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Acoustic waves at the interface of

a pre-stressed incompressible elastic solid

and a viscous fluid

M. Otténio, M. Destrade, R.W. Ogden

2006

Abstract

We analyze the influence of pre-stress on the propagation of in-
terfacial waves along the boundary of an incompressible hyperelastic
half-space that is in contact with a viscous fluid extending to infinity
in the adjoining half-space.

One aim is to derive rigorously the incremental boundary condi-
tions at the interface; this derivation is delicate because of the in-
terplay between the Lagrangian and the Eulerian descriptions but is
crucial for numerous problems concerned with the interaction between
a compliant wall and a viscous fluid. A second aim of this work is to
model the ultrasonic waves used in the assessment of aortic aneurysms,
and here we find that for this purpose the half-space idealization is
justified at high frequencies. A third goal is to shed some light on the
stability behaviour in compression of the solid half-space, as compared
with the situation in the absence of fluid; we find that the usual tech-
nique of seeking standing waves solutions is not appropriate when the
half-space is in contact with a fluid; in fact, a correct analysis reveals
that the presence of a viscous fluid makes a compressed neo-Hookean
half-space slightly more stable.

For a wave travelling in a direction of principal strain, we obtain
results for the case of a general (incompressible isotropic) strain-energy
function. For a wave travelling parallel to the interface and in an
arbitrary direction in a plane of principal strain, we specialize the
analysis to the neo-Hookean strain-energy function.
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1 Introduction

Seismic records show that underground rocks and ocean beds are subject to
stress and strain and that surrounding fluids are viscous and under high pres-
sures. Clinical ultrasonic measurements indicate that arteries can undergo
large strains in service and are most sensitive to changes in blood pressure.
Many moving and vibrating parts of automotive devices are made of loaded
elastomers in contact with highly viscous fluids. These are a few examples of
situations where it is crucial to model and understand the motions and the
stability of the interface between a deformed elastic solid and a viscous fluid.
Yet only a handful of studies can be found on the subject, especially when
compared with the abundant literature on waves at the interface between an
elastic solid and an inviscid fluid, which goes from the pioneering works of
Galbrun [1], Cagniard [2], Scholte [3], and Biot [4] to the definitive treatment
of the acoustoelastic effect by Sinha et al. [5]; see also Poirée [6] and Degt-
yar and Rohklin [7]. Waves at the interface between a viscous fluid and an
undeformed isotropic elastic solid were examined by Vol’kenshtein and Levin
[8] and the corresponding problem for an anisotropic elastic solid by Wu and
Wu [9]. To the best of our knowledge, only Bagno, Guz, and their co-workers
have studied the title problem (see, for example, [10], [11]). Their analytical
treatment is, however, quite succinct and we therefore aim to shed new light
on the problem by re-examining it on the basis of recent developments in the
theory of small-amplitude waves, linearized in the neighbourhood of a finite,
static, homogeneous deformation.

It turns out that one of the trickiest aspects of the study is the derivation
of proper incremental boundary conditions at the interface because these are
usually written in terms of the nominal stress in a deformed solid (Lagrangian
formulation, Section 2) and in terms of the Cauchy stress in a fluid (Eulerian
formulation, Section 3). These equations are combined in an appropriate
way for a general interface in Section 4. We then specialize the analysis to
principal wave propagation for an arbitrary (incompressible, isotropic) strain-
energy function in Section 5. In the course of the analysis in Section 5, by way
of application of the theory, we show that in respect of an abdominal aortic
aneurysm it is appropriate to neglect the curvature and finite thickness for
ultrasonic waves (10MHz), i.e. to treat the aneurysm locally as a half-space.
It also shown that it is not appropriate to use waves with a real frequency
to study the stability of compressed solids in contact with a viscous fluid.
Finally, in Section 6, by specializing to the neo-Hookean solid, we consider
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the propagation of non-principal waves for both tension and compression of
the half-space in order to illustrate the influence of the fluid.

2 Basic equations for the solid

For the solid material we denote by F the deformation gradient relating
the stress-free reference configuration, denoted B0, to the finitely deforming
configuration, denoted B. This has the form F = Gradx, where x = χ(X, t)
is the position vector in B at time t of a material point located at X in B0,
χ is the deformation mapping, and Grad is the gradient operator relative to
B0.

We consider the material to be elastic with a strain-energy function, de-
fined per unit volume, denoted by W = W (F ). Furthermore, we restrict
attention to incompressible materials so that the constraint

det F = 1 (2.1)

is in force. The nominal stress tensor, here denoted by S, and the Cauchy
stress tensor σ are then given by

S =
∂W

∂F
− pF−1, σ = F

∂W

∂F
− pI, (2.2)

where p is a Lagrange multiplier associated with the constraint (2.1) and I

is the identity tensor.
The equation of motion is

DivS = ρẍ, (2.3)

where Div is the divergence operator relative to B0, ρ is the mass density of
the material, and a superposed dot signifies the material time derivative.

Next, we consider a small motion superimposed on the finite deformation.
Let u(x, t) be the displacement vector relative to B and v(x, t) = u̇ the
associated particle velocity (the material time derivative of u). Then, on
taking the increment of equation (2.3) and thereafter changing the reference
configuration from B0 to B, we obtain

divs = ρü ≡ ρv̇, (2.4)
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where s is the increment in S (referred to B) and div the divergence operator
relative to B.

