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Co-evolutionary Analysis: A Policy Exploration Method for System 
Dynamics Models 

 
Abstract 
In system dynamics (SD), complex nonlinear systems can generate a wide range of possible behaviours 
that frequently require search and optimization algorithms in order to explore optimal policies. Within 
the SD literature, the conventional approach to optimization is the formulation of a single objective 
function, with a targeted parameter list, and the entire model is simulated repeatedly in order to arrive 
at optimum values. However, many sector-based SD models contain heuristics of ‘intended 
rationality’, and a desired outcome for modellers to be able to explore the policy implications of locally 
optimal behaviours. This can now be achieved through a method known as coevolution, which allows 
modelers to divide an unsolved problem into constituent parts, where each part can be solved with 
respect to its own fitness function. In this paper, we specify a solution for evolving locally rational 
strategies across a multi-sector SD structure. Using the beer distribution game (BDG) as an illustration, 
we demonstrate the utility of this approach in terms of the impact of two different order management 
strategies on the policy space of the BDG.  
 
Introduction 
 
Complex nonlinear systems can generate a wide range of possible behaviours, and 
developing insights into the dynamics of a complex system has often been difficult 
(Sterman 2000). A key aspect that drives model complexity are those interactions and 
feedbacks that occur across organisational boundaries, for example, the production-
distribution system models in industrial dynamics (Forrester 1961), the market growth 
model (Forrester 1968; Morecroft 1985), and the body of empirical and experimental 
work on the beer distribution game (BDG) (Mosekilde and Larsen 1988; Mosekilde 
and Laugesen 2007; Sterman 1989; Strozzi, Bosch, and Zaldívar 2007). In terms of 
policy analysis, these nonlinear and feedback-rich characteristics frequently surpass 
the capabilities of traditional analytical approaches, and therefore there is a clear need 
for automated and efficient search algorithms to support policy analysis (Yücel and 
Barlas 2011). Recent examples of computer science and technology based additions 
to the SD literature include: a pattern-based approach utilising qualitative features of a 
desired behavior pattern (Yücel and Barlas 2011); a policy design method for system 
dynamics models based on recurrent neural networks Chen, Tu, and Jeng (2011); and 
statistical screening which helps identify high-leverage model parameters and 
structures for further analysis (Taylor, Ford, and Ford 2010). 
 
A common feature of inter-organisation structures is that they are made up of multiple 
actors who must coordinate a diverse set of decision policies. The resulting SD 
models contain multiple decision rules, which involve sensing the state of the system, 
and combining this with goal-based information cues,  in order to control the rate of 
flows. Furthermore, SD models such as the BDG and the market growth model 
contain independent actors whose decisions are intendedly rational – i.e. their 
decisions “… produce reasonable and sensible results if the actual environment were 
as simple as the decision maker assumes it to be” (Sterman 2000). In summary, many 
of these multi-sector models can be viewed as an interconnected system of physical 
and information flows, where each sector is autonomous, in the sense of making its 
own decision based on information sources, yet these decisions can also impact on the 
future decisions of its neighbours (see Figure	
  1). 
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Figure	
  1:	
  A	
  Generic	
  structure	
  for	
  SD	
  multi-­‐sector	
  models 

Within this context, a key requirement for modellers is to have access to efficient and 
reliable methods for thoroughly exploring a model’s policy space. The SD 
optimization approach focuses on the attainment of an overall optimal value across an 
entire model, for example, finding the minimum costs for actors in the BDG. 
However, the coevolutionary approach offers an additional, powerful dimension to 
policy exploration, that can be viewed as a computational extension of the ideas of 
partial model testing (Morecroft 1985). The distinction from normal optimization 
methods is that with coevolutionary optimization, individual sectors in the model can 
be optimized to their own fitness functions, and because of this, a fuller range of 
policy responses can be investigated.   
 
