
 
Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the

published version when available.

Downloaded 2024-05-25T13:05:50Z

 

Some rights reserved. For more information, please see the item record link above.
 

Title Automatic Location of Services

Author(s) Keller, Uwe; Polleres, Axel; Fensel, Dieter

Publication
Date 2005

Publication
Information

Uwe Keller, Rubén Lara, Holger Lausen, Axel Polleres, Dieter
Fensel "Automatic Location of Services", Proceedings of the
2nd European Semantic Web Symposium (ESWS2005), 2005.

Item record http://hdl.handle.net/10379/416

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/


Automatic Location of Services

Uwe Keller1, Rub́en Lara2, Holger Lausen1, Axel Polleres1, and Dieter Fensel1

1 Digital Enterprise Research Institute (DERI) Innsbruck, Austria.
<firstname>.<lastname>@deri.org

2 Tecnoloǵıa, Informacíon y Finanzas, Madrid, Spain.
rlara@afi.es

Abstract. The automatic location of services that fulfill a given need is seen as
a key step towards dynamic and scalable integration. In this paper we present a
model for the automatic location of services that considers the static and dynamic
aspects of service descriptions and identifies what notions of match and tech-
niques are useful for the matching of both. Our model presents three important
features: ease of use for the requester, efficient pre-filtering of relevant services,
and accurate contracting of services that fulfill a given requester goal. We further
elaborate previous work and results on Web service discovery by analyzing what
steps and what kind of descriptions are necessary for an efficient and usable auto-
matic service location. Furthermore, we analyze the intuitive and formal notions
of match that are of interest for locating services that fulfill a given goal. Al-
though having a formal underpinning, the proposed model does not impose any
restrictions on how to implement it for specific applications, but proposes some
useful formalisms for providing such implementation.

1 Introduction

Current Web service technology, based on SOAP [22], WSDL [3] and UDDI [1], only
addresses the syntactical aspects of a Web service and, therefore, only provides a set of
rigid services that cannot adapt to a changing environment without human intervention.
The human programmer has to be kept in the loop and scalability as well as economy
of Web services are limited [5]. The vision of semantic Web services is to describe
the various aspects of a Web service using explicit, machine-understandable semantics,
enabling the automatic location, combination and use of Web services. The work in the
area of Semantic Web is being applied to Web services in order to keep the intervention
of the human user to the minimum. Semantic markup can be exploited to automate the
tasks of discovering services, executing them, composing them and enabling seamless
interoperation between them [4], thus enabling intelligent Web services.

The description of Web services in a machine-understandable fashion is expected
to have a great impact in areas of e-Commerce and Enterprise Application Integration
(EAI), as it can enable dynamic and scalable cooperation between different systems and
organizations.

An important step towards dynamic and scalable integration, both within and across
enterprise boundaries, is the mechanization of service discovery. Automatically locating
available services to perform a given business activity can considerably reduce the cost



of making applications and businesses work together and can enable a much more flex-
ible integration, where providers are dynamically selected based on what they provide
and possibly other non-functional properties such as trust, security, etc.

Scope of the paper. In this paper we will address the dynamic location of services
that can fulfill a given request. Hereby, we concentrate on the most fundamental as-
pect of service descriptions for the problem at hand: the service capability, i.e. what
functionalitythe service provides. Approaches to automatic service location must pre-
cisely analyze what kind of service descriptions can be used for capturing the static
and dynamic aspects of a given service, and how such descriptions can be exploited for
efficiently and accurately locating a requested service. While a number of proposals are
available in our area of interest e.g. [2, 6, 20, 14, 17], none of them has discussed these
aspects in depth. Therefore, we will first define a model that takes into account prag-
matic considerations and defines the border line between different steps involved in the
process of locating services, namely: goal discovery, goal refinement, service discovery,
and service contracting. We will focus on service discovery and service contracting, an-
alyzing the relevant notions of match. Although different notions of match have been
studied in the literature (e.g. [14, 23, 17]), some issues involved in the identification of
such notions have not been addressed and will be discussed in this paper.

The paper is structured as follows: Section 2 discusses static and dynamic aspects
of service descriptions and our assumptions on the problem domain, and it provides
a model for the automatic location of services. Service discovery will be discussed in
Section 3, and the relevant notions of match will be presented. Service contracting will
be addressed in Section 4. The work available in the areas of Web service discovery
and software component retrieval will be briefly discussed in Section 5. Finally, we
conclude the paper and describe our future work in Section 6.

2 A Model for the Automatic Location of Services

A workable approach to automatic service location must precisely define its concep-
tual model and the particular assumptions underlying the proposed solution. For this
purpose, we start by providing a common understanding of what a service is and the
levels of abstraction in its description based on [18], as well as our assumptions on the
elements involved in the location process.

Definition of Service. Recently, it has been pointed out in [18] that the notion of
service is semantically overloaded. Several communities have different interpretations
which makes it difficult to understand and relate single approaches and exchange ideas
and results. In order to reach a common understanding of the problem we address here,
we need to precisely define the termserviceand, therefore, what kind of entities we aim
at locating. In this document, we use the following interpretation for the termservice,
as described in the conceptual architecture for semantic Web services presented in [18]:
Service as provision of value in some domain. This definition regards a service as apro-
vision of value(not necessarily monetary value) in some given domain, independently
of how the supplier and the provider interact. Examples of services in this sense are



the provision of information about flight tickets or the booking of a trip with certain
characteristics by a tourism service provider.

