

Provided by the author(s) and NUI Galway in accordance with publisher policies. Please cite the published

version when available.

Downloaded 2019-01-20T17:44:26Z

Some rights reserved. For more information, please see the item record link above.

Title Cost Estimation in Agile Software Development Projects

Author(s) Lang, Michael; Keaveney, Siobhán; Conboy, Kieran

Publication
Date 2011

Publication
Information

Lang, M.; Keaveney, S.; Conboy, K. (2011) Cost Estimation in
Agile Software Development Projects International
Conference on Information Systems Development (ISD2011)
Prato, Italy,

Item record http://hdl.handle.net/10379/3417

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/

Cost Estimation in Agile Software Development Projects

Michael Lang1, Kieran Conboy1,2 & Siobhán Keaveney

1 Business Information Systems, J.E. Cairnes School of Business & Economics, NUI Galway, Ireland
2 School of Information Systems, Technology and Management, Australian School of Business, UNSW, Australia

Email: Michael.Lang@nuigalway.ie

Abstract. Numerous studies over the years have shown that information systems development (ISD)
projects often run over budget or fail entirely. Such failures are not restricted to certain industry sectors
or project types; rather they occur with some regularity in systems development projects and
organizations of all types and sizes. Cost estimation has long been a difficult task in systems
development, and although much research has focused on traditional methods, little is known about
estimation in the agile method arena. This is somewhat ironic given that the reduction of cost and
development time is the driving force behind the emergence of agile methods. This study looks at how
classical problems which adversely affect cost estimation in traditional ISD are managed within the
agile paradigm. A qualitative approach was followed, based on data collected from four companies.
Amongst other findings, the study revealed that estimation inaccuracy was a less frequent occurrence
for these companies. A number of recommendations can be drawn from the research: estimation
models are not a necessary component of the process; fixed price budgets can prove beneficial for both
developers and customers; and experience and past project data should be documented and used to aid
future estimation efforts.

1. Introduction

A decade has now passed since the chief proponents of what were then called “lightweight” software
development methods, – including eXtreme Programming (XP), Scrum, Crystal, Dynamic Systems
Development Method (DSDM), Feature-Driven Development (FDD), Adaptive Software Development
(ASD) and Pragmatic Programming, – famously convened in Utah to form the Agile Alliance. The
outcome of that meeting was the proclamation of a “Manifesto for Agile Software Development”
which called for a profound shift in the underlying philosophy of traditional ISD approaches
(Highsmith 2001). The Agile Manifesto embodies twelve guiding principles and a declaration of values
which places individuals and interactions over processes and tools, working software over
comprehensive documentation, customer collaboration over contract negotiation, and responding to
change over following a plan. Fundamentally, the agile movement is based on a new paradigm which
argues for a departure from so-called “plan-driven” or “heavyweight” ISD methods on the basis that
they are not appropriate in the modern era of rapid change, a viewpoint that increasingly was gaining
support in the academic literature through the 1980s and 1990s (McCracken and Jackson 1982;
Baskerville et al. 1992). At the turn of the millennium, practitioners and academics alike were calling
into question the underlying assumptions upon which traditional ISD methods were based (Highsmith
2001; Russo and Stolterman 2000) and it was broadly acknowledged that there was a need to move
from the past imperfect to a better future way of building software (Fitzgerald 2000).

Over the course of the past decade, the notion of “agile” information systems development has
found tremendous favour, as evidenced by the increasing number of practitioner and academic
conferences, the high rate of uptake of agile methods within industry, and a rapidly growing body of
research activity. However, few studies of agile methods in actual use are based on strong theoretical or
conceptual foundations (Abrahamsson et al. 2009; Conboy 2009). In the absence of systematic research
there are few lessons learned across studies, and thus the existing body of knowledge is fragmented and
inconclusive. This is particularly problematic for agile project managers who have trained and worked
with traditional, plan-driven development approaches (Dybå and Dingsøyr 2008; Tan and Teo 2007).

Regardless of the methodology adopted, the ISD process requires effective management and
planning. A large part of this planning is the creation of estimates so that resources can be
appropriately allocated during projects. Numerous cost estimation techniques and models (e.g.

2 Michael Lang, Kieran Conboy & Siobhán Keaveney

COCOMO, SLIM, ESTIMACS, COBRA, Checkpoint) have been proposed over the years, an
extensive taxonomy of which can be found in Boehm et al. (2000). Across their systematic literature
review of 304 software cost estimation papers, Jørgensen and Shepperd (2007) identified regression,
function point, expert judgement, theory-based, and analogy as the main cost estimation approaches.
However, notwithstanding the vast body of cost estimation literature, the chronic problem of cost and
schedule over-runs on ISD projects indicates that accurate estimation remains elusive.

One of the main principles of agile methods is to “welcome changing requirements”, but changing
requirements are a major cause of software cost estimation problems (Jones 2003; Conboy 2010).
Alford and Lawson (1979) pointedly remark that “in nearly every software project that fails to meet
performance and cost goals, requirements inadequacies play a major and expensive role in project
failure”. As yet, the issue of cost estimation in agile software development projects has received very
little attention in the academic literature, the only previous empirical studies that we discovered in our
literature search being those of Cao (2008), who conducted an in-depth longitudinal study on an agile
project in which estimates were compared versus actuals, and Ramesh et al. (2007), who investigated
agile requirements engineering practices within 16 US software development organizations.
Interestingly, whereas Ramesh et al. (2007) observed that “the agile approach towards RE makes the
estimation of costs and schedules more difficult than with traditional methods”, Cao (2008) found that
“estimation in agile development is more accurate than that in traditional development even though
agile developers still underestimate the effort”. The research discussed in this paper was part of a
broader study, but in view of the aforementioned gap in the literature, the aspect that we have chosen to
concentrate on here is: how do agile ISD approaches cope with the problems that have traditionally
plagued software cost estimation?

