

Provided by the author(s) and NUI Galway in accordance with publisher policies. Please cite the published version when available.

Title	Characterization of separated pig manure composted with a variety of bulking agents at low initial C/N ratios
Author(s)	Troy, Shane M.; Healy, Mark G.; Kwapinski, Witold
Publication Date	2011
Publication Information	Nolan, T., Troy, S.M., Healy, M.G., Kwapinski, W., Leahy, J.J., Lawlor, P.G. (2011) 'Characterization of separated pig manure composted with a variety of bulking agents at low initial C/N ratios'. Bioresource Technology, 102 :7131-7138.
Link to publisher's version	http://dx.doi.org/10.1016/j.biortech.2011.04.066
Item record	http://hdl.handle.net/10379/3270
DOI	http://dx.doi.org/10.1016/j.biortech.2011.04.066

Downloaded 2022-05-19T03:15:59Z

Some rights reserved. For more information, please see the item record link above.

1 2 3 4	Published as: Nolan, T., Troy, S.M., Healy, M.G., Kwapinski, W., Leahy, J.J., Lawlor, P.G. 2011. Characterization of separated pig manure composted with a variety of bulking agents at low initial C/N ratios. Bioresource Technology 102: 7131-7138.
5	Characterization of compost produced from separated pig manure and a variety of
6	bulking agents at low initial C/N ratios
7	
8	Tereza Nolan ^a *, Shane M. Troy ^{ab} , Mark G. Healy ^b , Witold Kwapinski ^c , James J. Leahy ^c
9	and Peadar G. Lawlor ^a
10	
11	^a Teagasc, Pig Development Department, Animal & Grassland Research & Innovation
12	Centre, Moorepark, Fermoy, Co. Cork, Ireland.
13	^b Civil Engineering, National University of Ireland, Galway, Co. Galway, Ireland
14	^c Chemical and Environmental Science, University of Limerick, Limerick, Ireland
15	*Corresponding author. Tel.: +353 2542254; fax: +353 2442340, E-mail address:
16	tereza.nolan@teagasc.ie
17	
18	A B S T R A C T
19	The aim of this study was to investigate the composting of separated pig manure
20	solids with or without a variety of bulking agents at a low initial C/N ratio (12.5-23.3).
21	Compost stability was investigated using an oxygen uptake rate (OUR) test and
22	compost maturity was investigated using a germination index test (GI). All treatments
23	showed typical patterns of compost temperature. Temperatures above $60 \ ^{\circ}C$ were
24	achieved by Day 2, followed by a thermophilic phase (50-60 °C), which lasted for 1 to
25	2 weeks followed by a cooling phase. The stability of one of treatments which did not
26	contain any bulking agent - OUR of 25 mmol O2 .kg ⁻¹ OM. hour ⁻¹ - was negatively

1	affected by its initial high water content (69%). The addition of a bulking agent as well
2	as initial water content below 60% was necessary to compost the separated solid
3	fraction of pig manure at a low initial C/N ratio.
4	Keywords: Compost; germination; oxygen uptake rate; oxitop system; swine
5	
6	1. Introduction
7	
8	1.1 Background
9	
10	Traditionally, in Ireland, pig manure management involves land spreading. Since
11	August 2006, in accordance with S.I. 378 of 2006 and its amendment (S.I.101 of 2009),
12	the quantity of livestock manure applied to land, together with that deposited to land by
13	livestock, can not exceed an amount containing 170 kg of organic nitrogen (N) per
14	hectare per year. Consequently, farmland that had been used for spreading pig manure
15	in the past may no longer be available. In addition, the amount of land in Ireland
16	available for the application of pig manure is likely to be further restricted from January
17	2011. From this date, the current transitional provisions allowing application of plant
18	available phosphorus (P), measured in Ireland as Morgan's P (Morgan, 1941), to soils at
19	soil P Index 4 - soils with a $P_m > 8 \text{ mg L}^{-1}$ above which there is a risk of P loss to water
20	(Schulte et al., 2010) - expires. Many soils which were previously used as spreadlands
21	for pig manure may well be at Index 4, thereby preventing further manure application
22	on such lands (Hackett, 2000).
23	For these reasons, alternative management strategies for pig manure, such as

24 composting, should be considered and explored. Composting has the potential to

increase the fertilizer value of the manure by binding the mineral nutrients into a stable
 organic structure (Burton and Turner, 2003).

3

4 *1.2 Composting of pig manure*

5

6 Composting is an aerobic process which involves the decomposition of organic 7 matter (OM) under controlled temperature, moisture, oxygen and nutrient conditions. 8 To ensure successful composting, careful material preparation must be undertaken, and 9 compost stabilization and maturity must be achieved before the process is terminated. 10 The preparation stage involves optimising water content (WC), nutrient balance, and the 11 structure of the raw materials. Biological stabilization of the materials determines the 12 effectiveness of the composting process. Stabilization of the OM is necessary to 13 eliminate the risk of putrefaction and to prevent the production of metabolites, which 14 are toxic to plants (Bernal et al., 2009; Luduvice, 2001). The stabilization and maturity 15 of the compost is dependent on the preparation of the material and the correct initial 16 conditions. 17 The C/N ratio of the initial material is of great importance. C is mainly used as an 18 energy source and for building microbial cells and N is required for microbial

19 development and reproduction through protein synthesis (Sweeten and Avermann,

20 2008). A low C/N ratio will reduce the amount of bulking agents needed and

21 consequently the cost of composting (Zhu, 2007). However, to ensure that a low initial

22 C/N ratio does not impair the compost process, it is essential to examine the stability

and maturity of the final compost. According to Sweeten and Avermann (2008), the

ideal initial C/N ratio for manure composting should be between 20 and 30. Bernal et al.

(2009) propose a C/N ratio for composting in the range of 25-35. Eiland et al. (2001)
 used a mixture of *Miscanthus* straw and pig manure with initial C/N ratios of 25 and 16
 without any adverse impact on the composting process. Zhu (2007) studied the effect of
 low initial C/N ratio when composting pig manure with rice straw and concluded that an
 initial C/N ratio of 20 could successfully produce high quality compost.

Compost quality is often defined by its maturity and stability. Maturity is related
to phytotoxicity. The UK Composting Association (2001) defined mature compost as
'compost that does not have a negative effect on seed germination or plant growth'.
Stability is associated with the compost's microbial activity (Bernal et al., 2009), with
more stable compost having less microbial activity.

However, other physical criteria such as odour, colour, temperature, particle size
and inert material as well as chemical criteria such as nutrient content, ammonia, pH,
soluble salts and pollutants also determine compost quality (Bernal et al., 2009).

Therefore, along with physical and chemical characteristics, maturity parameters such as germination index (GI) and the degree of OM humification as well as stability parameters such as aerobic respiration rate and biologically available carbon are widely used to assess pig manure compost quality (Huang et al., 2006; Tiquia, 2010; Zhu, 2007).

Bernal et al. (2009) reviewed a wide range of manure compost quality parameters and highlighted the need for a harmonization of such criteria internationally if the development of a market for manure compost materials that supports and promotes a waste composting strategy is to be achieved. Prasad and Foster (2009) have reviewed some compost quality parameters and have recommended that an Oxygen Uptake Rate (OUR) test for evaluating stability should be used. This method is being considered as a

standard test by the European Committee for Standardization (CEN -Comité Européen
 de Normalisation) (Prasad and Foster, 2009).

