<table>
<thead>
<tr>
<th>Title</th>
<th>Ferromagnetic exchange in a twisted, oxime-bridged [Mn(III)₂] dimer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Jones, Leigh F.</td>
</tr>
<tr>
<td>Publication Date</td>
<td>2012-05-02</td>
</tr>
<tr>
<td>Publisher</td>
<td>Royal Society of Chemistry</td>
</tr>
<tr>
<td>Link to publisher's version</td>
<td>http://dx.doi.org/10.1039/C2DT30674C</td>
</tr>
<tr>
<td>Item record</td>
<td>http://hdl.handle.net/10379/4089</td>
</tr>
<tr>
<td>DOI</td>
<td>http://dx.doi.org/10.1039/C2DT30674C</td>
</tr>
</tbody>
</table>
Ferromagnetic exchange in a twisted, oxime-bridged [Mn$^{III}_2$] dimer

Edel Houton, a Stephanie M. Taylor, b Christopher C. Beedle, c Joan Cano, d Stergios Piligkos, e Stephen Hill, f Alan G. Ryder,* a Euan K. Brechin* b and Leigh F Jones* a

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX
DOI: 10.1039/b000000x

The dimeric complex [Mn$^{III}_2$(Naphth-sao)$_2$(Naphth-saoH)$_2$(MeOH)$_2$]·4MeOH (1·4MeOH), acts as a simple model complex with which to examine the magneto-structural relationship in polymetallic, oxime-bridged MnIII complexes. DC magnetic susceptibility studies reveal that ferromagnetic exchange is mediated through the heavily twisted Mn-O-N-Mn moiety ($J = +1.24$ cm$^{-1}$) with magnetisation measurements at low temperatures and high fields suggesting significant anisotropy. Simulations of high field, high frequency EPR data reveal a single ion anisotropy, $D_{(Mn^{III})} = -3.94$ cm$^{-1}$. Theoretical studies on simplified model complexes of 1 reveal that calculated values of the exchange coupling and the anisotropy are in excellent agreement with experiment, with the weak ferromagnetism resulting from an accidental orthogonality between the Mn-N-O plane of the first MnIII ion and the Jahn-Teller axis of the second MnIII ion.

Introduction

The relationship between the structure of a molecule and its magnetic properties has fascinated chemists for decades.1 For example, the relationship between the magnitude and sign of magnetic exchange in hydroxo-bridged CuII dimers was shown to be dependent on the Cu-O-Cu bridging angle,2 while in complexes containing the [CrIII(OH)]$_2$ core the dominant structural factor was the variation of the angle between the O-H vector and the Cr$_2$O$_2$ plane.3 While more recent papers in molecular magnetism have concentrated on sub-topics such as (amongst others) single-molecule magnetism,4 quantum information processing5 and magnetic cooling,6 they still all fundamentally rely on a detailed understanding and exploitation of the structure-property relationship. However as these early studies showed, this is not a trivial process and it becomes increasingly more difficult as the molecules increase in size, since the number of contributions to the exchange increases – this is particularly true for the ‘giant’ cluster compounds that have emerged in recent years containing tens, if not hundreds, of metal centres.7

The logical construction of (large) molecules exhibiting ferromagnetic or ferrimagnetic exchange is also a very difficult task. Target molecules often contain high-valent metal ions (e.g. MnIII, FeIII etc) and as such their cores are commonly constructed from oxide and/or hydroxide anions, whose presence, number and behaviour is difficult to control.8 One alternative strategy is to make small molecules (dimers, trimers etc) whose structures can be manipulated to such an extent that the magnetic exchange between the metal ions can be controlled, and then to use these small molecules as the building blocks from which large or very large molecules (or indeed coordination polymers) with ‘tailored’ magnetic properties can be made.

An appealing class of ligand for the construction of high spin MnIII molecules are the phenolic oximes, R-saoH2 (Scheme 1).9 Previous studies of over eighty members of the [Mn$^{III}_n$] (n = 3, 6) family of clusters stabilised with these ligands revealed a semi-quantitative magneto-structural correlation whose main conclusion was that the dominant structural factor dictating the pairwise magnetic exchange within the triangular unit was the twisting of the Mn-O-N-Mn moiety.10 If the Mn-O-N-Mn torsion...
angle was greater than ~31º the pairwise exchange was found to be ferromagnetic. Herein we continue our attempts to understand this relationship by reporting the serendipitous self-assembly of the dimeric complex [{Mn}11(Naphth-sao)$_2$(Naphth-saoH)$_2$(MeOH)$_2$]·4MeOH (1:4 MeOH) whose very simple magnetic core consists of only two symmetry equivalent Mn11 ions linked by two symmetry equivalent -N-O- moieties. We discuss its structure, magnetometry, EPR spectroscopy and a theoretical analysis of the magneto-structural relationship.

