(OLLSCOILNAGAILLIMHE

[JNIVERSITY oF GALWAY

Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the
published version when available.

Towards Intelligent web Services: Web Service Modeling

e Ontology (WSMO)

Author(s) | Polleres, Axel; Fensdl, Dieter

Publication 2005

Date
Cristina Feier, Dumitru Roman, Axel Polleres, John Domingue,
Bl iestian Michael Stollberg, Dieter Fensel "Towards Intelligent web
[Services: Web Service Modeling Ontology (WSMO)",

Proceedings of the International Conference on Intelligent
Computing (ICIC), 2005.

Publisher | Springer

Item record | http://hdl.handle.net/10379/417

Downloaded 2024-05-25T18:15:247

Some rights reserved. For more information, please see the item record link above.

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/

Towards Intelligent Web Services: The Web Service
Modeling Ontology (WSMO)*

Cristina Feier!, Dumitru Roman', Axel Polleres®, John Domingue?, Michael
Stollberg!, and Dieter Fensel®

! Digital Enterprise Research Institute, Institut fiir Informatik, Universitit Innsbruck, AT
{firstname.lastname}@deri.org
2 Knowledge Media Institute, The Open University, Milton Keynes, UK
J.B.Domingue@open.ac.uk

Abstract. The Semantic Web and the Semantic Web Services build a natural ap-
plication area for Intelligent Agents, namely querying and reasoning about struc-
tured knowledge and semantic descriptions of services and their interfaces on the
Web. This paper provides an overview of the Web Service Modeling Ontology, a
conceptual framework for the semantical description of Web services.

1 Introduction

The Semantic Web [1] approach refers to the idea of making the overwhelming amount
of data on the Web machine-processable. This shall be achieved by annotating web
content with consensual formalizations of the knowledge published, often referred to
under the common term of ontologies. Language proposals for describing ontologies
include the Resource Description Framework (RDF) [2], RDF Schema [3], the Web
Ontology Language (OWL) [4] and the Web Service Modeling Language (WSML)
family of languages [5]. As indicated by the name of the latter, the current Web is not
only a repository for static data, but furthermore offers interfaces to Web-accessible
services, ranging from simple dynamically generated pages for pure information provi-
sion to more complex services for purchasing books, booking trips or trading with other
internet-users over commercial or private marketplaces.

The next step after making the data on the Web machine-processable is facilitating
the direct interaction of applications, i.e. services, over the Web. Making this vision real
should not solely be viewed in the context of the Web as such, but has high potential
benefits in the areas of Enterprise Application Integration and Business-to-Business
Integration, being the two most prosperous application areas of current Information
Technology. Current technologies around SOAP [6], WSDL [7] and UDDI [8], often
subsumed under the term “Web services” only partly solve this integration problem
by providing a common protocol (SOAP), interface description (WSDL) and directory
(UDDI), but operating at a purely syntactic level.

* The work is funded by the European Commission under the projects DIP, Knowledge Web,
InfraWebs, SEKT, SWWS, ASG and Esperonto; by Science Foundation Ireland under the
DERI-Lion project; by the FIT-IT under the projects RW and TSC.

2 Feier, Polleres, Roman, Domingue, Stollberg, Fensel

The goal of what is called Semantic Web services (SWS) [9] is the fruitful combina-
tion of Semantic Web technology and Web services. By using ontologies as the semantic
data model for Web Service technologies Web Services have machine-processable an-
notations just as static data on the Web. Semantically enhanced information processing
empowered by logical inference eventually shall allow the development of high qual-
ity techniques for automated discovery, composition, and execution of Services on the
Web, stepping towards seamless integration of applications and data on the Web.