The (linearized) incremental version of the constitutive relation (2.2) is
written

s = A(gradu) + p(gradu) − p̃I, (2.5)

where A is a fourth-order tensor of elastic moduli, grad is the gradient
operator relative to B, and p̃ is the increment in p. In component form, this
is written

sij = Aijklul,k + pui,j − p̃δij , (2.6)

where ,k denotes ∂/∂xk and δij is the Kronecker delta. In terms of W the
components of A are given by

Aijkl = FipFkq
∂2W

∂Fjp∂Flq

. (2.7)

For details of these derivations (in a slightly different notation) we refer to
Dowaikh and Ogden [12].

We now consider the material to be isotropic, so that W = W (λ1, λ2, λ3)
is a symmetric function of the principal stretches, λ1, λ2, λ3 (the positive
square roots of the principal values of FF T , where T signifies the transpose),
subject to the constraint

λ1λ2λ3 = 1, (2.8)

which follows from (2.1). Then, on noting that for an isotropic material σ is
coaxial with FF T and specializing equation (2.2)2, we obtain the principal
Cauchy stresses (see, for example, Ogden [13])

σi = −p + λiWi, i = 1, 2, 3 (no sum over i), (2.9)

where Wi = ∂W/∂λi, i = 1, 2, 3.
When referred to the same principal axes, the only non-zero components

of A are

Aiijj = λiλjWij, i, j ∈ {1, 2, 3}, (2.10)

Aijij =
λiWi − λjWj

λ2
i − λ2

j

λ2
i , i, j ∈ {1, 2, 3}, i 6= j, (2.11)

Aijji = Ajiij = Aijij − λiWi, i, j ∈ {1, 2, 3}, i 6= j, (2.12)
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where Wij = ∂2W/∂λi∂λj . For subsequent convenience, we adopt the nota-
tions defined by

γij = (λiWi − λjWj)λ
2
i /(λ2

i − λ2
j),

βij = (λ2
i Wii + λ2

jWjj)/2 − λiλjWij + (λiWj − λjWi)λiλj/(λ2
i − λ2

j ), (2.13)

noting that γjiλ
2
i = γijλ

2
j and βji = βij.

2.1 The pre-stressed elastic half-space

We now consider B to be independent of time and to correspond to a pure
homogeneous strain of a half-space defined by x2 > 0. The half-space is
maintained in this configuration so that its boundary x2 = 0 is a principal
plane of strain. We denote by x1 and x3 the other two principal directions of
strain and by λ1, λ2, λ3 the principal stretches in the x1, x2, x3 directions,
respectively. The corresponding principal Cauchy stresses are then as given
by (2.9). In particular, the boundary x2 = 0 is subject to a normal stress σ2

and, after elimination of p, the other two principal Cauchy stresses are then
given by

σ1 = σ2 + λ1W1 − λ2W2, σ3 = σ2 + λ3W3 − λ2W2. (2.14)

We are interested in the propagation of incremental (small amplitude)
acoustic waves along the boundary plane x2 = 0, in a direction making an
angle θ with the principal direction x1. The incremental velocity and nominal
stress fields v and s are then considered as superimposed on this finite static
configuration. We examine inhomogeneous time-harmonic plane waves of the
form

{v, s}(x1, x2, x3, t) = {v̂(x2),−(k/ω)ŝ(x2)}eik(cθx1+sθx3)e−iωt, (2.15)

where we have introduced the notations cθ = cos θ, sθ = sin θ, k is the wave
number, ω is the wave frequency, and v̂, ŝ are functions of x2 only, such that

v̂(∞) = 0, ŝ(∞) = 0. (2.16)

Using the results of Destrade et al. [14] (see also Chadwick [15]), we find that
the incremental equations of motion can be written as a first-order differential
system of six equations, namely

ξ′(x2) = ikNξ(x2), (2.17)
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where the notation ξ is defined by

ξ = [v̂1, v̂2, v̂3, ŝ21, ŝ22, ŝ23]
T , (2.18)

and the 6 × 6 matrix N has the block structure

N =

[
N 1 N 2

N 3 + ρ̂I NT
1

]
, (2.19)

in which the 3×3 matrices N 1, N 2, N 3 are real and their components depend
on the material parameters γij and βij given in (2.13), and the notation
ρ̂ = ρω2/k2 has been introduced. Here I represents the 3×3 identity matrix.

Explicitly, −N 1, N 2, −N 3 are



0 cθ(γ21 − σ2)/γ21 0
cθ 0 sθ

0 sθ(γ23 − σ2)/γ23 0


 ,




1/γ21 0 0
0 0 0
0 0 1/γ23


 ,




η 0 −κ
0 ν 0
−κ 0 µ


 , (2.20)

respectively, where

η = 2c2
θ(β12 + γ21 − σ2) + s2

θγ31,

ν = c2
θ[γ12 − (γ21 − σ2)

2/γ21] + s2
θ[γ32 − (γ23 − σ2)

2/γ23],

µ = c2
θγ13 + 2s2

θ(β23 + γ23 − σ2),

κ = cθsθ(β13 − β12 − β23 − γ21 − γ23 + 2σ2). (2.21)

Equation (2.17) provides the general expression for the equations of motion,
for arbitrary θ and W .

Now, in seeking a decaying partial-mode solution of the form

ξ(x2) = e−ksx2ζ, ℜ(ks) > 0, (2.22)

where ζ is a constant vector and s an unknown scalar, we arrive at the eigen-
value problem Nζ = isζ. In general, the associated propagation condition,
det(N−isI) = 0, is a cubic in s2 [16], where now I is the 6×6 identity matrix.
Its analytical resolution is too cumbersome to be of practical interest, and so
we specialize the general equations to the following, simpler, situations: (i)
principal wave propagation (θ = 0) for arbitrary W ; (ii) non-principal wave
propagation (θ 6= 0) for the neo-Hookean material, for which

W = C(λ2
1 + λ2

2 + λ2
3 − 3)/2, (2.23)
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where C > 0 is a constant (the shear modulus of the material in the reference
configuration).

