

Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the

published version when available.

Downloaded 2024-03-13T09:01:16Z

Some rights reserved. For more information, please see the item record link above.

Title A learning architecture for scheduling workflow applications in
the cloud

Author(s) Barrett, Enda; Howley, Enda; Duggan, Jim

Publication
Date 2011-09-15

Publication
Information

Barrett, E., Howley, E., & Duggan, J. (14-16 Sept. 2011). A
learning architecture for scheduling workflow applications in
the cloud. Paper presented at the Web Services (ECOWS),
2011 Ninth IEEE European Conference on.

Publisher IEEE

Link to
publisher's

version
http://dx.doi.org/10.1109/ecows.2011.27

Item record http://hdl.handle.net/10379/3935

DOI http://dx.doi.org/10.1109/ecows.2011.27

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/

A Learning Architecture for Scheduling Workflow
Applications in the Cloud

Enda Barrett
IT Department

National University of Ireland, Galway
Galway, Ireland

Email: Enda.Barrett@nuigalway.ie

Enda Howley
IT Department

National University of Ireland, Galway
Galway, Ireland

Email: Enda.Howley@nuigalway.ie

Jim Duggan
IT Deparment

National University of Ireland, Galway
Galway, Ireland

Email: James.Duggan@nuigalway.ie

Abstract—The scheduling of workflow applications involves the
mapping of individual workflow tasks to computational resources,
based on a range of functional and non-functional quality of
service requirements. Workflow applications require extensive
computational requirements, and often involve the processing of
significant amounts of data. Furthermore, dependencies that exist
amongst tasks require that schedules must be generated strictly in
accordance with defined precedence constraints. The emergence
of cloud computing has introduced a utility-type market model,
where computational resources of varying capacities can be
procured on demand, in a pay-per-use fashion. In general the two
most important objectives of workflow schedulers are the minimi-
sation of both cost and makespan. As well as computational costs
incurred from processing individual tasks, workflow schedulers
must also plan for data transmission costs where potentially
large amounts of data must be transferred between compute
and storage sites. This paper proposes a novel cloud workflow
scheduling approach which employs a Markov Decision Process
to optimally guide the workflow execution process depending on
environmental state. In addition the system employs a genetic
algorithm to evolve workflow schedules. The overall architecture
is presented, and initial results indicate the potential of this
approach for developing viable workflow schedules on the Cloud.

I. INTRODUCTION

The recent advancement of Cloud computing and its pay per
use model enable the procurement of large amounts of compu-
tational resources on demand. Cloud providers leveraging on
large economies of scale are capable of delivering increasing
amounts of computational resources at lower costs and with
greater reliability. Cloud computing delivers computational
resources by means of virtualisation technologies. Through
the instantiation of virtual machines users can deploy their
applications on resources with varying performance and cost
levels. Most recently numerous scientific experiments in fields
such as astronomy [1], epigenomics [2] and neuroscience
involve complex computational analyses on large data sets.
These communities rely greatly on insights gained through
computational analysis in order to advance the state of the art
in their respective communities. Many of these computational
experiments can be characterised neatly as workflows, with
large segments capable of being executed in parallel. Initially
the processing of many large scientific models and applica-
tion workflows involved a signification investment in high
performance computing infrastructures. The initial monetary