Two relevant initiatives have to be considered in the context of Semantic Web ser-
vices. Chronologically, the first one is OWL-S [10], an upper level ontology for de-
scribing Web services, specified using OWL. We critizized several deficiencies in this
model [11], and propose a new framework for Semantic Web Services by the Web
Service Modeling Ontology (WSMO) [12] which refines and extends the Web Service
Modeling Framework (WSMF) [13] to a meta-ontology for Semantic Web services.
WSMF defines a rich conceptual model for the development and the description of Web
services based on two main requirements: maximal decoupling and strong mediation.

WSMO is accompanied by a formal language, the Web Service Modeling Language
(WSML), that allows one to write annotations of Web services according to the concep-
tual model. Also an execution environment (WSMX) [14] for the dynamic discovery,
selection, mediation, invocation, and inter-operation of Semantic Web services based
on the WSMO specification is under development.

This paper gives an overview of WSMO. In Section 2 the design principles of
WSMO are presented. The basic concepts of WSMO are introduced in Section 3. Sec-
tion 4 describes in more detail the WSMO elements, explaining what is needed for
defining each of them and exemplifying their definition by making use of a scenario
from the domain of e-tourism. Some conclusions are drawn in Section 5.

2 WSMO Design Principles

Since Semantic Web services aim at turning the Internet from an information repository
for human consumption into a world-wide system for distributed Web computing by
combining Semantic Web technologies and Web services, WSMO, as any other frame-
work for Semantic Web services description needs to integrate the basic Web design
principles, the Semantic Web design principles, as well as design principles for dis-
tributed, serviceoriented computing for the Web. This section enumerates and discusses
the design principles of WSMO.

Web Compliance: WSMO inherits the concept of URI (Universal Resource Identi-
fier) for unique identification of resources as the essential design principle of the Web.
Moreover, WSMO adopts the concept of Namespaces for denoting consistent informa-
tion spaces, supports XMLand, other W3C Web technology recommendations, as well
as the decentralization of resources.

Ontology-Based: ontologies are used as the data model throughout WSMO, mean-
ing that all resource descriptions as well as all data interchanged during service usage
are based on ontologies. The extensive usage of ontologies allows semantically en-
hanced information processing as well as support for interoperability.

Towards Intelligent Web Services: WSMO 3

Strict Decoupling: each WSMO resource is specified independently, without regard
to possible usage or interactions with other resources. This complies with the open and
distributed nature of the Web.

Centrality of Mediation: mediation addresses the handling of heterogeneities that
naturally arise in open environments. As a complementary design principle to strict
decoupling, WSMO recognizes the importance of mediation for the successful deploy-
ment of Web services by making mediation a first class component of the framework.

Ontological Role Separation: User requests are formulated independently of (in
a different context than) the available Web services. The underlying epistemology of
WSMO differentiates between the desires of clients and available Web services.

Execution Semantics: In order to verify the WSMO specification, the formal ex-
ecution semantics of reference implementations like WSMX as well as other WSMO-
enabled systems provide the technical realization of WSMO.

Service versus Web service: A Web service is a computational entity which is able
(by invocation) to achieve a goal. A service in contrast is the actual value provided
by this invocation [15, 16]. Thus, WSMO does not specify services, but Web services,
which are actually means to buy and search services.

3 WSMO Basic Concepts

WSMO defines the modeling elements for describing Semantic Web services based on
the conceptual grounding set up in the Web Service Modeling Framework (WSMF) [13],
wherein four main components are defined: ontologies, Web services, goals, and medi-
ators. WSMO inherits these four top elements, further refining and extending them.

Ontologies represent a key element in WSMO since they provide (domain specific)
terminologies for describing the other elements. They serve a twofold purpose: defining
the formal semantics of the information, and linking machine and human terminologies.

Web services connect computers and devices using the standard Web-based pro-
tocols to exchange data and combine data in new ways. Their distribution over the
Web confers them the advantage of platform independence. Each Web service repre-
sents an atomic piece of functionality that can be reused to build more complex ones.
Web services are described in WSMO from three different perspectives: non-functional
properties, functionality and behavior.

