

Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the

published version when available.

Downloaded 2024-05-14T15:44:20Z

Some rights reserved. For more information, please see the item record link above.

Title A portable Java API interface to simplify user access to digital
cameras

Author(s) Corcoran, Peter

Publication
Date 1998-08

Publication
Information

Corcoran, P,Papai, F,Zoldi, A,Desbonnet, J (1998) 'A portable
Java API interface to simplify user access to digital cameras'.
Ieee Transactions On Consumer Electronics, 44 :686-691.

Publisher IEEE

Link to
publisher's

version
http://dx.doi.org/10.1109/30.713182

Item record http://hdl.handle.net/10379/4032

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/

686 IEEE Transactions on Consumer Electronics, Vol. 44, No. 3, AUGUST 1998

Generic Digital I ORB
Camera API (FrontEnrl)

Camera Specific
Java Modules (BnckEncl)

A PORTABLE JAVA API INTERFACE TO SIMPLIFY USER ACCESS TO DIGITAL CAMERAS
Peter Corcoran, Ferenc Papai, Arpad Zoldi and Joe Desbonnet

Dept. of Electronic Engineering, University College, Galway, Ireland

[L ~ ~ ~ ~ 41

[L ~ ~ ~ ~ 31

Abstract - The digital camera is one of the main successes of
recent years in consumer electronics. However a typical digital
camera remains tied to proprietary software on a personal
computer. In this paper we describe the design and
implementation of a portable Java A H to simplify end user
access to digital cameras and to provide interconnectivity with a
new generation of intelligent home applicances.

1. Introduction
The digital camera market has taken off during the
past 18 months. Indeed there has been such explosive
growth that there are now more than 20 manufacturers
of competing products in this particular market niche.
However, although many digital cameras are
functionally similar each camera is accessed via its
own proprietary software and protocols on the users
personal computer.

In this paper we consider some of the issues involved
in the design of a generic API for digital cameras
which is independent of both the underlying
operating-system and of the digital camera.
Furthermore, as a proof of concept we have
implemented a basic software application which is
based on our prototype of a generic camera API. Our
experiences in developing and implementing this API
are also described.

We place particular emphasis on modularizing
components of the API. Thus the core software
building-blocks, or "personality" which control a
camera, and provide access to its inbuilt functionality
and stored data may be loaded and unloaded
dynamically as required. The end goal is to allow
camera "personalities" to be loaded remotely over a
wide area network such as the Internet.

Finally, and looking towards the emerging new
generation of home-Internet appliances, we consider
how such appliances would be capable of providing
access to and functional integration with such a generic
camera API. This might be achieved using the Internet
as a communications backbone for updating and adding
new functional modules to the core system software.

2. Software Architecture & Overview
As a practical implementation of our ideas we have
studied 5 of the most popular low end digital still
cameras and derived from these a consensus of the
main features, services and user-interface components
required in a generic digital camera API.

We have then implemented this API using a software
architecture as illustrated in Fig 1 below. Java is the
language of choice for this implementation as it
supports many of our core design goal, particularly
portability and platform independence and mechanisms
to support abstract interfaces and modularization of the
core software modules.

c++, c
Applications

Digital Camera HTW I [Laver 11

Fig 1: Overview of the API Software Architecture

As can be seen from Fig 1 there are several layers to
our architecture. A key goal of this project was to hide
the complexity of the lower layers from an application
programmer. Thus layers 1-3 are, essentially, invisible
to programmer who only requires a knowledge of
layer 4 in order to integrate digital camera functionality
into a software application. We will now describe each
of these different layers in more detail.

2.1 The Low-Level Communications Layers
The two lower layers represent the physical interface
between a camera and the hardware unit on which the
camera software will run. In practice this requires that
Java native methods be implemented, typically in the C
language, to allow communications between the
camera and the communication hardware. In today's
cameras this is typically an RS-232 port, but it might
equally well be USB, 1394 or a PCMCIA card
interface. If a native method is available to implement
low-level communications with a camera then it is
practical to link this to the higher layers of this
software architecture using a dynamically loadable

Manuscript received June 17, 1998 0098 3063/98 $10.00 1998 IEEE

687 Corcoran et al.: A Portable JAVA API Interface to Simplify User Access to Digital Cameras

system library. In the MS-Windows programming
environment, for example, this appears as a DLL file.

