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Abstract Non-physiological turbulent blood flow is known to occur in and

near implanted cardiovascular devices, but its effects on blood are poorly

understood. The objective of this work is to investigate the effect of turbu-

lent eddy length scale on blood cell damage, and in particular to test the

hypothesis that only eddies similar in size to blood cells can cause damage.

The microscale flow near a red blood cell (RBC) in an idealized turbulent

eddy is modelled computationally using an immersed boundary method.

The model is validated for the special case of a tank-treading RBC. In

comparisons between turbulent flow fields, based on Kolmogorov theory,

the model predicts that damage due to the smallest eddies is almost inde-
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pendent of the Kolmogorov length scale. The model predicts that within a

given flow field, however, eddies of sub-cellular scale are less damaging than

larger eddies. Eddy decay time and the turbulent energy spectral density are

highlighted as important factors. The results suggest that Kolmogorov scale

is not an adequate predictor of flow-induced blood trauma, and highlights

the need for deeper understanding of the microscale structure of turbulent

blood flow.

Introduction

Turbulent blood flow occurs near implanted cardiovascular devices such as

mechanical heart valves (MHVs) that interact with blood flowing at high

Reynolds number, and can cause blood damage39 as a result of the abnor-

mal mechanical loading of blood cells by flow in their microscale surround-

ings. Turbulent flow is characterized by flow structures (eddies) over a wide

spectrum of length scales. However, little is known about the structure and

effects of turbulence at the cellular scale, and direct microscopic experimen-

tal study of turbulent blood flow is not currently feasible. There is a need

for better understanding of the mechanisms of cell damage by turbulent

eddy structures at the microscale. In this study, a computational model is

used to simulate the interaction between a blood cell and an idealized tur-

bulent eddy, and to evaluate the influence of turbulent eddy length scales

on mechanical loading of blood cells.
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Knowledge of the microscale flow field is necessary to fully understand

the causes of both hemolysis and thrombosis in turbulent flow. In the present

work, attention is restricted to hemolysis and the red blood cell (RBC),

although the principles are equally applicable to thrombosis. Studies have

shown that the RBC membrane is most susceptible to rupture by areal

extension of the membrane, when the isotropic tension (defined as the force

per unit width of the two-dimensional membrane surface) exceeds a critical

threshold.9,22,31 In a micropipette experiment, Evans et al.9 measured the

threshold isotropic tension beyond which membrane rupture occurs as 10

mN/m, corresponding to an areal strain of 2–3 %. The RBC membrane

can withstand large uniaxial membrane strains without rupturing.10 The

threshold bulk viscous shear stress in laminar flow required to lyse RBCs,

measured in in vitro experiments, ranges from 150 - 560 Pa.15,20,38

Kameneva et al.18 confirmed directly that the mechanisms of flow-induced

hemolysis are fundamentally different in laminar and turbulent flows. Tur-

bulent pipe flow at a Reynolds number of 5100 was shown to result in higher

hemoglobin release (by a factor of 6) than laminar flow at the same mean

wall shear stress with a Reynolds number of 1000. The additional trauma

could only result from the loading of cells by turbulent eddies. This exper-

iment confirms the importance of the structure of turbulent blood flow to

turbulence-induced blood damage.

Kolmogorov theory has been used to estimate the size of the small-

est (energy-dissipating) eddies in a measured turbulent flow. For measured
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MHV flows, reported values of Kolmogorov length scale are 7 µm in hinge

flow,8 36–72 µm for leakage jets in vivo,36 and 25–47 µm in forward flow.21

These results suggest that cardiovascular device flows may contain eddies of

size comparable to a red blood cell (diameter 8 µm). However, Kolmogorov

theory is based on assumptions of isotropic, homogeneous, statistically sta-

tionary turbulence. Sutera and Joist,34 among others, have pointed out that

these conditions do not hold in the short-duration pulsatile flow through a

MHV, and it is not known to what extent Kolmogorov theory is applicable

in this regime. It has been suggested1,8,18,23 that smaller turbulent eddies

are more damaging to blood cells, but there is no direct evidence to support

this hypothesis.

