Competition between the Yops of *Yersinia enterocolitica* for Delivery into Eukaryotic Cells: Role of the SycE Chaperone Binding Domain of YopE

Aoife P. Boyd, Isabelle Lambermont and Guy R. Cornelis

Updated information and services can be found at:
http://jb.asm.org/content/182/17/4811

REFERENCES

These include:

This article cites 34 articles, 15 of which can be accessed free at: http://jb.asm.org/content/182/17/4811#ref-list-1

CONTENT ALERTS

Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article), more»

Information about commercial reprint orders: http://journals.asm.org/site/misc/reprints.xhtml
To subscribe to another ASM Journal go to: http://journals.asm.org/site/subscriptions/
A type III secretion-translocation system allows Yersinia adhering at the surface of animal cells to deliver a cocktail of effector Yops (YopH, -O, -P, -E, -M, and -T) into the cytosol of these cells. Residues or codons 1 to 77 contain all the information required for the complete delivery of YopE into the target cell (release from the bacterium and translocation across the eukaryotic cell membrane). Residues or codons 1 to 15 are sufficient for release from the wild-type bacterium under Ca\(^{2+}\)-chelating conditions but not for delivery into target cells. Residues 15 to 50 comprise the binding domain for SycE, a chaperone specific for YopE that is necessary for release and translocation of full-length YopE. To understand the role of this chaperone, we studied the delivery of YopE-Cya reporter proteins and YopE deletants by polymutant Yersinia devoid of most of the Yop effectors (\(\Delta\)HOPEM and \(\Delta\)THE strains). We first tested YopE-Cya hybrid proteins and YopE proteins deleted of the SycE-binding site. In contrast to wild-type strains, these mutants delivered YopE\(_{1-15}\)-Cya as efficiently as YopE\(_{130}\)-Cya. They were also able to deliver YopE\(_{15-77}\). SycE was dispensable for these deliveries. These results show that residues or codons 1 to 15 are sufficient for delivery into eukaryotic cells and that there is no specific translocation signal in Yops. However, the fact that the SycE-binding site and SycE were necessary for delivery of YopE by wild-type Yersinia suggests that they could introduce hierarchy among the effectors to be delivered. We then tested a YopE-Cya hybrid and YopE proteins deleted of amino acids 2 to 15 but containing the SycE-binding domain. These constructs were neither released in vitro upon Ca\(^{2+}\)-chelation nor delivered into cells by wild-type or polymutant bacteria, casting doubts on the hypothesis that SycE could be a secretion pilot. Finally, it appeared that residues 50 to 77 are inhibitory to YopE release and that binding of SycE overcomes this inhibitory effect. Removal of this domain allowed in vitro release and delivery in cells in the absence as well as in the presence of SycE.

The three Yersinia species that are pathogenic to humans (\(Y.\) pestis, \(Y.\) pseudotuberculosis, and \(Y.\) enterocolitica) all share the ability to deliver toxins, called YopE, YopH, YopM, YopT, YopO/YpkA, and YopP/YopJ, into eukaryotic host cells (8). These toxic Yop effectors induce a range of modifications to the normal processes of eukaryotic cells. For example, YopE has a GTPase-activating protein activity which downregulates Rho activity and leads to actin filament disruption and inhibition of phagocytosis by macrophages (21, 22, 28, 31). Together with their complex type III Ysc machinery for export and translocation, the Yops are encoded by a 70-kb virulence plasmid (8). Similar to structures observed in other bacteria endowed with type III secretion, the Yop secretion apparatus— the injectosome—is thought to form a “syringe” directly projecting through the bacterial membranes with a “needle” that connects to the translocation apparatus in the eukaryotic cell membrane (8, 10a). Secretion and translocation of the Yop effectors are normally triggered by contact with a eukaryotic cell. However, secretion can be artificially induced by chelating Ca\(^{2+}\) ions, which leads to a massive release of Yops into the culture supernatant.

A secretion signal for the Yops is located at the 5′ end of the gene (16, 29). It has been proposed that this signal could be in the mRNA, so that the Yops are cotranslationally secreted from the bacteria (1, 2). In the case of YopE, the first 15 codons or amino acids constitute this 5′ secretion signal. In addition, efficient secretion of some Yops requires the assistance of individual cytosolic chaperones, called Sycs (32, 33). These chaperones are small acidic proteins that possess a leucine repeat in their C-terminal moiety. SycE, the chaperone of YopE, binds amino acids 15 to 50 (the chaperone binding domain) of YopE (27, 35), and it prevents the intrabacterial degradation of this Yop (5, 10). The chaperone binding domain is not required for secretion of YopE fusion proteins by the 5′ secretion signal (5, 27, 28). Moreover, in the absence of this chaperone binding domain, SycE becomes dispensable for secretion of YopE, suggesting that it is the presence of the chaperone binding domain that creates the need for the chaperone (35). However, data have been presented to show that hybrid YopE-neomycin phosphotransferase (designated YopE-Npt) proteins lacking the first 5′ secretion signal are still secreted by the Ysc apparatus, suggesting that YopE could contain a second secretion signal (5). This proposed second secretion signal is localized to the site of the chaperone binding domain and, correspondingly, it is only operational in the presence of SycE (5).

