<table>
<thead>
<tr>
<th>Title</th>
<th>Performance Monitoring of a Mammalian Cell Based Bioprocess using Raman spectroscopy.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Ryder, Alan G.; Li, Boyan; Ray, Bryan H.</td>
</tr>
<tr>
<td>Publication Date</td>
<td>2013</td>
</tr>
<tr>
<td>Link to publisher's version</td>
<td>http://dx.doi.org/10.1016/j.aca.2013.07.058</td>
</tr>
<tr>
<td>Item record</td>
<td>http://www.sciencedirect.com/science/article/pii/S0003267013010349; http://hdl.handle.net/10379/3938</td>
</tr>
<tr>
<td>DOI</td>
<td>http://dx.doi.org/10.1016/j.aca.2013.07.058</td>
</tr>
</tbody>
</table>
DOI: http://dx.doi.org/10.1016/j.aca.2013.07.058

This is the author version. The definitive version is available on the Analytica Chimica Acta website.

PERFORMANCE MONITORING OF A MAMMALIAN CELL BASED BIOPROCESS USING RAMAN SPECTROSCOPY.

Boyan Li,1 Bryan H. Ray,1 Kirk J. Leister,2 and Alan G. Ryder.1*

1 Nanoscale Biophotonics Laboratory, School of Chemistry, National University of Ireland, Galway, Galway, Ireland.
2 Bristol-Myers Squibb, Process Analytical Sciences, Syracuse, New York, USA.
* Corresponding Author: Email: alan.ryder@nuigalway.ie. Tel: +353 91 49 2943

Abstract:
Being able to predict the final product yield at all stages in long-running, industrial, mammalian cell culture processes is vital for both operational efficiency, process consistency, and the implementation of Quality by Design (QbD) practices. Here we used Raman spectroscopy to monitor (in terms of glycoprotein yield prediction) a fed-batch fermentation from start to finish. Raman data were collected from 12 different time points in a Chinese Hamster Ovary (CHO) based manufacturing process and across 37 separate production runs. The samples comprised of clarified bioprocess broths extracted from the CHO cell based process with varying amounts of fresh and spent cell culture media. Competitive adaptive reweighted sampling (CoAdReS) and ant colony optimization (ACO) variable selection methods were used to enhance the predictive ability of the chemometric models by removing unnecessary spectral information. Using CoAdReS accurate prediction models (relative error of predictions between 2.1–3.3%) were built for the final glycoprotein yield at every stage of the bioprocess from small scale up to the final 5000L bioreactor. This result reinforces our previous studies which indicate that media quality is one of the most significant factors determining the efficiency of industrial CHO-cell processes. This Raman based approach could thus be used to manage production in terms of selecting which small scale batches are progressed to large-scale manufacture, thus improving process efficiency significantly.

Keywords: Raman spectroscopy, Bioprocess, Glycoprotein, Chemometrics, Variable Selection, CHO cell.

1. INTRODUCTION

The manufacture of therapeutic proteins by mammalian cell culture based processes is driving the development of a new generation of spectroscopic (primarily vibrational) based analytical methodologies [1-8]. The need for rapid, reliable, robust, and non-destructive

Analytical methods is of paramount importance to ensure efficient and reliable process control, to improve fermentation performance and product quality, leading to decreases in cost-of-product. Ideally it would be best if these methods could enable the accurate prediction of final yield (and other product quality attributes) as early as possible in the process cycle, preferably in the seed reactor.

A fed-batch fermentation process for recombinant protein production, starting with the cell bank vial and ending with the final product, is a very complex system. Multiple process parameters that determine product yield and other desired quality attributes include feed quality, feeding strategy, inoculum age, and harvest point (to name but a few) [9-11]. Once a process seed reactor has been transferred to the large-scale manufacturing bioreactor stage, most of the process operational parameters will have been fixed, except for feed quality, which can vary substantially. In bioreactors during growth and production phases, there is a complex environment, comprising of materials that include feed media (a mixture of amino acids, inorganic salts, carbohydrates, organic acids, vitamins, etc.), whole cells and cell debris, product and host cell protein, and metabolites [9, 12, 13]. The analysis of these complex materials is challenging, and chromatographic techniques (often coupled with mass spectrometry) offer the necessary chemical resolution for detailed analysis [14, 15]. Alternatively one can consider the use of high-field NMR which can generate extensive information about the constituents of cell culture media [16]. However, these approaches are generally only implemented with a low analysis frequency because of tedious sample preparation, high capital cost and often highly skilled, labor-intensive/ time-consuming data analysis.