In Case (i), the equations of motion decouple the system

[
v̂′

3

ŝ′23

]
= ik

[
1/γ21 0

0 1/γ23

] [
v̂3

ŝ23

]
, (2.24)

(for which the trivial solution may be chosen) from a system of four differen-
tial equations for v̂1, v̂2, ŝ21, ŝ22. Hence, in this case, the wave is elliptically
polarized, in the (x1, x2) plane. The corresponding propagation condition is
a quadratic in s2, which can be solved explicitly.

In Case (ii), we also find that the wave is two-partial, polarized in the
plane containing the directions of propagation and attenuation (the saggital
plane); there, the corresponding propagation condition involves the product
of the factor (s2 − 1) and a term linear in s2, which simplifies the analysis.

Before embarking on the details of these cases, we complete the descrip-
tion of the boundary-value problem by considering the behaviour of the wave
in the fluid in the half-space x2 ≤ 0.

3 The fluid half-space

Adjoining the deformed solid half-space is a half-space x2 6 0 filled with an
incompressible viscous Newtonian fluid, for which all mechanical fields are
denoted by a superscripted asterisk. In the static state the fluid is subject
only to a hydrostatic stress σ∗ = −P ∗I, and by continuity of traction across
the boundary x2 = 0 we must have

− P ∗ = σ2. (3.1)

The constitutive law for the fluid associated with the motion is then written
in terms of a superimposed Cauchy stress tensor, denoted here by s∗ and
given by

s∗ = −p∗I + 2µ∗D∗, trD∗ = 0, (3.2)

where µ∗ is the viscosity of the fluid,

D∗ =
1

2
[gradv∗ + (gradv∗)T ], (3.3)

v∗ is the fluid velocity, and p∗ = p∗(x, t).
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We seek inhomogeneous waves with the same structure as in the solid,
that is

{v∗, s∗}(x1, x2, x3, t) = {v̂∗(x2),−(k/ω)ŝ∗(x2)}eik(cθx1+sθx3)e−iωt, (3.4)

where v̂∗, ŝ∗ are functions of x2 only, such that

v̂∗(−∞) = 0, ŝ∗(−∞) = 0. (3.5)

We find that the equations of motion, divs∗ = ρ∗v̇∗ (where ρ∗ is the mass
density of the fluid), linearized in v∗, can be cast as

ξ∗′(x2) = ikN ∗ξ∗(x2), (3.6)

where
ξ∗ = [v̂∗

1, v̂
∗

2, v̂
∗

3, ŝ
∗

21, ŝ
∗

22, ŝ
∗

23]
T , (3.7)

and the constant complex matrix N ∗ has the block structure

N ∗ =

[
N ∗

1 N ∗

2

N ∗

3 + ρ̂∗I N ∗

1

]
, (3.8)

N ∗

1, N ∗

2, N ∗

3 being real symmetric matrices, and the notation ρ̂∗ = ρ∗ω2/k2

has been adopted. If we write µ̂∗ = µ∗ω, then, respectively, −N ∗

1, −iµ̂∗N ∗

2,
−iN ∗

3/µ̂
∗ are




0 cθ 0
cθ 0 sθ

0 sθ 0


 ,




1 0 0
0 0 0
0 0 1


 ,




4c2
θ + s2

θ 0 3cθsθ

0 0 0
3cθsθ 0 c2

θ + 4s2
θ


 . (3.9)

Again, when we seek a decaying partial-mode solution, this time in the
form

ξ∗(x2) = eks∗x2ζ∗, ℜ(ks∗) > 0, (3.10)

where ζ∗ is a constant vector and s∗ an unknown scalar, we end up with
an eigenvalue problem, here N ∗ζ∗ = −is∗ζ∗. The associated propagation

condition is det(N ∗ + is∗I) = 0, which here simplifies to

(s⋆2 − 1)(s⋆2 − 1 + iǫ)2 = 0, (3.11)

with roots
± 1, ±

√
1 − iǫ (repeated), (3.12)
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where ǫ = ρ̂∗/µ̂∗ = ρ∗ω/(µ∗k2). The roots are independent of θ, as expected,
because the fluid is isotropic. Corresponding to each of the four roots, there
are four eigenvectors and therefore potentially four partial-modes. However,
two of these must be discarded since their amplitudes do not decay with
distance from the interface x2 = 0. The two remaining modes form the basis
for the general solution of the equations of motion that is needed for matching
with the two-partial wave in the solid.

We now give the general boundary conditions at the deformed solid/viscous
fluid interface.

4 The interface

In order to match the incremental tractions across the boundary it is nec-
essary to work in terms of the Cauchy stress since the nominal stress is not
defined inside the fluid. Towards this end we first calculate the incremental
traction in the solid in terms of the Cauchy stress. Continuity of traction
requires

ST NdA = σnda = σ∗nda, (4.1)

where dA and da are the area elements in B0 and B, respectively. Taking
the increment of this and updating the reference configuration to B yields

sT nda ≡ σ̃nda + σñda = s∗nda + σ∗ñda, (4.2)

where a superposed tilde indicates an increment. Note that, after updating,
F = I and S = σ in the configuration B.