Translocation of the effector Yops across the eukaryotic cell membrane was shown by several laboratories (4, 12, 20, 23) to be dependent on YopB and YopD, two other proteins exported by the bacterium, but this view has recently been questioned (15). Translocation of effector Yops can be demonstrated by several methods. A classical approach makes use of...
a calmodulin-dependent adenylate cyclase (Cya) reporter strategy (29). Translocation of Yop effectors can also be demonstrated by fractionation of the infected cell culture or by indirect immunofluorescence and confocal scanning laser microscopy (23). Demonstration of the translocation turned out to be more difficult with some Yops than with others, and it has been observed that translocation can be improved if expression of the other Yop effectors is abolished (4, 11). This could be due to a decrease in competition between the different Yop effectors for the secretion and translocation machineries. Strains of Yersinia enterocolitica that carry multiple yop mutations are thus sensitive tools for studying the translocation of Yop effectors.

It has been shown previously that a Cya reporter protein fused to the first 15 amino acids of YopE (YopE15–Cya) can be released by wild-type (wt) bacteria upon Ca\(^{2+}\) chelation; however, this fusion protein is not delivered into eukaryotic cells. Indeed, at least the first 50 amino acids are required for the reporter protein to be translocated into eukaryotic cells by wt bacteria (27, 28). Therefore, amino acids 15 to 50, which are the residues that bind the SycE chaperone and which constitute the proposed second secretion signal, were thought to be a translocation domain (27, 28), although they are not sufficient, in the absence of the 5’ secretion signal, to direct delivery of YopE by wt bacteria into eukaryotic cells (14).

In this study, we investigated the requirement for two proposed secretion signals for delivery of YopE into eukaryotic cells. We confirmed that SycE and residues 15 to 50 of YopE are required for delivery of YopE by wt bacteria, but we observed that they are dispensable for delivery by a multistrain translocation; this suggests that SycE could be a hierarchy factor for YopE delivery. Moreover, we identified a secretion-inhibitory domain between residues 50 and 77.

MATERIALS AND METHODS

Bacterial strains, plasmids, and growth conditions. Parental wt strain Y. enterocolitica MRS40(pPY40) is an ampicillin-sensitive derivative of serotonin O9 clinical isolate E40(pYV40) (25, 29). Excherichia coli K111, XL-1 Blue, and BL21 (DE3) were used for plasmid construction and protein expression. E. coli Sm10pir was used to conjugate plasmids into Y. enterocolitica. The full list of plasmids used in this study is given in Table 1. Bacterial strains were routinely grown in tryptic soy broth and plated on tryptic soy agar. For in vitro induction of the Y. enterocolitica yopE gene, Y. enterocolitica was grown in brain heart infusion broth (BHI) supplemented with 20 mM sodium oxalate, 20 mM MgCl\(_2\), and 0.4% (wt/vol) glucose (BHI-Ox). Yop induction under minimal-medium conditions was performed as described previously (5). Selective agents were used at the following concentrations: ampicillin, 200 \(\mu\)g/ml; chloramphenicol, 10 \(\mu\)g/ml; nalidixic acid, 35 \(\mu\)g/ml; streptomycin, 100 \(\mu\)g/ml; sucrose, 5% (wt/vol); and arsinite, 0.4 mM.

Molecular biology techniques. Molecular biology techniques were essentially performed as previously described (24). All chemicals were obtained from Sigma unless stated otherwise. Yops were precipitated from culture supernatants by molecular biology techniques. Molecular biology techniques were essentially as described by Sory and Cornelis (29). Cells were seeded into 24-well tissue culture plates at a density of 5 × 10\(^4\) cells per ml of medium per well and allowed to adhere for 20 h. Before infection with Y. enterocolitica, cells were washed and covered with RPMI 1640 supplemented only with 2 mM l-glutamine. Cytosol was added 30 min before infection, at a final concentration of 5 mg \(\mu\)l\(^{-1}\) (solution, 2 mg \(\mu\)l\(^{-1}\) in dimethyl sulfoxide). Cytosol was not toxic to Y. enterocolitica at this concentration (29).

Yop translocation assay. The PU5-1.8 mouse monocyte/macrophage cell line (ATCC TIB-61) used in these studies was grown in RPMI 1640 medium (Gibco BRL) supplemented with 10% (wt/vol) fetal bovine serum, 2 mM l-glutamine, and 2 mM sodium phosphate, 100 \(\mu\)g/ml antibiotics, and 2 mM sodium bicarbonate (5). Cells were seeded into 24-well tissue culture plates at a density of 5 × 10\(^4\) cells per ml of medium per well and allowed to adhere for 20 h. Before infection with Y. enterocolitica, cells were washed and covered with RPMI 1640 supplemented only with 2 mM l-glutamine. Cytosol was added 30 min before infection, at a final concentration of 5 mg \(\mu\)l\(^{-1}\) (solution, 2 mg \(\mu\)l\(^{-1}\) in dimethyl sulfoxide). Cytosol was not toxic to Y. enterocolitica at this concentration (29).