The potential of near-infrared (NIR) and mid-infrared (MIR) spectroscopies has been documented for bioprocess analysis [1-3, 5, 6, 17]. These methods are however hindered by the very strong water signal, so in aqueous solutions, much of the critical, analyte signal can be masked. In the context of bioreactor broth analysis, Raman spectroscopy has significant advantages, such as ease of implementation, ease of use, low maintenance, and high analysis frequency, as an industrial process desires. Sample preparation in many cases is not required, permitting in-situ sample analysis. Water has a weak Raman signal and so spectra can be easily collected from aqueous solutions. Raman spectroscopy is generally implemented using excitation sources in the visible to NIR regions of the spectrum which allows for the use of fiber optic probes for remote or in-situ analysis [18, 19]. The use of Raman spectroscopy for the analysis of complex systems like in-reactor bioprocess monitoring is a rapidly expanding [20-22].

One of the key technologies driving the adoption of Raman (and other multivariate spectroscopic) based methods has been the increased use of chemometrics to extract useful quantitative and qualitative information from data [23]. In the context of quantitative bioreactor broth analysis, chemometrics has generally been used to specifically quantify metabolites or nutrients [8], or more holistically predict the final yield. Partial least-squares regression (PLS) [24, 25] is one of the most important chemometric tools and generally used to develop statistical multivariate regression models within and between large and complex data matrices, and thus to
facilitate understanding of the important relationships between spectroscopic measurements and the analyte or property of interest. To improve PLS regression performance, many methods have been proposed for selecting the variables that carry higher information content regarding the property of interest from a large number of spectral wavelengths/variables [26-29].

Some variable selection methods are based on the inspection of regression coefficients or latent variables [30-32], such as the typical uninformative variable elimination [33, 34], variable importance in projection [35], and competitive adaptive reweighted sampling (CoAdReS) [36]. Other methods involve the conduction of the minimum error searches, for example, interval-PLS [37], moving window PLS [38], genetic algorithms [29, 39-41], particle swarm optimization (PSO) [42], and ant colony optimization (ACO) [43, 44]. CoAdReS and ACO variable selection methods both employ a Monte Carlo (MC) strategy to select a limited number of key variables from the multivariate spectral data, and thus generate more accurate chemometric models [36, 44]. In this study we have used both methods because they are both better than the other common variable selection methods (e.g. genetic algorithms) and second because the two methods used intrinsically different methods of variable selection. Thus analyzing the complex bioprocess derived Raman spectral data using both of these methods should provide a clear indication of model reliability.

Here we used Raman spectroscopy to model/monitor a complete fed-batch, CHO cell based process from the initial small, liter-scale right up to the final large-scale (5000L) fermenter. Spectral data was collected from off-line, samples and the productivity of the process was evaluated in terms of glycoprotein product yield. It was possible by the judicious use of computational, variable selection methods to accurately predict process yield with small relative errors of prediction (REP%). This ability to accurately predict final yield at all stages of the process using a single analytical method is highly desirable because it provides a rapid quality assurance tool for optimal operation of large-scale CHO bioreactors.

2. MATERIALS AND METHODS

2.1 Materials

An industrial bioprocess for the production of a recombinant protein using CHO cells in bioreactors up to 5000L was sampled over a continuous 40+ batch, production campaign. For each production run, the process was sampled at twelve different set time points over the course of the fermentation process. The bioprocess was operated in fed-batch mode using proprietary basal and feed media formulations. Samples were first centrifuged and sterile filtered to remove any whole cells,\(^1\) before being aliquotted under sterile conditions. Samples were then shipped to Ireland at -70°C from the Bristol-Myers Squibb Company, Syracuse, US, with a maximum travel time of two days. Sample temperature integrity was confirmed by the use of electronic

\(^1\) For the sake of clarity we will refer to these specific samples as being bioprocess broths.
temperature sensors in each shipment. These samples were further aliquotted into smaller volumes and stored at -70°C. For analysis, the samples were randomly removed from cold storage and defrosted at room temperature [7].

