kaljurand, K., and Kuhn, T. (2010). Writing clinical practice guidelines in controlled

natural language. In Fuchs, N. E., editor, Proceedings of the Workshop on Controlled

Natural Language (CNL 2009), volume 5972 of Lecture Notes in Computer Science,

pages 265–280, Berlin / Heidelberg, Germany. Springer.

[Sigurd, 1991] Sigurd, B. (1991). Referent grammar in text generation. In Paris, C. L.,

Swartout, W. R., and Mann, W. C., editors, Natural Language Generation in Artificial

Intelligence and Computational Linguistics, pages 315–327. Kluwer, Boston.

[Simon, 2006] Simon, S. (2006). Stats: Steve’s attempt to teach statistics. Technical

report, Children’s Mercy Hospitals & Clinics, Kansas City, Missouri.

[Sleator and Temperley, 1991] Sleator, D. D. and Temperley, D. (1991). Parsing english

with a link grammar.

[Smart, 2008] Smart, P. R. (2008). Controlled natural languages and the semantic web.

227

[Smart, shed] Smart, P. R. (2008,(Unpublished)). Controlled natural languages and the

semantic web. Technical report, School of Electronics and Computer Science, University

of Southampton.

[Stevens et al., 2011] Stevens, R., Malone, J., Williams, S., Power, R., and Third, A.

(2011). Automating generation of textual class definitions from owl to english. Journal

of Biomedical Semantics, 2(Suppl 2):S5.

[Strevens and Johnson, 1983] Strevens, P. and Johnson, E. (1983). Seaspeak: A project

in applied linguistics, language engineering, and eventually esp for sailors. The ESP

Journal, 2(2):123 – 129.

[Studer et al., 1998] Studer, R., Benjamins, V. R., and Fensel, D. (1998). Knowledge

engineering: Principles and methods. Data Knowledge Engineering, 25(1–2):161–197.

[Sure, 2003] Sure, Y. (2003). Methodology, Tools and Case Studies for Ontology based

Knowledge Management. PhD thesis, Universität Karlsruhe.

[Tallis, 2003] Tallis, M. (2003). Semantic word processing for content authors. In Pro-

ceedings of the Knowledge Markup & Semantic Annotation Workshop, Florida, USA.

[Thompson et al., 2005] Thompson, C. W., Pazandak, P., and Tennant, H. R. (2005).

Talk to your semantic web. IEEE Internet Computing, 9(6):75–78.

[Tijerino and Mizoguchi, 1993] Tijerino, Y. A. and Mizoguchi, R. (1993). Multis ii: En-

abling end-users to design problem-solving engines via two-level task ontologies. In

Aussenac-Gilles, N., Boy, G. A., Gaines, B. R., Ganascia, J.-G., Kodratoff, Y., and

Linster, M., editors, EKAW, volume 723 of Lecture Notes in Computer Science, pages

340–359. Springer.

[Tullis and Stetson, 2004] Tullis, T. S. and Stetson, J. N. (2004). A comparison of ques-

tionnaires for assessing website usability. In Usability Professionals’ Association Con-

ference, Minneapolis, Minnesota.

228

[Turney, 2001] Turney, P. D. (2001). Mining the web for synonyms: Pmi-ir versus lsa on

toefl. In Proceedings of the 12th European Conference on Machine Learning, EMCL

’01, pages 491–502, London, UK, UK. Springer-Verlag.

[Uren et al., 2006] Uren, V., Cimiano, P., Iria, J., Handschuh, S., Vargas-Vera, M.,

Motta, E., and Ciravegna, F. (2006). Semantic annotation for knowledge manage-

ment: Requirements and a survey of the state of the art. Web Semant., 4(1):14–28.

[van Heijst et al., 1997] van Heijst, G., Schreiber, A. T., and Wielinga, B. J. (1997).

Using explicit ontologies in kbs development. Int. J. Hum.-Comput. Stud., 46(2-3):183–

292.

[Vargas-Vera et al., 2002] Vargas-Vera, M., Motta, E., Domingue, J., Lanzoni, M., Stutt,

A., and Ciravegna, F. (2002). Mnm: Ontology driven semi-automatic and automatic

support for semantic markup. Knowledge Engineering and Knowledge Management:

Ontologies and the Semantic Web, pages 213–221.

[W3C OWL Working Group, 2009] W3C OWL Working Group (2009). OWL 2 Web

Ontology Language Document Overview.

[Wang et al., 2006] Wang, T., Li, Y., Bontcheva, K., Cunningham, H., and Wang, J.

(2006). Automatic extraction of hierarchical relations from text. In Proceedings of the

3rd European conference on The Semantic Web: research and applications, ESWC’06,

pages 215–229, Berlin, Heidelberg. Springer-Verlag.

[Watt, 1968] Watt, W. C. (1968). Habitability. American Documentation, 19:338–351.

[White, 2004] White, M. (2004). Reining in CCG chart realization. In Proceedings of the

3rd International Conference on Natural Language Generation (INLG 2004).

[White and Baldridge, 2003] White, M. and Baldridge, J. (2003). Adapting chart re-

alization to CCG. In Proceedings of 9th European Workshop on Natural Language

Generation, Budapest, Hungary.

229

[Wilcock, 2000] Wilcock, G. (2000). Abstract an overview of shallow xml-based natural

language generation.

[Wilcock, 2005] Wilcock, G. (2005). An overview of shallow xml-based natural language

generation. In The Second Baltic Conference on Human Language Technologies, Pro-

ceedings, Tallinn, Estonia, pages 67–78.

[Wilks, 1990] Wilks, Y. (1990). Where am I coming from: The reversability of analysis

and generation in natural language processing. In Pütz, M., editor, Thirty Years of

Linguistic Evolution. John Benjamins Publishing Company.

[Williams et al., 2011] Williams, S., Third, A., and Power, R. (2011). Levels of organ-

isation in ontology verbalisation. In Proceedings of the 13th European Workshop on

Natural Language Generation, ENLG ’11, pages 158–163, Stroudsburg, PA, USA. As-

sociation for Computational Linguistics.

[Wimalasuriya and Dou, 2010] Wimalasuriya, D. C. and Dou, D. (2010). Ontology-based

information extraction: An introduction and a survey of current approaches. J. Inf.

Sci., 36(3):306–323.

230

A Evaluation documents for CLIE/CLOnE

A.1 Training manual

An ontology is a formal representation of knowledge about a domain: it contains informa-

tion about the objects and types of objects in that domain and the relationships between

them. Formal here means basically “machine-readable”—the information is stored in a

well-defined way so that computer programs can read and analyse it and reason with it.

In recent years ontologies have become very important to scientific research because they

help with the digital classification and retrieval of human-readable information (such as

research papers and other documents).

An ontology consists of classes, instances and properties. The classes and instances

are often drawn in a tree as shown in Figure A.1.

A class is a description of a set or the name of a type of thing, such as Person or

Document. Classes are arranged in a hierarchy, so that the Document class might have

several subclasses (subtypes), Book, Journal and Article. In this example Document is

the “direct superclass” of Book, Journal and Article.

An instance or individual is one member of a class; for example, Syntactic Structures

231

is an instance of the class Book, and Noam Chomsky is an instance of the class Person. Be-

cause of the superclass-subclass relationship, Syntactic Structures is also an instance

of the class Document.

A property is a relation between two classes which can be instantiated between in-

stances. We can for example create a property to express the idea that “persons are

authors of documents”, and then define an instance of this property to express the idea

that “Noam Chomsky is the author of Syntactic Structures”. Note that a property has

an inherent “direction”; in other words, the two arguments of an property cannot (usu-

ally) be interchanged: it is not the case, for example, that documents can be authors of

persons.

232

Figure A.1: Graphical depiction of classes and instances

233

A.1.1 CLIE How-To

The facilitator will start CLIE and load the initial data, so that you will have a window

like the one shown in Figure A.2 to work with. You can click on the buttons or tabs

across the top to bring up the following panes.

Messages This pane explains in detail what CLIE has just done and includes error

messages. You can distinguish the error messages by the word WARNING, and

probably ignore the INFO messages.

Text input In this pane (shown in Figure A.2) you will type statements in the controlled

language explained below. To clear the input, select all the text with the mouse

and press the backspace key. You can also edit individual parts of the text normally

using the arrow and backspace keys and the mouse.

