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1 Introduction

Scholte waves are acoustic waves propagating at a fluid/solid interface. They
are localized in the neighborhood of the phase boundary in the sense that
they decay exponentially in both directions along the normal to the interface.
Johnson [1] established the explicit secular equation for Scholte waves over
an orthorhombic crystal. In his case, the crystal is cut along a plane x2 = 0
containing two crystallographic axes Ox1 and Ox3; the wave propagates with
speed v in the x1 direction; the solid is characterized by a mass density ρs
and relevant elastic stiffnesses C11, C12, C22, and C66; the fluid by a mass
density ρf and speed of sound c. The secular equation is

Z

√
C11C22 − C2

12 − 2C12C66 − (C22 + C66)X + 2
√
C22C66(C11 −X)(C66 −X)

−
√
C66 −X
C11 −X

(C11C22 − C2
12 − C22X) +X

√
C22C66 = 0, (1.1)

where

X = ρsv
2, Z =

ρfv
2√

1− v2

c2

. (1.2)

For instance, consider a frozen lake with a layer of ice assumed thick enough
to be considered as a semi-infinite body. At 0.01oC under 1 bar, the density
of water is [2]: ρf = 999.84 kg/m3 and sound propagates at c = 1402.4
m/s; the second line of Table 1 lists the elastic stiffnesses and density of
ice [3]; according to (1.1), Scholte waves propagate for this model at speed
vS = 1237.6 m/s. Ice however has the special property of being transversally
isotropic, which means that any plane containing the x3 axis is a symmetry

1



plane and so the speed vS is the same for any orientation of the water/ice
interface plane containing the x3 axis.

The aim of this Letter to the Editor is to derive explicitly the secular
equation for Scholte waves at the interface between a fluid and an anisotropic
crystal cut along a plane containing the normal to a single symmetry plane,
that is containing only one crystallographic axis. In effect, the crystal may be
a monoclinic crystal with symmetry plane at x3 = 0, or a rhombic, tetragonal,
or cubic crystal cut along a plane containing x3 and making an angle θ 6= 0
with the other crystallographic planes; the higher symmetry cases (θ = 0 or
transversally isotropic and isotropic crystals) are covered by (1.1). For cases
with less symmetries, one can turn to approximate solutions [4] as long as
the anisotropy is weak .

2 Equations of motion and boundary condi-

tions

Consider two half-spaces delimited by the plane x2 = 0; the upper one x2 < 0
is filled with an inviscid fluid, the lower one x2 > 0 is made of a monoclinic
crystal with symmetry plane at x3 = 0 whose relevant non-zero reduced com-
pliances are s′11, s

′
22, s

′
12, s

′
16, s

′
26, and s′66. At the interface, an inhomogeneous

plane wave travels with speed v and wave number k in the x1 direction, and
decays rapidly in the x2 → ±∞ directions.

In the solid, the corresponding equations of motion are written as a first-
order differential system for the 4-component displacement-traction vector,

ξ′ = iNξ, ξ(kx2) = [U1(kx2), U2(kx2), t12(kx2), t22(kx2)]
T, (2.1)

where the functions Ui and ti2 are related to the in-plane mechanical dis-
placements u1, u2 and in-plane tractions σ12, σ22 through

ui(x1, x2, x3, t) = Ui(kx2)e
ik(x1−vt), σi2(x1, x2, x3, t) = ikti2(kx2)e

ik(x1−vt).
(2.2)

