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Abstract

Classical acoustoelasticity couples small-amplitude elastic wave propagation to
an infinitesimal pre-deformation, in order to reveal and evaluate non-destructively
third-order elasticity constants. Here, we see that acoustoelasticity can be also be
used to determine fourth-order constants, simply by coupling a small-amplitude
wave with a small-but-finite pre-deformation. We present results for compressible
weakly nonlinear elasticity, we make a link with the historical results of Bridgman
on the physics of high pressures, and we show how to determine “D”, the so-called
fourth-order elasticity constant of soft (incompressible, isotropic) solids by using
infinitesimal waves.
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1 Introduction

Acoustoelasticity is now a well established experimental technique used for the non-
destructive measurement of third-order elasticity (TOE) constants of solids, and its prin-
ciples can be found in standard handbooks of physical acoustics, such as Pao et al. (1984);
Kim and Sachse (2001). The underlying theory, however, is quite intricate, and over the
years several authors have produced different and irreconcilable expressions for the shift
experienced by the wave speed when elastic wave propagation is coupled to a pre-strain.
A common mistake found in the literature consists of the implicit assumption that since
a small pre-strain and a small-amplitude wave are described by linearized equations, they
can be superposed linearly. With that point of view, the coupling between the two phe-
nomena is of higher order and can be neglected in the first approximation. The flaw in
that reasoning is simply that these phenomena are successive, not linearly superposed.
Experiencing an infinitesimal pre-strain from a stress-free configuration is a linear process;
propagating an infinitesimal wave in a stress-free configuration is another linear process.
But in acoustoelasticity, the wave travels in a pre-stressed, not a stress-free solid, and
the laws of linear elastodynamics must be adapted to reflect this fact. The final outcome
of this analysis is that not only second-order, but also TOE constants appear in the
expression for the speed of an acoustoelastic wave.

For example, a longitudinal wave travelling in a solid subject to a hydrostatic stress
σI will propagate with the speed v0L given by

ρv20L = λ+ 2µ− 7λ+ 10µ+ 2A+ 10B + 6C

3λ+ 2µ
σ, (1.1)

where ρ is the mass density in the unstressed configuration, λ and µ are the (second-
order) Lamé coefficients, and A, B, C are the (third-order) Landau coefficients (Landau
and Lifshitz, 1986). This equation was correctly established as early as 1925 by Brillouin
and confirmed in 1953 by Hughes and Kelly, although several erroneous expressions have
appeared in between and since (see, e.g., Birch (1938); Tang (1967)).

From our contemporary perspective, the easiest way to re-establish and further this
expression is to rely on the modern theory of incremental (also known as small-on-large)
elasticity, which presents compact expressions for the tensor of instantaneous elastic mod-
uli, A0, given by its components

A0iijj = J−1λiλjWij,

A0ijij = J−1
λiWi − λjWj

λ2i − λ2j
λ2i , i 6= j, λi 6= λj,

A0ijji = J−1
λjWi − λiWj

λ2i − λ2j
λiλj, i 6= j, λi 6= λj,

A0ijij = J−1(λ2iWii − λiλjWij + λiWi)/2, i 6= j, λi = λj,

A0ijji = J−1(λ2iWii − λiλjWij − λiWi)/2, i 6= j, λi = λj,

(1.2)

in the coordinate system aligned with the principal axes of pre-strain, which, since the
material is isotropic, coincide with the principal axes of pre-stress. Here, W is the strain-
energy density per unit volume, which is a symmetric function of the principal stretches
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λ1, λ2, λ3 of the deformation, J = λ1λ2λ3, Wi = ∂W/∂λi and Wij = ∂2W/∂λi∂λj, i, j ∈
{1, 2, 3}; see, for example, Ogden (1997, 2007) for details. The corresponding principal
Cauchy stresses are given by σi = J−1λiWi, i = 1, 2, 3.

It is worth noting here for later reference that it follows from (1.2)2 that

A0ijij −A0jiji = σi − σj, i 6= j. (1.3)

A small-amplitude body wave may travel at speed v in the direction of the unit vector
n with polarization in the direction of a unit vector m provided the eigenvalue problem

Q(n)m = ρv2m (1.4)

is solved with ρv2 > 0, where Q(n) is the acoustic tensor, which has components

Qij(n) = JA0piqjnpnq. (1.5)

Note that sometimes the acoustic tensor is defined by (1.5) without the factor J , in which
case the ρ in (1.4) would be replaced by the density in the deformed configuration, i.e.
J−1ρ.

