

Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the

published version when available.

Downloaded 2024-03-13T08:39:10Z

Some rights reserved. For more information, please see the item record link above.

Title An Analysis of Model-Driven Web Engineering Methodologies

Author(s) Lang, Michael

Publication
Date 2012

Publication
Information

Escalona, M. J., Aragon, G., Lang, M. & Hilera, J. R. (2012)
'An Analysis of Model-Driven Web Engineering
Methodologies'. International Journal of Innovative
Computing, Information and Control, 8 (12):1-10.

Link to
publisher's

version
http://www.ijicic.org/ijicic-11-11012.pdf

Item record http://hdl.handle.net/10379/3414

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/

International Journal of Innovative

Computing, Information and Control ICIC International ⓒ2012 ISSN 1349-4198

Volume 8, Number 12, December 2012 pp. 1–-10

An Analysis of Model-Driven Web Engineering Methodologies

G. Aragón
1
, M.J. Escalona

1
, M. Lang

2
, J.R. Hilera

3

1
IWT2 Group. University of Sevilla. Spain

gustavo.aragon@iwt2.org; mjescalona@us.es

2
NUI Galway. Galway, Ireland

michael.lang@nuigalway.ie

3
University of Alcalá. Spain

jose.hilera@uah.es

Received November 2011; revised January 2012; accepted March 2012

ABSTRACT. In the late 1990’s there was substantial activity within the “Web engineering”

research community and a multitude of new Web approaches were proposed. However,

numerous studies have revealed major gaps in these approaches, including coverage and

interoperability. In order to address these gaps, the Model-Driven Engineering (MDE)

paradigm offers a new approach which has been demonstrated to achieve good results

within applied research environments. This paper presents an analysis of a selection of

Web development methodologies that are using the MDE paradigm in their development

process and assesses whether MDE can provide an effective solution to address the

aforementioned problems. This paper presents a critical review of previous studies of

classical Web methodologies and makes a case for the potential of the MDWE paradigm

as a means of addressing long-standing problems of Web development, for both research

and enterprise. A selection of the main MDWE development approaches are analyzed and

compared in accordance with criteria derived from the literature. The paper concludes

that this new trend opens an interesting new way to develop Web systems within practical

projects and argues that some classical gaps can be improved with MDWE.

Keywords: Model-Driven Web Engineering, Web Engineering, Web Methodologies.

1. Introduction. In the early 1990’s the research community started to work in a

new area of software engineering oriented towards the special characteristics of

the Web environment. Several approaches, such as HDM (Hypermedia Design

Model) [1] and OOHDM (Object-Oriented Hypermedia Design Method) [2],

offered new techniques, models and notations which initially dealt with

“hypermedia” systems in general and later focused on Web-based systems in

particular. The evolution of this line of research, Web engineering [3], is

analyzed in several comparative studies and surveys [4-7]. Despite some

doubts being expressed about the necessity for specialized Web development

methods as opposed to “traditional” or “conventional” methods [8], Web

engineering has since become an established branch of software engineering.

However, these aforementioned studies and surveys also indicate a number of

major gaps in the Web engineering body of knowledge, as later summarized in

section 2.2. The motivation for this paper is therefore to analyze how the

emerging paradigm of Model-Driven Web Engineering (MDWE) is being applied

in order to address some of these gaps. The objectives of this paper are:

1. To review the literature on the emerging MDWE paradigm and discuss how

it may potentially address long-standing problems in Web engineering.

2. To explore how the MDWE paradigm is being applied in existing and

emerging Web development approaches.

Our research approach was guided in the first instance by the general principles

laid down in Brereton et. al [9] and Kitchenham et. al [10-11] for conducting

systematic literature reviews, and the discursive aspect of our work was further

informed by surveying the opinions of a number of international experts in the area

of MDWE.

Thus, our paper offers a vision completely focused on MDWE and its application,

which, as it is presented in this paper, is truly significant and novel contribution.

This study is structured as follows. We start in section 2 by presenting an overview

of a selection of the best-known Web development methods and discussing how

Model-Driven Engineering (MDE) can potentially serve both, to rationalize and

integrate these methods and also to solve several important gaps detected in Web

engineering. In Section 3, we look specifically at a number of new and emerging

Web development methodologies that are based on the MDWE paradigm. Section

4 then presents an analysis of these new MDWE methodologies, broken down into

five different aspects: metamodel complexity, concepts, transformations, standards

and compatibility, and tools and industry experiences.

The paper then finishes with a brief overview of other related work in section 5, and

concludes by stating our views on current issues and problems in the field of MDWE,

as well as outlining possible directions for future work.

2. Background to the Current State-of-Practice.

2.1 Web Engineering: An Overview of Development Methods. Over the past

decade, several methods, approaches and techniques have been proposed in the

academic and professional literature in order to deal with special aspects of Web

development. Navigation, complex interfaces, difficult maintenance, security

aspects and unknown remote users are amongst the critical challenges relevant to

Web-based system development [12]. In an appendix to their study of the use of

Web development methods in practice, Lang & Fitzgerald [13] present a

comprehensive list of over fifty methods and approaches for Web/hypermedia

systems development. A description and comparative analysis of the better known

of these Web development approaches can be obtained in [6], from which is

derived the chronological “map of the territory” shown in Figure 1. Although some of

these approaches, such as HDM (Hypermedia Design Method), are no longer in

use, they nevertheless continue to be relevant to the Web development community

because of the underlying concepts and principles upon which they are based. A

number of the early approaches such as HDM [1] and RMM (Relationship

Management Methodology) [14], were based on Entity Relationship Modeling, but

all of the subsequent methodologies included in Figure 1 are object-oriented.

An important departure was the influential publication of OOHDM (Object-Oriented

Hypermedia Design Method) [15]. This methodology is based on both HDM and the

object-oriented paradigm and offers a systematic approach for the design and

implementation of hypermedia systems. The valuable contribution of OOHDM to the

field of Web engineering research is generally acknowledged and many of its ideas

have since become widely accepted. OOHDM proposed dividing hypermedia

design into several models, each of which represented a critical aspect of

hypermedia systems: a conceptual model, a navigational model and an abstract

interface model. This notion of separating the different aspects of hypermedia

systems was novel at the time, but it is now followed by the Web engineering

research community, enabling the complexity of a system to be broken down into

separate layers. In OOHDM, a change in the navigational model affects only the

navigational model, and the conceptual model needs no changes. Another

important idea of OOHDM was to use class diagrams to model not only the

conceptual model but also the navigational model via an extension of the basic

class diagram. Additional aspects which could not be easily or fully explained using

class diagrams, such as navigational context or abstract interface diagrams, could

be modeled using a supplementary notation proposed by OOHDM.

Following OOHDM, more approaches were put forward, each of which offered new

ideas, models, processes and techniques suited to the specific needs of interactive

hypermedia systems and for the Web environment. Gradually, hypermedia systems

evolved into fully-fledged Web-based information systems and these approaches

were also modified to meet this new challenge; for example, HDM (Hypermedia

Design Method) developed into HDM2, which later mutated into HDM2000 / W2000

and eventually led towards WebML.

It is clearly evident, even from just a cursory glance at Figure 1, that there are a

substantial number of different methods in existence. This leads to the obvious

questions: Why are there so many approaches? Is there no standard? Each

approach focuses on some specific aspects and proposes suitable models,

techniques and vocabularies. For instance, WSDM (Web Site Design Method) [16]

is mainly focused on the design of Web sites from a user-centered perspective. It

proposes a specific way to deal with different audience classes and roles and, in

this aspect, is one of the most interesting approaches. However, for its navigational

and conceptual models, its approaches are quite similar to OOHDM and EORM

(Enhanced Object-Oriented Relationship Methodology) [17], although it uses a

different vocabulary and modeling notation.

FIGURE 1. The evolution and coverage of the best-known Web development

methodologies

The overwhelming number of approaches and vocabularies is one of the most

criticized aspects of the Web methodology community. Approaches are often

defined without connection and are not compatible with one another. Regrettably, a

survey of the literature on Web development methods would lead one to conclude

that the “not invented here” syndrome is rife, with numerous authors independently

devising their own modeling notations to represent very similar concepts in quite

different ways. This has led to a fragmentation rather than a coming together of the

cumulative body of knowledge, reminiscent of the early years of the object-oriented

paradigm. More recently, some approaches such as WebRE [18] have been

developed in order to try to solve this problem of incompatibility. WebRE is a

methodology which deals with Web requirements based on W2000 [19], NDT

(Navigational Development Technique) [20], UWE (UML Web Engineering) [21] and

OOHDM.

Another important observation that can be noticed from Figure 1 is the varied

coverage by methods of the development phases. In the Figure, each approach is

located in the phase where its main focus lies. Thus, although the UWA Project [22]

or WebML (Web Model Language) [23] give some consideration to requirements

definition and implementation, they mainly emphasize the analysis and design

phase. As can be seen, the majority of Web development methods are

concentrated within the analysis and design phase, with noticeably less focus on

the other phases of the life cycle.