Goals specify objectives that a client might have when consulting a Web service,
i.e. functionalities that a Web service should provide from the user perspective. The co-
existence of goals and Web services as non-overlapping entities ensures the decoupling
between request and Web service. This kind of stating problems, in which the requester
formulates objectives without regard to Web services for resolution is known as the
goal-driven approach, derived from the Al rational agent approach.

Mediators describe elements that aim to overcome the mismatches that appear be-
tween the different components that build up a WSMO description. The existence of
mediators allows one to link possibly heterogeneous resources. They resolve incompat-
ibilities that arise at different levels:

— data level - mediating between different used terminologies, more specifically solv-
ing the problem of ontology integration.

4 Feier, Polleres, Roman, Domingue, Stollberg, Fensel

— process level - mediating between heterogeneous communication patterns. This
kind of heterogeneity appears during the communication between Web services.

4 WSMO Modeling Elements

This section explains the WSMO modeling elements, describing their purposes and
illustrating how they can be specified. A scenario from the domain of e-tourism is in-
troduced in the first subsection as support for examples of modeling different WSMO
elements.

4.1 E-tourism Scenario: Traveling from Innsbruck to Venice

In order to exemplify the modeling of WSMO elements a scenario from the domain
of e-tourism is considered: an agent wants to buy a ticket to travel from Innsbruck
to Venice on a certain date. The goal that specifies the intent of buying a ticket for a
trip from Innsbruck to Venice is abstracted from this agent desire. A hypothetical Web
Service called the "Book Ticket Web Service” is considered for achieving the goal. This
Web service allows to search and buy tickets for itineraries starting in Austria. The only
accepted payment method is credit card. For the execution of the transaction, the credit
card must be a valid PlasticBuy or GoldCard (two fictitious credit card brands).

4.2 Ontologies

WSMO specifies the following constituents as part of the description of an ontology:
non-functional properties, imported ontologies, used mediators, concepts, relations,
functions, axioms, and instances.

As an example for the header of an ontology, we present the header of the "Trip
Reservation Ontology”, used for specifying the "Book Ticket Web Service” and the
goal mentioned in the scenario. This ontology defines the necessary terminology for
describing trip and reservation related information.

namespace {_"http://example.org/tripReservationOntology#",

dc _"http://purl.org/dc/elements/1.1#",

loc _"http://example.org/locationOntology#",
po _"http://example.org/purchaseOntology#",
foaf _"http://xmlns.com/foaf/0.1/",

wsml _"http://www.wsmo.org/wsml/wsml-syntax#",
prs _"http://example.org/owlPersonMediator#"

}
ontology _ "http://example.org/tripReservationOntology"
nonFunctionalProperties
dc#title hasValue "Trip Reservation Ontology"
dc#creator hasValue _"http://example.org/foaf#deri"
dc#format hasValue "text/x-wsml"
endNonFunctionalProperties
importsOntology{ _"http://example.org/locationOntology",
_"http://example.org/purchaseOntology"}
usesMediator _"http://example.org/owlPersonMediator"

A namespace declaration can appear at the beginning of each WSML file. Such
a declaration may comprise the default namespace and abbreviations for other used

Towards Intelligent Web Services: WSMO 5

namespaces. The listing above contains the namespace declaration from the top of the
WSML file where the ”Trip Reservation Ontology” is specified. For simplicity, we will
omit the namespace declarations for the other listings presented in this paper.

Non-functional properties can be specified for every WSMO element and they de-
scribe information that do not affect the element functionality like title, creator, etc. An
ontology can import other ontologies either directly, when no conflicts need to be re-
solved, or indirectly, by using ooMediators, in case of data heterogeneities. The “Trip
Reservation Ontology”, imports two ontologies without any mediation and one OWL
ontology by using one oomediator.

The basic blocks of an ontology are concepts, relations, functions, instances, and
axioms. The examples provided in the next paragraphs for each of these components
are taken from the “’Trip Reservation Ontology”, except for the relation example, which

is taken part from the "Purchase Ontology”.

