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Characteristic classes of complexified bundles

Alexander Rahm

June 14, 2007

Abstract

We examine the topological characteristic cohomology classes of com-
plexified vector bundles1. In particular, all the classes coming from real
vector bundles are computed. We use characteristic classes with the ax-
ioms of Milnor and Stasheff [6].

Introduction

Definition (Real generator bundles). We consider a real vector bundle
F → B and a complex vector bundle E → B over the same base space B. If
the fibre-wise constructed complexification F ⊗R C =: FC is isomorphic to E,
we’ll call F a real generator bundle of E.

We want to attribute topological characteristic classes c(F ) of the real gener-
ator bundles to the complexified bundles FC. Not every complex vector bundle
admits a real generator bundle, as we shall see in a moment. So, supplementary
cohomological information might be gathered when restricting attention to the
subcategory of complex vector bundles that admit one.

Obstruction to real generator bundles. Consider a real vector bundle
F → B. By reflection on the real axes given by F , FC is isomorphic to its
complex conjugate bundle FC. So, any complex bundle E → B that admits F
as a real generator bundle must be isomorphic to its own conjugate bundle:

E ∼= FC ∼= FC ∼= E.

The odd Chern classes c2k+1 have the property c2k+1(E) = −c2k+1(Ē) ([6,
lemma 14.9]), so

c2k+1(E) = −c2k+1(Ē) = −c2k+1(E) ε H4k+2(B,Z)

⇒ 2c2k+1(E) = 0. Consequently, no complex vector bundle with some nonzero
and non-torsion odd Chern class can admit a real generator bundle.

We are interested in all attributions of topological characteristic classes c(F )
of the real generator bundles to the complexified bundles FC. For such an attri-
bution to be well-defined, we need that real generator bundles F , G of the same
complex bundle provide the same class c(F ) = c(G). For short, we get the
Basic requirement FC ∼= GC ⇒ c(F ) = c(G).

12000 Mathematics Subject Classification. 55R50.
Key words and phrases. Stable classes of vector space bundles.
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Classes fulfilling the basic requirement

Theorem 1. Let c be a polynomial in the Stiefel-Whitney classes wi. Then the
following two conditions are equivalent:

(i) c is an element of the polynomial sub-ring Z2[w2
i ]i ε N∪{0}

(ii) c satisfies the basic requirement.

As the cohomology ring H∗(BOn,Z2) of the classifying space BOn is gen-
erated by the Stiefel-Whitney classes, this gives the entire information about
modulo 2- classes. We find corresponding results for integral cohomology classes.

Theorem 2. The basic requirement holds for polynomials in V 2
I , with I ar-

bitrary, V{ 1
2} and the Pontrjagin classes pi.

For the convenience of the reader, we give a description of the integral co-
homology classes VI in the appendix on page 12.

Theorem 3. Let C ε H∗(BO,Z) be a characteristic class fulfilling the ba-
sic requirement. Then for any bundle ξ, C(ξ) is completely determined by some
Chern classes ck(ξC), k ε N.

Using Z2-coefficients

We’ll restrain ourselves to Z2-coefficients in the following, in order to prove
theorem 1. Let F → B be a real vector bundle.

Lemma 1. A polynomial c =
∑ ⋃

wi in the Stiefel-Whitney classes fulfilling
the basic requirement satisfies the Transferred stable invariance property :

FC ∼= B × Cn ⇒ c(F ⊕G) = c(G).

Proof. Let c fulfill the basic requirement, and let FC ∼= B×Cn. Let G → B be a
real bundle. Then c(F⊕G) = c((B×Rn)⊕G) because (B×Rn)C = B×Cn ∼= FC,
so the basic requirement can be applied. Thus, c(F⊕G) =

∑ ⋃
wi((B×Rn)⊕G)

and with the stability [5, p. 81] due to the Whitney-sum axiom of the Stiefel-
Whitney classes, this term equals

∑⋃
wi(G) = c(G). ¤

Remark. If the base space B is compact Hausdorff, transferred stable in-
variance of c provides the basic requirement.

