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Abstract

During the exploratory phase of a typical statistical analysis it is natural to look at the
data in order to narrow down the scope of the subsequent steps, mainly by selecting a set
of families of candidate models (parametric, for example). One needs to exercise caution
when using the same data to assess the parameters of a specific model and deciding how
to search the model space, in order not to underestimate the overall uncertainty, which
usually occurs by failing to account for the second order randomness involved in exploring
the modelling space. In order to rank the models based on their fit or predictive perfor-
mance we use practical tools such as Bayes factors, log-scores and deviance information
criterion. Price for model uncertainty can be paid automatically when using Bayesian
nonparametric (BNP) specification, by adopting weak priors on the (functional) space of
possible models, or in a version of cross validation, where only a part of the observed
sample is used to fit and validate the model, whereas the assessment of the calibration
of the overall modelling process is based on the as-yet unused part of the data set. It is
interesting to see if we can determine how much data needs to be set aside for calibration
in order to obtain an assessment of uncertainty approximately equivalent to that of the
BNP approach.

Keywords: model uncertainty, Bayesian non-parametric specification, cross

validation, model choice

Introduction

When faced with a task of analyzing a data set, statisticians usually take a standard, data-
analytic (DA), approach to model specification. In DA approach we explore the space of
models in search for the ‘right’ model, using all of the available data and then using the same
data to draw inferential or predictive conclusions conditional on the results of the search. This
amounts to using the data twice and often yields poorly calibrated (too narrow) predictive
intervals.

There seem to be only two principled solutions to this problem: (1) Bayesian nonpara-
metric (BNP) modelling (with enough data) in which prior distributions are specified on the
entire model space, therefore avoiding some of the search and the use of data to specify error
distributions, response surfaces, etc., and (2) A version of Bayesian cross-validation (we call
it 3-way out-of-sample predictive cross-validation, or 3CV, in a manner somewhat related to
a method used in machine learning; 3CV is a modification of DA search in which the data
are partitioned into 3 subsets (S1;S2;S3), rather than the usual 2, and where a DA search is
undertaken iteratively, modeling with S1 and predictively validating with S2; S3 is not used
in quoting final uncertainty assessments, but is instead used to evaluate predictive calibration
of the entire modeling process. It looks as if the approach (2) resolves the problem by paying
the “right” price for shopping around in the modelling space in terms of setting aside a part
of the data.

BNP modeling is often characterized as providing “insurance” against mis-specified para-
metric models for the following reason: (a) You can generate data from a known (“true”)
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parametric model M1 and fit M1 and a BNP model to the simulated data sets; both will
be valid (both will reconstruct the right answer averaging across simulation replications) but
the BNP uncertainty bands will typically be wider. (b) You can also generate data from a
different model M2 and fit M1 and BNP to the simulated data sets; often now only BNP
will be valid. People refer to the wider uncertainty bands for BNP in (a) as the “insurance
premium” you have to pay with BNP to get the extra validity of BNP in (b). But this is
not a fair comparison: the simulation results in (a) and (b) were all conditional on a known
“true” model, and don’t immediately apply to a real-world setting in which you don’t know
what the “true” model is. However, when you pay an appropriate price for shopping around
for the “right” parametric model (as in 3CV), the discrepancy between the parametric and
BNP uncertainty bands vanishes.

The approach described above begs the question – can we quantify in a general way (and
how exactly) the price of model uncertainty? One idea involves a comparison of how much
data Bayesian parametric and nonparametric models need to achieve the same inferential
accuracy about the main quantity of interest. In order to quantify the price of model un-
certainty we may proceed as follows: specify a BNP model centered at an a priori plausible
parametric model using all n data values and perform the inference; then find out how many
data points nDA < n are needed by the best parametric model, discovered with a DA search,
to achieve the same inferential accuracy as the BNP model; the difference (n− nDA) is how
much data should be reserved in 3CV subset S3.

The plan of the paper is as follows: in the first section we describe the simulation setup
with a parametric (Poisson based) model and its BNP counterpart and explain differences
in estimated inferential and predictive uncertainty. Section 2 describes an attempt to gauge
out what fraction of the data set should be used in the calibration stage of a DA model
that results in an assessment of uncertainty approximately equivalent to that of the BNP
approach.