One particular aspect of Web engineering that remains problematic is the lack of

integrated toolsets to support development methods and approaches, a

long-standing difficulty alluded to some years ago in [8]. Because of the frequent

changes in Web systems and the imperative to release fully functional upgrades

quickly and often, Web development methods must be highly agile. The use of

CASE tools that provide automated processes and enable rapid

development/re-factoring is therefore necessary. In recent years, approaches such

as UWE, which offers a tool named MagicUWE [24], and WebML, which is

supported by the WebRatio tool [25], have been greatly welcomed. Nevertheless,

for CASE tools to be interoperable and interchangeable between and across Web

development methods, it is essential that there must be a mechanism to facilitate

the transformation and consistent integration of semantic metamodels. In this

regard, MDWE offers much promise because it potentially enables Web developers

to mix-and-match method fragments taken from different approaches and combine

them into a tailored hybrid which is customized to the needs of a particular

development project. This paper offers a critical view about this possibility by

analyzing if approaches can be easily integrated or extended with new approaches.

2.2 Model-Driven Web Engineering (MDWE). Several comparative studies and

surveys of Web development methodologies have drawn attention to areas where

further research is needed to address a number of clearly identified gaps and

shortcomings. Within the Web engineering community, a number of research

groups are working towards suitable resolutions to these gaps, which as already

outlined in the previous section can be broadly classified within three areas:

• There are a wide variety of Web development methodologies, using a multiplicity

of different notations, models and techniques; this lack of homogeneity and

standardization is unnecessarily confusing and counter-productive because,

although the underlying concepts and principles of many of these methodologies

are quite similar, the fact that they use their own way of doing things hinders

interoperability.

• As can be seen in Figure 1, no single Web development approach provides

coverage for the whole life cycle, and this absence of a single “all-in-one” solution

means that Web developers must mix-and-match aspects from different

approaches, hence the need for methods that are compatible and interoperable.

• There still remains a lack of tool support for Web development methodologies,

and conversely a lot of development tools lack methodical analysis/design

components, so there is a bilateral disconnect between development tools and

development methodologies, especially between analysis/design and

implementation.

All of these issues can be addressed to some extent by adopting a model-driven

development paradigm such as MDWE. This paper presents a novel contribution

since it mainly focuses on analyzing approaches oriented to the model-driven

paradigm. In MDWE, concepts have the greatest importance, independent of their

representations. MDWE proposes the representation of concepts using

metamodels which are platform-independent. The development process is

supported by a set of transformations and relations among concepts that enables

agile development and assures consistency between models.

The model-driven paradigm is being used with excellent results in some areas of

software engineering and development. This suggests it could be also applied in

Web engineering. For instance, in software products lines, MDE is offering a

suitable way to assure traceability and products derivation [26, 27].

It is also offering promising results in the area of programming languages. Thus,

some important frameworks for Web system development based on MVC (Model

View Controller) provide an easy way to build Web software. Struts [28], Django [29],

and Ruby on Rails [30] are relevant examples. They are open source Web

applications frameworks which use the MVC architecture and combine simplicity

with the possibility of developing Web applications by writing so many codes as

possible and using a simple configuration. In fact, the base of these frameworks is

also in MDE.

MDE has also been recently used in the test phase too. TDD (Testing-Driven

Development) is a relatively new direction of research which is providing important

results. Both, the definition of metamodels to represent test aspects and the use of

transformations to derive test cases are also interesting research areas [31-33].

Additionally, every day is more prevalent in university teaching for its multiple

applications and utilities [34][35].

It can therefore be seen that the use of MDE in different areas of software

development has increased considerably in recent years, embracing programming,

architectures, software products lines, testing, SOA (Software Oriented

Architecture) development, aspect programming, etc. This paradigm is being

adopted in all these areas with relevant results, and has also been applied to Web

engineering.

MDWE (Model-driven Web Engineering) refers to the use of the model-driven

paradigm in Web development methodologies [36]. It helps to derive models in a

specific point of the development process by using the knowledge acquired in the

previous stages together with the models previously developed.

Such is the allure of MDWE that a number of the “classic” Web development

approaches shown in Figure 1 are now evolving to embrace this new paradigm, as

explained in section 3. In order to analyze this evolutionary process, it is necessary

to firstly clarify how MDWE can fill some of the aforementioned gaps in Web

engineering listed at the beginning of this section.

Metamodels provide a solution for the multiplicity of vocabularies and approaches.

A metamodel is an abstract representation of concepts. It does not focus on

terminology or the way of expressing concepts. It only focuses on the concept itself.

Thus, for instance, a storage requirement represents the necessity of the system to

store information about content. In UWE, it is represented with a UML class and

named Content. In NDT, it is called a Storage Information Requirement and it is

described with a special pattern. Nevertheless, the concept is the same. Hence, a

common metamodel can be defined and some transformations from the common

metamodel to the specific approach can then be declared.

By the definition of common or standard metamodels, Web development

methodologies can become compatible and the differences in vocabulary together

with the lack of connection among different approaches can be solved. A

development team can use the most powerful idea of each approach and, through

transformations, obtain advantages of other approaches.

As indicated in Figure 1, there is no single approach that covers the complete

development life cycle in depth and each approach has its own particular strengths.

Thus, a development team could be interested in applying the requirements

approach of NDT with the aim of capturing the business knowledge, the analysis

and design phases of UWE and the code generation of WebML. This can be

possible if a suitable set of metamodels and transformations is defined. An example

of this idea is illustrated in Figure 2. Starting with the requirements phase of NDT,

after some transformations, it could be moved into the common model (a concrete

instance of the metamodel in this project). After that, transformations could be

applied to get UWE analysis and design and the process could be repeated to use

the code generation of WebML. This hypothetical scenario could enable a

developer to benefit from the advantages separately provided by each approach,

and through the synergy achieved by combining different parts of different methods

the problem of lack of full lifecycle coverage can be addressed.

FIGURE 2. Use of common metamodels to make approaches compatible

Obviously, the quality of both the metamodel and transformations is fundamental in

obtaining suitable results. To define a common metamodel is a hard task, and it is

necessary to achieve a high degree of abstraction to define concepts and find

common concepts. As mentioned in [37], there are some important studies that deal

with the use of metamodels to fuse or make compatible different approaches.

If the use of tools is necessary in Web engineering, it is essential in MDWE. If

Figure 2 is again analyzed, it is noticed that these ideas cannot be applied without

tool support. Transformations must be carried out automatically and the

development team should not have to apply them manually. Although tools to define

metamodels and transformations are still in the early development stages, some

important advances are being carried out. Thus, SmartQVT [38] and Moment [39]

are two good examples. In particular, it is notable that these tools are

methodology-independent because they are based on standards such as UML

profiles [40] and QVT languages [41]. Therefore, if a metamodel of any Web

development approach is defined using standards, any of these new tools is

suitable.

The absence of practical applications is the only area that cannot be directly solved

with MDWE. Nevertheless, in the very few practical applications that have been

published, the results are promising [20].

However, as it can be deduced from this introduction, this paper offers an overall

review of the situation and analyzes how MDE can solve the classical problems

detected in Web development in the last years.

2.3 Model-Driven Architecture (MDA). MDA [42] is the standard Model-Driven

Architecture defined by the Object Management Group (OMG) in 2001. It is oriented

towards outlining a common architecture in the MDE environment. In MDA, four

levels are proposed:

• CIM (Computer-Independent Model): This level defines concepts that capture the

logic of the system. For instance, the business and the requirements models are

included in this level.

• PIM (Platform-Independent Model): This level groups concepts that define the

software system without any reference to the specific development platform. For

instance, analysis artifacts are included in this level.

• PSM (Platform-Specific Model): In this level, computer-executable models that

depend on the specific development platform are defined, such as models for

Java or .NET.

• Code: This is the highest level and includes the implementation of the system.

FIGURE 3. MDA structure for Web engineering (based on [43]).

In MDA, some transformations can be defined among these levels. Thus,

CIM-to-PIM, PIM-to-PSM or PSM-to-code transformations can be defined.

Furthermore, transformations on the same level, for instance PIM-to-PIM, can be

defined in MDA. In section 4 of this paper, MDA is used as a basic reference

framework to compare and study a number of MDWE approaches. Most of these

approaches define their metamodels and transformations based on the MDA

standard, although they each focus on different levels of the MDA standard.

3. Web Development Methods based on the MDE Paradigm. This section

presents a number of Web development methods that are based on the

model-driven paradigm, some of which are evolutions of classic approaches such

as OOHDM and HDM. The main features of each approach are outlined, as well as

a summary of advantages and disadvantages and references to where metamodels

and transformations can be obtained.

3.1 OOHDMDA. OOHDM has been one of the most important methodologies in

Web engineering. Originally proposed in 1995 [15], it presented important ideas

such as separating the design of a Web system into three models: conceptual

model, navigational model and abstract interface model. This idea was taken up by

several later approaches. In its first incarnation OOHDM only covered design and

implementation. However, it was later enriched with a specific technique, UID (User

Interface Diagrams) [44], to deal with requirements.

OOHDMDA [45, 46] is a MDE approach based on OOHDM. Starting as a PIM

model designed with OOHDM, a servlet-based PSM is generated. OOHDMDA

provides a Web application design with a UML-based design tool using the

conceptual and the navigational model of OOHDM. With this base, the approach

starts with the XMI file generated from the tool. Both models are enriched with

behavioral semantics that are obtained from behavioral model classes incorporated

in the approach. With this PIM XMI file, the approach defines some servlet-based

transformations in order to obtain a PSM-XMI file with specific servlet technology. In

this way, the approach offers some PIM-to-PSM transformations starting with

OOHDM and ending up with servlet technology.