Cytotoxicity assay. The HeLa human epithelial cell line (ATCC CCL-2) used in these studies was grown in RPMI 1640 supplemented with 10% (wt/vol) fetal bovine serum, 2 mM l-glutamine, and 2 mM sodium phosphate, 100 \(\mu\)g/ml antibiotics, and 2 mM sodium bicarbonate (5). Cells were seeded into 24-well tissue culture plates at a density of 5 × 10\(^4\) cells per ml of medium per well and allowed to adhere for 20 h. Before infection with Y. enterocolitica, cells were washed and covered with RPMI 1640 supplemented only with 2 mM l-glutamine. Cytosol was added 30 min before infection, at a final concentration of 5 mg \(\mu\)l\(^{-1}\) (solution, 2 mg \(\mu\)l\(^{-1}\) in dimethyl sulfoxide). Cytosol was not toxic to Y. enterocolitica at this concentration (29).

**Downloaded on September 20, 2013 by NATL UNIV OF IRELAND, GALWAY from jb.asm.org/ Downloaded from
were separated by SDS-PAGE and transferred to nitrocellulose membranes. After blockage in PBST plus BSA (PBS plus 0.1% Tween 20 plus 0.5% Na2HPO4, 1.8 mM KH2PO4 [pH 7.4]), membranes were permeabilized with 0.5% [wt/vol] Triton X-100 in PBS for 10 min. Cells were then incubated for 40 min at 37°C with fluorescein isothiocyanate-conjugated phalloidin. Samples were mounted on Mowiol and examined by fluorescence microscopy.

SycE-binding assays. Native SycE was produced and purified as described in reference 33. His6-SycE was produced in E. coli XL-1 Blue(pAB24) and purified on a His-Trap column by elution with 300 mM imidazole according to the manufacturer’s instructions (Pharmacia Biotech). Total cell proteins of Y. enterocolitica were separated by SDS-PAGE and transferred to nitrocellulose membranes. After blockage in PBST plus BSA (PBS plus 0.1% Tween 20 plus 0.5% bovine serum albumin [BSA]), the membrane was incubated with His6-SycE (0.5 μg · ml−1) in PBST plus BSA for 2 h at room temperature. Bound SycE or His6-SycE was revealed with anti-SycE or anti-His antibody (Pharmacia Biotech), respectively, followed by HRP-conjugated secondary antibody and chemiluminescence detection.

RESULTS

Translocation of YopE15-Cya into eukaryotic cells by Yop effector polynutant Y. enterocolitica. It has been previously demonstrated that wt bacteria deliver YopE130-Cya, but not YopE15-Cya, into eukaryotic cells, suggesting that the 5′-se-
cretion signal is not sufficient for YopE translocation (28). We repeated these experiments using DHOPEM polymutant bacteria that lack the YopH, YopO, YopP, YopE, and YopM effectors (Table 1). Delivery of YopE15-Cya (encoded by plasmid pMSLE15 [8]) into the PU5-1.8 macrophage-monocyte cell line by DHOPEM and by wt Y. enterocolitica was compared. As a control, translocation of YopE130-Cya (encoded by plasmid pMS111 [29]) by the same bacteria was also monitored. In agreement with previously published results (28), wt bacteria delivered YopE130-Cya, but not YopE15-Cya, into eukaryotic cells. In contrast, DHOPEM bacteria delivered YopE15-Cya just as efficiently as YopE130-Cya (Table 2). Likewise, YopE20-Cya, YopE24-Cya, and YopE30-Cya (28) were delivered into eukaryotic cells by DHOPEM bacteria (data not shown). To confirm that delivery of YopE15-Cya into eukaryotic cells by DHOPEM bacteria was due to the type III secretion-translocation system, the delivery of YopE15-Cya by DHOPEMYscN bacteria (secretion deficient) and DHOPEMYopB and DHOPEMYopD bacteria (both translocation deficient) was tested (Table 2). YopE15-Cya was not translocated by these strains, confirming that YopE15-Cya was indeed delivered into eukaryotic cells by the type III injectosome (Table 2). To assess the necessity for the 5′ secretion signal, delivery of Cya fused to the first two amino acids of

Table 2. Translocation of YopE15-Cya and YopE130-Cya into PU5-1.8 macrophages by Y. enterocolitica