Experimental

Materials and physical measurements

All manipulations were carried out under aerobic conditions using materials as received (reagent grade). Naphth-saoH$_2$ was synthesised by the reaction of the precursor ketone with hydroxylamine and sodium acetate in EtOH, as described in the literature.11 Elemental analyses (C, H, N) were performed at the School of Chemistry, NUI Galway. Variable-temperature, solid-state direct current (dc) magnetic susceptibility data down to 1.8 K were collected on a Quantum Design MPMS-XL SQUID magnetometer equipped with a 7 T dc magnet. Diamagnetic corrections were applied to the observed paramagnetic susceptibilities using Pascal’s constants. Complex 1 was set in an eicosane wax to avoid torquing of the crystallites.

FT-IR and Raman spectra were obtained at the Nanoscale Biophotonics Laboratory at the School of Chemistry, NUI Galway. Infra-red spectra were recorded on a Perkin Elmer FT-IR Spectrum One spectrometer equipped with a Universal ATR Sampling accessory. Raman measurements were recorded at room temperature using a Kaiser Optical Systems Raman spectrometer (RamanRxn$^{\text{TM}}$ 1000 Analyzer) equipped with a 993 nm laser diode excitation source and an InGaAs array detector. A laser power of ~200 mW (at the sample) with an exposure time of 10 × 8 seconds was used and spectra were collected from 250 to 4000 cm$^{-1}$ (at a resolution of 5 cm$^{-1}$). Raman spectra of the reaction mixture is required since no crystalline product is formed in its absence. 1 crystallises in the orthorhombic space group Pca2$_1$. The molecule describes a dimer of symmetry equivalent Mn ions which are six-coordinate and in Jahn-Teller (JT) distorted octahedral geometries with [O$_4$N$_2$] coordination spheres. The JT axes are defined by the O2(oximic O)-Mn1-O5(MeOH) (and s.e.) vector (Mn1…O5, 2.333 Å; Mn1…O2, 2.197 Å). The oxime ligands are of two types: Naphth-sao$^-$ and Naph-saoH$^-$1. The former are µ-bridging linking the two Mn11 ions together via the (very twisted) -O-N- oxime linkage (Mn-O- at typical C···centroid distances of 3.560 Å.

Synthesis

MnCl$_2$·4H$_2$O (0.25 g, 1.26 mmol), Naphth-saoH$_2$ (0.236 g, 1.26 mmol), Sodium 1-Napthoate (0.25 g, 1.26 mmol) and NaOMe (0.068 g, 1.26 mmol) were stirred in MeOH (30 cm3) for 2 hours, filtered and allowed to stand. Black diamond shaped crystals of MnCl$_2$·4H$_2$O (0.25 g, 1.26 mmol), Naphth-saoH$_2$ (0.236 g, 1.26 mmol), Sodium 1-Napthoate (0 .25 g, 1.26 mmol) and NaOMe in MeOH for 2 hours, followed by filtration and slow evaporation of the mother liquor affords black crystals of [{Mn}11(Naphth-sao)$_2$(Naphth-saoH)$_2$(MeOH)$_2$]·4MeOH (1:4 MeOH; Figure 1). Although the carboxylate does not appear in the final product, its presence in the reaction mixture is required since no crystalline product is formed in its absence. 1 crystallises in the orthorhombic space group Pca2$_1$. The molecule describes a dimer of symmetry equivalent Mn ions which are six-coordinate and in Jahn-Teller (JT) distorted octahedral geometries with [O$_4$N$_2$] coordination spheres. The JT axes are defined by the O2(oximic O)-Mn1-O5(MeOH) (and s.e.) vector (Mn1…O5, 2.333 Å; Mn1…O2, 2.197 Å). The oxime ligands are of two types: Naphth-sao$^-$ and Naph-saoH$^-$. The former are µ-bridging linking the two Mn11 ions together via the (very twisted) -O-N- oxime linkage (Mn-O- at typical C···centroid distances of 3.560 Å.