Coevolutionary algorithms usually employ genetic algorithms (GA) to model the 
evolution of each species. GAs are inspired by Darwin's theory of evolution and were 
developed by (Holland 1992) and have been applied to a range of SD models 
(Duggan 2008; Grossman 2002). The key operators for the GA are selection, 
crossover, and mutation, and these transform the solution information that is stored in 
a ‘chromosome’. Therefore each chromosome has a fitness that captures the overall 
solution quality of the SD model.  
 
As part of the optimization process, the selection operator is used to select two 
solutions (parents) from the population, using methods such as roulette wheel 
selection or rank selection. The crossover operator selects “genes” from parent 
chromosomes and creates two new offspring. It involves firstly randomly choosing 
some crossover point and then swapping the values according to this point. Finally, 
the mutation operator changes randomly the values of offspring, in order to promote 
diversity in the overall solution space. These models of evolutionary processes are 
found to be effective analogues of economic agent strategic learning (Tesfatsion 
2002). A strategy can be represented as a chromosome, and the GA processes are 
models of learning. In the GA, the reproduction operator can be interpreted as 
learning by imitation, the crossover operator can be interpreted as learning through 
communication, and the mutation operator is interpreted as learning by experiment 
(Riechmann 2001). 
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A coevolutionary algorithm is a model that can be sub-divided into inter-related 
sectors with either individual or shared fitness functions.  As each sector only encodes 
part of the solution information, the fitness evaluation procedure involves choosing 
representatives from other sectors to form a collaboration (i.e. a complete solution). 
This maps very well onto the requirements SD models of organisations, as we can 
combine a number of intendedly rational actors in order to form a complete model. 
After selecting the representatives, the agent's fitness can be determined through 
simulating this shared domain model. There are many methods to choose 
representatives, such as choosing the current best individual agent from each species 
to be the representative, or randomly selecting an individual agent from each species 
to be the representative (Potter and De Jong 2000).  
 
The algorithmic design for the coevolutionary approach is shown in Figure 2. It shows 
that when an overall SD model can be disaggregated into a number of sectors, these 
form the building blocks for creating a shared domain model. This shared domain 
model is a combination of individuals from each sector, where each individual will 
have a different set of parameter values for key decision heuristics. The solution 
process is the conventional simulation by repeated optimization (Coyle 1996), and the 
key advantage of this approach is that individual sectors can also have their own 
fitness functions, which increases the exploration space for policy analysis. In 
summary, the contribution of our approach is two-fold. First, we provide an 
architecture to demonstrate the potential for the use of coevolution to explore the 
policy space in SD models. Second, we use this method to formally examine, and 
experiment with, the differences between individual and group oriented behaviors in 
the BDG.  
 
// Create M Sector populations 
for Sector s   1 to Sector M do 
 Initialise N sector individuals; 
end for 
 
for i   1 to Max_Generations M do 
 // Measure each sector’s fitness for all individuals 
 for Sector s   1 to Sector M do 
  for Individual k   1 to Individual N do 

Select representatives from other sectors; 
Form new collaboration; 
Simulate shared domain model; 
Evaluate fitness (through objective function); 

end for 
end for 
// Evolve each sector population through the GA 
for Sector s   1 to Sector M do 
 Apply selection operator; 
 Apply crossover operator; 
 Apply mutation operator; 
end for 

end for 
	
  

Figure 2: The coevolutionary algorithm for multi-sector optimisation 
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A Coevolutionary Approach for the Beer Distribution Game 
 
The BDG game (Croson and Donohue 2006; Forrester 1961; Sterman 1989, 2010) 
offers a simplified implementation of common real world production and distribution 
systems, where each participant has control and responsibility for its own inventory, 
and individual sectors strive to maintain their inventory levels as low as possible, 
while also avoiding out-of-inventory conditions which cause backlogs. There are two 
main flow channels: information and physical goods. Orders originate at the 
customer, and flow upstream from sector to sector. Shipments travel downstream and 
represent the fulfillment of orders. The presence of delays, multiple sectors and 
potential stock-outs increase the complexity of inventory management challenges for 
all sectors.  
 