outlay, coupled with setup and on-going maintenance costs,
rendered it prohibitive to most. Apart from a small number of
well funded research projects most didn’t have the resources.
In an answer to this computational grids were established,
where through Virtual Organisations the scientific community
could share resources among each other in a large distributed
grid network. For sharing the computational resources at
their disposal, individuals were allocated pre-reserved slots
to their own experiments. However these platforms possessed
a number of limitations both technical and bureaucratic [3].
Often minor research groups could not gain access to the
global grids. Furthermore, many of these grids use pre-defined
platforms with specific operating systems, application suits and
API’s. Platform limitations present a clear barrier to enabling
workflows to execute without a significant technical overhead.
Recently there has been significant high profile attention
regarding the possibilities of executing scientific workflows on
the cloud [4]. A recent study highlighted the cost effectiveness
of executing scientific workflows on Amazon EC21 instances
was cost effective [5]. However with the market oriented
model of clouds, existing workflow management tools need to
be adapted to better utilise cloud platforms. Previous workflow
scheduling approaches for grids focussed on resources which
were reserved in advance. However through virtual machines
greater amounts of resources can be procured in real time
and on demand. Scheduling approaches for clouds should be
dynamic (online) and adaptive to system behaviours. They
should also be capable of adjusting to fluctuating costs for
communication and computation. To address these issues
we propose a novel cloud workflow scheduler capable of
scheduling application workflows in a cloud computing en-
vironment. We schedule workflow applications based on user
specified QoS constraints, namely cost and makespan. We
adopt a multifaceted approach to scheduling where a genetic
algorithm is used to generate optimal schedules and a Markov
Decision Process (MDP) chooses from among them based on
the observed state of the environment. The virtualised nature
of cloud computing, with multiple virtual machine deployed
on the same hosts, competing for CPU cycles and memory,
means that task completion times can vary due to temporal

1http://aws.amazon.com/ec2/

fluctuations. In addition to this, data transfer times among
tasks in a workflow can also be affected as a result of network
congestion. By employing a MDP our approach is capable of
observing temporal dynamics and adjusting schedule selection
accordingly.

The rest of this paper is structured as follows: Background
Research provides an overview of relevant and related work
in this field. A number of aspects of workflow scheduling and
cloud computing are discussed. Workflow architecture details
the specific components of our cloud workflow scheduling
approach. Cloud workflow scheduling details the problem of
scheduling workflows onto cloud resources. Also included is
a detailed description of both MDPs and Genetic Algorithms.
Initial Results details our preliminary findings, leading to
Conclusions & Future Work.

II. BACKGROUND RESEARCH

Extensive research has taken place on the scheduling of
workflow applications onto distributed resources in grid com-
puting. Yu et al [6] proposed a workflow scheduling based
on MDPs to schedule tasks on utility grids. Their approach
partitions the workflow into branches, where they allocate
sub-deadlines to each branch based on the overall deadline.
A branch containing sequential tasks are then mapped to
services using a MDP. The main objective is to meet the
overall deadline, concurrently minimising cost. In addition
to that a scheduling approach based on genetic algorithms
was also developed [7]. Depending on user preference the
approach was constrained to optimising either execution cost
or the overall makespan. This work was extended further [8]
with the inclusion of multiobjective evolutionary algorithms.
Our scheduling approach has its roots based in here where a
genetic algorithm is used to evolve solutions to the workflow
scheduling problem. However our approach differs to these
in two regards, firstly we schedule on clouds where virtual
machines of varying capacity can be created on demand and
without advanced reservation. Secondly we employ a Markov
Decision Process (MDP) to optimally choose from amongst
the evolved schedules.

Over the years many grid and cluster workflow management
tools have been proposed. Many of these have been devised to
facilitate the execution of scientific workflows. Tools such as
Pegasus [9], Kepler [10] and Taverna workbench [11] have all
successfully executed scientific workflows on computational
grids and clusters. These generally schedule tasks based on
earliest finish time, earliest starting time or high processing
capabilities. These can be considered as ”best resource selec-
tion” (BRS) [12] approach, where a resource is selected solely
based on its performance.

Pandey et al. recently developed cloud scheduling approach
based on particle swarm optimisation [12]. Experiments have
shown that PSO’s can provide a good distribution of tasks
across the available services, reducing resource overloading
and performed better than the BRS approach. This improved
performance is due to the PSO scheduler factoring in com-
munication costs between all tasks was the fact that the PSO

scheduler took in account communication costs between all
tasks. Wu et al. [13] recently proposed a market oriented
hierarchical scheduling approach to cloud workflow schedul-
ing. They adopt a two stage scheduling approach, aiming to
optimising scheduling at the overall service level and task
virtual machine level. They employ a number of meta-heuristic
algorithms to evolve different schedules allowing the user to
choose a schedule from amongst those returned.

In general much of the existing work scheduling workflows
on computational grids or clouds focus on developing different
heuristic and meta-heuristic algorithms capable of finding
optimal or near optimal workflow schedules. A workflow
management system then monitors the execution progress,
rescheduling as necessary depending on task failures, delays
or exceptions. Rescheduling in this manner will most likely
incur additional costs, as faster/greater numbers of resources
will need to be acquired, should problems arise.