Usually, a service providerP does not only provide one particular serviceS, but
a set of coherent and logically related services. For instance, a hotel usually does not
only provide the possibility to book a particular room at a particular date for a given
number of nights, but instead it will offer the general service of booking rooms. Thus,
a provider will be interested in advertisingall the servicesit is able to provide, i.e.
a setAP of services. Following the terminology from [18], we call thiscollection of
servicesanabstract serviceoffered by a provider. The smallest unit of advertisement is
considered to be an abstract service.

In order to deliver a service, a service providerP usually needs certain information
from the requester. For instance, a hotel might require the name of the person booking
the room, the requested room features, and a valid credit card number as input informa-
tion in order to book a room. This input datai1, . . . , in will determine whatconcrete
service[18] S ∈ AP has to be provided byP .

Description of requester needs.Following the approach taken by WSMO [13], a
client specifies his needs in terms of what he wants to achieve by using a concrete
serviceS ∈ AP of some providerP . Our assumption is that a user will in general care
aboutwhat he wants to get fromP , but not about how it is achieved. The conceptual
element which formally reflects this desire in WSMO is the so-calledgoal. In particular,
goals describe what kind of outputs and effects are expected by the client.

A formal Model for Services and Goals. We use a state-based perspective to for-
malize the concepts involved in the process of automatically locating services. A state
w ∈ U (whereU is the set of all possible states) determines the properties of the real-
world and of the available information at some point in time e.g. the number of rooms
currently available in a given hotel. An abstract serviceA is considered as a set of state
transformations i.e. a relation on the state spaceU . Each concrete serviceS ∈ A rep-
resents a concrete state transformationS = (w, w′), with w, w′ ∈ U . In particular, the
delivery of a serviceS determines the outputs and effects which can be observed by the
requester; both can be considered as sets of objects (from some universeU ), that are
attached tow′. Formally, we denote these setsoutS(w′) ⊆ U andeff S(w′) ⊆ U .

As mentioned above, whether the provision of a serviceS is possible depends
on some informationi1, . . . , in provided by the service requester. What information
i1, . . . , in is needed is different for each providerP and each abstract serviceAP pro-
vided byP . Hence,A can be considered as a family of relationsA(i1, . . . , inA) ⊆
U × U where each relation of the family is determined by the concrete input infor-
mationi1, . . . , inA that the service requester provides i.e. the service description must
specifywhatcan be delivered by the providerunder which circumstances. Goals can be
formally represented as two distinct sets of objects denoting the required set of outputs
out(G) ⊆ U and effectseff (G) ⊆ U .

Eventually, a service requester is interested in finding service providersP that
advertised an abstract serviceA(i1, . . . , inA) such that there is a concrete service
S = (w,w′) ∈ A(i1, . . . , inA) that actually resolves the requesters goalG, i.e. the



serviceS achieves a (final) statew′ ∈ G in which the sets of requested and provided out-
putsoutS(w′), out(G) as well as the respective effectseff S(w′), eff (G) match. What
this precisely means is described in detail in Section 3.

Since each elementS = (w, w′) of A(i1, . . . , inA) is determined by the respective
initial statew ∈ dom(A(i1, . . . , inA))1 and the input informationi1, . . . , inA , whether
a provider can provide a given concrete service cannot be determined without knowing
dom(A) andi1, . . . , inA

2. Unfortunately, we cannot assume thatA(i1, . . . , inA) (and
thereforedom(A(i1, . . . , inA))) is static over time. In general, the set will dynamically
evolve over time: a hotel will not be able to book a room with a single bed on a specific
date if all such rooms in the hotel are already booked on this date i.e. this concrete
service contained inA(i1, . . . , inA) cannot be provided.

We identify two sources of dynamics for the setA of concrete services that can
be provided by a given service provider: (1) the input informationi1, . . . , inA that the
requester is able and willing to provide and (2) the respective set of concrete services
A(i1, . . . , inA) that can currently be delivered for this input. Such dynamics must be
considered for determining matches betweenA and a user goalG. Due to this dynam-
ics, some interaction between the parties involved in the matching process – service
requester and provider – will be needed in general to determine if a concrete serviceS
fulfilling the requester goal can be provided. This interaction involves communication
between the parties and, thus, can be expected to be rather costly. However, it is this
communication which enables location results with high precision. We believe that a
scalable framework for finding suitable services must address this problem. Our solu-
tion to this problem is to split the process into two successive steps, as done in [18]: A
first step identifies possible candidate services using less accurate andstaticdescriptions
of abstract services (so-calledabstract capabilities), and a second step which applies
precise (and possibly dynamic) service descriptions (so-calledcontracting capabilities)
and the costly checks (involving communication) of the candidates identified in the first
step. We call the first stepservice discovery, whereas the second step is calledservice
contracting.