1 Bayesian parametric Poisson based model vs. a BNP model

Assume that we have a data set (of size n) consisting of counts coming from an unknown
data generating mechanism. The first thing to try parametrically with count data is usually
a fixed-effects Poisson (FEP) model (for i = 1, . . . , n):

(yi|θ) ind∼ Poisson[exp(θ)]

(θ|µ, σ2)
iid∼ N(µ, σ2)

(µ, σ2) ∼ p(µ, σ2).

(1)

This specification uses a Lognormal prior for λ = eθ rather than conjugate Gamma choice;
the two families are similar, and the Lognormal generalizes more readily. In practice data
often exhibit heterogeneity resulting in (extra-Poisson variability), manifesting as variance-
to-mean ratio, V TMR > 1. A natural parametric extension to FEP would be to try a random
effects Poisson model (REP):

(yi|θi)
ind∼ Poisson[exp(θi)]

(θi|G)
iid∼ G

G ≡ N(µ, σ2)
(µ, σ2) ∼ p(µ, σ2),

(2)
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Here, i = 1, ..., n, and we assume a cumulative distribution function (CDF) of latent
variables (random effects), θi, to be parametric (Gaussian).

The problem is that the mixing distribution, G, in the population to which it is appro-
priate to generalize may be multimodal or skewed, which a single Gaussian can’t capture.
If so, this REP model can fail to be valid. Moreover, this would usually be diagnosed with
something like a density trace of posterior means of θi, looking for need to use mixture of
Gaussians instead of single one, but choosing G to be Gaussian will tend to make diagnostics
support Gaussian model even when it’s not right.

Therefore, it would be good to remove the assumption of a specific parametric family
(Gaussian) for the mixing distribution G of the random effects, by allowing G to be random
and specifying a prior model on the space of {G}. This BNP model may be centered on a
Gaussian model, N(µ, σ2), but would permit adaptation/learning. Specifying a prior for an
unknown distribution requires a stochastic process with realizations (sample paths) that are
CDFs. We use the Dirichlet process (DP): G ∼ DP (αG0), where G0 is the center or base
distribution of the process and α is a precision parameter, see Ferguson (1974). DP mixture
Poison model (DPMP: this paper’s BNP model):

yi | G ind∼
∫

Poisson(yi; e
θ)dG(θ), (3)

where G is a random mixing distribution. For a data set y = (y1, ..., yn) the BNP model is:

yi | θi
ind∼ Poisson(eθi)

θi | G iid∼ G
G ∼ DP(α,G0(ψ)),

(4)

where ψ = (µ, σ2), G0 ≡ N(·;µ, σ2) and i = 1, ..., n. Additional model stages are introduced
by placing priors on α and ψ. MCMC implemented for a marginalized version of DP mixture.
Key idea: G is integrated out over its DP prior, resulting in a marginalized version of (4)
that follows Pólya urn structure, as shown in Blackwell and MacQueen (1973).

Further references and details of DP mixture modelling along with the description of the
simulations with a number of data sets can be found in Krnjajíc et al. (2008). Here, it suffices
to say that the sample sizes were n = 300 and that the data sets were generated based on
a variety of unimodal (symmetric and skewed) and bimodal distributions of latent variables
(random effects) resulting in data samples with increased variability, nontrivial tails, and
densities which were unimodal or with a slight to a noticeable bimodality.

Figure 1 shows the posterior predictive distributions obtained from the parametric REP
model and a BNP model with a DP prior, where the data set of counts was generated by a
model with a bimodal distribution of latent variables (random effects). (The posterior pre-
dictive distribution is always obtained as p(y∗|y) =

∫

Θ p(y
∗|θ)p(θ|y)dθ) It is obvious from the

graphs that the REP model can’t adapt to bimodality or skewness without remodelling (say)
as a mixture of Gaussians on the latent scale, whereas the BNP modelling smoothly adapts to
the data-generating mechanism. A formal comparison of the parametric and the BNP model
(using log-scores and deviance information criterion, DIC) showed clear preference for the
BNP model when the data were generated with non-Gaussian distribution of random effects.

It is interesting to analyze what is happening on the scale of latent variables which come
from random mixing distribution G. We can do this since the BNP model permits obtaining
posterior draws of G, P (G | data ). Based on these draws we can compute estimates such
as the mean functional, E[y | G)], and in fact, obtain the entire distribution of E[y | G)].
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Figure 1: Prior (blue) and posterior (red) predictive distribution from REP model (top) and
BNP model (bottom).