Reynolds stress has been widely used as a parameter to characterize tur-

bulence and to predict flow-induced trauma in hemodynamic flow fields.8,14,21,33

However, the Reynolds stress is an averaged momentum flux which contains

no information about the size of flow structures in turbulence, and therefore

cannot fully characterize the mechanical environment of individual cells. It

has been shown that the Reynolds stress is an inaccurate indicator of true

viscous stresses in turbulent flow of a homogeneous fluid,13,17 and of flow-

induced stress on blood cells suspended in turbulent flow.30

Quinlan and Dooley30 calculated the approximate contribution to the

flow-induced stress on blood cells from eddies across a spectrum of length

scales, based on measurements by Liu et al.21 of flow downstream of a MHV.

The results showed that the viscous shear stress on cells is at least an order
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of magnitude less than the Reynolds stress, and depends on the turbulent

energy spectrum as well as the Reynolds stress. It was also shown that the

smallest eddies in a turbulent flow are not necessarily the most damaging

to cells. This analysis was based on a simplified model of a blood cell (as

a rigid sphere), and was restricted in scope to turbulent eddies larger than

the cell.

In the present study, the earlier work is extended to consider the inter-

actions of deformable cells with flow structures of cellular size or smaller. A

computational fluid-structure interaction technique is developed, validated

for the special case of a tank-treading RBC, and used to simulate the flow-

induced loading of flexible RBCs interacting with turbulent eddies in two

dimensions. A turbulent eddy is idealized as a vortex defined by charac-

teristic length and velocity scales, and the immersed boundary method29

is used to compute the fluid-structure interaction. This method is used to

test the hypothesis that the smallest turbulent eddies are most damaging

to cells.

Method and Validation

The Immersed Boundary Method

The immersed boundary (IB) method is a mixed Eulerian-Lagrangian fluid-

structure interaction (FSI) technique developed by Peskin29 to simulate

fluid-structure interactions in the heart. In computational modelling of the

strong interactions of fluids with very flexible solids in biological systems, the
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fluid-solid interface can become severely distorted. The IB method avoids

the need for a body-fitted grid in the fluid domain by treating the solid

surface as a boundary immersed in fluid. The solid is advected by the fluid

flow, and the fluid and solid domains are discretized independently. The

principle is illustrated in Fig. 1.

For a massless solid boundary Γ immersed in viscous incompressible fluid

in a two-dimensional domain Ω, the Navier-Stokes equations governing fluid

motion in Cartesian coordinates are

∇ · u = 0 (1)

∂u

∂t
+ u · ∇u = ν∇2u +

1

ρ
(−∇p + f) , (2)

and the equations governing the boundary-fluid interaction are

f(x, t) =

∫

Γ

F′(s, t)δ(x − X(s, t))ds (3)

∂X(s, t)

∂t
=

∫

Ω

u(x, t)δ(x − X(s, t))dx. (4)

Here x is a point in the fluid domain, δ(x) is the Dirac delta function, u(x, t)

is the fluid velocity field, ν(x, t) is the kinematic viscosity, and p(x, t) is the

fluid pressure. X(s, t) is the location of a point on Γ as a function of time

t and the coordinate s, which parameterizes the boundary curve. The force

density (force per unit area for the present 2D application) transmitted

from the solid to the fluid is f(x, t), and the corresponding force density per

unit boundary length is F′(X(s, t), t). Equation (3) enforces equilibrium

at the interface between the fluid and solid phases, and Eq. (4) expresses
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Fig. 1 (a) Immersed solid boundary Γ in fluid domain Ω. Different fluid proper-

ties (described by the fluid kinematic viscosity ν) are defined on each side of the

boundary. (b) Spatial discretization of solid by a Lagrangian grid and fluid by a

fixed Cartesian grid.

the continuity of the velocity field between fluid and solid (required by the

no-slip condition).