Ontology This pane (shown in Figure A.3) shows you the state of the ontology, repre-

sented by a class and instance diagram (top left), a general list of properties (below),

and information about the selected class or instance (right). Click on classes or in-

stances to change the information in the right-hand section. Before you begin the

tasks, you might wish to look at the initial ontology to become familiar with it.

To run CLIE on your current input text, right click on the word CLIE near the top

of the left-hand pane and click Run in the menu that appears. As you are probably

aware, human language does not lend itself to precise computer processing; it contains

stylistic variations, ambiguities and other features that make it difficult for computers

234

Figure A.2: CLIE Text input

235

Figure A.3: CLIE Ontology viewer

Figure A.4: Symbols used in CLIE

236

to interpret. One way to let people write instructions and data so that computers can

handle the input correctly is to use an artificial language, such as a computer programming

language. Another approach is to use a controlled language, which is a restricted subset

of a natural language such as English. All the sentences in the controlled language

are human-readable sentences in English and have a specific meaning for the computer

program, but not all English sentences are valid in the controlled language. In one of the

programs you will test today, you will type sentences in a controlled language and run

a program that interprets them in order to add more classes, instances and properties

to a simple ontology representing a digital library (a computerised record of information

about documents).

The controlled language used in CLIE, called CLOnE, is designed to be easy to learn

from examples. (To avoid giving you the answers to your tasks here, we provide exam-

ples about research projects.) The controlled language consists of keywords (including

punctuation) and names (of classes, instances and properties). In the following examples,

keywords are underlined.

• Manipulating classes in the CLOnE language

1. Universities and companies are types of partner.

The class Partner must already exist. Make classes University and Company

direct subclasses of Partner and create the first two classes if they do not

already exist. (A class can have more than one direct superclass.)

237

2. Forget that universities are types of partner.

Unlink the subclass-superclass relationship. This statement does not delete

any classes.

• Manipulating instances in the CLOnE language

3. ’University of Sheffield’ is a university.

Create an instance University of Sheffield of the class University (which

must already exist). Because the name contains a preposition (of) it needs to

be enclosed in quotation marks—these tell the CLIE program to treat every-

thing between them as one name.

4. ’Smith and Sons’ and ’Jones Ltd.’ are companies.

Create two instances Smith and Sons and Jones Ltd of the class Company

(which must already exist). The names are quoted because the first one con-

tains a keyword (and) and the second one contains punctuation (.). (Fig-

ure A.5 lists all the keywords.)

• Deleting classes and instances in the CLOnE language

5. Forget ’Smith and Sons’, Alice Smith and projects.

Delete the instance Smith and Sons and Alice Smith and the class Project.

In this statement, the list can contain a mixture of classes and instances.

• Manipulating properties the CLOnE language

238

6. Persons are authors of deliverables.

If the classes Person and Deliverable exist, define a property Person Author

of Deliverable between them.

7. Forget that persons are authors of deliverables.

Delete the property defined in the last example.

8. Alice Smith and Bob Davis are authors of ’D2.3.4’.

If Alice Smith and Bob Davis are instances of Person and D2.3.4 is an

instance of Deliverable, and the property already exists, create two property

definitions to indicate that they are authors of it. (D2.3.4 must be quoted

because it contains punctuation (.).

9. Forget that Bob Davis is author of ’D2.3.4’.

Remove the property definition for one of the authors in the previous example.

(This leaves the other author defined.)

• Typing the names of classes and instances

10. Names are normalized using initial upper-case letters and the base forms of

words with underscores between them, so that Deliverables and deliverable

both refer to the class Deliverable, and Alice Smith refers to the instance

Alice_Smith.

11. Names containing reserved words (see Figure A.5), punctuation, prepositions

(such as of) and determiners (the, that, these, etc.) must be enclosed in quo-

239

tation marks (’...’). For example, ’Journal of Cell Biology’, ’Smith

and Sons’ and ’String Theory’ will not be interpreted correctly without

them.

In order to carry out the tasks we ask you to do, you can alternate between the

ontology viewer and the input text box. When you are satisfied that your input text

is probably right, click “Run” in the CLIE pane and check the results in the ontology

viewer. You can make corrections by undoing mistakes with “Forget...” statements

and trying again with new statements.

When you click “Run”, CLIE processes your input text from the top down, so it is

important (for example) to define a new class before using it to define instances, subclasses

or properties—although you can do all these steps in the same input text.

240

and

are

are a type of

are also called

are also known as

are called

are known as

are types of

can have

date

date as

dates

dates as

delete all

delete everything

forget

forget all

forget everything

forget that

has

have

is

is a

is a type of

is also called

is also known as

is an

is called

is known as

number

number as

numbers

numbers as

numeric

numeric as

string

string as

strings

strings as

studies at

supervises

text

text as

texts

texts as

textual

textual as

that can have

that has

that have

there are

there is

which are

which can have

which has

which have

which is

with value

works at

.

,

Figure A.5: Reserved words and phrases in CLOnE

241

A.1.2 Protégé How-To

The facilitator will start Protégé and load the initial data, so that you will have a window

like the one shown in Figure B.4 to work with. The named buttons across the top have

the following roles.

OWLClasses As shown in Figure B.4, this button brings up the Subclass Explorer,

which shows a hierarchical diagram of the classes in the ontology and which you

can use to select a specific class to work with, and the Class Editor, used for editing

an individual class.

You can right-click on a class in the Subclass Explorer to get a menu which will

allow you to create subclasses and individuals (instances) of existing classes, and

you can drag and drop classes to move them in the class hierarchy.

Properties This produces the Property Browser as shown in Figure B.5, a list of the

properties in the ontology.

You can create new properties by selecting the correct kind of property (“Object” or

“Datatype”) and clicking the first button after the list heading (“Object properties”

or “Datatype properties”). In the Property Editor you can select the domain and

range of each property.

Individuals This produces the display shown in Figure B.6, including the Class Browser

(similar to the Subclass Explorer), the Instance Browser (which shows a list of the

instances of the class currently selected in the Class Browser),and the Individual

242

Figure A.6: Protégé’s Subclass Explorer and Class Editor

243

Figure A.7: Protégé’s Property Browser and Property Editor

244

Editor, which lets you edit and fill in the property definitions of the instance selected

in the Instance Browser.

The second button with a purple symbol in the Instance Browser provides another

means of adding instances to the selected class.

You can ignore the Metadata and Forms buttons and panes.

245

Figure A.8: Protégé’s Instance Browser and Individual Editor

Figure A.9: Symbols used in Protégé

246

A.2 Test procedure, tasks and questionnaires

First we asked each subject to complete the pre-test questionnaire shown in Figure A.15.

We then gave him either CLIE or Protégé loaded with the initial ontology shown in

Figure A.10 and asked him to carry out the groups of related tasks (Task List A) shown

in Figure A.11, while we recorded the time taken to complete each group.

We then asked the subject to complete the questionnaire shown in Figure A.16. We

then gave the subject the other tool (Protégé or CLIE, respectively) loaded with the

ontology in the state that would result from correctly carrying out the tasks listed above,

as shown in Figure A.12, and asked him to carry out the additional groups of tasks (Task

List B) in Figure A.13 with the second tool.

We then saved the ontology to examine later for correctness; the correct result is

illustrated in Figure A.14. We asked the subject to complete the questionnaire shown in

Figure A.16 and then separately the one in Figures A.17 and A.18.

247

Figure A.10: Initial ontology (viewed in GATE)

248

• Class tasks

– Create a subclass Periodical of Document.

– Create a subclass Journal of Periodical.

• Instance tasks

– Create an instance Crossing the Chasm of class Article.

– Create an instance Journal of Knowledge Management of class Jour-

nal.

• Property tasks

– Create a property that agents are publishers of documents.

– Define a property that Hamish Cunningham, Kalina Bontcheva and

Yaoyong Li are authors of Crossing the Chasm.

Figure A.11: Task list A

249

Figure A.12: Intermediate ontology (viewed in GATE)

250

• Class tasks

– Create a subclass Institution of Agent.

– Create a subclass Company of Institution.

• Instance tasks

– Create an instance Wiley and Sons of class Company.

– Create an instance Trends and Research of class Book.

• Property tasks

– Define a property that Wiley and Sons is publisher of Trends and

Research.

– Define a property that Wiley and Sons is publisher of Crossing the

Chasm.