A number of studies have looked at applying reinforcement
learning to resource allocation problems [14]. The author
presented a framework using reinforcement learning, capable
of dynamically allocating resources in a distributed system.
Reinforcement learning methods are methods to solve an
MDP where a complete model of the environment is not
available. They allow the learning agent to learn through
observed rewards as they explore the state space. While re-
source allocation is more concerned with low level scheduling
of tasks at the virtual machine level, the parallels between
them still merit their inclusion. Tesauro investigated the use
of a hybrid reinforcement learning technique for autonomic
resource allocation [15]. He applied this research to optimizing
server allocation in data centers. Germain-Renaud et al. [16]
looked at similar resource allocation issues. Here a workload
demand prediction technique was used to predict the resource
allocation required each time. Reinforcement learning has
also been successfully applied to grid computing as a job
scheduler. Here the scheduler can seamlessly adapt its deci-
sions to changes in the distributions of inter-arrival time, QoS
requirements, and resource availability [17]. The objective of
applying reinforcement learning to resource allocation for load
balancing purposes. Our work differs from these in that we
schedule tasks with dependencies and our objective is optimise
both costs and makespan.

III. WORKFLOW ARCHITECTURE

Figure 1 details the architecture of the cloud workflow
management system. Users submit their application workflows
through the user interface, along with their non-functional QoS
constraints. The next stage of the process involves performance
estimation on the submitted workflow. Performance estimation
calculates the average execution time that a given task will take
to run on a specified resource. In cloud environments resources
can be virtualised based on CPU, memory and storage. As
the cost of cloud services is inversely proportional to their
processing capabilities, once you know the average execution
time for a specific resource configuration you can infer across
all resources. Techniques such as analytical modelling [18]

��������	
��
���
��

���������	
�
�
�
�������
�

�����
��������
����

�� �� ��
���

��������
���������

��
 !��"��
�#�

$%��
��������

��������	
���
�������	�������
���������������	
���
�
��

������	���� ��������	��������&�����

������

���
������������

$#���������������

�� ���� �� ���� ��'��
�(���
!���

��
!�
������
����������

�����

Fig. 1. Workflow Management System Architecture

or historical data [19], can be used to determine average
execution times.

These values are used by the solvers to estimate the
makespan of the workflow. A number of solvers with ranging
configurations are instantiated to produce schedules of varying
cost and makespan. From these schedules an agent utilising a
MDP computes the optimal schedule based on the current state
of the cloud environment. The scheduling plan is executed on
the cloud via the Executor module. This module queues the
tasks from the schedule with the associated resources. It also
monitors the tasks and returns the results to the user interface.
Once a processing schedule has completed on the cloud, the
QoS monitor returns the actual cost and makespan incurred
by the schedule. This is then returned to the MDP agent who
updates the transition probabilities accordingly.

IV. CLOUD WORKFLOW SCHEDULING

Workflow applications can generally be modelled as a
Directed Acyclic Graph (DAG) G = {V,E}. The set of
vertices V = {T1, ..., Tn} denotes each individual task in the
workflow. E the set of directed edges represents precedence
constraints between task nodes. A directed edge Ei,j states that
Ti is the parent task of Tj . Child tasks can only be executed
once all the parent tasks have completed. Fi,j denotes a data
dependency between tasks Ti and Tj .

We have a finite set of compute services C = {C1, ..., Cn}
which are capable of executing Ti. The execution of task Ti

on a compute service Cj incurs a cost. This cost is inversely

proportional to time taken to process it, where the greater the
expense, the faster the resource. We also have a set of storage
sites S = {S1, ..., Sn}. The cost of data transfer per unit
of data between Ci and Sj is fixed and known in advance.
The total data costs incurred by tasks executing on a given
compute service Ci is Dtotal(C)i. This includes all data costs
between tasks executing on service Ci and those that are not.
The overall makespan Mtotal of the workflow application is
defined as the latest finished time on all the virtual machine.
Let MCi be equal to the total makespan of compute service
Ci. Then the total makespan for the entire workflow is

