<table>
<thead>
<tr>
<th>Title</th>
<th>A F-bridged Mn(II) molecular square</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Meally, Sean T.; McArdle, Patrick; Ryder, Alan G.; Jones, Leigh F.</td>
</tr>
<tr>
<td>Publication Date</td>
<td>2009-10-08</td>
</tr>
<tr>
<td>Publisher</td>
<td>RSC</td>
</tr>
<tr>
<td>Link to publisher's version</td>
<td>http://dx.doi.org/10.1039/B916153H</td>
</tr>
<tr>
<td>Item record</td>
<td>http://hdl.handle.net/10379/3867</td>
</tr>
<tr>
<td>DOI</td>
<td>http://dx.doi.org/DOI 10.1039/b916153h</td>
</tr>
</tbody>
</table>
A F-bridged Mn(II) Molecular Square

Seán T. Meally,* Kevin Mason, Patrick McArdle, Euan. K. Brechin, Alan G. Ryder, and Leigh F. Jones*

We report on a tetranuclear Mn(II) complex possessing a F-bridged molecular square topology directed by 1,10-phenanthroline ligands.

A significant rise in the use of F- bridging ions in the field of molecular magnetism has been observed over the last 5-10 years. Perhaps the most elegant example is in the synthesis of a vast library of homo- and heterometallic {CrIII7MII1} wheels (and their many analogues) reported by Winpenny and co-workers, that have been proposed as qubits in quantum information processing (QIP).1 The bridging F- ions encircling the inner cavity of the wheels H-bond to templating alkylammonium cations, changes in which allow for modification of both the molecular and supramolecular chemistry; a beautiful example being the formation of inorganic-organic rotaxanes.2 Such dipolar H…F interactions have also been used to manipulate the docking of 'guest' molecules (inc. Na+, K+, NH4+, β-Alanine, MeNH3+) within the double bowl cavities of hexanuclear F-bridged [Cu6] wheels.3 F-bridged cages of Mn II/III are far rarer in comparison to other 3d metals, perhaps because of the perceived lack of suitable starting materials. MnF2 was used for the first time very recently for the preparation of a host of polymetallic high spin complexes and Single-Molecule Magnets (SMMs);4 its prior lack of use a surprise given the vast majority of SMMs are built using Mn III ions.5

In order to further the coordination chemistry of F- with Mn, and with an eye towards investigating Mn-F-Mn magnetic exchange interactions and developing magneto-structural correlations6 within various low nuclearity F-bridged complexes, we herein describe an unusual molecular square built from MnF2. Reaction of anhydrous MnF2, 1,10-phenanthroline (phen) and NaNO3 in MeOH for 24 hours produces a yellow solution, which upon filtration and slow evaporation, yields yellow block-like crystals‡ of [MnII4F4(phen)8](NO3)4.12H2O (1), crystallising in the tetragonal I4 1/a space group in ~20% yield (Figure 1). The structure comprises four symmetry equivalent [{Mn(phen)2}2+] units (Mn1) linked into a square by four µ-bridging F- ions (F1 and s.e.). The Mn ions are in distorted octahedral geometries with a {N4F2} coordination sphere. The two chelating phen ligands and two fluorides per metal centre are both cis, directing the molecular square topology (Fig. 1) - analogous to that observed, for example, in PdII chemistry.7 As can be seen in the lower panel of Figure 1 the [MnII3F4]5+ core is non-planar, being bent along the body diagonal. Each edge of the square is 3.722 Å (Mn…Mn) in length, with the Mn-F bond distances being Mn1-F1 = 2.061(4) Å and Mn1-F1´ = 2.030(4) Å. The µ-F bridges sit alternately above and below the [Mn4] “plane” as you circumnavigate the square. The combination of the non-linear Mn-F-Mn pathways (Mn1-F1-Mn1, 130.9(2)º) and the presence of the bulky phen ligands are presumably the cause of the molecular distortion.

Intra-molecular interactions in the form of π-π stacking of the phen ligands are observed in the lattice with πcentroid…πcentroid distances in the 3.719 – 3.886 Å range (Fig. 1). The individual [Mn2F4(phen)s]2+ moieties align in superimposable 1D rows along the c axis of the unit cell although they are well separated ([Mn4] plane-plane distance = 13.231 Å). The NO3- counter anions (O1, O2 and O3) and the H2O of crystallisation (O15, O16 and O17) lie in between these 1D columns and H-bonding with each other (O1-O16 = 2.839, O2-O15 = 2.779, O2-O17 = 2.890 Å), and with phen protons of nearby [Mn4] units (O1-H3(C3) =2.588, O2-H8(C8) = 2.590, O15-H9(C9) = 2.563 Å). The 1D columns (Fig. 2) interact via numerous π-π stacking interactions (πcentroid…πcentroid distance = 3.654 Å, Fig. 2).
Fig. 1 Molecular structure of the cation of 1 viewed perpendicular (top) and parallel (bottom) to the [Mn4] plane. H atoms have been omitted for clarity. Mn = pink; F = green; N = blue, C = grey.