3 Oxygen (O₂) consumption, or Oxygen Uptake Rate (OUR), is an indicator of 4 compost stability and it gives information on the degree to which biodegradable OM is 5 broken down within a specified time period. This is because compost with an 6 abundance of easy biodegradable OM will have a high demand for O₂ as 7 microorganisms that metabolise OM require oxygen. 8 For the evaluation of pig compost maturity, many studies have used a GI (Huang 9 et al., 2004; Tiquia, 2010; Zhu, 2007). GI is a combination of the germination rate and 10 root elongation of the seeds used to detect the degree of toxicity present in a compost 11 sample (Tiquia, 2010). 12 The aim of this study was to investigate the physicochemical parameters of a 13 compost mixture comprising of the solid fraction of separated pig manure and a variety 14 of bulking agents (sawdust, shredded green waste, chopped straw and woodchip) at a 15 low initial C/N ratio (12.5-23.3). Compost stability was investigated using an OUR test 16 and the compost maturity was investigated using a GI. 17 18 2. Materials and methods 19 20 2.1 Trials site and manure separation process 21 22 This experiment comprised two trials. Trial 1 commenced in June 2009 and 23 finished in August 2009. Trial 2 commenced in October 2009 and finished in November 24 2009. In both trials, raw pig manure was collected from an overground aerated manure

1	storage tank at Teagasc, Pig Development Department, Fermoy, Co. Cork, Ireland, and
2	was a mixture of pig manure that came from all stages of production

3	A decanter centrifuge (GEA Westfallia Separator UCD 205, GEA WestfaliaSurge
4	GmbH, Bönen, Germany) was used to perform the mechanical separation of the liquid
5	manure. Alum - in liquid form - and a water soluble polyacrylamide flocculent (PAM)
6	were used to increase the efficiency of separation. Alum was applied at approximately 3
7	litres per m ³ of slurry. PAM was diluted with water to 0.4% by volume and added at
8	approximately 17% by volume. For both trials, the separation process was replicated
9	each day for 4 days to achieve 4 replicates.
10	Average dry matter (DM) for liquid pig manure before separation, solid fraction
11	after separation, and liquid fraction after separation for Trial 1 were $2.4 \pm 0.17\%$, $38.0 \pm$
12	3.19% and 0.3 \pm 0.07%, respectively. For Trial 2, these values were 2.5 \pm 0.98%, 30.6 \pm
13	2.27% and $0.2 \pm 0.05\%$, respectively.
14	
15	2.2. Treatments and compost set up
16	
17	In Trial 1, there were 4 treatments each using the solid fraction of separated pig
18	manure (SPM) and the addition of bulking agents, were applicable, to achieve a C/N

19 ratio of 20 or less: (T1) 38 kg of SPM; (T2) 38 kg of SPM + 9.5 kg of sawdust; (T3) 38

20 kg of SPM + 9.5 kg of shredded green waste and (T4) 38 kg of SPM + 2.8 kg of

21 chopped straw. In Trial 2, there were also 4 treatments: (T1) 38 kg of SPM; (T2) 38 kg

- of SPM + 9.5 kg of sawdust (T3) 38 kg of SPM + 9.5 kg of woodchip and (T4) 38 kg of
- 23 SRM + 4.75 kg of sawdust + 4.75 kg of woodchip. At the end of Trial 1 preliminary
- 24 results indicated that sawdust was the most suitable bulking agent while the absence of

bulking agent resulted in the compost of worse quality. Therefore for Trial 2 it was
 decided to include these treatments again and to compare them to different bulking
 agents.

The straw (barley) was chopped to a length of 30 to 100 mm. The sawdust used was Sitka spruce (*Picea sitchensis*) and the woodchip was fir (*Abies*). The shredded green waste was a mixture of tree leaves, foliage and small twigs, and was collected from a local arboriculture management company. Selected physicochemical parameters for the solid fraction of the separated pig manure and bulking agents are presented in Table 1.

10 In both trails, each treatment was replicated four times (16 compost piles per 11 trial). In each trial, 16 fully insulated compost tumblers (Jora JK270 Composter, 12 Joraform AB, Mjölby, Sweden; built without the internal partition) were used to 13 compost the mixtures. The two materials (manure and bulking agent) were mixed 14 thoroughly to insure uniformity. The temperature of the compost pile was recorded 15 every morning with long-stemmed thermometers (Traceable® X-long Stem Therm 16 Ultra, Control Company, Texas, USA). Two thermometers were inserted into the 17 middle of the pile at different locations and from different directions. The higher 18 temperature was recorded. Aeration of the tumblers was provided by manually turning 19 the tumblers twice-a-day (morning and afternoon) for the first week of each trial. From 20 the second week, the tumblers were turned once-a-day. Tumblers were turned after the 21 temperature was recorded. Figure 1 is an illustration of the experimental design.

22

23 2.3 Analytical methods

1	Both trials were undertaken for 56 days and samples were collected from each
2	tumbler on Days 0, 3, 7, 14, 21, 28, 42 and 56 for analyses. Each sample was a
3	composite of 6 sub-samples – 3 sub-samples taken from the top and 3 from the bottom
4	of the compost pile. Each of the 3 sub-samples was taken at different locations (right,
5	centre and left of the pile). Analyses of WC and pH were performed on fresh samples
6	on the day of collection. After determination of WC, the dried material was milled and
7	stored in a cold room (c. 2 °C) for C and N analyses later. Fresh samples were collected
8	on Days 0 and 56 for bulk density, OM and respiration tests (OUR), and, on Day 56, for
9	the cress seed germination test.
10	
11	2.3.1 Physicochemical analyses
12	
13	Water content was determined after Hao et al. (2004) by drying the samples in an
14	oven at 60 °C until the weight of the dried samples remained constant. Measurement of
15	pH was performed after Tiquia et al. (2002) using a bench top meter (SevenEasy,
16	Mettler-Toledo, Switzerland) in water solution at a compost/distilled water ratio of 1:10
17	(w/v). Ash and OM were determined after Tiquia (2005) by incinerating pre-dried
18	samples in a furnace (Carbolite, Sheffield, England) at 550 °C for 5 hours. The loss of
19	organic matter (<i>OMLoss</i>) was calculated from the Day 0 (<i>OM</i> ₀) and Day 56 (<i>OM</i> ₅₆)
20	organic matter contents according to:
21	$OMLoss = \frac{OM_o - OM_{56}}{100} x100$
22	$OM_{O} \times (100 - OM_{56})^{1100}$
23	Total C and N content were determined by loss of ignition (LOI) in a CHNOS

24 Elemental Analyser Vario EL Cube (Elemental Analysensysteme GmbH, Hanau,

1	Germany) at a combustion temperature of 1100 - 1200 °C. Bulking density was
2	performed by suspending a funnel above a 1-litre measuring cylinder. The funnel was
3	filled with the sample and allowed to flow freely into the measuring cylinder. The
4	excess material on top of the measuring cylinder was scraped off. The sample and the
5	cylinder were then weighed and the weight / volume (bulk density) was calculated in kg
6	.m ⁻³ .