Table 1: Details of the bioprocess samples used in this study obtained from a continuous 40+ batch production campaign.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Bioreactor Content Description.</th>
<th>Bioreactor Volume</th>
<th>Sample size</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS1</td>
<td>Media Start</td>
<td>2L</td>
<td>21</td>
</tr>
<tr>
<td>DS2</td>
<td>Media End</td>
<td>2L</td>
<td>17</td>
</tr>
<tr>
<td>DS3</td>
<td>Cells + spent basal media: solutions of cells and spent basal media just prior to transfer to next, larger-sized bioreactor.</td>
<td>2L</td>
<td>17</td>
</tr>
<tr>
<td>DS4</td>
<td>Cells + spent & fresh basal media: contain the cells and spent basal (transferred from the previous bioreactor) plus new basal media added to advance process scale-up.</td>
<td>100-200L</td>
<td>31</td>
</tr>
<tr>
<td>DS5</td>
<td>Cells + spent basal media: solutions of cells and spent basal media just prior to transfer to next, larger-sized bioreactor.</td>
<td>100-200L</td>
<td>31</td>
</tr>
<tr>
<td>DS6</td>
<td>Cells + spent & fresh basal media: contain the cells and spent basal (transferred from the previous bioreactor) plus new basal media added to advance process scale-up.</td>
<td>1000L</td>
<td>31</td>
</tr>
<tr>
<td>DS7</td>
<td>Cells + spent basal media: solutions of cells and spent basal media just prior to transfer to next, larger-sized bioreactor.</td>
<td>1000L</td>
<td>34</td>
</tr>
<tr>
<td>DS8</td>
<td>Cells + spent basal media</td>
<td>5000L</td>
<td>37</td>
</tr>
<tr>
<td>DS9</td>
<td>Cells + spent & fresh basal media: contain the cells and spent basal (transferred from the previous bioreactor) plus new basal media added to advance process scale-up.</td>
<td>5000L</td>
<td>29</td>
</tr>
<tr>
<td>DS10</td>
<td>Day 5 Post inoculation</td>
<td>5000L</td>
<td>35</td>
</tr>
<tr>
<td>DS11</td>
<td>Day 10 Post inoculation</td>
<td>5000L</td>
<td>34</td>
</tr>
<tr>
<td>DS12</td>
<td>Prior to transfer for harvest: this is centrifuged harvest material, i.e., end of production material rich in cells and spent media. Some cells at this stage would have undergone apoptosis and thus expelled host cell protein and other cell debris into the supernatant. In every case, the material that was centrifuged to eliminate whole cell and large cell debris is considered clarified, but does still</td>
<td>5000L</td>
<td>33</td>
</tr>
</tbody>
</table>
have some cell components present such as membranes, broken organelles, DNA/RNA, etc.

The DS9–12 samples follow the final stages of fermentation up to the harvest point, and during this phase, feed media was also added at specific times. Protein yield (titer) was measured using the following method. The soluble media supernatant, which contains the Fc-fusion protein, was first past over an affinity Protein A column. The captured product (usually greater than 98% recovery) was then eluted by a low pH rinse. The product was then analyzed using a spectrophotometric measurement (A$_{280}$) with an extinction coefficient of 1.0. The extinction coefficient was determined both by theoretical and experimental amino acid concentration. The protein concentration method is validated to ICH standards and is well within 10% (2–3 % reference standard reproducibility, with EC within 2% of theoretical).

2.2 Instrumentation and data collection/analysis
Raman spectra were collected with 785 nm excitation using a RamanStation spectrometer (AVALON Instruments Ltd, Belfast, NI, now acquired by Perkin-Elmer). A laser power of ~70 mW at the sample with an exposure time of 2×10 seconds was generally used and spectra were recorded at a resolution of 8 cm$^{-1}$ from 3311 to 250 cm$^{-1}$ [7]. 100 μL of sample was pipetted directly into a stainless steel multi-well plate for analysis [45]. For each measurement, a 3×3 sampling grid was used, and thus nine Raman spectra were generated. Each sample was measured in triplicate and for each of the three measurements a fresh aliquot of sample was used. Finally, the triplicate measurements were averaged to generate a single spectrum for each sample. Raman data was collected over 38 months and a cyclohexane standard was used to ensure wavelength accuracy during this period. To minimize the effects of baseline drift, scatter effects, and uncontrolled fluctuations, Raman data were subjected to a series of sequential pre-processing steps (baseline removal, normalization to water bending band, water band removal, and first derivative transformation) prior to chemometric modeling. All calculations were performed using MATLAB [46], PLS_Toolbox [47], and in-house-written MATLAB routines (supplemental information). ACO MATLAB code was generously provided by Prof. A.C. Olivieri (Universidad Nacional de Rosario, Argentina). See supplemental information for sample spectra.

2.3 Calibration and validation samples
Twelve datasets (Table 1) were generated from the various samples; however, the first three datasets (DS1–3) had low sample numbers and therefore were not used further. The remaining sets comprised of samples acquired at different time points for the same CHO based process (30+ lots) where each sample set describes a different stage of the process. All data sets were mean-centered prior to PLS or PCA modeling. For PLS modeling, datasets were randomly split into a calibration and test set (always five samples) in a ~80:20 split using an MC based
sampling protocol. To ensure robustness the calibration/test set selection was repeated 500 times
and a PLS model run on each unique selection. PLS model quality was assessed using a
combination of parameters including: root mean square error of calibration (RMSEC), root mean
square error of prediction (RMSEP) for validation/test set, relative error of prediction
(REP%=100×RMSEP/\bar{y}_\text{cal}, where \bar{y}_\text{cal} is the mean calibration value of the product titer), and the
square of the correlation coefficient (R^2) between predicted and measured titers for the validation
set. Finally to avoid potential overfitting, we used a randomization test method to determine the
proper number of PLS components to be used for each final model (see supplemental
information for details) [48]. This method enabled a clearer assessment of which components
were likely to contribute to overfitting, and resulted in the use of 20–45% fewer components
compared to standard cross-validation methods.