Now, according to Nanson’s formula (applied to the boundary of the
solid), we have nda = F−T NdA, from which it follows, again after updating,
that

ñda = −(gradu)T nda. (4.3)

Hence, the incremental traction continuity condition can be written

sT n ≡ [σ̃ − σ(gradu)T ]n = [σ̃∗ − σ∗(gradu)T ]n, (4.4)

and we recall that σ∗ = −P ∗I.
Since n is in the x2 direction for the considered half-space we may write

the continuity condition in component form as

s2i = s∗2i + P ∗u2,i, i = 1, 2, 3, on x2 = 0. (4.5)
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Additionally, the velocity must be continuous, i.e.

v∗

i = vi, i = 1, 2, 3, on x2 = 0. (4.6)

In terms of the functions v̂(x2), ŝ(x2) and their counterparts in the fluid,
the boundary conditions become

v̂∗

i (0) = v̂i(0), i = 1, 2, 3, (4.7)

and, noting that vi = −iωui,

ŝ∗12(0) + cθP
∗v̂2(0) = ŝ21(0), ŝ∗32(0) + sθP

∗v̂2(0) = ŝ23(0), (4.8)

and

ŝ∗22(0) − i

k
P ∗v̂′

2(0) = ŝ22(0). (4.9)

5 Principal waves: no restriction on W

5.1 General solution in the solid

Here we take θ = 0 and place no restriction on the form of W . When θ = 0,
the in-plane mechanical fields in the solid satisfy the equations of motion
ξ′ = ikNξ, where now ξ(x2) = [v̂1, v̂2, ŝ21, ŝ22]

T and

N =




0 −1 + σ2 1/γ21 0
−1 0 0 0

ρ̂ − η 0 0 −1
0 ρ̂ − ν −1 + σ2 0


 , (5.1)

with σ2 = σ2/γ21 and η and ν now reduced to

η = 2[β12 + γ21(1 − σ2)], ν = γ12 + γ21(1 − σ2)
2.

Here the propagation condition is a quadratic in s2 [12] and given by

s4 − 2βs2 + α2 = 0, (5.2)

where

2β =
2β12 − ρ̂

γ21

, α2 =
γ12 − ρ̂

γ21

. (5.3)
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We recall that ρ̂ = ρω2/k2. Formally, the roots of the quartic (5.2) are

±
√

β +
√

β2 − α2, ±
√

β −
√

β2 − α2. (5.4)

We pause the analysis to highlight a particular feature of the present
interface waves. Because the fluid is viscous, the wave number k is complex
and so, therefore, are β and α. It follows that, in contrast to the purely
elastic case [17], it is not clear a priori which two of these four roots are such
that the decay condition Eq. (2.22)2 is satisfied. Let s1 and s2 be two such
roots. We note first that

s2
1 + s2

2 = 2β, s2
1s

2
2 = α2, (5.5)

and then, depending on which value in Eq. (5.4) they correspond to, one of
the following four possibilities may arise:

s1s2 = α, s1 + s2 =
√

2(β + α),

s1s2 = α, s1 + s2 = −
√

2(β + α),

s1s2 = −α, s1 + s2 =
√

2(β − α),

s1s2 = −α, s1 + s2 = −
√

2(β − α). (5.6)

Now, the eigenvectors ζ1 and ζ2 associated with s1 and s2 are columns
of the matrices adjoint to N − is1I and N − is2I, respectively. Taking, for
instance, the fourth column gives

ζi = [isi,−1,−γ21(1+ s2
i −σ2),−iγ21si(1+2β − s2

i −σ2)]
T , i = 1, 2. (5.7)

Finally, the general solution in the solid is

ξ(x2) = A1e
−ks1x2ζ1 + A2e

−ks2x2ζ2, (5.8)

where A1 and A2 are constants.

5.2 General solution in the fluid

In the fluid, a two-partial solution is required for adequate matching at the
interface. Taking θ = 0 in Section 3, we find that the in-plane equations of
motion are ξ∗′ = ikN ∗ξ∗, where now ξ∗(x2) = [v̂∗

1, v̂
∗

2, ŝ
∗

21, ŝ
∗

22]
T and

N ∗ =




0 −1 i/µ̂∗ 0
−1 0 0 0

4iµ̂∗ + ρ̂∗ 0 0 −1
0 ρ̂∗ −1 0


 . (5.9)
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We assume that the wave propagates and is attenuated in the direction
x1 > 0. From Eq. (3.4) with θ = 0, we see that these assumptions lead to

ℜ(k) > 0, ℑ(k) > 0. (5.10)

On the other hand, the wave is also attenuated with distance from the inter-
face; it follows that we can discard the root −1 from Eq. (3.12) and retain
the root +1. The choice to be made for the remaining two roots in Eq. (3.12)
is not so clear cut and for the time being we call s∗ the suitable root; hence
s∗ is such that

s∗2 = 1 − iǫ, ℜ(ks∗) > 0. (5.11)

Finally, the general solution in the fluid is

ξ∗(x2) = A∗

1e
kx2




i
1

−2iµ̂∗

−µ̂∗(1 + s∗2)


 + A∗

2e
ks∗x2




is∗

1
−iµ̂∗(1 + s∗2)

−2µ̂∗s∗


 , (5.12)

where A∗

1 and A∗

2 are constants.

