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Abstract

In the development of Bayesian model specification for inference and prediction we
focus on the conditional distributions p(θ|B) and p(D|θ,B), with data D and background
assumptions B, and consider calibration (an assessment of how often we get the right
answers) as an important integral step of the model development. We compare several
predictive model-choice criteria and present related calibration results. In particular, we
have implemented a simulation study to compare predictive model-choice criteria LSCV ,
a log-score based on cross-validation, LSFS, a full-sample log score, with deviance infor-
mation criterion, DIC. We show that for several classes of models DIC and LSCV are
(strongly) negatively correlated; that LSFS has better small-sample model discrimination
performance than either DIC, or LSCV ; we further demonstrate that when validating
the model-choice results, a standard use of posterior predictive tail-area for hypothesis
testing can be poorly calibrated and present a method for its proper calibration.

Keywords: log-score, deviance information criterion, posterior predictive

tail areas, hypothesis testing.

Introduction

Bayesian approach to modeling comprises inference, prediction and decision-making and
considers three main objects: θ, a model parameter vector; D, an information (data) source
about θ; and B, a set of propositions summarizing background assumptions about of θ and D,
for example, that θ > 0 if θ represents the mean remission time for a specified set of patients
with a given disease; or that the data set arose as the result of a randomized controlled trial
with the specified design). From the results of Cox (1946) and Ramsey (1926) each of these
three basic Bayesian statistical activities is governed conceptually by a single equation and
requires a series of specification tasks:

• (inference) p(θ|D,B) = c p(θ|B) p(D|θ,B), where c > 0, and p(θ|D,B) posterior distri-
bution, quantifies the information about θ, both internal and external to D;

• (prediction) p(D∗|D,B) =
∫

Θ p(D∗|θ,B) p(θ|D,B) dθ, where D∗ is future data;

• (decision) The optimal action is given by a∗ = argmaxa∈A E(θ|D,B)U(a, θ).

In problems of realistic complexity it is uncertain how to specify p(D|θ,B). In our view, a
leading principle governing this specification should be calibration, which consists of checking
how often one obtains the right answers. For example, a statement such as “p(a < θ <
b|D,B) = 0.9” should be verifiably correct about 90% of the time. To address the uncertainty
in specifying a model, p(D|θ,B), we search for an ensemble, M, of such specifications in a well
calibrated manner, carefully avoiding a double use of data (to specify priors on model space
and again to update this prior when carrying out inference and prediction). In the paper
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we present calibration results related to the following basic questions in Bayesian model
specification, “Q1: Is model Mj better than Mk?” and “Q2: Is model Mj good enough?”
These questions are not complete without a clear reference to the purpose of the models.
However, once the purpose is made explicit, the inferential task transforms into a decision
problem, best solved by maximizing expectation of utility (MEU) specific for the model’s
purpose.

A standard way to answer question Q1 is to use Bayes factors and related criteria, for
example (for reasons of space we comment on this very briefly). A well known problem with
Bayes factors is a possibly extreme sensitivity to the way diffuse priors are specified on the
model parameters, (see e.g. Bernardo and Smith (1994)). The consequence of this instability
is that the evidence in favor of one model over the other may be made arbitrarily large, based
on a range of plausible parameter values, even regardless of the data set. Motivated in part
by this well known problem, we focus on stable model-choice criteria based on the posterior
predictive distribution (of the future data, D∗, given the observed sample, D), which has a
sound basis as a utility for model comparison and is entirely stable relative to the specification
of diffuse priors: p(D∗|D,Mj ,B) = E(ηj |D,Mj,B)p(D∗|ηj ,Mj ,B) .

We argue that the quality of model prediction is also a solid basis for a useful generic
utility in model comparison and hence we focus on working with posterior predictive distri-
butions. In order to compare a predictive distribution with the actual data point, y∗, we use
two log-score criteria, LSCV , based on cross validation and defined as n LSCV (Mj |y,B) =
∑n

i=1 log p(yi|y−i,Mj ,B), and LSFS, the full-sample log-score defined as n LSFS(Mj |y,B) =
∑n

i=1 log p(yi|y,Mj ,B), and which uses all data in the sample only once (see, for example,
Gelfand and Dey (1994) and Laud and Ibrahim (1995)). Considering how to address the
question Q1, we contrast deviance information criterion, DIC with the log-score rules, LSCV

and LSFS.
The plan of the paper is as follows: In Sections 1 and 2 we present aspects of some answers

to question Q1 whereas Section 3 addresses a calibration issue arising from Q2. Specifically,
in Section 1, we consider how to obtain answers to Q1, explore similarities and differences
between DIC and LSCV in Gaussian and Poisson models, and show results on the small-
sample performance of DIC, LSCV and LSFS in discriminating between nested models. In
Section 3 we show that the posterior predictive tail areas (Gelman et al. (1996)), a standard
method for answering “could model Mj have generated the data?” (a question related to Q2)
can be poorly calibrated, and we document an approach to calibrating the answer.