Although the approach is based on MDE, there is no specific PIM metamodel for

OOHDMDA. Of course, MDE only implies that a development approach uses

models and transformations without necessarily requiring the existence of a

metamodel; transformations are not always from metamodel to metamodel, they

may also be from model to model. As an extension of OOHDM, OOHDMDA

naturally uses the OOHDM metamodel. OOHDM concepts are defined as

stereotypes in a UML-based design tool and its transformations are generated with

Java.

In the PSM level, OOHDMDA includes two specific metamodels [45]: servlet-based

PSM for dynamic navigation and another one for advanced navigation. However,

OOHDMDA mainly highlights the PSM level and although there is a departure from

standards in the definition of the PIM metamodel and transformation, the approach

taken is reasonable practical and illustrative examples can be found in [45, 45].

Moreover, the use of tools in the OOHDMDA development approach offers a

suitable environment for practical usage.

OOHDMDA is interesting because it shows how MDE can help to fuse separate

approaches. In fact, OOHDMDA is an extension of OOHDM, which adds new

concepts in the PSM level and uses the abstraction of metamodels for PSM

generation. It defines new concerns to those already established by OOHDM and

isolates the transformations of the implementation of the tool which supports the

methodology.

3.2 WebML. As defined by its authors [23], WebML is a notation to specify the

conceptual design of complex Web sites. Its development process starts with the

conceptual modeling of the system, using a data model. In this phase, WebML does

not define its own notation and instead proposes the use of standard modeling

techniques such as Entity-Relation diagrams or UML class diagrams.

The process continues with the definition of a hypertext model. In this model,

hypertexts that can be published on the Web are described. Each “hypertext”

defines a view of the Web site. Hypertexts are described by means of two models:

the composition model, which defines the pages and “content units” in the system,

and the navigation model, which describes the navigation through these pages. The

next step develops the presentation model, which defines the physical appearance

of the Web pages. Finally, the personalization model underlines how the system

has to be adapted to each user’s role.

One of the most interesting contributions of WebML is that it offers a CASE tool

named WebRatio [25] which enables the proposed techniques to be applied

systematically.

Although WebML generates code from PIM models, there is no formal model-driven

definition of the approach in the form of a metamodel or a set of formal

transformations. In fact, two alternative metamodels can be found for WebML in the

literature. The first, which is henceforth referenced as WebML1 [47], is a MOF for

the analysis and design WebML models. This metamodel is divided into four

packages: CommonElements, DataView, HypertextView and PresentationView,

one for each of the models that WebML considers. In each package, specific

metaclasses, meta-associations and constraints represent each artifact of the

methodology. Moreno et al. [47] use OCL (Object Constraint Language) in order to

express these constraints. Transformations are not proposed in this approach as it

mainly focuses on defining a metamodel for WebML

The other metamodel for WebML, here called WebML2, is the result of a study by

Schauerhuber et al. [48] that attempts to ease the application of MDE techniques

into Web modeling languages. They present a semi-automatic approach that allows

the generation of MOF-based metamodels from DTD (Document Type Definition).

These metamodels are also divided into packages that follow the initial definition of

analysis and design of WebML metamodels: Hypertext Organization, Access

Control, Hypertext, Content Management and Content. Some OCL constraints are

also incorporated in order to represent restrictions in metaclasses and associations.

In this approach some transformations are defined in order to obtain WebML

metaconcepts from DTD ideas. These transformations offer suitable reusability of

the solutions to cope with some disadvantages detected in the use of DTD.

Transformations are defined in an informal way with a corresponding matrix

included in a Metamodel Generator (MMG).

These two metamodels are quite similar despite the different ways in which they

group WebML concepts. Although it is not an aim of this paper, their comparative

study could prove very interesting. Some formal work has already been carried out

for the translation of WebML models into a formal MDA environment [31].

3.3 W2000. As mentioned in a previous section, the W2000 approach [49] evolved

out of HDM [1]. However, W2000 and HDM differ in two basic regards. Firstly, HDM

is essentially an extended E-R metamodel, not a methodological proposal, whereas

W2000 proposes a life cycle to develop Web systems. Secondly, W2000 is based

on the object-oriented paradigm. However, despite these differences, the

fundamental concepts of HDM have been inherited by W2000 and adapted to the

object-oriented paradigm.

The W2000 life cycle starts with a requirements analysis phase, mainly based on

use cases. By using the knowledge acquired from this requirements phase, the

process goes on to the hypermedia design phase where two models are developed:

the conceptual and the navigational model. To this end, W2000 modifies and

extends some UML models such as the class diagram and the state diagram. The

last phase is the functional design phase where the sequence diagram is used to

express the functionality of the system.

In a more recent work [19], W2000 is presented as a MOF metamodel. In this

metamodel, only concepts related to the analysis metamodel are presented. The

metamodel is structured into four packages which are related to each of the models

defined by W2000 in the analysis phase: Information, Navigation, Presentation and

Dynamic Behavior.

The abstract specification of the metamodel and the organization of metaclasses

seem very relevant; however, this approach only covers the definition of

metamodels and some constraints among concepts expressed with OCL. There are

no transformations defined in the approach. Thus W2000 is just at the first stage of

embracing the MDE paradigm.

3.4 UWE. UWE (UML Web Engineering) is one of the most cited techniques in Web

engineering and one of the first techniques that evolved into the MDE paradigm.

UWE is a Web approach that covers the complete life cycle although it is mainly

focused on the analysis and design phase. One of its most important advantages is

that all its models are formal extensions of UML. UWE uses a graphical notation

that is entirely based on UML It enables the use of UML-based tools and reduces

the learning time of Web developers who are already familiar with UML. Tool

support for UWE is available in the form of MagicUWE, which offers a plug-in for

MagicDraw with any artifact of UWE [50].

UWE follows the idea of model separation introduced by OOHDM, although it

proposes the inclusion of some new characteristics, such as Adaptations and

Presentation. Its MDE approach is perhaps one of the most complete since it offers

a metamodel for each model of UWE: Requirements, Content, Navigation,

Presentation and Process, together with the set of transformations to derive some

models from others [51]. The content model is based on class diagrams of UML

whereas the requirements model is based on WebRE [18]. Additionally, UWE has

defined profiles in order to work with these metamodels. This profile definition is an

efficient way to incorporate UWE metamodels in any UML-based design tool that

included this possibility.

In regard to transformations, UWE defines them by using QVT as a standard

language [52]. There have been some interesting experiences with the

implementation of a part of its transformations by using ATL (from PIM-to-Code

transformations). One such implementation is UWE4JSF, which consists of a

plug-in tool defined with EMF that allows the generation of Web applications for the

JSF (Java Server Faces) platform [53].

3.5 NDT. NDT (Navigational Development Techniques) [20] is a MDWE

methodological approach mainly focused on requirements and analysis. NDT

defines a set of CIM and PIM models and the set of transformations, using QVT, to

derive PIM from CIM.

As occurs in other approaches, these metamodels are defined by using class

diagrams. The requirements metamodel of NDT is an extension of WebRE that

includes new concepts based on the WebRE approach. It also includes two

metamodels, the content and the navigational, for the PIM level. The former is the

UML metamodel for class diagrams and the latter is the UWE metamodel.

One of the most important advantages of this methodology is its tool support. A set

of tools, called NDT-Suite, made up of four tools, supports the MDE development

process of NDT (this toolset can be obtained at http://www.iwt2.org). Each

metamodel of NDT has a specific profile that is implemented in Enterprise Architect

[54]. The NDT methodology has adapted the interface of this tool with a set of tool

boxes with direct access to each artifact of the methodology. This environment is

called NDT-Profile. In addition, NDT-Suite includes six other tools:

1. NDT-Driver: A tool to execute transformations of NDT. NDT-Driver is a free

Java-based tool that implements QVT Transformations of NDT and enables

analysis models to be automatically obtained from the requirements models.

Although transformations of NDT are completely defined using QVT, they are

implemented in NDT-Driver with Java, which is very suitable for researchers

working with companies on industry-based projects.

2. NDT-Quality: A tool that checks the quality of a project developed with

NDT-Profile. It produces an objective evaluation of a project and assesses

whether the methodology and MDE paradigm is used correctly. For this aim,

NDT-Quality includes a test rule file that checks the use of QVT transformations

in a NDT project.

3. NDT-Report: A tool that prepares formal documents that are validated by final

users and clients. For instance, it provides the automatic generation of a

Requirements Document according to the format determined by clients.

4. NDT-Prototypes: A tool that generates valuable prototypes from the NDT

requirements. Because of the high level of tool support in NDT, with

transformations capable of being executed automatically and assistance

provided for all stages of the development life cycle, the NDT approach has been

used in practice on several real projects [55].

5. NDT-Glossary implements an automated procedure that generates the first

instance of the glossary of terms of a project developed by means of NDT-Profile

tool.

6. NDT-Checker is the only tool in NDT-Suite that it is not based on the MDE

paradigm. This tool includes a set of sheets, different for each product of NDT.

These sheets give a set of check lists that should be reviewed manually with

users in requirements reviews.