Proof. Let F → B, G → B be real bundles with FC ∼= GC. Forgetting the
complex structure, that’s F ⊕ F ∼= G⊕G. As B is compact Hausdorff, there is
an inverse bundle F−1 → B, such that F ⊕ F−1 ∼= B × RN for some N .
As seen in the last proof, c(F ) = c(F ⊕ (B × RN )). And that’s, in turn,
c(F ⊕ F ⊕ F−1) = c(G⊕G⊕ F−1). Now,

(G⊕ F−1)C = GC ⊕ (F−1)C ∼= FC ⊕ (F−1)C = (F ⊕ (F−1))C ∼= B × Cn.
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That’s why we can apply the transferred stable invariance and obtain

c(F ) = c(G⊕ (G⊕ F−1)) = c(G).

¤

Proof of theorem 1, (i)⇒(ii). Let F → B, G → B be real bundles with FC ∼=
GC. Forgetting the complex structure, that’s F ⊕F ∼= G⊕G. A consequence of
working in Z2-coefficients is that all terms that appear twice in a sum vanish,
just like

2i∑

k=1

wkw2i−k = w2
i .

Knowing these two facts, and the naturality of Stiefel-Whitney classes under
bundle isomorphisms, we just need to apply the Whitney sum axiom to check
that w2

i fulfills the basic requirement:

w2
i (F ) =

2i∑

k=1

wk(F )w2i−k(F ) = w2i(F ⊕ F )

= w2i(G⊕G) =
2i∑

k=1

wk(G)w2i−k(G) = w2
i (G).

This equation being valid for all i ε N∪{0}, it just remains to check polynomials∑⋃
w2

i . And this has become now only a question of commuting brackets (they
commute because 2 = 0 in Z2-coefficients):

(
∑⋃

w2
i )(F ) =

∑⋃
(w2

i (F )) =
∑⋃

(w2
i (G)) = (

∑⋃
w2

i )(G).

¤

Proof of theorem 1, (ii)⇒(i). Let c be a polynomial in the Stiefel-Whitney
classes wi fulfilling the basic requirement. From lemma 1 we see that it is trans-
ferred stable invariant.

Let O be the direct limit of the orthogonal groups, U the direct limit of the
unitary groups and EU the universal total space to the classifying space BU
for stable complex vector bundles. Let BO := EU/O, via the inclusion O ⊂ U
induced by the canonical inclusion R ⊂ C.
According to Cartan [3, p. 17-22], there then is the Hopf spaces fibration

U/O f // BO p // // BU,

where the projection p is the rest class map to dividing the whole group U out
of EU ; and f : U/O → BO embeds a fibre. H∗(BO,Z2) = Z2[ω1, ω2, ...] is the
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polynomial algebra with generators the Stiefel-Whitney classes ωi := wi(γ(R∞))
([2, theorem B.2]). Cartan [3, p. 17-22] has shown that f∗ maps these generators
ωi to the generators vi := wi(f∗γ(R∞)) of the exterior algebra

H∗(U/O,Z2) =
∧

(Z2[v1, v2, ...]),

which is obtained by dividing the ideal 〈v2
i 〉i ε N\{0} out of the polynomial algebra

Z2[v1, v2, ...]. Hence, exactly the ideal 〈ω2
i 〉i ε N\{0} is mapped to zero. So to

write
〈ω2

i 〉i ε N\{0} = ker f∗. (1)

Composing f with the projection p : BO → BU , we obtain a constant map (the
whole fibre is mapped to its basepoint) and therefore a trivial bundle
(p ◦ f)∗γ(C∞). This pullback of the complex universal bundle is the complexi-
fication of f∗γ(R∞):

(p ◦ f)∗γ(C∞) = f∗p∗EU ×U C∞ = f∗EO ×O C∞ = f∗(EO ×O R∞)C

= f∗γ(R∞)C = (f∗γ(R∞))C.

So, f∗γ(R∞) admits a trivial complexification, and all of the transferred stable
invariant classes c must treat it like the trivial bundle ε:
c(f∗γ(R∞)) = c(ε). A pullback of the trivial bundle is trivial too, so

0 = c(f∗γ(R∞))− c(f∗ε) = f∗(c(γ(R∞))− c(ε)) by naturality.

⇒ c(γ(R∞))− c(ε) ε ker f∗ =(1) 〈ω2
i 〉i ε N\{0}.