The abstract capability of a service is defined as the set of states that canpotentially
be reached by the provision of such service, independently of the afore-mentioned dy-
namic factors. It describes onlywhatan advertised service can provide but no longer un-
der which circumstances a concrete serviceS can actually be provided. The contracting
capability describes what concrete services can be delivered under what circumstances.
It fully describes the family of relationsA(i1, . . . , inA). This might involve interaction
between both parties for determining if the input available from the requester side can
indeed lead to a statew′ fulfilling the requester goal.

Assumptions. In order to define a model for the overall location process (including ser-
vice discovery and contracting), we need to make clear our assumptions on the domain
from which we derive the model. Such assumptions are discussed below:

1 Heredom(A(i1, . . . , inA)) denotes the domain of the state-space relationA(i1, . . . , inA)
2 More generally, we should consider only input informationi1, . . . , inA the requester is able to

provide andwilling to discloseto the provider of an abstract serviceA. As discussed in [16],
this might involve the use of information disclosure policies and a trust negotiation process.



Pre-defined goals.Service requesters are not expected to have the required back-
ground to formalize their goals. Thus, either goals can be expressed in a language they
are familiar with (like natural language) or appropriate tools should be available which
can support requesters to express their precise needs in a simple manner. Hence, we
expect that pre-defined, generic, formal and reusable goals will be available to the re-
quester, defining generic objectives requesters may have. They can be refined (or param-
eterized) by the requester to reflect his concrete needs, as requesters are not expected to
write formalized goals from scratch. We assume that there will be a way for requesters
to easily locate such pre-defined goals e.g. keyword matching.

Abstract capabilities.Abstract capabilities will abstract contracting capabilities in
the sense that they abstract from the input information that is provided by the requester,
as well as from the dynamics of the available set of concrete services for this input and
at a specific point in time. Abstract capabilities are expected to be complete but not al-
ways correct [18]: every concrete serviceS that can be provided will be a model of the
description, but there might be concrete services that are models of the description but
cannot be provided byP . For example, a tourism service that provides flights within
Europe (but not all possible flights) will describe its abstract service as being able to
provide any flight within Europe. However, there might be flights that are a model of
this description i.e. they are flights within Europe, but that cannot be provided byP for
some reason. This incorrectness is a consequence of the abstraction necessary to make
descriptions manageable and the matching of candidate services efficient. Therefore,
whether a concrete service can indeed be provided will be determined during the con-
tracting phase i.e. during the contracting phase only providers that can actually provide
a suitable concrete serviceS will be matched.

Contracting capabilities.A service provider will describe the concrete services he
can provide by describing itscontracting capability. The contracting capability will also
include the description of what conditions have to be fulfilled for a successful service
provision, as well as the relation of the required input to the results of the service. The
abstract capability might be automatically derived from the contracting capability and
both must be consistent with each other.

It is assumed that the requester goal resulting from refining a pre-defined goal will
include the information necessary for contracting, such as the input information the
requester can or is willing to offer to a provider. We do not impose that this (possibly
big) set of information has to be listed for every goal, but it can be made available
to the discovery process by other means e.g. an additional service that provides the
information that the requester has available and is willing to disclose. A service will
not be selected if the requester is not able to provide all the information required by the
provider to actually deliver the required concrete service.

Finally, the communication between requesters and providers will be transparent to
us in the descriptions of contracting capabilities i.e. we will not describe and deal with
service choreographies but only with a logic representation of the communication act.

Conceptual Model for Service Location. Based on our formal model for services and
goals, and the assumptions on the domain given above, we provide a conceptual model
for the semantic-based location of services that includes the reuse of pre-defined goals,
the discovery of relevant abstract services, and the contracting of concrete services to



fulfill a requester goal. Figure 1 depicts such conceptual model. The different steps of
the overall process are:

(1) Goal Discovery:Starting from a user desire (expressed using natural language or
any other means), goal discovery will locate the pre-defined goal that fits the requester
desire from the set of pre-defined goals, resulting on a selected pre-defined goal. Such
a pre-defined goal is an abstraction of the requester desire into a generic and reusable
goal.(2) Goal Refinement:The selected pre-defined goal is refined, based on the given
requester desire, in order to actually reflect such desire. This step will result on a for-
malized requester goal.(3) Service Discovery:Available services that can, according
to their abstract capabilities, potentially fulfill the requester goal are discovered. As the
abstract capability is not guaranteed to be correct, we cannot assure at this level that
the service will actually fulfill the requester goal.(4) Service Contracting:Based on
the contracting capability, the abstract services selected in the previous step will be
checked for their ability to deliver a suitable concrete service that fulfills the requester’s
goal. Such services will eventually be selected.

Fig. 1. A conceptual Model for the Dicovery Process

Let us take as an example a requester who wants to find information about flights
from Innsbruck to Madrid on December 21st, 2004. Such requester can express his
desire as a text of the form ”Search information about flights from Innsbruck to Madrid
on December 21st, 2004”. This text can be used to perform keyword-based matching of
existing pre-defined goals, such as a pre-defined goal for searching flight information.

Once such formal pre-defined goal has been located, it will be refined to reflect
the concrete origin and destination given by the requester, as well as the date. This
refinement can be done manually (supported by appropriate tools) or automatically from
the textual desire.