Antoniak (1974) derived an important result for the posterior distribution of the random
mixing distribution G. It turns out that for G ∼ DP (α,G0(ψ)), the posterior of G is as
follows:

(G|data) ∼
∫

P (G|θ, α, ψ)dQ(θ, α, ψ | data ), (5)

where P (G | θ, α, ψ) is also a DP with parameters α
′

= α+ n and

G
′

0(·|ψ) =
α

α+ n
G0(·|ψ) +

1

α+ n

∑n

i=1
1(−∞,θi](·), (6)

and Q(θ, α, ψ | data ) is the joint posterior distribution. Using (5), (6) along with the
definition of DP we obtain posterior sample paths from P (G | data) in a computationally
efficient way.

2 Parametric vs BNP models: the price of model uncertainty

Posterior estimates of the means of random effects distribution G along with the 90% point-
wise uncertainty bands are shown in Figure 2. It is obvious that the REP model can’t
capture the skewness and bimodality of the CDF (of the distribution of random effects,
G), what is not surprising since REP assumes a Gaussian here. Yet, what is somewhat
remarkable in a negative way is the very narrow uncertainty bands. On the other hand, the
BNP model captures well both non-standard shapes of the CDF-s as expected, albeit with
wider uncertainty bands around the mean estimate.
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Figure 2: Posterior MCMC estimates of the means of random effects distributions G, with
90% uncertainty bands. REP model, first row; BNP model, second row. Data sets generated
using a model with skewed (left panels) and bimodal (right panels) distributions of random
effects. The CDF-s of these (true) distributions are represented with thick dashed lines.

We have seen that when REP is incorrect model, it continues to yield narrower uncertainty
bands that fail to include the truth, whereas BNP model adapts successfully to the data-
generating mechanism, as is illustrated in Figure 2. However, the Gaussian assumption on
the latent variables scale in the REP model, although wrong, can make the model look
plausible when it’s not: Diagnostic checking of REP model would make it look appropriate
when it’s not; by contrast BNP correctly captures the bimodality or skewness of the random
effects distribution.

One way to pay the right price for conducting a data-analytic search to arrive at a final
parametric model is three-way cross-validation (3CV) which proceeds along the following
lines: (1) Partition data at random into three subsets Si, of size ni (respectively). (2) Fit
tentative {likelihood + prior} to S1. Expand initial model in feasible ways suggested by the
data exploration using S1. Iterate until fit is good (for example). (3) Use final model (fit
to S1) from (2) to create predictive distributions for all data points in S2. Compare actual
outcomes with these distributions, checking the predictive performance. Go back to (2),
change likelihood or re-tune the prior as necessary, to get good calibration. Iterate until the
predictive performance is OK (for example). (4) Announce final model (fit to S1 ∪ S2) from
(3), and report predictive calibration of this model on data points in S3 as an indication of
how well it would perform with new data.

In practice, with large n we probably only need to do this once, whereas with small and
moderate n it may be necessary to repeat (1–4) several times and (perhaps) combine results
in some way (for example, through model averaging). Note again that n3 observations in S3
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Table 1
REP DPMP

n Area rA MaxDiff rD Area rA MaxDiff rD

200 0.2256 1.403 0.11510 1.440 0.5556 1.160 0.3910 1.415

400 0.1608 1.433 0.07992 1.372 0.4788 1.141 0.2763 1.007

800 0.1122 1.427 0.05827 1.456 0.4195 1.090 0.2745 1.123

1600 0.0786 0.04002 0.3849 0.2445

are not to be used in summarizing inferential uncertainty about the quantities of interest but
are instead used to estimate calibration of the data-analytic modeling process.

We need to find a way to determine or estimate sizes ni of three data subsets (S1, S2, S3).
In order to approach this task of quantifying the price of model uncertainty it is useful (a)
to regard Bayesian parametric models as just BNP models with a stronger prior. For exam-
ple: REP model takes G ≡ N(µ, σ2) while DP mixture model takes G ∼ DP (αG0), G0 ≡
N(µ, σ2). Notice that larger sample sizes and stronger prior information often lead to nar-
rower uncertainty bands.