2. Literature Review

Estimating the cost of an ISD project is one of the most crucial tasks for project managers but
unfortunately it is a persistent weak link. ISD projects have a long history of being delivered over time,
over budget, and failing to satisfy requirements. As early as 1958, concerns about information systems
project failure were expressed in the inaugural edition of The Computer Journal (Caminer 1958). By
the time of the 1968 NATO Conference on Software Engineering, the high incidence of failure had
reached such proportions that the now infamous phrase “software crisis” was first uttered (Naur and
Randell 1969). Brooks (1987) uses the metaphor of “a monster of missed schedules, blown budgets,
and flawed products” to convey the essence of this problem. In a US study conducted by The Standish
Group (1995), it was found that only 16% of software projects were completed on-time and on-budget,
with 53% of projects costing approximately double their original estimates. Somewhat more positive
findings were reported by Lang and Fitzgerald (2007), whose survey of 164 Web development
companies in Ireland revealed that 67% of projects were delivered within the agreed budget and 33%
were delivered on time. However, even though those figures are more favourable, they still indicate
that two-thirds of projects for whatever reason are delivered late, and a third are over-budget, which
might even be more if the real cost of fixed price contracts was considered.

Lederer and Prasad (1995) conducted a survey of 112 ISD project estimators and implementers, and
based on an exploratory factor analysis they classified the principal causes of inaccurate cost estimates
in traditional ISD projects into four categories, namely methodology, politics, user communication and
management control. We use these classifications here to present the main strands of literature and the
corresponding findings.

Methodology Issues

Cost estimation problems attributable to methodology issues include the techniques and guidelines
employed to produce the estimate, the means by which estimates relating to past projects are examined
and reviewed, the setting of standard estimation durations, insufficient analysis when developing
estimates, and lack of co-ordination of systems development activities (Lederer and Prasad 1995).

Over-reliance on intuition and personal memory is a concern for project members trying to increase
estimation accuracy. Estimation inaccuracy can also be caused as a result of a lack of policies on how

Cost Estimation in Agile Software Development Projects 3

to learn from past experiences and properly deal with failures and mistakes (Ewusi-Mensah and
Przasnyski 1995). In agile software development, estimates are normally produced on an iterative basis
for each “sprint” of activity, typically 2-4 weeks turnaround. One very commonly used agile
requirements specification technique is a “user story”, a feature of both the eXtreme Programming and
Scrum methodologies. This technique, which has been referred to as “just-in-time analysis”, asks users
to very succinctly communicate requirements in the form of short, simple task descriptions. Each user
story therefore represents a distinct piece of functionality that can be plugged into a system. An overall
expected time for each of these stories is estimated by the developers, and the customers then prioritise
the stories based on these initial estimates and on the business value of each one (Lovaasen 2001).

The frequency with which estimation is performed, typically at the beginning of every iteration,
leads to progressively more accurate estimation by the developers as they become more and more
skilled at estimating the tasks (Abrahamsson 2003). According to Highsmith (2003), the nature of agile
methods often results in fixed budgets and a fixed schedule, and it is the scope of the project that
remains flexible throughout. On the other hand, Ceschi et al. (2005) report that companies using agile
methods usually lean towards “flexible contracts instead of fixed ones that predefine functionalities,
price, and time”.

Agile methods “welcome changing requirements, even late in development”; however, in terms of
estimation, the requirements are finalised to a certain extent at the start of each iteration and so
developers can devise their estimates being reasonably safe in the knowledge that the scope for the
iteration has been broadly agreed (Taber and Fowler 2000). The impact of changes in scope and
requirements within ISD projects can vary greatly depending on the stage at which the change is
introduced. The cost of change rises phenomenally throughout traditional development (Boehm 1981)
while in agile projects the impact of change levels off (Neill 2003). Agile methods aim to reduce the
cost of changes throughout the development of a system, but not necessarily to reduce the occurrence
of changes (Highsmith and Cockburn 2001).

Political Factors

According to Jørgensen and Moløkken (2003), estimation is typically fraught with “tug of wars” and
“political games”, therefore high accuracy may not be the only goal or perhaps not even the principal
goal of the actors involved. Chapman and Ward (2002) refer to a “conspiracy of optimism” whereby
political pressures from within the organisation can lead to unrealistic estimates or reluctance to report
the actual outcome. Moløkken and Jørgensen (2003) suggest that software managers may over-report
causes of inaccuracy that lie outside their responsibility, such as customer-related causes. Project
managers therefore have to be aware of the implications that political factors can have on ISD
estimation (Winklhofer 2002).

Lederer and Prasad (1995) identified pressures from managers, users or others to increase or reduce
the estimate, or removal of padding from the estimate by management, as political factors that can
negatively impact the accuracy of software cost estimation. It is quite common for software developers
to experience stakeholder pressure to stay within the original base estimate, but if those estimates were
initially pitched or subsequently manipulated in order to satisfy managers or customers, they will
usually lead to over-runs and shortfalls (Lang 2009). Within “self-organizing” agile teams, the
delegation of responsibility to developers to estimate their own tasks can cause inaccuracies if a
developer feels pressurised into underestimating his workload in order to gratify managers or
customers. This agile practice can also lead to reluctance by developers to expose themselves to the
risk of developing a reputation as having poor estimation/time management skills, or perhaps even seen
amongst peers as having limited technical capabilities (Elssamadisy and Schalliol 2002).