Figure A.13: Task list B

251

Figure A.14: Final ontology (viewed in GATE)

252

1 I understand the term “Semantic Web”. No A little Yes

2 I am familiar with Ontologies. No A little Yes

3 I have worked with Ontologies. Never Sometimes Often

4 I have built or designed a Ontologies. Never Sometimes Often

5 I understand the term “Controlled Language”. No A little Yes

6 I have used a Controlled Language. Never Sometimes Often

Figure A.15: Pre-test questionnaire

253

Strongly Disagree Neutral Agree Strongly

disagree agree

1 I think that I would like to use the system frequently

2 I found the system unnecessarily complex

3 I thought the system was easy to use

4 I think that I would need the support of a technical person

to be able to use this system

5 I found the various rules in thissystem were well integrated

6 I thought there was too much inconsistency in this system

7 I would imagine that most people would learn to use this

system very quickly

8 I found the system very cumbersome to use

9 I felt very confident using the system

10 I needed to learn a lot of things before I could get going with

this system

Figure A.16: Post-test questionnaire for each system

254

CLIE CLIE Protégé Protégé

1 I found one system’s documentation

easier to understand.

much easier easier neutral easier much easier

2 I particularly disliked using one sys-

tem.

disliked

strongly

disliked neutral disliked disliked

strongly

3 I found one system easier to use. much easier easier neutral easier much easier

4 One system was harder to learn. much

harder

harder neutral harder much

harder

5 I would prefer to use one system

again.

strongly

prefer

prefer neutral prefer strongly

prefer

6 I found one system more compli-

cated.

much more

complex

more

complex

neutral more

complex

much more

complex

7 I found it easier to control classes

and subclasses in one system.

much easier easier neutral easier much easier

8 New properties were easier to create

with one system.

much easier easier neutral easier much easier

9 It was difficult to create instances

in one system.

much

harder

harder neutral harder much

harder

10 It was awkward to fill (or define)

properties in one system.

very

awkward

awkward neutral awkward very

awkward

Figure A.17: Post-test questionnaire comparing the tools

255

Do you have any comments on any of the systems?

Do you have any specific problems to report?

Do you have any suggestions for improving CLIE?

Figure A.18: Post-test questionnaire comparing the tools

256

B Evaluation documents for Round Trip Ontology

Authoring ROA

B.1 Training manual

An ontology is a formal representation of knowledge about a domain: it contains informa-

tion about the objects and types of objects in that domain and the relationships between

them. Formal here means basically “machine-readable”—the information is stored in a

well-defined way so that computer programs can read and analyse it and reason with it.

In recent years ontologies have become very important to scientific research because they

help with the digital classification and retrieval of human-readable information (such as

research papers and other documents).

An ontology consists of classes, instances and properties. The classes and instances

are often drawn in a tree as shown in Figure C.1.

A class is a description of a set or the name of a type of thing, such as Researcher or

Conference. Classes are arranged in a hierarchy, so that the Researcher class might have

several subclasses (subtypes), Staff, Professor and Senior Researcher. In this exam-

ple Researcher is the “direct superclass” of Staff, Student and Senior Researcher.

257

Figure B.1: Graphical depiction of classes and instances

258

An instance or individual is one member of a class; for example, Brian Davis is

an instance of the class Student, and Siegfried Handschuh is an instance of the class

Senior Researcher. Because of the superclass-subclass relationship, Brian Davis is

also an instance of the class Researcher.

A property is a relation between two classes which can be instantiated between in-

stances. We can for example create a property to express the idea that “Senior Researcher

supervise Students”, and then define an instance of this property to express the idea that

“Siegfried Handschuh supervises Brian Davis”. Note that a property has an inherent

“direction”; in other words, the two arguments of an property cannot (usually) be inter-

changed: it is not the case, for example, that Students can supervise Senior Researchers.

259

B.1.1 Round Trip Ontology Authoring (ROA) - How-To

The facilitator will start ROA and load the initial textual data, so that you will have a

window like the one shown in Figure B.2 to work with. You can click on the buttons or

tabs across the top to bring up the following panes.

Messages This pane explains in detail what ROA has just done and includes error

messages. You can distinguish the error messages by the word WARNING, and

probably ignore the INFO messages.

Text input In this pane (shown in Figure B.2) you will edit statements in the controlled

language explained below. To clear any input, select all the text with the mouse

and press the backspace key. We recommend editing individual parts. This can be

achieved as you would edit text normally using the arrow and backspace keys and

the mouse.

Ontology This pane (shown in Figure B.3) shows you the state of the ontology, repre-

sented by a class and instance diagram (top left), a general list of properties (below),

and information about the selected class or instance (right). Click on classes or in-

stances to change the information in the right-hand section. Before you begin the

tasks, you might wish to look at the initial ontology to become familiar with it.

To enable RoundTrip Ontology Authoring on your current input text, right click on

the word CLIE near the top of the left-hand pane and click Run in the menu that appears.

260

Figure B.2: CLOnE Text input

261

Figure B.3: ROA Ontology viewer

262

As you are probably aware, human language does not lend itself to precise computer

processing; it contains stylistic variations, ambiguities and other features that make it

difficult for computers to interpret. One way to let people write instructions and data

so that computers can handle the input correctly is to use an artificial language, such as

a computer programming language. Another approach is to use a controlled language,

which is a restricted subset of a natural language such as English. All the sentences in the

controlled language are human-readable sentences in English and have a specific meaning

for the computer program, but not all English sentences are valid in the controlled lan-

guage. In one of the programs you will test today, you will type sentences in a controlled

language and run a program that interprets them in order to add more classes, instances

and properties to a simple ontology representing a knowledge about academic institutions

(a computerised record of information about universities).

The controlled language, CLOnE used in the software called CLIE is designed to be

easy to learn from examples. (In previous work to avoid giving a participant the answers

to his/her tasks here, we provided examples about research projects.). However in this

evaluation we are investigating the effect of using Natural Language Text generated from

the Ontology using the CLIE Text generator as a method of easing the learning experience

of the user unfamiliar with CLOnE. In short, the participant is expected to edit the text

generated in the CLOnE or the purposes of updating the Ontology.

CLOnE consists of keywords (including punctuation) and names (of classes, instances

and properties). In the following examples, keywords are underlined. The reader should

263

reference the CLOnE text outputted by the CLIE text generator B.2 as the the basis for

the examples below.

• Manipulating classes

1. There are projects and partners.

Create two new classes, Project and Partner, directly under the top class

Entity.

2. There are Researchers, Universities and Conferences.

Students and Staff are types of Researchers.

Professors and Senior Researchers are types of Staff.

Make classes PostDoc and Research Assistant direct subclasses of Staff.

Edit the above line as such: Professors,Senior Researchers,PostDocs and

Research Assistants are types of Staff.

• Manipulating instances

3. ’Ph.D. Scholar’ is a type of Student.

Create an instance M.Sc. Scholar of the class Student Because the name

contains a punctuation(.) it needs to be enclosed in quotation marks—these

tell the CLIE program to treat everything between them as one name. Edit

the text as follows: ’Ph.D. Scholar’ and ’M.Sc. Scholar’ are types of

264

Student

4. Ahmad Ali Iqbal and Brian Davis are ’PhD Scholars’.

Create two new instances Simon Scerri and Knud Moeller of the class ’PhD

Scholar’ (which must already exist). The class name is quoted because it

contains contains a punctuation (.). Edit the text as follows:

5. Simon Scerri and Knud are ’PhD Scholars’.

• Deleting classes and instances

6. Forget that Ahmad Ali Iqbal and Brian Davis are ’PhD Scholars’. Delete

the instances Ahmad Ali Iqbal and Brian Davis Copy and paste the line

Ahmad Ali Iqbal and Brian Davis and insert Forget that before it.

• Manipulating properties

7. Researchers attend conferences .

If the classes Researcher and Conferences exist, define a property Researcher

submits to Conference between them. Simply replace attend with submit

to.

8. Professor supervises students.

If Hamish Cunningham and Ahmad Ali Iqbal are instances of Professor and

Student and the property supervises already exists, create a new prop-

265

erty definition to indicate that Hamish Cunningham Supervises Ahmad Ali

Iqbal Simply replace Professorwith Hamish Cunningham and studentswith

Ahmad Ali Iqbal.

• Typing the names of classes and instances

9. Names are normalised using initial upper-case letters and the base forms of

words with underscores between them, so that Deliverables and deliverable

both refer to the class Deliverable, and Alice Smith refers to the instance

Alice_Smith.

10. Names containing reserved words (see Figure A.5), punctuation, prepositions

(such as of) and determiners (the, that, these, etc.) must be enclosed in quo-

tation marks (’...’). For example, ’Journal of Cell Biology’, ’Smith

and Sons’ and ’String Theory’ will not be interpreted correctly without

them.