We note that the recently released Java
Communications API addresses these issues, making
access to a range of communications media more
uniform across all operating systems which support
Java[ref 13.

2.2 Camera Specific Modules - Back-End
The third layer implements camera specific software in
Java to handle different communication protocols,
camera specific instruction sets and messages and to
manage access to and downloading of pictures stored
in a camera. We will refer to this layer as the software
Dock-end.

The Java language supports the powerful concept of an
abstract software interface. This allows a programmer
to define abstract data structures and methods which
can be implemented by another software module. Note
that the interface-module does not need to know
anything about the software module which will
implement the interface and about the details of the
implementation. This, in turn, allows modules to be
loaded dynamically and accessed only through the
specific interface after the main core of a software
application has been started. This is, essentially how
the JCam architecture works, in that it is the bock-end
modules which implement the methods defined by the
actual camera API, or front-end.

2.3 The Front-End Abstract-Interface
This fourth layer, the digital camera API, makes a
broad range of cameras accessible through a common
programming interface. The design principle used here
is to abstract the most common camera functionality,
implementing them as an interface. A call to a specific
camera function happens through this interface which
maps the call to the appropriate, camera specific
module.

Camera specific functions, properties and parameters
can also be accessed. They are implemented in a list of
self describing namehalue pairs. For example if a
camera has a flash than it will have a flashhahe pair,
where the value is an integer describing the state of the
flash setting with a potential range of values from 0 to
255. With such self-describing options the backend
does not need to be concerned with presentation issues.
It simply provides a list of options that describe
additional controls and functions available in the
camera device. Similarly, there are benefits to the
frontend as it does not need to understand the meaning
of each option. It simply provides a means to present
and alter the options defined by the backend. These
self-describing pairs are grouped in a list, called
properties-list.

2.4 The Applications Layer
This will be implemented by a programmer using our
API. It could be a graphical design and drawing

package, an engineering CAD application or even a
plug-in for a web browser. The key point is that a
common set of API calls allow the programmer to
access digital cameras from a wide range of
manufacturers. The final application is thus camera
neutral, offering the end-user a greater choice in the
cameras they use.

3. The Digital Camera API
JCam is a Java package of a java application
programming interface (AH) that provides
standardized access to any digital still camera and can,
potentially, be implemented on any operating system
(OS). This API is implemented as a Java interface
allowing a programmer to write only one driver
module for each digital camera instead of one driver
for each OS. At the application level, access to each
camera is through an identical set of methods. The
reduction in the number of required driver modules and
the provision of a common set of class methods which
are shared across all digital still cameras, provides a
significant saving in development time.

The digital camera API intends to provide application
software with a consistent abstraction of all digital
cameras and still provides access to any specific
capabilities which differentiate a particular
manufacturers camera. This is achieved through the use
of a property list which provides a means for the
back-end driver modules to export additional
functionality via the main JCam API interface. These
are exported in terms of properties and parameter lists
that make it easy to give a user-application access to
all of a cameras functionality. This, in turn, allows
end-users to access a wide variety of cameras from a
common user interface.

3.1 The Main Classes
There are four main classes in the JCam package.
These are outlined in Table 1 below. Of these the core
class is the DigitolCornern class which defines the
main interface to a digital camera.

Descriotion: Class:
I ModuleLoader provides uccess to cumeru urd detect I

modules remotely or locully
DigihlCamera generic digirul cumeru interj;rce
Detectcamera inter$uce for uutomutic recognition

Picture
of digital cumerus
provides uccess to ull informution
regurding U tuken picture

Table 1: The Moin JCorn Classes

The DetectCarnero and the ModuleLoader classes are
important in the context of our architecture which
supports the automatic detection and loading of
back-end modules. These classes are discussed later in
section 4. Finally, the Picture class offers information
about a picture taken with a digital camera and also
offers functions for the manipulation of this digital
picture.