If a tourism service provider is available and it describes that it can provide flights
from any place in Austria to any other place in Europe (as its abstract capability), this



service will be considered in the contracting phase. Notice that at this level the dynamics
of the service provision e.g. availability of seats is not considered. Furthermore, we do
not expect the service provider to accurately describe all the actual flights it can provide
information for, as in general it is not realistic to expect flight information providers to
replicate their flight databases in the service description. They will, instead, provide an
abstraction of what they can provide.

During the contracting phase it will be checked whether the selected serviceA can
indeed provides the requested flight information: it will be tested ifA can provide infor-
mation about flights from Innsbruck to Madrid on the given date. For that purpose, the
contracting capability of the service will be used. It might include logic predicates that
will actually query the database of the provider to check whether the requested flight in-
formation is available. In addition, in case the provider requires extra information from
the requester to deliver its service (e.g. personal data of the customer) it will be checked
whether the requester can provide such information.

If all the above criteria are fulfilled, the service will be selected and eventually the
concrete service provided. In the following sections we concentrate on the notions of
match involved in service discovery and service contracting. A more detailed analysis
of goal discovery and refinement is beyond the scope of this paper.

3 Service Discovery

As we have sketched in Section 2, the capability of an abstract service can be consid-
ered on various levels of abstraction: The most fine-grained perspective on an abstract
serviceA is to consider it as a family of relations on a state spaceU . In our discussion,
we identified the problem of dynamics in abstract service descriptions when performing
accurate and efficient matching and proposed a solution based on a separation of con-
cerns in the overall location process: a service discovery phase based on more abstract
and less accurate capability descriptions to identify possible candidates, followed by a
service contracting step based on precise capability descriptions which might involve
interaction between service requester and provider.

In this section, we discuss the description of abstract services to be used during the
first step of the location process, namelyabstract capabilitiesof services. An abstract
capability of an abstract service is a description which does not depend on dynamic
factors, i.e. the current state of the world as well as the requester input needed by the
provider. The abstract capability describes onlywhat an advertised abstract serviceA
can potentially deliver but no longer under which circumstances the single services
S ∈ A can be actually provided.

The proposed modelling of abstract capabilities has been designed in a way such
that it provides a formal yet comprehensive model of the description of service capa-
bilities and goals. One particular design goal has been the independence of the formal
framework from specific logics. For this reason, we chose a set-based approach for the
description of abstract services and goals. How to ground this modelling and discovery
approach in logics is shown in [10] (using a slightly different terminology).

Modelling Abstract Services by means of abstract Capabilities.A (concrete)ser-
vice S (of an abstract serviceA(i1, . . . , inA)) corresponds to a state transformation



on the state spaceU : when starting in a specific statew ∈ U we end up in a
statew′ ∈ U where the world has changed (some effects are observable) and some
output has been provided to the user. Both effectseff S(w, i1, . . . , inA) and outputs
outS(w, i1, . . . , inA) can be seen as sets of objects depending on the initial statew and
the input informationi1, . . . , inA which has been provided to the service provider by
the service requester inw. The circumstances under which a serviceS can be delivered
by the provider are represented byw andi1, . . . , inA . For example, the description of
a concrete service provided by a European airline could be that a business-class flight
is booked for the male passenger James Joyce on January 5th, 2005 from Dublin to
Innsbruck, and 420 Euros are charged on a MasterCard with number 01233.

If we abstract the description of anabstract serviceA from the dependency on the
contained concrete services, on the provided inputsi1, . . . , inA , and on the particular
initial statesw ∈ dom(A(i1, . . . , inA)), the description will only specify which objects
we can expect from the abstract service as effectseff A and as outputsoutA. For ex-
ample, an abstract description of a European airline could state that the airline provides
information about flights within Europe as well as reservations for these flights, but not
what input has to be provided and how this input will determine the results of the service
provision. In general, we expect completeness but not necessarily correctness of the ab-
stract capability: every concrete service provided by an abstract service should be cov-
ered by the abstract capability, but there might be services which are models of the ab-
stract capability but cannot be delivered as part of the abstract serviceA by the provider
(since we abstract from the circumstances under which a service can be provided). More
formally, we assume

⋃
i1,...,inA

⋃
w∈dom(A(i1,...,inA )) eff S(w, i1, . . . , inA) ⊆ eff A

and
⋃

i1,...,inA

⋃
w∈dom(A(i1,...,inA )) outS(w, i1, . . . , inA) ⊆ outA. Abstracting fur-

ther beyond the unions over sets for the single initial statesw and input values
i1, . . . , inA might in particular be helpful for a provider to simplify the description of
abstract capabilities further, since it allows to skip some details on specific constraints of
the delivered objects. However, the more abstraction is used beyond these unions (e.g.
the airline only specifies to provide tickets for flights all over the world), the less ac-
curate the descriptions of what the service provider is actually able to provide become.
Goalsspecify the desire of a client that he wants to have resolved after consuming a ser-
vice. They describe the information the client wants to receive as output of the service
as well as the effects on the state of the world that the client intends to achieve by using
the service. This desire can be represented as sets of elements which are relevant to the
client as the outputs and the effects of a service provision. According to the WSMO
model [13], goals refer to the state which is desired to be reached by service execution.