8 2.3.2 Oxygen uptake rate and cress seed germination tests

9

10 The aerobic biological activity of the compost was measured by calculating the OUR using a pressure transducer system (System OxiTop® Control ^{OC}110, WTW 11 12 Gmbh, Weilheim, Germany). Two grams of OM of each compost sample were mixed 13 with 180 ml of distilled water and 10 ml of a nutrient solution, 10 ml of pH buffer and 14 2.5 ml of a nitrification inhibitor (Appendix A) in 1000ml Duran® bottles. The control 15 tests were performed without compost sample. The bottles were placed - unsealed - on a 16 stirring platform and incubated at 30 ± 2 °C for four hours. Pressure transducer heads 17 were then attached to the bottles and the samples returned to the incubator for 5 days. 18 During this period, the rate at which oxygen was consumed by the inherent micro-19 organisms was estimated by measuring the pressure drop in the headspace above the 20 water phase. Soda lime pellets, placed in a compartment in the headspace, were used to 21 remove the effect of carbon dioxide (CO_2) production. The oxygen consumption was 22 then calculated according to:

23

$$Oc = \frac{\Delta P \times 10}{R \times (273.15 + T)} \frac{V_{gas} \times 10000}{W \times DM \times OM}$$
[2]

where Oc is the oxygen consumption (mmol O₂.kg⁻¹ OM. hour⁻¹); ΔP , the pressure 1 drop in the headspace (kPa); R, a gas constant (83.14 L.kPa.K⁻¹.mol⁻¹); T, the 2 3 temperature at which the measurement was performed (°C); W, the initial weight of the 4 sample (kg); DM, the dry matter content of the sample (%-w); OM, the organic matter 5 content of the sample (%-w); and V_{gas} is the volume of the gas phase (ml), calculated 6 according to: 7 $V_{gas} = V_{vessel} - \frac{W \times DM \times 10000}{\rho} - V_{liquid}$ 8 [3] 9 where V_{vessel} is the total volume of vessel (ml); V_{liquid} , all added liquids (water, nutrient 10 solution, pH buffer and ATU solution; ml); and ρ is the sample density (kg·m⁻³), 11 12 calculated according to: 13

14
$$\rho = \frac{1}{\frac{OM \times W \times DM}{1550}} + \frac{(1 - OM) \times W \times DM}{2650}$$
[4]

The oxygen uptake rate (OUR, mmol O₂.kg ⁻¹ OM. hour⁻¹) was then calculated from
Eqn. [2] and the related time period according to:

$$18 \qquad OUR = \frac{Oc}{\Delta t}$$
[5]

19 where: Δt is the time (in hours) when $\Delta P = 0$.

A cress seed germination test was performed after Prasad et al. (2010) on a mixture of 50% compost and 50% peat moss in a 10 mm-long by 10 mm-wide Petri dish to assess the compost maturity. The dish was completely filled with the compost and peat mixture. Ten cress seeds were sown per dish. To ensure that there was good contact with the sample material, approximately 0.5 ml of water was added to each

1	seed. The dishes, inclined at a $70 - 80^{\circ}$ angle to the horizontal with the seeds on the
2	underside, were incubated at 25 ± 2 °C, in the dark. After 72 hours, the number of
3	germinated seeds was counted and the root length measured. The control test was
4	performed with fertilised peat. Each treatment was performed in triplicate. Germination
5	index (GI) was then calculated after Tiquia and Tam (1998):
6	$GI = \frac{\text{Mean germination in treatment (\%)}}{\text{Mean germination in control (\%)}} \times \frac{\text{Mean root lenght in treatment (\%)}}{\text{Mean root lenght in control (\%)}} \times 100$
7	[6]
8	
9	2.4 Statistical analysis
10	
11	Data were analyzed using the Statistical Analyses System (SAS, V9.1.3, 2002-
12	2003). For comparison of WC, pH, bulk density, OM, N content, C/N ratio and OUR,
13	repeated measures ANOVA was used (Mixed procedure). The dependent variables
14	were: WC, pH, bulk density, OM, N content, C/N ratio and OUR. For all the above
15	analyses, the fixed effects were: treatment, day and tumbler. Day was the repeated
16	measure, and starting day was included as a random variable.
17	Model fit was determined by choosing the model with the minimum finite-sample
18	corrected Akaike's Information Criteria (AIC). A compound symmetry structure was
19	the best fit for OM (Trials 1 and 2) and for bulk density (Trials 1 and 2). The covariance
20	structure that provided the best model fit for OUR (Trials 1 and 2), WC (Trial 1), pH
21	(Trial 2), N content (Trials 1 and 2) and C/N ratio (Trials 1 and 2) was the heterogeneous
22	first-order autoregressive structure ARH(1). An autoregressive type 1 covariate
23	structure (AR1) was the best fit for pH (Trial 1). An unstructured covariance model was
24	the best fit for WC (Trial 2). Differences in least squares means were investigated using

1	Tukey's adjustment for multiple comparisons. Comparison of GI at Day 56 was
2	performed using the Proc Mixed SAS procedure. GI was the dependent variable.
3	Treatment was included as a fixed effect and start day was included as a random
4	variable. For all analyses, significance was at P≤0.05.
5	
6	3. Results and discussion
7	
8	3.1 Physical changes
9	
10	In the first 5 days, all the composts had a malodour and attracted a great amount
11	of flies. During this period, there was also a smell of ammonia (NH ₃) when the tumblers
12	were opened for sampling. After 7-8 days, the presence of flies was greatly reduced and
13	there was no longer a malodour.
14	At the end of the composting period, most of the treatments had a reduced
15	malodour, especially the green waste treatment. However, in the manure-only
16	treatments (T1), the bad odour remained and conglomerates (small spheres) were
17	formed over time during the turning of the tumblers. The manure in the other
18	treatments, however, remained loose, in small particles and well mixed with the bulking
19	agents. The structure of these composts improved with time and, by the end of the
20	composting period, the majority had achieved a peat-like appearance. This was reflected
21	in the results of initial and final bulk density (Table 2, P values for Day 0 vs. Day 56
22	comparison not shown). In both trials, Day 0 and Day 56 bulk density for all the
23	treatments with added bulking agents was the same (P values >0.05). For T1, Trial 2,
24	bulk density increased with time (P=0.0086). The bulking density increase for T1, Trial

1	2 was not statistically significant (P=0.57) most likely because its lower initial WC of
2	62% - initial WC for T1, Trial 2 was 69% (Table 3). Moreover, in both trials, bulk
3	density at Day 56 for the manure only treatment was higher than the bulk density of the
4	other treatments (Table 2).
5	
6	3.2 Temperature
7	
8	Changes in the temperature of composts for both trials are shown in Fig. 2. The
9	pattern of temperature change in a pig manure composting pile has been used to monitor
10	the stabilization of the composting process in many studies (Cronje et al., 2004; Eiland
11	et al., 2001; Huang et al., 2004, 2006; Szanto et al., 2007; Tiquia et al., 1996; Tiquia,
12	2005). The temperature variation during composting in these studies followed the same
13	3-phase pattern as the one observed in the present study: (i) initial heating phase, (ii)
14	thermophilic phase, and (iii) cooling/maturing phase.
15	In the initial heating phase, the temperature inside the compost piles began to rise
16	immediately, rapidly achieving peak temperatures. In Trial 1, temperatures had reached
17	>60 °C for all treatments by Day 3. In Trial 2, temperatures had reached >50 °C for all
18	treatments by Day 1. In this initial heating phase, mesophilic bacteria and fungi
19	metabolized readily degradable compounds such as sugar, fats, starch, amino acids and
20	protein, producing CO ₂ , NH ₃ , H ₂ O, organic acids and heat (Bernal et al., 2009). The
21	accumulation of this heat was responsible for the rise in temperature of the compost
22	mass. Although temperatures in both trials followed similar patterns (Fig. 2), in Trial 2
23	the temperatures failed to remain as high for as long. The average daily ambient
24	temperature during Trial 2 was lower (min 6.9 °C, max 14.2 °C) than that during Trial 1

(min 14.6 °C, max 21.5 °C), which may account for the slightly lower temperatures in
 the second trial.