Lederer and Prasad (1995) also identified reduction of project scope or quality to stay within the
cost estimate resulting in extra work later, and “red tape”, as two other political factors. The agile
principle of simplicity, which is defined in the Manifesto as “the art of maximizing the amount of work
not done”, would seem to directly relate to these issues. Additionally, the Manifesto’s emphasis on
“customer collaboration over contract negotiation”, which resonates with Jones’ (1988) call that “both
parties (designers and clients) have to give up the use of the requirements as a semi-legal basis of
control and measurement and agree to work together”, means that at least in principle agile ISD cost
estimation aspires to be less prone to the ills of adversarial politics. Indeed, one of the criticisms of the
traditional heavy-weight methodologies was that they could descend into political “rituals which enable

4 Michael Lang, Kieran Conboy & Siobhán Keaveney

actors to remain overtly rational while negotiating to achieve private interests” (Robey and Markus
1984). In their study of Web development practices, Lang and Fitzgerald (2007) found that methods
could serve a variety of covert political motives, such as being seen to have followed a process in the
event of a “blame game” arising between stakeholders about over-runs. While one would hope that the
spirit of the Agile Manifesto would precipitate a change of culture in this regard, it is perhaps too
optimistic to expect that political factors and their potentially disruptive impacts can be entirely
eradicated.

User Communication

Brooks (1987) famously declared that “the hardest single part of building a software system is deciding
precisely what to build … no other part of the conceptual work is as difficult as establishing the
detailed technical requirements ... no other part of the work so cripples the resulting system if done
wrong”. Lederer and Prasad (1995) identify users’ lack of understanding of their own requirements,
frequent requests for changes by users, users’ lack of IT knowledge, and poor or imprecise problem
definition as major contributory factors to inaccurate cost estimates.

Poor communications with users is one of the most prominent reasons why project estimates tend to
be inaccurate (Jørgensen 2003). It is quite normal for users not to fully understand what they want and
to be unable to clearly articulate their needs (Brooks 1987; Walz et al. 1993). Boehm (2000) refers to
the fickle and rapidly changing nature of user requirements as the “I’ll know it when I see it”
(IKIWISI) phenomenon. If customers have a limited awareness of the potential and limiting factors of
information technology, as is typical, they cannot be expected to be in a position to clearly state their
requirements at the outset of an ISD project (Orr 2004; Stamelos and Angelis 2001). This leads to
difficulty in producing a complete set of requirements and thus estimation inaccuracy is inevitable.

Keil and Carmel (1995) therefore recommend that a substantial portion of the time assigned to
systems development activities should be given over to learning and knowledge exchange between
customers and developers. Moreover, they call for direct links between customers and developers,
because where communication passes indirectly through intermediaries, it is likely to be less effective
because they can filter and distort messages (Keil and Carmel 1995). Similarly, Grudin (1991) makes
the point that “go-betweens or mediators often discourage direct developer-user contact … and are
often ineffective conduits”. Bringing this point forward, the Agile Manifesto states amongst its
principles that “business people and developers must work together daily throughout the project” and
that “the most efficient and effective method of conveying information to and within a development
team is face-to-face conversation”. The eXtreme Programming methodology recommends that an on-
site customer should be attached to the development team, though in practice this often does not
happen or perhaps the role is filled by a customer proxy. This close working relationship between the
project team and the customer in agile software development approaches mitigates the traditional
problems arising from poor user communication, but on the other hand the effectiveness and success of
agile methods is very dependent on customer co-operation and availability, which if not forthcoming
threatens to unravel the whole process (Paulk 2002). For example, if a customer was not available to
clarify and elaborate on confusing user stories, development activities might have to proceed
misguided or stall altogether.

Management Control

Problems caused by management control include management reviews and comparison between
estimates and actuals. When management fails to participate in the preparation of the estimate, and
does not monitor the accuracy of the estimate, this can contribute to the estimate being inaccurate.
Inaccuracy also occurs when management does not refer to the estimate when conducting performance
reviews of estimators and other project personnel (Lederer and Prasad 1995).

In order for an estimate to be accepted and adhered to, it must consider and include all members of
the development team and in particular the project manager (Agarwal et al. 2001). It also must be
communicated clearly to the project team before the development begins. Research has shown that if
the estimator is somebody who will be involved in the development, the estimation accuracy is likely

Cost Estimation in Agile Software Development Projects 5

to be higher than if an estimate is produced by a senior executive or a staff member from a different
department (Jurison 1999).

Within the agile paradigm, each developer takes responsibility and ownership for the stories that he
estimates and so management involvement is less of an issue in agile ISD as it is in traditional
development (Schalliol 2001). Management involvement in agile projects tends to be less “hands-on”
than on traditional projects and their involvement is at a higher level, enabling them to oversee the
estimation process from one iteration to the next (Abrahamsson 2003). Evaluation of team members
based on their ability to meet the estimates is less appropriate for agile projects because it is the
developers themselves who estimate their own tasks (Schalliol 2001).

3. Research Approach

The notion of cost estimation in agile ISD projects combines an important and much researched project
management issue with the relatively new topic of agile development, where comparatively little
empirical research exists. In order to gain a deeper understanding of the core issues, we therefore chose
to follow an investigative approach based on semi-structured qualitative interviews. For feasibility
reasons, the four companies that participated in our study were drawn from a convenience sample, but
they were purposefully selected so as to obtain breadth and diversity e.g. indigenous small-to-medium
businesses versus larger multinational organisations, well-established companies versus recent start-
ups. A comparative profile of the companies is shown in Table 1.