<table>
<thead>
<tr>
<th>Y. enterocolitica strain</th>
<th>Intracellular cAMP accumulation (nmol of cAMP/mg) a in:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>YopE15-Cya</td>
</tr>
<tr>
<td>wt</td>
<td>0.4 ± 0.2</td>
</tr>
<tr>
<td>ΔHOPEM</td>
<td>14.3 ± 2.3</td>
</tr>
<tr>
<td>ΔHOPEMYopB</td>
<td>0.2 ± 0.1</td>
</tr>
<tr>
<td>ΔHOPEMYopE</td>
<td>0.2 ± 0.1</td>
</tr>
<tr>
<td>ΔHOPEMYscN</td>
<td>0.1 ± 0.1</td>
</tr>
<tr>
<td>ΔYscE</td>
<td>0.8 a</td>
</tr>
<tr>
<td>ΔHOPEMYscE</td>
<td>16.5 ± 2.7</td>
</tr>
</tbody>
</table>

a Mean ± SD from three independent experiments.

b Mean of two independent experiments.
YopE (encoded by plasmid pMSL56) (Table 1) into eukaryotic cells was measured. This fusion protein was not delivered into macrophages by either wt (0.1 ± 0.1 nmole of cAMP/mg) or ΔHOPEM (0.1 ± 0.1 nmole of cAMP/mg) bacteria, showing that a Yop secretion signal is required for delivery of a protein by ΔHOPEM *Y. enterocolitica*. These results show that the translocation system of ΔHOPEM bacteria is still specific for the Yops. In conclusion, translocation of YopE-Cya hybrids is possible without the previously described translocation domain, which comprises amino acids 15 to 50, but not without the 5′ secretion signal (residues or codons 1 to 15 and upstream RNA).

Production and secretion levels of YopE₁₅-Cya by wt and ΔHOPEM bacteria. It was next investigated whether the delivery of YopE₁₅-Cya by ΔHOPEM, but not wt *Y. enterocolitica*, could result from differences between strains in the production and secretion of this hybrid protein. Protein levels were analyzed following growth of the bacteria in Ca²⁺-chelating conditions, which induce Yop production and release. No differences were seen between the two strains in the levels of YopE₁₅-Cya associated with the bacteria or released into the extracellular medium (Fig. 1A and Fig. 1B, lanes 5 and 6). Secretion of YopE₁₅-Cya by both strains was strictly dependent on the Ysc system, since no secretion was observed in a yscN background (Fig. 1C). Although Yop release upon Ca²⁺ chelation may not necessarily reflect exactly what occurs upon contact of *Y. enterocolitica* with eukaryotic cells, these data do show that synthesis of the two fusion proteins and their passage through the bacterial membranes was equally efficient in the two strains and equally dependent on Ysc. The only difference between the two strains with regard to YopE₁₅-Cya was thus the level of translocation of this protein into eukaryotic cells (Table 2). This suggests that the presence of additional Yops in the wild type directly reduces translocation of YopE₁₅-Cya and that in order to enter into eukaryotic cells the Yops must thus compete with one another for passage through the secretion-translocation machinery.

Influence of SycE on secretion and translocation of YopE₁₅-Cya. In order to investigate the requirement for SycE for translocation of YopE₁₃₀-Cya and YopE₁₃₀-Cya into eukaryotic cells, an sycE mutation was introduced into the wt and ΔHOPEM strains (Table 1). The experiment was carried out with plasmids pMS111 and pMSLE15, which encode SycE along with YopE₁₃₀-Cya and YopE₁₅-Cya, respectively, and with plasmids pMSL30 and pAPBD18, which encode only the YopE-Cya fusion proteins (Table 1). The presence or absence of SycE did not affect the steady-state levels of YopE₁₃₀-Cya or YopE₁₅-Cya associated with the wt or ΔHOPEM bacteria when grown under BHI-Ox conditions (Fig. 1A). However, SycE was required for efficient secretion and translocation of YopE₁₃₀-Cya into eukaryotic cells not only by wild-type but also by ΔHOPEM bacteria (Fig. 1B, compare lanes 1 and 3 and lanes 2 and 4; Table 2). In contrast, the presence or absence of SycE did not influence secretion or translocation of YopE₁₃₀-Cya into eukaryotic cells by ΔHOPEM bacteria (Fig. 1B, compare lanes 5 and 7 and lanes 6 and 8; Table 2). Thus, efficient

FIG. 2. Schematic representation of the YopE proteins used in this work.
delivery of YopE₁₅-Cya by ΔHOPEM bacteria occurred in the absence of SycE. We conclude from this that SycE is only required for efficient secretion and subsequent translocation when its binding domain is present. However, when the chaperone binding domain is present, the chaperone is required, irrespective of the presence of other effectors.