In (2.1), the 4× 4 matrix N is given by [5, 6],

N =


−r6 −1 n66 n26

−r2 0 n26 n66

X − η 0 −r6 −r2
0 X −1 0

 , (2.3)

where X = ρsv
2 and

η =
1

s′11
, ri = − s

′
1i

s′11
, nij =

1

s′11

∣∣∣∣s′11 s′1j
s′1i s′ij

∣∣∣∣ . (2.4)
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These equations also cover the case of a wave (2.2) travelling in a crystal
of rhombic, tetragonal, or cubic symmetry, with acoustic axes XY x3 and
reduced compliances S ′ij, cut along the plane x2 = 0 containing the x3 axis
and making an angle θ with the crystallographic XY plane (see Figure 1).
In that case, the reduced compliances s′ij along the xi axes are given in terms
of those along the crystallographic axes XY x3 by (see Ting [7]),

s′11 = S ′11 cos4 θ + (2S ′12 + S ′66) cos2 θ sin2 θ + S ′22 sin4 θ,

s′22 = S ′22 cos4 θ + (2S ′12 + S ′66) cos2 θ sin2 θ + S ′11 sin4 θ,

s′12 = S ′12 + (S ′11 + S ′22 − 2S ′12 − S ′66) cos2 θ sin2 θ,

s′66 = S ′66 + 4(S ′11 + S ′22 − 2S ′12 − S ′66) cos2 θ sin2 θ.

s′16 = [2S ′22 sin2 θ − 2S ′11 cos2 θ + (2S ′12 + S ′66)(cos2 θ − sin2 θ)] cos θ sin θ,

s′26 = [2S ′22 cos2 θ − 2S ′11 sin2 θ − (2S ′12 + S ′66)(cos2 θ − sin2 θ)] cos θ sin θ.
(2.5)

Note that for transversally isotropic crystals, the following relationships hold,
S ′11 = S ′22, S

′
66 = 2(S ′11 − S ′12), and the rotation does not affect the values

of the compliances (s′ij = S ′ij). This author [8] recently showed that for
waves vanishing with increasing distance from the plane x2 = 0, the following
fundamental relationships hold for any positive or negative integer power n
of the matrix N,

ξ(0) · ÎNnξ(0) = 0, where Î =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 . (2.6)

Because of the Cayley-Hamilton theorem, only three consecutive powers of
N are linearly independent so that (2.6) reduces to only three linearly inde-
pendent equations.

In the fluid, the normal displacement and the normal stress component are
connected, as recalled by Barnett et al. [9], by the (real) normal impedance
Z defined in (1.2)2,

σ22 = kZu2. (2.7)

At the solid/fluid interface, the normal displacement and the normal
stress component are continuous, and the shear stress component is zero.
It follows from these boundary conditions and from (2.1)2, (2.2), (2.7), that
the displacement-traction vector at the interface x2 = 0+ is of the form,

ξ(0+) = U2(0)[α, 1, 0,−iZ]T, (2.8)
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where α = U1(0
+)/U2(0).

Now the fundamental equations (2.6) read

(Nn)32(α+α) + iZ(Nn)21(α−α) + (Nn)31αα = −(Nn)42−Z2(Nn)24. (2.9)

Writing α as α = α1+iα2 and taking in turn n = −1, 1, 2, a non-homogeneous
linear system of equations follows,

Ab = d, A =

 N∗32 ZN∗22 N∗31
0 ZN22 N31

(N2)32 Z(N2)22 (N2)31

 ,
b =

 2α1

−2α2

α2
1 + α2

2

 , d = −

N∗42 + Z2N∗24
N42 + Z2N24

Z2(N2)24

 , (2.10)

where N∗ denotes the adjoint of N. The unique solutions to the system are
bk = ∆k/∆, where ∆ = det A and ∆k is the determinant of the matrix
derived from A by replacing the k-th column with d. However, the bk are
linked by b21+b22 = 4b3, which is the explicit secular equation for Scholte wave
over a monoclinic crystal with symmetry plane at x3 = 0,

∆2
1 + ∆2

2 = 4∆∆3. (2.11)

As a check, the limit case of a solid/vacuum interface is examined. When
the density of the fluid ρf is taken as zero, then by (1.2)2 Z = 0, and so
∆ = ∆1 = ∆3 = 0. The secular equation reduces to ∆2 = 0 (written at
Z = 0), that is the following quartic in X = ρsv

2 [10, 5, 6],∣∣∣∣∣∣
X[r2r6 − n26(X − η)] (X − η)(1 + n66X) + r26X X[r22 − n66(X − η)]

0 X X − η
(1 + r2)X − η 0 2r6(X − η)

∣∣∣∣∣∣ = 0.