Results and discussion

The reaction of MnCl$_2$·4H$_2$O, Naphth-saoH$_2$, Sodium 1- Napthoate and NaOMe in MeOH for 2 hours, followed by filtration and slow evaporation of the mother liquor affords black crystals of [{Mn}11(Naphth-sao)$_2$(Naphth-saoH)$_2$(MeOH)$_2$]·4MeOH (1:4 MeOH; Figure 1). Although the carboxylate does not appear in the final product, its presence in the reaction mixture is required since no crystalline product is formed in its absence. 1 crystallises in the orthorhombic space group Pca2$_1$. The molecule describes a dimer of symmetry equivalent Mn ions which are six-coordinate and in Jahn-Teller (JT) distorted octahedral geometries with [O$_4$N$_2$] coordination spheres. The JT axes are defined by the O2(oximic O)-Mn1-O5(MeOH) (and s.e.) vector (Mn1…O5, 2.333 Å; Mn1…O2, 2.197 Å). The oxime ligands are of two types: Naphth-sao$^-$ and Naph-saoH$^-$. The former are µ-bridging linking the two Mn11 ions together via the (very twisted) -O-N- oxime linkage (Mn-O- at typical C···centroid distances of 3.560 Å.

X-ray crystallography

This journal is © The Royal Society of Chemistry [year]
De magnetic susceptibility measurements were performed on a powdered microcrystalline sample of 1 in an applied magnetic field of 0.1 T and in the temperature range 275 to 5 K. The results are plotted as the $\chi_M T$ product vs. T in the top panel of Figure 2. The high temperature $\chi_M T$ value of 5.92 cm$^{-3}$ K mol$^{-1}$ is very close to that expected from the spin-only value (6.00 cm$^{-3}$ K mol$^{-1}$) for two non-interacting high-spin MnIII (3d5) ions, assuming $g = 2$. This value increases constantly as the temperature is decreased, reaching a maximum of 9.66 cm$^{-3}$ K mol$^{-1}$ at 6 K before decreasing slightly to a value of 9.60 cm$^{-3}$ K mol$^{-1}$ at 5 K. This behaviour is indicative of the presence of an intra-molecular ferromagnetic exchange interaction between the two MnIII ions. The small drop in the $\chi_M T$ product below 6 K is ascribed to inter-molecular interactions and/or zero-field splitting of the ground spin-state. For the interpretation of the magnetic properties of 1 we employed the isotropic spin-Hamiltonian (1):

\[
\hat{H} = -2J\hat{S}_1 \cdot \hat{S}_2 + \sum_{i=1,2} \{\mu_B g_i S_i\}
\]

(1)

where J is the spin-operator, $i = 1, 2$, μ_B is the Bohr magneton, \hat{B} is the applied magnetic field vector, and $g = 2.00$ is the g-factor of the MnIII ions. The $\chi_M T$ product of 1 was numerically fitted, by use of the simplex algorithm,19 to this spin-Hamiltonian by numerical diagonalisation of the full spin-Hamiltonian matrix. The best fit parameter was $J = +1.24$ cm$^{-1}$, affording an $S = 4$ ground state, with the first excited state ($S = 3$) approximately 10 cm$^{-1}$ higher in energy. In addition, inter-molecular interactions were taken into account in the frame of mean-field theory, by use of the Curie-Weiss temperature, θ. A Curie-Weiss constant of $\theta = -0.54$ K, was necessary to reproduce the small drop of the $\chi_M T$ product below 6 K. Inclusion of axial anisotropy to the above isotropic spin-Hamiltonian did not increase the quality of fit in a significant way (F-test of 0.97), leaving the J and θ parameters essentially unaltered, and resulted in a relatively low best-fit single-ion axial anisotropy (-0.55 cm$^{-1}$) for the MnIII centres. This is not surprising since anisotropy effects are predominant at very low temperatures and thus, do not weight significantly in the fitting of the $\chi_M T$ product of 1.