3.6 OOWS. OOWS [56] is a Web methodology which mainly focuses on the

analysis phase. It is a Web extension for a previous methodology, OO-Method [57],

which is based on the object-oriented paradigm and includes three models: a

Structural Model, a Dynamic Model and a Functional Model. OOWS includes

another two models specific to Web development: a Navigational Model and a

Presentation Model.

OOWS is based on model-driven development and a recent paper [58] presents an

approach for the transformation of a Web model into a set of prototypes. Firstly, this

approach uses task metaphors to define requirements and these tasks are

translated into an AGG graph. Using graph transformations, analysis models are

then obtained. Graph grammars and graph transformations are a very mature

approach for the generation, manipulation, recognition and evaluation of graphs

[59], and most visual languages can be interpreted as a type of graph (directed,

labeled, etc.). Thus graph transformations are a natural and intuitive way for

transforming models. In contrast with other model transformation approaches,

graph transformations are defined visually and are provided with a set of mature

tools to define, execute and test transformations.

The OOWS approach is supported by a tool called OOWS Suite, which is a formal

extension of a commercial tool named OlivaNova which supports the complete

lifecycle of OO-Method. Valverde et al [60] provide a detailed description of this tool

(see http://www.care-t.com/products/).

The metamodel of OOWS is based on a MOF metamodel which is easily

understood. However, its transformations are not based on OMG norms, so it is not

fully compatible with other similar approaches.

4. A Critical Analysis of MDWE Methodologies. In this section, the MDWE

approaches outlined in Section 3 are critically analyzed and, where it is possible

and appropriate to do so, they are compared. Because the degree of definition of

each metamodel or transformation is not the same in each of these MDWE

approaches, in some cases there is not enough information available to compare

them with the same criteria.

Before presenting the findings of our analysis, it should firstly be explained where

each approach is located within the MDA framework. Table 1 represents each level

of the MDA and an ‘X’ indicates if the MDWE approach works in this level; that is, if

the approach defines metamodels and transformation oriented to the development

of model in this abstract level of MDA. As previously seen in Figure 1, most of the

“classic” Web development approaches were focused on analysis and design.

Similarly, here again in Table 1 it is seen that most of the MDWE approaches are

focused on the PIM level, which is equivalent to analysis and design within the MDA

environment.
TABLE 1. WEB DEVELOPMENT APPROACHES LOCATED WITHIN THE MDA ENVIRONMENT

 MDA levels

CIM PIM PSM Code

OOHDMDA X X

WebML1 X X X

WebML2 X X X

W2000 X X

UWE X X X

NDT X X

OOWS X X

Notably, none of the approaches that we compare here covers the whole MDA. In

theory, as is indicated in Figure 2, the use of common metamodels and

transformations could facilitate a situation where developers choose to use models

from a phase of one particular MDWE approach and transform them into models of

other MDWE approaches to proceed on to the next phase of the development life

cycle. Obviously, for such integration to work in practice, the authors of MDWE

approaches must work together to define transformations so that approaches can

be adapted for fusion. At present, interoperability of MDWE approaches is for the

most part not easy if indeed feasible, but an example of how different approaches

can be combined is provided in the work of Moreno et al. [36] where a common

metamodel is defined to work with OOH, UWE and WebML. It has therefore been

demonstrated that it is possible to overlap different MDWE approaches, thereby

enabling Web developers to mix-and-match different approaches so that they can

avail of the separate advantages of each approach as well as the combined benefit

of integrating approaches which together support all levels of the MDA framework.

4.1 Metamodel Complexity. The MDWE methodologies that were selected for

analysis in this paper are considerably different as regards the aspects covered by

their metamodels. As such, it is not possible to directly compare the metamodels of

each methodology because of the variations in scope. We explored the possibility of

comparing corresponding subsets of the methodologies, but this is not feasible

because of the differences in the ways the metamodels are described. The purpose

of this section of our analysis is therefore to provide an indication of the cognitive

complexity of the metamodels of the methodologies. The rationale for looking at

cognitive complexity is because previous research has shown this to be a relevant

factor affecting the adoption of Web development methodologies in practice [4, 13].

Cognitive complexity is a subjective notion, but it is related to structural complexity,

which can be assessed using appropriate metrics [61]. To guide our analysis, a

review of the literature on metamodel metrics was conducted following the general

principles laid down by Kitchenham et al [10, 11]. In the methodologies analyzed,

metamodels are introduced as class diagrams. For this reason, normal class

diagram metrics are appropriate. Because we are interested only in the static

elements of the metamodel, only class diagram metrics relating to structure were

selected and others regarding behavior and functionality were omitted from our

analysis. After analyzing several metric approaches [62-65], we chose to include a

number of classic class diagram metrics as the basis of our analysis: number of

classes; maximum number of attributes per class; maximum inheritance depth;

average number of child classes inherited; and the number of new concepts

presented. A detailed definition of these metrics and their general meaning in

object-oriented models can be found in Pressman [65].

We must qualify our analysis by acknowledging that such metrics do not necessarily

give a true and fair view of the degree of complexity of a methodology, because

richer methodologies may be seen to be of greater size simply because they have

broader scope and therefore have more extensive metamodels. It would be better

to provide some indication of the “accidental” complexity of a metamodel (i.e. the

amount of unnecessary complexity) but because this is a very difficult thing to

measure we instead chose to use the aforementioned metrics of structural

complexity as a proxy for overall cognitive complexity. Only those metamodels

specific to each approach were considered:

• In OOHDMDA only the servlet-based PSM for dynamic navigation and for

advanced navigation are included. Although OOHDMDA uses the OODHM

metamodel, it is not proposed by the approach itself.

• In WebML1, all four packages were considered: CommonElements, DataView,

HypertextView and PresentationView.

• In WebML2, five packages were considered: Hypertext Organization, Access

Control, Hypertext, Content Management, Content.

• In W2000, its four packages were included in the survey: Information, Navigation,

Presentation and Dynamic Behavior.

• For UWE, only four packages are considered: Requirements, Navigation,

Presentation and Process. The Content package is not included because it is

based on the UML metaclass for class diagrams.

• In NDT, only the requirements metamodel is included. This approach also uses

the UML content metamodel and the UWE navigation metamodel.

• Finally, for OOWS, only Navigational and Presentation metamodels are

considered since it inherits the rest of the metamodels from OO-Method.

The results of our analysis are presented in Table 2. We wish to emphasize that the

purpose of Table 2 is not to directly compare methodologies, because it is not

possible to do so on this basis. Nor should it be inferred that methodologies of

greater dimension are of lesser usefulness, because the various methodologies

have different scope. Our intention here is to provide some indication of the overall

size of the metamodels contained within each of the methodologies, which we

interpret as a proxy for overall cognitive complexity. Obviously, if an approach deals

with a higher number of metaclasses or concepts than another, it does not mean

that it is worse. However, authors should be conscious of the importance of

recommending metamodels that are easily understandable, and Metamodel

complexity is essential in this regard.

TABLE 2. METAMODEL METRICS FOR EACH MDWE APPROACH

O
O

H
D

M
D

A

W
e
b
M

L
1

W
e
b
M

L
2

W
2
0
0
0

U
W

E

N
D

T

O
O

W
S

Number of classes 14 51 53 21 38 10 21

Number of new concepts presented 13 53 53 24 38 12 21

Maximum number of attributes per class 6 3 3 0 1 0 5

Average number of methods 1.5 - - - - - -

Maximum inheritance depth 2 3 4 3 3 1 1

Average number of child classes inherited 1.25 2.4 2.3 1.75 2.5 1 2

The number of classes defines the number of classes specific to a metamodel. It

does not include classes imported from other packages. A high number of classes

could reduce the readability of the metamodel. The number of new concepts

measures concepts introduced by the approach in its metamodels. The number of

concepts is closely related with the number of classes. In fact, concepts are

normally presented as classes in metamodels. In some approaches, associations

introduce new concepts. Thus, the complexity of a MDWE metamodel can be

measured with the number of classes. If a metamodel has a high number of

metaclasses, heritage, or associations, it will be difficult to understand. The authors

of MDWE approaches should consider these two metrics because the readability of

metamodels is affected by size [61]. As can be seen in Table 2, there are

differences between WebML1 and WebML2. They offer different metamodels for the

same approach, but the number of concepts is the same. In fact, both the number of

concepts and the number of classes must be quite similar because each new

concept must be defined in the metamodel either as a class or as a special

association. If a new concept is not included in the metamodel because it is

represented as a UML class, it is not considered a new concept but a UML concept.

The maximum number of attributes per class is another measure of metamodel

complexity. In Table 2, only those attributes presented in the metamodel diagram

are included. Approaches that define transformations in a formal way, such as QVT

and XML, have other attributes that, for the sake of simplicity, are not considered

here.

The next two metrics are oriented towards class heritage. Heritage is one of the

most relevant artifacts of class diagrams and this metric is applicable to the

metamodels of the approaches included in Table 2. In classic class metrics, the

maximum inheritance depth must not surpass three levels. This high number of

levels makes it too complicated to understand class models. Similarity in

metamodels, a large inheritance depth causes complexity in the metamodel and it is

therefore difficult to follow concept definition. The average number of child classes

inherited is considered another important metric. Classic metric approaches

propose that the number of child classes remains small since it is also a measure of

complexity.