Company
name

Year
founded

No. of
employees

No. of
concurrent
projects

Typical
project
length

Team
size

Development
methodology

Estimation
techniques

Travtech 1999 70 15-20 2-3 years 2-5 Tailored
version of XP

Expert
judgement;
Regression

BrightSoft 1995 12-15 4-5 4-6
months

12-15 MSF for Agile
Software
Development
(MSF4ASD)

Analogy

MobilApp 2002 13 1-5 1-2
months

1-10 Variant of XP Expert
judgement

HPG 1971 500 2-3 4-8
months

6-7 Tailored
version of XP

Expert
judgement

Table 1: Case Study Company Profiles

At each company, interviews were held with project managers / team leaders. A list of interview
questions and topics for discussion was emailed to each interviewee in advance. All interviews took
place on site within the companies’ premises and lasted between one and two hours. Conversations
were audio-recorded by agreement of interviewees, and observational notes were also made during and
immediately after the interviews. The interviews followed the general course of the pre-planned
questionnaire schedule but, where appropriate, elaboration was sought on points that were of high
relevance to the research. Upon conclusion of each interview, provision was made for follow-up
meetings, phone calls or emails on points that required clarification or further investigation.
Immediately after the interviews the recordings were fully transcribed. All interviewees were
subsequently contacted via email requesting clarification or elaboration on points made during the
interview. The analytical procedures employed followed the general principles espoused by Miles and
Huberman (1994), and concentrated on the transcribed interview conversations, notes made during the
interviews, email correspondence from before and after the interviews, and any available secondary
information about each company’s activities.

6 Michael Lang, Kieran Conboy & Siobhán Keaveney

4. Findings

The experience of the companies in our study was that reasonably accurate estimates for agile projects
are easier to produce because of the frequency with which estimates are required. Typical agile
iterations spanned two weeks, with estimates being produced at the beginning of each iteration. This
not only helped to keep a high degree of accuracy but also honed the estimation skills of the team
members and developers involved. Notably, estimation inaccuracy was not a substantial problem for
any of the companies and where it was, they typically saw it as an opportunity to learn and inform their
future estimation activities.

Fixed price projects where a budget is agreed at the beginning seemed to be the most common
project type. In some cases the schedule was movable and in others it was the functionality that could
be revised. Typically when the cost is determined, a number of developers can be assigned and the
delivery date calculated from this. On the other hand, if the schedule is set by the customer then the
cost can be calculated from the number of people available to work on the project. Either way this
enables the project to be run in a manner that delivers increasingly more features as time progresses
until the scheduled delivery date has been reached.

Methodology Issues

The main estimation techniques used across the four projects were analogy and expert knowledge with
varying degrees of formality and structure between the companies. In some cases project data was
stored and in others it was simply assigned to the developers own memories. Estimation models,
despite their popularity in the literature were not used by the companies and for the most part were not
even recognised. “User stories” were very commonly used as the unit of work for which developers
were asked to return estimates, and all four companies followed the “planning game” practice.

Procedural flaws and shortcomings

As regards causes of inaccurate estimates related to flaws within the execution of estimation processes,
Travtech’s experience is that the requirement for appropriate expertise, and in particular domain and
technical expertise, as part of their estimation process is something that has given rise to estimation
errors. For example, it has occasionally happened that somebody might be asked to produce estimates
in an area that they are not particularly familiar with, or with a technology or development language
with which they have limited experience. Travtech’s approach in situations where they find themselves
in unfamiliar territory as regards application domain or development platform is to build a risk factor
into the estimate to compensate for the amount of time and effort that will be required to come up to
speed with the intricacies of new technologies. Interestingly, Travtech also commented that eXtreme
Programming, if indeed taken to extreme limits and “applied rigorously with little up front
documentation” could lead to costly situations further on where “there is a lot of refactoring which has
to be done and this can create real inefficiencies when having to rewrite software”.

The estimation method that HPG use on their projects is quite an informal process and they feel that
this lack of formality may contribute somewhat to the discrepancies in their estimates (of the order of
10%), although another possible reason for the variance is not necessarily that the original estimates
were wrong, but rather that subsequent change requests were not properly tracked and the initial
estimate would therefore appear to be out of line. The fact that they are using agile development
practices has also led them to focus less on formality overall. With regard to the development process
changes that HPG have experienced, there have been significant repercussions from the adoption of
agile processes. The team members have had to adapt to the new practices and learn new skills such as
pair programming and test-driven development. This has impacted cost estimates, particularly in the
early stages of the project, because they now have to take other factors into account such as refactoring
and acceptance testing.

Cost Estimation in Agile Software Development Projects 7

Use of guidelines to counteract under-estimation

Consistent with the findings of Cao (2008), we discovered that although cost estimates are reasonably
accurate, developers continue to have a tendency to underestimate. Both HPG and BrightSoft spoke of
how they compensate for this by means of the concept of the “perfect engineering day”. Interestingly,
although agile methods have a strong focus on productivity issues such as “maximizing the amount of
work not done” and “maintaining a constant pace indefinitely”, HPG and BrightSoft both have a policy
of treating a developer’s estimate of “8 hours” of work as the equivalent of two working days. As the
HPG project manager explained, “team members tend to think that they have spent a full day at a task
but in reality will have only spent 3 or 4 hours because of interruptions”. BrightSoft combine this
“perfect engineering day” rule-of-thumb with their “relative size table”, which is a reference guide to
the effort taken to complete similar work assignments in the past. This enables them to produce very
accurate estimates. For example, if a developer estimates that a task will take one day (i.e. 4 hours), but
the relative size table suggests that it will take 2 days (i.e. 8 hours), the average of the two is usually
taken as the estimate.