3	Cronje et al. (2004), studying the relationship of stability and temperature in
4	composting of pig manure and straw, reported that the highest rate of bacterial activity
5	occurred at around 60 °C. They concluded that this temperature corresponded with the
6	compost of greatest stability, and therefore it is the optimum temperature at which a
7	composting mix of pig manure and straw should operate. Bernal et al. (2009) identified
8	an optimum temperature range of 40-65 °C for composting. In the present study, during
9	the second phase of composting, this ideal thermophilic temperature (50-65 °C) was
10	maintained for a period of 1 to 2 weeks. In Trial 1, temperatures remained above 50 °C
11	for a period of c. 2 weeks for all 4 treatments. In Trial 2, temperatures remained above
12	45 °C for a period of 8 or 9 days for T2-4. However, temperature for T1 dropped below
13	40 °C on Day 4. The final composting phase was characterized by a drop in
14	temperature, indicating that thermophilic bacterial activity had slowed down.
15	While temperatures of around 40-65 °C are optimum for composting,
16	temperatures above 55 °C are required to kill pathogenic microorganisms (Bernal et al.,
17	2009). In both trials, all the treatments achieved temperatures above 55 °C.
18	McCarthy et al. (2011) reported on the microbiological analyses (Salmonella,
19	yeasts and moulds, total coliforms, E. coli, enterococci and spore-forming bacteria) of
20	samples taken at different stages of composting from the current study. Mean E. coli
21	counts on Day 0 were 5.33 and 4.12 \log_{10} cfu g ⁻¹ for Trial 1 and 2, respectively. They
22	fell below the limit of detection (2.00 \log_{10} cfu g ⁻¹) by Day 14 and remained there to
23	Day 56. Mean <i>Enterococcus</i> counts on Day 0 were 4.26 and 4.89 \log_{10} cfu g ⁻¹ for Trials
24	1 and 2, respectively. By Day 14 they fell to just above the limit of detection and were

1	below the limit of detection by Day 56. In Trial 2, Salmonella was detected in one of the
2	T4 tumblers on Day 0 but was inactivated by the heat generated thereafter. According to
3	McCarthy et al. (2011) the final compost from both trials complied with EU regulations
4	(EC/208/2006; EC, 2006), which states that a marketable, processed manure product
5	must be free from Salmonella, with E. coli or Enterococcus counts not exceeding 3.0
6	\log_{10} cfu g ⁻¹ .
7	
8	3.3 Water content
9	
10	Water contents for the treatments throughout the 56 days of the trials are shown in
11	Table 3. In both trials, within each treatment, WC remained the same during the 56 days
12	(P>0.05). This is most likely because enclosed vessels (tumblers) were used to carry out
13	the composting in our study. With the rise in temperature, the water which evaporated
14	from the piles could not easily escape the tumblers. Much of the water vapour
15	condensed on the inner walls of the tumbler, replacing the water that was initially lost
16	through evaporation. This phenomenon could be clearly seen when the tumblers were
17	opened for sampling.
18	The ideal WC of a manure compost pile is between 40 and 60% (Sweeten and
19	Auvermann, 2008; Tiquia, 2005). Results show that the addition of bulking agents to
20	the separated fraction of pig manure reduced WC to adequate levels for composting. In
21	both trials, the WC for the 3 treatments that contained bulking agents remained within
22	the range of 49-61%. WC for the manure-only treatments remained above 60% in Trial
23	1 and above 68% in Trial 2. T1 lacked the bulking agent to absorb the high initial WC
24	of the separated pig manure. As a result, the WC of these piles had a significant effect

1	on the microbial activity. This was more evident in Trial 2 because of its higher initial
2	WC (Table 3). With a high initial WC of 69%, O_2 movement within the pile became
3	restricted, resulting in anaerobic conditions (Das and Keener, 1997). Consequently,
4	microbial activity slowed down and the production of heat was diminished. As a result,
5	temperature dropped below 40 °C on Day 4 (Fig. 2). This also had a detrimental effect
6	on the stability of this treatment (Section 3.7).
7	
8	3.4 рН
9	
10	Changes in pH for both trials are shown in Fig. 3. In both trials, the change in pH
11	for the 4 treatments followed a similar pattern. The increase in pH values between Day
12	0 and Days 3 and 7 coincide with the highest temperatures in the compost (Fig. 2).
13	Higher temperatures are indicative of higher microbiological activity (Tiquia, 2005).
14	This higher microbiological activity resulted in a higher NH ₃ production due to the
15	mineralization of the organic nitrogen (Eklind and Kirchmann, 2000b). Finally, the
16	higher NH ₃ production was reflected in the elevated pH's. The subsequent decrease in
17	pH was caused by nitrate formation as a result of H^+ released during microbial
18	nitrification (Eklind and Kirchmann, 2000b).
19	
20	3.5 Organic Matter
21	
22	Results for OM are shown in Table 2. In Trial 1, final OM for T1, T3 and T4 was
23	significantly lower than initial OM (P<0.001). However, for T2, initial and final OM
24	was not significantly different (P=0.46). Consequently, average loss of OM for T2

(16.6%) was lower than OM loss for Treatments 1, 3 and 4 (37.0%, 42.9% and 40.0%,
 respectively). In Trial 2, for T2, T3 and T4, initial and final OM were not significantly
 different (P=0.99, 0.93 and 1.0, respectively). OM for T1 decreased significantly over
 time (P=0.01). Consequently, average OM loss for T1 (22.1%) was higher than OM loss
 for T2, T3 and T4 (4.9%, -13% and 1.3%, respectively).

6 Szanto et al. (2007) recorded a 57% loss of OM during the composting of straw 7 rich pig manure (initial C/N ratio of 13) in turned piles. The smaller value of OM loss in 8 the present study (40% for T4, Trial 1) can be explained by the methodologies used. In 9 the present study, the OM losses were calculated as the difference in concentration of 10 OM only. The piles were not weighed at the end of the composting process. Therefore, 11 it was not possible to take into account the dry weight reduction of the pile as in Szanto 12 et al. (2007). Huang et al. (2004) did not take into account the dry weight reduction of 13 the piles and found a comparably small (5%) loss of OM when composting pig manure 14 and sawdust at a C/N ratio of 15.