688 IEEE Transactions on Consumer Electronics, Vol. 44, No. 3, AUGUST 1998

3.2 The Main Methods of the DigitalCamera Class
Applications communicate with the camera thsough a
well defined interface, the DigrtnlCarnera class. This
interface incorporates the basic and the most common
operations which can be performed with all digital
cameras.

The camera driver modules implement this interface,
each of them in its own way, based on the camera
specific communication protocol.

Method: Descrbtion:
open0 opens the connection
dose() closes the connection

init()
ge tTYpe0

getNumberOf’Pictures()

resets the cumeru to U known state
returns the ccuneru’s mnufmturer
urd model No.
returns the number of pictures
uvuiluble m the cumeru

gelPicture(n) downlcuds picture number n
getThumbnail(n) downloads thumbnuil number n
deletePicture(n) delete picture number n
deleteAll() delete ull pictures

isProtectedPicture(n) checks if the picture is protected

protectpic ture(n)
hkePicture() takes U new picture

protect picture number n

Table 2: Main Methods of the DigitnlCarnera Interjace

3.3 The PacketListener Methods
Applications can be notified about the download status
of images, using the Java event delegation model. This
requires that notification of received data packets from
the camera is passed on to the application layer. This is
realized by generating appropriate events. These
events, with incorporated status information are
accessed by a PacketListener object. Status
information includes the amount of data downloaded
and the amount remaining.

The following methods are used to add and remove
event listener objects to/from a module.

_Method: Description:
addPacketListener(listener)

removePacketListener(listener) removes the listener from

udds U listener object to
the module

the module

Table 3: PocketListener Methods for Picture
Do wnload

3.4 The Picture Class
The pictures obtained from a camera by a back-end
module are encapsulated, with some additional
information, in Picture objects. The incorporated data
provides information about each picture, i.e. image
size, shutter speed, aperture, flash mode, quality mode,
date of the picture, etc. in the form of a properties-list.

Details of the main methods implemented by the
Picture class are given below in Table 4. Note that at
the present stage we have only implemented JPEG and
PNG (Portable Network Graphics) support. Additional

graphics formats will be supported as, and when
necessary.

Method: Descrbtion:
getDattl() gets the picture dutu in the formut

sent by the cumeru I getImage0 gets un imuge which can be displuyed
in the current Juvu environmetzt

PetImageAsJpegO
getImageAsPNG()
isThumbniiil()

returns un i m g e in JPEG format
returns un i m g e in PNG format
checks if this picture is U thumbnuil

getFonnir ti)
getproperties0

returns the ptcture’s format
returns the picture’s properties list

Table 4: Methods of the Picture Clnss

3.5 Camera Specific Features & Functionality
The digital camera API also provides access to camera
specific features vhich can vary from camera to
camera. These features (i.e. flash mode, resolution
mode, date, battery status, lens mode) are grouped in a
properties-list. The properties-lists are used in the API
to allow access to specific values, functions and
parameters in a camera and to offer more detailed
information about a picture stored in the camera,

Method: Descrbtion:
getProperties()
setProperties(new) sets the cumeru’s properties

gets the cumeru ’s properties list

Table 5: The Properties Methods to provide access to
non-stnndnrd features in rlgfferent catnerns.

3.6 The Back-End: Camera Modules
The main function of the back-end is to implement the
methods defined in the DigitalCarnera interface for
different cameras using the corresponding
communication protocols. These modules have to deal
with camera specific properties, proprietary image
format and event generation.

From each camera’s protocol we can select a numbes
of essential commands which can be found in the
general camera interface. However, to completely
explore the features of a particular camera, in addition
to the basic API defined above, the specific camera
modules will also support additional command-sets and
functionality which is not part of the basic API. These
functions are encapsulated in a properties-list. The
module for a particular camera will build, on request,
this list by retrieving all the available additional
information from the camera which cannot be accessed
directly via the digital camera API. To set these camera
specific features the application programmer builds a
properties-list and passes it to the camera module
which interprets and sets only the properties available
on the connected camera. This mechanism allows the
application programmer to set only the desired
properties.