In the BDG, repeated interactions between sectors are dynamic and can be viewed as 
coevolution processes. For example, a sector may find a better strategy during the 
play, which might affect the performance of other sectors. Subsequently, other sectors 
may also decide to change their strategies in order to improve performance, which in 
turn may affect other sectors and lead them to try alternative strategies. Each 
strategy's performance or fitness can be evaluated by returns generated such as profits 
or costs. Over successive generations each sector will select the fittest strategies and 
use these to evolve new strategies that will replace the least fit strategies. 
Furthermore, it is also possible that all sectors in the supply chain have a common 
goal to minimise the total costs. 
 
In using the BDG to validate the coevolutionary approach, and in line with previous 
research (Sterman (1989), we apply the anchoring and adjustment heuristic for the 
ordering policy. The ordering decision equation is: 
 

Ot = MAX(0, 𝐿t + α (S* – St – βSLt))    
𝐿t = θ𝐿t-1 + (1-θ) 𝐿t-1    

Where: 
• Ot, the order rate for supplies, which is anchored on the expected demand; 
• 𝐿t, the expected loss rate (or demand forecast), modeled by the exponential 

smoothing of incoming orders;  
• SLt , the number of goods in the supply line.  
• St, the number of goods currently in stock. 

 
The associated parameters for each sector include: 
 

• α, the fraction of the inventory shortfall or surplus ordered each period, which 
is the adjustment rate that parameter is in the range (0 ≤  α ≤ 1); 

• β, which models the fraction of the supply line taken into account when 
ordering, and is in the range (0 ≤ β ≤ 1); 

• θ is used in the calculation of the expected demand, captures the weight 
assigned to the most recent observation, and this parameter is also in the range 
(0 ≤ θ ≤ 1); 

• S* refers to the target value of the effective stock (desired stock and desired 
supply line) that decision makers should maintain. 
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The parameters (α, β, θ, S*) are used to represent decision makers' strategies, and 
these can be tested using two different decision approaches: 
 
1. Individually Oriented Strategies (IOS), which allows us to test outcomes that are 

evaluated solely against the target of an individual sector’s costs. For this, each 
agent chooses to minimise their own cost regardless of the whole supply chain 
cost in the beer game, and therefore all agents are intendedly rational. 

2. Group Oriented Strategies (GOS), to analyze the outcome whereby fitnesses are 
determined based on collective supply chain costs. This models an approach in 
which all agents cooperate to achieve a common goal. 

 
In order to facilitate this requirement, two separate objective functions are defined, 
and these variables are summed over H weeks of the simulation. These fitness 
functions can be either individually-oriented (1) or group oriented (2). 
 

COSTSECTOR = ΣH (0.5*INVSECTOR + 1.0 *B’LOGSECTOR) (1) 
COSTALL      = Σ (COSTSECTOR) (2) 

 
For the model, the cost of inventory holding is 0.5 for each case of beer per week, and 
the cost of backlogs is 1.0 for each case of beer per week. The key stages of the 
coevolutionary approach for the BDG are: 
 

1. Initialise the four sectors (Factory, Distributor, Wholesaler and Retailer), and 
create 10 individual models for each sector (e.g. FM1.. FM10 for the Factory 
sector). Each of these models will have a randomly allocated value for α, β, θ,  
and S*. 

2. Iterate until the number of generations equals Max_Generations 
a. Iterate through each sector in sequence 

i. For each individual (e.g. FM2), select participants from other 
sectors (e.g. DM10, WM1 and RM2) to form a shared model (see 
Figure	
   3). In the design, in order to obtain the average 
performance, we allow each individual from a sector to interact 
with all participants from other sectors. This forms 103 (1000) 
shared models. 

ii. Simulate all shared models. The fitness value for the individual 
is the average fitness value over 103 interactions. 

b. Evolve the solution population by iterating through each sector in 
sequence, and for each individual: 

i. Apply selection operator 
ii. Apply crossover operator 

iii. Apply mutation operator 
 
The results from this algorithm yield interesting and novel insights into the policy 
space for the BDG, and these are now presented.  
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Figure	
  3:	
  Creating	
  a	
  shared	
  model	
  for	
  each	
  simulation	
  iteration 

 
 