2.4 CoAdReS variable selection
CoAdReS was implemented on each individual dataset to select the spectral variables which
correlated most strongly with yield. These variables were then used to generate quantitative PLS
models (Table 2). 200 CoAdReS sampling runs were performed and for each sampling run, a
PLS model was constructed using 83% of the samples, which were randomly selected.
CoAdReS then generated sequentially 200 subsets of variables (182 in run 1, only 2 in run 200)
and regression coefficients for each variable were obtained from the PLS models. The variable
selection process was based first on the magnitude of the regression coefficients, and second on
the reduction rate, for example in the i-th sampling run, the ratio of variables/wavenumbers to be
kept (r_i) is given by: r_i = a e^{-ki} (a = 1.0234, k = 0.0232, i = 1, 2, ..., 200).
Variables with low
regression coefficients were weighted to zero, and the significant variables to be retained were
weighted with a value related to their absolute regression coefficient value. These retained
variables were then used for PLS modeling in the next sampling run, and so on [36]. Once the
200 subsets were generated, the remaining samples (17%) were employed for cross validation on
each CoAdReS sampling run, and the RMSEP was calculated for this cross validation. The
optimal subset of variables (from the 200) is the subset with the lowest RMSEP value.
To ensure that we had a robust variable selection procedure, we reran CoAdReS 500 times
for each dataset using random calibration/test sample combinations (selected using MC), and as a
consequence, the key variables selected varied slightly. All 500 sets of key variables were then
statistically analyzed to generate a normalized histogram. To determine the optimal number of
the selected variables to be used for the final chemometric model, leave-one-out cross validation
[49] PLS modeling was performed with trial numbers of selected variables from 10 to 45. In
practice, all selected variables were ranked according to the magnitude of the histogram values
from largest to lowest. Then, a number of the selected variables (from 10 to 45) were picked for
PLS modeling and RMSEP values calculated. Plotting the RMSEP values versus variable
number allowed a minimum value to be determined and thus set a threshold limit for the optimal
number of selected variables. This rather computationally intensive approach was necessary
because of sample complexity, the low sample number per dataset, and because of the very weak analyte bands. However, computational time is relatively inexpensive, so that it is feasible to implement these methods in an industrial context without expensive IT infrastructure.

3. RESULTS AND DISCUSSION

3.1 Spectral analysis

Most of the Raman signal originates from water, with the media component signals being relatively weak for both bioprocess broths and basal media samples (Figures 1 and 2). The O–H stretching band above ~3000 cm\(^{-1}\) shows the largest variation which is caused by a variety of factors. Based on our previous experience with cell culture media analysis [7, 45] we omitted, the 3311–1860 cm\(^{-1}\) spectral region from the chemometric analysis. The 400–250 cm\(^{-1}\) spectral region was also excluded from chemometric analysis because it was compromised due to Rayleigh light bleed through from the filters (Figure 1, inset graph) [7, 45]. The water bending bands (1636 and 1364 cm\(^{-1}\)) dominate in a large proportion of the fingerprint region, making specific analyte identification difficult (Figure 2). In addition, there are significant baseline fluctuations and intensity variations present in the Raman spectra similar to those previously observed for the media and raw materials used in this process [7, 45]. Most of the significant spectral information is contained in the 1853–400 cm\(^{-1}\) range where we expect to observe bands associated with the components of the media, cell constituents, and the protein product. Providing definitive band assignments was not possible due to a combination of compositional complexity, low Raman resolution, the unknown identity of many of the metabolites, and the confidential nature of the basal media used in the process. In any event, we are seeking to use Raman spectroscopy in a more holistic role rather than a precise diagnostic tool. One should also note that in fed-batch operation the continual addition of fresh basal and feed media as one progresses through (i.e. a longitudinal study) the production cycle makes it much more difficult to track specific process changes, as these are more than likely swamped by the addition of media. Thus it is more practical for process monitoring to only consider the changes at fixed time points i.e. a cross-sectional approach. The downside of this approach is that one requires access to a sufficient number of good quality samples (20–30 production cycles) in order to extract useful data.