Mtotal = max(Ci)∀i ∈ C (1)

Data transfer costs between compute services can be calcu-
lated by the file size of the output of the parent task. Generally
for two tasks executing on the same resource there is no data
transfer cost. The total processing costs P for a given compute
service is Ptotal. Total task execution costs are

Extotal = Dtotal(C)i + Ptotal(C)i∀i ∈ C (2)

Figure 2a depicts a sample workflow DAG containing 7
task nodes. The edges between tasks indicate the input files
and output files between task nodes. Figure 2b depicts a valid
schedule for the adjacent workflow. Each individual task is
assigned to a specific resource and can only execute once
its parent tasks have completed. The objective of the cloud
workflow scheduler is to find a mapping from tasks to compute

services that minimises the cost of execution and the overall
makespan of the workflow.��

������ ��
�� ��

�� ��������� ��� ��������� �� ���
(a) Application Work-
flow

T1

T7T3 T5

T6

T4T2

C1

C2

C3

Time

(b) Valid Schedule

Fig. 2. Sample Workflow application with feasible schedule

Min(Extotal +Mtotal) (3)

In general workflow scheduling onto distributed resources is an
Np-Complete problem [20]. To generate near optimal solutions
we apply a metaheuristic algorithm to solve the workflow
scheduling problem.

A. Genetic Algorithms

Genetic algorithms are stochastic search and optimization
techniques based on evolution. In their simplest form, a set
of possible solutions to a particular problem are evaluated
in an iterative manner. From the fittest of these solutions,
the next generation is created and the evaluation process
begins once more. A solutions suitability to its environment
is determined using a fitness function. By iterating through
successive generations good approximate solutions can be
found for the given environment.

A task to resource mapping {Ti, Cj} represents a single
gene in the chromosome. A valid chromosome contains a
sequence of genes, mapping every task in the workflow to
corresponding resource. The order of the genes represents
the schedule execution order on the chosen resources. A
feasible solution to the scheduling problem must maintain
the precedence constraints between the tasks specified in the
directed acyclic graph.

The genetic algorithm used is outlined by Algorithm 1.
Firstly an initial population of feasible schedules is created.
Next a given solution’s fitness is evaluated according to
Equation 3. Individuals are selected for reproduction using
roulette wheel selection, based on their fitness. Roulette wheel
selection involves ranking chromosomes in terms of their
fitness and probabilistically selecting them. The selection
process is weighted in favour of chromosomes possessing a
higher fitness. To ensure that agents, already optimal for their
environment are not lost in the evolutionary process elitism is
applied. Elitism involves the selection of a certain percentage
of the fittest chromosomes and moving them straight into
the next generation, avoiding the normal selection process. In
creating offspring for the next generation, the selection of two

Algorithm 1 Genetic Algorithm
Initialise population of feasible schedules

repeat
Evaluate chromosome fitness Equation 3
Rank chromosomes according to overall population fit-
ness
Select parents using roulette wheel selection
if (random > crossoverRate) then

Apply single point crossover
end if
if (random > mutationRate) then

Apply mutation
end if
Convert to feasible schedules
Create next generation

until end

parents is required. Each pairing results in the reproduction of
two offspring. Figure 4 shows the crossover of two parents and
subsequent production of two offspring. Crossover involves
taking certain aspects/traits of both parents’ chromosomes
and creating a new chromosome. There are a number of
ways to achieve this including, single point crossover, two
point crossover and uniform crossover. Our crossover function
employs single point crossover, where a point in the bit string
is randomly selected, at which crossover is applied. Crossover
generally has a high probability of occurrence. Figure 4 shows
two valid schedules combining to create two valid offspring.
However crossover can also result in the creation of schedules
which are invalid. To convert an invalid schedule into a
feasible solution we apply an adjustment after crossover has
completed [21]. Mutation involves randomly altering the bit
string altering aspects of a chromosome. Mutation occurs on
the assigned service in a given task-service mapping as seen
in Figure 3. Once the required number of offspring have

T1 T2 T3 T4 T5 T6 T7

1 2 3 2 3 1 3

Parent

T1 T2 T3 T4 T5 T6 T7

1 2 3 1 3 1 3

Child

Fig. 3. Mutation

been created they form the next generation and the process
begins once more. The algorithm terminates when the stopping
condition is met.