According to this view, abstract services and goals are both represented assets of
objectsduring the service discovery step. The single descriptions of these sets refer to
ontologies that capture general knowledge about the problem domains under consider-
ation. Hence, the objects described in some abstract service description and the objects
used in some goal description can or might be interrelated in some way by ontologies.
Eventually, such interrelation is needed to establish a match between goals and services.

An important observation in our approach is that the description of a set of objects
for representing a goal or an abstract capability can be interpreted in different ways
and, thus, the description by means of a set isnot semantically unique: A modeler



might want to express that eitherall of the elements that are contained in the set are
requested (goal) or can be delivered (abstract capability), or that onlysomeof these
elements are requested (or can be delivered). For this reason, a modeler has to explicitly
specify his intention when describing the set of relevant objects for a goal or abstract
capability. This intention will strongly affect if we consider two descriptions to match.
Therefore, goals as well as abstract capabilities are pairsD = (RD, ID) whereRD is
the set of objects which are considered as relevant for the description andID ∈ {∀, ∃}
is the respective (universal or existential) intention. For the sake of simplicity, we will
consider in the following only outputs of a service and do not treat effects explicitly.
The separation of effects and outputs is conceptual and effects can be dealt with in the
very same way. Nonetheless, it is useful to distinguish both since they are conceptually
different and we believe that it is beneficial for users to have the ability to applydifferent
criteria for matchingoutputs and effects in a service discovery request. Augmenting the
model discussed here accordingly is a straightforward endeavor.

Semantic Matching. In order to consider a goalG and an abstract serviceA to match
on a semantic level, the setsRG andRA describing these elements have to be interre-
lated; precisely spoken, we expect that some set-theoretic relationship betweenRG and
RA exists. The most basic set-theoretic relationships that might be considered are the
following: RG = RA, RG ⊆ RA, RA ⊆ RG , RG ∩RA 6= ∅, RG ∩RA = ∅.

These set-theoretic relationships provide the basic means for formalizing ourin-
tuitive understanding of a matchbetween goals and abstract services. For this reason,
they have been considered to some extent already in the literature, for instance in [14]
or [17], in the context of Description Logics-based service matchmaking.

Intention ofG / A IA = ∀ IA = ∃

IG = ∀

RG = RA Match
RG ⊆ RA Match
RG ⊇ RA ParMatch

RG ∩RA 6= ∅ ParMatch
RG ∩RA = ∅ Nonmatch

RG = RA PossMatch
RG ⊆ RA PossMatch
RG ⊇ RA ParMatch

RG ∩RA 6= ∅ PossParMatch
RG ∩RA = ∅ Nonmatch

IG = ∃

RG = RA Match
RG ⊆ RA Match
RG ⊇ RA Match

RG ∩RA 6= ∅ Match
RG ∩RA = ∅ Nonmatch

RG = RA Match
RG ⊆ RA PossMatch
RG ⊇ RA Match

RG ∩RA 6= ∅ PossMatch
RG ∩RA = ∅ Nonmatch

Fig. 2. Interaction between set-theoretic criteria, intentions and our intuitive understanding of
matching.

On the other hand, we have to keep in mind that in our model these sets only capture
part of the semanticsof goal and service descriptionsD, namely the relevant objects for
the service requester or service provider. Theintentionsof these sets in the semantic de-
scriptionsD is not considered but clearly affects whether a certain existing set-theoretic
relationship betweenRG andRA is considered to actually correspond to (or formalize)



our intuitive understandingof a match in the real-world. Therefore, we have to consider
the intentions of the respective sets as well. Figure 2 gives an overview of the single
set-theoretical relations as well as their interpretation3 as matches when considering the
request and provider intentions. In the table we distinguish several forms of matches: A
match (Match) means thatA completely satisfiesG, a partial match (ParMatch) means
thatA partially satisfiesG and additional abstract services would be required to com-
pletely satisfy the request, a possible match (PossMatch) means that there might be
an actual match given a more detailed description (at contracting time) of the abstract
service, a possible partial match (PossParMatch) means that there might be a partial
match given more detailed description (at contracting time) of the abstract service or
a non-match (Nonmatch). Due to space restrictions, we only briefly discuss some en-
tries from the table. A detailed discussion can be found in [10]: (1)IG = ∀, IA = ∀,
RG ⊆ RA: The requester wants to get all the objects specified in inRG (IG = ∀),
whereas the provider claims that he is able to deliver all the objects specified inRA
(IA = ∀). In this case, the requester needs are fully covered by theA since all the
requested objectsRG can be delivered by the abstract service according to its abstract
capability. (2)IG = ∀, IA = ∀, RG∩RA 6= ∅: The requester wants to get all the objects
in RG , whereas the provider claims thatA is able to deliver all the objects specified in
RA. In this case, the requester needs cannot be fully satisfied byA. At best, theA can
contribute to resolve the desire of the client. Thus, we consider this case as apartial
match. (3) IG = ∀, IA = ∃, RG ⊆ RA: The requester wants to get all the objects in
RG , whereas the provider claims he is only able to deliver some of the objects inRA. In
this case, we cannot determine from the given descriptions whether there is a match or
not. However, it might turn out when examining a more detailed description there is a
match. Such detailed description is available during service contracting (see Section 4).
Hence, we consider this as apossible match.