In order to carry out the tasks we ask you to do, you can alternate between the

ontology viewer and the input text box. When you are satisfied that your input text

is probably right, click “Run” in the CLIE pane and check the results in the ontology

viewer. You can make corrections by undoing mistakes with “Forget...” statements

and trying again with new statements.

When you click “Run”, CLIE processes your input text from the top down, so it is

important (for example) to define a new class before using it to define instances, subclasses

266

or properties—although you can do all these steps in the same input text.

267

B.1.2 Protégé How-To

The facilitator will start Protégéand load the initial data, so that you will have a window

like the one shown in Figure B.4 to work with. The named buttons across the top have

the following roles.

OWLClasses As shown in Figure B.4, this button brings up the Subclass Explorer,

which shows a hierarchical diagram of the classes in the ontology and which you

can use to select a specific class to work with, and the Class Editor, used for editing

an individual class.

You can right-click on a class in the Subclass Explorer to get a menu which will

allow you to create subclasses and individuals (instances) of existing classes, and

you can drag and drop classes to move them in the class hierarchy.

Properties This produces the Property Browser as shown in Figure B.5, a list of the

properties in the ontology.

You can create new properties by selecting the correct kind of property (“Object” or

“Datatype”) and clicking the first button after the list heading (“Object properties”

or “Datatype properties”). In the Property Editor you can select the domain and

range of each property.

Individuals This produces the display shown in Figure B.6, including the Class Browser

(similar to the Subclass Explorer), the Instance Browser (which shows a list of the

instances of the class currently selected in the Class Browser),and the Individual

268

Figure B.4: Protégé’s Subclass Explorer and Class Editor

269

Figure B.5: Protégé’s Property Browser and Property Editor

270

Editor, which lets you edit and fill in the property definitions of the instance selected

in the Instance Browser.

The second button with a purple symbol in the Instance Browser provides another

means of adding instances to the selected class.

You can ignore the Metadata and Forms buttons and panes.

271

Figure B.6: Protégé’s Instance Browser and Individual Editor

Figure B.7: Symbols used in Protégé

272

B.2 Test procedure, tasks and questionnaires

First we asked each subject to complete the pre-test questionnaire shown in Figure B.13.

We then gave him either CLOnE outputted from the CLIE Text generator (collectively

know as ROA) or loaded with the initial ontology shown in Figure B.3 and asked him

to carry out the groups of related tasks (Task List A) shown in Figure B.9, while we

recorded the time taken to complete each group.

We then asked the subject to complete the questionnaire shown in Figure B.14. We

then gave the subject the other tool (Protégé or ROA, respectively) loaded with the

ontology in the state that would result from correctly carrying out the tasks listed above,

as shown in Figure B.8, and asked him

her to carry out the additional groups of tasks (Task List B) in Figure B.11 with the

second tool.

We then saved the ontology to examine later for correctness; the correct result is

illustrated in Figure B.12. We asked the subject to complete the questionnaire shown in

Figure B.14 and then separately the one in Figures B.15 and B.16.

273

Figure B.8: Initial ontology (viewed in GATE)

274

• Class tasks

– Create a subclass Institute of University.

– Create a subclass Workshop of Conference.

• Instance tasks

– Create an instance International Semantic Web Conference of class

Conference.

– Create an instance DERI of class Institute.

• Property tasks

– Create a property that Senior Researchers supervise students.

– Define a property that Siegfried Handschuh supervises Brian Davis.

Figure B.9: Task list A

275

Figure B.10: Intermediate ontology (viewed in GATE)

276

• Class tasks

– Create a subclass Department of University.

– Create a subclass Research Group of Department.

• Instance tasks

– Create an instance SMILE of class Research Group.

– Create an instance Stefan Decker of class Professor.

• Property tasks

– Define a property that Senior Researcher works for Professor.

– Define a property that Siegfried Handschuh works for Stefan Decker.

Figure B.11: Task list B

277

Figure B.12: Final ontology (viewed in GATE)

278

1 I understand the term “Semantic Web”. No A little Yes

2 I am familiar with Ontologies. No A little Yes

3 I have worked with Ontologies. Never Sometimes Often

4 I have built or designed a Ontologies. Never Sometimes Often

5 I understand the term “Controlled Language”. No A little Yes

6 I have used a Controlled Language. Never Sometimes Often

Figure B.13: Pre-test questionnaire

279

Strongly Disagree Neutral Agree Strongly

disagree agree

1 I think that I would like to use the system frequently

2 I found the system unnecessarily complex

3 I thought the system was easy to use

4 I think that I would need the support of a technical person

to be able to use this system

5 I found the various rules in thissystem were well integrated

6 I thought there was too much inconsistency in this system

7 I would imagine that most people would learn to use this

system very quickly

8 I found the system very cumbersome to use

9 I felt very confident using the system

10 I needed to learn a lot of things before I could get going with

this system

Figure B.14: Post-test questionnaire for each system

280

ROA ROA Protégé Protégé

1 I found one system’s documentation

easier to understand.

much easier easier neutral easier much easier

2 I particularly disliked using one sys-

tem.

disliked

strongly

disliked neutral disliked disliked

strongly

3 I found one system easier to use. much easier easier neutral easier much easier

4 One system was harder to learn. much

harder

harder neutral harder much

harder

5 I would prefer to use one system

again.

strongly

prefer

prefer neutral prefer strongly

prefer

6 I found one system more compli-

cated.

much more

complex

more

complex

neutral more

complex

much more

complex

7 I found it easier to control classes

and subclasses in one system.

much easier easier neutral easier much easier

8 New properties were easier to create

with one system.

much easier easier neutral easier much easier

9 It was difficult to create instances

in one system.

much

harder

harder neutral harder much

harder

10 It was awkward to fill (or define)

properties in one system.

very

awkward

awkward neutral awkward very

awkward

Figure B.15: Post-test questionnaire comparing the tools

281

Do you have any comments on any of the systems?

Do you have any specific problems to report?

Do you have any suggestions for improving ROA?

Figure B.16: Post-test questionnaire comparing the tools

282

C Evaluation documents for Controlled Annotation

C.1 Training manual

C.1.1 Ontologies

An ontology is a formal representation of knowledge about a domain: it contains informa-

tion about the objects and types of objects in that domain and the relationships between

them. Formal here means basically “machine-readable”—the information is stored in a

well-defined way so that computer programs can read and analyse it and reason with it.

In recent years ontologies have become very important to scientific research because they

help with the digital classification and retrieval of human-readable information (such as

research papers and other documents).

An ontology consists of classes, instances and properties. The classes and instances

are often drawn in a tree as shown in Figure C.1.

C.1.2 Semantic Annotation

Semantic Annotation, in the context of this evaluation consists of attaching a set of

instances and or relational metadata to a textual document. We distinguish between

283

Figure C.1: Graphical depiction of classes and instances

284

instantiations of OWL/RDF(S) classes, instantiated properties from one class instance

to a datatype instance (also called attribute instance) and instantiated properties from

one class instance to another class instance, a relationship instance.

C.1.2.1 Terms:

• Metadata: Metadata is data about data. In our context the annotations are

metadata about documents.

• Relational: Metadata: We use this term relational metadata to denote the anno-

tations that contain relationship instances.

The term annotation can often donate a “private or shared note” or “comment”. This

alternative meaning of annotation may be emulated in our approach by modelling these

notes with attribute instances i.e. An attribute instance, of type ‘hasComment’.

C.1.3 Controlled Natural Language

As mentioned at the beginning of this evaluation, the goal of this evaluation is to measure

the user friendliness of controlled natural languages as interface technologies for semantic

annotation in comparison to standard annotation tools. As you are probably aware,

human language does not lend itself to precise computer processing; it contains stylistic

variations, ambiguities and other features that make it difficult for computers to interpret.

One way to let people write instructions and data so that computers can handle the input

correctly is to use an artificial language, such as a computer programming language.

285

Figure C.2: Our use of the terms ontology, annotation and relational metadata

Another approach is to use a controlled natural language, which is a restricted subset of a

natural language such as English. All the sentences in the controlled language are human-

readable sentences in English and have a specific meaning for the computer program, but

not all English sentences are valid in the controlled language. In two of the programs you

will test today, you will type sentences in a controlled language and run a program that

interprets them in order to link the text to and if needed create, classes, instances and

properties in an ontology representing knowledge about a fictitious EU research project

(a computerised record of information about team meetings concerning the project).