To construct a practical discrete method, the boundary is discretized

by one-dimensional Lagrangian line elements, and the fluid domain is dis-

cretized by a Eulerian grid, as shown in Fig. 1(b). The distributed boundary

force F′(X(s, t), t) is replaced with a set of discrete forces Fi at the La-

grangian nodes, representing out-of-balance internal forces in the boundary

structure. Fi is given by

Fi = Tiei − Ti−1ei−1, (5)

where the subscripts i − 1 and i denote adjacent line elements which share

the node i, e are the unit tangent vectors along them, and T is the ele-

ment tension. As in the front-tracking method of Unverdi and Tryggvason37,

the boundary separates fluids with different values of viscosity. The singu-
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lar Dirac delta functions are replaced with the following two-dimensional

smoothed approximation given by Peskin:29

Dh(x − X(s, t)) =















1
16h2

2
∏

k=1

(

1 + cos πrk

2h

)

: rk ≤ 2h

0 : otherwise,

(6)

where rk =
∣

∣xk − Xk
∣

∣ with k = 1, 2 denoting coordinate indices, and h is

the uniform spacing of the fluid grid. The integrals in Eqs. (3–4) are then

replaced with discrete sums

fj =
∑

i

Dh(xj − Xi)Fi (7)

ui =
∑

j

Dh(xj − Xi)uj , (8)

where i and j represent the Lagrangian (solid) and Eulerian (fluid) grid

points, respectively. In this framework, Eq. (7) defines a distribution of in-

teraction forces from the solid boundary nodes to neighbouring fluid nodes,

and Eq. (8) may be interpreted as an interpolation of the velocity field from

the fluid to the solid. The latter step ensures continuity of the fluid and

solid velocity fields and enforcement of the no-slip condition.

Red Blood Cell Model

The RBC is modelled in two dimensions as a circular elastic membrane of

diameter 2a = 8 µm. The membrane separates blood plasma with kinematic

viscosity νo = 1.2×10−6 m2/s from internal cytoplasmic fluid with viscosity

νi = 5.8 × 10−6 m2/s. The elastic tension T in the membrane is given by
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the constitutive equation due to Hochmuth and Waugh16:

T =
µ

2

(

λ2
− λ−2

)

, (9)

where µ denotes the shear modulus of the membrane and λ is the membrane

extension ratio. µ is taken as 6 × 10−3 mN/m.16

Numerical Implementation

The model was implemented in the OpenFOAM 1.4 open-source CFD pack-

age.28 The Navier-Stokes equations were solved using the PISO (pressure

implicit with splitting of operators) algorithm for incompressible flow. The

temporal terms in the Navier-Stokes equations were discretized using an

implicit Euler scheme, and the temporal IB term in Eq. (4) was discretized

using a first-order explicit scheme. The mesh density for both the solid and

fluid domains was increased until a mesh-insensitive solution was achieved.

For the results that follow, simulations were carried out using a 240×240

fluid grid, with 180 membrane nodes.

Validation of Red Blood Cell Model

Tank-treading of a RBC was simulated to validate the numerical model

against the experimental results of Fischer et al.12 and Fischer11 and the

analytical results of Tran-Son-Tay et al.35 When a normal RBC is subjected

to shear flow, it elongates and orients itself obliquely to the flow, and the

membrane orbits in a tank-tread-like manner. The geometry and boundary
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Fig. 2 Geometry and boundary conditions for simulation of RBC tank-treading.

Dimensions are D = 2a = 8 µm and H = 5a.

conditions for this simulation are shown in Fig. 2. A known mean shear rate

is imposed by prescribing equal and opposite wall velocities on the high and

low y boundaries. Zero axial gradient of velocity is prescribed at the high

and low x boundaries.