Figure 2A shows the normalized Raman spectra of clarified supernatant from the end cultures (cells + spent basal media) of the small-scale bioreactors. When compared to Figure 2B (normalized Raman spectra of clarified supernatant from the starting cultures: cells + spent & fresh basal media) there are no significant differences. The exact formulation of these propriety media are commercial trade secrets and thus we cannot discuss in detail the origin of the differences between the media, nor assign specific identities to the various spectral bands. Most
of the differences in these spectra are due to the increase in cell density and volume and to
changes in metabolite concentrations

Figure 2C shows the normalized Raman spectra of extracts from bioprocess broths from a
single production lot sampled at five time points over the last two bioreactors. The signal quality
is relatively good because of the sample preparation method. However, one has to be cautious
here with respect to spectral interpretation because a fed-batch strategy is employed, so the
chemical composition changes not only because of metabolic activity and protein production, but
also with the addition of the feed media. The DS7 material is used to seed the last large scale
bioreactor, and the DS9 sample is the seed material plus the newly added basal media used for
the final stage bioreactor for production. Thus if we consider the DS9–12 sequence of spectra
we can observe significant changes due to the bioprocess itself. DS9 contains exponentially
growing cells with spent and new basal media mixed, DS10 is from an exponential cell growth
phase with higher mass (10^6 mL^-1 and viable) spent basal, feed media, DS11 is the stationary cell
phase (still viable) with spent feed media, and DS12 is the harvest material (rich in cells and
spent media).

The major visible changes with process time are the increase in band intensity at 534, 853,
1044, and 1413 cm^-1 (see supplemental information for PCA study). Unfortunately, the
compositional complexity of the samples makes it very difficult to unambiguously assign any
bands in the spectra apart from water. However, it is quite possible that the 534 cm^-1 band
originates from the nine disulphide bonds present in the product glycoprotein, and thus is a
marker for secreted product. The 534 cm^-1 value is mid-way between the values reported for a
variety of similar proteins [50-52]. The identity of the other bands is much less certain. For
example, for the 853 cm^-1 peak, strong bands at this wavenumber appear in both amino acids and
sugars and are ascribed to a variety of different vibrational modes [53].

However, changes in Raman spectra with process time are difficult to assign to specific
components because this difference is convoluted with the variations between the various
manufacturing runs, e.g., the lot-to-lot variation is much greater than the time-dependent changes
(Figure 3). The first plot shows the variation across 31 lots of a starting culture, DS4, and it is
clear that there is a large spectral variation. Most of this will be due to compositional changes,
some of which is due to dilution. The dilution with feed media is likely a significant variable
because the process has complex feed media criteria in which volume input is related to cell
density and growth rate, and thus nutrient consumption. This may be reflected and related to this
observation, i.e. some media samples look like they have a higher 1354/1635 band ratio
indicating a stronger water band. Similarly broth samples measured just prior to harvest (Figure
3B) also shows a lot of spectral variation, and we expect that a significant proportion of this
variation may be related to the yield of protein product and the degree of cell viability at harvest.
3.2 Correlation with yield

To correlate Raman spectra with the glycoprotein yield, PLS regression was applied to each individual sample dataset using the pre-processed spectra (Table 2). The calibration models were then validated using the test sets. The optimum number of latent variables (LVs) was determined using Monte Carlo cross-validation [54] and randomization test [48]. These models (using all 182 variables) were poor, $R^2 < 0.4$, RMSEP/RMSEC ratios were between 3.3 and 15.8, and REP % values (8–13%) were high. Interestingly, RMSEC values were low, and thus we surmised that the samples did contain intrinsic information that could be correlated with product yield. However, the informative variables (Raman bands) are effectively swamped by the presence of many bands (from all the other chemical species present) that do not have any correlation with yield. The glycoprotein yield range for these samples is between 0.67–0.92 g L$^{-1}$ [55], while the dissolved solid concentration of the media alone is of the order of ~10–20 g L$^{-1}$, thus the protein product bands will be very weak. The interference from uninformative variables needs to be eliminated, and thus we needed to consider some strategies for eliminating uninformative spectral data. If one has a priori knowledge about the analytes of interest in a complex sample, then one can manually select variables [56], however, in this case the product and samples are much more complex, and it is virtually impossible to definitively assign a particular band to the protein product (apart from the disulphide stretch). Therefore we decided to evaluate two different methods (CoAdReS and ACO) to select informative variables and then use these selected variables for PLS regression.