Discussion.The proposed modelling approach is based on set theory and ontolo-
gies for capturing domain knowledge. By abstracting from dynamic aspects of abstract
services, we provide static and general abstract capability descriptions. All the infor-
mation necessary for checking a match is already available when abstract service de-
scriptions are published, and no interaction with any of the involved parties (requester
and provider) is needed for this discovery step. On the other hand, the accuracy we can
achieve when is limited. Hence, this discovery step based on such simple descriptions
allows an efficient identification of candidate abstract services, but does not guarantee
that a matched abstract service will deliver a concrete service fulfilling the requester
goal. Abstraction can be used as a means to simplify the description of abstract services
by the provider. The overall model is simple, comprehensive and can be implemented
in a logical framework [10]. However, the model itself is not based on a specific logical
language. The concept of intentions in set-based capability and goal descriptions has
not been considered in the literature so far and gives the modeler additional freedom
in modelling. Eventually, the use of a set-based model for abstract capabilities can en-
able the use of Description Logics for classifying and efficiently discovering abstract
services to be considered for service contracting. This idea is further elaborated in [12].

3 Please note, that when assigning the intuitive notions we assume that the listed set-theoretic
properties betweenRG andRA are thestrongestones that actually hold betweenRG andRA.



4 Service Contracting

In this section we present service contracting, the last step in the conceptual model pre-
sented in Section 3. For service contracting, only the services discovered as discussed
in the previous section will be considered. As mentioned above, service contracting will
exploit the contracting capability of such services, interpreted as a family of relations
A(i1, . . . , inA) ⊆ U ×U wherei1, . . . , inA is the input information that has to be made
available by the requester.

A contracting capability will describe what input information is required for provid-
ing a concrete service and what conditions it must fulfill (i.e.service preconditions, de-
noted byApre(i1 . . . inA)), and what conditions the objects delivered fulfill depending
on the input given (i.e.service postconditions, denoted byApost(i1 . . . inA , x) wherex
denotes objects that are delivered by a service execution with given input values. We
formalize a contracting capability of an abstract serviceas as follows:

A : ∀x, i1 . . . inA .(as(x, i1 . . . inA) ↔ Apre(i1 . . . inA) ∧Apost(i1 . . . inA , x)) (1)

whereas(x, i1 . . . inA) represents what objectsx the service will deliver for a given
input seti1 . . . inA . Therefore, the dependency of the service results on the input given
is explicitly described. Please note that according to (1) the service is not considered
to deliver anything meaningful if the precondition can not be fulfilled by the input pro-
vided by the requester. As the dependency on the initial state (e.g. availability of rooms
at request time) is dynamic over time, the evaluation ofas(x, i1 . . . inA) will require
interaction with the provider. A goalG is modelled in terms of a predicateg(x) that
describes the relevant objects for the requester.

Single or multiple concrete services.We can enrich the set of matching notions pre-
sented in the previous section with an orthogonal dimension: we can express that we
can satisfy a particular matching notion wrt. a single concrete service as well as wrt.
an arbitrary number of concrete services. This results in additional matching notions
that capture additional semantics in a given requester goal. Let us take a requester goal
given by the following informal text: ”I want to know all flights from Innsbruck to
Madrid between 12/10/2004 and 14/10/2004” and an abstract service with the follow-
ing (informal) capability: ”The service provides information about all flights from any
place in Austria to any place in Spain on any specific date. Therefore, a single concrete
service cannot fulfill the requester goal, but a set of successive concrete services (of the
same abstract service) can together fulfill the requester goal: one for each day in the
requested period of time. These concrete services correspond to different input infor-
mation provided by the requester. This can be seen as a simple form of composition,
but it can still be captured in our contracting framework and in the definition of the for-
mal proof obligations that have to be checked to determine whether concrete services
fulfilling the goal can be contracted.

Extending the set-based modelling.The intuitive notions of match that can be con-
sidered at contracting time will be the same as in Figure 2, except for thepossible



matchandpossible partial matchnotions; as contracting will precisely determine what
concrete services can be provided, we can fully determine whether a service fulfills
the requester goal. However, as we introduce the dependency on the input information
in the contracting capability, we cannot model our notions of match in terms of set-
theoretic relations. Therefore, we replace the set-theoretic relations by the following
logical relations, whereO is the set of ontologies that give the terminology used by
both descriptions:

1. RG = RA for a single concrete service:

A,G,O |= ∃i1, . . . , inA .(∀x.(g(x) ↔ as(x, i1 . . . inA))) (2)

For multiple concrete services:

A,G,O |= ∀x.(∃i1, . . . , inA .(g(x) ↔ as(x, i1 . . . inA))) (3)

2. RG ⊆ RA for a single concrete service:

A,G,O |= ∃i1, . . . , inA .(∀x.(g(x) → as(x, i1 . . . inA))) (4)

For multiple concrete services:

A,G,O |= ∀x.(∃i1, . . . , inA .(g(x) → as(x, i1 . . . inA))) (5)

3. RA ⊆ RG for a single concrete service:

A,G,O |= ∃i1, . . . , inA .(∀x.(g(x) ← as(x, i1 . . . inA))) (6)

For multiple concrete services:

A,G,O |= ∀x.(∃i1, . . . , inA .(g(x) ← as(x, i1 . . . inA))) (7)

4. RG ∩RA 6= ∅ for a single concrete service:

A,G,O |= ∃i1, . . . , inA .(∃x.(g(x) ∧ as(x, i1 . . . inA))) (8)

For multiple concrete services the proof obligation for this matching criterion is
logically equivalent to the one used for a single concrete service.