Notice that in this theory the amplitude of the acoustic wave is infinitesimal, but
that there is no restriction on the choice of W or on the magnitude of the underlying
pre-strain because we are in the context of finite nonlinear elasticity. It follows that the
expressions can be specialized in various ways, in particular to weakly nonlinear elasticity
(where W is expanded in terms of some measure of strain) and to special pre-strains.

Hence, to access the TOE constants, we take W as

W = WTOE ≡
λ

2
I21 + µI2 +

A

3
I3 +BI1I2 +

C

3
I31 , (1.6)

where In = tr(En), n = 1, 2, 3, are invariants of the Green–Lagrange strain tensor E.
The components (1.2) can then be expanded to the first order in terms of, for example,
the volume change ε ≡ J − 1 in the case of a hydrostatic pressure, or of the elongation
e1 ≡ λ1 − 1 in the case of uniaxial tension.

To access fourth-order elasticity (FOE) constants, we take W as

W = WFOE ≡ WTOE + EI1I3 + FI21I2 +GI22 +HI41 , (1.7)

where E, F , G, H are the FOE constants and we push the expansions of the wave speed
up to the next order in the strain. This is what we refer to as the large acoustoelastic
effect. In fact, the main purpose of this investigation is to provide a theoretical backdrop
to the current drive to determine experimentally the FOE constants of soft solids such
as isotropic tissues and gels in order to improve acoustic imaging resolution (see, e.g.,
Hamilton et al. (2004); Zabolotskaya et al. (2004, 2007); Gennisson et al. (2007); Rénier
et al. (2007); Jacob et al. (2007); Rénier et al. (2008b,a); Mironov et al. (2009)).

Because soft solids are often treated as incompressible, so that the constraint J ≡ 1
must be satisfied, we shall also consider the expressions for the TOE and FOE strain-
energy densities in their incompressible specializations, specifically

W = µI2 +
A

3
I3 (1.8)
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for TOE incompressibility and

W = µI2 +
A

3
I3 +DI22 (1.9)

for FOE incompressibility. Hence, in the transition from compressible to incompressible
elasticity, the number of second-order constants goes from two to one, of third-order
constants from three to one, and of fourth-order constants from four to one. This was
established by Hamilton et al. in 2004, although it can be traced back to Ogden in
1974 and even earlier, to Bland in 1969. Specifically, in that transition we note that the
elasticity constants behave as (Destrade and Ogden, 2010)

λ→∞, µ→ EY /3, (1.10)

for the second-order constants, where EY is the (finite) Young’s modulus,

A/µ = O(1), B/µ = O(λ/µ), C/µ = O(λ2/µ2) (1.11)

for the third-order constants,

E/µ = O(λ/µ), F/µ = O(λ2/µ2), G/µ = O(λ/µ), H/µ = O(λ3/µ3), (1.12)

for the fourth-order constants, and (C + F )/µ = O(λ/µ) for a combination of second-
and third-order constants. Some constants have the explicit limiting behaviour

B/λ→ −1, E/λ→ 4/3, G/λ→ 1/2, B +G+ λ/2→ D, (1.13)

where D remains a finite quantity, of the same order of magnitude as µ; see Destrade
and Ogden (2010) for analysis of the behaviour of A, B, . . . , H in the incompressible
limit and the connection with D. Note that the limiting behaviour for E in terms of the
initial Poisson’s ratio ν and Young’s modulus EY is thus (1− 2ν)E → 4EY /9. This was
shown in Destrade and Ogden (2010), but mistyped in equations (49) and (89) therein
as (1− 2ν)E → 4EY /3.

In this paper, we treat in turn the case of hydrostatic pre-stress (Section 2) and of
uniaxial pre-stress (Section 3), and we provide expansions of the body wave speeds up to
the second order in the pre-strain, and also in the pre-stress, for compressible solids and
in the relevant incompressible limits.