Political Factors

Neither HPG nor MobilApp raised any cost estimation issues related to political factors. BrightSoft
explained that they are a small closely-knit crew with a strong collegiate culture and as a result have
never experienced any internal political divisions. For example, there is never any suggestion of
apportioning blame on individuals for estimates going astray, and though estimates are audited during
post-implementation reviews, that is emphatically not for the purposes of evaluating the personnel
involved in either the estimation process itself or the development effort.

As regards “playing it safe” with customers, if BrightSoft find themselves placed under pressure to
come up with a fixed deadline, they generally react by building two weeks of slack into the estimate as
a risk buffer. It may turn out that only a certain number of features are required and the project can be
delivered before the risk buffer has been expended, so they recognise that “it is important politically to
get the balance right because over-estimating can cause problems as well”.

Pressure to reduce estimates

Of the four companies interviewed, only Travtech appear to be experiencing estimation problems
arising out of the types of political factors identified by Lederer and Prasad (1995). Pressures from
Travtech managers and customers can cause unrealistic estimates to be produced in order to keep a
customer on track or prevent a manager from pulling the project altogether. There could also be a
combination of both the management and the customers adding to the pressure for lower estimates.

It can be very difficult if the team leader calculates an estimate that represents the capabilities of
their team and they know that the customer will not be willing to accept the length of time or the cost
required for completing the project. This problem arises more frequently with customers that are not
IT-savvy because they are not as appreciative of the effort required to implement certain requirements.
This can sometimes lead to under-estimation by team members as they may be conscious in the back of
their minds that the customer wants better value.

As regards pressures from managers giving rise to poor estimates, this can occur when there are
certain tasks included as part of the estimate and a team member ends up cutting corners to produce a
lower estimate than what can be realistically expected. For example, if the testing phase is left entirely
until the end of the project, it is often the part that will be omitted in the formal estimates in an effort to
bring the estimate down. This will render the estimates inaccurate because effort will always need to be
expended on testing regardless.

“Red Tape” issues

Travtech have also occasionally ran into “red tape” political problems, such as where trade unions
within the customer organisation can dictate work practices and distribution of tasks, or where the

8 Michael Lang, Kieran Conboy & Siobhán Keaveney

customer organisation has its own zealously protective internal IT department acting as a gatekeeper.
In such scenarios, the political “tug of wars” spoken of by Jørgensen and Moløkken (2003) can arise as
stakeholders attempt to wrest control of certain aspects of the project. This presents a serious risk to the
integrity of time and cost estimates.

User Communication

Instances of all four of the main types of user communication problems identified by Lederer and
Prasad (1995) were evident in our study. As mentioned in the previous section, users’ lack of IT
knowledge was not just a communication problem, but it also gave rise in some cases to political
pressures being heaped on developers by technologically-naïve customers. The other three issues are
described in the following sub-sections.

Poor or imprecise problem definition

The Travtech project manager felt that poorly documented requirements and insufficient management
of the relationship with and involvement of the customer can leave too much room for
misinterpretation, resulting directly in inaccurate estimates. Expectations may be based on an
impression that the customer got from a meeting and their methodology might fail to ensure that
clarification was sought. Similarly at HPG, estimation problems have arisen as a result of poor problem
definition from the customers, or where the customer comes to the team with a change request and the
scope of a particular story needs to be revised.

Agile methods aspire to address poor problem definition by placing developers and an “on-site
customer” into direct daily communication. However, of the four companies that we visited, only one
(HPG) had an on-site customer. As explained by the project manager, “our customer wasn’t really on-
site up until a few weeks ago when there were a few issues that were coming up in the retrospective
regarding communication problems between the development team and the customer, so we decided to
set up a machine for the customer in our lab area and now she’s on-site probably 80% of her time,
which has helped”. Both Travtech and BrightSoft mainly supply to the export market so it is not
feasible for them to maintain a customer on-site. In order to stay close to their customer, which they
feel is important from the point of view of gaining good feedback and getting to know how to handle
key individuals, BrightSoft have set up an international office in California close to their main
customer base.

Users’ lack of understanding of their own requirements

Travtech have experienced inaccurate estimates in situations where the customer knows their own
business so well but cannot articulate it in a form that the development team can understand.
Customers can often find it difficult to explain or even remember some of the intricate details that can
be required in order to produce a concrete set of requirements. They typically know what they want the
system to do but they may not be capable of getting this information across to the developers at the
early stages of the project and it will often take a prototype version before they can provide a decent
specification of the requirements. Of course, there is nothing new about this type of situation (Brooks
1987; Walz et al. 1993; Boehm 2000), but what it clearly demonstrates, lest we forget, is that the
benefits provided by the agile development paradigm are negated unless we continue to use good old-
fashioned user interface design principles and techniques.

Frequent requests for changes by users

Travtech’s approach to handling change requests depends on whatever agreement is in place with the
customer. In a fixed price contract the scope will have been signed off and anything after that will
probably be charged separately in addition, except if the change is very small. If the requested change
is substantial, the additional cost will be negotiated with the customer. Revision of the estimate

Cost Estimation in Agile Software Development Projects 9

therefore is ad-hoc and depends on a number of factors. The stage of the project at which the change is
requested is a major factor in deciding whether or not to refine the estimate, as is the effort required
and the relationship and contract agreed with the customer.