5.3 Dispersion equation for the interface wave

When we specialize the general boundary conditions (4.7), (4.8) and (4.9) to
the present context, we find a linear homogeneous system of four equations
for the four unknowns A1, A2, A∗

1, A∗

2, for which the associated determinant
must be zero. After some manipulations, using Eq. (5.5), we find that

∣∣∣∣∣∣∣∣

−s1 −s2 1 s∗

1 1 1 1
γ21(1 + s2

1) γ21(1 + s2
2) −2iµ̂∗ −iµ̂∗(1 + s⋆2)

γ21s1(1 + s2
2) γ21s2(1 + s2

1) iµ̂∗(1 + s⋆2) 2iµ̂∗s∗

∣∣∣∣∣∣∣∣
= 0. (5.13)

We see at once that the normal load σ2 does not appear explicitly in this
equation. This feature highlights a major difference between a wave at the
interface of a loaded solid half-space and a vacuum (Rayleigh wave) and
a wave at the interface of a loaded solid half-space and a viscous fluid, as
considered here; Chadwick and Jarvis [18] also noted this peculiarity for
waves at the interface of two loaded solid half-spaces (Stoneley wave). Of
course, σ2 still plays an important role, in particular in the determination of
the pre-stretch ratios and of the amplitudes of the tractions in the solid.
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Once the determinant is expanded and the factors (s1 − s2)(1 − s∗) are
removed, we end up with the exact dispersion equation,

γ2
21

[
γ12 − ρ̂

γ21
+

2β12 + 2γ21 − ρ̂

γ21
s1s2 − 1

]

− iγ21µ̂
∗[2(1 − s1s2)(1 − s∗) + (s1 + s2)(1 + s∗)(s∗ + s1s2)]

+ µ̂∗2 [iǫ + (iǫ − 4) s∗] = 0. (5.14)

This equation is fully explicit because the terms s1 + s2, s1s2, and s∗ are
given by Eqs. (5.6) and Eq. (5.11). Of course, as noted earlier, there are
several possibilities for these terms, which generate in total eight different
dispersion equations. In each case the resulting root(s) in k must be checked
for validity against the propagation and decay conditions (2.22)2, (5.10), and
(5.11)2, which we summarize here as

ℜ(k) > 0, ℑ(k) > 0, ℜ(ks∗) > 0, ℜ(ks1) > 0, ℜ(ks2) > 0. (5.15)

Notice that in the special case of solids whose strain-energy function W is
such that 2β12 = γ12 + γ21, which includes the neo-Hookean solid (2.23), the
biquadratic (5.2) factorizes as (s2 − 1)(s2 −α2) = 0. Hence s1 = 1, s2 = ±α,
and the exact secular equation (5.14) simplifies accordingly, leading this time
to four different exact dispersion equations.

5.4 Application: modelling of intravascular ultrasound

In recent years, intravascular ultrasound (IVUS) has proved to be a most
promising tool of investigation for measuring and assessing abdominal aortic
aneurysms. Its accuracy is as good as that of computed tomography (CT)
scans and it has obvious non-radiative advantages [19], [20], [21]. We now
apply the results of this section to an IVUS context.

First we recall that medical ultrasound imaging devices operate in the
1–10MHz range; accordingly we take ω = 107 Hz. We argue, and will check
a posteriori, that at such high frequency the wavelength is small compared
with the radius and thickness of an artery so that, as far as the propagation
of localized waves is concerned, an aortic aneurysm can be modelled as a
half-space. Here we take the axis of the artery along the x1 direction and
consider that the half-space x2 6 0 is filled with blood.

For the solid, we use a strain-energy function devised by Raghavan and
Vorp [22] to fit experimental data collected on uniaxial tension tests of aortic
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aneurysms, namely

W = C1(λ
2
1 + λ2

2 + λ2
3 − 3) + C2(λ

2
1 + λ2

2 + λ2
3 − 3)2, (5.16)

where, typically, C1 = 0.175 MPa, C2 = 1.9 MPa. We assume that the
aneurysm corresponds to a region where the tissue undergoes a strain of
20%, and that the end-systolic blood pressure is high, 150mmHg (= 20 kPa)
say, so we take σ2 = 20 kPa. We consider that the tissue is free to expand or
contract in the x3 direction with σ3 = 0. From (2.14) we find the remaining
stresses and strains. Summarizing, we have

λ1 = 1.2, λ3 ≃ 0.908, σ1 ≃ 71.45 kPa, σ2 = 20 kPa, σ3 = 0, (5.17)

with λ2 calculated from the incompressibility condition. For the mass density,
we take ρ = 1000 kg/m3. For the blood, we use typical values of viscosity
[23] and mass density [24]: µ∗ = 3.5 × 10−3 Ns/m2, ρ∗ = 1050 kg/m3.

Here, the frequency ω is fixed as a real quantity a priori. We then replace
k everywhere by k = ωS, where S = S+ + iS− is the (complex) slowness,
and the only unknown in the dispersion equation (5.14). The propagation
and decay conditions (5.15) are satisfied and may be written as

ℜ(S) > 0, ℑ(S) > 0, ℜ(Ss∗) > 0, ℜ(Ss1) > 0, ℜ(Ss2) > 0. (5.18)

We find that the only qualifying root is

S = 2.721 × 10−2 + 4.424 × 10−4i, (5.19)

from which we deduce the phase speed v = 1/S+, the damping factor γ = S−,
and the wavelength λ0 = 2π/(ωS+):

v = 36.75 m/s, γ = 4.424 × 10−4 m−1, λ0 = 23.1 µm. (5.20)

Then we plot the depth profiles of the wave. Its amplitude is the real
part of v in the solid and of v∗ in the fluid. Explicitly,

ℜ (v(x1, x2, t)) = e−γx1 [ℜ (v̂(x2)) cos ω(x1/v − t)] .