A simulation was carried out with external kinematic viscosity νo =

10−5 m2/s, corresponding to the lower end of the viscosity range of non-

physiological suspending media used in experiments by Fischer et al. The

simulation resulted in a normalized tank-treading frequency ft/γ̇ = 0.029,

which is in good agreement with the values of approximately 0.024 and

0.025 reported by Fischer11 and Fischer et al.12 respectively.
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Computations of membrane stress were validated by comparison with

the analytical calculations of Tran-Son-Tay et al. ,35 who modelled a tank-

treading RBC as a three-dimensional ellipsoidal fluid-filled elastic capsule.

The model allows membrane tension to be predicted as a function of de-

formed cell dimensions, cell orientation, membrane tank-treading frequency,

and mean cytoplasmic overpressure. The mean cytoplasmic overpressure ∆p

(the pressure difference across the membrane) was estimated by Tran-Son-

Tay et al. in a separate calculation, and the other variables were determined

from experimental observations. An IB simulation (which does not require

a priori knowledge of the above parameters) was carried out with external

viscosity νo = 1.2 × 10−6 m2/s and mean shear rate γ̇ of 286 s−1, corre-

sponding to a value used by Tran-Son-Tay et al.35 The predicted membrane

geometry, membrane velocity, and mean overpressure were then used as in-

put to analytical calculations based on the method of Tran-Son-Tay et al.

As shown in Fig. 3, the initially circular membrane is predicted to approach

an inclined, approximately elliptical shape in steady state. The predicted

pressure field is highly non-uniform, with the cytoplasmic overpressure ∆p

ranging from 0.56 to 1.24 Pa. The frequency of the tank-tread motion ft in

this simulation is approximately 6.9 s−1, corresponding to ft/γ̇ = 0.024.

Membrane tension computed by the IB model and the analytical model

are compared in Fig. 4. There is good agreement for peak tension. However,

the IB method predicts regions of negative membrane tension (compres-

sion), while the analytical model predicts that the membrane is in tension
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2a

Fig. 3 Evolution of the RBC membrane under uniform shear of γ̇ = 286 s−1,

simulated using the immersed boundary method. By dimensionless time γ̇t = 28.6

the tank-treading shape is close to steady state.

everywhere. This may be a consequence of the assumed uniaxial membrane

loading in the two-dimensional IB numerical model, in contrast with bi-axial

loading in the analytical model, as well as the non-uniform pressure in the

IB model. However, the results confirm that the immersed boundary RBC

model predicts the mechanical state of a RBC under flow-induced loading

to sufficient accuracy for the purposes of the present study.

Application to Turbulent Flow

The subject of this study is the interaction of an isolated RBC with an

idealized microscale turbulent eddy, characterized by a length and velocity



Loading of blood cells in turbulent flow 13

−0.2

0

0.2

0.4

0.6

0.8

θ

T/µ

 

 

analytical 
IB

0 π 2π

Fig. 4 Steady state membrane tension in a tank-treading RBC under a shear

rate of γ̇ = 286 s−1, as predicted by the analytical model of Tran-Son-Tay et al.35

for ∆p=0.9 Pa, and by the immersed boundary (IB) simulation.
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L D
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Fig. 5 Initial velocity field and cell positioning in an idealized turbulent eddy.
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scale. The idealized eddy is initialized in the simulation as a circular region

of diameter L, rotating as a rigid body with maximum tangential velocity V

at its circumference, as shown in Fig. 5. Velocity is initially zero outside this

region. Simulations were carried out for cells initially located at the eddy

centre, outside the eddy, and at a range of intermediate positions between.

The initial offset of the cell centre from the eddy centre is defined as q. The

model represents the smallest eddies in a turbulent flow, which are created

by the cascade of energy from larger length scales, and give up their kinetic

energy through viscous dissipation.2 It is therefore realistic to prescribe the

initial condition of the eddy and allow it to decay while it interacts with the

cell membrane. For the present purposes, it is not necessary to consider the

process of creation of these eddies, except to determine the characteristic

length and velocity scales L and V , which define the initial conditions for

the microscale flow field.