Some digital cameras may use a proprietary image
format to store the taken pictures. In this case, the
images must be converted to a standard, well known
and common image format. The modules, where it is
appropriate, include conversion code to well known

Corcoran et al.: A Portable JAVA API Interface to Simplify User Access to Digital Cameras 689

and widely used image formats like JPEG, TIFF or
PNG.

The back-end is responsible with the generation and
the delivery of events. The getpicture and
getThu/nbnail method implementations of the different
camera modules are sources of events. These methods
create events with embedded information about the
download status and deliver them to the subscribed
listener objects. A picture is sent by the camera in
several packets, each of them accompanied by a
checksum. Listener objects will be notified every time
by an event if a correct packet or an eronate packet
was received.

4. Detailed description of the architecture
There are three key components in the JCam API:
general camera interface (Digitalcamera), camera
detection interface (Detectcamera) and finally the
module-loader (ModuleLoader). These three
components provide all the interaction between the
JCam API and a java application. The general camera
interface provides uniform access to any digital
camera, see section 3.

Remote or Local Modules

Access to-modules *‘“ uccess
rlirecf “ x s s

JV

Application

Fig 2: Detailed description of the JCnrn
architecture

The camera detection interface provides uniform
access to software modules which perform automatic
recognition of the connected digital camera. There is

one module for each type of U 0 port which
implements this interface. Each of these modules
provides detection for a group of digital cameras which
have the same communication port. These modules
contain a minimal part of the protocol for each camera
from the group, enough to recognize the cameras.

The link between the interfaces and the modules is
provided by the module-loader, see Fig 2 . Basically
the module-loader creates the desired modules for the
application software. The module-loader first loads the
detect module for the used communication port. After
that, using the recognized camera’s identification
number it loads the corresponding camera module.
Now the camera can be accessed through this camera
specific module.

The location of the camera and detection modules can
vary, the modules can be on a remote site on the
Internet or on the local system as well. As you can see
in the given code example (section 5.1), there is no
difference between working locally or remotely, except
that the remote operation requires an URL (Universal
Resource Locator) to be specified. The size of the
modules is very small (25-30 KBytes), the download
of one module from a remote site would cause only a
short transfer delay.

5. An Application using the API
As an initial proof-of-concept we have implemented a
prototype application based on a standard desktop PC,
to demonstrate how the API allows a number of
different digital cameras, each from a different
manufacturer, to be accessed from a common
user-interface.

In each case the core elements of the camera
personality are loaded separately, as required, from the
local hard-disk on the PC. However the software has
been designed and may be readily modified to support
the loading of these modules over a network. Thus the
user-interface and application modules could also be
loaded remotely in the same way. This is described in
greater detail in section 4.

In a practical consumer application the PC might
equally be an intelligent screen phone, set-top box, or
other home-Internet appliance and the modules would
be downloaded from a remote URL on a TCPlIP
network. Thus an end user, by connecting his digital
camera to, say, a screen phone could automatically
load from the Internet -

(i) a camera module to access the camera,
(ii) a user interface to download, edit and view

pictures, and
(iii) additional application modules to archive, manage

and index pictures either locally, or on a remote
site and to transmit selected pictures via email.

What is important is that all of these functional
modules are only loaded as required by the end-user

690 IEEE Transactions on Consumer Electronics, Vol. 44, No. 3, AUGUST 1998

and the exact modules loaded are determined from the
behaviour of the camera connected to the serial port.

number of taken pictures. It then downloads picture
number 2. Finally the connection is closed.

Fig 3: Exainple Application Based on the JCarn API.

5.1 Some Practical Code Examples
The following Java code fragment illustrates the usage
of the digital camera API with the camera modules
located over the network and in the local file system.
The only difference is resumed on the initialization of
the ModuleLoader object.