286

C.1.4 (CLANN) Type I and II - How-To

The facilitator will load either the CLANN I or CLANN II pipeline into GATE and load

the initial textual data, so that you will have a window like the one shown in Figure C.3 to

work with. You can click on the buttons or tabs across the top to bring up the following

panes.

Messages This pane explains in detail what a CLANN annotator has just done and in-

cludes error messages. You can distinguish the error messages by the word WARN-

ING, and probably ignore the INFO messages.

Text input In this pane (shown in Figure C.3) you will edit statements in the in either

the CLANN I or CLANN II syntax, explained below. To clear any input, select

all the text with the mouse and press the backspace key. We recommend editing

individual parts. This can be achieved as you would edit text normally using the

arrow and backspace keys and the mouse.

Annotation This pane (shown in Figure C.3 on the right hand side) shows you the

semantic annotations created by either CLANN I or CLANN II. Before you begin

the tasks, you might wish to look at the initial ontology to become familiar with it.

See Appendix B for further details on how to inspect an ontology in GATE .

To execute an annotator on your current input text, right click either on the word

CLANN I or CLANN I near the top of the left-hand pane and click Run in the menu

that appears.

287

Figure C.3: Overview of CLANN I and II in GATE

288

C.1.5 Scenario

You are a member of a Research group in SAP Research Karlsruhe, Germany and have

been asked to record the minutes of the latest team meeting. The other team members

are: Claudia, Dirk, Ambrosia and Marco. The research project they are working on

is called CID. Today you are the scribe and must record the meeting minutes for the CID

project meeting with the other SAP team members using prototype tools for Controlled

Natural Language ANNotator (CLANN), developed for the CID project.

C.1.6 Controlled Language ANNotator (CLANN) Type I

Two types of Controlled Natural Language ANNotator (CLANN) tools have been built

for this evaluation. The following is guide for CLANN I:

289

Meeting Date: 5th May 09.

Project Name: CII.

Attendees: Marco, Claudia, Sven.

Chair: Claudia.

Scribe: Brian

Agenda Items:.

Review of last weeks meeting minutes.

Sven still needs to give input to Semantilix proposal

CII Deliverable

Marko to finally complete CII Deliverable 2.2 by 30th June 09

Claudia will start to write the introduction and the technical overview of D2.2

Sven to complete Sections 1 and 2 by end of the week.

Any other business

Roundtable

Marco will do bug fixing for middleware implementation in WP3000.

Sven to hand up a detailed report by the next weekend.

Figure C.4: Initial Sample meeting minutes in free or uncontrolled text

290

C.1.6.1 Instructions for writing in CLANN I:

1. Remove any adverbs or adjectives/modifiers from the input text:

Sven still needs to give input to Semantilix proposal

Exception: This is not necessary if the noun phrase is a multiword expression:

Sven to demonstrate a working prototype for the project review.

Why? Multiword Noun phrases must be surrounded by double or single quotes:

Sven to hand up ’’a detailed report’’ ’’by the next weekend’’.

2. Dates or Date expressions must be surrounded by single or double quotes:

’’by the next weekend’’.

’’30th June 09’’.

3. Persons or Single noun phrases do not need to be surrounded by double or single

quotes:

Sven needs to give input to ’’Semantilix proposal’’

4. Verb Phrase (VP) expressions from the the key-phrase list (See C.8) can only be

used. Rewrite the verb phrase if necessary. Hence:

Sven to hand up ’’a detailed report’’ ’’by the next weekend’’.

Changes to

Sven to submit ’’a detailed report’’ ’’by the next weekend’’.

5. Separate sentences with complex adjuncts containing conjunctions:

Claudia to write the introduction and the technical overview of D2.2.

291

Changes to:

Claudia to write the introduction of ’’D2.2.’’

Claudia to write the technical overview of ’’D2.2’’.

6. Make references to other nouns or entities explicit!

Sven to complete Sections 1 and 2 by end of the week.

Changes to:

Sven to complete ’’Sections 1’’ of D1.2 by ’’end of the week’’.

Sven to complete ’’Sections 2’’ of D1.2 by end of the week.

7. Again multiword units must be surrounded by single or double quotes.

8. Prepositions such as of and by can be left alone.

9. Nouns contains reserved phrases see Figure C.8or punctuation must be surrounded

by single or double quotes. The”.” is reserved for end of sentence boundary only so

D1.2 must be written as ’’D1.2’’ or ’D1.2’. Hence the final rewritten CNL form

is:

Sven to complete ’’Sections 1’’ of ’’D1.2’’ by ’’end of the week’’.

Sven to complete ’’Sections 1’’ of ’’D1.2’’ by ’’end of the week’’.

10. All sentences must end with a ’’.’’

292

11. If you want a sentence to be considered for CNL parsing it must be proceeded by

the key-phrase ’’Comment:’’”:

293

Alias:<QuotedPhrase><QuotedPhrase>

Meeting Date: <Date> .

Project Name: <NAME> .

Attendees: (<Person>,)+.

Chair: <Person>.

Agenda Items:

’’Review of last weeks meeting minutes.’’

(Comments: <CNL_Phrase>.)+ | ’’comment none’’.

Agenda Items.

AgendaTitle:<Title>.

(Comments: <CNL_Phrase>.)+ | ’’comment none’’.

AgendaTitle: any other business .

(Comments: <CNL_Phrase>.)+ | ’’comment none’’.

Roundtable.

(Comments: <CNL_Phrase>.)+ | ’’comment none’’.

| = disjunction, OR

(...)+ = 1 or more

’’...’’ = Reserved Words in template.

Figure C.5: Meeting Minutes Template for CLANN I and II in BNF

294

Alias:CII Deliverable 5.2;D5.2,

T1500 Ipad;working prototype,‘

‘‘project review; ‘‘EU Project Review Kaiserslautern 08 November 2009.

Meeting Date: 5th May 09.

Project Name: CII.

Attendees: Marco, Claudia, Sven.

Chair: Claudia.

Scribe: Brian

AgendaItems:.

Review of last weeks meeting minutes.

Sven needs to give input to ‘‘Semantilix proposal’’.

AgendaItems:.

AgendaTitle:CII Deliverable

Comment:Marco to complete ‘‘CII Deliverable 5.2’’ by ‘‘30th June 00’’.

Comment:Claudia to write the introduction of ‘‘D5.2’’.

Comment:Claudia to write the ‘‘technical overview’’ of ’’D5.2’’.

Comment:Sven to complete ‘‘Sections 1’’ of ‘‘D5.2’’ by ’’end of the week’’.

Comment:Sven to complete ‘‘Sections 2’’ of ‘‘D5.2’’ by ’’end of the week’’.

Roundtable.

Comment:Marco to do bug fixing for ‘‘middleware implementation’’ in WP3000.

Sven to complete a ‘‘detailed report’’ of WP3000 by next weekend.

Sven to demonstrate a ‘‘working prototype’’ for the ‘‘project review’’.

Figure C.6: CLANN I - Final Correct Output

295

C.1.6.2 A note on Alias

Using the alias template, a user can describe synonyms or aliases for the same entity,

hence it can act as a short hand for the user. Thus, if the user writes:

Alias: ’’CII Deliverable 5.2’’;D5.2.

Any subsequent mention of D5.2 well tell the controlled natural language parser to substi-

tute ”D5.2” with ”CII Deliverable 5.2”. This is a form of predefined nominal coreference.

296

to complete

to submit

to finish

to provide

needs to give input

still needs to give

input

to give input

to give input to

to contribute

to provide

to provide technical

input to

to organise

to organize

will work

will do

working

to write

will write

to write

to travel to

to commit

to upload

Figure C.7: Sample of reserved words and phrases in CLANN I

Agenda Items:

AgendaItems:

AgendaItems

AgendaTitle:

Agenda Title

any other business

Any other business

Attendees:

attendees:

comment:

Comment:

Comments:

comments:

chair:

Chair

Date:

date:

Project Name:

Roundtable:

Roundtable

roundtable:

roundtable

Scribe:

scribe:

.