When asked if BrightSoft adhere to the agile principle of “welcome changing requirements”, the
project manager assuredly responded “Yes, fact of life for software engineering!”, but their experience
however is that constant feedback and streams of minor change requests can be overwhelming to the
point where initial estimates get completely thrown out and the profitability of a project can be
seriously threatened. In one such case, they have conceded that a project has effectively become a “loss
leader”.

MobilApp’s approach is that if the customer submits a “must-have” requirement midway through
the project, they will typically do their utmost to include it without affecting the schedule. Changes
such as these are not caused by problems in the estimation process, but rather because of problems in
the requirements specification and poor definition of needs on the part of the customer. The schedule
will typically have to be extended and the customer will be informed that this is due to their late change
request. If there is an instance whereby the deadline cannot be extended then the functionality will have
to be revised and the time will be made up by omitting some other feature from the original set of
requirements. This will all happen with agreement from the customer because it was their lack of
understanding of their own requirements that drove the change.

This is one of the advantages that MobilApp find with agile methods, i.e. that the customer can see
the mid-results and at any stage have an input and reassess their requirements. If the customer does
want to change the requirements they can go back to the team who would then thrash out new
requirements for that particular area and give an estimate for it. MobilApp find that once they have a
project plan in place and have signed off with the customer on requirements, then these can be changed
once the customer is made aware that the schedule for release will be pushed out as a result of the late
change in requirements. In this way, costs can be controlled effectively.

Management Control

In addition to expert judgement, Travtech also use regression-based estimates where they look at
previous data to compare the actuals with forecasted values and then conduct a variance analysis. This
approach is especially useful on projects that have a number of iterations because data from earlier
iterations can inform estimates for subsequent phases. Travtech have managed to improve their
estimation capabilities not just by comparing whole projects to one another, but also by comparing
different phases within the same project. With agile iterations, it is possible to quickly identify through
post-iteration reviews if the initial estimates have slipped, and subsequent estimates can then be revised
accordingly to absorb any over-runs. However, few customers are prepared to agree to an open-ended
budget and most want to sign fixed price contracts up front. In those circumstances, the development
company takes all the risk but Travtech find that the combination of experiences gained from previous
projects, coupled with the greater control that comes from using atomic use cases or user stories as the
basis of estimates, places them in a position where they can confidently price contracts.

Inaccurate estimates caused by IS management approval and control do not affect MobilApp to any
significant extent. Generally if a team member comes up with an estimate this will be accepted by the
management because they feel that everybody in the company has the experience and skills necessary
to estimate fairly accurately without having it checked or validated by management. However, if a
post-implementation audit reveals that the estimates for a project were 15% or more out of line with
actuals, management regard it as very important to use this information to try to rectify the
inaccuracies. Whether it is early or late, they always try to find out where the issues were, what
problems arose, why they got ahead or fell behind so much, and what are appropriate reference points
for future project estimation.

Similarly, BrightSoft use estimates to audit projects afterwards to determine how successful the
estimation techniques were. They conduct a post mortem analysis on all of the estimates for each
project and this helps them to review the accuracy of the projects that have just been finished, and it
also enables them to create a new set of figures for future estimation.

At HPG, the estimates that are produced for projects are continuously evolving and they are
monitored closely at all times. When new pieces of work emerge in later iterations the original estimate
is re-examined and this helps to keep the team members focused on the bottom line. In the past when

10 Michael Lang, Kieran Conboy & Siobhán Keaveney

projects were developed using traditional development methods, they often found that by the end of the
project the original estimates were redundant because of the changes that had occurred during the
project. On projects that are using agile approaches, the estimate is continuously checked and although
inaccuracies still occur the project team are aware of this as it is happening and can react accordingly.

Other Factors

Regarding the personnel who are involved in the projects, Travtech would be conscious of the skills
and experience of those assigned to various tasks as this is likely to have an impact on their estimates.
The estimate could change if customers were not willing to pay for more experienced people at a
higher rate, in which case there would be a need to use people with less experience. In the preparation
of the estimate, it is therefore important to have a good sense of who is actually going to be doing the
work, or at least the skill level or expertise that they will have.

Similarly, BrightSoft see new people and new technologies as a principal threat to their ability to
produce accurate estimates. When people are learning on the job or learning a new technology, it is
very difficult to know what to expect in terms of the time and effort required for them to become
familiar and comfortable with the technology. A major factor that has contributed to the accuracy of
BrightSoft’s estimates is the maturity of the programmer, not only in terms of their skills and
experience but also their own estimation capabilities. The accuracy of the entire estimate can depend
on how well each individual estimates the work that they have to do themselves. If the person does not
know their own capabilities or if they have not used the particular type of development process before,
they are very likely to come up with an unrealistic estimate.

5. Summary and Conclusion

In their study of inaccurate estimates in traditional ISD projects, Lederer and Prasad (1995) identified
16 items, grouped under 4 factors, that were problematic. These items and the corresponding solutions
advanced by the agile paradigm, as evidenced in our study, are presented in Table 2.