If none of the above holds, then the service cannot provide any of the required
results, which is similar to the set-theoretic relationRG ∩RA = ∅.

These relations (together with the respective intentionsIA = ∀, IA = ∃, IG = ∀,
andIG = ∃) can be used for precisely determining if the service fulfills the goal given.

Notice that the input involved in the relations above has to be made available by
the requester. This does not impose that the requester has to list for every goal all the
information he has available, but he can for example offer a service that provides his
available information on demand. In addition, some input information can automatically
be extracted from the goal description e.g. if the requester wants to fly from Innsbruck
to Madrid we already know that he can provide Innsbruck as the departure location and
Madrid as the arrival location. However, how this information is made available to the



contracting process is beyond the scope of the paper, and it is assumed that it will be
available in some way during the contracting phase.

In the logical relations above we do not put any restriction on the logical expres-
sivity allowed, as our intention is to formalize the intuition behind service contracting.
Similar relations have been formalized using Transaction Logic and implemented using
FLORA-2 in [11] and [12].

Contracting based on the above formalizations will in general involve communica-
tion with the provider and will be expensive. For example, we can determine whether
a given flight can be booked by communicating with the provider, as such availability
is dynamic over time and, furthermore, it is not realistic to expect an airline to include
its complete flights database as part of the contracting capability description. However,
such contracting will be only attempted for abstract services that have been efficiently
filtered at discovery time and that are already known as relevant for the goal at hand.

5 Related Work

Software Component Retrieval. The problem of semi-automatically retrieving soft-
ware components is very similar to the automatic location of services. Specification
matching has been proposed in several works e.g. [8, 9, 19, 23] to evaluate how soft-
ware components relate to a given query i.e. user’s need. Specification matching relies
on the axiomatization of software components and user queries. A formal (logical) re-
lation is then defined and whether a given query and component satisfy this relation is
checked. Such a relation must capture the notion of reusability i.e. if the relation holds
for formally specified components and queries, it means that the component can be
reused to solve the problem captured by the query.

The work on software component retrieval has not defined a conceptual model for
the location of relevant components, but only different notions of match for a given
query and a given component have been studied [12]. While such notions of match
focus on locating a software component that can be used in the place where the soft-
ware component represented by the query could, in service discovery we focus on what
results can be delivered by the service. Therefore, the notions of match studied for
software component retrieval have to be adapted to the Web services domain. Service
contracting is not directly considered, as it is outside the application area of software
component retrieval. A more detailed account of the work on software component re-
trieval and its relation to service discovery is given in [12].

Automatic Web Service Discovery.A number of proposals for using Description Log-
ics [15] and OWL-S [4], or similar descriptions for the automatic discovery of services
are available [17, 14, 2, 6]. However, none of them provides a conceptual model and
they regard discovery as a one step process. In addition, these approaches are not suit-
able for contracting as they do not employ rules for describing the relation between the
results of the service and the input given.

METEOR-S discovery [21] is very similar to the approaches mentioned above, but
it uses request templates similar to our pre-defined goals. It also annotates service reg-
istries, specializing them on a given domain and exploiting such annotations during



discovery. However, it does not define a conceptual model and it is not suitable for
contracting.

LARKS [20] deals with the description of agent capabilities and requests4 and the
matchmaking of those. The discovery model used in LARKS defines different filters of
different complexity and accuracy, allowing the user to select the trade-off between the
efficiency and accuracy he needs. However, this model does not address the problem of
the different levels of abstraction that are expected in service descriptions, and does not
discuss how the requests will be defined by users. Furthermore, it does not consider the
contracting of services.

For service discovery, none of the afore-mentioned proposals has discussed the in-
tuitive notions of match a requester or a provider have in mind when requesting or
advertising a service i.e. the intentions. The work in [7] discusses variance in service
discovery, a complementary aspect to the intentions we have discussed in this paper.

Our previous work on service discovery and contracting [11] already offered a dis-
tinction between these two steps. We have built on top of it and examined the conceptual
model described in [18] to elaborate a comprehensive conceptual model including both
aspects and to discuss the notions of match involved.

6 Conclusions and Future Work

In this paper we presented a model for the automatic location of services that considers
the static and dynamic aspects of service descriptions and identifies what notions of
match and techniques are useful for the matching of both. Our model presents three im-
portant features: ease of use for the requester, efficient pre-filtering of relevant services,
and accurate contracting of services that fulfill a given requester goal. We further elab-
orated previous work and results on Web service discovery by analyzing what steps and
what kind of descriptions are necessary for an efficient and usable automatic service
location. Furthermore, we analyzed the intuitive and formal notions of match that are
of interest for locating services that fulfill a given goal. Although having a formal un-
derpinning, the proposed model does not impose any restrictions on how to implement
it for specific applications, but proposes some useful formalisms for providing such im-
plementation. Recently we started with the prototypical implementation of the proposed
framework. As soon as the implementation of the prototype will be completed, we will
start with the evaluation of our model based on concrete use cases. Further refinement
of the model and the respective implementation based on the empirical results obtained
from our experiments is part of our future work.