T1 T2 T3 T4 T5 T6 T7

1 2 3 2 3 1 3

3 1 2 1 2

Parent 1

Parent 1

1 2 3 1 2 3 3

3 1 2 2 3 1 3

Child 1

Child 2

T1 T2 T3 T4 T5 T6 T7

T1 T2 T3 T4 T5 T6 T7

T1 T2 T3 T4 T5 T6 T7

3 3

Fig. 4. Single point crossover

1) Solver Agents: Each agent employs a GA to evolve solu-
tions to the scheduling problem. For our experiments evolution
occurs over the entire population, with offspring from the
fittest solutions replacing only the weakest schedules in the
population. Fitness is evaluated according to the Equation 3.
After each generation a solutions total cost and execution time
infers its fitness in the environment. For selection purposes we
normalise fitness according to the following equation.

F (i) =
fmax − fi

fmax − fmin
+ µ (4)

The fitness F (i) is the normalised fitness of individual i. fmax

and fmin are the maximum and minimum fitness values in the
population, with µ = 0.3. The normalised fitness ensures that
the highest probability is apportioned to the fittest solutions
during the selection process. The average values for population
size, elitism, cross-over and mutation are 50, 5%, 85% and
3%. Each solver is given its own unique configuration, to
ensure a diversity of schedule solutions. The solvers also
apply a weighting to the average values associated with task
processing times. This value is in the range of [0, 1]. A value
close 1 associates high degree of confidence in the predicted
task execution times, whereas a value close to 0 indicates
low confidence. These parameters ensure a diverse range of
solutions with respect to cost and makespan are returned.

V. MARKOV DECISION PROCESSES

Markov Decision Processes are a particular mathematical
framework suited to modelling decision making under uncer-
tainty. It can be represented as a tuple (S, A, P, R). In general
the learning agent interacts with its environment through a
sequence of discretized time steps. At the end of each time
period t the agent occupies state st ∈ S, where S represents
the set of all possible states. The agent then chooses an
action at ∈ A(st), where A(st) is the set of all possible
actions within state st. The transition probability P defines
the probabilities of moving from one state to the next.

P a
s,s′ = Pr

{
st+1 = s′|st = s, at = a

}
(5)

R is the expected value of the next reward [22]. The
objective of the learning agent is to optimize its value function.
The agent makes decisions on its value estimates of states
and actions. V π(s) is called the state-value function. It is the
expected value of being in a particular state under policy π.

V π(s, a) = Eπ

{ ∞∑
k=0

γkrt+k+1|st = s, at = a
}

(6)

The goal of the learning agent is to maximize its returns in the
long run often forgoing short term gains in place of long term
benefits. By introducing a discount factor γ, (0 < γ < 1), an
agents degree of myopia can be controlled. A value close to 1
for γ assigns a greater weight to future rewards, while a value
close to 0 considers only the most recent rewards. To solve
an MDP value iteration or policy iteration algorithms from
dynamic programming can be used. In this work we use value
iteration in order to compute optimal policies for the MDP.

Approximations of V π(s, a) which are indicative as to the
benefit of taking action a while in state s are calculated after
each time interval. Actions are chosen based on π the policy
being followed. The policy denotes the optimal mapping from
states to actions.

Algorithm 2 outlines the value iteration algorithm used to
solve the MDP. Firstly all states are initialised arbitrarily. Our
state signal is comprised of three variables, which are Time,
Resource Load and Execution Success. The first variable
Time is necessary in order to analyse the effects of temporal
fluctuations on the executing workflows. At peak times (e.g
between 7-9pm) in any given region there could be significant
effect on the workflow execution performance. By including
time into the state space the MDP can reason about the
possible effects of this. The second variable is the overall
Resource Load of the virtual machines which the workflow
system has instantiated. It coarsely evaluates its own resources
by summing up all workflow tasks currently executing and
divides this by the number of virtual machines. Resource
Load is split into distinctions, light, moderate and heavy. This
coarse interpretation is surprisingly effective at enabling a
good estimate of the system load. The final variable Execution
Success defines whether or not a given selection was successful
in executing the workflow. This information is returned via
the QoS monitor. There are many other possible metrics that
could, added to the state signal, give even greater insights
(CPU utilisation, disk reads, data transfers). However for the
sake of simplicity and to enable a manageable state set we
focus on these three. If we assume time to transition on an
hourly basis (0-23), then the total state space consists of a total
of 144 states. The set of all possible actions in the MDP are
defined by the number of solver agents. The MDP may choose
a schedule from amongst the set of solvers. The rewards are
defined as the cost incurred as a result of the execution. If
a schedule resulted in the violation of the specified deadline,
then additional penalties are added to the reward. The goal
of the MDP is to ensure the successful completion of the
workflow execution within the budget and deadline constraints.