2 Hydrostatic pressure

Consider first a cuboidal sample of a compressible solid with sides of lengths (L1, L2, L3)
in its (unstressed) reference configuration. We define the reference geometry in terms
of Cartesian coordinates (X1, X2, X3) by 0 ≤ Xi ≤ Li, i = 1, 2, 3. The material is then
subject to a pure homogeneous strain x1 = λ1X1, x2 = λ2X2, x3 = λ3X3 and deformed
into the cuboid 0 ≤ xi ≤ li, i = 1, 2, 3, where (x1, x2, x3) are the Cartesian coordinates
in the deformed configuration, and the constants λ1, λ2, λ3 are the principal stretches
of the deformation. We now specialize the deformation to a pure dilatation so that
λ1 = λ2 = λ3 = J1/3. Since the material is isotropic the Cauchy stress σ is spherical,
σ = σI say, with σ > 0 (< 0) corresponding to hydrostatic tension (pressure).
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The pre-stress is computed as σ = J−1λ1W1 or, more conveniently, as σ = Ŵ ′(J),
where Ŵ (J) ≡ W (J1/3, J1/3, J1/3). Up to the second order in the volume change ε ≡ J−1,
we find

σ = κε+ 1
2
Ŵ ′′′(1)ε2, (2.1)

where κ = Ŵ ′′(1) = λ+ 2µ/3 is the infinitesimal bulk modulus, and

Ŵ ′′′(1) = −κ+
2

9
(A+ 9B + 9C). (2.2)

(It is a simple matter to check that the expansion (2.1) is equivalent to one first established
by Murnaghan (1951).) Conversely, the volume change is expressed in terms of the
hydrostatic stress as

ε =
1

κ
σ − Ŵ ′′′(1)

2κ3
σ2. (2.3)

Here the pre-stress does not generate preferred directions and the solid remains
isotropic. It follows that two waves may propagate in any direction, one longitudinal,
with speed vL, and one transverse, with speed vT , given by

ρv2L = JA01111, ρv2T = JA01212, (2.4)

where these quantities are computed from the formulas (1.2). Expanding in terms of the
volume change, we obtain

ρv2L = λ+ 2µ+ aLε+ bLε
2, ρv2T = µ+ aT ε+ bT ε

2, (2.5)

where

aL =
7

3
λ+

10

3
µ+

2

3
A+

10

3
B + 2C, aT = λ+ 2µ+

1

3
A+B, (2.6)

are the coefficients for the classical (linear) acoustoelastic effect, and

bL =
13

18
λ+

7

9
µ+

8

9
A+

44

9
B +

10

3
C +

8

3
E +

16

3
F +

20

9
G+ 12H,

bT =
1

2
λ+

5

9
µ+

1

2
A+

13

6
B + C + E + F +

2

3
G (2.7)

are the coefficients of the large (quadratic) acoustoelastic effect.
Alternatively, we may use (2.3) to express the wave speeds in terms of the pre-stress

rather than the pre-strain, as

ρv2L = λ+ 2µ+ cLσ + dLσ
2, ρv2T = µ+ cTσ + dTσ

2, (2.8)

thus recovering the classical formulas

cL =
aL
κ
, cT =

aT
κ
, (2.9)

for the (linear) acoustoelastic effect (Hughes and Kelly, 1953), and establishing the for-
mulas

dL =
bL
κ2
− aLŴ

′′′(1)

2κ3
, dT =

bT
κ2
− aT Ŵ

′′′(1)

2κ3
(2.10)
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P

Figure 1: Fit of the data measured by Hughes and Kelly [5] for pyrex subjected to
hydrostatic pressure based on the equations (2.8) and (2.11) with σ = −P describing the
large acoustoelastic effect.
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Figure 1: Fit of the data measured by Hughes and Kelly (1953) for pyrex subjected to
hydrostatic pressure P (in bars) based on the equations (2.8) and (2.11) with σ = −P
describing the large acoustoelastic effect: M and K are expressed in units of 105 bars.

for the large (quadratic) acoustoelastic effect, where Ŵ ′′′(1) is given in (2.2).
For an application of these results, we turn to the classical data of Hughes and Kelly

(1953). They performed acoustoelastic experiments and plotted the stress-dependent
shear and bulk moduli, defined as

M ≡ ρv2T , K ≡ ρv2L −
4

3
ρv2T , (2.11)

against the hydrostatic pressure P = −σ for polysterene and for pyrex. For the former,
the variations are clearly linear, and nothing would be gained by including FOE effects.
For the latter, there is a marked departure from the linear acoustoelastic effect at high
pressures, and we thus use (2.8) to obtain a better fit to the data. By digitizing the data
and performing a standard least square optimization, we found that for pyrex,

M(P ) = 2.73− 8.45× 10−6P − 1.21× 10−9P 2,

K(P ) = 3.27− 7.80× 10−5P + 4.07× 10−9P 2, (2.12)

where M and K are expressed in units of 105 bars and P in bars. The fit to the data is
shown in Fig. 1.