Goal. We want to get a decomposition c(γ(R∞))− c(ε)

=
m∑

j1=1

ω2
ij1
∪

mj1∑
j2=1

ω2
i(j1,j2)

∪∑
... ∪

m(j1,...,jk−1)∑
jk=1

ω2
i(j1,...,jk)

∪ r(j1,...,jk)(γ(R∞))

+
m∑

j1=1

ω2
ij1
∪rj1(ε)+...+

m∑
j1=1

ω2
ij1
∪∑

...∪
m(j1,...,jk−2)∑

jk−1=1

ω2
i(j1,...,jk−1)

∪r(j1,...,jk−1)(ε)

for some m,mj1 , ...,m(j1,...,jk−1) ε N ∪ {0}, some ij1 , ..., i(j1,...,jk) ε N \ {0},
some r(j1,...,jk)(γ(R∞)) ε H∗(BO,Z2),

and some coefficients rj1(ε), ..., r(j1,...,jk−1)(ε) ε {0, 1},
in a way that ∀~j := (j1, ..., jk) : 2

∑
p ε I(~j)

p > degc,

where I(~j) := {ij1 , ..., i(j1,...,jk)}.

Being arrived at this goal and knowing that the degree must be the same on
both sides of the equation, the sum over all terms containing a factor

⋃
p ε I(~j)

ω2
p

of too high degree 2
∑

p ε I(~j)

p, for any ~j, must vanish.
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So, a polynomial c(γ(R∞)) in some squares ω2
p , p ε N ∪ {0} will remain2:

c(γ(R∞)) = c(ε) +
m∑

j1=1

ω2
ij1
∪ rj1(ε) + ... + ...

+
m∑

j1=1

ω2
ij1
∪∑

... ∪
m(j1,...,jk−2)∑

jk−1=1

ω2
i(j1,...,jk−1)

∪ r(j1,...,jk−1)(ε).

Before beginning, we should introduce two notions just to make the proof more
readable:

Definition. An index vector ~j ”appears” in a given decomposition of

c(γ(R∞))− c(ε)

if there is a summand r~j(γ(R∞)) ∪ ⋃
p ε I(~j)

ω2
p visible in this decomposition, and

if 2
∑

p ε I(~j)

p ≤ degc.

Remark. The terms r~j(γ(R∞)) ∪ ⋃
p ε I(~j)

ω2
p with 2

∑
p ε I(~j)

p > degc must

vanish in any decomposition of c(γ(R∞))− c(ε). That’s why we don’t let them
contribute in the last definition.

Definition. Set l := min
~j appears

max I(~j). Consider an index vector ~j appear-

ing in a given decomposition of c(γ(R∞)) − c(ε). If max I(~j) = l, then call
r~j(γ(R∞))− r~j(ε) a ”low situated rest term”.

As seen so far, c(γ(R∞)) − c(ε) ε ker f∗ = 〈ω2
i 〉iεN\{0}, so there is a decom-

position

c(γ(R∞))− c(ε) =
m∑

j1=1

ω2
ij1
∪ rj1(γ(R∞)),

for some m ε N ∪ {0}, some ij1 ε N \ {0}, and some rj1(γ(R∞)) ε H∗(BO,Z2).
We will show that there’s a low situated rest term rj1(γ(R∞)) − rj1(ε) in this
decomposition that lies in ker f∗. Then, that low situated rest term admits
a decomposition as a linear combination of squares ω2

i(j1,j2)
with coefficients

r(j1,j2)(γ(R∞)) ε H∗(BO,Z2), leading to a new decomposition of c(γ(R∞)) −
c(ε). So, inductively, we will replace a low situated rest term in any given
decomposition of c(γ(R∞))−c(ε) by a linear combination whose coefficients are
rest terms with longer index vectors. That’s why after a finite number of these
steps, the index vectors ~j won’t ”appear” no more, because the sums 2

∑
p ε I(~j)

p

will exceed the degree of c. That’s the moment when all low situated rest terms
are eliminated and the decomposition described in our goal is achieved.