Policy Exploration using the Coevolutionary Approach 
 
For experimental runs across these two strategy scenarios, the following values are 
used: 
 

• Total simulation length is 50 weeks.  
• Parameters α, β and θ values are all in the range of [0,1]. 
• The S* value is in the range [0, 50], where the shipment delay is 2 weeks, and 

the ordering delay is also 2 weeks. 
• The customer demand is initially four cases per week and increases to eight 

cases per week in week 5 and remains at that level thereafter.  
• Each population size N is set to 10 and the total number of iterations 

(generations) is 150. Typically either a larger population or a greater number 
of generations can lead to a better result, as more of the solution space is 
searched. However, a larger population or a greater generation number also 
increases the computational cost, and it is recommended that the generation 
number is much bigger than the population number. For GAs, the population 
size is usually set in range of 50 to 100, and the generation number is usually 
set in [200, 2000]. However, as we are using a coevolutionary algorithm, 
which requires much more computation resources, and because of this we use 
smaller values. 

• The value for M (number of “species”) is set to 4, as this represents the 
number of actors in the BDG. 

• A real value encoding method to construct the solution “chromosomes”. Each 
chromosome is a sequence of real values (α, β, θ and S*). 

• The fitness functions are straightforward: for the individual strategy, the local 
costs are used, for the group strategy, the overall supply chain cost is used.  

 
The following experimental results are from the agents that have the best fitness 
among each sector's agent population. Furthermore, because of the stochastic nature 
of the solution process, each result set is averaged from 50 individual runs of the 
coevolutionary algorithm.   Each sector member and overall supply chain costs are 
shown in Table	
  1, where all agents are individually or group oriented under the one 
step demand pattern.  
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Role Individually Oriented 
µ (σ) 

Group Oriented 
µ (σ) 

 
Retailer (R) 101.93       (23.54) 95.88    (17.69)       
Wholesaler (W) 141.13       (25.92) 117.89   (25.46)        
Distributor (D) 161.42       (36.16) 124.69   (34.03)       
Manufacturer (M) 143.97       (35.54) 98.99    (23.66)        
Entire Chain 620.54       (45.37) 521.69   (56.69)        
 

Table	
  1:	
  Supply	
  chains	
  costs	
  based	
  on	
  step	
  demand	
  pattern 

Inventory costs increase as one moves further upstream when agents are individually 
oriented, except that the manufacturer's cost is lower than the distributor's in the one 
step change demand. The upstream agents get most benefit from group oriented 
strategies. This highlights a further benefit from the coevolution approach, as the 
information generated from the optimization process can be utilized to formally test 
aspects of model behaviour, and confirm whether or not one set of policies 
consistently outperform another set (see Table	
  2). 
 
 

Role Cost Reduction t Score Two-tailed P 
Value 

 
R 5.93% 1.45 0.15 
W 16.46% 4.52 < 0.001 
D 22.75% 5.23 < 0.001 
M 31.24% 7.44 < 0.001 

Entire Chain 15.92% 9.62 < 0.001 
 

Table	
  2:	
  Benchmark	
  of	
  improvements	
  of	
  GOS	
  vs	
  IOS	
  approaches 

The optimization process also generates a wealth of data on the model performance 
across both fitness functions. For example, Table 3 captures the range of values for the 
sector parameters  (α, β, θ and S*) across the two strategies, run across 50 simulations 
with average (µ) and standard deviation (σ). The benefit of this analysis is that it 
supports a greater degree of experimentation when compared with convention 
optimization approaches that only support the optimization of a single objective 
function. Figure 4 shows the convergence properties of the algorithm under the GOS 
scenario, whereby the costs of each sector diminish over time before settling at their 
final values. 
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Role 
α β θ S* 

IOS GOS IOS GOS IOS GOS IOS GOS 
 

R 0.56 
(0.34) 

0.45 
(0.33) 

0.92 
(0.14) 

0.85 
(0.17) 

0.61 
(0.30) 

0.48 
(0.39) 

22.8 
(3.88) 

24.6 
(5.09) 

W 0.82 
(0.20) 

0.38 
(0.32) 