According to (2.8), the quantities (2.11) give access to λ and µ, to two linear combi-
nations of the third-order constants, and to two linear combinations of the fourth-order
constants. Specifically, we may solve (2.11) to find the Lamé constants as

λ = K(0)− 2

3
M(0), µ = M(0). (2.13)
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Similarly, we find two linearly independent combinations of the three third-order con-
stants:

A+3B = −3K(0) [1 +M ′(0)]−4M(0), A+9B+9C = −9K(0) [1 +K ′(0)] /2. (2.14)

Finally, we also find two combinations of the fourth-order constants:

E + F +
2

3
G =

7

6
K(0) +

4

3
M(0)

+
1

2
K(0)

[
K ′(0) +

13

3
M ′(0) +K ′(0)M ′(0) +K(0)M ′′(0)

]
,

E + 3F +G+ 9H =
17

24
K(0) +

3

2
K(0)

[
K ′(0) +

1

4
(K ′(0))

2
+

1

4
K(0)K ′′(0)

]
. (2.15)

Hence, for the pyrex data:

λ = 1.45× 105 bars, µ = 2.73× 105 bars,

A+ 3B = −1.24× 106 bars, A+ 9B + 9C = 1.00× 107 bars,

E + F + 2G/3 = −1.30× 107 bars, E + 3F +G+ 9H = 3.65× 107 bars. (2.16)

Clearly, the data of Hughes and Kelly (1953) are not sufficient to determine all the third-
and fourth-order constants. An additional relation is needed to determine experimentally
all the third-order constants, and a further two relations to determine the fourth-order
constants. These may be provided from, for example, wave speed measurements in uni-
axially deformed samples, as we show in the following section.

We conclude this section by evoking the work of P.W. Bridgman on “The Physics
of High Pressures” (Bridgman, 1945), which won him the 1946 Nobel Prize. He car-
ried out countless high pressure measurements on solids, and fitted his data with a
quadratic equation for the volume change, in the form ∆V/V0 = −aP + bP 2. Direct
comparison of this experimental law with (2.3) reveals the identifications a = 1/κ and
b = −Ŵ ′′′(1)/(2κ3). Further, acoustoelastic measurements give direct access to these
constants, because κ = K(0) and Ŵ ′′′(1) = −K(0)[2 + K ′(0)]. In Bridgman’s experi-
ments, very high pressures are required to obtain second-order deformations; however, his
coefficients a and b can also be determined by pressurizing the sample only linearly, and
then measuring the speeds of transverse and longitudinal waves. In fact, had Bridgman
been able to propagate such waves in his finitely deformed samples he would have had
access to the third term in the expansion, ∆V/V0 = −aP + bP 2 − cP 3 say, because the
continuation of (2.3) is

ε =
∆V

V0
= −1

κ
P − 1

2κ3
Ŵ ′′′(1)P 2 − 1

6κ5

[
3
(
Ŵ ′′′(1)

)2
− κŴ (4)(1)

]
P 3, (2.17)

where Ŵ (4)(1) is found to be expressible as

Ŵ (4)(1) =
19

9
κ− 4

9
(A+ 9B + 9C) +

8

3
(E + 3F +G+ 9H), (2.18)

in which each term can be determined experimentally using the equations of large acous-
toelasticity above.
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3 Uniaxial tension

We again consider the cuboidal sample as in Section 2, but now the cuboid is subject to
a uniaxial tension in the X1 direction so that it deforms homogeneously with elongation
e1 = l1/L1 − 1 = λ1 − 1 in the x1-direction. By symmetry it contracts laterally and
equibiaxially with elongation e3 = e2 = l2/L2 − 1 = λ2 − 1. The nominal stress (axial
force per unit reference area) is Jσ1/λ1 = σ1λ

2
2.

The condition that the lateral faces are free of traction is

σ3 ≡ σ2 = J−1λ2W2 = 0, (3.1)

which determines the extent of the lateral contraction −1 < e2 ≤ 0 (assuming that
λ2 < 1) and can be written in terms of e1, up to second order, as

e2 = −αe1 − βe21, (3.2)

where

α =
λ

2(λ+ µ)
, β =

3κλ

8(λ+ µ)2
+

λ2A

8(λ+ µ)3
+

[
λ(λ− 2µ)

2(λ+ µ)2
+ 1

]
B

2(λ+ µ)
+

µ2C

2(λ+ µ)3
,

(3.3)
and again κ = λ + 2µ/3 is the infinitesimal bulk modulus. Note that (3.2) collapses to
e2 = −e1/2 + 3e21/8 in the incompressible limits (1.10) and (1.12), as expected from the

expansion to second order of the connection λ2 = λ
−1/2
1 between the stretch ratios of an

incompressible solid in uniaxial tension.
Substituting (3.2) with (3.3) into the expression σ1 = J−1λ1W1 for the uniaxial stress,

we obtain the relation between the pre-stress and the pre-strain, up to the second order,
as