Algorithm 2 Value Iteration
Initialize V arbitrarily

repeat
∆← 0
For each s ∈ S
v ← V (s)
V (s)← mina

∑
s′ P

a
s,s′ [R

a
s,s′ + γV (s′)]

∆← max(∆, |v − V (s)|)
until ∆ < Θ
Output policy π
For all s ∈ S
π(s) = argmina

∑
s′ P

a
s,s′ [R

a
s,s′ + γV (s′)]

2) Bayesian Model Learning: One important consideration
is that approximating the true values of V (s) is largely
dependent on the number of times state s is visited. In

fact the true values will only converge on the limit. Value
iteration generally only guarantees asymptotic convergence.
We adopt a Bayesian model learning approach similar to what
was proposed by Doshi et al. [23]. The MDP updates its
estimates of the transition probabilities based on experience.
When submitting an evolved schedule for the execution, the
MDP agent needs to have an estimate of the certainty with
which the executed schedule will result in the desired outcome.
These estimates are a measure of the uncertainty of the
underlying processes and are manifested in the transition
function P . The optimal policy π∗ is naturally dependent
on these estimates. In order to achieve better policies one
needs to update approximate transition probabilities based on
experience. In a MDP, choosing an action a in state s results
in a state transition from s to s′. The experience we have of
this transition is a measure of how certain our actions will
result in the predicted outcome. In our model we initialise
an experience counter Expc to 1 and each time we observe
a particular state transition the experience associated with it
is incremented by one. The updated transition probability is
given by Equation

P ′(s = s′|a, s = s) =
P (s = s′|a, s = s)× Expc+ 1

Expc′
(7)

where Expc’ is the incremented counter. We interleave
workflow execution with model learning to continuously up-
date the MDP’s estimates of the true transition probabilities.
This allows the MDP increase its approximations of the true
transition probabilities.

VI. INITIAL RESULTS

This section presents our initial findings with our cloud
workflow system.

A. Experimental Setup

To evaluate our MDP approach we used Cloudsim a sim-
ulator developed by the CLOUDS group at the University
of Melbourne [24]. Cloudsim is cloud simulation tool which
allows you to model typical cloud scenarios on a single
processor. It facilitates the creation of data centres and the
deployment of multiple hosts and Virtual machines of varying
capacities. You can also specify detailed pricing policies with
regard to virtual machines and data transmission costs. In our
experiments we simulate four separate data centers in four
geographic locations. We place one in the US, one in Europe,
one in Hong Kong/Singapore and one in Japan. Data transfers
between compute sites are serviced by a content delivery
network (CDN) such as Amazon CloudFront2. Each data
centre supports a single host capable of instantiating multiple
virtual machines. Table I depicts Amazons current costs per
unit data transfer between the four geographic regions at the
time of writing.

2http://aws.amazon.com/cloudfront/

TABLE I
COMMUNICATION COSTS BETWEEN REGIONS

C1 C2 C3 C4

C1 0 0.15 0.19 0.20
C2 0.15 0 0.19 0.20
C3 0.15 0.15 0 0.20
C3 0.15 0.15 0.19 0

B. Increasing Data Size

Our first experiment analyses the cost savings of the MDP
approach as the amount of data increases across the system.
The BRS approach performs badly in this regard as it does not
take the costs of data transfer between resources into account.
It myopically assigns a task to a resource based on the most
expensive resource. As the size of data increases BRS incurs
additional costs as tasks are executed on different resources in
different regions. The costs for executing the MDP schedule
over BRS increase much more slower rate. The performs much
better as the schedule it deploys, makes considerations over
the entire workflow.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 500 1000 1500 2000