The ferromagnetic nature of the exchange between the two metals, mediated via the oximate -N-O- bridges, was expected on the basis of previous magneto-structural correlations in phenolic oxime based [Mn$^{III}_2$] and [MnIII]$_2$ clusters that have suggested that Mn-N-O-Mn torsion angles above approximately 31° are likely to result in ferromagnetic pairwise exchange.20 The magnitude of the exchange is also similar to that seen in the complex [Mn$^{III}_2$Zn$^{II}_2$(Ph-sao)$_2$(Ph-saoH)$_4$(hmp)$_2$].15

In order to determine the single-ion axial anisotropy parameter for the MnIII centres in 1, variable-temperature-variable-field dc magnetisation experiments were performed in the 2.0–7.0 K and 0.5–5.0 T temperature and magnetic field ranges, respectively. These experimental data are presented as reduced magnetisation ($M/N\mu_B$ vs. $\mu_B k_BT$, with N being Avogadro’s number and k the Boltzmann constant) in the lower panel of Figure 2. They were numerically fitted, by use of the simplex algorithm,19 to the axially anisotropic spin-Hamiltonian (2), by numerical diagonalisation of the full spin-Hamiltonian matrix.
\[
\hat{H} = -2J\hat{S}_1 \cdot \hat{S}_2 + \sum_{i=1,2} \left(\mu_i \vec{B} \cdot \hat{S}_i + D (\hat{S}_i^z - S_i (S_i + 1)/3) \right)
\]

(2)

Here \(D \) is the uniaxial anisotropy, and \(S = 2 \) the total spin of the Mn(III) ions. The best fit \(D \) parameter, keeping \(J \) fixed to \(J = +1.24 \text{ cm}^{-1} \) (as determined by fitting the \(\chi_M^T \) product of \(1 \)), was \(D = -3.64 \text{ cm}^{-1} \).

Here \(D \) is the uniaxial anisotropy, and \(S = 2 \) the total spin of the Mn(III) ions. The best fit \(D \) parameter, keeping \(J \) fixed to \(J = +1.24 \text{ cm}^{-1} \) (as determined by fitting the \(\chi_M^T \) product of \(1 \)), was \(D = -3.64 \text{ cm}^{-1} \).

Figure 2 Upper panel: Plot of the \(\chi_M^T \) product of \(1 \) vs. \(T \) in the 275 - 5 K temperature range in an applied field of 0.1 T. The solid red line is the best-fit of the data with \(J = +1.24 \text{ cm}^{-1} \) and \(g = 2.0 \). Lower panel: Plot of reduced magnetisation in the 2.0 to 7.0 K temperature range and at the indicated field strengths. The solid red lines are the best-fit of the data with \(J = +1.24 \text{ cm}^{-1} \), \(g = 2.0 \) and \(D = -3.64 \text{ cm}^{-1} \). See text for details.

EPR Spectroscopy

High-frequency Electron Paramagnetic Resonance (HFEPR) data were collected for complex \(1 \) on a finely ground powder sample (41.2 mg) pressed into a KBr pellet (102 mg) in order to avoid field-alignment of the micro-crystallites within the powder. Measurements were performed in the temperature range 2.5 to 30 K and at high-frequencies between 100 and 430 GHz. The HFEPR spectra were obtained using a broadband transmission-type probe that employs cylindrical light-pipes; microwaves were generated using a phase-locked Virginia Diodes solid-state source operating at 13±1 GHz, followed by a chain of multipliers.

High magnetic fields were provided by an Oxford Instruments superconducting magnet.

Figure 3 separately displays the temperature dependence of parallel (\(B/\perp z \)) and perpendicular (\(B/\perp z \)) components of representative powder spectra obtained for complex \(1 \). Due to the significant zero-field splitting experienced by \(1 \), these two measurements were performed at quite different frequencies (406.4 (a) and 165.6 GHz (b) for \(z \) and \(xy \), respectively) in order to match the most prominent features to the available field window. For an easy-axis (\(D < 0 \)) system at low temperatures, one expects the strongest parallel components to occur on the low-field side of the \(g = 2.00 \) position (indicated in both panels of Fig. 3), while the stronger perpendicular components should occur on the high-field side, as is clearly the case in Fig. 3.
change to more of a derivative shape as the centre \((g = 2)\) position of the spectrum is approached.

Based on simulations \((\text{vide infra})\), the peaks in Fig. 3(a) have been labeled according to the notation \(z_{mS}\), where \(S\) denotes the spin multiplet state associated with the excitation, and \(mS\) denotes the magnitude of the spin projection associated with the state from which the transition was excited. Accordingly, the strongest low-temperature peak is \(z_{3,4}\) corresponding to the lowest-lying \(mS = -4\) to \(-3\) excitation associated with the \(S = 4\) ground state multiplet. We note that, as the temperature is increased, many more features emerge in the spectrum, especially as one approaches the isotropic \(g = 2.00\) position. It is possible to assign many of these features to transitions within excited spin multiplet states \((\text{vide infra})\), e.g., \(z_{3,3}\). Finally, we note that the strongest peak in Fig. 3(a) displays fine structures that are most likely attributable to multiple molecular microenvironments with slightly different \(zS\) parameters.\(^{22}\) Such strains are very common in molecular clusters and we shall see similar evidence for such behavior in the perpendicular spectra.\(^ {22-25}\)