Two approaches are used here to estimate realistic initial conditions.

The first is a comparison of the effects of the smallest eddies (according to

Kolmogorov theory) in different flow fields. In the second approach, exper-

imental data from the literature are used to model the effects of various

eddies in a single flow. Both approaches are performed for length scales

spanning an order of magnitude around cellular scale, with L = 4, 10, 20,

and 40 µm.

The first approach is based on the Kolmogorov length and velocity scales,

η and Vd, which are theoretical estimates of characteristic scales of the
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smallest eddies in statistically stationary, homogeneous, isotropic turbulent

flow. They are functions only of kinematic viscosity ν and energy dissipation

rate ε, and are given by3,5

η =

(

ν3

ε

)1/4

(10)

and

Vd = (νε)
1/4

. (11)

Therefore, the Kolmogorov velocity and length scales are related by

Vd =
ν

η
. (12)

For plasma kinematic viscosity of ν = 1.2 × 10−6 m2/s, the length scales L

= 4, 10, 20, and 40 µm correspond to velocity scales of 0.29, 0.12, 0.059,

and 0.029 m/s, respectively. These parameters were used to initialize the

flow field as described above.

In the second approach, the in vitro experimental data of Liu et al.21

were used to determine initial length and velocity scales of model turbulent

eddies. Liu et al. measured the turbulent energy spectrum downstream of a

MHV using laser Doppler velocimetry (LDV). Figure 6 shows the normalized

energy spectral density E/u′2 at peak systole. The data can be represented

by a piecewise power law with exponents 0.30, −2.03, and −1.03. The 0.30

and −2.03 exponents correspond to the turbulence-producing and inertial

subranges, respectively.3,5 However, the change of exponent from −2.03 to

−1.03 is difficult to explain in physical terms, and is likely to be an arti-

fact due to the well-known particle-rate filter effect in LDV (demonstrated,
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for example, by Nobach et al.27). Therefore, we reject the high-frequency

portion of the power law.

Liu et al. reported a broad turbulent spectrum around the middle of the

pre-systole flow acceleration period (in addition to the data for peak systole

used here). This contrasts with particle image velocimetry (PIV) by Dasi et

al.6 which shows quite clearly that flow is laminar around that time, with

no apparent structures smaller than vortices of diameter about 2 mm (the

PIV interrogation window size was 133 µm and the light-sheet thickness

approximately 200 µm). This discrepancy may be at least partly explained

by the fact that the measurements by Liu et al. were conducted at a higher

Reynolds number (over 9000) than those of Dasi et al. (5960). While there

is clearly a need for improved high-resolution experimental data, and recent

PIV results represent a significant advance, the data of Liu et al. remain

the most complete and direct measurement of a turbulent energy spectrum

in a MHV flow.

Taylor’s frozen-field hypothesis3,5 can be used to estimate eddy length

scales from measured spectral data of this kind. According to Taylor’s hy-

pothesis, for low turbulence intensity, turbulent eddies change relatively

slowly as they are convected at the mean velocity U . Then the frequency

f of velocity fluctuations is related to the size L of the turbulent eddies

by f ≃ U/L. The mean velocity U reported by Liu et al.21 is 1.69 m/s,

and the root mean square velocity fluctuation (u′2)1/2 is 0.20 m/s, giving a

turbulence intensity (u′2)1/2/U of 12%, at which Taylor’s hypothesis should
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Fig. 6 Normalized energy spectral density for flow on the centerline 7.8 mm

downstream of a St. Jude Medical bileaflet valve at peak flow, measured by Liu

et al. using LDV.

hold to the accuracy required for this analysis. For this flow, a 4 µm eddy

corresponds to a frequency of approximately 423 kHz. Due to signal pro-

cessing and instrumentation limitations, Liu et al. reported spectral data

for frequencies only up to 5 kHz. The spectrum is extrapolated to higher

frequencies using the −2.03 exponent, to allow details of the microscale ed-

dies to be calculated. This exponent is chosen rather than the exponent of

−1.03 which fits the high-frequency range of the spectrum, because of the

likely experimental artifact.