Acknowledgements.We would like to thank all members of the WSMO and WSML
Working Groups for fruitful discussions. In particular, Michael Kifer contributed signif-
icantly in discussions of proposed service description and discovery model. This work
has been supported by the SFI (Science Funds Ireland) under the DERI-Lion project,
the European Commission under the projects DIP, Knowledge Web, SEKT, and SWWS
and by FIT-IT under the project RW2.

4 Although LARKS is a language for describing agent capabilities, it can equally be applied to
Web services.



References

1. T. Bellwood, L. Cĺement, D. Ehnebuske, A. Hately, Maryann Hondo, Y.L. Husband,
K. Januszewski, S. Lee, B. McKee, J. Munter, and C. von Riegen. UDDI Version 3.0, July
2002.

2. B. Benatallah, M-S. Hacid, C. Rey, and F. Toumani. Request rewriting-based Web Service
Discovery. InThe Semantic Web - ISWC 2003, pages 242–257, October 2003.

3. E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services Description
Language (WSDL) 1.1. http://www.w3.org/TR/wsdl, March 2001.

4. The OWL Services Coalition. OWL-S 1.1 Beta Release. July 2004.
5. D. Fensel and C. Bussler. The Web Service Modeling Framework WSMF.Electronic Com-

merce Research and Applications, 1(2), 2002.
6. J. Gonzalez-Castillo, D. Trastour, and C. Bartolini. Description logics for matchmaking of

services. InKI-2001 Workshop on Applications of Description Logics, September 2001.
7. S. Grimm, B. Motik, and C. Preist. Variance in e-Business Service Discovery.Semantic Web

Services Workshop at ISWC 2004, November 2004.
8. J.J Jeng and B.H.C. Cheng. Using Automated Reasoning Techniques to Determine Software

Reuse.Intl. Journal of Soft. and Know. Engineering, 2(4), Dec. 1992.
9. J.J Jeng and B.H.C. Cheng. Specification Matching for Software Reuse: A Foundation. In

SSR’95. ACM SIGSOFT. ACM Press, 1995.
10. U. Keller, R. Lara, and A. Polleres (eds.). WSMO Web Service Discovery. Technical report,

DERI, November 2004.
11. M. Kifer, R. Lara, A. Polleres, C. Zhao, U. Keller, H. Lausen, and D. Fensel. A Logical

Framework for Web Service Discovery. InSemantic Web Services Worshop at ISWC, 2004.
12. R. Lara, W. Binder, I. Constantinescu, D. Fensel, U. Keller, J. Pan, M. Pistore, A. Polleres,

I. Toma, P. Traverso, and M. Zaremba. Semantics for Web Service Discovery and Composi-
tion. Technical report, Knowledge Web, December 2004.

13. H. Lausen, D. Roman, and U. Keller (editors). Web Service Modeling Ontology (WSMO).
Working draft, DERI, March 2004. http://www.wsmo.org/2004/d2/v0.2/.

14. Lei Li and I. Horrocks. A Software Framework for Matchmaking Based on Semantic Web
Technology. InWWW’03, Budapest, Hungary, May 2003.

15. D. Nardi, F. Baader, D. Calvanese, D. L. McGuinness, and P. F. Patel-Schneider (edts.).The
Description Logic Handbook. Cambridge, January 2003.

16. D. Olmedilla, R. lara, A. Polleres, and H. Lausen. Trust Negotiation for Semantic Web
Services. InSWSWPC Workshop at ICWS 2004, July 2004.

17. M. Paolucci, T. Kawamura, T. Payne, and K. Sycara. Semantic Matching of Web Service
Capabilities. InISWC, pages 333–347. Springer Verlag, 2002.

18. Chris Preist. A Conceptual Architecture for Semantic Web Services. InProceedings of the
International Semantic Web Conference 2004 (ISWC 2004), November 2004.

19. E.J. Rollings and J.M. Wing. Specifications as Search Keys for Software Libraries. In
Proceedings of the Eighth International Conference on Logic Programming, June 1991.

20. K. Sycara, S. Widoff, M. Klusch, and J. Lu. LARKS: Dynamic Matchmaking Among Het-
erogeneous Software Agents in Cyberspace.Autonomous Agents and Multi-Agent Systems,
pages 173–203, 2002.

21. K. Verma, K. Sivashanmugam, A. Sheth, and A. Patil. METEOR-S WSDI: A Scalable
P2P Infrastructure of Registries for Semantic Publication and Discovery of Web Services.
Journal of Information Technology and Management, 2004.

22. W3C. SOAP Version 1.2 Part 0: Primer, June 2003.
23. A.M. Zaremski and J.M. Wing. Specification Matching of Software Components.ACM

Transactions on Software Engineering and Methodology (TOSEM), 6:333–369, 1997.