Traditional ISD cost estimation problem Response of companies in this study
Lack of an adequate methodology or guidelines for estimating Short iterations, expert judgement
Inability to tell where past estimates failed Post-iteration audits/retrospectives
Lack of setting and review of standard durations for use in estimating Normal iteration = 2 weeks
Insufficient analysis when developing estimates Planning game
Lack of co-ordination of systems development activities Lean, lightweight processes, small teams
Pressures from managers, users or others to change estimate Reduce scope, swap in cheaper labour
Removal of padding from the estimate by management No evidence
Reduction of project scope/quality to stay within estimate, leading to
extra work later

No evidence

Red tape Intractable, requires patience and diplomacy
Users’ lack of understanding of their own requirements Rapid prototyping, on-site customer
Frequent requests for changes by users Change request process, renegotiate estimates
Users’ lack of IT knowledge Closer working relationship with customer
Poor or imprecise problem definition Rapid prototyping, on-site customer
Performance reviews don’t consider whether estimates were met Post-iteration audits/retrospectives, Stand-ups
Lack of project control comparing estimates and actuals Post-iteration audits/retrospectives, Stand-ups
Lack of careful examination of estimate by ISD management Know your staff’s capabilities, need to tweak

unrealistic estimates, build in risk buffer
Table 2: Summary of findings: “agile” responses to traditional ISD cost estimation problems

While agile methods have come some way to mitigating these cost estimation problems, there is little
evidence to suggest that the agile paradigm is any less prone to falling victim of shoddy analysis,

Cost Estimation in Agile Software Development Projects 11

stakeholder politics, or disengaged end users than traditional ISD cost estimation approaches. Although
Travtech were the only company to have experienced political pressures from customers or managers
to reduce estimates, that is not of course to say that similar issues could not foreseeably arise in the
other companies. Management control factors were not found to be a major cause of inaccuracies,
although the need to keep a watchful eye on over-optimistic estimates by new staff, or staff moving
into unfamiliar territory, was noted. All of the companies experienced user communication difficulties
at some stage or another and this is potentially a very serious threat to accurate estimates.

Travtech find that when inaccuracies do occur, it is typically due to some lack of understanding
between the customers and developers regarding the requirements. It can also be due to a lack of
technical expertise in a particular area which would prevent the accurate estimation of certain tasks.
BrightSoft seem to be the most confident in their estimation abilities. Typically the estimates produced
are relatively on target and if not, the discrepancy is usually negligible. They have found the major
potential threats to accurate estimates to have been the introduction of new people, new technologies
and too much feedback from their customers. MobilApp find that change requests from customers and
lack of estimation expertise can cause problems on some projects, particularly if a new development
language is being used. HPG have found that their estimates are typically accurate to within 10% of the
actual figures, however they feel that their inaccuracies may be due to their lack of formality in the
estimation process.

To conclude, research on project cost estimation has been conducted for decades with a vast number
of models and tools in existence. This study has looked at the estimation process in the emerging field
of agile development and examined causes of inaccurate estimates and steps to improve the process.
From the four case studies, a number of recommendations can be summarised as follows: estimation
models are not a necessary component of the process; fixed price budgets may be the best option for
both developers and customers; and a critical success factor for agile cost estimation is that experience
and past project data must be documented and used to guide the estimation of subsequent projects.

References

Abrahamsson, P. 2003. Extreme Programming: First Results from a Controlled Case Study. In Proceedings of the 29th
Euromicro Conference.

Abrahamsson, P., K. Conboy, and X. Wang. 2009. "Lots Done, More To Do": The Current State of Agile Systems Development
Research. European Journal of Information Systems 18 (4):1-7.

Agarwal, R., M. Kumar, Yogesh, S. Mallick, R.M. Bharadwaj, and D. Anantwar. 2001. Estimating Software Projects. ACM
SIGSOFT Software Engineering Notes 26 (4):60-67.

Alford, M.W., and J.T. Lawson. 1979. Software Requirements Engineering Methodology (Development), RADC-TR-79-168,
U.S. Air Force Rome Air Development Center, June 1979.

Baskerville, R., J. Travis, and D. Truex. 1992. Systems without Method: The Impact of New Technologies on Information
Systems Development Projects. In The Impact of Computer Supported Technologies on Information Systems
Development, eds. K. E. Kendall, K. Lyytinen, and J. DeGross, 241-269. Elsevier Science Publishers.

Boehm, B. 2000. Requirements that Handle IKIWISI, COTS, and Rapid Change. IEEE Computer 33 (7):99-102.
Boehm, B.W. 1981. Software Engineering Economics. Englewood Cliffs, NJ: Prentice Hall.
Boehm, B.W., C. Abts, and S. Chulani. 2000. Software Development Cost Estimation Approaches: A Survey. Annals of Software

Engineering 10 (1-4):177-205.
Brooks, F.P. 1987. No Silver Bullet / Essence and Accidents of Software Engineering. IEEE Computer 20 (4):10-18.
Caminer, D.T. 1958. And how to avoid them. The Computer Journal 1 (1):11-14.
Cao, L. 2008. Estimating Agile Software Project Effort: An Empirical Study. In Proceedings of Americas Conference on

Information Systems (AMCIS).
Ceschi, M., A. Sillitti, G. Succi, and S. De Panfilis. 2005. Project Management in Plan-Based and Agile Companies. IEEE

Software 22 (3):21-27.
Chapman, C., and S. Ward. 2002. Managing Project Risk and Uncertainty: A Constructively Simple Approach to Decision

Making. Chichester, UK: John Wiley & Sons.
Conboy, K. 2009. Agility from First Principles: Reconstructing the Concept of Agility in Information Systems Development.

Information Systems Research 20 (3):329-354.
Conboy, K. 2010. Project Failure En Mass: A Study of Loose Budgetary Control in ISD Projects. European Journal of

Information Systems 19 (3):273-287.