Figure 4 Frequency dependence of the main HFEPR peak positions (see main text for explanation of labeling) determined from parallel spectra such as those in Fig. 3(a). The solid curves represent the best simulation of the data according to the Hamiltonian of Eqn. (3). The lower right inset depicts the perpendicular Zeeman diagram, illustrating the origin of the \(\alpha\) and \(\beta\) resonances seen in Fig. 3(b) and Fig. 5 (see main text for further explanation).

Figure 3(b) clearly contains two distinct types of excitation: those observed as double dips, which we assign to the \(x\) components, and those that appear as derivatives, which we assign to the \(y\) components. The two dips in the \(x\)-component spectrum again suggest multiple microenvironments. The resonances in Fig. 3(b) have been labeled according to a scheme developed previously for the Mn\(^{11}\) ions.\(^{23}\) At the lowest frequencies, the excitations may be further grouped into two types, \(\alpha\) and \(\beta\), depending on whether they occur between pairs of levels that are nearly degenerate \((\alpha)\), or separated by a gap \((\beta)\) in zero field. This is illustrated in the inset to Fig. 4, which shows the perpendicular \((B/xy)\) Zeeman diagram associated with the low-energy portion of the \(S = 4\) ground state, and where the \(\alpha\) and \(\beta\) transitions are indicated with black and blue arrows, respectively. This distinction will become important below when we attempt to simulate the powder spectra. The resonances in Fig. 3(b) are thus labeled either \(\alpha\) or \(\beta\), with subscripts that denote (i) the approximate \(mS\) value (even for \(\alpha\) and odd for \(\beta\)) associated with the state from which the transition was excited, and (ii) whether the excitation belongs to the \(x\) or \(y\) part of the spectrum. The \(mS\) values are only exact in the very high-field/frequency limit in which the quantisation axis is determined by the applied magnetic field vector.

Figure 4 plots the positions of main peaks observed in the parallel spectra determined from measurements spanning a wide range of high-frequencies, while Fig. 5 displays similar plots corresponding to the perpendicular spectra. Included in the Figures are the best simulations (solid curves) of the combined data sets employing the anisotropic spin-Hamiltonian (3):

\[
\hat{H} = -2\mu_B g\hat{S} \cdot \hat{B} + D (\hat{S}_{z}^2 - S(S + 1)/3) + E (\hat{S}_{\alpha}^2 - \hat{S}_{\beta}^2)
\]

where \(E\) is the rhombic anisotropy parameter associated with the Mn\(^{11}\) ions. One of the major advantages of performing multi-frequency measurements is that different features in the combined data sets separately constrain each of the free parameters in the above Hamiltonian.\(^{26}\) To start with, we have previously argued\(^ {27}\) that, for a ferromagnetic molecule with parallel \(D\) tensors, the zero-field intercept \((zfs)\) associated with the parallel ground state transition \((z_{4,4}\) in Fig. 4) depends only on \(D\), i.e., it is completely insensitive to any of the other parameters in the above Hamiltonian. Given that this is the most prominent feature in the entire study, we use it to fix \(D\). The locations of the 2\(^{\text{nd}}\) and 3\(^{\text{rd}}\) ground state parallel resonances \((z_{4,3}\) and \(z_{4,2}\) in Fig. 4) then constrain \(J\), while the slopes of the lines in Fig. 4 constrain the \(z\)-component of the \(g\) tensor. The effect of \(J\) is to introduce higher \((> 2\text{nd})\) order interactions into the effective description of the \(S = 4\) ground state (not considered here) that result in uneven field spacing of the corresponding resonance branches. This is clearly the case in Fig. 4, and it is this uneven spacing (i.e. the locations of \(z_{4,3}\) and \(z_{4,2}\) relative to \(z_{4,4}\)) that constrains \(J\).

We next turn to the perpendicular spectra in Fig. 5. Introduction of a rhombic \(E\) term together with a tuning of the \(x\) and \(y\) components of the Landé \(g\)-tensor produces near perfect agreement in terms of the \(\alpha\) resonances (thick black curves). The rhombic interaction effectively shifts the \(x\) and \(y\) components, shifting the former (latter) to higher (lower) fields, while the \(g\) values again determine the slopes. The only remaining issue concerns the low-frequency behavior of the \(\beta\) resonances (blue data points), which deviate dramatically from \(x\) and \(y\) component expectations (thick blue curves).