Translocation into eukaryotic cells of YopE lacking the SycE chaperone binding domain. In order to confirm that codons or amino acids 1 to 15 of YopE are sufficient to translocate YopE into eukaryotic cells, we removed the chaperone binding domain (YopE_{Δ17-77}) from YopE (Fig. 2), and we checked this removal by a SycE overlay experiment (33). Purified SycE or His₆-SycE bound YopE but failed to bind YopE_{Δ17-77}, verifying that the chaperone binding domain had been deleted from the latter protein (Fig. 3B and D). ΔHOPEM bacteria could not be used for cytotoxicity experiments because they still produce the YopT cytotoxin (8). We thus turned to ΔTHE bacteria (Table 1), which do not induce any morphological changes in eukaryotic cells (Fig. 4). YopE_{Δ17-77} was produced and released by ΔTHE bacteria (Fig. 3A and 3C), and release of YopE_{Δ17-77} did not occur in an yscN background (Fig. 5), confirming that this release was type III dependent. Delivery was then assayed by monitoring the rounding up of HeLa epithelial cells and by staining the actin of Rat I cells. ΔTHE_S Y. enterocolitica strains producing YopE or YopE_{Δ17-77} were cytotoxic for HeLa epithelial cells (results not shown) and Rat I fibroblasts (Fig. 4), while ΔTHEB bacteria producing YopE_{Δ17-77} were not cytotoxic, indicating that translocation of YopE_{Δ17-77} was YopB dependent. This result confirmed that the first 16 amino acids of YopE are sufficient for delivery into
Competition could play an important role in determining the level of translocation. YopE15-Cya was delivered into eukaryotic cells by ΔHOPEM bacteria, but not by wt bacteria, suggesting that competition between the Yops is an important determinant for secretion and translocation and that the chaperone binding domain plays a significant role in regards to this competition. To investigate this theory, the ability of ΔHOPEM bacteria to deliver YopE15-Cya (encoded by pMSLE15) into eukaryotic cells when overproducing another Yop effector in trans was tested. Therefore, the translocation of YopE15-Cya into eukaryotic cells by ΔHOPEM bacteria overproducing YopH, YopO, YopE, or YopM was measured. ΔHOPEM(pMSLE15)(pBC18R) served as a vector control. In each case, the rate of translocation of YopE15-Cya into eukaryotic cells was lower than that of ΔHOPEM bacteria not overexpressing one of these Yop effectors in trans (Table 3). In contrast, translocation into eukaryotic cells of YopE130-Cya by ΔHOPEM was unaffected by overproducing another Yop in trans. The strongest effect on delivery of YopE15-Cya into eukaryotic cells was lower than that of ΔHOPEM bacteria not overexpressing one of these Yop effectors in trans (Table 3). As a control, we checked the profile of proteins released by these strains upon Ca\(^{2+}\) chelation. This control (data not shown) confirmed the overproduction of the Yops encoded in trans. Unfortunately, it also showed a concomitant reduction in the release of the Cya reporter and of the translocators LcrV, YopB, and YopD, indicating that the previous results must be interpreted with caution. To circumvent these difficulties, presumably linked to titration, we tested whether YopE15-Cya could be delivered into cells by Y. enterocolitica bacteria missing only YopE (ΔYopE strain, plasmid pAB4052). Delivery by the ΔYopE strain led to the synthesis of 2.7 ± 0.6 nmole of cAMP/mg of protein, while delivery by the wt strain led only to the synthesis of 0.4 ± 0.2 nmole of cAMP/mg of protein. Thus, eukaryotic cells and that the chaperone binding domain is not required.

\[\text{FIG. 4.} \ \text{Cytotoxicity of } Y. \text{ enterocolitica producing deleted YopE proteins. Rat I cells were infected with } \Delta \text{THE } Y. \text{ enterocolitica [MRS40(pM426)] producing WT YopE (pAPB26), YopE}_{17-49} (pAPBG30), YopE}_{17-77} (pAPBL34), YopE}_{2-15} (pAPB35), YopE}_{12-15} (pAPB36), YopE}_{32-77} (pAPB37), \text{ or YopE}_{320-77} (pLL14). As a control, Rat I cells were also infected with } \Delta \text{THEB } Y. \text{ enterocolitica [MRS40(pAPBD4016)] producing YopE}_{17-77} (pAPBL34) \text{ or YopE}_{320-77} (pLL14). \text{ Actin was stained with fluorescent phalloidin. Cytotoxicity of YopE, YopE}_{17-77}, \text{ or YopE}_{320-77} \text{ is manifested by rounding up of the cells. Note that YopE}_{320-77} \text{ is particularly active.} \]
lack of YopE alone significantly increased delivery of YopE₁₅-Cya into eukaryotic cells. These results are consistent with the idea that amino acids 15 to 50 promote translocation of YopE by wt bacteria by assisting YopE to compete with other Yops for the secretion-translocation apparatus. If this was so, one would expect that YopE deprived of its chaperone binding domain (YopE₁₋₁₅) would not compete with YopE₁₅-Cya for delivery into eukaryotic cells. We thus overproduced YopE₁₇₋₇₇ in trans, and we monitored translocation of YopE₁₅-Cya. As expected, overproduction of YopE₁₇₋₇₇ did not inhibit translocation of YopE₁₅-Cya (Table 3). Thus, amino acids 15 to 50 of YopE, in conjunction with SycE, seem to give YopE a competitive advantage over the other Yops for the secretion-translocation process.

Role of proposed second secretion signal in translocation.