 T
ot

al
 C

os
t (

c)

 Data Size (Mb)

 Total Costs for Different Data Sizes

BRS
 GA+MDP

Fig. 5. Overall cost as data increases

C. Load Variance

To simulate a variable work load on the system we fix
the arrival rate of workflows to be processed. We vary the
number of tasks in each workflow application from 20 to 50.
The number of compute services is constrained from 5− 15.
By controlling the arrival rate of workflow applications and
the number of tasks at any time we can vary execution load
across the virtual machines over time. Figure 6 shows the
performance of the MDP as the load varies. We compare the
performance of the MDP approach against the BRS approach
and a GA. The genetic algorithm parameter configuration
was determined experimentally through identifying the best
settings to encourage the best solutions across the widest
range of system loads. Initially as the MDP assigns equal
probabilities to all actions and doesn’t perform as well as
the GA. It spends time exploring suboptimal actions and get
penalised as a result. As the MDP explores the state space, it
outperforms both the GA and BRS. Since the data size used for

the experiment was fixed, BRS does not incur any significant
loss of costs due to load variances.

 200

 300

 400

 500

 600

 700

 0 200 400 600 800 1000

 T
ot

al
 C

os
t (

$c
)

 Time (min)

 Performance under Varying Load

MDP
 GA
BRS

Fig. 6. Performance of MDP as system load varies

VII. CONCLUSIONS & FUTURE WORK

We presented an initial attempt at developing a cloud
workflow scheduler and some preliminary results. We have
presented a continuous state action space formalism to sched-
ule workflows on a cloud computing environment. Our results
show that our MDP agent can optimally choose from a set
of evolved workflow schedules. This is achieved in spite of
an environment that has varying computational loads and data
sizes. We presented a Bayesian model learning approach ca-
pable of quickly learning approximate transition probabilities
with no prior knowledge. However, it is more challenging to
learn optimal value functions for states that are less frequently
visited. These states are most likely those where system
load approaches its maximum or minimum values. Therefore,
MDP performance is heavily dependant on it gaining greater
experience of all states. This means the performance of the
MDP will suffer unless it can gain greater experience. In future
work we hope to investigate a solution based on developing
policies offline using sample data from previous executions.
This will facilitate the development of better policies online
and produce more optimal solutions. Furthermore, we hope to
introduce a range of optimisation algorithms that can provide
a broader range of schedules and thereby improve overall
system performance. Finally we hope to perform a qualitative
evaluation of each workflow application and incorporate this
into the state space.

ACKNOWLEDGMENT

The authors would like to gratefully acknowledge the con-
tinued support of Science Foundation Ireland.

REFERENCES

[1] Montage: An astronomical image engine,
http://montage.ipac.caltech.edu.

[2] Illumina: , http://www.illumina.com.
[3] C. Vecchiola, S. P, and R. Buyya, “High-performance cloud computing:

A view of scientific applications.”
[4] G. Juve and E. Deelman, “Scientific workflows and clouds,” ACM

Crossroads, vol. 16, no. 3, pp. 14–18, 2010.

[5] E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good, “The cost
of doing science on the cloud: the montage example,” in Proceedings
of the 2008 ACM/IEEE conference on Supercomputing, ser. SC ’08.
Piscataway, NJ, USA: IEEE Press, 2008, pp. 50:1–50:12. [Online].
Available: http://portal.acm.org/citation.cfm?id=1413370.1413421

[6] J. Yu, R. Buyya, and C. K. Tham, “Cost-based scheduling
of scientific workflow application on utility grids,” in
Proceedings of the First International Conference on e-
Science and Grid Computing. Washington, DC, USA: IEEE
Computer Society, 2005, pp. 140–147. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1107836.1107867

[7] J. Yu and R. Buyya, “Scheduling scientific workflow applications with
deadline and budget constraints using genetic algorithms,” in Scientific
Programming. IOS Press, 2006, pp. 217–230.