Each author, even with the same approach, as can be observed with WebML,

expresses concepts and their relations according to experience. The fact that UWE

has fewer concepts than WebML does not mean that the metamodel expresses

fewer semantics. In fact, UWE, NDT and OOHDMDA extend and use a high

number of concepts from UML, but these are not included in Table 2.

Some interesting conclusions about metamodels in general can be drawn from

Table 2. Firstly, metamodels seldom include methods since they normally express

concepts and their relations and do not include information about functionality. Only

OOHDMDA includes some methods since this approach is close to model

generation and these methods express the possibility of this generation.

Secondly, the use of heritage is present in all of the MDWE approaches that we

compare in this study. Heritage is an important artifact to express relations and

extensions of concepts. The number of child classes or the maximum inheritance

depth changes in each approach, although it never reaches a high number. In fact,

metamodels express concepts and the relations and constraints among them.

Consequently, the authors should reduce the complexity of their approaches. The

main aim of a metamodel is to present the approach as simply as possible. As can

be concluded from Table 2, this tendency is followed by the approaches under

study.

Finally, although it was not included in the table as a metric, an important advantage

for MDWE is a profile definition. The standard definition of a profile for metamodels,

based on UML, is a powerful artifact for each MDWE methodology. In a profile,

each concept in the metamodel is defined as a formal extension of a UML class,

thereby two important advantages are assumed: the first one is related to Figure 2.

If a methodology, such as UWE or WebML, defines a concept as an extension of

UML activity for instance, it is easier to find a connection between these two

approaches and to find similar concepts in the two metamodels.

Furthermore, as for NDT with NDT-Suite or UWE with MagicUWE, the use of a

profile facilitates the use of UML-based tools. With a simple extension of UML, any

commercial UML-based tool could be a suitable tool support for the methodology.

Only UWE, NDT and WebML offer specific profiles for metamodels, although other

approaches such as OOHDMDA use them in their approach, and as

aforementioned OOHDMDA uses a profile for OOHDM.

4.2 Metamodel Concepts. Concepts are the basic aspects that are handled in

MDWE. Each of the MDWE approaches analyses in this study defines its own

concepts. In some cases, these approaches coincide by using the same name for

the same concept. However, in other cases, the same name is used for different

concepts or various names are used for the same concept.

The lack of a standard terminology in Web engineering is a well-known and

lamented problem [4-7], and indeed it caused some difficulties when conducting this

analytical study of MDWE approaches.

Nevertheless, there are a number of concepts which commonly appear in most

Web engineering approaches. Based on a review of the literature, including

previous comparative analyses of MDWE approaches [5], Table 3 presents an

overview of the scope of the MDWE approaches analyzed in this study. An ‘X’

indicates that the approach defines concepts that are included in its metamodel,

and a shaded cell indicates that the particular approach does not cover the MDA

level. It should be noted that, because each approach uses its own terminology, the

row labels in Table 3 may therefore not be the same as the actual name given by

each approach to the corresponding concept in its metamodel; however, the

essential meaning of the concept is the same.

In the upper section of the table, models treated in the requirements phase (CIM

Level) are listed, based on a classification obtained from [5].

In the lower section of the table (the PIM level), a classification of models mainly

based on UWE notation is presented. Neither NDT nor OOWS cover this level

directly by themselves, although NDT uses some UWE metamodels and OOWS

uses the OO-Method to deal with these aspects. For that reason, NDT and OOWS

are shown in the table as not covering the PIM level. Similarly, although the WebML

methodology deals with adaptation, the WebML1 and WebML2 metamodels do not

consider this aspect, as indicated in Table 3.

TABLE 3. MODELS COVERED BY EACH MDWE APPROACH

O
O

H
D

M
D

A

W
e
b
M

L
1

W
e
b
M

L
2

W
2
0
0
0

U
W

E

N
D

T

O
O

W
S

C
IM

 L
e
v
e
l

Data requirements model X X

User interface requirements model X X

Navigational requirements model X X X

Adaptive requirements model X X X

Transactional requirements model X X

Non-Functional requirements model X X

P
IM

 L
e
v
e
l Content model X X X X X

Navigational model X X X X X

Presentation model X X X X X

Adaptive model X

Process model X

As was previously mentioned in Section 2, in the overview of “classical” Web

engineering approaches, the conclusion can be drawn that the main characteristics

studied in MDWE by these approaches are again:

• Static aspects, represented by a content model or content requirements

• Navigational aspects, represented by navigational models or navigational

requirements

• Presentation aspects, represented by abstract interfaces models, users’

adaptation in requirements, etc.

In this sense, MDWE follows the same line as that of “classical” Web engineering.

The use of the new paradigm only offers a new way of carrying out development. As

is concluded in this study, this new paradigm offers solutions for various problems

such as compatibility between approaches, the use of UML-based tools, etc.,

although no new concepts are introduced which are different to those of classical

Web engineering ones.

4.3 Transformations. If metamodels are the base of MDE, transformations are its

most important advantage. Transformations make model derivation easier and help

maintain traceability among these models. Transformations look for connections

between a previous model to another one and enables the translation of knowledge

from one phase to the next more readily. Thus, for instance, if in the requirements

phase the development team detects the necessity of storage data about users in

the system, the CIM-to-PIM transformation will create a class in the analysis model

to store users’ data and the PIM-to-PSM transformation will define a persistent Java

class to store this information.

Special metrics to measure the quality of a transformation were not found in the

literature. The reason for this gap in the literature can be attributed to a number of

factors: transformations are a new way of building software, the standards for

definition (e.g. QVT) have only recently been defined, and each MDWE approach

uses either a different way to express transformations or different transformations

languages. Furthermore, each of the MDWE approaches that we analyzed has a

different degree of development in its transformations. Notwithstanding these

difficulties in forming meaningful comparisons, Table 4 presents an outline of the

set of transformations dealt with by each of the MDWE approaches under

consideration in this study. An ‘X’ indicates that the approach supports the specified

transformation.

It is important to point out that some of these approaches have as yet only defined a

metamodel, but do not incorporate transformations. Furthermore, the definition of

transformations is still a relatively unexplored area in the model-driven paradigm.

OMG has defined a standard, known as QVT, which is still in its early stage and,

although there are some tools that support this language, such as SmartQVT or

Moment, insufficient development means that research groups cannot provide the

transformations yet.

An important approach in this area is OOWS, which uses a set of graph

transformations to translate from a CIM model into a PIM model. The use of graph

transformations and AGG graphs addresses problems of incompatibility. Since this

is the only approach under study that works with this technology, it is difficult to

compare its results with the others. However, AGG graphs and their transformations

represent a robust and well-studied environment. There are suitable tools that

support these transformations, therefore OOWS has implemented its translations

and offers a suitable tool environment for its use.

TABLE 4. MDA TRANSFORMATIONS DEALT WITH BY MDWE APPROACHES

O
O

H
D

M
D

A

W
e
b
M

L
1

W
e
b
M

L
2

W
2
0
0
0

U
W

E

N
D

T

O
O

W
S

Transformation of CIM to PIM X X

Transformation of PIM to PSM X X

Transformation of PSM to Code X X

Language used for transformations Java XSLT
QVT
ATL

QVT
Graph
trans.

On the other hand, NDT has defined its transformations in a theoretical way with

QVT. Nevertheless, it has translated these transformations into Java and offers the

derivation of models in its tool called NDT-Driver. This is a suitable solution for use

in practice, but it is not the principal aim of the MDE paradigm. The ideal

environment is that the MDE community could use a general and standard tool that

permits the metamodel definition to use a standard language, for instance, a class

metamodel. The tool should also offer a suitable environment for the definition of

transformations and standard such as QVT, to define these transformations. As

explained in section 4.5, this is currently one of the most important areas lacking

research in the MDE environment.

4.4 Standards and compatibility. One of the most important advantages of the

MDWE paradigm is the possibility of making various approaches compatible.

MDWE is focused on concepts and the way to deal with and represent these

concepts is unimportant. However, if a metamodel or a concept is defined freely

without reference to a common standard, the multiplicity of concepts can surface

again as a problem, just as it originally did in the Web engineering approaches of

the 1990’s. If a metamodel or some transformations were defined using a common

language, the connection among approaches could be easily facilitated.

To this end, the use of UML profiles offers very interesting results. A UML profile is

an extension mechanism offered by UML to extend the basic concepts of a MDWE

approach. Thus, if an approach defines its own metamodel using a class diagram

and later defines a UML profile, then it offers a standard definition of its concepts

that can be understood by other researchers and groups. As examples of UML

profiles, NDT provides the concept of Storage requirements which is an extension

of the UML class, while UWE defines the Content concept, which is also an

extension of the UML class. If both are analyzed in each approach, we can

conclude that they represent the same idea, although they are named differently in

each methodology. Extensions which are based on the same UML concept gives

rise to opportunities for forward compatibility, thereby representing an important

step towards a common metamodel for Web modeling [48].

4.5 Tools and industry experiences. Despite the fact that Web engineering is a

very active area within the research community and some very good results have

been achieved, the application of many of its ideas, models and techniques within

industry has not yet been realized. As one example of the low rate of knowledge

transfer into practice, a recent study conducted in Spain, which interviewed more

than 50 project managers and 70 analysts from a sample of 30 software companies

representing local, national and international organisations, found that just 25% of

medium- to large-sized companies (i.e. more than 50 employees) knew anything

about “Web engineering”, while only 10% of small companies had heard about it.