Since the first secretion signal (amino acids or codons 1 to 15) was found to be sufficient for translocation into eukaryotic cells, we wondered whether the second secretion signal (amino acids 15 to 100) proposed by Cheng et al. (5) would also be sufficient to direct translocation into eukaryotic cells by the Yop effector multimutant strain ΔHOPEM. This second signal was previously shown to be insufficient for delivery into eukaryotic cells by wt bacteria (14). Therefore, three plasmids were constructed encoding YopE proteins lacking the first secretion signal (amino acids or codons 2 to 15). Plasmid pAPB35 encodes YopE₂₋₁₅. Plasmid pAPB36 encodes YopE₁₋₁₅ and in which amino acids 2 to 15 have been shifted out of frame by the addition of 1 bp after the ATG and by compensatory changes before codon 16. A similar construct has previously been shown to have an inactive first secretion signal and to be secreted by the proposed second secretion signal (5). As well, plasmid pAPB37 encodes YopE₁₇₋₇₇. The three constructs were checked first for their capacity to bind His₆-SycE in an overlay assay. As expected, YopE₂₋₁₅ did not bind SycE, while YopE₁₋₁₅ and YopE₁₇₋₄₉ were recognized by the chaperone (Fig. 3D). Each of the three proteins was produced by ΔTHE bacteria, but no secretion when grown in BHI-Ox medium could be detected (Fig. 3A). This result was expected for YopE₂₋₁₅, since it lacks both the first 5’ signal and the proposed second secretion signal, but not for the two others. Surprised by the inability of amino acids 15 to 50 (the proposed second secretion signal) to promote secretion of YopE₂₋₁₅ or YopE₁₇₋₄₉, the secretion of these proteins was tested under the same minimal-medium conditions as those used by Cheng et al. (5). Under these conditions, the proteins were produced but not secreted by ΔTHE bacteria (Fig. 6). In accordance with their non-secretion phenotype, neither ΔTHE encoding YopE₂₋₁₅ nor ΔTHE encoding YopE₁₇₋₄₉ was cytotoxic for HeLa cells (data not shown) and Rat I cells (Fig. 4).

In addition, plasmids encoding YopE₁₅₀-Cya reporter proteins lacking the first 5’ signal sequence were constructed. Plasmid pAPBL50 encodes YopE₁₅₀-Cya and plasmid pAPBL51 encodes YopE₁₅₀-([2–15])_{Cya}. These proteins were not translocated into eukaryotic cells by either of these strains of Y. enterocolitica (intracellular cAMP concentration, 0.1 ± 0.1 ng of cAMP/mg). From the experiments with modified full-length YopE and YopE₁₅₀-Cya, we conclude that under our experimental conditions, the proposed second secretion signal is not functional and that the only functional secretion signal for YopE is contained within amino acids or codons 1 to 15.

A secretion-inhibitory sequence localized between residues 50 and 77. While constructing plasmids encoding YopE deleted of its SycE-binding site, we constructed pAPBG30, which encodes YopE₁₅₋₁₇ (Table 1). Like YopE₁₇₋₇₇, YopE₁₅₋₁₇ did not bind SycE in an overlay experiment, since they both lack the chaperone binding domain at amino acids 15 to 50 (Fig. 3D). Unlike YopE₁₇₋₇₇ which was efficiently secreted by Y. enterocolitica, YopE₁₅₋₁₇ was neither secreted (Fig. 3A) nor delivered into HeLa (data not shown) and Rat I cells (Fig. 4), even though it was well produced (Fig. 3C). This suggested that the portion of YopE between amino acids 49 and 77 inhibits YopE secretion and that binding of SycE overcomes this inhibition.

To check this hypothesis, we removed residues 50 to 77 from YopE, and we monitored in vitro release of YopE in the presence and in the absence of SycE. As expected, it was released equally as well as YopE₁₇₋₇₇, and this release was independent of SycE. This contrasted with wt YopE, which was only released in the presence of SycE (Fig. 5). Thus, amino acids 50 to 77 of YopE inhibit secretion of YopE in the absence of SycE. Interestingly, although this construct does not need SycE

TABLE 3. Translocation of YopE₁₅-Cya and YopE₁₅₀-Cya into PUS-1.8 macrophages by HOPEM strain overexpressing other Yop effector

<table>
<thead>
<tr>
<th>Cya hybrid fusion</th>
<th>Yop overexpressed in trans (Yop expression plasmid)</th>
<th>Intracellular cAMP accumulation (nmole of cAMP/mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>YopE<sub>15</sub>-Cya</td>
<td>YopH (pTM163)</td>
<td>0.3 ± 0.3</td>
</tr>
<tr>
<td></td>
<td>YopO (pYOB2)</td>
<td>0.4 ± 0.3</td>
</tr>
<tr>
<td></td>
<td>YopP (pMSK13)</td>
<td>1.6 ± 0.5</td>
</tr>
<tr>
<td></td>
<td>YopE (pAPB26)</td>
<td>0.3 ± 0.1</td>
</tr>
<tr>
<td></td>
<td>YopE (pAPBL35)</td>
<td>3.0 ± 0.3</td>
</tr>
<tr>
<td></td>
<td>None (pBC18R)</td>
<td>14.0*</td>
</tr>
<tr>
<td></td>
<td>YopE<sub>17-77</sub> (pAPB34)</td>
<td>9.5 ± 3.3</td>
</tr>
<tr>
<td>YopE<sub>150</sub>-Cya</td>
<td>None</td>
<td>22.8 ± 4.3</td>
</tr>
<tr>
<td></td>
<td>YopO (pYOB2)</td>
<td>25.0*</td>
</tr>
<tr>
<td></td>
<td>YopE (pAPB26)</td>
<td>15.1*</td>
</tr>
</tbody>
</table>