1 LSCV and DIC

In order to show the relationship between LSCV and DIC as model-comparison criteria let
us consider a simple parametric model, M0, for continuous outcomes, where: (yi|µ,B)

IID
∼

N(µ, s2) and (µ|B) ∼ N
(

a, b2
)

.
With (s2, a, b2) known and a diffuse prior on µ (large b2), the posterior for µ is: p(µ|y,B)

.
=

N
(

ȳ, s2/n
)

, where ȳ is the sample mean of y = (y1, . . . , yn). The predictive distribution
for the next observation is then p(yn+1|y,B)

.
= N

(

ȳ, s2/(1 + 1/n)
)

. Similarly, p(yi|y−i,B)
.
=

N
(

ȳ−i, s
2
n

)

, where ȳ−i is the sample mean with observation i omitted and s2
n = s2 (1 + 1/(n − 1)),

so that LSCV (M0|y,B)
.
= c1 − c2

∑n
i=1(yi − ȳ−i)

2 for some constants c1 and c2 with c2 > 0.
With a bit of algebra it can be shown that LSCV (M0|y,B)

.
= c1−c2

∑n
i=1(yi−ȳ)2, (c2 > 0),

meaning that for M0 with a diffuse prior the LSCV is almost perfectly negatively correlated
with the sample variance.

2



In model M0 the deviance is D(µ) = −2 ln l(µ|y,B) = c0 + c3
∑n

i=1(yi − µ)2 for some
c3 > 0. Given a parametric model p(y|θ), Spiegelhalter et al. (2002) define the deviance
information criterion (DIC) as: DIC(M |y,B) = D(θ̄) + 2 p̂D, where pD is the effective
number of model parameters, and θ̄ is the posterior mean of θ, so that models with low
DIC values are to be preferred over those with higher values. When pD is difficult to read
directly from the model (e.g., in complex hierarchical settings with random effects), it can be
estimated from standard MCMC output as p̂D = D(θ) − D(θ̄), where D(θ) is the posterior
mean of the deviance and D(θ̄) is the deviance evaluated at the posterior mean of θ.

Model M0 has just one parameter (pD = 1), a diffuse prior for which implies θ̄
.
= ȳ, so

that we get DIC(M0|y,B)
.
= c0 + c3

∑n
j=1(yj − ȳ)2 + 2 concluding that

−DIC(M0|y,B)
.
= c1 + c2LSCV (M0|y,B) (1)

for c2 > 0. In other words, in this simple setting, choosing a model by maximizing LSCV

and by minimizing DIC are approximately equivalent behaviors. This argument readily
generalizes to any situation in which the predictive distribution is approximately Gaussian.

As a second example of the relationship between LSCV and DIC we consider two models
for count data a fixed-effects Poisson (FEP), model M1 where (yi|λ,B)

IID
∼ Poisson(λ) and

(λ|B) ∼ p(λ|B), and random-effects Poisson (REP), model M2:

(yi|λi,B)
indep
∼ Poisson(λi)

log(λi) = β0 + ei

(β0, σ
2|B) ∼ p(β0, σ

2|B)

(ei|σ
2,B)

IID
∼ N(0, σ2).

(2)

where i = 1, ..., n. M1 is of course a special case of M2 with
(

σ2 = 0, λ = eβ0
)

; the likelihood
in M2 is a Lognormal mixture of Poissons.

We conducted a partial-factorial simulation study with factors {n = 18, 32, 42, 56, 100},
{β0 = 0.0, 1.0, 2.0}, and {σ2 = 0.0, 0.5, 1.0, 1.5, 2.0} in which {(data-generating mechanism,
assumed model)} = {(M1,M1), (M1,M2), (M2,M1), (M2,M2)}; in each cell of this grid we
used 100 simulation replications. Here we summarize only a small part of the results of this
simulation (see Krnjajić (2005) for additional details).

When both the data-generating model and the assumed model were M1 (the fixed-effects
Poisson), LSCV and DIC are almost perfectly negatively correlated (graph not shown); By
contrast, the Figure 1 shows that when the data-generating and assumed models were M2 (the
random-effects Poisson), LSCV and DIC are less strongly negatively correlated, although the
correlation increases with n (graph not shown).