’’

,

Figure C.8: Reserved template phrases and punctuation in CLANN 2

297

C.2 Controlled Language ANNotator Type II (CLANN II)

Two types of CNL annotators have been built for this evaluation. The following is guide

for annotator Type II (called CLANN II):

C.2.1 Instructions for using CLANN II

Previously, you may have had to rewrite free or uncontrolled language into controlled

language using the CLANN I Annotator. Type II is less ”automatic” and gives the user

more freedom to express his/her model, but also requires more manual effort. In CLANN

II, the user inserts snippets of controlled language into free text. Snippets are of two

varieties, the Predicate Snippets and Sentence Snippets. More, specifically, you insert a

Predicate snippet of controlled language directly adjacent to the right of the object you

wish to annotate. A sentence snippet can be inserts anywhere inside the text:

Predicate Snippet: <subject> [<verb> <object>]

Eg: DERI [is a Institute] enables networked knowledge.

Sentence Snippet: [<subject> <verb> <object>]

Eg: [DERI ”located in” Ireland]

You will need to inspect the ontology provided in the GATE GUI to decide on which

instances and properties to link to. When you are assigned your task, the facilitator will

assist you with access to the GATE Ontology Viewer. You can also create new classes,

subclasses, properties and instances explicitly if desired.

298

C.2.1.1 Annotation Process

A simple step-by-step process of annotating a piece of text using Type II annotator is

given below. An example sentence is provided below and annotated in the following

manner:

Sven still has to write Fast project proposal.

1. Identify the relevant entities in the text and surround the instance with quotes(”)

in case it is a multi-word chunk.

Sven still has to write ‘‘Fast project proposal’’.

Sven, ‘‘Fast project proposal’’ are the relevant entities.

2. Annotate them with <instance>[is a <class>]. Use the class labels from the

ontology provided. Create your own classes if you have to(See below).

Sven[is a Person] still has to write ‘‘Fast project proposal’’[is a Proposal].

Here Proposal is not an existing class, It is created on the fly.

3. Create your own classes if you have to. The class definition should be inside a

sentence snippet and it should be defined before it is used.

[Proposal is a subclass of Document].

Sven[is a Person] still has to write ’Fast project proposal’’

[is a Proposal].

Also use quotes for the class label when it is multi-word.

[‘‘Conference Paper’’ is a subclass of Document]

299

This would create a new subclass of Document.

[Animal is a Class].

This would create a new class as a subclass of pimo:Thing.

4. Create links between the instances that you just annotated. Links or properties

linking two instances can be added as triples are independent sentence snippets.

[Proposal is a subclass of Document].

Sven[is a Person] still has to write ‘‘Fast project proposal’’

[is a Proposal].

[Sven toComplete ‘‘Fast project proposal’’].

5. Also create additional properties if you have to. This is similar to class creation.

[‘‘has to write’’ is a Property]

creates a blank property with domain pimo:Agent and rangepimo:Thing [‘‘has

to write’’ is a subproperty of toWrite]

creates a new property as a subproperty of “toWrite” thereby inheriting the same

domain and range. So by adding an extra property our example would look like”

[Proposal is a subclass of Document].

[‘‘has to write’’ is a subproperty of toWrite]

Sven[is a Person] still has to write ‘‘Fast project proposal’’

[is a Proposal].

[Sven ‘‘has to write’’ ‘‘Fast project proposal’’].

300

6. Aliases:: You have an option to use aliases for long multi-word chunks. An alias

once defined could be used as a replacement. These could be used for Classes,

Instances and properties”

[<alias> same as <text-to-be-aliased>]

On adding an alias for ’’Fast project proposal’’:

[Proposal is a subclass of Document].

[‘‘has to write’’ is a subproperty of toWrite]

Sven[is a Person] still has to write ‘‘Fast project proposal’’

[is a Proposal].

[FPP is same as ‘‘Fast project proposal’’]

[Sven ‘‘has to write’’ FPP].

C.2.1.2 Other Rules

All sentences must end with a period ‘‘.’’

301

Meeting Date: 5th May 09.

Project Name: CII

Attendees: Marko, Claudia, Leo .

Chair: Claudia.

Scribe: Brian

Agenda Items:.

Review of last weeks meeting minutes.

Sven still has to write Fast project proposal

CII Deliverable

Marko to finish working on CII Deliverable 6.7 by 25th May 09

Claudia will begin writing the introduction and

related work sections of D6.7.

Any other business

Leo to complete the conclusion of D6.7 by the end of the week.

Roundtable

Marco will commit the interface implementation for WP3000.

Leo to hand up a detailed Ph.D. Proposal by next weekend.

Leo will work on a conference paper for the

Information Visualisation 09 Conference, Istanbul.

Figure C.9: CLANN II - Initial Sample Text

302

Meeting Date: <Date> .

Project Name: <NAME> .

Attendees: (<Person>,)+.

Chair: <Person>.

Agenda Items:

Review of last weeks meeting minutes.

(<CNL_Phrase>.)+

Agenda Items.

AgendaTitle:<Title>.

(<CNL_Phrase>.)+

AgendaTitle: any other business .

(<CNL_Phrase>.)+

Roundtable.

(<CNL_Phrase>.)+

| = disjunction, OR

(...)+ = 1 or more

... = Reserved Words in template.

Figure C.10: CLANN II - Meeting Minutes Template

303

Meeting Date: 5th May 09.

Project Name: CII.

Attendees: Marco, Claudia, Leo.

Chair: Claudia.

Scribe: Brian.

Agenda Items:.

Review of last weeks meeting minutes.

[Proposal is a subclass of Document].

[‘‘has to write’’ is a subproperty of toWrite] .

Sven[is a Person] still has to write ‘‘Fast project proposal’’[is a Proposal].

[FPP is same as ’’Fast project proposal’’] .

[Sven ‘‘has to write’’ FPP].

Agenda Items:.

AgendaTitle: CII Deliverable.

[Deliverable is a subclass of Document].

Marco[is a Person] to finish working on‘‘CII Deliverable 6.7’’

[is a Deliverable] by ‘‘25th May 09’’[is a Date].

[‘‘D6.7’’ is same as ‘‘CII Deliverable 6.7’’].

[Marco toComplete ’’D6.7’’] .

[‘‘D6.7’’ hasEndDate ’’"25th May 09’’].

Figure C.11: CLANN II - Correct Output

304

[Section is s subclass of Document] .

[isPartOf is a Property].

Claudia[is a Person] will begin writing ‘‘the introduction’’[is a Section]

and ‘‘related work’’[is a Section] sections of D6.7.

[Claudia toWrite ‘‘the introduction’’].

[Claudia toWrite ‘‘related work’’].

[‘‘the introduction’’ isPartOf ’’D6.7’’].

[‘‘related work’’ isPartOf ’’D6.7’’].

Leo[is a Person] to complete the ‘‘conclusion of D6.7[is a Section]

by the end of the week[is a Date].

[Leo toComplete ‘‘conclusion of D6.7’’].

[‘‘conclusion of D6.7’’ isPartOf ’’D6.7’’].

[‘‘conclusion of D6.7’’ hasEndDate ’’end of the week’’].

Marko will finalise the ‘‘interface implementation’’

[is same as ’’Interface T6700’’] for ‘‘WP3000’’[is a Workpackage].

[Marco toComplete ‘‘Interface T6700].

[‘‘Interface T6700 isRelated ‘‘WP3000’’].

[toSubmit is a Property].

Figure C.12: CLANN II - Correct Output Continued

305

[‘‘to hand up’’ is a subproperty of toSubmit].

Leo to hand up a detailed ‘‘Ph.D. Proposal’’[is a Proposal] by

‘‘next weekend’’[is a Date].

[Leo toSubmit ‘‘Ph.D. Proposal’’].

[‘‘Ph.D. Proposal’’ hasEndDate ‘‘next weekend’’]

[isLocatedIn is a Property].

Leo will work on a ‘‘conference paper"[is a Document] for

‘‘the Information Visualisation 09 Conference’’[is a Conference],

Istanbul[is a Location].

[Leo toWork ’’conference paper’’].

[‘‘conference paper’’ isPartOf ’’the Information Visualisation 09 Conference’’].

[‘‘the Information Visualisation 09 Conference’’ isLocatedIn Istanbul].

Figure C.13: CLANN II - Final Correct Output

306

C.2.1.3 A note on authoring the ontology

In the above example the underlying Ontology should ideally be pre-populated with the

appropriate instances, properties and classes. However, the Type II annotator permits

simple ontology authoring in CNL. This must however occur prior to the use of the par-

ticular ontology elements. See Figure or further details concerning reserved template

key-phrases:

[Deliverable is a subclass of Document].

[Section is a subclass of Deliverable].

[isPartOf is a Property]. Once the above statements are declared, you can freely

use the elements defined.