[8] J. Yu, M. Kirley, and R. Buyya, “Multi-objective planning for workflow
execution on grids,” in Proceedings of the 8th IEEE/ACM International
Conference on Grid Computing, ser. GRID ’07. Washington, DC,
USA: IEEE Computer Society, 2007, pp. 10–17. [Online]. Available:
http://dx.doi.org/10.1109/GRID.2007.4354110

[9] E. Deelman, G. Singh, M. hui Su, J. Blythe, A. Gil, C. Kesselman,
G. Mehta, K. Vahi, G. B. Berriman, J. Good, A. Laity, J. C. Jacob,
and D. S. Katz, “Pegasus: a framework for mapping complex scientific
workflows onto distributed systems,” Scientific Programming Journal,
vol. 13, pp. 219–237, 2005.

[10] B. Ludscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones,
E. A. Lee, J. Tao, and Y. Zhao, “Scientific workflow management and
the kepler system,” in Concurr. Comput. : Pract. Exper, 2005, p. 2006.

[11] T. Oinn, M. Addis, J. Ferris, D. Marvin, T. Carver, M. R. Pocock,
and A. Wipat, “Taverna: A tool for the composition and enactment of
bioinformatics workflows,” Bioinformatics, vol. 20, p. 2004, 2004.

[12] S. P, L. Wu, S. M. Guru, and R. Buyya, “A particle swarm optimization-
based heuristic for scheduling workflow applications in cloud computing
environments.”

[13] Z. Wu, X. Liu, Z. Ni, D. Yuan, and Y. Yang, “A market-oriented
hierarchical scheduling strategy in cloud workflow systems,” The
Journal of Supercomputing, pp. 1–38, 2011, 10.1007/s11227-011-0578-
4. [Online]. Available: http://dx.doi.org/10.1007/s11227-011-0578-4

[14] D. Vengerov, “A reinforcement learning approach to dynamic resource
allocation,” Eng. Appl. Artif. Intell., vol. 20, no. 3, pp. 383–390, 2007.

[15] G. Tesauro, N. K. Jong, R. Das, and M. N. Bennani, “On the use
of hybrid reinforcement learning for autonomic resource allocation,”
Cluster Computing, vol. 10, no. 3, pp. 287–299, 2007.

[16] D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper, “Workload anal-
ysis and demand prediction of enterprise data center applications,” in
Workload Characterization, 2007. IISWC 2007. IEEE 10th International
Symposium on, Sept. 2007, pp. 171–180.

[17] J. Perez, C. Germain-Renaud, B. Kégl, and C. Loomis, “Grid dif-
ferentiated services: A reinforcement learning approach,” in CCGRID
’08: Proceedings of the 2008 Eighth IEEE International Symposium
on Cluster Computing and the Grid. Washington, DC, USA: IEEE
Computer Society, 2008, pp. 287–294.

[18] G. R. Nudd, D. J. Kerbyson, E. Papaefstathiou, S. C. Perry, J. S. Harper,
and D. V. Wilcox, “Pace - a toolset for the performance prediction of
parallel and distributed systems,” 1999.

[19] W. Smith, I. Foster, and V. Taylor, “Predicting application run times
using historical information,” 1997.

[20] J. D. Ullman, “Np-complete scheduling problems,” J. Comput.
Syst. Sci., vol. 10, pp. 384–393, June 1975. [Online]. Available:
http://dx.doi.org/10.1016/S0022-0000(75)80008-0

[21] J. Oh and C. Wu, “Genetic-algorithm-based real-time
task scheduling with multiple goals,” J. Syst. Softw.,
vol. 71, pp. 245–258, May 2004. [Online]. Available:
http://portal.acm.org/citation.cfm?id=993017.993022

[22] R. S. Sutton and A. G. Barto, “Reinforcement learning :an introduction,”
1998.

[23] P. Doshi, “Dynamic workflow composition using markov decision
processes,” International Journal of Web Services Research, vol. 2, pp.
1–17, 2005.

[24] R. N. Calheiros, R. Ranjan, C. A. F. D. Rose, and R. Buyya, “Cloudsim:
A novel framework for modeling and simulation of cloud computing
infrastructures and services,” CoRR, vol. abs/0903.2525, 2009.