−ℑ (v̂(x2)) sin ω(x1/v − t)] , (5.21)

in the solid, and similarly for the fluid, for which v and v̂ are replaced by their
asterisk counterparts. Clearly, the particle velocity is elliptically polarized,
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and the lengths of the ellipse semi-axes decay with distance away from the
interface and also with increasing x1. Figure 1 shows the variations of the
normal (continuous curve) and tangential (dotted curve) velocity components
in the fluid (x2 6 0) and in the solid (x2 > 0), normalized with respect
to v̂2(0), as functions of x2/λ0. Note that the components are in phase
quadrature. Note also, as is clear from the zooms shown in Figure 1, that
the components are continuous across the interface, as expected, but their
first derivatives are discontinuous. The wave is elliptically polarized near the
interface; the major axis is normal to the interface and more than 12 times the
length of the minor axis; the ellipse is described in a retrograde manner. This
shape is carried through the depth of the solid whereas in the fluid, the wave
becomes rapidly circularly polarized at a depth of about 0.06 wavelengths,
and remains nearly so through the rest of the half-space. The localization is
greater in the fluid than in the solid: the amplitude has almost vanished after
one wavelength into the former and after five wavelengths in the latter. An
aneurysm is typically 1mm thick, which, with the numerical values used here,
is more than 50 wavelengths; thus, the assumption of a semi-infinite solid is
justified, as is the assumption of a flat interface (aneurysms are typically of
diameter 5 cm).

Finally, we note that if the fluid is absent then the corresponding surface
wave would travel with speed 40.734m/s; hence the viscous fluid not only
dampens the wave but also slows it down noticeably. Of course, blood flows
in an artery, and creates shear deformation and stress in the solid. The
influence of wall shear stress on the waves will be treated elsewhere.

5.5 Example: compressive stresses

Here we consider the behaviour of the elastic half-space (in contact with the
viscous fluid) when it is compressed in the x1 direction (λ1 < 1). In their
pioneering works, Green and Zerna [25] and Biot [26], [27] showed that when a
highly elastic half-space with a free surface (no fluid contact) is compressed,
a surface instability may develop. Focusing on neo-Hookean solids (2.23)
they showed that the critical stretches are λcr = 0.666 for tangential equi-
biaxial compression (λ1 = λ, λ2 = λ−2, λ3 = λ), λcr = 0.544 for plane strain
compression (λ1 = λ, λ2 = λ−1, λ3 = 1), and λcr = 0.444 for normal equi-
biaxial compression (λ1 = λ, λ2 = λ−1/2, λ3 = λ−1/2). Theirs was a static
stability analysis, later also included in a wider dynamical context by Flavin
[28], Willson [29], Chadwick and Jarvis [30], Dowaikh and Ogden [12], and
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Figure 1: Depth profiles as functions of x2/λ0 of the velocity components of
the acoustic wave: x2 (normal) component – continuous curve; x1 (tangential)
component – dotted curve. The zooms show continuity of these components
and discontinuity of their derivatives.

others. We now consider this problem.
A localized small-amplitude wave propagates over the free surface of a

deformed Mooney-Rivlin or neo-Hookean half-space with normalized squared
speed ρv2/γ12 = 1−σ2

0λ
2
2/λ

2
1, where σ0 is the real root of σ3 +σ2 +3σ−1 = 0

(σ0 = 0.2956). Clearly, in the examples of plane strain and equi-biaxial strain
above, the squared wave speed increases when λ increases and decreases when
λ decreases. At λ = 1 there is no pre-strain and ρv2/C = 0.9126, the value
found by Lord Rayleigh [31] for isotropic incompressible linearly elastic solids.
As λ → ∞, the squared wave speed tends to the squared wave speed γ12/ρ
of a transverse bulk wave. As λ decreases, there is a critical stretch λcr at
which the squared speed is zero and below which v2 < 0. Since the wave time
dependence is of the form eik(x1−vt), with k > 0, it follows that the amplitude
grows without bound in time when λ < λcr, and that the surface becomes
unstable (at least, in the linearized theory). It is therefore appropriate to ask
what happens when the compressed half-space is in contact with a viscous
fluid.

Bagno and co-workers addressed this question in a series of articles (see
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the review by Bagno and Guz [11] and references therein). For a neo-Hookean
solid they found that the wave speed drops to zero when λ = 0.544 in plane
strain compression and when λ = 0.444 in normal equi-biaxial compression,
that is at the same critical stretches as for surface (solid/vacuum) instability,
irrespective of the viscous fluid characteristics. On the other hand, Bagno
and Guz [10] find that the wave speed falls to zero at a critical stretch that
does depend upon the viscosity of the fluid. To address this disparity, we
now compute the speed of the interfacial wave when the half-space is in
compression.

In order to minimize the number of parameters, we use the neo-Hookean
solid, with W given by (2.23). We take a normal equi-biaxial pre-strain
(λ1 = λ, λ2 = λ−1/2, λ3 = λ−1/2) and, following Bagno and Guz, we take the
frequency ω to be real. A dimensional analysis of the resulting dispersion
equation shows that (5.14) now depends on just three non-dimensional pa-
rameters: a measure of the pre-strain, λ; a measure of the dynamic viscosity
of the fluid compared with the shear modulus of the solid, µ∗ω/C; and the
ratio of the densities, ρ∗/ρ. Once these quantities are specified, the dispersion
equation may be solved for the non-dimensional complex unknown x defined
by

x :=

√
ρ

γ12

ω

k
=

√
ρ

Cλ2
S−1, (5.22)

where S is the (complex) scalar slowness. The dispersion equation can now
be solved numerically for x, and the interfacial wave speed, normalized with
respect to the transverse bulk shear wave speed in the deformed solid, is
c = ℜ(1/x).