To do all this, we first need to introduce a procedure that shall be called:
2The classes c(ε), r~j(ε) of the trivial bundle ε are just coefficients in

H0(BO,Z2) = {0, 1}.
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”Cutting the equation c(F ⊕G) = c(G) at the dimension l”. Define the
bundles

F := pr∗1f∗γ(R∞) −→ U/O ×BO and

G := pr∗2γ(R∞) −→ U/O ×BO,

where pri shall be the projection on the i-th factor of the base space U/O×BO.
Let l ε N. Consider the map

(id, embl) : (U/O ×BOl) ↪→ (U/O ×BO)

where embl : BOl ↪→ BO shall be the natural embedding, recalling that BO is
the direct limit over all BOl, l ε N. Then the bundle Gl := (id, embl)∗G admits
Stiefel-Whitney classes that are in bijective correspondence with those of the
l-dimensional universal bundle γl(R∞) → BOl.

(To be precise, Gl
∼= prBOl

∗γl(R∞), the situation being

γl(R∞)

²²

Gl
∼= prBOl

∗γl(R∞)

²²

G := pr∗2γ(R∞)

²²

γ(R∞)

²²
BOl (U/O ×BOl)

prBOloo Â Ä (id,embl) // (U/O ×BO)
pr2 // BO

).
Especially, wp(Gl) vanishes for p > l.

The bundle F inherits from f∗γ(R∞) the property to admit a trivial com-
plexification. Therefore, the transferred stable invariance of c applies:

c(F ⊕G) = c(G).

Thus, applying the induced cohomology map (id, embl)∗ gives

(id, embl)∗c(F ⊕G) = (id, embl)∗c(G)

⇔ c(id∗F ⊕ emb∗l G) = c(emb∗l G)

⇔ c(F ⊕Gl) = c(Gl).

By the universality of γ(R∞), and the naturality of all characteristic classes
towards the classifying maps of Gl and F ⊕Gl, any given decomposition

c(γ(R∞))− c(ε) =
∑

~j

r~j(γ(R∞))
⋃

p ε I(~j)

ω2
p

gives analogous decompositions

c(Gl)− c(ε) =
∑

~j

r~j(Gl)
⋃

p ε I(~j)

w2
p(Gl)

and
c(F ⊕Gl)− c(ε) =

∑

~j

r~j(F ⊕Gl)
⋃

p ε I(~j)

w2
p(F ⊕Gl).
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Theorem 1, (i)⇒(ii) gives the transferred stable invariance of w2
p, making it

invariant under adding the bundle F , whose complexification is trivial :

w2
p(F ⊕Gl) = w2

p(Gl).

Thus, the equation c(F ⊕Gl) = c(Gl) can be rewritten as:
∑

~j

r~j(F ⊕Gl)
⋃

p ε I(~j)

w2
p(Gl) =

∑

~j

r~j(Gl)
⋃

p ε I(~j)

w2
p(Gl)

where all summands containing a factor wp(Gl) with p > l vanish:

⇔
max I(~j) ≤ l∑

~j

r~j(F ⊕Gl)
⋃

p ε I(~j)

w2
p(Gl) =

max I(~j) ≤ l∑

~j

r~j(Gl)
⋃

p ε I(~j)

w2
p(Gl)

For not to exceed the degree of c, also all terms with 2
∑

p ε I(~j)

p > degc must

vanish:

⇒
max I(~j) ≤ l∑

~j appears

r~j(F ⊕Gl)
⋃

p ε I(~j)

w2
p(Gl) =

max I(~j) ≤ l∑

~j appears

r~j(Gl)
⋃

p ε I(~j)

w2
p(Gl)

So, it’s this last expression that we’ll call ”the equation c(F ⊕G) = c(G) cut at
the dimension l”.

Induction over the index vector pointing at a low situated rest term

Induction’s beginning. Recall c(γ(R∞))− c(ε) =
m∑

j1=1

ω2
ij1
∪ rj1(γ(R∞)).

Rename i1, ..., im such that i1 < i2 < ... < im.
Cut the equation c(F ⊕G) = c(G) at i1, and get

ij1 ≤ i1∑

j1 appears

rj1(F ⊕Gi1) ∪ w2
ij1

(Gi1) =
ij1 ≤ i1∑

j1 appears

rj1(Gi1) ∪ w2
ij1

(Gi1).

As i1 < i2 < ... < im, this is just r1(F ⊕Gi1) ∪ w2
i1

(Gi1) = r1(Gi1) ∪ w2
i1

(Gi1).