The low-frequency behaviour of the \(\beta\) resonances is not new, having been documented previously by other authors\(^{28, 31}\) as well as by some of the authors of the present study for the case of Mn\(^{11}\).\(^ {23}\) The simple 2\(^{\text{nd}}\) order Hamiltonian above possesses \(D_{xy}\) symmetry. In the strict high field limit \((B \gg DS/gg territorial)\), it gives rise to resonant (EPR) excitations that have turning points when the field is applied along each of the three principal Cartesian axes \(x, y\) and \(z\), i.e., when rotating in one of the three Cartesian
planes \((xy, yz\) or \(xz)\), the field location of each resonance will oscillate from a minimum to a maximum, with the extrema (turning points) located exactly along the Cartesian axes. It is these turning points that dominate the powder derivative spectrum. However, if the high field criterion is not met, these turning points need not necessarily lie along the Cartesian axes.

This can give rise to what are termed ‘off-axis resonances’ in powder measurements at low frequencies.\(^{23,28,31}\) This is precisely the explanation for the low frequency behaviour of the \(\beta\) resonances, and very similar effects have been observed in Mn\(_{12}\).\(^{23,32}\)

Figure 5 Frequency dependence of the main HFEPR peak positions (see main text for explanation of labeling) determined from \(x\) (a) and \(y\) (b) components of spectra such as those displayed in Fig. 3(b). The thick solid curves represent the best simulation of the \(\alpha\) (black) and \(\beta\) (blue) resonances according to the spin-Hamiltonian of Eqn. (3). The thin blue curves correspond to simulations with the field applied away from the \(xy\) plane (in 2° increments); these curves account for the low-frequency off-axis \(\beta\) resonances (see main text for further explanation).

To demonstrate the above assertion, we include additional simulations in Fig. 5, corresponding to field orientations away from the \(xy\) plane in 2° increments (thin blue curves). At the highest frequencies, the off-axis \(\beta\) curves all occur to the low-field side of the \(B/xy\) curve (thick blue line), i.e., the turning points lie exactly along \(x\) and \(y\). However, at the lowest frequencies, the simulations move initially to higher fields, but then retreat again to lower fields, i.e., as expected the turning points lie out of the \(xy\) plane. The field orientations corresponding to the turning points (maximum field) are frequency dependent. Nevertheless, by plotting a series of such curves, one indeed finds that they tend to the locations of the observed low-frequency \(\beta\) resonances. In other words, a single parameterisation accounts perfectly for all aspects of the powder measurements. The optimum simulation parameters are: \(D = -3.49\) cm\(^{-1}\), \(|\beta| = 0.16\) cm\(^{-1}\), \(J = +1.17\) cm\(^{-1}\) (ferromagnetic) and \(g = 2.00\).

Finally, we comment on the obtained parameters. There is excellent agreement between the single-ion uniaxial anisotropy and isotropic exchange parameters obtained from the HFEPR measurements and the fitting of the susceptibility and reduced magnetisation data \((D = -3.64\) cm\(^{-1}\), \(J = +1.24\) cm\(^{-1}\)). EPR studies are normally insensitive to exchange. However, as we have recently shown, one can indirectly determine \(J\) rather precisely in the case of simple clusters for which the exchange is comparable to, or weaker than the anisotropy associated with the constituent ions.\(^{26}\) This condition clearly applies for the present example, again illustrating the utility of HFEPR for such studies. We note that the obtained value for \(D\) is exactly in the same range of -3.4 to -3.6 cm\(^{-1}\) as found for many related Mn\(^{III}\) complexes.