3.3 CoAdReS variable selection

The quantitative PLS models generated using CoAdReS are shown in Table 2. For each model, a normalized histogram (Figure 4A) was generated which showed the selected variables, and then these variables were selectively used to generate the various PLS models, for which the optimum variable number was selected by comparing the RMSEP versus variable number plot (Figure 4B). For the example shown, the RMSEP decreased to a minimum of 0.018 g L$^{-1}$ using 15 variables and this corresponded to a histogram threshold of 0.26. The improvement in model quality is dramatic compared to the case where the 1853–400 cm$^{-1}$ range was used. R^2 values are all >0.9, RMSEP:RMSEC ratios are ~2, and the REP% values are low (2.1–3.3%). This large improvement is due to the removal of redundant variables (or more correctly those with low information content relating to product yield). For example a large proportion of the measured Raman signal originates from the glucose and other carbohydrate energy sources which will be present in the highest concentration, and is unlikely to show signal variances that correlate with yield. The high variable reduction factor of ~1 in 10 indicates that the vast majority of the Raman signal is as expected not related directly or indirectly to the product yield. It’s interesting to note that for both sets of PLS models (Table 2) the RMSEC values are almost identical and the same numbers of LVs are used for each sample.
set. This implies that the variables which has the greatest contribution were present in both
datasets, but that their contribution to the PLS models when the full spectra were used, was
swamped by the mass of irrelevant variables, leading to very poor RMSEP values.

In summary, CoAdReS seems to offer a very robust method for generating quantitative
models that can be used to predict product yield at multiple stages over the 30+ day process.
Very important to note is the fact that the sampling time points DS4/6/8 are the starting cultures
for each bioreactor stage (e.g. transferred material plus fresh basal media) whereas the DS5/7
samples are the materials prior to transfer that contains both cells and the spent media. This is
significant because we have now established two separate yield correlations at the start and end
of the small scale reactor stages. We have already established that for this process it is possible
to correlate changes in feed media composition as observed by fluorescence EEM spectroscopy
with product yield [55]. Thus we need to examine the variables selected to see if there is any
information regarding the nature of the chemical components that give rise to these productivity
correlations, and also whether or not the correlations are due entirely to the media. But first we
need to validate the variable selection by using a different technique to see if the same variables
are selected.

Table 2: Summary of the PLS models and their performance using full spectral data (1853–400
\text{cm}^{-1}), CoAdReS, and ACO selected variables for the 9 different sample sets. Figures are the
mean values obtained from 500 different individual models (see main body text for details). In
each case five samples were used for the test set. RMSEC/RMSEP errors are given in g L^{-1} of
the final protein product titer. Dataset sample size in parentheses varied according to sample
availability. See the supplemental information for measured versus predicted plots from selected
PLS models.

<table>
<thead>
<tr>
<th>Data set</th>
<th>Variables selected</th>
<th>PLS Factors</th>
<th>RMSEC \text{g L}^{-1} \text{protein titer}</th>
<th>RMSEP \text{g L}^{-1} \text{protein titer}</th>
<th>REP%</th>
<th>\text{R}^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full spectral data models</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DS4 (28)</td>
<td>182</td>
<td>4</td>
<td>0.020±0.003</td>
<td>0.065±0.018</td>
<td>7.93</td>
<td>0.36</td>
</tr>
<tr>
<td>DS5 (28)</td>
<td>182</td>
<td>5</td>
<td>0.019±0.003</td>
<td>0.068±0.020</td>
<td>8.26</td>
<td>0.38</td>
</tr>
<tr>
<td>DS6 (28)</td>
<td>182</td>
<td>6</td>
<td>0.012±0.002</td>
<td>0.074±0.025</td>
<td>8.76</td>
<td>0.33</td>
</tr>
<tr>
<td>DS7 (30)</td>
<td>182</td>
<td>5</td>
<td>0.022±0.003</td>
<td>0.075±0.021</td>
<td>9.26</td>
<td>0.27</td>
</tr>
<tr>
<td>DS8 (31)</td>
<td>182</td>
<td>7</td>
<td>0.014±0.002</td>
<td>0.104±0.022</td>
<td>12.80</td>
<td>0.24</td>
</tr>
<tr>
<td>DS9 (26)</td>
<td>182</td>
<td>8</td>
<td>0.006±0.002</td>
<td>0.095±0.020</td>
<td>11.72</td>
<td>0.22</td>
</tr>
<tr>
<td>DS10 (31)</td>
<td>182</td>
<td>7</td>
<td>0.016±0.003</td>
<td>0.090±0.023</td>
<td>10.97</td>
<td>0.20</td>
</tr>
<tr>
<td>DS11 (30)</td>
<td>182</td>
<td>6</td>
<td>0.019±0.003</td>
<td>0.107±0.030</td>
<td>13.05</td>
<td>0.20</td>
</tr>
<tr>
<td>DS12 (29)</td>
<td>182</td>
<td>7</td>
<td>0.011±0.002</td>
<td>0.095±0.021</td>
<td>11.75</td>
<td>0.20</td>
</tr>
<tr>
<td>CoAdReS models</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DS4</td>
<td>15</td>
<td>4</td>
<td>0.011±0.001</td>
<td>0.018±0.007</td>
<td>2.15</td>
<td>0.965</td>
</tr>
</tbody>
</table>