σ1 =
3κµ

λ+ µ
e1 + γe21, (3.4)

where

γ =
3κµ (5λ+ 3µ)

2 (λ+ µ)2
+

[
1− λ3

4 (λ+ µ)3

]
A+

3µ (3λ2 + 4λµ+ 2µ2)

2 (λ+ µ)3
B +

µ3

(λ+ µ)3
C. (3.5)

(Note that although 3κµ/(λ+ µ) = EY , the infinitesimal Young’s modulus, we shall not
use EY hereon.) Conversely,

e1 =
λ+ µ

3κµ
σ1 −

(
λ+ µ

3κµ

)3

γσ2
1. (3.6)

In the incompressible limits (1.10) and (1.12), the stress–strain and strain–stress relations
reduce to

σ1 = 3µe1 + 3

(
µ+

A

4

)
e21, e1 =

1

3µ
σ1 −

1

9µ3

(
µ+

A

4

)
σ2
1. (3.7)

Now we examine the possibility of a small-amplitude body wave travelling in the
direction of the unit vector n with polarization in the direction of a unit vector m. For
a general direction of propagation, the speeds of the different waves are found as the
eigenvalues of the acoustical tensor Q(n) in (1.5), i.e. as the roots of a cubic. In this
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paper, however, we focus on the wave speeds that are relatively simple to determine
experimentally. The speeds of non-principal body waves are not easily accessible because
they would require transducers to be placed at an angle to the faces of the cuboid, and
not in full flat contact, which would lead to additional transmission problems. This leaves
the principal body waves, as explained by Hughes and Kelly (1953): first, waves in the
direction x1 of the tension, and, second, principal waves in the x2 and x3 directions, which
are equivalent by symmetry.

In the direction of tension there exists a longitudinal wave with speed v11, say, and two
transverse waves, propagating with the same speed v12, say (in fact, these latter two waves
may be combined to form a transverse circularly-polarized wave). Hence, n = m = e1
for the longitudinal wave, and n = e1, m = e2 for the transverse wave, where e1 and
e2 are unit basis vectors corresponding to the coordinates x1 and x2, respectively. Using
(1.4) and (1.5) we then have

ρv211 = JA01111, ρv212 = JA01212. (3.8)

Expanding the elastic moduli in terms of the elongation e1, we obtain

ρv211 = λ+ 2µ+ a11e1 + b11e
2
1, ρv212 = µ+ a12e1 + b12e

2
1, (3.9)

where

a11 =
µ

λ+ µ
(λ+ 2B + 2C) + 2 (2λ+ 5µ+ A+ 2B) ,

a12 =
µ

λ+ µ

[
4(λ+ µ) +

λ+ 2µ

4µ
A+B

]
, (3.10)

for the classical acoustoelastic effect, and

b11 =
12λ2 + 51λµ+ 34µ2

2(λ+ µ)
+

[
10− λ3

4 (λ+ µ)3

]
A+

3 (λ+ 2µ) (12λ2 + 21λµ+ 10µ2)

2 (λ+ µ)3
B

+ µ

[
9

λ+ µ
+

µ2

(λ+ µ)3

]
C − λ2A

2 (λ+ µ)3
(B + C)− 3λ2 + 2λµ+ 2µ2

(λ+ µ)3
BC

− 3λ2 + 2λµ+ 2µ2

(λ+ µ)3
B2 − 2µ2

(λ+ µ)3
C2 +

6 (λ+ 2µ)

λ+ µ
E + 3

(
λ+ 2µ

λ+ µ

)2

F

+ 2

[
6 +

λ2

(λ+ µ)2

]
G+

12µ2

(λ+ µ)2
H, (3.11)

b12 = 6µ+
9 (λ+ 2µ)

8(λ+ µ)
A+

9µ

2(λ+ µ)
B − λ2

16(λ+ µ)3
A2 − 3λ2 + 2λµ+ 2µ2

2(λ+ µ)3
B2

− 5λ2 + 2λµ+ 2µ2

8(λ+ µ)3
AB − µ2

4(λ+ µ)3
(A+ 4B)C +

3µ (λ+ 2µ)