First, the ModuleLoader object is created in two ways,
one for remote access and one for local access to the
camera modules:

ModuleLoader loader;
loader = new ModuleLoader("www.jcam.com");

I I

or,

ModuleLoader loader;
loader = new ModuleLoaderO;

Thc next block of code gets the detect code for the
serial port ("COMI ") and detects the connected
camera. Based on a camera identification number
returned by the detect module it loads the camera
specific module which can work with the connected
camera:

Detectcamera detectcam;
detectcam = loadergetDetectModule("C0M 1");
int cameraID = detectCam.detect();
Digitalcamera camera;
camera = loader.getCameraModule(camera1D);

The following lines show some basic camera
operations. First, the camera is opened on the serial
port "COMl", It is asked its make/model and the

I
camera.open("COMl 'I);
String type = camera.getModel();
int nrPics = camera.getNumberOfPichres();
Picture picture = camera.getPicture(2);
camera.close()

L

The following lines save the downloaded image into a
file. Note: if the camera has proprietary image format,
the Picture class with the help of the camera module
performs all the necessary conversions.

FileOutputStream out;
out = newFileOutputStream("pic2.jpg");
out.write(picture.getPictureAsJPeg());
out.close();

L I

Accessing a property of a camera is presented below.
The code manipulates the camera's internal date if it
has. First, the date is read and after is set. The
'camera.date' and all the other keywords, representing
properties, are defined by the API.

Properties list = camera. getproperties () ;
String date = list.getProperty("camera.date");
if(date != null){

I / date available in 'date' variable in a
//format like IO.JAN.1998
list = new Properties();
list.put("camera.date", "2.JUL. 1998");
camera.setPropeties(list);

else {
N it's not possible to acces the camera's internal
// data or there is none

1

6. Future Enhancements
The Digital Camera classes provide application
software with a consistant abstraction of all digital
cameras. Application software can use a camera
without specific knowledge of what resolutions,
encoding standards, shutter speeds, and focusing
mechanisms are available and without having to know
the details of the communication protocol.

In order to allow existing applications written in
languages such as C and C++ to use this proposed
software API infrastructure, we suggest that a CORBA
ORB should be incorporated into the higher API
layers. We also envisage that the inclusion of an ORB
will simplify the development of network aware

Corcoran et al.: A Portable JAVA API Interface to Simplify User Access to Digital Cameras

applications and distributed applications for home and
business use.

The camera specific layer implements all the necessary
code to communicate with a specific digital still
camera. This layer is designed so as to allow new
camera personalities to be added.

69 1

The I/O layer is a platform specific library to enable
communication via RS232 (in our prototype),
PCMCIA and ultimately via Universal Serial Bus or
1394 serial connections when suitable cameras become
available.

7. Conclusions
The lava API interface was designed to provide a
generic interface to communicate with a wide range of
digital still cameras from a common user interface and
common software API.

As a proof-of-concept we have developed software that
demonstrates all aspects of the API architecture
discussed in this paper and which works with several
of the commonest digital still cameras available from
leading manufacturers today

Galway, Ireland.

References
[11 http://www.javasoft.coin.

Galway, Ireland. His
major interests include OOP and Java programming,
Internet technologies, networking and operating
systems.

Biographies Joe Desbonnet received
his B. Sc. degree in
Applied Physics and
Electronics from Peter Corcoran received

the BA1 (Electronic University College
Galway in 1991. He is Engineering) and BA

(Maths) degrees from presently working as a
Research Associate at Trinity College Dublin in
University College 1984. He continued his
Galway and is a director studies at TCD and was

of a Galway based Internet services and software awarded a Ph.D. in
development company. His interests include Java Electronic Engineering in
programming language, the Linux operating system 1987 for research work in
and web computing. the field of Dielectric Liquids. In 1986 he was

appointed to a lecturship in University College
Galway. In 1994 he founded POD Concepts Ltd, an
R&D company developing ATE systems for the
International Textile Industry. In 1995 POD Concepts
became a major partner in the first Sino-Irish Joint
Venture, based in Beijing, PRC. He is currently
teaching on a part-time basis at University College
Galway, and is a visiting Professor in
Telecommunications at the Technical University of
Cluj-Napoca, Romania. His research interests include
embedded computing applications, automated test
equipment, instrumentation and telecommunications
technologies. He is a member of the IEEE.

http://www.javasoft.coin