The energy spectral density E(f) of a turbulent velocity signal u(t) is

defined such that E(f)df is the infinitesimal contribution from fluctuations

in a frequency band df centered on f to the total fluctuation energy u′2/2
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(equal to half the mean square velocity fluctuation). Therefore, E(f) is pro-

portional to the square root of velocity fluctuations at f . For a spectrum

represented by a power-law (as in this case) with exponent n, the charac-

teristic velocity scale V (f) of turbulent eddies varies according to

V ∝ f
n

2 ∝

(

U

L

)
n

2

(13)

(making use again of Taylor’s hypothesis).

This relation allows ratios of velocity scales at different frequencies to

be determined, but does not give absolute velocity scales. An absolute ve-

locity scale for fluctuations at some frequency f (and corresponding length

scale L = U/f) can be determined by considering the mean square of ve-

locity fluctuations at frequencies over a band of finite width ∆f , centered

on f . This is equivalent to an assumption that all of the energy in a band,

∫

E(f)df ≈ E(f)∆f , is concentrated in a single eddy in one event. This

is reasonable because the turbulent spectrum represents a statistical ag-

gregation of many turbulent events, rather than a continuous distribution.

However, the band width ∆f must be chosen arbitrarily. The present work

is concerned only with comparisons of the effects of turbulent structures at

different length scales. For the simulations presented here, it was found that

the relevant comparisons are independent of the choice of ∆f for the range

1 Hz . ∆f . 10 kHz. This linear behaviour is to be expected, because the

Reynolds number for plasma flow relative to a blood cell is in the range

10−5 < Re < 10−2 for the conditions tested. The results presented here

have been obtained with ∆f = 10 kHz and normalized with respect to ∆f .
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Results

Figures 7(a) and 7(b) show instantaneous fluid velocity fields and deforma-

tions of RBC membranes for cells in 4 µm and 20 µm Kolmogorov eddies.

The results indicate that the sub-cellular eddy deforms a small portion of

the RBC membrane, but that the larger eddy deforms the whole membrane,

elongating and also transporting the cell.

In Fig. 8, maximum membrane tension is plotted as a function of time

and initial cell position for four eddies of initial length scale from 4 to 40 µm,

with corresponding velocity scale determined from Kolmogorov theory, as

explained above. In these plots, tension is non-dimensionalised with respect

to the membrane shear modulus µ. For all eddy length scales, the maximum

membrane tension occurs when some part of the cell lies on the initial

periphery of the eddy (i.e. in the range 1 − D/L ≤ 2q/L ≤ 1 + D/L).

Each curve in Fig. 8(b) represents the initial cell position which results in

maximum tension for the corresponding eddy length scale. According to

these results, the peak membrane tension induced by the Kolmogorov eddy

is nearly independent of the eddy length scale.

Figure 9 shows the corresponding results for microscale eddies with ve-

locity scales determined from the turbulent energy spectrum of Liu et al.21.