Overall, only 1% of companies had applied Web engineering in their projects [66].

Similar experiences were found in comparable studies conducted in Ireland [4, 13].

These results indicate that although Web engineering methods could be very useful,

few of them are currently in use.

In MDWE the situation has not changed, there so far being very little application of

academic research experiences to real projects. Of the MDWE approaches

described in this paper, only a few published accounts of “real world” practical

applications are known to exist. In [20], NDT shows how its initial definition evolved

because of feedback from practice, and these experiences show the good results

that can be obtained. Two relevant advantages offered by the MDWE paradigm are

the reduction of the development time by using transformations and the

concordance among models in different phases. WebML, and principally its tool,

WebRatio, have also been applied with successful results within real enterprises.

The need for translational research to move research findings from academic

research laboratories into the world of practice is widely accepted as a firm

prerogative within applied disciplines such as Web engineering. However, practical

application is not possible without a set of suitable tools that facilitate the application

of models, techniques, transformations and the maintenance of model coherence.

Despite this fact, an important advantage attaches to the approaches examined in

this paper. Through metamodels, standards, profiles and basic tools under the MDE

paradigm, the evolution of tools is better in MDWE than in Web engineering. The

lack of suitable tools has always been a disadvantage of the “classic” Web

engineering methods. In this survey of MDWE approaches, all the studied

approaches offer suitable tool environments for its application.

The use of profiles to facilitate tool support is potentially very interesting. With profile

definition, UML-based tools can provide a suitable solution for any MDWE and it

reduces the cost of learning curve because they are quite friendly for development

teams, which make easier the application of these approaches in enterprise

environment [67]. In fact, if the definition of MDE standard languages evolves in the

next few years, then the use of general UML-based tools for MDWE should become

a reality. This idea is being followed by OOHDMDA, NDT and UWE and they are

offering suitable and adaptable results. However, in MDE in general, there is an

important gap in tools that offer the possibility of defining a metamodel and

transformations which can be executed into concrete models in real projects.

In addition, the research community needs tools to support the MDE process

successfully. To implement a MDWE approach, it is necessary in the first instance

to have a tool which can represent metamodels and transformations written, for

example, in QVT. In this sense, the EMF or ATL environments offer promising

results, although MDE also needs a defined concrete syntax to represent its

metamodels. For instance, in the case of NDT, metamodels are not used by

development teams in practice; they use a set of tools, defined in NDT-Suite, that

represent each artifact of the approach as a UML artifact extension.

As yet, UML-based tools do not offer the possibility of writing transformations in a

standard language. One solution that researchers are proposing as a resolution of

this issue consists in writing transformations in a standard language and later

implementing them with programming languages. For instance, WebRatio uses

XML or NDT uses Struts. However, this suggestion does not seem suitable enough

because, in fact, a change in the transformations implies a manual change in the

code for executing these transformations. As yet, the existing limitation of tools

means that no other possibilities are available. Some new developments, like

Moment or SmartQVT, or the inclusion of MDA transformation languages in

UML-based tools, like the case of Enterprise Architect, offer promising solutions.

5. Related Work. Although the analysis in the previous section focused on the main

MDWE methodologies, there is also some other interesting work going on within

this research area. In comparative studies on Web approaches, a general

conclusion is that similar concepts are used or represented with a different number

of models, techniques or artifacts. Thus, for instance, navigational classes are

presented with different elements in UWE, OOHDM, NDT and W2000. Escalona

and Koch [18] show how a metamodel can represent a concept independently from

its representation or notation; only concepts are important. A metamodel for Web

requirements called WebRE, which represents requirements models of W2000,

NDT, OOHDM and UWE, is presented. In [21], their work goes on by using QVT to

obtain analysis models from this metamodel. These papers are interesting since

they are completely based on UML and on QVT, standards defined by OMG,

although the work can be considered to be excessively theoretical.

This tendency to use metamodels and transformations to make different

approaches compatible is applied in a recent work under the name of MDWEnet

[37] which is an initiative carried out by a representative group of MDWE

researchers in an effort to find a common approach which allows various

approaches to be represented and handled.

Fernández and Mozón [68] present the possibilities of working with metamodels

and tools, and show how a requirements metamodel can easily be defined in IRqA

(Integral Requisite Analyzer), which is a commercial tool that helps in the definition

of metamodels for requirements [69]. In this way, this paper reveals the power of

the tools supporting metamodels as they are suitable for any approach defined by

using metamodels. This work is very practical in fact, although it is not an approach

for the Web. Metamodels do not offer specific artifacts to deal with the Web

environment since it only offers an approach for classic requirements treatment

[70].

In [71], Meliá and Gómez analyze an approach called WebSA (Web Software

Architecture) which provides the designer with a set of architectural and

transformation models used to specify a Web application. Although these models

only work in the design phase, this approach is very relevant since MDA and QVT

are applied in a very exhaustive way.

To conclude, the use of metamodels and MDE are areas of software engineering

that are becoming widely accepted as a solution for classic problems in Web

engineering.

6. Conclusions and Future Work. This paper presents an overview of how classic

Web engineering methodologies have evolved to embrace the model-driven

paradigm. A brief review of some of the most relevant Web approaches working on

the model-driven paradigm was given, and the findings of an analysis of

model-driven Web development methodologies were set out.

Although Web engineering is now an established branch of software engineering,

this paper argues that there are a number of long-standing problems to be covered

that could potentially be addressed by using MDWE. One of these gaps is the

multiplicity of methodologies which, given the lack of standards, means that Web

developers cannot interoperably mix-and-match the products of different phases of

different methodologies. As can be seen in Figure 1, there are many Web

development methodologies, all the more evident from the compendium of over fifty

methods and approaches compiled by Lang & Fitzgerald [13]. Previous studies

conclude that many of these methodologies have their own particular strong points

above the others [4-7]. Furthermore other more recent approaches for Web

application development, as proposals derived from other engineering areas (for

example, the idea from Dynamic Interactive Systems (DIS), of modeling and

synthesizing fully functional Web-based interactive applications using the

incremental, component wise, correct-by-construction approach named Equivalent

Transformation (ET) [72]).

We are not arguing that there should be a standard universal Web development

approach, but it is important that whatever method or methods chosen by a

development team for any given project may be capable of integration. The

model-driven paradigm can offer a suitable solution for this problem. As shown in

Figure 2, the use of MDWE can help to fuse approaches, thereby benefiting from

the respective advantages of each individual method. Work referred to in section 5,

such as common metamodels and WebRE, is offering interesting results along

these lines.

Another problem in Web engineering is the lack of tools that offer suitable support

for the development environment. As can be deduced from the comparative

analysis of OOHDMDA, UWE, OOWS and NDT presented in this paper, MDWE

shows a good solution to this problem by means of using metamodels and profiles.

Hence, it is not necessary to define a specific tool for each approach. If a

metamodels and a suitable profile is defined, UML-based tools can be used in the

approach. Thus, with only the profile definition for instance, for NDT, then

Enterprise Architect, IBM Rational Rose, ArgoUML and StarUML can be used for

the application of the methodology. The use of suitable tools for the application of

these approaches is one of the most important issues in the enterprise application

of this kind of solutions. In fact, MDWE approaches offer more empirical

experiences that Web engineering, although there is too much work to do in this

line.

However, although results in this area are encouraging, further work is necessary.

Profile and metamodel definitions are well-supported by these tools, but

transformations are not. Some tools, such as Enterprise Architect, define their own

MDA language. They must be based on standards in order to offer flexibility. Thus,

if a methodology defines a suitable profile and transformations using these

standards, any tool could be used to support the development with this

methodology. Although there are some solutions, such as the use of ATL, the

implementation of transformations with Java or the use of Graph transformations,

UML-based tools must evolve along this line.

The availability of tools and the possibility of fusing several approaches are placing

MDWE closer to the being used in industry-strength “real world” projects with

suitable results. MDWE offers important advantages for companies. For instance,

transformations and systematic model generation can reduce the development time,

especially if a tool is used. With MDWE, the knowledge reached in one phase of the

life cycle is carried over to the next phase by means of using transformations.

Furthermore, with metamodel constraints, traceability can be checked

systematically, thereby solving major errors, inconsistencies and mistakes in the

first phases of the life cycle.

Despite the fact that MDWE offers suitable results, there are still some important

areas that must be considered in this survey. The first one is the “feedback” in the

life cycle. For instance, if the requirements phase is completed and the analysis is

generated from requirements results, then, how can future changes in requirements

be incorporated into the analysis? The MDWE approaches that we analyzed are

working in this direction. Thus, NDT, for instance, includes a specific method of

generation in NDT-Driver to solve this problem. However, in general, it is future

work for approaches included in this survey.

Another line of future work is research oriented towards practical application.

Although MDWE offers suitable aspects to be applied within industry, there have

been very few practical applications up to date. Research groups must work

together towards a common aim of extending MDWE research from academic

laboratories into practical settings, trying to apply in the future this approach for

designing Web sites and to complement it with other quality website design

techniques as the one described in [73]. Importantly, this should include guidance

on the practical limitations of applying MDWE methodologies, such as experience

reports on which methodologies work best in different circumstances.