0.94 
(0.06) 

0.90 
(0.13) 

0.58 
(0.32) 

0.49 
(0.35) 

21.8 
(3.08) 

27.3 
(7.48) 

D 0.85 
(0.18) 

0.70 
(0.30) 

0.93 
(0.05) 

0.94 
(0.06) 

0.67 
(0.30) 

0.65 
(0.30) 

20.7 
(2.67) 

24.3 
(6.69) 

M 0.75 
(0.20) 

0.87 
(0.12) 

0.91 
(0.07) 

0.89 
(0.08) 

0.71 
(0.20) 

0.70 
(0.21) 

18.9 
(1.75) 

19.0 
(1.72) 

 
Table 3: Mean (std. dev.) of parameter values in response to a step demand pattern. Individual 

and Group Oriented Strategies. 

 
 

Figure 4: Convergence of costs for model sectors (GOS) 

Discussion 
 
Our research can be framed in the context of existing optimization approaches for 
system dynamics (Coyle 1996; Dangerfield and Roberts 1996), and to studies and 
analysis of the BDG, for example the work of (Mosekilde and Larsen 1988; Sterman 
1989). In particular, we identify two contributions: 
 
First, we propose a new optimization framework that is ideally suited to exploring 
policy options for inter-organisational models. In particular, where the model 
comprises the interaction of sectors with distinct intendedly rational decision rules. 
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The coevolutionary framework allows for individual fitness functions for each sector 
to be explored, and for the impact of these policies to be compared with scenarios of a 
single shared fitness function. 

 
Second, we use this method to formally examine, and experiment with, the 
differences between individual and group oriented behaviors in the BDG. Our overall 
optimization results compare favourably with earlier published work on the BDG 
(Sterman 1989). Furthermore, statistical analysis of the model results demonstrate that 
group oriented strategies improve the overall performance of the supply chain, when 
compared with individually oriented strategies. 
 
Future work with the coevolutionary framework will include developing a full 
analysis of SD models such as the market growth model (Forrester 1968), and 
finalising the optimization component so that it can be used by the wider SD 
community.  
 
 
Acknowledgement 
 
The support of Science Foundation Ireland is gratefully acknowledged. 
 
 
References 
 
Chen	
  Y-­‐T,	
  Tu	
  Y-­‐M,	
  Jeng	
  B.	
  2011.	
  A	
  Machine	
  Learning	
  Approach	
  to	
  Policy	
  Optimization	
  in	
  System	
  
Dynamics	
  Models.	
  Systems	
  Research	
  and	
  Behavioral	
  Science	
  28(4):	
  369-­‐390.	
  

Coyle	
  R.	
  1996.	
  System	
  Dynamics:	
  A	
  Practical	
  Approach.	
  Chapman	
  and	
  Hall:	
  London.	
  
Croson	
  R,	
  Donohue	
  K.	
  2006.	
  Behavioral	
  Causes	
  of	
  the	
  Bullwhip	
  Effect	
  and	
  the	
  Observed	
  Value	
  of	
  
Inventory	
  Information.	
  Management	
  Science	
  52(3):	
  336.	
  

Dangerfield	
  B,	
  Roberts	
  C.	
  1996.	
  An	
  Overview	
  of	
  Strategy	
  and	
  Tactics	
  in	
  System	
  Dynamics	
  
Optimization.	
  The	
  Journal	
  of	
  the	
  Operational	
  Research	
  Society	
  47(3):	
  405-­‐423.	
  

Duggan	
  J.	
  2008.	
  Equation-­‐based	
  policy	
  optimization	
  for	
  agent-­‐oriented	
  system	
  dynamics	
  models.	
  
System	
  Dynamics	
  Review	
  24(1):	
  97–118.	
  

Forrester	
  JW.	
  1961.	
  Industrial	
  Dynamics.	
  Pegasus	
  Communications:	
  Waltham	
  MA.	
  
Forrester	
  JW.	
  1968.	
  Market	
  growth	
  as	
  influenced	
  by	
  capital	
  investment.	
  Industrial	
  Management	
  
Review	
  9(2):	
  83-­‐105.	
  