In this modelling approach, the energy associated with an eddy is calcu-

lated by integrating the turbulent energy spectrum over a frequency band

of small but arbitrary width ∆f . The resulting tension T is approximately

proportional to this width. Membrane tension is therefore presented in the
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Fig. 7 Initial (- -) and deformed (—) shape of a RBC membrane interacting

with (a) 4 µm and (b) 20 µm Kolmogorov eddies, with instantaneous fluid velocity

fields. For clarity, the displacement of the membrane is scaled by a factor of 10.
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Fig. 8 Dimensionless membrane tension T ∗

1 = T/µ in a RBC in Kolmogorov

eddies of length scale L from 4 to 40 µm. (a) Maximum tension as a function of

initial cell position with respect to eddy. (b) Maximum instantaneous tension as

a function of time, for the initial cell position resulting in the highest tension.

dimensionless form T ∗

2 = Tν/(µD2∆f), which is independent of ∆f . Larger

eddies induce greater peak values of membrane tension. This parameter is

not directly comparable with T ∗

1 in Fig. 8. In this case, maximum membrane
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Fig. 9 Dimensionless membrane tension T ∗

2 = Tν/(µD2∆f) in a RBC in eddies

of length scale L from 4 to 40 µm. Eddy velocity scales were calculated using the

turbulent energy spectrum measured by Liu et al.21 in turbulent flow downstream

of a MHV. (a) Maximum tension as a function of initial cell position with respect

to eddy. (b) Maximum instantaneous tension as a function of time, for the initial

cell position resulting in the highest tension.
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Fig. 10 Kinetic energy K as a function of time, normalized by initial energy K0,

for simulated decay of four eddies of initial length scale L = 4, 10, 20 and 40 µm,

without a red blood cell.

tension increases with eddy length scale. The relationship is approximately

quadratic.

Simulations were also carried out for flow in the absence of a red blood

cell. Figure 10 shows the decay of total kinetic energy with time for eddies

of length scale L = 4, 10, 20 and 40 µm. The decay of normalized kinetic

energy is independent of the eddy’s initial characteristic velocity, and hence

independent of the the model (Kolmogorov theory or empirical data) used

as a basis for the initial condition. The smallest eddies decay most rapidly.
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Discussion

In this study, a two-dimensional immersed boundary method has been used

to investigate the effect of the length scale of cellular-scale turbulent eddies

on RBC membrane tension. An idealized structure was defined to model

microscale turbulent eddies, and two approaches were used to determine

characteristic length and velocity scales. This simple model realistically sim-

ulates the essential mechanical interactions between the plasma, cytoplasm

and membrane.

Results based on Kolmogorov theory (Fig. 8) suggest that the smallest

eddies in a flow cause a membrane tension which is independent of the size

of those eddies (i.e. the Kolmogorov length scale). This finding calls into

question the use of Kolmogorov length scale to assess potential for blood

damage.

On the other hand, results based on the E ∝ f−2.03 spectrum (Fig.

9) indicate that small eddies cause lower stress than larger eddies. This

indicates that the small, energy-dissipating eddies in a given flow field are

not the prime cause of cellular blood damage. This is the primary result of

the present work.

The two present approaches have fundamentally different meanings. The

comparison between eddies of various Kolmogorov length and velocity scales

is a comparison of different turbulent flows with different values of energy

dissipation rate ε. On the other hand, the comparison based on a modified

empirical turbulent spectrum represents a comparison of different scales in
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a single flow field. This distinction is important in any discussion of the

effects of turbulence length scales on suspended cells.

The interaction between a turbulent eddy and a suspended cell is a

transient event. Referring to Figs. 8 and 9, flow-induced tension in the RBC

membrane increases rapidly at first. The deformation of the membrane is

resisted by viscous forces, internal elastic forces and the inertia of fluid

which moves with it. Peak membrane tension occurs when these forces reach

instantaneous equilibrium. This takes place within microseconds for a 4 µm

eddy or about 100 µs for a 40 µm eddy, comparable with the time-scale of

decay of a free eddy (Fig. 10). After this, the elastic forces in the membrane

dominate, and the RBC returns to its unstressed state. Smaller eddies are

shown to decay faster than larger eddies (Fig. 10), decreasing the exposure

time of a cell to the eddy. This suggests that the transient dissipation of a

small eddy plays a role in limiting the damage it may cause. The deformation

of the cell during this process is small, as illustrated in Fig. 7.