As a final conclusion, MDE is a relatively new paradigm suitable for Web

engineering and offers a productive research line for the Web community. However,

it is still in its development stages and needs further research to offer more

attractive solutions for its application in practice.

Acknowledgements

This research has been supported by the Tempros project

(TIN2010-20057-C03-02) and the National Network Quality Assurance in Practise.

CaSA (TIN2010-12312-E) of the Ministry of Education and Science, Spain and by

the project NDTQ-Framework (TIC-5789) of the Junta de Andalucia, Spain.

REFERENCES

[1] F. Garzotto, D. Schwabe, P. Paolini, HDM-A Model-Based Approach to Hypermedia Application

Design, ACM Transactions on Information Systems, 11(1). 1993. 1-26.

[2] G. Rossi, D. Schwabe, Modelling and Implementing Web Applications with OOHDM. Web

Engineering: Modelling and Implementing Web Applications, in: G. Rossi, O. Pastor, D. Schwabe, L.

Olsina (Eds.) Web Engineering: Modelling and Implementing Web Applications (Human-Computer

Interaction Series), Springer, 2008, pp. 109-155.

[3] Y. Deshpande, S. Marugesan, A. Ginige, D. Schwabe, M. Gaedke, B. White, Web Engineering, Journal

of Web Engineering, 1(1). 2002. 3-17.

[4] C. Barry, M. Lang, A Survey of Multimedia and Web Development Techniques and Methodology

Usage, IEEE Multimedia, 8(3). 2001. 52-61.

[5] M.J. Escalona, N. Koch, Requirements Engineering for Web Applications: A Comparative Study,

Journal of Web Engineering, 2(3). 2004. 193-212.

[6] M.J. Escalona, J. Torres, M. Mejías, J.J. Gutiérrez, D. Villadiego, The Treatment of Navigation in Web

Engineering, Advances in Engineering Software, 38(4). 2007. 267-282.

[7] W. Schwinger, W. Retschitzegger, A. Schauerhuber, G. Kappel, M. Wimmer, B. Pröll, C. Cachero, C.

Casteleyn, O.D. Troyer, P. Fraternali, I. Garrigos, F. Garzoto, A. Ginige, G.J. Houben, N. Moreno, O.

Pastor, P. Paolini, V. Pelechano, G. Rossi, D. Schwabe, M. Tisi, A. Vallecillo, V.D. Sluijs, G. Zhang, A

survey on Web modeling approaches for ubiquitous Web applications, International Journal of Web

Information Systems, 4(3). 2008. 234-305.

[8] M. Lang, Hypermedia System Development. Do we really need new Methods? Proceedings of the

Informing Science + IT Education Conference, Cork, Ireland, 2002, pp. 883-891.

[9] P. Brereton, B.A. Kitchenham, D. Budgen, M. Turner, M. Khail, Lessons from applying the systematic

literature review process within the software engineering domain, Journal of Systems and Software,

80(4). 2007. 571-583.

[10] B. Kitchenham, S. Charters, Guidelines for Performing Systematic Literature Reviews in Software

Engineering, Version 2.3. Technical Report EBSE-2007-01, Software Engineering Group (SEG), School

of Computer Science and Mathematics, Keele University and Department of Computer Science,

University of Durham, UK, 2007.

[11] B. Kitchenham, O.P. Brereton, D. Budgen, M. Turner, J. Bailey, S. Linkman, Systematic literature

reviews in software engineering – A systematic literature review, Information and Software Technology,

51(1).2009. 7–15.

[12] M. Lang, A Critical Review of Challenges in Hypermedia Systems Development, in: O. Vasilecas, A.

Caplinskas, W. Wojtkowski, W.G. Wojtkowski, J. Zupancic, S. Wrycza (Eds.) Information Systems

Development Advances in Theory, Practice and Education. 13th International Conference on

Information Systems Development, ISD'2004 Vilnius, Lithuania, September 2004, Proceedings,

Springer, Heidelberg, 2005, pp. 277-288.

[13] M. Lang, B. Fitzgerald, New Branches, Old Roots: A Study of Methods and Techniques in

Web/Hypermedia Systems Design, Information Systems Management, 23(3). 2006. 62-74.

[14] T. Isakowitz, E. Stohr, P. Balasubramanian, RMM: A Methodology for the Design of Structured

Hypermedia Applications, Communications of the ACM, 38(8). 1995. 34-44.

[15] D. Schwabe, G. Rossi, The Object-Oriented Hypermedia Design Model, Communications of the ACM,

38(8). 1995. 45-46.

[16] O. de Troyer, C. Leune, WSDM: A User-Centered Design Method for Web Sites, Computer Networks

and ISDN Systems, 30(1-7). 1998. 85-94.

[17] D. Lange, An Object-oriented Design Approach for Developing Hypermedia Information Systems,

Journal of Organizational Computing and Electronic Commerce, 6(3). 1996. 269-293.

[18] M.J. Escalona, N. Koch, Metamodelling the Requirements of Web Systems, in: J. Filipe, J. Cordeiro, V.

Pedrosa (Eds.) Web Information Systems and Technologies. International Conferences WEBIST 2005

and WEBIST 2006, Revised Selected Papers (Lecture Notes in Business Information Processing),

Springer, 2007, pp. 267-280.

[19] L. Baresi, F. Garzotto, M. Maritati, W2000 as a MOF Metamodel, 6th World Multi-Conference on

Systemics, Cybernetics and Informatics, Orlando, Florida, USA, 2002.

[20] M.J. Escalona, G. Aragón, NDT: A Model-Driven Approach for Web requirements, IEEE Transactions

on Software Engineering, 34(3). 2008. 370-390.

[21] N. Koch, A. Knapp, G. Zhang, H. Baumeister, UML-Based Web Engineering, in: G. Rossi, O. Pastor, D.

Schwabe, L. Olsina (Eds.) Web Engineering: Modelling and Implementing Web Applications, Springer,

2008, pp. 157-191.

[22] UWA Consortium, Requirements Elicitation: Model, Notation, and Tool Architecture, Ubiquitous Web

Applications Consortium (Deliverable D6), 2001.

[23] S. Ceri, P. Fraternali, A. Bongio, Web Modelling Language (WebML): A Modelling Language for

Designing Web Sites, Computer Networks, 33(1-6). 2000. 137-157.

[24] MagicUWE, http://uwe.pst.ifi.lmu.de/toolMagicUWE.html, accessed April 2011.

[25] WebRatio, http://www.webratio.com, accessed April 2011.

[26] B. Pérez, M. Polo, M. Piatini, Software Product Line Testing - A Systematic Review, 4th International

http://uwe.pst.ifi.lmu.de/toolMagicUWE.html
http://www.webratio.com/

Conference on Software and Data Technologies (ICSoft 2009), Sofia, Bulgaria, 2009.

[27] S.B. Abid, Resolving traceability issues in product derivation for Software Product Lines, 4th

International Conference on Software and Data Technologies (ICSoft 2009), Sofia, Bulgaria, 2009.

[28] Struts, http://struts.apache.org, accessed April 2011.

[29] Django, http://www.djangoproject.com, accessed April 2011.

[30] Ruby on Rails, http://rubyonrails.org/, accessed April 2011.

[31] M. Brambilla, P. Fraternali, M. Tisi, A Transformation Framework to Bridge Domain Specific

Languages to MDEA, in: M.R.V. Chaudron (Ed.) Models in Software Engineering, Workshops and

Symposia at MODELS 2008, Toulouse, France, September 28 - October 3, 2008. Reports and Revised

Selected Papers. (LNCS 5421), Springer, 2009, pp. 167-180.

[32] E. Robles Luna, J. Grigera, G. Rossi, Bridging Test and Model-driven Approaches in Web Engineering,

in: M. Gaedke, M. Grossniklaus, O. Díaz (Eds.) Web Engineering / 9th International Conference, ICWE

2009, San Sebastián, Spain, June 24-26 2009 Proceedings (LNCS 5648), 2009, pp. 130-150.

[33] J.J. Gutiérrez, C. Nebut, M.J. Escalona, M. Mejías, I. Ramos, Visualization of use cases through

automatically generated activity diagrams, in: K. Czarnecki, I. Ober, J.-M. Bruel, A. Uhl, M. Völter

(Eds.) Model Driven Engineering Languages and Systems. 11th International Conference, MoDELS

2008, Toulouse, France, September 28 - October 3, 2008, Proceedings (LNCS 5301), Springer, Berlin /

Heidelberg, 2008, pp. 83-96.

[34] R. Barchino, J.M. Gutiérrez, L. De-Marcos, J.J. Martínez, L. Jiménez, S. Otón, J.A. Gutiérrez, J.R.

Hilera, Experiences in the use of Mobile Games to improve Programming Skills in Computer

Engineering, International Journal of Innovative Computing, Information and Control, 8(2) (2012).

[35] W.B. Lin, S.J. Wang, H.K Chiang and Y.Y Lu. The Implementation and Design of Web-Based

E-Learning Platform for Class B Skill Computer Maintenance. ICIC Express Letters, Vol 5(9B).

pp.3367-3374. 2011.

[36] N. Moreno, J.R. Romero, A. Vallecillo, An Overview of Model-Driven Web Engineering and the MDA,

in: G. Rossi, O. Pastor, D. Schwabe, L. Olsina (Eds.) Web Engineering: Modelling and Implementing

Web Applications, Springer, 2008.