’’The introduction[is a Section] of ’’CII Deliverable 6.7’’[is a Deliverable].

[’’the introduction’’ isPartOf ’’CII Deliverable 6.7’’].

C.2.1.4 Use of Quotes

Quotes are to be used to define the word boundaries for multi-word phrases.

‘‘25th December 2006’’

‘‘CII Deliverable 6.7’’

‘‘PhD Proposal’’

They should also be used with alpha-numerics and any other tokens which contain punc-

tuation or other symbols within the text i.e.

307

WP3000

D6.7

C.2.1.5 Relation Metadata.

Relation metadata or triples are automatically parsed and generated based on the manual

annotations provided. You do not need to be concerned about this.

C.2.2 CLANN II gazetteer (keywords and phrases)

This table lists all the phrases annotated by the CLANN II gazetteer, as described by

in Section 6.2.3.2. The gazetteer marks each listed phrase with a Lookup annotation

with the specified majorType feature; some phrases’ annotations also have a minorType

feature.

majorType minorType gazetteer entry

CLANN-II-Instance is a

CLANN-II-Instance is a type of

CLANN-II-New-Class is a Class

CLANN-II-New-Class is a class

CLANN-II-New-SubClass is a part of

CLANN-II-property is a property

CLANN-II-property is a relation

CLANN-II-property is a property between

308

majorType minorType gazetteer entry

CLANN-II-property is a relation between

CLANN-II-property is a relationship

CLANN-II-property is a relationship between

CLANN-II-property property

CLANN-II-property relationship

CLANN-II-property relation

CLANN-II-property is same property as

CLANN-II-property is same relation as

CLANN-II-property is same relationship as

CLANN-II-synonym is kinda like

CLANN-II-synonym is the same as

CLANN-II-synonym is sort of like

CLANN-II-synonym is equivalent to

CLANN-II-synonym is same as

CLANN-II-synonym same as

CLANN-II-synonym kinda like

CLANN-II-synonym sort of like

CLANN-II-synonym sort of like

CLANN-II-synonym sorta like

CLANN-II-numeric attribute is a number

309

majorType minorType gazetteer entry

CLANN-II-numeric attribute is a Number

CLANN-II-string attribute is a String

CLANN-II-string attribute is a string

310

Agenda Items:

AgendaItems:

AgendaItems

AgendaTitle:

Agenda Title

any other business

Any other business

Attendees:

attendees:

comment:

Comment:

Comments:

comments:

chair:

Chair

Date:

date:

Project Name:

Roundtable:

Roundtable

roundtable:

roundtable

Scribe:

scribe:

.

’’

,

Figure C.14: Reserved template phrases and punctuation in CLANN 2

311

C.3 OntoMat Annotatizer

C.3.1 Overview

OntoMat-Annotizer is a user-friendly interactive webpage annotation tool. It supports

the user with the task of creating and maintaining ontology-based OWL-markups i.e.

creating of OWL-instances, attributes and relationships. It includes an ontology browser

for the exploration of the ontology and instances and a HTML browser that will display

the annotated parts of the text. The intended user is the individual annotator i.e., people

that want to enrich their web pages with OWL-meta data. Instead of manually annotating

the page with a text editor, say, emacs, OntoMat allows the annotator to highlight relevant

parts of the web page and create new instances via drag n drop interactions. It supports

the meta-data creation phase of the lifecycle. Ontomat is considered a de-facto standard

semantic annotation tool. It is an example of a semi-automatic/manual annotation tool.

Below is a quick start guide to the tool in addition to an example text containing meeting

minutes and a further details of how to semantically annotate the meeting minutes note

using the OntoMat-Annotatizer. The contents of this section are based on the Ontomat-

Annotizer Web Tutorial Guide133.

133See http://annotation.semanticweb.org/ontomat/tutorial.html Extracted Sunday 29 Sep 2013
20:56:20 IST

312

C.3.1.1 Introduction to Ontomat

Step 1: Open Ontology Browser:

Open the Ontology-Browser, if not already open.

Figure C.15: Opening Ontology Browser in Ontomat

Step 2: Open Web Browser:

Open the Web-Browser if not already open.

Figure C.16: Opening Web Browser in Ontomat

313

Step 3: Load HTML Document:

Load an HTML document by entering the URL of the web document that would

you like to annotate. OntoMat-Annotizer will use the URL of your document as the

namespace of your annotation. If you don’t like that, you can change the namespace with

“Tools - HTML Browser- change document namespace”. You can check the namespace

of your document on the bottom of your browser pane (See Figure C.3.1.1).

Figure C.17: Opening a HTML file in Ontomat

314

Step 4: Opening OWL Ontology in Ontomat:

Browse throughout the ontology to get familiar with it.

Figure C.18: Opening an OWL Ontology in Ontomat

Step 5: Select Text:

Select the text fragment which you like to use for your annotation.

Figure C.19: Selecting text in Ontomat

315

Step 6: Create Instance

Select in the ontology the class where the text fragment fits in. Drag the selected text

on the appropriate class (drag’n drop). The annotation gets created and thus the text

fragment will be shown as an instance of the selected class in the ontology in the ontology

browser.

Figure C.20: Creating an instance in Ontomat

316

Step 7: Create Attributes

To each created instance, literal attributes can be assigned. The choice of the predefined

attributes depends on the class the instance belongs to, e.g. the class “Meeting” has the

attributes duration, topic, and location. The attributes can be assigned to the instance

by selecting the appropriate text fragment of the web document and copy it to the related

property field (drag’n drop).

Figure C.21: Creating Attributes in Ontomat

317

Step 8: Create Relations

Furthermore, the relationships between the created instances can be set, e.g. the Re-

searcher “Sven” has to write a proposal for the “Fast Project”. OntoMat-Annotizer

preselects class instances according to the range restrictions of the chosen relation, e.g.

the “toWrite” of a Person must be a Document. Therefore only these are offered as

Figure C.22: Creating Relations in Ontomat

potential fillers to the ‘ ‘toWrite’ ’ relation. Choose the appropriate instance and drag it

318

to the relation (drag’n drop). Due to implementation reasons, this is not consistent with

right mouse click for the other steps!

Step 9: Control and Edit your Annotation manually

With the annotation tab you can switch to the textual representation of your annotation.

You can do here some changes manually, but take care of consistency.

Step 11: Save the HTML file and FINISH!

Finally save your annotated HTML table page.

319

Meeting Date: 5th May 09.

Project Name: CII

Attendees: Marco, Claudia, Leo .

Chair: Claudia.

Scribe: Brian

Agenda Items:.

Review of last weeks meeting minutes.

Sven still has to write Fast project proposal

CII Deliverable

Marco to finish working on CII Deliverable 6.7 by 25th May 09

Claudia will begin writing the introduction and related work sections of D6.7.

Marco will commit the interface implementation for WP3000.

Leo to hand up a detailed Ph.D. Proposal by next weekend.

Leo will work on a conference paper for the Information

Visualisation 09 Conference, Istanbul.

Figure C.23: Example Meeting Minutes for OntoMat

320

C.3.2 Structural Annotation

In the case of Ontomat, it will be necessary to make explicit links and provide structural

annotations for structured elements in the note such as ‘ ‘ Meeting Title’ ’ “Attendees”

etc. Examples are provided below.

Step 1: Create a new instance of a Meeting in Ontomat.

Figure C.24: Creating a new instance of a Meeting in Ontomat.

321

Step 2: Annotate the Date of the Meeting in the text using “hasDateLiteral”.

Figure C.25: Annotating the Date of the Meeting in the text using “hasDateLiteral”.

322

Step 3: Annotate the Project name of the Meeting in the text using the same ap-

proach.

Figure C.26: Annotate the Project name of the Meeting in Ontomat

323

Step 4: Create Person instances for each person in the meeting minute note.

Figure C.27: Create Person instances for each person a note

324

Step 5: Create and instance of Meeting Chair.

Figure C.28: Create and instance of Meeting Chair

325

Step 6: Assign the Role of Chair to a Person via the relationship “role holder(Person)”.

Figure C.29: Assign the Role of Chair to a Person

326

Step 7: Assign Claudia (ClaudiaChair) as Chair to the meeting instance using the

object property hasChair(Chair).

Figure C.30: Assign Claudia (ClaudiaChair) as Chair

327

Step 8: Repeat the Steps above for the Scribe in the meeting minutes note.

Step 9: Create an Agenda Item from ”Review of last weeks meeting minutes.”