Concepts are defined by their subsumption hierarchy and their attributes, including
range specification. The range of the attributes can be a datatype or another concept.
There are two kinds of attribute definitions: constraining definitions declared using the
keyword of Type and inferring definitions declared using the keyword impliesType.
The extension of a concept can be defined or restricted by one or more logical ex-
pressions embedded in axioms. The corresponding axioms should be referred in the
dc#relation non-functional property of the concept. In the example below, the
concept tripFromAustria is subsumed by the concept trip and its definition
is completed with an axiom, tripFromAustriaDef, that specifies that a necessary
condition for an individual to be an instance of this concept is to have as value of its
origin attribute the location Austria.

concept trip
origin impliesType loc#location
destination impliesType loc#location
departure ofType _date
arrival ofType _date
concept tripFromAustria subConceptOf trip
nonFunctionalProperties
dc#relation hasValue tripFromAustriaDef
endNonFunctionalProperties
axiom tripFromAustriaDef
definedBy
forall {?x ,?origin}
(?x memberOf tripFromAustria
implies
?x[origin hasValue ?origin] and
?origin[loc#locatedIn hasValue loc#austrial).

Relations describe interdependencies between a set of parameters. A relation decla-
ration comprises the identifier of the relation and optionally: its arity, its superrelations,
the domain of its parameters, and a set of non-functional properties. Like for concepts,
axioms can be used for defining/constraining the relation extension.

Below is a relation that has a single argument, a credit card, and that holds when the
credit card is valid. Accompanying this relation is an axiom that compares the credit
card expiry date with the current date for establishing its validity.
relation validCreditCard(ofType creditCard)

nonFunctionalProperties
dc#relation hasValue ValidCreditCardDef
endNonFunctionalProperties

axiom ValidCreditCardDef definedBy
forall {?x, ?y} (

6 Feier, Polleres, Roman, Domingue, Stollberg, Fensel

validCreditCard(?x) impliedBy
?x[expiryDate hasValue ?y] memberOf creditCard and
neg (wsml#dateLessThan(?y, wsml#currentDate()))).

Functions are a special type of relations that have a unary range beside the set
of parameters. Besides the typical declaration for a relation, when declaring a func-
tion one must include an axiom that states the functional dependency. The function
ticketPrice is modeled as a relation with three parameters: the first one is a ticket,
the second one is a currency, and the third one is the result returned by the function: the
price of the ticket in the given currency.
relation ticketPrice (ofType ticket, ofType po#currency, ofType _integer)

nonFunctionalProperties
dc#relation hasValue {FunctionalDependencyTripPrice}
endNonFunctionalProperties
axiom FunctionalDependencyTicketPrice

definedBy
!- ticketPrice(?x,?y,?zl) and ticketPrice(?x,?y,?2z2) and 2zl != ?z2.

Instances are embodiments of concepts or relations, being defined either explicitly,
by specifying concrete values for attributes or parameters or by a link to an instance
store. Below there are two instance declarations, one being an instance of the concept
trip, and the other an instance of the relation ticketPrice.
instance tripInnVen memberOf trip

origin hasValue loc#innsbruck

destination hasValue loc#venice

departure hasValue _date(2005,11,22)

arrival hasValue _date(2005,11,22)
relationInstance ticketPrice(ticketInnVen, po#euro, 120)

Axioms are specified as logical expressions and help to formalize domain specific
knowledge. We already presented some examples of axioms.

4.3 Web Services

A Web service is defined by non-functional properties, imported ontologies, used me-
diators, one capability, and one or multiple interfaces. Below is the declaration of the
Book Ticket Web Service:

webService "http://example.org/bookTicketWebService"

importsOntology _"http://example.org/tripReservationOntology"
capability BookTicketCapability
interface BookTicketInterface

The capability of a Web service defines its functionality. It comprises the next el-
ements: non-functional properties, imported ontologies, used mediators, shared vari-
ables, precondition, postcondition, assumption, and effect.