[37] A. Vallecillo, N. Koch, C. Cachero, S. Comai, P. Fraternalli, I. Garrigós, J. Gómez, G. Kappel, A.

Knapp, M. Matera, S. Meliá, N. Moreno, B. Pröll, T.Reiter, W. Retschitzegger, J.E. River, W.

Schwinger, M. Wimmer, G. Zhang, MDWEnet: A Practical Approach to Achieving Interoperatiblity of

Model-Driven Web Engineering Methods, 3rd Workshop on Model-Driven Web Engineering, 2007, pp.

246-254.

[38] SmartQVT, http://sourceforge.net/projects/smartqvt, accessed April 2011.

[39] P. Queralt, L. Hoyos, A. Boronat, J.A. Carsí, I. Ramos, Un motor de transformación de modelos con

soporte para el lenguaje QVT relations, in: A. Vallecillo, V. Pelechano, A. Estévez (Eds.) Actas del

Taller sobre Desarrollo de Software Dirigido por Modelo, MDA y Aplicaciones. Sitges, Spain, October

3, 2006 (CEUR Workshop Proceedings 227), CEUR-WS.org, 2006.

[40] OMG, Unified Modeling Language 2.1.1 Superstructure Specification (OMG doc. formal/07-02-05),

2007. http://www.omg.org/cgi-bin/doc?formal/07-02-05.

[41] OMG, MOF QVT Final Adopted Specification. Object Management Group (OMG doc. ptc/05-11-01),

2005.

[42] OMG, MDA Guide, Version 1.0.1, 2003. http://www.omg.org/docs/omg/03-06-01.pdf.

http://struts.apache.org/
http://www.djangoproject.com/
http://rubyonrails.org/
http://sourceforge.net/projects/smartqvt
http://www.omg.org/cgi-bin/doc?formal/07-02-05
http://www.omg.org/docs/omg/03-06-01.pdf

[43] N. Koch, G. Zhang, M.J. Escalona, Model Transformations from Requirements to Web System Design,

Proceedings of the 6th International Conference on Web Engineering, ACM, Palo Alto, California, USA,

2006, pp. 281-288.

[44] P. Vilain, D. Schwabe, C. Sieckenius de Souza, A Diagrammatic Tool for Representing User Interaction

in UML, in: A. Evans, S. Kent, B. Selic (Eds.) UML 2000 - The Unified Modeling Language.

Advancing the Standard, Third International Conference, York, UK, October 2-6, 2000 Proceedings

(LNCS 1939), Springer, Berlin / Heidelberg, 2000, pp. 133-147.

[45] H.A. Schmid, Model-Driven Architecture with OOHDM, in: M. Matera, S. Comai (Eds.) Engineering

Advanced Web Applications: Proceedings of Workshops in connection with the 4th International

Conference on Web Engineering (ICWE 2004), Munich, Germany, 28-30 July, 2004, Rinton Press,

2004, pp. 12-25.

[46] H.A. Schmid, O. Donnerhak, OOHDMDA-An MDA Approach for OOHDM, in: D. Lowe, M. Gaedke

(Eds.) Web Engineering. 5th International Conference, ICWE 2005, Sydney, Australia, July 27-29, 2005.

Proceedings (LNCS 3579), Springer, 2005, pp. 569-574.

[47] N. Moreno, P. Fraternalli, A. Vallecillo, A UML 2.0 Profile for WebML Modelling, Workshop

Proceedings of the 6th International Conference on Web Engineering, ACM, Palo Alto, California, USA,

2006.

[48] A. Schauerhuber, M. Wimmer, E. Kapsammer, Bridging existing Web Modeling Languages to

Model-Driven Engineering: A Metamodel for WebML, 2nd International Workshop on Model-Driven

Web Engineering, ACM, Palo Alto, California, USA, 2006.

[49] L. Baresi, F. Garzotto, P.Paolini, Extending UML for Modelling Web Applications, 34th Hawaii

International Conference on System Sciences, USA, 2001, pp. 1285-1294.

[50] UWE, http://uwe.pst.ifi.lmu.de/toolMagicUWE.html, accessed April 2011.

[51] N. Koch, A. Krauss, Towards a Common Metamodel for the Development of Web Applications, in: J.M.

Cueva Lovelle, B.M. González Rodríguez, L. Joyanes Aguilar, J.E. Labra Gayo, M. del Puerto Paule de

Ruiz (Eds.) Web Engineering. International Conference, ICWE 2003, Oviedo, Spain, July 14-18, 2003.

Proceedings (LNCS 2722), Springer, 2003, pp. 419-422.

[52] N. Koch, Transformation Techniques in the Model-Driven Development Process of UWE, Workshop

Proceedings of the 6th International Conference on Web Engineering, ACM, Palo Alto, California, USA,

2006.

[53] UWE4JSF, http://uwe.pst.ifi.lmu.de/toolUWE4JSF.html, accessed April 2011.

[54] Enterprise Architect, http://www.sparx.org, accessed April 2011.

[55] M.J. Escalona, G. Aragón, J.J. Gutierrez, J.A. Ortega, I. Ramos, NDT & Metrica v3: An Approach for

Public Organizations based on Model Driven Engineering, International Conference on Web

Information Systems and Technologies (WEBIST), Funchal, Madeira, Portugal, 2008, pp. 224-227.

[56] J. Fons, V. Pelechano, M. Albert, O. Pastor, Development of Web Applications from Web Enhanced

Conceptual Schemas, in: I.-Y. Song, S.W. Liddle, T.W. Ling, P. Scheuermann (Eds.) Conceptual

Modeling - ER 2003. 22nd International Conference on Conceptual Modeling, Chicago, IL, USA,

October 13-16, 2003, Proceedings (LNCS 2813), Springer, Berlin / Heidelberg, 2003, pp. 232-245.

[57] O. Pastor, J. Gómez, E. Insfran, V. Pelechano, The OO-method approach for information systems

modeling: from object-oriented conceptual modeling to automated programming, Information Systems,

26(7) (2001) 507-534.

http://uwe.pst.ifi.lmu.de/toolMagicUWE.html
http://uwe.pst.ifi.lmu.de/toolUWE4JSF.html
http://www.sparx.org/

[58] P. Valderas, V. Pelechano, O. Pastor, A transformational approach to produce Web A

[59] application prototypes from a Web Requirements Model, International Journal of Web Engineering and

Technology, 3(1) (2007) 4-42.

[60] G. Rozenberg, Handbook of Graph Grammars and Computing by Graph Transformations, Volume 1,

Foundations, World Scientific, New Jersey, 1997.

[61] F. Valverde, P. Valderas, J. Fons, OOWS Suite: Un entorno de desarrollo para Aplicaciones Web

basado en MDA, X Workshop Iberoamericano de Ingeniería de Requisitos y Ambientes Software

(IDEAS'07). Isla de Margarita, Venezuela, 2007, pp. 253-266.

[62] J. Erickson, K. Siau, Theoretical and Practical Complexity of Unified Modeling Language: Delphi Study

and Metrics Analyses, International Conference on Information Systems, Washington, DC, USA, 2004.

[63] SDMetrics, http://www.sdmetrics.com, accessed April 2011.

[64] S.R. Chidamber, C.F. Kemerer, A Metrics Suite for Object-Oriented Design, IEEE Transactions on

Software Engineering, 20(6) (1994) 476-493.

[65] M. Lorenz, J. Kidd, Object-Oriented Software Metrics, Prentice-Hall, 1996.

[66] R.S. Pressman, Software Engineering: A Practitioner's Approach, McGraw Hill, 2007.

[67] IWT2, Unpublished report, Web Engineering and Early Testing research Group (IWT2), Department of

Computer Languages and Systems - University of Sevilla, Spain. http://www.iwt2.org, 2005.

[68] R. Barchino, J.R. Hilera, L. De-Marcos, J.M. Gutiérrez, S. Otón, J.A. Gutiérrez, J.J. Martínez, L.

Jiménez, Interoperability between visual UML design applications and authoring tools for learning

design, International Journal of Innovative Computing, Information and Control, 8(2) (2012).

[69] J.L. Fernández, A. Monzón, A Metamodel and a Tool for Software Requirements Management (poster),

Reliable Software Technologies - Ada-Europe 2000, Potsdam, Germany, 2000.

[70] IRqA (Integral Requisite Analyzer), http://www.irqaonline.com, accessed April 2011.

[71] J. Duan, Q. Zhu. A Requirement-Driven Approach to Enterprise Application Evolution. ICIC Express

Letters, Part B: Applications. 2 (2). pp. 313-318. 2011

[72] S. Meliá, J. Gómez, The WebSA Approach: Applying Model-Driven Engineering to Web Applications,

Journal of Web Engineering, 5(2) (2006) 121-149.

[73] C. Powell, K. Akama, K. Nakamura, Componentwise modelling and synthesis of dynamic interactive

systems using the equivalent transformation framework, International Journal of Innovative Computing,

Information and Control, 7(7A) (2011) 4067-4081.

[74] H. Kuo, C. Chen, Application of quality function deployment to improve the quality of Internet

shopping website interface design, International Journal of Innovative Computing, Information and

Control, 7(1) (2011) 253-268.

http://www.sdmetrics.com/
http://www.iwt2.org/
http://www.irqaonline.com/