Figure C.31: Create an Agenda Item in Ontomat

328

Step 10: Link the Agenda Item to the current Meeting instance in the Ontology

using the “hasAgenda(Agenda)” property.

Figure C.32: Link the Agenda Item to the current Meeting instance

329

Step 11: Create relation Metadata for the sentence “Sven still has to write Fast

Project Proposal” with object property “toWrite(Document)” where “Fast Project Pro-

posal” is an instance of Document and Sven is an instance of Person.

Figure C.33: Create relation Metadata

330

Step 12: We also want to link this relation to the Agenda item “Review ...”. To

achieve this we use the object in “Sven still has to write Fast Proposal” , which is ”Fast

project Proposal” of type Document to link to the Agenda Item Review

Figure C.34: Linking to the Agenda Item

331

Step 13: Create an instances of type Comment and annotate the Sentence “Sven still

has to write Fast Proposal” with the attribute “hasAlias”. You can also create an Agenda

Item in the same manner above for “CII Deliverable” and “Any other business”. Create

ontological instances for the text and link them again appropriately as well creating a link

to the Agenda item in question as before. Finally you can create a “Roundtable instance

similar to Agenda like so:

Figure C.35: Create an instances of type Comment

332

Step 14: You may save the Ontology afterwards if you wish like so:

Figure C.36: Saving the Ontology in Ontomat

Step 15: Finally, there is the possibility to export your metadata to the document in

the HTML browser like so:

Figure C.37: Exporting Metadata in Ontomat

333

C.4 Test procedure, tasks and questionnaires

First we asked each subject to complete the pre-test questionnaire shown in Figure C.41.

We then gave each subject one tool (CLANN I, CLANN II or Ontomat, respectively).

They were asked carry out the tasks shown below, i.e., Task A (See Figure C.38) with the

first tool, Task B (See Figure C.39) with the second tool and Task C (See Figure C.40)

with the third tool. The task and tool order were varied equally across all participants.

We asked the subject to complete the questionnaire shown in Figure C.42 and then

separately the questionnaires in Figures C.43, C.44 C.45 and C.46, depending on the

tool used.

334

Meeting Date: 5th May 09.

Project Name: CII.

Attendees: Marko, Claudia, Ambrosia, Dirk.

Chair: Claudia.

Scribe: Brian

Agenda Items:.

Review of last weeks meeting minutes.

Dirk still has to provide a contribution to E-Health proposal

CII Deliverable 7.1

Dirk to finally complete CII Deliverable 7.1 by 25th June 09

<You> to work on Sections 4 and 5 tomorrow.

Any other business

No other business

Roundtable

Marko will fix bugs for interface implementation in WP3000.

Ambrosia to hand up a cost statements by the next weekend.

Dirk to present WP3000 slides next Monday.

Claudia to begin the introduction and the literature review of D7.2

Figure C.38: Task A

335

Meeting Date: 5th May 09.

Project Name: CII.

Attendees: Marko, Claudia, Ambrosia, Dirk.

Chair: Claudia.

Scribe: <You>

Agenda Items:.

Review of last weeks meeting minutes.

Marko to start working on Ph.D proposal

CII Deliverable 7.4

Dirk to work on Section 5.

EU Cost Statements

Ambrosia to work on Cost statement section of May CII Financial Report .

Any other business

Marko submit subversion code for interface implementation of CII middleware.

Roundtable

Ambrosia to hand up a tax forms by next weekend.

Dirk to start writing conference paper for International Semantic Web

Technologies Conference 2009 in Crete.

<YOU> to write the meeting minutes to Wiki.

Figure C.39: Task B

336

Meeting Date: 5th May 09.

Project Name: CII.

Attendees: Marko, Claudia, Ambrosia, Dirk.

Chair: Claudia.

Scribe: Brian.

Agenda Items:.

Review of last weeks meeting minutes.

Dirk to finish work on thesis plan.

CII Deliverable 6.7B

Marko worked on CII D6.7B

Claudia to travel to CII meeting in Brussels on Monday 25th May 09.

Any other business

No

Roundtable

Dirk to start writing conference paper for International Semantic Web

Technologies Conference 2009 in Crete.

<YOU> writing a Masters thesis chapter on a discovery architecture for portable,

linked photograph annotation metadata.

Ambrosia to upload EU FP7 slides to Wiki.

Figure C.40: Task C

337

1 I understand the term “Semantic Annotation”. No A little Yes

2 I am familiar with Semantic Annotation Tools. No A little Yes

3 I have worked with Ontologies. Never Sometimes Often

4 I have built or designed a Semantic Annotator. Never Sometimes Often

5 I understand the term “controlled language”. No A little Yes

6 I have used a controlled language. Never Sometimes Often

Figure C.41: Pre-test questionnaire

338

Strongly Disagree Neutral Agree Strongly

disagree agree

1 I think that I would like to use this system frequently.

2 I found the system unnecessarily complex

3 I thought the system was easy to use

4 I think that I would need the support of a technical person

to be able to use this system.

5 I found the various functionalities in this system were well

integrated

6 I thought there was too much inconsistency in this system

7 I would imagine that most people would learn to use this

system very quickly

8 I found the system very cumbersome to use

9 I felt very confident using the system

10 I needed to learn a lot of things before I could get going with

this system

Figure C.42: Post-test questionnaire for each Tool

339

CLANN1 CLANN1 Ontomat Ontomat

1 I found one tool’s documentation

easier to understand.

much easier easier neutral easier much easier

2 I particularly disliked using one

tool.

disliked

strongly

disliked neutral disliked disliked

strongly

3 I found one tool easier to use. much easier easier neutral easier much easier

4 One annotator was harder to learn. much

harder

harder neutral harder much

harder

5 I would prefer to use one tool again. strongly

prefer

prefer neutral prefer strongly

prefer

6 I found one tool more complicated. much more

complex

more

complex

neutral more

complex

much more

complex

7 I found it easier to control classes

and subclasses in one tool.

much easier easier neutral easier much easier

8 Properties were easier to link with

one annotator.

much easier easier neutral easier much easier

9 It was difficult to link instances in

one annotator.

much

harder

harder neutral harder much

harder

10 It was awkward to link(or annotate)

properties in one annotator.

very

awkward

awkward neutral awkward very

awkward

Figure C.43: Post-test questionnaire comparing the tools

340

CLANN2 CLANN2 Ontomat Ontomat

1 I found one tool’s documentation

easier to understand.

much easier easier neutral easier much easier

2 I particularly disliked using one an-

notator.

disliked

strongly

disliked neutral disliked disliked

strongly

3 I found one tool easier to use. much easier easier neutral easier much easier

4 One tool was harder to learn. much

harder

harder neutral harder much

harder

5 I would prefer to use one tool again. strongly

prefer

prefer neutral prefer strongly

prefer

6 I found one tool more complicated. much more

complex

more

complex

neutral more

complex

much more

complex

7 I found it easier to control classes

and subclasses in one tool.

much easier easier neutral easier much easier

8 Properties were easier to link with

one annotator.

much easier easier neutral easier much easier

9 It was difficult to link instances in

one annotator.

much

harder

harder neutral harder much

harder

10 It was awkward to link (or anno-

tate) properties in one annotator.

very

awkward

awkward neutral awkward very

awkward

Figure C.44: Post-test questionnaire comparing the tools

341

CLANN1 CLANN1 CLANN2 CLANN2

1 I found one tool’s documentation

easier to understand.

much easier easier neutral easier much easier

2 I particularly disliked using one . disliked

strongly

disliked neutral disliked disliked

strongly

3 I found one tool easier to use. much easier easier neutral easier much easier

4 One tool was harder to learn. much

harder

harder neutral harder much

harder

5 I would prefer to use one tool again. strongly

prefer

prefer neutral prefer strongly

prefer

6 I found one tool more complicated. much more

complex

more

complex

neutral more

complex

much more

complex

7 I found it easier to control classes

and subclasses in one tool.

much easier easier neutral easier much easier

8 Properties were easier to link with

one tool.

much easier easier neutral easier much easier

9 It was difficult to link instances in

one tool.

much

harder

harder neutral harder much

harder

10 It was awkward to link (or anno-

tate) properties in one tool.

very

awkward

awkward neutral awkward very

awkward

Figure C.45: Post-test questionnaire comparing CLANN I and CLANN II

342

Do you have any comments on any of the systems?

Do you have any specific problems to report?

Do you have any suggestions for improving either CLANN I and CLANN II?

Figure C.46: Post-test questionnaire comparing the tools

343