For Figure 2(a), we fix ρ∗/ρ at 1.0 and we take in turn µ∗ω/C = 0.2, 0.04,
0.02. The first choice (ρ∗/ρ = 1.0, µ∗ω/C = 0.2) is roughly that obtained for
the blood/artery interface of the previous section with C1 = C and C2 = 0.
We see clearly that as µ∗ω/C decreases the wave speed decreases towards
zero as λ tends to 0.444, the critical compression stretch for the solid/vacuum
interface (the thick curve gives the solid/vacuum interface wave speed). We
find that in the extension to moderate compression range, the solid/fluid
interface wave speed is significantly lower than the solid/vacuum wave speed.
In the strongly compressive range (as λ → 0.444), the speed plot dips towards
zero, and dips further as µ∗ω/C decreases, without ever reaching that value;
the plot gets close to the plot for the solid/vacuum interface wave speed
as λ decreases, but then crosses it, and the fluid/solid interface wave speed
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Figure 2: Normalized wave speed for a neo-Hookean solid under normal equi-
biaxial pre-strain and a viscous fluid: (a) ρ∗/ρ = 1.0 and µ∗ω/C = 0.2, 0.04,
0.02; (b) ρ∗/ρ = 1.0, 0.4, 0.2 and µ∗ω/C = 0.1. The thick curves are for an
unloaded solid half-space.

increases again. Note that we checked the validity of the solution at all
compressive stretches using (5.18).

For Figure 2(b), we fixed µ∗ω/C at 1.0 and took ρ∗/ρ = 0.1, 0.05, 0.01.
In the extension to moderate compression range, the plot for the solid/fluid
interface wave speed gets closer to that for the solid/vacuum interface wave
speed as ρ∗/ρ decreases. In the strongly compressive range, similar comments
to those made for Figure 2(a) apply.

The conclusion is that as both µ∗ω/C and ρ∗/ρ tend to zero, the speed
tends to zero when the stretch tends to the critical compression stretch of
the solid/vacuum surface instability. This is to be expected because this
double limit corresponds to the vanishing of the fluid. However, as em-
phasized earlier, the speed never reaches the zero limit and the bifurcation
criterion is therefore never met. For instance, the typical values used by
Bagno and co-workers [11] put µ∗ω/C at about 0.0002 and ρ∗/ρ as low as
0.1, giving c smaller than 10−4, but not zero. In effect a localized damped
wave exists for the whole compressive range, with speed values starting below
the solid/vacuum interface wave speed in the moderate compressive range,
reaching a minimum (above the solid/vacuum interface wave speed) as λ ap-
proaches 0.444, and then rising rapidly to infinity as λ decreases below 0.444.
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This result suggests that when a neo-Hookean half-space is in contact with
a viscous fluid it becomes completely stable. This, however, is an incorrect
deduction, because it is based on special motions, for which the frequency ω
is assumed real. Other motions might be unstable, as is illustrated below.

We now take the wave number k to be real (k > 0) and let the speed v
be complex,

k > 0, v = v+ + iv−, (5.23)

so that the motion is now proportional to ekv−teik(x1−v+t). Clearly in this
case, the conditions for a stable, localized wave, propagating in the x1 > 0
direction, are

ℜ(v) > 0, ℑ(v) 6 0, ℜ(s∗) > 0, ℜ(s1) > 0, ℜ(s2) > 0. (5.24)

(note that ℜ(s1) > 0 is automatically satisfied in a neo-Hookean solid, be-
cause s1 = 1).

Then, an analysis of the dispersion equation (5.14), in the case of a
neo-Hookean solid with normal equi-biaxial pre-strain, reveals three non-
dimensional quantities: λ, µ∗k/

√
ρC, and ρ∗/ρ. Once they are specified, we

solve the dispersion equation for the non-dimensional quantity x defined as

x :=

√
ρ

γ12

ω

k
=

√
ρ

Cλ2
v. (5.25)

The interfacial wave speed, normalized with respect to the transverse bulk
shear wave speed in the deformed solid, is c = ℜ(x).

For Figure 3, we take ρ∗/ρ = 1.0, and µ∗k/
√

ρC = 0.2, 0.002 in turn, and
we plot v against λ in the compressive range. We find that at a compressive
stretch close to the critical compressive stretch of surface stability for the
solid/vacuum interface, the normalized speed c drops to zero. From the
figure it is not clear that the values of λ at this point are different for 0.2
and 0.002, but the zoom in Figure 3 shows, however, that the value of the
compressive stretch at which c = 0 depends on the material parameters.
For comparison, the curve corresponding to µ∗k/

√
ρC = 1 is also shown. We

emphasize that the situation at c = 0 does not correspond to a static solution
of the equations of motion (which would be impossible in the fluid), but to
a non-propagating damped motion, proportional to ekv−teikx1. Moreover,
this situation does not correspond to an instability because at that point,
and a bit beyond, the requirements (5.24) still hold. For instance, in the case
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Figure 3: Normalized wave speed for a neo-Hookean solid under normal
equi-biaxial pre-strain and a viscous fluid with ρ∗/ρ = 1.0 and µ∗k/

√
ρC =

0.2, 0.002, 1 (indicated by the arrows) for the compressive range 0.4 < λ < 1.
The zoom shows the details for µ∗k/

√
ρC = 0.2, 0.002 for 0.442 < λ < 0.445

range. The thick curve corresponds to the solid half-space with no fluid
loading.