DOI: http://dx.doi.org/10.1016/j.aca.2013.07.058
ACO models

<table>
<thead>
<tr>
<th>DS</th>
<th>Variable</th>
<th>Rate</th>
<th>Error</th>
<th>RMSEP</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS4</td>
<td>29</td>
<td>0.008±0.001</td>
<td>0.020±0.008</td>
<td>2.39</td>
<td>0.958</td>
</tr>
<tr>
<td>DS5</td>
<td>26</td>
<td>0.021±0.006</td>
<td>0.029±0.013</td>
<td>3.25</td>
<td>0.919</td>
</tr>
<tr>
<td>DS6</td>
<td>26</td>
<td>0.013±0.001</td>
<td>0.027±0.010</td>
<td>3.14</td>
<td>0.895</td>
</tr>
<tr>
<td>DS7</td>
<td>32</td>
<td>0.019±0.002</td>
<td>0.038±0.015</td>
<td>4.43</td>
<td>0.846</td>
</tr>
<tr>
<td>DS8</td>
<td>26</td>
<td>0.012±0.001</td>
<td>0.030±0.010</td>
<td>3.60</td>
<td>0.901</td>
</tr>
<tr>
<td>DS9</td>
<td>30</td>
<td>0.013±0.002</td>
<td>0.036±0.012</td>
<td>4.30</td>
<td>0.852</td>
</tr>
<tr>
<td>DS10</td>
<td>36</td>
<td>0.011±0.002</td>
<td>0.038±0.014</td>
<td>4.42</td>
<td>0.867</td>
</tr>
<tr>
<td>DS11</td>
<td>23</td>
<td>0.017±0.002</td>
<td>0.031±0.011</td>
<td>3.74</td>
<td>0.935</td>
</tr>
<tr>
<td>DS12</td>
<td>24</td>
<td>0.010±0.001</td>
<td>0.027±0.010</td>
<td>3.19</td>
<td>0.925</td>
</tr>
</tbody>
</table>

3.4 ACO variable selection

ACO was used because its basis of refinement is completely different to CoAdReS. ACO was implemented using ρ (rate of pheromone evaporation) =0.65, N (number of ants) =100, w (sensor width) =1, a maximum number of time steps of 50, and 50 repeated MC calculation cycles to build a histogram of variable selection probability. The results (Table 2) reveal that in general the ACO method selected approximately twice as many variables as CoAdReS except for DS9/11/12 where variable numbers are very similar. When the ACO selected variables were used for PLS modeling, the PLS models had the nearly same RMSEP/REP error as the CoAdReS derived models, while the RMSEC errors were essentially the same. Taking DS4 as an example (Figure 4C/D), the histogram generated by the 50 repeated calculation cycles shows the importance assigned to each variable. As with CoAdReS, subsets with 10–45 variables were generated and the data modeled by PLS. The RMSEP reached a minimum (0.017 g L⁻¹) at 29 variables (a corresponding threshold value of 0.43) and the selection of additional variables did not improve the model any further.

Both the CoAdReS and ACO PLS methods (Table 2) significantly improved predictive ability compared to the full spectrum models, with CoAdReS having a slightly better RMSEP and R² values. This small improvement seems due to the fact that CoAdReS is better at discriminating the good from the bad variables as shown by the green/black discrimination in Figure 4. However, the differences are marginal, and when we consider that both variable...
selection models yield prediction models with similar RMSEC/RMSEP values, similar numbers
of LVs, and %REP (Table 2), operationally there is little to separate the methods in terms of
predictive ability (for this limited sample number case). The key difference is that ACO is much
more time-consuming than CoAdReS, as it took ~200 times longer to run a single iteration using
a standard workstation, *i.e.*, 1.2 minutes *versus* 4 hours. In conclusion we would prefer the use
of the CoAdReS method for variable selection due to the fact that it is much more suited to rapid
analysis.

3.5 PLS model quality

One issue which needs to be addressed is the fact that the variable selection method
combined with the low sample number can generate PLS models which are overly optimistic
because of overfitting, particularly when CV method is used. Here we used the randomization
method to ascertain the proper number of PLS components to use, and we found that in
comparison to CV method (see *supplemental information*) the number of components was
reduced by 20–45%. The resulting models displayed RMSEP/RMSEC ratios that varied from
1.4–2.2 for CoAdReS and 1.4–3.5 for ACO which while not ideal, do show robustness of the
models. Improving the model quality further would require a doubling or tripling of the sample
numbers and unfortunately that is not feasible here at present. However, in the manufacturing
domain, one could easily increase the sample numbers year on year and revise/update the model
to generate much more robust models.