Theoretical Analysis

All calculations were performed with version 2.8 of the program ORCA,\(^{33}\) with the TZVP basis set proposed by Ahlrichs used in all cases.\(^{34,35}\) For density functional theory (DFT) calculations, resolution of the identity (RI) approximation with the auxiliary TZV/J Coulomb fitting basis sets were employed.\(^{36}\) For Complete Active Space (CAS) calculations, these were replaced by TZV/C.\(^{37,38}\) In certain cases, the electronic effects of the acetonitrile solvent were introduced via the conductor-like screening model (COSMO).\(^{40}\) DFT calculations on the zero-field splitting (zfs) were carried out using the coupled perturbed and Pederson-Khanna methods, as well as quasi-restricted theory.\(^{41,42}\) The spin-orbit and spin-spin coupling operators employed are based in the SOMF scheme.\(^{43}\) Models A and B (Figure 6) were built from the experimental molecular geometry of the dinuclear complex (Figure 6). In Model A one Mn\(^{III}\) ion has been replaced by a diamagnetic Zn\(^{II}\) ion, and in Model B the molecule has been cleaved in half to produce a mononuclear Mn\(^{III}\) complex. Contributions to the axial (\(D\)) and rhombic (\(E\)) magnetic anisotropy from second-order spin-orbit and spin-spin coupling were calculated from methods based on density-functional theory (DFT) and post-Hartree-Fock methods based on the CAS treatment,\(^{45}\) and used as implemented in ORCA. Those based on DFT calculations were incorporated by means of mean-field approximations. The choice of conditions for the calculations was made using a combination of literature precedents and tests performed by us using different functionals (including hybrid functionals) and different methods to calculate the spin-orbit coupling [coupled perturbed, quasi-restricted (QRO) and Pederson-Khanna techniques] in the complex [Mn(bpea)F\(_3\)].\(^{46,47}\) Results with the BLYP functional and QRO technique provide \(D\) values closest to experiment and therefore they will be the only ones presented in the manuscript. The chosen active space in CAS was composed of the five manganese \(d\) orbitals occupied by four electrons, with the diagonalised SOC matrix derived from the 5 lowest quintet and 35 lowest triplet states.
High-spin MnIII ions possess a d^4 electronic configuration with a quintuplet ground state. The Jahn-Teller effect results in one of the e_g orbitals being unoccupied and non-magnetic. In axially-elongated complexes this is the x^2-y^2 orbital, and in axially compressed complexes this is the z^2 orbital. This is normally reflected in negative and positive values of the axial magnetic anisotropy (D) parameter, respectively. However, in some cases distributions in the metal-ligand bond lengths, which is particularly relevant when a variety of donor atoms are present in the coordination sphere, does not permit such a simple analysis. Complex 1 is indeed such a case. In these situations, calculations of the electronic structure provide invaluable support. In the present work both DFT and CAS methods have been employed in order to evaluate the contributions to the axial (D) and rhombic (E/D) magnetic anisotropy, originating from the spin-orbit and spin-spin coupling. The results from calculations performed on Models A and B are summarised in Table 1.

Table 1: Calculated values of D (cm$^{-1}$), its components (spin-spin, D_{SS}; spin-orbit, D_{SO}), and E/D ratio for Models A and B using DFT (BLYP functional and QRO method) and CAS techniques. The values in parentheses are those found when solvent effects are included through the COSMO approach.

<table>
<thead>
<tr>
<th></th>
<th>Model A</th>
<th>Model B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BLYP</td>
<td>CAS</td>
</tr>
<tr>
<td>D_{so}</td>
<td>-2.25</td>
<td>-3.56</td>
</tr>
<tr>
<td>D_{as}</td>
<td>-0.38</td>
<td>-0.59</td>
</tr>
<tr>
<td>D</td>
<td>-2.63</td>
<td>-4.04</td>
</tr>
<tr>
<td>E/D</td>
<td>0.129</td>
<td>0.071</td>
</tr>
</tbody>
</table>

As has been observed in previous studies, better agreement with experiment was found from CASSCF calculations; albeit with a slight overestimation of the D parameter in some cases. Results based on DFT and CAS calculations provide negative values for the D parameter that correspond to an axially elongated molecular geometry. In model B, DFT calculations provide a positive value of D. However, inclusion of the electronic effects from neighbouring molecules propagated via the acetonitrile results in an inversion of sign (see values in parentheses in Table 1). These new values are close to that found in Model A, in the presence or absence of solvent. Since DFT calculations tend to overestimate electron delocalisation, molecules in which (highly) negatively charged ligands are coordinated to the (positively charged) metal ions can be somewhat unstable, causing partial charge transfers or the inversion of the e_g magnetic orbital. This can be avoided through the inclusion of an adaptable cavity with a dielectric constant that allows for simulation of the intermolecular electronic interactions, stabilising the surplus electronic density on the ligands. Even if the spin-orbit contribution is predominant, the spin-spin contribution is non-negligible and must be considered in the quantitative evaluation of the D parameter.