Oxidation state assignments and the presence of F (versus, for example, OH) were made on the basis of bond lengths, BVS calculations (detailed in ESI), charge balance considerations and Raman spectroscopy (vide infra). Although polymetallic complexes with square topologies are not uncommon, the synthesis of 1 represents the first reported F-bridged molecular square.

Fig. 2 (Top) Packing of cations of 1 in the crystal (viewed down c axis) highlighting the 1D columnar arrangement of [Mn4] units. Arrows represent examples of intermolecular π-π stacking in 1. (bottom) View along the b axis of the unit cell. In both cases the H-atoms, the NO3¯ counter anions and the H2O solvent molecules have been removed for clarity.

Variable temperature magnetic susceptibility measurements were carried out on a polycrystalline powder of 1 in the 300 – 5 K temperature range in an applied field of 0.1 T (Fig. 3). The room temperature \(\chi_m T \) value of \(~12.8 \text{ cm}^3 \text{ mol}^{-1} \text{ K}\) is significantly lower than that expected for four non-interacting MnII centres \(~17.5 \text{ cm}^3 \text{ mol}^{-1} \text{ K}\) for \(g = 2.0\) and is indicative of antiferromagnetic exchange between the four metal centres. The value of \(\chi_m T \) drops gradually with decreasing temperature before falling more rapidly below ~125 K reaching a value of 0.47 cm\(^3\) mol\(^{-1}\) K at 5 K. Simulation of the magnetic data using the 1-\(J\) model of Equation (1) and the scheme of Figure 3 afforded the parameters \(J = -3.3 \text{ cm}^{-1}\) and \(g = 2.00\); the magnitude of the exchange being in-line with previously reported values for MnII-F-MnII interactions.\(^{11}\)

\[
\mathcal{H} = -2J(S_1 \cdot S_2 + S_1 \cdot S_4 + S_2 \cdot S_3 + S_3 \cdot S_4) \quad (1)
\]

Fig. 3 Plot of \(\chi_m T\) vs. T obtained for a powdered polycrystalline sample of 1 in an applied field of 0.1 T. The solid line represents a simulation of the data to the Hamiltonian of equation (1). The inset shows the cartoon describing the 1-\(J\) model.

Solid state Raman spectra were collected on a polycrystalline sample of 1 and the MnF\(_2\) starting material (purchased as a powder) in order to confirm the presence of the µ2-F\(^-\) bridging ions (Figure 4). Peaks at 242 and 254 cm\(^{-1}\) attributed to the Mn(II)-F-Mn(II) symmetric stretching modes in 1 were observed.\(^{12}\) The Raman spectrum of MnF\(_2\) exhibits symmetric stretch peaks at 242 and 245 cm\(^{-1}\) (Eg mode)\(^{13}\) and a peak at 336 cm\(^{-1}\) consistent with terminal Mn-F stretching (A\(_{1g}\) mode)\(^{13}\) which is corroborated by its absence in the spectrum of 1 (Fig. 3).

The band at 273 cm\(^{-1}\) is due to the organic ligand.

Fig. 4 (top) Raman spectra of 1 (red line) and the MnF\(_2\) precursor material (black line) viewed in the 100-400 cm\(^{-1}\) range.

The electrospray mass spectrum gives a prominent parent peak at m/z = 434 ([Mn\(_4\)F\(_4\)(phen)\(_8\)]\(^{4+}\)), which suggests that 1 remains intact in solution, although this may also be attributed to the [Mn(F)(phen)]\(^{2+}\) fragment species. Other smaller fragments of 1 were also observed as assigned in Fig. S13. UV/vis studies on 1 in MeCN show two sharp bands (226 and 266 nm respectively),
each associated with \(\pi-\pi^* \) transitions of the 1,10-phenanthroline ligand. A shoulder at 290 nm attributed to 1,10-phen \(\pi-\pi^* \) transitions was also observed. As expected for isotropic Mn(II) ions no d-d transitions were observed (Fig. S14). In conclusion, \([\text{Mn}(\mu-F)\text{L}(1,10\text{-phen})\text{NO}_3] \) (I) represents a rare example of a tetranuclear cage linked into a square by bridging F- ions. Work is currently underway to produce siblings of I along with other F-bridged dinuclear analogues in order to investigate potential magneto-structural trends.

Acknowledgements

The authors would like to thank the NUI Galway Millennium Fund.

Notes and References

1 School of Chemistry, National University of Ireland, Galway, University Road, Galway, Ireland. Tel +353 091-49-3462

We report on a the solid state and solution characterisation of a tetranuclear Mn(II) cluster possessing a unique F-based ‘molecular square’ core.