4 (λ+ µ)2
E +

µ2

(λ+ µ)2
F

+

[
2 +

λ2

(λ+ µ)2

]
G, (3.12)
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for the large acoustoelastic effect.
For propagation perpendicular to the direction of tension, we take n = e2. Then there

exists a longitudinal wave, with m = e2 and speed v22, a transverse wave polarized in the
direction of tensionm = e1 with speed v21, and a transverse wave polarized perpendicular
to the direction of tension, with m = e3 and speed v23. These speeds are given by

ρv222 = JA02222, ρv221 = JA02121, ρv223 = JA02323. (3.13)

Expanding the elastic moduli in terms of the elongation e1, we obtain

ρv222 = λ+ 2µ+ a22e1 + b22e
2
1, ρv22k = µ+ a2ke1 + b2ke

2
1, k = 1, 3, (3.14)

where

a22 = −2λ(λ+ 2µ) + λA+ 2(λ− µ)B − 2µC

λ+ µ
, (3.15)

a21 =
(λ+ 2µ)(4µ+ A) + 4µB

4(λ+ µ)
, (3.16)

a23 = −λ(4µ+ A)− 2µB

2(λ+ µ)
, (3.17)

are the classical acoustoelastic coefficients, and

b22 = −λµ(λ+ 2µ)

(λ+ µ)2
− λ(2λ2 − µ2)

2(λ+ µ)3
A− 3µ(3λ2 + 3λµ+ µ2)

(λ+ µ)3
B − µ(3λ2 + 4λµ+ 3µ2)

(λ+ µ)3
C

− λ2

4(λ+ µ)3
A2 − 2(3λ2 + 2λµ+ 2µ2)

(λ+ µ)3
B2 − 2µ2

(λ+ µ)3
C2 − 5λ2 + 2λµ+ 2µ2

2(λ+ µ)3
AB

− 3λ2 + 2λµ+ 6µ2

(λ+ µ)3
BC − λ2 + 2µ2

2(λ+ µ)3
AC +

3λ(λ− 2µ)

2(λ+ µ)2
E +

3λ2 + 4µ2

(λ+ µ)2
F

+ 4

[
1 +

λ2

(λ+ µ)2

]
G+

12µ2

(λ+ µ)2
H,

b21 = b12 − γ −
3κµ2

(λ+ µ)2
,

b23 = − λµ2

(λ+ µ)2
+
λ(3λ2 − µ2)

4(λ+ µ)3
A− 3(3λ2 + 2λµ+ µ2)µ

2(λ+ µ)3
B − 2µ3

(λ+ µ)3
C − λ2

8(λ+ µ)3
A2

− 3λ2 + 2λµ+ 2µ2

2(λ+ µ)3
B2 − 2λ2 + λµ+ µ2

2(λ+ µ)3
AB − µ2

2(λ+ µ)3
(A+ 2B)C − 3λµ

2(λ+ µ)2
E

+
µ2

(λ+ µ)2
F +

[
2 +

λ2

(λ+ µ)2

]
G, (3.18)

are the ‘large acoustoelasticity’ coefficients.
We may also find expressions for the acoustoelastic effect in terms of the pre-stress

σ1 as
ρv2ii = λ+ 2µ+ ciiσ1 + diiσ

2
1, ρv2ik = µ+ cikσ1 + dikσ

2
1, (3.19)
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where i = 1, 2 (no sum on repeated i), and k = 1, 3 (k 6= i). Using (3.6), we find that

cij =

(
λ+ µ

3κµ

)
aij, dij =

(
λ+ µ

3κµ

)2(
bij −

λ+ µ

3κµ
γaij

)
, (3.20)

where ij ∈ {11, 22, 12, 21, 23}. In particular, we recover

c11 =
1

3κ

[
λ+ 2B + 2C + 2

λ+ µ

µ
(2λ+ 5µ+ A+ 2B)

]
,

c12 =
1

3κ

[
4(λ+ µ) +

λ+ 2µ

4µ
A+B

]
,

c22 =
2

3κ

[
B + C − λ

µ

(
λ+ 2µ+

A

2
+B

)]
,

c21 =
1

3κ

[
λ+ 2µ+

λ+ 2µ

4µ
A+B

]
,

c23 = − 1

3κ

[
2λ+

λ

2µ
A−B

]
, (3.21)

for the classical acoustoelastic effect (Hughes and Kelly, 1953). Note that c12 − c21 = 1
and that d12−d21 = 1/(3κ), and hence in the incompressible limit d12 = d21. Using these
relations, we establish that

ρ(v212 − v221) = σ1 + 1/(3κ)σ2
1. (3.22)

Recall now that ρ is the mass density in the reference configuration. When expressed in
terms of the deformed density ρc = ρJ−1 equation (3.22) becomes

ρc(v
2
12 − v221) = σ1. (3.23)

This relation is in fact exact in accordance with (1.3) and the expressions ρv2ij = JA0ijij,
i 6= j specialized accordingly with σ2 = 0.