15 On one hand, the lower loss of OM in T2 (Trial 1) and T2-4 (Trial 2) when 16 compared to the other treatments in the same trial can be explained by nature of the 17 bulking agents used (sawdust and woodchip). Woody materials have a high content of 18 lignin (Eklind and Kirchmann, 2000a). Lignin is extremely resistant to chemical and 19 enzymatic degradation. During a 150-day compost of sugar beet vinasse, Madejón et al. 20 (2001) did not record any lignin degradation. When composting cattle manure, Hao et 21 al. (2004) and Michel et al. (2004) also found a lower decomposition of the compost 22 substrate when using bulking materials rich in lignin (woodchip and sawdust) compared 23 to composting with straw, which had a lower lignin content. On the other hand, the

1	lower degradability of the woodchip mixture, when compared to the sawdust mixture
2	(Trial 2), was probably associated with its smaller surface area-to-mass ratio.
3	Prasad and Foster (2009) recommended a 20% minimum OM for Irish compost.
4	In both trials all treatments exceeded this limit.
5	
6	3.6 C/N ratio
7	
8	Day 0 and Day 56 C/N ratios as well as N content are shown in Table 2. For all
9	treatments, initial C/N ratio was higher than final C/N ratio, except T3 (Trial 2). The
10	lower C/N ratio at the end of the compost was a result of the degradation of the carbon
11	fraction of the materials composted, as the N content remained the same (Table 2).
12	During the compost process, carbonaceous materials such as carbohydrates, fats and
13	amino acids (degraded quickly in the first stage of compost) and also, cellulose,
14	hemicelluloses and lignin (partially degraded at a later stage) are partially mineralised,
15	leading to carbon losses throughout the process (Bernal et al., 2009).
16	As discussed earlier, the recalcitrant nature of the lignin present in the woodchip,
17	as well as its lower surface-to-mass ratio area can help explain the lower degradation
18	that occurred in T3 (Trial 2).
19	C/N ratio has been used to assess compost maturity (Hsu and Lo, 1999; Huang et
20	al., 2004, 2006) where a final C/N ratio of 20 or less was indicative of mature compost,
21	(when initial C/N ratio was above 20). In the present study, the final C/N ratio was
22	below 20 for all treatments, except T3, Trial 2. However, the initial C/N ratios were
23	already below 20 for most of the treatments (Table 2). Analysing the compost produced
24	from pig manure and sawdust, Huang at al. (2004) considered that the C/N ratio cannot

1	be used as an absolute indicator of compost maturation due to the large variation in
2	initial C/N ratio of the starting material. Likewise, in the present study final C/N ratio
3	should not be used as an indicator of compost maturity.

5 3.7 Oxygen Uptake Rate

6

Fig. 4 shows Day 0 and Day 56 pressure profile for T2, Trial 1 and for control sample throughout a 5-day incubation period. Pressure drop (maximum reading minus final reading) for Day 0 (178 hPa) was much higher than the pressure drop on Day 56 (58 hPa) reflecting the higher demand for O_2 in the initial, unstable material. Pressure drop for Day 0 and Day 56 for all the treatments followed the same trend (data not shown). Pressure in the control tests remained virtually unchanged (**Fig. 4**).

13 Results for the OUR tests across all trials and treatments are presented in Table 2 14 (P values for Day 0 vs. Day 56 comparison not shown). For all treatments, in both trials, 15 OUR Day 0 was significantly higher (P < 0.01) than OUR Day 56, except for Treatment 16 1, Trial 2 (P=0.38). In both trials, with the exception of T1 in Trial 2, all treatments achieved OUR values below 14 mmol O₂ .kg ⁻¹ OM. hour⁻¹. The proposed OUR value 17 for stable compost for Irish compost standards is 13 mmol O2 .kg ⁻¹ OM. hour⁻¹ (Prasad 18 19 and Foster, 2009). This value is similar to that used in Belgium and The Netherlands where values below 15 mmol O_2 .kg⁻¹ OM. hour⁻¹ are considered stable. Our results 20 21 show that, with the exception of T1 (Trial 2), a good degree of OM stabilization was 22 achieved for all treatments.

In Trial 2, the final OUR was higher (P<0.01) for T1 when compared to T2-4.
One factor that could have affected the stability of T1 was its very low initial C/N ratio

1	(12.5). However, T1 in Trial 1 (also a manure-only treatment), had a similar initial low
2	C/N ratio (12.0) and OUR value of 13.4 mmol $O_2 kg^{-1}$ OM. hour ⁻¹ . The initial WC of
3	the pig manure used in Trial 1 was not as high as that in the manure used in Trial 2
4	(62% and 69.4%, respectively; Table 1). Therefore, the lack of a bulking agent and the
5	initial low C/N ratio did not affect T1 in Trial 1 as significantly as it did in Trial 2. The
6	drop in temperature was not as evident in Trial 1 as it was in Trial 2 (Fig 2). It appears
7	that the high WC was responsible for the poor stability of the manure-only treatment in
8	Trial 2.
9	These results show that the high initial WC of the separated pig manure used had
10	a negative impact on the composting process. The high initial WC hampered the free
11	passage of air through the empty spaces of the compost mass, resulting in zones of
12	anaerobic conditions (Das and Keener, 1997). As a result, aerobic microbiological
13	activity was impaired and less heat was produced, which was also reflected in the lower
14	compost temperatures achieved with this treatment (Fig. 2).
15	Tiquia et al. (1996) studied the effect of different WCs (50, 60 and 70%) on the
16	composting of spent litter (a mixture of partially decomposed sawdust and pig manure).
17	They showed that the decomposition process on the 70% WC pile was slower than that
18	on the piles with 50 and 60% WC. At a WC of 70%, not only the microbial activity
19	during thermophilic phase was lower, but there was also a delay in reaching peak
20	temperatures. They found that high WC resulted in a cooling effect and also influenced
21	gaseous exchange by limiting diffusion and thus restricting oxygen utilization by the
22	microbial mass.
23	

3.8 Cress seed germination test

2	Germination indices are shown in Table 3. In Trial 1, the GI for T1 and T4 were					
3	lower (P<0.01) than that of T2 and T3. In Trial 2, there was no difference (P=0.81)					
4	between the GIs for all treatments.					
5	Different studies have proposed different GIs to indicate the disappearance of					
6	phytotoxicity compounds in manure composts. Tiquia et al. (1996) propose a GI above					
7	80-85%. Many manure compost studies follow this threshold (Huang et al., 2004;					
8	Tiquia and Tam, 1998; Tiquia, 2005). In the present study, 6 out of 8 composts have					
9	achieved GIs above 90% with the other two (T1 and T4, Trial 1) being >78%.					
10	The cress seed test and the OUR test were used in this study to measure different					
11	parameters of compost quality. On one hand, the cress seed test measures compost					
12	maturity and it is indicative of the presence or absence of phytotoxic components in the					
13	compost. On the other hand the OUR test indicates how stable the compost is. However,					
14	because phytotoxic compounds are produced by the microorganisms present in unstable					
15	composts (Zucconi et al., 1985), it was expected that results from both tests would					
16	present some correlation. In Trial 1, the OUR of T1 and T4 were above the					
17	recommended 13 mmol O_2 kg ⁻¹ OM. hour ⁻¹ . Therefore, their lower GI could be					
18	explained by the production of phytotoxic compounds by the microorganisms present in					
19	these less stable composts. In Trial 2, all treatments presented the same high GI even					
20	though the OUR value for T1 was significantly higher when compared to the other					
21	treatments.					
22	Our results show that unstable composts will not always inhibit germination.					
23	According to Zucconi et al. (1981), toxins are produced only during certain stages of					
24	decomposition and tend to be quickly inactivated. Moreover, when the first contact					

between roots and organic matter is not lethal, the plant shows a capability to recover
 and thrive in solids enriched with organic matter (Zucconi et al., 1981). This might
 explain why the unstable compost in our study did not produce a detrimental effect on
 seed germination and root elongation.