For declaring the basic blocks of the Web service capability, one should take a closer
look at what the Web service offers to a client (postcondition), when some conditions
are met in the information space (precondition), and how the execution of the Web ser-
vice changes the world (effect), given that some conditions over the world state are met
before execution (assumption). Preconditions, assumptions, postconditions and effects
are expressed through a set of axioms. A set of shared variables can be declared, which

Towards Intelligent Web Services: WSMO 7

are implicitly all-quantified, and whose scope is the whole Web service capability. In-
formally, the logical interpretation of a Web service capability is: for any values taken
by the shared variables, the precondition and the assumption implies the postcondition
and the effect.

When its execution is successful, the ”Book Ticket Web Service” has as result a
reservation that includes the reservation holder and a ticket for the desired trip (post-
condition) if there is a reservation request for a trip with its starting point in Austria for
a certain person (precondition) and if the credit card intended to be used for paying is
a valid one and its type is either PlasticBuy or GoldenCard (assumption). As a conse-
quence of the execution of the Web service, the price of the ticket will be deducted from
the credit card (effect).

capability BookTicketCapability
sharedvariables {?creditCard, ?initialBalance, ?trip,
?reservationHolder, ?ticket}
precondition
definedBy
?reservationRequest|
reservationItem hasValue ?trip,
reservationHolder hasValue ?reservationHolder
] memberOf tr#reservationRequest and
?trip memberOf tr#tripFromAustria and
?creditCard[balance hasValue ?initialBalance
] memberOf po#creditCard.
assumption
definedBy
po#validCreditCard(?creditCard)and
(?creditCard[type hasValue "PlasticBuy"] or
?creditCard[type hasValue "GoldenCard"]).
postcondition
definedBy
?reservation memberOf tr#reservation|
reservationItem hasValue ?ticket,
reservationHolder hasValue ?reservationHolder]and
?ticket[trip hasValue ?trip] memberOf tr#ticket.
effect
definedBy
ticketPrice(?ticket, "euro", ?ticketPrice)and
?finalBalance= (?initialBalance - ?ticketPrice)and
?creditCard[po#balance hasValue ?finalBalance]

The interface of a Web service describes its behavior. It has two distinct compo-
nents: choreography, the description of the communication pattern that allows one to
consume the functionality of the Web service, and orchestration, the description of how
the overall functionality of the Web service is achieved by means of cooperation of
different Web service providers.

The underlying model for describing choreographies and orchestrations is based on
the Abstract State Machines methodology [17]. Thus, both choreography and orches-
tration descriptions have two parts: the state and the guarded transitions. The states of a
choreography/orchestration are represented by an ontology whose content is dynamical
(instances can be created and/or their values can be changed on-the-fly), while guarded
transitions are if-then rules that specify transitions between states. The state signature is
the non-dynamical part of the ontology. Due to space constraints we give here only an
informal description (graphical and textual) of the interface of the "Book Ticket Web
Service”.

8 Feier, Polleres, Roman, Domingue, Stollberg, Fensel

Choreography Orchestration W etwark

Book TicketPlasticEapehde distor v Plastic Biry Web Service

Eook Ticket GoldenCardblediste ! GoldenCard Web Semce

TegeTvatinn Teque st »
Book Tidcet
Web Bervice

credi card

Te servition

Te gative ack

Fig. 1. The "Book Ticket Web Service” interface

Three transition rules that describe the choreography of the service: the first one
checks whether there is a reservation request for a trip that starts in Austria and a ticket
for the desired trip in the Web service instance store. If this is the case, it creates a tem-
porary reservation for that ticket. The next step is to wait for a credit card information.
If it points to a valid credit card, a reservation is created (the second transition rule),
otherwise a negative acknowledgement is created (the third transition rule).