Therefore, it is natural that a BNP model, on account of its vague prior on a large space
of distribution functions, would require more data (sample size nBNP ) to achieve (about)
the same inferential or predictive accuracy as the best-fitting (best-predictive) parametric
model (in terms of sample sizes, nBNP > sample size = n = nParam. It is then reasonable
to recommend n3 = n(1 − n/nBNP ) as the size of the calibration subset S3. Combining this
with the typical cross-validation practice that you should put about twice as much data in
the modeling subset as in the validation subset yields

(n1, n2, n3) =

[

2n2

3nBNP
,

n2

3nBNP
, n

(

1 − n

nBNP

)]

. (7)

Therefore, for a data set with n = 1000 observations, if it takes about nBNP = 1200
observations to achieve BNP accuracy equivalent to that of the best parametric model on the
main quantities of interest, the subsets Si should have about (550, 275, 175) observations in
them.

Implementing this idea (obviously) requires estimating nBNP . As a data-generating
mechanism we use a REP model (with Gaussian G); and generate four samples of sizes
n = (200, 400, 800, 1600). To quantify the effect of (doubling) sample size, we compute (1)
the areas between the 0.05 and 0.95 point-wise quantiles of the posterior realization of the
CDF-s of G, and (2) the maximum differences between two quantiles. The results are summa-
rized numerically in Tables 1 and 2. Figure 3 shows estimates of the 90% uncertainty bands
of the posterior distribution of the CDF of G for parametric and BNP model and different
sample sizes.

We see that the REP model learns about G at a substantially faster rate than the DPMP
model. Noting the values of rA and rD, the ratios of the consecutive values of“Area” and
“MaxDiff” it appears that the REP learning rate follows a square root law, but the DPMP
rate does not. However, if the data-generating mechanism was non-REP the REP model
would continue to “learn” the wrong CDF at a same

√
n rate, whereas the DPMP model

would (somewhat slower) learn the right G.
Besides looking at the scale of latent variables, a similar comparison can be made on the
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Figure 3: 95% point-wise uncertainty bands of posteriors of G, produced by the REP model
(smooth & black) REP, and DPMP model (jagged & red).

data scale and for that purpose we use the mean functional:

E(y | G) =

∞
∑

y=0

yF (y;G) =

∞
∑

y=0

y

∫

Poisson(y; θ)G(dθ) =

∫

eθG(dθ).

The mean functional has a closed form in case of REP model, whereas for the DPMP model we
use MCMC draws from the joint posterior distribution of all parameters to compute it. The
results for E(y | G) are summarized in Table 2. It was unexpected to see that DPMP appears
to learn about the posterior mean on the data scale at a faster rate than REP, although the
difference between the two decreases for larger sample sizes. The result is counterintuitive,
but an explanation may be given based on how the standard MCMC estimate of the posterior
mean on the data scale is computed:

uj =

K
∑

k=1

exp(tk)
[

Gj(tk) −Gj(t
−

k )
]

(8)

for each MCMC iteration j, where {t1, . . . , tK} is a grid of points at which Gj(·), the current
MCMC iteration estimate of G, is evaluated; the many flat segments in Gj when the sample
size is small can result in the uncertainty assessment on the low side.
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Table 2

90% Interval Width
For E(y|data)

n REP DPMP

200 1.793 1.433 1.679 1.424
400 1.251 1.564 1.179 1.483
800 0.800 1.396 0.795 1.438

1600 0.573 0.553

Conclusion

To summarize the results, we can say that BNP models adapt well at latent and data levels
and have superior predictive performance. It is interesting to see that a weaker prior infor-
mation (provided by specifying priors on space of distributions in BNP) does not necessarily
lead to weaker inferential statements on the data scale. Stronger prior information (when
wrong, but difficult to diagnose) can lead to wrong inference in a somewhat striking manner.

Inferential uncertainty measured on the latent scale was smaller for parametric models
and decreased with sample size, however, the uncertainty on the data scale was smaller for
the BNP model. It means that this search for data equivalence between parametric and BNP
models leads eventually in oposite directions and cannot be used to estimate the desired
amount of data to use for calibration in DA approach.

The concept of data equivalence, if it worked, could lead to a fairly general way of
quantifying the price of uncertainty for a data-driven search of the model space. How-
ever, the structure of the space of latent variables in BNP models changes non-trivially
with the sample size and also reflects the features of the data set (such as skewness and
multimodality), making the comparison with parametric problems a challenge. In general,
p(y | x) =

∫

p(y | x,M)p(M | x)dM , where M is a space of models, p1(M) may be a weaker
prior than p2(M), and yet p1(M) may concentrate on models with better predictive accu-
racy, p(y | x,M) than p2(M | x) does, leading to stronger inference from p1(y | x) than from
p2(y | x).
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