5 Compost quality (maturity and stability) is not related to only one compost 6 characteristic and, therefore, it should not be measured by a single parameter. In this 7 study, especially in Trial 2, the GI results, or any other parameter for that matter, should 8 not be analysed on their own. For T1, when including the results of OUR tests, C/N 9 ratios and physical properties into the analyses of compost quality, it can be concluded 10 that even though the GI was 101.6, the compost was not of good quality. Furthermore, 11 for T3, although the OUR value was below 13 mmol O_2 kg⁻¹ OM. hour⁻¹, the results of 12 C/N ratio and OM degradability indicated that the compost might not have achieved 13 complete maturation.

14

15 **4.** Conclusions

16

17 The addition of bulking agents and an initial WC less than 60% were necessary to 18 successfully compost the solid fraction of pig manure at a low initial C/N ratio. Suitable 19 bulking agents were sawdust, chopped straw and shredded green waste. Woodchip, due 20 to the presence of recalcitrant lignin and its large surface area, was not a suitable 21 bulking agent when used on its own. However, when used with sawdust, it provided 22 good quality compost. Test results for GI, OUR and C/N ratio highlight the need to use 23 parameters that measure maturity and stability simultaneously when assessing compost 24 quality.

1	
2	5. Appendix
3	
4	Solutions used in OUR test
5	Nutrient solution
6	Add 1ml of micronutrient solution to 1 litre of macronutrient solution:
7	<i>Macro nutrient solution</i> : NH ₄ CL (4.3 g l^{-1}), CaCl ₂ .2H ₂ O (5.4g l^{-1}), MgSO ₄ .7H ₂ O (4.3g
8	l^{-1}) and FeCl ₃ .6H ₂ O (0.03g l^{-1}). <i>Micro nutrient solution</i> : EDDHA 6% iron chelate (5.0g
9	L^{-1}), MnSO ₄ (1.4g L^{-1}), ZnSO ₄ (1.1g l^{-1}), Na ₂ B ₄ O ₇ (4.2g l^{-1}), CuSO ₄ (0.2g l^{-1}); NaMoO ₄
10	$(0.13 \text{g } \text{l}^{-1})$ and HCl (36%; 1ml l ⁻¹).
11	<u>pH buffer</u>
12	KH_2PO_4 (43 g per 500 ml of deionised water) and $Na_2HPO_4.2H_2O$ (89 g L ⁻¹ of deionised
13	water). Mixed ratio of about 1:4 for pH 7.
14	<u>ATU (nitrification inhibitor)</u> : N-Allylthiourea – $C_4H_8N_2S$ (4g l ⁻¹)
15	
16	Acknowledgements
17	
18	This research was funded by the Irish Department of Agriculture Food and
19	Fisheries' Research Stimulus Fund Programme (RSFP) under the National Development
20	Plan 2007-2013. The authors would like to thank Dr. Brendan Lynch, Tomas Ryan and
21	Peter Friska from the Teagasc, Pig Development Department in Moorepark and Dr.
22	Munoo Prasad for their great assistance with this work.
23	

es
es

3	Bernal, M.P., Alburquerque, J.A., Moral, R., 2009. Composting of animal manures and						
4	chemical criteria for compost maturity assessment. A review. Bioresour.						
5	Technol. 100, 5444–5453.						
6	Burton, C.H., Turner, C., 2003. Manure Management: Treatment strategies for						
7	sustainable agriculture, second ed. Silsoe Research Institute, Bedford, UK.						
8	Cronje, A.L., Turner, C., Williams, A.G., Barker, A.J., Guy, S., 2004. The respiration						
9	rate of composting pig manure. Compost Sci. Util. 12, 119-129.						
10	Das, K., Keener, H.M., 1997. Moisture effect on compaction and permeability in						
11	composts. J. Environ. Eng. 123, 275-281						
12	EC/208/2006 of the European Parliament and of the Council of 3 October 2002 laying						
13	down health rules concerning animal by-products not intended for human						
14	consumption.						
15	Eiland, F., Leth, M., Klamer, M., Lind, A.M., Jensen, H.E.K., Iversen, J.J.L., 2001. C						
16	and N turnover and lignocellulose degradation during composting of Miscanthus						
17	straw and liquid pig manure. Compost Sci. Util. 9, 186-196.						
18	Eklind, Y., Kirchmann, H., 2000a. Composting and storage of organic household waste						
19	with different litter amendments. I: carbon turnover and losses. Bioresour.						
20	Technol. 74, 115-124.						
21	Eklind, Y., Kirchmann, H., 2000b. Composting and storage of organic household waste						
22	with different litter amendments. II: nitrogen turnover and losses. Bioresour.						
23	Technol. 74, 125-133.						

1	Hackett, R., 2007. Exploiting pig manure as a nutrient source for cereals in Ireland.					
2	National Tillage Conference proceedings, published by Teagasc Crops Research					
3	Centre, Oak Park, Carlow, pp 57-77.					
4	Hao, X., Chang, C., Larney, F.J., 2004. Carbon, nitrogen balances and greenhouse gas					
5	emission during cattle feedlot manure composting. J. Environ. Qual. 33, 37-44.					
6	Hsu J., Lo, S., 1999. Recycling of separated pig manure: characterization of maturity					
7	and chemical fractionation of elements during compost. Wat. Sci. Technol. 40,					
8	121-127.					
9	Huang, G.F., Wong, J.W.C., Wu, Q.T., Nagar, B.B., 2004. Effect of C/N on composting					
10	of pig manure with sawdust. Waste Manage. 24, 805-813.					
11	Huang, G.F., Wu, Q.T., Wong, J.W.C., Nagar, B.B., 2006. Transformation of organic					
12	matter during co-composting of pig manure with sawdust. Bioresour. Technol.					
13	97, 1834-1842.					
14	Luduvice, M., 2001. Processos de estabilização de lodos, in: Andreoli, C. V., Von					
15	Sperling M., Fernandes, F. (Eds), Lodos de esgoto: tratamento e disposicao					
16	final. Editora FCO, Minas Gerais. pp. 261-297					
17	Madejón, E., Diaz, M.J., Lopez, R., Cabrera, F., 2001. Co-composting of sugarbeet					
18	vinasse: influence of the organic matter nature of the bulking agents used.					
19	Bioresour. Technol. 76, 275-278.					
20	Mc Carthy, G., Lawlor P. G., Coffey L., Nolan, T, Gutierrez M., Gardiner G. E. An					
21	assessment of pathogen removal during composting of the separated solid					
22	fraction of pig manure. Bioresour. Technol., submitted					