Finally, we take the incompressible limits of the elastic constants using the limiting
values listed in Section 1. There, we have ρv211 → ∞ and ρv222 → ∞, unsurprisingly, be-
cause longitudinal homogeneous plane waves may not propagate in incompressible solids.
For the transverse principal waves travelling in the direction of tension,

ρv212 = µ+

(
3µ+

A

4

)
e1 +

(
5µ+

7

4
A+ 3D

)
e21, (3.24)

in terms of the elongation (Destrade et al., 2010a), and

ρv212 = µ+

(
1 +

A

12µ

)
σ1 +

1

9µ2

[
2µ+

A

4

(
3− A

4µ

)
+ 3D

]
σ2
1, (3.25)

in terms of the pre-stress. For the transverse principal waves travelling perpendicular to
the direction of tension,

ρv221 = µ+
A

4
e1 + (2µ+ A+ 3D) e21,

ρv223 = µ−
(

3µ+
A

2

)
e1 +

(
5µ+

7

4
A+ 3D

)
e21, (3.26)
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in terms of the elongation, see (Destrade et al., 2010a), and, using (3.7),

ρv221 = µ+
A

12µ
σ1 +

1

9µ2

[
2µ+

A

4

(
3− A

4µ

)
+ 3D

]
σ2
1,

ρv223 = µ−
(

1 +
A

6µ

)
σ1 +

1

9µ2

(
8µ+ 3A+

A2

8µ
+ 3D

)
σ2
1, (3.27)

in terms of the pre-stress.
For an application, we use data for a sample of silicone rubber that has been subjected

to a standard tensile test. Figure 2 displays the variation of the tensile Cauchy stress
component σ1 with the elongation up to a maximum stretch of about 250%, at which
stage one end of the sample snapped out of its grip. Over that range, the TOE strain
energy density (1.8) is not able to capture the behaviour of the sample adequately, as
shown in Fig. 2, and is thus discarded. On the other hand, the FOE strain energy (1.9)
gives an excellent least-squares fit, with coefficient of correlation R2 = 0.9997. In fact,
the fit is very good up to a much larger value of the stretch than could be expected of this
fourth-order approximate theory. We determined the following values for the constants
of second-, third-, and fourth-order elasticity:

µ = 109.35 kPa, A = −454.18 kPa, D = 109.27 kPa. (3.28)

Note that all three are of the same order of magnitude, as expected from the theory
(Destrade and Ogden, 2010). We also remark that −8µ < A < −4µ, indicating that
the corresponding Mooney–Rivlin solid is materially stable (Destrade and Ogden, 2010;
Destrade et al., 2010b).

Using these values, the theoretical variations of the squared wave speeds ρv212, ρv
2
21,

ρv223 are plotted versus the elongation in Fig. 3. These curves suggest that it is sufficient
to elongate the sample by about 20% to reveal quadratic acoustoelastic effects, and thus
to determine D experimentally.

4 Discussion

This study was set within the framework of the theory of small-amplitude waves prop-
agating in a deformed elastic solid. Existing general expressions for the speeds of body
waves in a finitely deformed isotropic elastic solid were recalled and then specialized to
fourth-order elasticity. Specifically, the squared wave speeds were expanded in terms of
the pre-deformation (and, equivalently, in terms of the pre-stress) in order to reveal the
so-called acoustoelastic effect at the considered order. While the classical acoustoelastic
effect is concerned with the linear variation of the squared wave speed with the pre-stress,
the expansion was extended to the quadratic regime (large acoustoelastic effect). Explicit
expressions for the quadratic coefficients for compressible and incompressible materials
were determined for the cases of hydrostatic and uniaxial pre-stress. These coefficients
give access to the fourth-order elastic constants.

In the case of an incompressible sample under uniaxial tension, for example, mea-
surement of the variations of the speed of a single transverse wave with respect to the
pre-stress (or pre-strain) is enough to determine the elastic constants. The wave speed

12



σ1

e1

TOEHHY

FOE -

dataPPi

Figure 2: Fitting tensile data (thick curve) of the Cauchy stress σ1 (in Pa) against
the extension e1, for a sample of incompressible silicone rubber; the TOE strain-energy
density cannot capture the variations adequately; the FOE model gives an excellent
fit with only 3 material parameters, with values µ = 109.35 kPa, A = −454.18 kPa,
D = 109.27 kPa, obtained from the curve-fitting exercise.