Grossman	
  B	
  (2002)	
  Policy	
  Optimization	
  in	
  Dynamic	
  Models	
  with	
  Genetic	
  Algorithms.	
  Proceedings	
  
of	
  the	
  20th	
  International	
  Conference	
  of	
  the	
  System	
  Dynamics	
  Society.	
  Palermo,	
  Italy.	
  

Holland	
  JH.	
  1992.	
  Adaptation	
  in	
  natural	
  and	
  artificial	
  systems.	
  MIT	
  Press.	
  
Morecroft	
  JDW.	
  1985.	
  Rationality	
  in	
  the	
  Analysis	
  of	
  Behavioral	
  Simulation	
  Models.	
  Management	
  
Science	
  31(7):	
  900-­‐916.	
  

Mosekilde	
  E,	
  Larsen	
  ER.	
  1988.	
  Deterministic	
  chaos	
  in	
  the	
  beer	
  production-­‐distribution	
  model.	
  
System	
  Dynamics	
  Review	
  4(1-­‐2):	
  131-­‐147.	
  

Mosekilde	
  E,	
  Laugesen	
  JL.	
  2007.	
  Nonlinear	
  dynamic	
  phenomena	
  in	
  the	
  beer	
  model.	
  System	
  
Dynamics	
  Review	
  23(2-­‐3):	
  229-­‐252.	
  

Potter	
  MA,	
  De	
  Jong	
  KA.	
  2000.	
  Cooperative	
  Coevolution:	
  An	
  Architecture	
  for	
  Evolving	
  Coadapted	
  
Subcomponents.	
  Evol.	
  Comput.	
  8(1):	
  1-­‐29.	
  

Riechmann	
  T.	
  2001.	
  Genetic	
  algorithm	
  learning	
  and	
  evolutionary	
  games.	
  Journal	
  of	
  Economic	
  
Dynamics	
  and	
  Control	
  25(6-­‐7):	
  1037.	
  

Sterman	
  JD.	
  1989.	
  Modeling	
  managerial	
  behavior:	
  misperceptions	
  of	
  feedback	
  in	
  a	
  dynamic	
  
decision	
  making	
  experiment.	
  Management	
  Science	
  35(3):	
  331-­‐339.	
  

Sterman	
  JD.	
  2000.	
  Business	
  Dynamics:	
  Systems	
  Thinking	
  and	
  Modeling	
  for	
  a	
  Complex	
  World.	
  
McGraw-­‐Hill:	
  New	
  York.	
  

Sterman	
  JD.	
  2010.	
  Does	
  formal	
  system	
  dynamics	
  training	
  improve	
  people's	
  understanding	
  of	
  
accumulation?	
  System	
  Dynamics	
  Review	
  26(4):	
  316-­‐334.	
  



	
   10	
  

Strozzi	
  F,	
  Bosch	
  J,	
  Zaldívar	
  JM.	
  2007.	
  Beer	
  game	
  order	
  policy	
  optimization	
  under	
  changing	
  
customer	
  demand.	
  Decision	
  Support	
  Systems	
  42(4):	
  2153-­‐2163.	
  

Taylor	
  TRB,	
  Ford	
  DN,	
  Ford	
  A.	
  2010.	
  Improving	
  model	
  understanding	
  using	
  statistical	
  screening.	
  
System	
  Dynamics	
  Review	
  26(1):	
  73-­‐87.	
  

Tesfatsion	
  L.	
  2002.	
  Agent-­‐Based	
  Computational	
  Economics:	
  Growing	
  Economies	
  From	
  the	
  
Bottom	
  Up.	
  Artificial	
  Life	
  8(1):	
  55-­‐82.	
  

Yücel	
  G,	
  Barlas	
  Y.	
  2011.	
  Automated	
  parameter	
  specification	
  in	
  dynamic	
  feedback	
  models	
  based	
  
on	
  behavior	
  pattern	
  features.	
  System	
  Dynamics	
  Review	
  27(2):	
  195-­‐215.	
  

	
  
 