1	Michel, F.C., Pecchia, J.A., Rigot, J., Keener, H.M., 2004. Mass and nutrient losses					
2	during the composting of dairy manure amended with sawdust or straw.					
3	Compost Sci. Util. 12, 323-334.					
4	Morgan, M. F., 1941. Chemical soil diagnosis by the Universal Soil Testing System.					
5	Connecticut. Connecticut agricultural Experimental Station Bulletin 450					
6	Connecticut. New Haven.					
7	Prasad, M., Baumgarten, A., Grunstaudl, U., Ni Chualain, D., 2010. Recent					
8	developments in the measurement of stability and maturity of compost in					
9	Europe. Proceedings of the 7th International ORBIT 2010 Conference,					
10	Heraklion, Crete, June 29 - July 3, pp. 934 – 941					
11	Prasad, M., Foster, P., 2009. A quality standard for source-separated biodegradable					
12	material derived compost. EPA STRIVE Report, Series No. 22.					
13	SAS 9.1.3 Service Pack 4 Copyright (c) 2002-2003 by SAS Institute Inc., Cary, NC,					
14	USA.					
15	Schulte, R.P.O., Melland, A.R., Fenton, O., Herlihy, M., Richards, K., Jordan, P., 2010.					
16	Modelling soil phosphorus decline: expectations of water framework directive					
17	policies. Environ. Sci. and Policy 13, 472-484.					
18	S.I.No.101, 2009. European Communities (Good Agricultural Practice for Protection of					
19	Waters) Regulations 2009. The Stationary Office Dublin (ed), Ireland, pp. 51					
20	Sweeten, J.M., Auvermann, B.W., 2008. Composting manure and sludge. Agrilife					
21	Extension E-479, 06-08.					
22	Szanto, G.L., Hamelers, H.M., Rulkens, W.H., Veeken, A.H.M., 2007. NH ₃ , N ₂ O and					
23	CH ₄ emissions during passively aerated composting of straw-rich pig manure.					
24	Bioresour. Technol. 98, 2659-2670					

1	Tiquia, S.M., Tam, N.F.Y., Hodgkiss, I.J., 1996. Microbial activities during composting					
2	of spent pig-manure sawdust litter at different moisture contents. Bioresour.					
3	Technol. 55, 201–206.					
4	Tiquia, S.M., Tam, N.F.Y., 1998. Elimination of phytotoxicity during co-composing of					
5	spent pig-manure sawdust litter and pig sludge. Bioresour. Technol. 65, 43-49.					
6	Tiquia, S.M., Wan, J.H.C., Tam, N.F.Y., 2002. Microbial population dynamics and					
7	enzyme activities during composting. Compost Sci. Util. 2, 150-161.					
8	Tiquia, S.M., 2005. Microbiological parameters as indicators of compost maturity. J.					
9	Appl. Microbiol. 99, 816–828.					
10	Tiquia, S. M., 2010. Reduction of compost phytotoxicity during the process of					
11	decomposition. Chemosphere 79, 506-512.					
12	UK Composting Association, 2001. Large scale composting. A practical manual for the					
13	UK.					
14	Zhu, N., 2007. Effect of low initial C/N ratio on aerobic composting of swine manure					
15	with rice straw. Bioresour. Technol. 98, 9-13.					
16	Zucconi, F., Pera, A., Forte, M., 1981. Evaluating toxicity of immature compost.					
17	BioCycle, 22, 54–57.					
18	Zucconi, F., Monaco A., Forte, M., de Bertoldi. M., 1985. Phytotoxins during the					
19	stabilization of organic matter. In : Gasper, J.K.R. (Ed), Composting of					
20	agricultural and other wastes. Elsevier Applied Science Publishers, Barking, pp.					
21	73-85.					
22						

Figure captions:

- **Fig. 1** Illustrative diagram of experimental design
- **Fig. 2** Compost temperature for Trial 1 (a) and Trial 2 (b)
- **Fig. 3** Compost pH for Trial 1 (a) and Trial 2 (b)
- **Fig. 4** Effect of incubation time on pressure drop on Day 0 and Day 56 of Treatment 2,
- 6 Trial 1 (separated pig manure + sawdust) and blank control (no compost sample)

3 4

1 Table 1

Parameters	Separated pig manure (Trial 1)	Separated pig manure (Trial 2)	Sawdust	Green Waste	Straw	Woodchip
рН	8.3 ± 0.17	8.9 ± 0.19	4.9 ± 0.09	5.2 ± 0.07	7.5 ± 0.07	6.0 ± 0.19
DM (%)	38.0 ± 3.19	30.6 ± 2.27	84.2 ± 3.04	52.9 ± 4.55	88.2 ± 2.25	89.6 ± 2.46
Nitrogen (% db)	3.3 ± 0.34	3.1 ± 0.19	0.1 ± 0.01	0.8 ± 0.07	0.6 ± 0.03	0.8 ± 0.004
Carbon (% db)	39.1 ± 0.97	38.3 ± 0.85	48.8 ± 0.25	49.3 ± 0.01	44.9 ± 0.37	47.2 ± 0.08
C/N	12.0 ± 1.12	12.5 ± 0.76	466.5 ± 58.6	60.8 ± 5.10	72.4 ± 2.55	513.4 ± 24.1
Bulk density	374 ± 43.1	498 ± 75.3	40.2 ± 1.67	50.1 ± 4.08	9.6 ± 0.81	45.2 ± 4.29
Ash	25.0 ± 1.30	26.8 ± 1.29	0.3 ± 0.02	3.3 ± 0.51	3.7 ± 0.06	0.3 ± 0.04

2 Physicochemical parameters for separated pig manure and bulking agents (means \pm SD^a)

3 ^aSD (Standard Deviation) of n=4 for pH; n=8 for DM bulking agents; n=19 for DM pig manure

4 Trial 1; n=12 for DM pig manure Trial 2; n=4 for pig manure nitrogen and carbon; n=2 for

5 bulking agents nitrogen and carbon and n=3 for bulk density and ash.