2 Model-comparison criteria and small data samples

In addition to LSCV , which requires n model fitting exercises, our interest was drawn to
another version of the log-score idea in which no cross-validation is employed. Instead, in the
one-sample situation, for instance, it suffices to compute only a single predictive distribution
p( · |y,Mj) for future data, for each model Mj under consideration and based on the entire data
set y. Thus, we define the full-sample log score n LSFS(Mj |y,B) =

∑n
i=1 log p(yi|y,Mj ,B)

(cf. Laud and Ibrahim (1995)). Remark. This appears to use the data twice, but (a) all LSFS

is actually doing is evaluating the posterior predictive distribution for the next data value
at the observed data, and (b) when n is even moderate in size, any effect this may induce is
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Figure 1: DIC versus LSCV with n = 56; the data-generating and assumed models were
both M2 (random-effects Poisson).

small. The calculation of LSFS, as opposed to Bayes factors, is entirely stable and does not
have any difficulties related to the way diffuse priors may be specified.

Here we examine three model-choice rules: {maximize LSCV , maximize LSFS, minimize
DIC}. and consider two models M1 and M2 to choose between. Our objective is to find out
how accurately do these rules discriminate between M1 and M2?

As an extension of the previous simulation study, we generated data from the random-
effects Poisson model M2 (equation (2)) and computed LSCV , LSFS, and DIC for models
M1 (the fixed-effects Poisson, FEP) and M2 (the random-effects Poisson, REP) in the full-
factorial grid {n = 32, 42, 56, 100}, {β0 = 0.0, 1.0}, {σ2 = 0.1, 0.25, 0.5, 1.0, 1.5, 2.0}, with
1000 simulation replications in each cell, and we monitored the percentages of correct choice
for each model specification method (in this simulation M2 is always correct).

Table 1 gives examples of the results of this simulation, using LSCV for illustration.
Even with a sample size of only 32, LSCV makes the right model choice more than 90% of
the time when σ2 > 0.5 for β0 = 1 and when σ2 > 1.0 for β0 = 0 (these are parameter
ranges that lead to large enough amounts of extra-Poisson variability that random-effects
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Table 1: Percentages of correct model choice and mean absolute difference in LSCV between
M1 and M2 when the right model is M2, for n = 32.

% Correct Decision Mean Absolute Difference in LSCV

β0 β0

σ2 0 1 σ2 0 1
0.10 31 47 0.10 0.001 0.002
0.25 49 85 0.25 0.002 0.013
0.50 76 95 0.50 0.017 0.221
1.00 97 100 1.00 0.237 4.07
1.50 98 100 1.50 1.44 17.4
2.00 100 100 2.00 12.8 63.9

models would be contemplated). The right part of the table shows that even rather small
differences in LSCV can separate correct and incorrect model choice, which begs the question
“When a difference on the log score scale is big enough?” (we return to this point in Section
3). Based on model discrimination results for LSCV , LSFS, and DIC we created a series of
performance graphs (not shown) and observed (expectedly) that increasing σ2 makes it easier
for all three methods to conclude that random effects model (the nesting model) is needed
to accommodate the Poisson over-dispersion. Interestingly, in this simulation environment
LSFS was more accurate, with small samples of data, at identifying the correct model than
LSCV or DIC; for this reason, we focus on LSFS in what follows.

3 Calibration of posterior predictive tail areas

Section 2 shows that full-sample log scores can stably and reliably decide between two models
by choosing one with higher LSFS (or LSCV ) value. However, this still leaves open model
specification question Q2: Is M1 good enough?

In our view, a full judgment of adequacy requires real-world input about the purpose
of the model, so it does not seem possible to propose generic methodology to answer Q2.
Instead, the somewhat related question “Q

′

2: Could model Mj have generated the data?” can
be answered in a general way by simulating from Mj many times, developing a distribution
of (e.g.) LSFS values, and seeing how unusual the actual data set’s log score is in this
distribution.

This is related to the posterior predictive model-checking method of Gelman et al. (1996).
However, this kind of simulation needs to be done carefully (Draper (1996)), or the result will
be poor calibration; indeed, Berger (2000) and Robins et al. (2000) have demonstrated that
the procedure in (Gelman et al. (1996)) may be (sharply) conservative. Using a modification
of an idea suggested by Robins et al., we have developed a method for accurately calibrating
the log score scale.

The inputs to our procedure are: a data set and a model (which may be parametric or non-
parametric). For simplicity, consider a one-sample data set, D, of counts and suppose the goal

is to quantify whether this data set could have come from the model (yi|λ,B)
IID
∼ Poisson(λ),

and (λ|B) ∼ diffuse (call it model (∗)). Now, consider the following procedure:

Step 1: Calculate LSFS for data set D and call it the actual log score (ALS). Obtain
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the posterior for λ given y based on data set D; call this the actual posterior. Step 2:

for ( i in 1:m1 ) {

Let lambda[ i ] be a draw from the actual posterior.

Sample n data points from model (*) above, using lambda = lambda[ i ].