Injectivity of the multiplication map ∪w2
i1

(Gi1) in H∗(U/O × BOi1 ,Z2) then
holds r1(F ⊕Gi1) = r1(Gi1). Then pull this back with

(id× const) : U/O → (U/O ×BOi1),

(where the map const takes just one, arbitrary, value), to get

r1(f∗γ(R∞)⊕ ε) = r1(ε).

Due to the stability of the Stiefel-Whitney classes [5, p. 81], that’s

r1(f∗γ(R∞)) = r1(ε).
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Using naturality of characteristic classes towards pullbacks, this gives

f∗(r1(γ(R∞))− r1(ε)) = 0.

Or, r1(γ(R∞))− r1(ε) lies in ker f∗. So, we can replace it with a linear combi-
nation of quadratic terms, providing a new decomposition,

c(γ(R∞))− c(ε) = ω2
i1 ∪

m1∑

j2=1

ω2
i(1,j2)

∪ r(1,j1)(γ(R∞)) + ω2
i1 ∪ r1(ε)

+
m∑

j1=2

ω2
ij1
∪ rj1(γ(R∞)).

Induction’s prerequisite.

Consider a given decomposition

c(γ(R∞))− c(ε) =
∑

~j

r~j(γ(R∞))
⋃

p ε I(~j)

ω2
p

+
m∑

j1=1

ω2
ij1
∪rj1(ε)+...+

m∑

j1=1

ω2
ij1
∪

∑
...∪

m(j1,...,jk−2)∑

jk−1=1

ω2
i(j1,...,jk−1)

∪r(j1,...,jk−1)(ε).

Induction’s claim. There’s a low situated rest term in this given decom-
position that lies in ker f∗.

Induction’s step. Cut the equation c(F ⊕G) = c(G) at the dimension

l := min
~j appears

max I(~j).

Then the remaining terms of c(Gl)−c(ε) do all have the common factor w2
l (Gl).

This is no zero divisor in H∗(U/O×BOl,Z2) and further its multiplication map
∪w2

l (Gl) is injective. Now, in c(F ⊕Gl) = c(Gl)

⇒
max I(~j) ≤ l∑

~j appears

r~j(F ⊕Gl)
⋃

p ε I(~j)

w2
p(Gl) =

max I(~j) ≤ l∑

~j appears

r~j(Gl)
⋃

p ε I(~j)

w2
p(Gl),

this injectivity delivers

⇒
max I(~j) ≤ l∑

~j appears

r~j(F⊕Gl)
⋃

p ε I(~j)\{l}
w2

p(Gl) =
max I(~j) ≤ l∑

~j appears

r~j(Gl)
⋃

p ε I(~j)\{l}
w2

p(Gl).

♦ If there is just one low situated rest term r~j(γ(R∞))− r~j(ε), then use the
injectivity of the multiplication map ∪ ⋃

p ε I(~j)\{l}
w2

p(Gl)
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in H∗(U/O×BOl,Z2) to obtain r~j(F ⊕Gl) = r~j(Gl). Then pull this back with
(id× const) : U/O → (U/O ×BOl) to get r~j(f

∗γ(R∞)⊕ ε) = r~j(ε)

⇒ r~j(f
∗γ(R∞)) = r~j(ε).

Using naturality, this means

f∗(r~j(γ(R∞))− r~j(ε)) = 0.

⇒ The low situated rest term r~j(γ(R∞))− r~j(ε) lies in ker f∗.

♦ Else cut the remaining equation again at the dimension

l′ :=
max I(~j)=l

min
~j appears

max(I(~j) \ {l}),

such as to obtain

max(I(~j)\{l}) ≤ l′∑

~j appears

r~j(F⊕Gl′)
⋃

p ε (I(~j)\{l})
w2

p(Gl′) =
max(I(~j)\{l}) ≤ l′∑

~j appears

r~j(Gl′)
⋃

p ε (I(~j)\{l})
w2

p(Gl′).

Now proceed analogously with the choice marked with the ”♦” signs on this
page, and after finitely many steps, find a low situated rest term in ker f∗.
This low situated rest term can be replaced by a linear combination of squares,
holding a new decomposition of c(γ(R∞))− c(ε).

This completes the induction.

By the universality of γ(R∞),

c = c(ε) +
m∑

j1=1

w2
ij1
∪ rj1(ε) + ... + ...

+
m∑

j1=1

w2
ij1
∪

∑
... ∪

m(j1,...,jk−2)∑

jk−1=1

w2
i(j1,...,jk−1)

∪ r(j1,...,jk−1)(ε).