As already said, the ”"Book Ticket Web Service” accepts for payment PlasticBuy or
GoldenCard credit cards. Depending on the type of the received credit card, the "Book
Ticket Web Service” must interact with the corresponding payment service in order
for the payment to be done. Thus, two transition rules are necessary for describing the
orchestration of the service, one for each possible case. As can be seen in figure 1,
wwmediators are used to link the orchestration of the ”Book Ticket Web Service” with
each of the corresponding payment services.

4.4 Goals

A goal in WSMO is described by non-functional properties, imported ontologies, used
mediators, requested capability and requested interface. Besides ontologies, other goals
can be reused within the definition of a goal via ggMediators.

The main element that appears in the declaration of a goal is the requested capabil-
ity, which specifies the functionality required from a Web service. It is declared in the
same way as a Web service capability. The user has also the possibility to specify the

desired way of interacting with the Web service by declaring the requested interface.

Our scenario is that a user wants to buy a ticket from Innsbruck to Venice on a cer-
tain date. A goal is abstracted from this user desire that does not include the desired date
for the trip, because this information is not considered relevant in the Web service Dis-
covery phase. This goal is described in the listing below. In this case, the only element
of the requested capability the user is interested in, is its postcondition.

goal _"http://example.org/havingAReservationInnsbruckVenice"

importsOntology {

_"http://example.org/tripReservationOntology",

_"http://www.wsmo.org/ontologies/locationOntology"}
capability

postcondition

definedBy
?reservation|

Towards Intelligent Web Services: WSMO 9

reservationHolder hasValue ?reservationHolder,
item hasValue ?ticket] memberOf tr#reservation and
?ticket[trip hasValue ?trip] memberOf tr#ticket and
?trip[origin hasValue loc#innsbruck,
destination hasValue loc#venice] memberOf tr#trip.

4.5 Mediators

In the general case WSMO defines mediators by means of non-functional properties,
imported ontologies, source component, target component and mediation service, where
source and target component can be a mediator, a Web service, an ontology or a goal.
Currently the specification counts with four different types of mediators:

— ooMediators: import the target ontology into the source ontology by resolving all
the representation mismatches between the source and the target. The oomediator
owlPersonMediator is used by the “Trip Reservation Ontology” for importing

the "OWL Person Ontology”:

ooMediator "http://example.org/owlPersonMediator"
source _"http://daml.umbc.edu/ontologies/ittalks/person/"

target _"http://example.org/tripReservationOntology"
usesService _"http://example.org/OWL2WSML"

— ggMediators: connect goals that are in a relation of refinement and resolve mis-

matches between those;)))
— wgMediators: link Web services to goals and resolve mismatches. Such a mediator

connects the "Book Ticket Web Service” with the goal described in subsection 4.4:

wgMediator _"http://example.org/wgMed"
source _"http://example.org/BookTicketWebService"
target _"http://example.org/havingAReservationInnsbruckVenice"

— wwhMediators: connect several Web services for collaboration. The wwmediator
BookTicketPlasticBuyMediator makes possible the interaction between

the ”Book Ticket Web Service” and the “’PlasticBuy Web Service”.

wwMediator _"http://example.org/BookTicketPlasticBuyMediator"

source _"http://example.org/BookTicketWebService"
target _"http://example.org/PlasticBuyWebService"

5 Conclusions

This paper briefly introduced WSMO, one of the most salient efforts in the domain of
Semantic Web services. Semantic Web Services are a key application area for Intelligent
Agent Systems because of the necessity for semantic descriptions frameworks as a basis
for such Intelligent Systems. Thus, WSMO and its formalization WSML provide the
infrastructure for such systems.