* Mean ± SD from three independent experiments.

* Mean of two independent experiments.

FIG. 6. Lack of detectable release in the absence of residues or codons 1 to 15. ΔTHE Y. enterocolitica [MR40(pIM426)] bacteria producing YopE (pAPB26), YopE₂₋₁₅ (pAPB35), and YopE₁₇₋₄₉ (pAPB36) were incubated in minimal medium. (Top) Immunoblot with anti-YopE antibodies to detect bacterium-associated YopE proteins. In each lane 2 × 10⁹ bacteria were loaded. (Bottom) Immunoblot with anti-YopE antibodies to detect secreted YopE proteins. In each lane, the proteins released by 2 × 10⁹ bacteria were loaded.
for secretion, it still binds SycE. Thus the secretion-inhibitory domain is distinct from the minimal SycE-binding domain, although this secretion-inhibitory domain must be somehow covered by SycE.

DISCUSSION

In this paper, we have analyzed the N-terminal domain of *Y. enterocolitica* YopE in order to clarify its roles in the in vitro release of YopE and its delivery into eukaryotic cells.

The results, summarized in Fig. 7, confirm previous data in showing that residues 1 to 50 of YopE are required for delivery of YopE into eukaryotic cells by *Y. enterocolitica* (27, 28). However, the current results also show that delivery of YopE by Yop effector multimutant bacteria does not require amino acids 15 to 50 but rather that the secretion signal encompassing amino acids or codons 1 to 15 is sufficient. This implies that the chaperone binding domain does not need to interact with the Yop translocators for Yop effector translocation. In addition, this suggests that any protein that can be released by the Ysc secretion machinery also has the capacity to be delivered into eukaryotic cells. This conclusion hence implies a continuity between the secretion and translocation apparatuses, so that a Yop can pass through the secretion channel, syringe and needle, and then directly through the translocation apparatus into the target cell.

The requirement for amino acids 15 to 50 for translocation of YopE into eukaryotic cells by wt *Y. enterocolitica*, but not by Yop effector multimutant bacteria, implies that these amino acids give YopE a competitive advantage over the other Yops for the Ysc secretion-translocation apparatus. Due to the competition, only the Yops that are avidly recognized by the Ysc apparatus would be successfully delivered inside eukaryotic cells. This indicates that the N-terminal 5′ secretion signal is sufficient for delivery into cells. YopE and YopE15-X are partially degraded when blocked inside bacteria. This representation is based on the results presented in this paper and on previous results which are cited in the text.

![Fig. 7](http://jb.asm.org/)

FIG. 7. Schematic representation of the role of SycE binding to amino acids 15 to 50 of YopE in YopE delivery into eukaryotic cells and release under low-Ca²⁺ conditions. *Y. enterocolitica* bacteria are shown attached at the surface of a eukaryotic cell (panels 1, 2, and 3) or incubated under low-Ca²⁺ conditions (panels 4, 5, and 6). Three strains are presented: wt bacteria (panels 1 and 4), sycE mutant bacteria (2 and 5), and ΔHOPEM sycE bacteria (3 and 6). The wt bacteria synthesize full-length YopE, a YopE15-X hybrid protein, other effector Yops, and the SycE chaperone. Binding of SycE to amino acids 15 to 50 allows YopE to be delivered into cells (panel 1) or released under low-Ca²⁺ conditions (panel 4). YopE15-X, containing the N-terminal 5′ secretion signal but lacking the chaperone binding site, is prevented from entering eukaryotic cells (panel 1) but is nevertheless released under low-Ca²⁺ conditions (4). We hypothesize that competition is stronger for delivery into cells (small channel) than for release under low-Ca²⁺ conditions (large channel). In sycE mutant bacteria, the lack of SycE does not affect the pathway followed by YopE15-X (panels 2 and 5). However, full-length YopE is neither delivered into cells nor released under low-Ca²⁺ conditions. Removal of the domain encompassing amino acids 50 to 77 (not shown in this figure) allows YopE to be released independently of SycE. We conclude that this domain is inhibitory for release and that this inhibition is prevented by SycE. In ΔHOPEM sycE strains (panels 3 and 6), YopE15-X is not only released under low-Ca²⁺ conditions but also delivered into cells. This indicates that the N-terminal 5′ secretion signal is sufficient for delivery into cells. YopE and YopE15-X are partially degraded when blocked inside bacteria. This representation is based on the results presented in this paper and on previous results which are cited in the text.
in a secretion channel (syringe) on the surface of the bacteria with an inner diameter that is much wider than that of the channel (needle) bridging the bacteria and the eukaryotic cell (Fig. 7). In support of this hypothesis, Ca²⁺ chelation leads to the release of some external parts of the Ysc apparatus, such as YscP (19, 30). Thus, passage through the secretion channel under Ca²⁺-chelating conditions would be far more abundant and far more permissive than upon bacteria-eukaryotic cell interaction.