(2.12)

3 Examples

Calculations for usual combinations of a solid and a fluid show that in gen-
eral the speed of a Scholte wave is very close to the speed of sound in the
fluid. Hence, consider water (ρf = 1025 kg/m3, c = 1531 m/s at 25oC [11])
over gypsum (monoclinic, ρs and Cij in Table 1 [12]): the secular equation
(2.11) yields a Scholte wave speed within the interval [1519 m/s, 1526 m/s]
(depending on the orientation of the cut plane), which is within less than
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0.8% of the speed of sound in the water and beyond reasonable accuracy for
measurements.

Yet for certain choices, the Scholte wave speed moves away from the speed
of sound in the fluid. One example is the combination ice/water presented
in the Introduction. A second example is the combination of pure water
(ρf = 998 kg/m3, c = 1498 m/s at 25oC [11]) and Terpine Monohydride
(orthorhombic, ρs and Cij in Table 1 [3]): at θ = 0o and θ = 90o (crystal cut
along a plane containing two crystallographic axes) the wave propagates at
1228.3 m/s and 1249.5 m/s, respectively; Figure 2(a) shows how the Scholte
wave speed varies between these two extremes as a function of θ. Another
way of separating distinctly the Scholte wave speed from the sound speed is to
increase the pressure, and hence the speed of sound, in the fluid. Crowhurst
[13] et al. recently measured the Scholte wave speed for Methanol over Ger-
manium in a diamond anvil cell: as the pressure increases from 0.56 GPa
to 2.2 GPa, so does the speed of sound in Methanol, from about 2500 m/s
to 3500 m/s. In Table 1, the stiffnesses and density of Germanium (cubic)
at 20o are recalled [3]; the density of Methanol is 791.4 kg/m3 at 20o [11].
Figure 2(b) shows, in agreement with their results, the combined influence
of orientation and speed of sound on Scholte wave propagation; each curve
corresponds to a different speed of sound in Methanol, from c = 2000 m/s
(bottom curve) to c = 4000 m/s (top curve) by 500 m/s increments.
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Figure 2: Scholte wave speeds for (a) Water/Terpine interface and (b)
Methanol/Germanium interface, where the speed of sound in the fluid is
[m/s]: 2000 (bottom curve), 2500, 3000, 3500, 4000 (top curve).
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List of Figures.

Figure 1: Fluid/solid interface.

Figure 2: Scholte wave speeds (a) Water/Terpine interface and (b)
Methanol/Germanium interface, where the speed of sound in the
fluid is [m/s]: 2000 (bottom curve), 2500, 3000, 3500, 4000 (top
curve).

Figure 2(a):
Legend on graduated horizontal axes: “boundary plane/crystallographic plane
angle [deg].”
Legend on graduated vertical axis: “Scholte wave speed [m/s].”

Figure 2(b):
Legend on graduated horizontal axes: “boundary plane/crystallographic plane
angle [deg].”
Legend on graduated vertical axis: “Scholte wave speed [m/s].”
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Table 1. Values of the elastic stiffnesses (1010 N/m2), density (kg/m3), and
surface (Rayleigh) wave speed (m/s) for 3 crystals.

crystal C11 C22 C12 C16 C26 C66 ρs vR

ice (−5oC) 1.38 1.38 0.707 0 0 0.3365 940 1766
gypsum 50.2 94.5 28.2 -7.5 -11.0 32.4 2310 3011
terpine 1.25 0.99 0.38 0 0 0.346 1110 1644
germanium 12.92 12.92 4.79 0 0 6.70 5320 2936
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