3.6 Analysis of variables selected

While both methods can extract relevant variables and generate good correlations, we now
have to consider if there is any useful composition information linked with the selected variables
and, more importantly what is the basis for the correlation models in these complex media.
Since the principles of operation for CoAdReS (PLS regression coefficients) and ACO
(minimum error search) are intrinsically different one expects that the selected variables will be
different, but that any common variables might be expected to be the ones with the greatest
correlation with process yield. Thus by looking at these common variables (Table S-4,
supplemental information) we could get some indication as to which molecular species may be
of significance.

Since the DS5/7/8 samples are the cells and spent media before new basal media has been
added, the variables selected should represent the key species in the spent media that correlate
with the final yield. The fact that the variables are very different in each case may indicate that
the important metabolites changes as the process scales up. When we next consider the DS4/6/9
samples where the fresh basal media is added, we see that the selected variables change very
significantly, indicating that the correlated bands are more likely to now be related to the new
basal media. This is not surprising since we have seen this type of process yield correlation to
the media variation of a feed before (actually the feed media used in this process), and using

DOI: http://dx.doi.org/10.1016/j.aca.2013.07.058
fluorescence we were able to generate a predictive model [55]. At DS12, the final sampling time
point (just prior to harvest) should contain significant amounts of the glycoprotein product, the
protein product concentration should be relatively high (0.67–0.92 g L⁻¹) [55] and one might
expect that some of the selected variables/bands should be clearly related to protein bands of the
product. The variables selected here are very different from the preceding time points with what
looks like two clusters of significant variables in the 1600–1300 cm⁻¹ and the 1250–920 cm⁻¹
ranges. However, at this stage there is also an appreciable host cell proteins (HCP) concentration
(possibly 100–200 mg L⁻¹) [57] which will be virtually indistinguishable from the glycoprotein
antibody in these complex samples. Thus, unfortunately, it is not feasible, at this stage to assign
these variables unambiguously to specific compounds using this low resolution, low signal-to-
noise quality Raman data.

4. CONCLUSIONS

Conventional Raman spectroscopy coupled with variable selection and standard PLS
modeling is an effective and inexpensive method for the quantitative characterization of
mammalian cell culture process in terms of product yield. We have shown the feasibility of
predicting product yield from the very early stages of the manufacturing process right through to
the final large-scale bioreactor. The use of clarified bioreactor supernatant in an off-line method
provides a good quality set of samples where scattering artifacts are minimized, thus generating
more reproducible spectral data. The key limitation is the inability to precisely identify the
molecular species that correlate most strongly with process yield. The variation in the selected
variables, indicate that at each process point the species which correlate most strongly with yield
change. For the starting cultures of each bioreactor, it may be that the correlation is linked to
specific media components. However, from the later stages (i.e. the cells and spent media) the
selected variables could be from metabolites and host cell proteins (secondary indicators) or the
glycoprotein (primary indicator). This then is a fundamental limitation of this low resolution (8
cm⁻¹) Raman method.

These results coupled with our previous work on cell culture feed media [55] are very
significant from an industrial standpoint because they suggest that one could design in
appropriate control measures to implement an effective quality assurance programme for
complex media and CHO based manufacturing using these Raman based methods. Furthermore,
if the appropriate calibration models are available [8] then one could also incorporate
quantitative measurements for a variety of specific components (e.g. glutamine, glucose, lactate)
at the same time. Thus a single Raman measurement can deliver multitude outputs which can be
used to control bioprocess operations.
ACKNOWLEDGEMENTS

This research was undertaken as part of the Centre for BioAnalytical Sciences, funded by the IDA and BMS. We thank Ms. Lindy Smith (BMS) for her work in sample organization.

REFERENCES

DOI: http://dx.doi.org/10.1016/j.aca.2013.07.058

FIGURES

Figure 1: Raman spectra collected from bioprocess broth samples over the full spectral range. Inset shows the low wavenumber range and the variation induced by excitation light bleed through.

Figure 2: Baseline-corrected, normalized (to 1635 cm\(^{-1}\) band), Raman spectra of bioprocess broths: (A) the cells with spent media, (B) starting cultures for each bioreactor (e.g. cells and spent basal (from previous stage) plus new basal media); (C) five different time points in the 5000L bioreactor during a single complete production run.
Figure 3: Raman spectra collected from 31/33 production runs at the: (A) starting culture (DS4) stage in the #2 bioreactor and, (B) bioreactor broths from the prior to transfer for harvest stage, DS12.
Figure 4: (A) CoAdReS variable selection result for DS4 (Histogram values, Grey ≥0.26, Black <0.26). Superimposed is the mean baseline-corrected Raman spectrum (light grey trace, arbitrary vertical scale). (B) Determination of number of the selected variables. (C) ACO variable selection result for DS4 (Histogram values, Grey ≥ 0.43, Black <0.43). Superimposed is the mean baseline-corrected Raman spectrum (arbitrary vertical scale). (D) Determination of number of the selected variables.