In agreement with the observations of Lee et al. (14), domain encompassing amino acids 15 to 50 was not sufficient to directly YopE to the eukaryotic cytosol (14). However, unlike previous data (5), release of YopE to the extracellular milieu by this domain could not be detected, despite the use of various gene constructions, protein systems, and growth conditions. Although the same +1 frame-shift mutation of codons 2 to 15 was used here as that employed by Cheng et al. (5), in the present work the mutation was inserted in yopE and yopE130 cya, while Cheng et al. (5, 14) tested yopE-npt hybrids. This difference in protein backbone may explain the disparity of our results. In conclusion, the domain encompassing amino acids 15 to 50 is a secretion-translocation enhancer signal that is required for efficient delivery of YopE into eukaryotic cells by wt Y. enterocolitica, but it can not be considered as a physiological secretion signal.

Our results indicate that SycE plays a role as a factor introducing a hierarchical order in effector delivery, by abetting YopE’s competition with the other Yops. This role should not be considered as exclusive, as SycE is required in addition when YopE contains amino acids 50 to 77. Indeed, the presence of this domain creates a need for the chaperone. This fits with older observations that bacteria missing SycE are unable to efficiently release or deliver full-length YopE or YopE130-Cya but are able to secrete YopE-Cya (35). According to our previous observations, we suggested that it was the Syc-binding domain (residues 15 to 50) that created the need for the chaperone. The more refined present observations indicate that the secretion-inhibitory domain is localized immediately downstream of the minimal domain needed for Syc binding. Although residues 50 to 77 are neither sufficient nor necessary for SycE binding, they are likely to be covered by SycE. The determination of the three-dimensional structure of the YopE-SycE complex will clarify this.

The reason why residues 50 to 77 of YopE interfere with secretion of YopE is not clear. These amino acids could interfere with secretion through the Ysc machinery and/or they could affect the stability or solubility of YopE. Recently, Cheng et al. (6) have shown that SycE fused to glutathione S-transferase was unable to complement ΔSycE bacteria for delivery of YopE into eukaryotic cells, even though the SycE hybrid protein bound YopE in the bacterial cytosol and stabilized this Yop (6). These experiments support the results presented here, as they show that in addition to stabilizing YopE in the bacterial cytosol, SycE is also required for efficient Yop translocation by wt bacteria. It seems that glutathione S-transferase–SycE fusion proteins do not have this secondary function. In conclusion, the data presented in this paper present a more-complete picture of the functions of the N-terminal domains of YopE for secretion and translocation of this protein. Amino acids or codons 1 to 15 (secretion domain) are sufficient and absolutely necessary to direct translocation of YopE into eukaryotic cells by Yop effector mutimutant Y. enterocolitica. Amino acids 15 to 50 bind the SycE chaperone and aid YopE to compete with the other Yops for entry into eukaryotic cells via the secretion-translocation machinery. Finally, amino acids 49 to 77 are inhibitory to YopE secretion, and this inhibition is overcome by binding of SycE to amino acids 15 to 50. Future crystallography studies of YopE alone and in complex with SycE will be very beneficial to the further studies of these domains, as would detailed studies on the other Yop-Syc interactions. It will be of great interest to investigate whether these other combinations have properties similar to those of YopE and SycE described here.

ACKNOWLEDGMENTS

We thank D. Desnoeck for excellent technical assistance and N. Grosdent for assistance with plasmid constructions. We also thank S. Tötemeyer, C. Geuijen, S. Bleves, N. Sauvonnet, and I. Stainer for discussions and a critical reading of the manuscript. In addition, we are grateful to Cecile Geuijen for plasmid pYO23, Marie-Paule Sory and Corinne Kerbouch for plasmid pMSL56 and strain MRS40(pMSK50), and Maite Iriarte for plM153.

A.P.B. was the recipient of an H. and A. Breninkmeijer ICP fellowship and also received funding from EU TMR Programme Research Network contract FMRX-CT98-0164. This work was supported by the Belgian Fonds National de la Recherche Scientifique Medicaux (Convention 3.4595.97), the Direction générale de la Recherche Scientifique-Communauté Française de Belgique (Action de Recherche Concertée 94/99-172) and the Interuniversity Poles of Attraction Program—Belgian State, Prime Minister’s Office, Federal Office for Scientific, Technical and Cultural affairs (PAI 4/03).

REFERENCES