Mean bulk density, Nitrogen (N) col	ntent, Carbon (C	J/N ratio, organic	e matter, oxygen t	iplake rate (OUR)	, and germ	ination index	t for compost trea	ments (means ± 5	D, n-4)					
	Trial 1						Trial 2							
	T1	T2	Т3	T4	s.e.	Р	T1	T2	Т3	T4	s.e.	Р		
Bulk density (kg.m ⁻³)														
Day 0	$374\pm43.1^{\rm A}$	$268\pm46.1^{\rm C}$	$300\pm28.6^{\rm AC}$	$231\pm53.6^{\rm C}$	23.19	< 0.01	$498\pm75.3^{\rm A}$	$339\pm 64.3^{\rm B}$	$359\pm56.3^{\rm B}$	$376\pm 66.3^{\rm B}$	27.17	< 0.01		
Day 56	428 ± 94.0^{a}	$273\pm3.8^{\rm b}$	$324\pm21.1^{\rm b}$	$228\pm15.2^{\rm b}$	23.19	< 0.01	$582\pm53.8^{\rm a}$	$330\pm46.3^{\text{b}}$	$341\pm30.0^{\rm b}$	$362\pm17.7^{\rm b}$	27.17	< 0.01		
N content (%)														
Day 0	$3.3\pm0.34^{\rm \ A}$	$2.3\pm0.28^{\rm \ B}$	$2.6\pm0.15^{\rm \ AB}$	$2.7\pm0.39^{\rm \ AB}$	0.08	< 0.01	$3.1\pm0.19^{\rm A}$	$2.2\pm0.25^{\rm B}$	$1.9\pm0.38^{\rm B}$	$2.0\pm0.29^{\rm B}$	0.14	< 0.01		
Day 56	$3.5\pm0.13^{\rm \ A}$	$2.3\pm0.12^{\rm C}$	$3.1\pm0.18^{\rm \ B}$	$3.3\pm0.18^{\rm \ AB}$	0.04	< 0.01	3.1 ± 0.23^{a}	$2.2\pm0.13^{\rm b}$	$1.8\pm0.13^{\rm b}$	$2.2\pm0.12^{\rm b}$	0.08	< 0.01		
C/N ratio														
Day 0	$12.0\pm1.12^{\rm \ A}$	$18.2\pm3.14^{\rm \ B}$	$16.0\pm1.21^{\rm \ AB}$	$14.6\pm1.93^{\rm AB}$	0.50	< 0.01	$12.5\pm0.76^{\rm A}$	$18.3\pm2.12^{\rm AB}$	$23.3\pm5.49^{\rm B}$	$21.7\pm3.79^{\rm B}$	1.76	< 0.01		
Day 56	$9.4\pm0.42^{\rm \ A}$	$16.6\pm1.28^{\mathrm{B}}$	$12.4 \pm 0.76^{\mathrm{C}}$	$10.3\pm0.39^{\rm \ A}$	0.14	< 0.01	$11.1\pm0.80^{\rm A}$	$17.9\pm0.96^{\rm B}$	$23.4\pm1.76^{\rm C}$	$17.5\pm1.13^{\rm B}$	0.61	< 0.01		
Organic Matter (%)														
Day 0	$75.0\pm1.66^{\rm A}$	$85.1\pm4.26^{\rm B}$	$83.4\pm2.90^{\rm BC}$	$78.3\pm2.03^{\rm AC}$	1.31	< 0.01	$73.2\pm1.18^{\rm A}$	$84.3\pm2.85^{\rm B}$	$81.2\pm2.06^{\rm B}$	$83.5\pm4.14^{\rm B}$	1.29	< 0.01		
Day 56	65.4 ± 1.38^{a}	$83.0\pm3.73^{\rm b}$	$74.0\pm2.14^{\rm c}$	68.4 ± 0.87^{ac}	1.31	< 0.01	68.1 ± 1.10^{a}	$83.5\pm0.53^{\rm b}$	$82.6\pm4.42^{\text{b}}$	$83.3\pm1.18^{\text{b}}$	1.29	< 0.01		
OUR (mmol O ₂ .kg ⁻¹ OM. hour ⁻¹)														
Day 0	50.8 ± 11.73	47.4 ± 12.20	43.2 ± 13.11	40.0 ± 9.42	5.91	0.59	35.6 ± 11.09	30.2 ± 8.36	35.0 ± 6.61	33.2 ± 4.76	4.16	0.78		
Day 56	13.4 ± 1.28^{a}	6.8 ± 2.05^{b}	12.5 ± 2.65^a	13.8 ± 3.11^{a}	1.19	< 0.01	25.2 ± 4.22^{a}	11.0 ± 1.44^{b}	$12.3\pm1.52^{\text{b}}$	$13.3\pm2.51^{\text{b}}$	1.28	< 0.01		
Germination Index Day 56	$78\pm 6.0^{\mathrm{a}}$	92 ± 11.2^{b}	$93\pm 6.0^{\text{b}}$	76 ± 12.1^{a}	4.64	< 0.01	101 ± 12.0	99 ± 2.4	100 ± 6.9	97 ± 5.6	3.41	0.81		

Table 2				
Mean bulk density, Nitrogen (N) content,	Carbon (C)/N ratio, organic matter	, oxygen uptake rate (OUR)	, and germination index for compost tre	atments (means \pm SD; n=4)

Germination Index Day 56 78 ± 6.0^{a} 92 ± 11.2^{b} 93 ± 6.0^{b} 76 ± 12.1^{a} 4.64<0.0 $a^{bC/ABC}$ Means without the same subscript, in a row, for the same Trial, were significantly different (P<0.05)</td>Trial 1 - T1: manure only; T2: manure and sawdust; T3: manure and shredded green waste; T4: manure and chopped straw.Trial 2 - T1: manure only; T2: manure and sawdust; T3: manure and woodchip; T4: manure and sawdust and woodchip.

which content (70) for compost piles (means ± 5D; if 4)												
	Trial 1						Trial 2					
	T1	Т2	Т3	T4	s.e.	р	T1	Т2	Т3	T4	s.e.	р
Day 0	64.1±2.81	51.8±7.31	61.0±1.82	58.2±4.21	3.64	0.14	69.3±1.71 ^a	58.3 ± 5.89^{b}	56.9 ± 3.44^{b}	55.9 ± 5.26^{b}	1.96	< 0.01
Day 3	62.3±4.05	53.4±5.37	60.0±1.99	58.2±2.48	3.28	0.29	$68.5{\pm}2.00^{a}$	57.8 ± 2.86^{b}	54.6±2.15 ^b	57.6 ± 2.82^{b}	1.44	< 0.01
Day 7	$63.3{\pm}2.87^{a}$	52.3 ± 0.75^{b}	59.4±3.63 ^a	56.9±4.31 ^a	2.02	0.01	68.7±1.97 ^a	55.8 ± 5.36^{b}	53.3 ± 3.32^{b}	54.4±3.91 ^b	1.71	< 0.01
Day 14	60.3±5.31 ^a	49.0±2.65 ^b	57.5±3.16 ^a	$53.7{\pm}7.00^{a}$	2.18	< 0.01	68.3±2.14 ^a	57.7 ± 5.14^{b}	53.5 ± 1.33^{b}	55.1±3.21 ^b	1.51	< 0.01
Day 21	62.1±3.41 ^a	51.0±2.30°	$58.3{\pm}1.78^{ab}$	55.5±5.16 ^{bc}	1.51	< 0.01	$68.0{\pm}2.22^{a}$	57.5 ± 3.80^{b}	$53.1 {\pm} 2.00^{b}$	55.8 ± 3.61^{b}	1.43	< 0.01
Day 28	62.2 ± 3.39^{a}	50.6±2.64°	58.1 ± 1.86^{ab}	55.7 ± 4.29^{b}	1.51	< 0.01	68.1±1.84 ^a	57.2±3.94 ^b	53.1 ± 3.04^{b}	55.3 ± 3.76^{b}	1.53	< 0.01
Day 42	62.5 ± 4.29^{a}	51.9±1.59°	59.0±2.00 ^{ab}	56.8 ± 3.95^{b}	1.42	< 0.01	67.9±1.61 ^a	57.6±3.92 ^b	$53.9 {\pm} 1.78^{b}$	56.2±4.12 ^b	1.42	< 0.01
Day 56	62.1 ± 4.04^{a}	52.0±0.59°	59.2±2.08 ^{ab}	57.5 ± 4.18^{b}	1.42	< 0.01	68.3±1.05 ^a	57.7 ± 4.40^{b}	52.7 ± 2.66^{b}	56.8±3.79 ^b	1.60	< 0.01
	abcar	4		0 1	T · 1		1 1:00					

Table 3 Water content (%) for compost piles (means ± SD; n=4)

^{abc} Means without the same subscript, in a row, for the same Trial, were significantly different (P<0.05);

Trial 1 - T1: manure only; T2: manure and sawdust; T3: manure and shredded green waste; T4: manure and chopped straw; Trial 2 - T1: manure only; T2: manure and sawdust; T3: manure and woodchip; T4: manure and sawdust and woodchip