ρ∗/ρ = 1.0, µ∗k/
√

ρC = 0.2, the speed drops to zero at λ ≃ 0.44539 but there
still exist non-propagating, localized motions for λ > 0.42212. Beyond that
stretch value, however, all solutions of the considered type grow unboundedly
with time and/or with space, indicating instability. From this example we
see that the viscous load stabilizes slightly the solid half-space, because it
can now be compressed by an extra 2%, from 0.444 to 0.422.

6 Non-principal wave: neo-Hookean solid

In this section we consider that the solid half-space is a deformed neo-
Hookean material, with strain-energy function given by Eq. (2.23). For this
material, Flavin [28] noticed that Rayleigh waves are plane-polarized for any

20



direction of propagation in a principal plane; see [32], [33]. Chadwick and
Jarvis [18] showed the same result for Stoneley waves. Indeed, we now show
that the saggital motion is always decoupled from the ‘anti-saggital’ motion,
for any θ and any type of (bulk or interfacial) inhomogeneous wave.

First, we note that for neo-Hookean bodies, the parameters γij and βij

have the simple expressions

γij = Cλ2
i , βij = C(λ2

i + λ2
j)/2. (6.1)

It follows that the matrices N 1, N 2, N 3, given by Eq. (2.20), are greatly
simplified. Next, we recall that the direction of propagation and the normal
to the interface define the saggital plane, with unit normal [−sθ, 0, cθ]

T . Now
consider the new unknown functions wi, t2i (i = 1, 2, 3), defined by

wi = Ωij v̂j , t2i = Ωij ŝ2j , (6.2)

where

Ωij =




cθ 0 sθ

0 1 0
−sθ 0 cθ


 . (6.3)

Some algebraic manipulations reveal that the equations of motion (2.17),
written for wi, t2i, decouple the ‘anti-saggital’ motion [w3, t23] from its sag-
gital counterpart. For the latter we find

[w′

1, w
′

2, t
′

21, t
′

22]
T = ikN [w1, w2, t21, t22]

T , (6.4)

with N in the form (5.1), where now

η = C(c2
θλ

2
1 + s2

θλ
2
3 + 3λ2

2) − 2σ2, γ21 = Cλ2
2,

ν = C(c2
θλ

2
1 + s2

θλ
2
3) + Cλ2

2(1 − σ2)
2, σ2 = σ2/(Cλ2

2). (6.5)

A search for partial-mode solutions in the form [w1, w2, t21, t22]
T = ζe−ksx2,

where ζ is a 4-component constant vector, leads to an eigenvalue problem.
The associated characteristic equation is the propagation condition

(s2 − 1)[Cλ2
2s

2 − C(c2
θλ

2
1 + s2

θλ
2
3) + ρ̂] = 0, (6.6)

with roots s = −1, which is discarded because it does not lead to a decaying
wave,

s1 = 1, s2 = ±
√

[C(c2
θλ

2
1 + s2

θλ
2
3) − ρ̂]/(Cλ2

2). (6.7)
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The analysis leading to the derivation of the dispersion equation is by and
large the same as that conducted for the principal wave in Section 5. The
end result is that the dispersion equation is again (5.13), where now s1 and
s2 are given by the expressions above, and γ21 is replaced by Cλ2

2, but the
other quantities remain unchanged.

As an illustration, we take the same numerical values as in Section 5.4, but
with C2 = 0 in (5.16). Hence the solid is neo-Hookean with C = 0.175MPa
and ρ = 1000 kg/m3. It is under the pre-stress σ2 = 20 kPa, σ3 = 0. The
fluid has Newtonian viscosity µ∗ = 3.5× 10−3 Ns/m2, and mass density ρ∗ =
1050 kg/m3. The frequency is ω = 107 Hz. In turn, we take the solid to be
compressed by 20% in the x1 direction (so that λ1 = 0.8 and then λ2 ≃ 1.131,
λ3 ≃ 1.105), to be unstretched in the x1 direction (so that λ1 = 1, and
λ2 ≃ 1.014, λ3 ≃ 0.986), and to be under an extension of 20% in the x1

direction (so that λ1 = 1.2, and λ2 ≃ 0.929, λ3 ≃ 0.897).
Figure 4 shows the dependence of the interfacial wave speed v+ = ℜ(ω/k)

on the angle of propagation θ. When the solid is almost unstrained, the
speed hardly varies with the angle; when it is strained to ±20%, the induced
anisotropy causes speed changes of more than ±25% in some directions. The
figure also shows clearly that the wave travels at its fastest in the direction
of greatest stretch, and at its slowest in the direction of greatest compres-
sion, indicating that it could be used for the acoustic determination of these
directions.
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[2] L. Cagniard, Réflexion et Eéfraction des Ondes Sismiques Progressives.
Gauthier-Villars, Paris (1939)

[3] J.G. Scholte, On the Stoneley wave equation. Proc. K. Ned. Akad. Wet.

45, Pt. 1: 20, Pt. 2: 159 (1942).

[4] M.A. Biot, The interaction of Rayleigh and Stoneley waves in the ocean
bottom. Bull. Seism. Soc. Am. 42, 81 (1952).

[5] B.K. Sinha, S. Kostek, and A.N. Norris, Stoneley and flexural modes in
a pressurized borehole. J. Geophys. Res. 100, 22375 (1995).

22



12

14

16

18

20

22

0 20 40 60 80

v
+

θ

λ  = 0.8

λ  = 1.0

λ  = 1.2

1

1

1

Figure 4: Influence of propagation angle θ on the speed v+ of a wave at the
interface between a viscous fluid and a deformed neo-Hookean solid (thin
curves). The thick curves represent the wave speed in the absence of fluid
loading.
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