Compute the full-sample log-score, LS.FS[ i ], for this data set.

}

The output of this loop is a vector of log scores; call this V.LS. Locate the ALS in the
distribution of LSFS values by computing the percentage of LSFS values in V.LS that are
no greater than ALS; call this percentage the unadjusted actual tail area (suppose, e.g., that
this comes out 0.22).

So far this is similar to Gelman et al. with LSFS as the discrepancy function. We know
from our own simulations (summarized below) and the literature such as Berger (2000),
Robins et al. (2000)) that this tail area (a P -value for a composite null hypothesis, e.g.,
Poisson(λ) with λ unspecified) is conservative, i.e., with the 0.22 example above an adjusted
version of it that is well calibrated would be smaller (and might be much smaller, e.g.,
0.02). We have modified and implemented one of the ways suggested by Robins et al. for
improving calibration, and we have shown that it does indeed work even in rather small-
sample situations, although implementing the basic idea can be computationally intensive.
Step 3:

for ( j in 1:m2 ){

Let lambda* be a draw from the actual posterior.

Generate a data set of size n from the model (*) above,

using lambda = lambda*; call this the simulated data set.

Repeat Steps 1 and 2 above on this simulated data set.

}

The result will be a vector of unadjusted tail areas; call this V.P. Compute the percentage of
tail areas in V.P that are no greater than the unadjusted actual tail area; this is the adjusted
actual tail area.

The claim is that the 3–step procedure above is well-calibrated: if the sampling part of
model (∗) really did generate the observed data, the distribution of adjusted actual tail areas
would be approximately uniform, since X ∼ FX implies FX(X) ∼ U(0, 1). This claim of
calibration can be verified by building a further loop around steps 1–3 as follows:

Choose a lambda value of interest; call it lambda.sim.

for ( k in 1:m3 ) {

Generate a data set of size n from the model (*) above,

using lambda = lambda.sim; call this the validation data set.

Repeat Steps 1-3 on the validation data set.

}

The result here is a vector, V.TA, of adjusted tail areas. We have verified (via simulation,
performed on a cluster of 100 Linux-based CPUs) in several settings that the distribution of
values in V.TA is (very) close to U(0, 1) indeed.

Figure 2 summarizes a set of histograms of the uncalibrated actual tail areas from one-
sample Poisson model, indicating that in many cases the tail areas (p-values) are far from
the target (uniform) distribution.
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Figure 2: Poisson model: uncalibrated tail-area values.

Consider, for example, the case (n = 100, λ = 0.14) in the fourth row and first column
of the Figure 2: if the uncalibrated tail area came out 0.35 in this situation, it would be
natural to conclude that the data could very well have come from the Poisson model, but
this part of Figure 2 demonstrates clearly that in fact an uncalibrated tail area of 0.35 with
(n = 100, λ = 0.14) is highly unusual under the Poisson model. Our procedure solves the
calibration problem by asking “How often would one get 0.35 or less for an uncalibrated tail
area in this situation?”, and it is evident from Figure 2 that the answer is not very often (in
fact, only about 0.035 of the time, i.e., in this case the calibrated version of the uncalibrated
Gelman et al. tail area is 10 times smaller).

Figure 2 shows also that the calibration of the unadjusted approach improves in the one-
sample Poisson setting, for increasing λ (even for small n), but in case of the Gaussian model
with both µ and σ2 unknown, the unadjusted approach remains poorly calibrated across the
entire subset {−1 ≤ µ ≤ +1}×{0.1 ≤ σ2 ≤ 10} of parameter space we examined, and things
actually seem to get worse as n increases (not shown). However, the adjusted results, for the
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Gaussian model, are nearly perfectly calibrated, having distributions close to U(0, 1) for all
examind parameter values and sample sizes, (again, not shown). Note that for the reason of
limited space here we could show only a small fraction of results and graphs.

Conclusions

We have argued that calibration (checking how often one obtains the right answer) is an
important principle that that arises naturally in good Bayesian modeling; the question “Q1:
Is model Mj better than Mk?” is central to the process of well-calibrated Bayesian model
specification; and it is not well formed unless the purpose of the model is considered. Once
the purpose of the model is explicitly stated, the task of Bayesian model specification turns
into a decision problem of maximizing expected utility (MEU), with a purpose-specific utility
function (which may be computationally intensive).

LSFS appears as a useful improvement upon DIC, with three advantages: LSFS may
well have better small-sample model discrimination behavior (as in the simulation of Section
3.1); LSFS is insensitive to model parameterization; and LSFS can be used both in Bayesian
nonparametric and parametric settings; To decide when to stop looking for a better model,
the question “Q

′

2: Could model Mj have generated the data?” can be answered in a well-
calibrated manner, using LSFS as a model choice criterion, as shown in the last section.
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