We note that all three are of the same order of magnitude, as expected from the theory
[19]. We also remark that −8µ < A < −4µ, indicating that the corresponding Mooney–
Rivlin solid is materially stable [19, 22].

Using these values, the theoretical variations of the squared wave speeds ρv212, ρv
2
21,

ρv223 are plotted versus the elongation in Fig. ??(b). These curves suggest that it is
sufficient to elongate the sample by about 20% to reveal quadratic acoustoelastic effects,
and thus to determine D experimentally.

4 Discussion

This study was set within the framework of the theory of small-amplitude waves prop-
agating in a deformed elastic solid. Existing general expressions for the speeds of body
waves in a finitely deformed isotropic elastic solid were recalled and then specialized to
fourth-order elasticity. Specifically, the squared wave speeds were expanded in terms of
the pre-deformation (and, equivalently, in terms of the pre-stress) in order to reveal the
so-called acoustoelastic effect at the considered order. While the classical acoustoelastic
effect is concerned with the linear variation of the squared wave speed with the pre-stress,
the expansion was extended to the quadratic regime (large acoustoelastic effect). Explicit
expressions for the quadratic coefficients for compressible and incompressible materials
were determined for the cases of hydrostatic and uniaxial pre-stress. These coefficients
give access to the fourth-order elastic constants.

12

Figure 2: Fitting tensile data (thick curve) of the Cauchy stress σ1 (in Pa) versus the
elongation e1 for a sample of incompressible silicone rubber; the TOE strain-energy den-
sity cannot capture the variations adequately; the FOE model gives an excellent fit with
only 3 material parameters, with values µ = 109.35 kPa, A = −454.18 kPa, D = 109.27
kPa.

in the unstressed configuration gives the initial shear modulus µ of second-order elastic-
ity, the linear variation of the squared wave speed with the pre-stress or pre-strain gives
the third-order Landau-coefficient A, and the quadratic variation gives the fourth-order
constant D.

For compressible materials, Hughes and Kelly (1953) showed that any three of the
seven equations (2.5), (3.9), (3.14), with just the linear terms retained, or equivalently
(2.8), (3.19), excluding either the expression for ρv212 or for ρv221, suffice to determine the
two Lamé coefficients λ and µ of second-order elasticity and the three Landau coefficients
of third-order elasticity A, B, C. Here we have shown that any four of these seven
equations, with the quadratic terms now included, give access also to the fourth-order
constants E, F , G, H (again, excluding either the expression for ρv212 or for ρv221).

Although we have restricted attention largely to third- and fourth-order elasticity the
expressions for the components of the tensor of instantaneous elastic moduli A0 given in
(1.2) apply for an arbitrary finite deformation relative to an unstressed configuration of an
isotropic elastic material, and the subsequent incremental response depends on the finite
deformation and its accompanying pre-stress. If instead there is an initial stress in the
reference configuration then the components of A0 are considerably more complicated,
as detailed in Shams et al. (2011), but they do clarify how the elastic moduli depend in
general on the initial stress. In particular, the dependence of A0 on an initial hydrostatic
stress τ can be put in the simple form

A0ijkl = µ(τ)(δikδjl + δilδjk) + λ(τ)δijδkl, (4.1)

where µ(τ) and λ(τ) are now stress-dependent Lamé moduli, with τ > 0 (< 0) corre-
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e1
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b

c

0.15

0.10

0.05

0.20

Figure 3: Plots of ρv2 (in MPa) versus elongation e1 for a deformed incompressible block
of silicone rubber subject to simple tension; theoretical curves for waves travelling (a)
in the direction x1 of tension (v = v12), (b) in any direction in the plane normal to the
direction of uniaxial stress, with transverse polarization in that plane (v = v23), (c) in
any direction in the plane normal to the direction of uniaxial stress, with polarization
normal to that plane (v = v21); the dotted lines correspond to the linear part of the ρv2

versus e1 curves (the classical acoustoelastic effect).

sponding to tension (pressure), their precise functional dependence determined by the
choice of strain-energy function. We refer to a recent paper by Rajagopal and Sacco-
mandi (2009) and references therein for a discussion of the stress dependence of moduli
within the context of an implicit theory of elasticity.
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