12 Michael Lang, Kieran Conboy & Siobhán Keaveney

Dybå, T., and T. Dingsøyr. 2008. Empirical Studies of Agile Software Development: A Systematic Review. Information and
Software Technology 50 (9-10):833-859.

Elssamadisy, A., and G. Schalliol. 2002. Recognizing and Responding to "Bad Smells" in Extreme Programming. In
Proceedings of the 24th International Conference on Software Engineering. Orlando, Florida.

Ewusi-Mensah, K., and Z.H. Przasnyski. 1995. Learning from abandoned information systems development projects. Journal of
Information Technology 10 (1):3-14.

Fitzgerald, B. 2000. Systems Development Methodologies: The Problem of Tenses. Information Technology & People 13
(3):174-185.

Grudin, J. 1991. Interactive Systems: Bridging the Gaps Between Developers and Users. IEEE Computer 24 (4):59-69.
Highsmith, J. 2001. History: The Agile Manifesto, http://agilemanifesto.org/history.html.
Highsmith, J. 2003. Agile Project Management: Principles and Tools: Cutter Consortium.
Highsmith, J., and A. Cockburn. 2001. Agile Software Development: The Business of Innovation. IEEE Computer 34 (9):120-

127.
Jones, C. 2003. Why Flawed Software Projects Are Not Cancelled in Time. Cutter IT Journal 16 (12):12-17.
Jones, J.C. 1988. Softechnica. In Design after modernism: Beyond the object, ed. John Thackara, 216-226. London: Thames &

Hudson.
Jørgensen, M. 2003. How Much Does a Vacation Cost? Or What is a Software Cost Estimate? ACM SIGSOFT Software

Engineering Notes 28 (6):1-4.
Jørgensen, M., and K. Moløkken. 2003. A Preliminary Checklist for Software Cost Management. In Proceedings of the 3rd

International Conference on Quality Software.
Jørgensen, M., and M. Shepperd. 2007. A systematic review of software development cost estimation studies. IEEE Transactions

on Software Engineering 33 (1):33-53.
Jurison, J. 1999. Software Project Management: The Manager's View. Communications of the AIS 2 (3):1-50.
Keil, M., and E. Carmel. 1995. Customer-Developer Links in Software Development. Communications of the ACM 38 (5):33-44.
Lang, M. 2009. The Influence of Short Project Timeframes on Web Development Practices: A Field Study. In Proceedings of

18th International Conference on Information Systems Development. Nanchang, China.
Lang, M., and B. Fitzgerald. 2007. An Empirically-Grounded Conceptual Framework of Situated Web Design Practices.

Requirements Engineering Journal 12 (4):203-220.
Lederer, A.L., and J. Prasad. 1995. Perceptual congruence and systems development cost estimation. Information Resources

Management Journal 8 (4):16-27.
Lovaasen, G. 2001. Brokering with eXtreme Programming. In XP Universe 2001. Raleigh, North Carolina.
McCracken, D.D., and M.A. Jackson. 1982. Lifecycle Concept Considered Harmful. Software Engineering Notes 7 (2):29-32.
Miles, M.B., and A.M. Huberman. 1994. Qualitative Data Analysis: An Expanded Sourcebook. 2nd ed. Thousand Oaks, CA:

Sage.
Moløkken, K., and M. Jørgensen. 2003. A Review of Software Surveys on Software Effort Estimation. In Proceedings of the

2003 International Symposium on Empirical Software Engineering.
Naur, P., and B. Randell. 1969. Software Engineering: Report on a Conference Sponsored by the NATO Science Committee,

Garmisch, Germany, 7-11 October 1968. Brussels: Scientific Affairs Division, NATO.
Neill, C.J. 2003. The Extreme Programming Bandwagon: Revolution or Just Revolting? IT Professional 5 (5):62-64.
Orr, K. 2004. Agile Requirements: Opportunity or Oxymoron? IEEE Software 21 (3):71-73.
Paulk, M.C. 2002. Agile Methodologies and Process Discipline. CrossTalk, The Journal of Defense Software Engineering

(October):15-18.
Ramesh, B., L. Cao, and R. Baskerville. 2007. Agile requirements engineering practices and challenges: an empirical study.

Information Systems Journal 20 (5):449-480.
Robey, D., and M.L. Markus. 1984. Rituals in Information System Design. MIS Quarterly 8 (1):5-15.
Russo, N.L., and E. Stolterman. 2000. Exploring the assumptions underlying information systems methodologies. Information

Technology & People 13 (4):313-327.
Schalliol, G. 2001. Challenges for Analysts on a Large XP Project. In XP Universe 2001. Raleigh, North Carolina.
Stamelos, I., and L. Angelis. 2001. Managing Uncertainty in Project Portfolio Cost Estimation. Information and Software

Technology 43 (13):759-768.
Taber, C., and M. Fowler. 2000. An Iteration in the Life of an XP Project. Cutter IT Journal 13 (11):13-21.
Tan, C., and H. Teo. 2007. Training Future Software Developers to Acquire Agile Development Skills. Communications of the

ACM 50 (12):97-98.
The Standish Group. 1995. The CHAOS Report.
Walz, D.B., J.J. Elam, and B. Curtis. 1993. Inside a Software Design Team: Knowledge Acquisition, Sharing, and Integration.

Communications of the ACM 36 (10):63-77.
Winklhofer, H. 2002. Information Systems Project Management during Organizational Change. Engineering Management

Journal 14 (2):33-38.