As c(ε), rj1(ε), ..., r(j1,...,jk−1)(ε) ε {0, 1 = w0 = w2
0}, c is in the sub-ring

Z2[w2
i ]i ε N∪{0} of the polynomial ring of Stiefel-Whitney classes.

So, theorem 1 is proved. ¤

Using integral coefficients

We will lean on the obtained results for Z2-coefficients and use the mod 2 -
reduction homomorphism

ρ : H∗(BO,Z) → H∗(BO,Z2)

to prove the theorems with Z-coefficients. Define VI as in appendix A.
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Lemma 2. ρ(V 2
I (ξ)) =

∑
i ε I∩{ 1

2}
w2

1(ξ ⊕ ξ) ∪ ⋃
j ε I\{i}

w4j(ξ ⊕ ξ)

+
∑

i ε I\{ 1
2}

(w4i+2(ξ ⊕ ξ) + w2(ξ ⊕ ξ) ∪ w4i(ξ ⊕ ξ)) ∪ ⋃
j ε I\{i}

w4j(ξ ⊕ ξ),

for any real bundle ξ.

Proof. Apply the reduction homomorphism:

ρ[V 2
I (ξ)] = (ρ[VI(ξ)])2 = (Sq1[

⋃

i ε I

w2i(ξ)])2 = (
∑

i ε I

Sq1[w2i(ξ)]∪
⋃

j ε I\{i}
w2j(ξ))2

= [
∑

i ε I∩{ 1
2}

w2
1(ξ)∪

⋃

j ε I\{i}
w2j(ξ)+

∑

i ε I\{ 1
2}

(w2i+1(ξ)+w1(ξ)∪w2i(ξ))∪
⋃

j ε I\{i}
w2j(ξ)]2.

As 2 = 0 in H∗(BO,Z2), this equals

=
∑

i ε I∩{ 1
2}

w4
1(ξ)∪

⋃

j ε I\{i}
w2

2j(ξ)+
∑

i ε I\{ 1
2}

(w2
2i+1(ξ)+w2

1(ξ)∪w2
2i(ξ))∪

⋃

j ε I\{i}
w2

2j(ξ).

Using the Whitney sum axiom and symmetry,

w4i(ξ ⊕ ξ) =
4i∑

k=1

wk(ξ)w4i−k(ξ) = w2
2i(ξ).

Hence, the above term equals
∑

i ε I∩{ 1
2}

w2
1(ξ ⊕ ξ) ∪

⋃

j ε I\{i}
w4j(ξ ⊕ ξ)

+
∑

i ε I\{ 1
2}

(w4i+2(ξ ⊕ ξ) + w2(ξ ⊕ ξ) ∪ w4i(ξ ⊕ ξ)) ∪ ⋃
j ε I\{i}

w4j(ξ ⊕ ξ)

¤

Proof of theorem 2. For V{ 1
2} and the Pontrjagin classes pi, the result is

trivial. Now let F → B, G → B be real bundles with FC ∼= GC. Forgetting the
complex structure, that’s F ⊕F ∼= G⊕G. By naturality of the Stiefel-Whitney
classes,

∑

i ε I∩{ 1
2}

w2
1(F ⊕ F ) ∪

⋃

j ε I\{i}
w4j(F ⊕ F )

+
∑

i ε I\{ 1
2}

(w4i+2(F ⊕ F ) + w2(F ⊕ F ) ∪ w4i(F ⊕ F )) ∪
⋃

j ε I\{i}
w4j(F ⊕ F )

=
∑

i ε I∩{ 1
2}

w2
1(G⊕G) ∪

⋃

j ε I\{i}
w4j(G⊕G)
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+
∑

i ε I\{ 1
2}

(w4i+2(G⊕G) + w2(G⊕G) ∪ w4i(G⊕G)) ∪
⋃

j ε I\{i}
w4j(G⊕G)

for any finite nonempty index set I ⊂ ({ 1
2} ∪ N \ {0}). Applying lemma 2, this

means ρ(V 2
I (F )) = ρ(V 2

I (G)).
As V 2

I is in the torsion of H∗(BO,Z), restricted on which ρ is injective [4, p.
513], this proves the theorem: V 2

I (F ) = V 2
I (G). ¤

Corollary from theorem 1
Let C ε H∗(BO,Z) fulfill the basic requirement. Then ρ(C) ε Z2[w2

i ]i ε N∪{0}.