In this study, the turbulent energy spectrum of Liu et al.21 was ex-

trapolated to higher frequencies using a power–law fit E(f) ∝ fn, with

n = −2.03, to allow details of the microscale eddies to be calculated. As

highlighted by Eq. (13), the analysis is dependent on the distribution of

turbulent kinetic energy across frequencies, which in turn depends on the

choice of n. Simulations have also been carried out with the widely accepted

value n = −5/3, theoretically predicted and empirically confirmed for a wide

range of turbulent flows,32 and the qualitative conclusions are essentially the
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same. Around frequencies corresponding to the smallest scales in a turbulent

flow, turbulent energy spectra are better fitted by E(f) ∝ e−αf .4,24 This

exponential decay in the distribution of energy across the high-frequency

spectrum would increase the differentiation in cell loading at different eddy

length scales, reinforcing the conclusions of this study.

Interactions between a single cell and a single eddy have been considered

here. In reality, multiple eddies at cellular scale may occur near a cell simul-

taneously or sequentially. It is likely that complex additional phenomena

occur in the interactions of multiple eddies (of different sizes) with multiple

cells, and this is an important topic for future models.

The fluid-structure interaction model was validated by simulation of

tank-treading and comparison with the model of Tran-Son-Tay et al.35.

Good agreement was achieved for the value of peak tension and the qualita-

tive distribution of tension over the cell, but regions of negative tension and

low cytoplasmic pressure were predicted by the present model in regions

where Tran-Son-Tay et al. predict small positive tension values (θ ≈ 0, π

in Figure 4). In a three-dimensional incompressible membrane (as modelled

by Tran-Son-Tay et al.), extension in the plane of flow shear would result in

out-of-plane membrane contraction and compressive force on the cell con-

tents. The absence of this effect in the present two-dimensional model may

explain the regions of low pressure and associated membrane compression.

A fully three-dimensional model will be required to determine the effect of

RBC membrane areal incompressibility.
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This analysis does not address the fundamental question of whether

cell-scale turbulent eddies exist. It is unclear whether the assumptions of

homogeneous, isotropic, statistically stationary turbulence, on which Kol-

mogorov theory are based, apply in the brief peak flow through MHVs.21,34

Even if Kolmogorov theory were valid for flow of a homogeneous fluid in car-

diovascular conditions, it could not be expected to predict microscale flow

in whole blood at physiological hematocrit, where interactions between cells

and plasma must dominate the fluid mechanics. From recent experimental

and computational results at the current technological limit of resolution,6

it appears that the smallest flow structures in MHV flow may be orders

of magnitude larger than cells, contrary to previous results based on Kol-

mogorov theory. There is a need for experimental measurements at still

higher spatial resolution to shed more light on small-scale structure, and

there is a complementary role for high-resolution direct numerical simula-

tion to probe the microscale.

Conclusions

The mechanical loading of a red blood cell in turbulent eddies has been sim-

ulated computationally using a two-dimensional fluid-structure interaction

model with a flexible cell membrane. Two approaches were used to define

the local turbulent eddy structure. In the first approach, loading was com-

pared across different turbulent flows, using Kolmogorov theory (following

much of the literature in this field) to estimate the velocity scale of smallest
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eddies as a function of their length scale. This model indicates that dam-

age due to smallest eddies is independent of the Kolmogorov length scale.

However, it remains an open question whether Kolmogorov theory is valid

in highly unsteady cardiovascular flow. In the second approach, eddies of

various scales were compared within a single turbulent flow field, based on

experimental data. According to this model, the smallest eddies in a given

turbulent flow field cause the least damage. This finding suggests that the

Kolmogorov scale (the estimated size of the smallest eddies) is not the most

important predictor of cell damage in turbulent blood flow. The distribu-

tion of energy across turbulence length scales and the time scale of turbulent

eddies are highlighted as important influences on turbulence-induced blood

trauma.
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