Several implementations are already available or under development. The first ver-
sion of the Web Service Execution Environment (WSMX) has been available since
June 2004 at the SourceForge portal. Apart from WSMX which marks a reference ar-
chitecture and implementation for a WSMO compliant execution environment there al-
ready exist several other ready-to-use implementations and tools for WSMO. The Inter-
net Reasoning Service (/RS-1II) is an infrastructure for publishing, locating, executing

? *http://dam].umbc.edu/ontologies/ittalks/person/”

10 Feier, Polleres, Roman, Domingue, Stollberg, Fensel

and composing Semantic Web services, organized according to the WSMO framework.
WSMO Studio is a Semantic Web Service editor compliant with WSMO. The WSMO
Studio will be available as a set of Eclipse plug-ins that will allow easy reusability and
extension from 3rd parties. wsmo4j is a Java API and a reference implementation for
building Semantic Web services applications compliant with WSMO. Like WSMX, it
is also being developed as an Open Source project. The Semantic Web Fred [18] com-
bines combines agent technology with WSMO, in order to provide advanced support
for Semantic Web applications.

As future work, we plan to further investigate the way in which agent-based solu-
tions can be reused for achieving the automation of discovery, composition, and execu-
tion of Web services in the context of WSMO.

References

p—

Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American 284 (2001)
2. Klyne, G., Carroll, J.J.: Resource Description Framework (RDF): Concepts and abstract
syntax. Recommendation 10 February 2004, W3C (2004)
3. Brickley, D., Guha, R.V., eds.: RDF Vocabulary Description Language 1.0: RDF Schema.
(2004) W3C Recommendation 10 February 2004.
4. Dean, M., Schreiber, G., eds.. OWL Web Ontology Language Reference. (2004) W3C
Recommendation 10 February 2004.
5. WSML working group: WSML homepage (since 2004) http://www.wsmo.org/wsml/.
6. Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J.J., Nielsen, H., eds.: SOAP Version 1.2.
(2003) W3C Recommendation 24 June 2003.
7. Chinnici, R., Gudgin, M., Moreau, J.J., Schlimmer, J., Weerawarana(eds), S.: WSDL. Work-
ing draft, W3C (2004) Available from http://www.w3.org/TR/wsdl20.
8. Clement, L., Hately, A., von Riegen, C., Rogers(eds), T.: UDDI Version 3. Uddi spec
technical committee draft, OASIS (2004) Available from http://uddi.org/pubs/uddi_v3.htm.
9. Mcllraith, S., Son, T.C., Zeng, H.: Semantic Web Services. IEEE Intelligent Systems, Special
Issue on the Semantic Web 16 (2001) 46-53
10. Martin, D., ed.: OWL-S 1.1 Release. (2004) http://www.daml.org/services/owl-s/1.1/.
11. Lara, R., Roman, D., Polleres, A., Fensel, D.: A Conceptual Comparison of WSMO and
OWL-S. In: Proc. of the European Conf. on Web Services. (2004)
12. WSMO working group: WSMO homepage (since 2004) http://www.wsmo.org/.
13. Fensel, D., Bussler, C., Ding, Y., Omelayenko, B.: The Web Service Modeling Framework
WSMEF. Electronic Commerce Research and Applications 1 (2002)
14. WSMX working group: WSMX homepage (since 2004) http://www.wsmx.org/.
15. Baida, Z., Gordijn, J., Omelayenko, B., Akkermans, H.: A Shared Service Terminology for
Online Service Provisioning. In: Proc. of the 6th Int. Conf. on Electronic Commerce. (2004)
16. Preist, C.: A Conceptual Architecture for Semantic Web Services. In: Proc. of the Int.
Semantic Web Conf. (ISWC 2004). (2004)
17. Gurevich, Y. In: Evolving algebras 1993: Lipari guide. Oxford University Press, Inc. (1995)
9-36
18. Stollberg, M., Roman, D., Toma, L., Keller, U., Herzog, R., Zugmann, P., Fensel, D.: Se-
mantic Web Fred - Automated Goal Resolution on the Semantic Web. In: Proc. of the 38th
Hawaii Int. Conf. on System Science. (2005)