Proof. Let F → B, G → B be real bundles with FC ∼= GC. The reduction

ρ(C) ε H∗(BO,Z2)

also satisfies the basic requirement:

ρ(C)(F ) = ρ(C(F )) = ρ(C(G)) = ρ(C)(G).

Theorem 1 now gives the result. ¤

Proof of theorem 3.

Feshbach [4, p. 513] tells that H∗(BO,Z) = Z[pi]i ε N⊕ 2-Torsion.

⇒ C =
∑ ⋃

pi + T with some torsion element T ε H∗(BO,Z) (]).

So for every real bundle ξ, ρ(C)(ξ) =
∑

ρ(
⋃

pi(ξ)) + ρ(T )(ξ).

⇒3 ρ(C)(ξ) =
∑ ⋃

ρ((−1)ic2i(ξC)) + ρ(T )(ξ).

⇒4 ρ(C)(ξ) =
∑ ⋃

w4i(ξ ⊕ ξ) + ρ(T )(ξ).

⇒5 ρ(C)(ξ) =
∑ ⋃

w2
2i(ξ) + ρ(T )(ξ).

Inserting the polynomial of the corollary from theorem 1, another
polynomial in squares is produced: ⇒ ∑⋃

w2
j (ξ) = ρ(T )(ξ).

As according to [4, p. 513], ρ is injective on the torsion elements, there is a
local inverse ρ|2−Torsion

−1 lifting ρ(T ) back to T .

⇒ ρ|2−Torsion
−1(

∑⋃
w2

j (ξ)) = T (ξ).

⇒5 ρ|2−Torsion
−1(

∑⋃
w2j(ξ ⊕ ξ)) = T (ξ).

⇒4 ρ|2−Torsion
−1(

∑⋃
ρ(cj(ξC))) = T (ξ).

⇒], 3 C(ξ) =
∑⋃

(−1)ic2i(ξC) + ρ|2−Torsion
−1(

∑ ⋃
ρ(cj(ξC))). ¤

3By definition of the Pontrjagin classes.
4See [5, proposition 3.8] and use (ξC)R = ξ ⊕ ξ.
5By the Whitney sum axiom and symmetry.
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Appendix A

The cohomology ring of BO with Z -coefficients is known with all relations
between its generators since Brown [1] and can be obtained as follows:
Define the set of generators of H∗(BOn,Z) as in [4, definition 1]:
It consists of the Pontrjagin classes pi of the universal bundle over BOn, and
classes VI with I ranging over all finite nonempty subsets of

{1
2
} ∪ {k ε Z | 0 < k <

n + 1
2

}

with the proviso that I does not contain both 1
2 and n

2 , for n > 1.
According to [4, theorem 2], H∗(BOn,Z) is for all n ≤ ∞ isomorphic to the
polynomial ring over Z generated by the above specified elements modulo the
ideal generated by the following six types of relations.
In all relations except the first, the cardinality of I is less than or equal to that
of J and greater than one. (Most of the restrictions on I and J are to avoid
repeating relations). By convention, p 1

2
where it occurs means V{ 1

2}. Also, if
{n

2 , 1
2} ⊂ I ∪ J , then VI∪J shall mean V{n

2 }V(I∪J)\{n
2 , 1

2}.

1) 2VI = 0.

2) VIVJ + VI∪JVI∩J + VI\JVJ\I
∏

i ε I∩J

pi = 0 (for I ∩ J 6= ∅, I * J).

3) VIVJ +
∑

i ε I

V{i}V(J\I)∪{i}
∏

j ε I\{i}
pj = 0 (for I ⊂ J).

4) VIVJ +
∑

i ε I

V{i}V(I∪J)\{i} = 0 (for I ∩ J = ∅; if I and J have the

same cardinality, then the smallest element of I is less than that of J).

5)
∑

i ε I

V{i}VI\{i} = 0.

6) V{ 1
2}p

n
2

+ V 2
{n

2 } = 0, if n is even.

Then ρ(VI) = Sq1(
⋃

i ε I

w2i), with the Steenrod squaring operation Sq1.
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