Table 1: Calculated values of D (cm$^{-1}$), its components (spin-spin, D_{SS}; spin-orbit, D_{SO}), and E/D ratio for Models A and B using DFT (BLYP functional and QRO method) and CAS techniques. The values in parentheses are those found when solvent effects are included through the COSMO approach.

Figure 6. Model A (top) and model B (bottom) constructed from the crystal structure of 1. Colour code: Mn = pink; Zn = brown; N = blue; O = red; C = grey; H = white.

Figure 7. Schematic view of the orthogonality between the magnetic orbitals, which are displayed in different colours (blue and red) for each metal centre. The electronic densities delocalised for each MnIII ion meet at the nitrogen atoms in an orthogonal fashion.
simple model complex with which to examine the magneto-
structural relationship. SQUID magnetometry reveals weak
ferromagnetic exchange mediated through the heavily twisted
Mn-O-N-Mn moiety, with high field, high frequency EPR data
determining a single ion anisotropy, $D_{\text{Matll}} = -3.94$ cm$^{-1}$.

Theoretical studies afford calculated values of the exchange
coupling and the anisotropy that are in excellent agreement with
both SQUID and EPR experiments, and suggest that the weak
ferromagnetism results from an accidental orthogonality between
the Mn-N plane of one MnII ion and the Jahn-Teller axis of the
other.

Acknowledgements

LFI acknowledges the IRCSET Embark Fellowship Program for
funding EH. EKB wishes to thank the Leverhulme Trust and the
EPSRC. JC acknowledges the financial support of the Spanish
Ministerio de Ciencia e Innovación through projects CTQ2010-
15364, Molecular Nanoscience (Consolider Ingenio CSD2007-
00010) and Generalitat Valenciana (PROMETEO2009/108).

Work at the National High Magnetic Field Laboratory is
supported by NSF Cooperative Agreement No. DMR-0654118
and by the State of Florida. SH acknowledges the support of the
NSF (CHE0924374) and SP the Danish Natural Science Research
and by the State of Florida. SH acknowledges the support of the
M.S. degree. J. R. Pilbrow. Transition Ion Electron Paramagnetic

S. Takahashi, R. S. Edwards, J. M. North, and S. Palacios,
Phys. Rev. Lett., 2003, 90, 217204. (b) For general reading on this
subject see also: J. R. Pilbrow. Transition Ion Electron Paramagnetic

J. Lawrence, E.-C. Yang, R. Edwards, M. M. Olnstedt, C. Ramsay,

R. Inglis, L. F. Jones, C. J. Milios, S. Datta, A. Collins, S. Parsons,
W. Wernsdorfer, S. Hill, S. P. Perlepes, S. Piligkos and E. K.

J. Lawrence, S. Hill, E.-C. Yang and D. N. Hendrickson, Phys.

S. Hill, S. Datta, J. Liu, R. Inglis, C. J. Milios, P. L. Feng, J. J.
Henderson, E. del Barco, E. K. Brehcin, D. N. Hendrickson,
Perspectives Article in Themed Issue, Dalton Trans. 39, 4693-4707
(2010).

Phys., 1989, 90, 3401.

R. R. Rakhimov, A. L. Willerken, G. B. Louts and H. R. Reis, J.

E. del Barco, A. D. Kent, S. Hill, J. M. North, N. S. Dalal, E. M.
Rumberger, D. N. Hendrickson, N. Chakov and G. Christou, J. Low

A. Schäfer, C. Huber and R. Ahlrichs, J. Chem. Phys., 1994, 100,
5829.

Acc. 1997, 97, 19.

Collins, S. Parsons, W. Wernsdorfer, S. Hill, S. P. Perlepes, S.
Piligkos and E. K. Brehcin, Dalton Trans., 2009, 3403c. R. Inglis,
A. D. Katsenis, A. Collins, F. White, C. J. Milios, G. S.
Papaefthathiou and E. K. Brehcin, CrystEngComm., 2010, 12,
2064.

1996, 467.

G. M. Sheldrick, SHELXL-97, A computer program for crystal
structure determination, University of Göttingen, 1997.

P. Mc Ardle, P. Daly and D. Cunningham, J. Appl. Crystallogr.,

R. Inglis, E. Houton, J. Liu, A. Prescimone, J. Cano, S. Piligkos, S.
Hill, L. F. Jones and E. K. Brehcin, Dalton Trans., 2011, 40,
9999.

G. Socrates, Infra-Red and Raman Characteristic Group Frequencies.