<table>
<thead>
<tr>
<th>Title</th>
<th>The effect of intraluminal contact mediated guidance signals on axonal mismatch during peripheral nerve repair</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Daly, William T.; Yao, Li; Abu-Rub, Mohammad; Zeugolis, Dimitrios I.</td>
</tr>
<tr>
<td>Publication Date</td>
<td>2012-06-25</td>
</tr>
<tr>
<td>Publisher</td>
<td>Elsevier</td>
</tr>
<tr>
<td>Link to publisher's version</td>
<td>http://dx.doi.org/10.1016/j.biomaterials.2012.06.002</td>
</tr>
<tr>
<td>Item record</td>
<td>http://hdl.handle.net/10379/3006</td>
</tr>
<tr>
<td>DOI</td>
<td>http://dx.doi.org/DOI 10.1016/j.biomaterials.2012.06.002</td>
</tr>
</tbody>
</table>
The effect of intraluminal contact mediated guidance signals on axonal mismatch during peripheral nerve repair

William T. Daly, Li Yao, Mohammad T. Abu-ruba, Claire O’Connell, Dimitrios I. Zeugolis, Anthony J. Windebank, Abhay S. Pandit

The current microsurgical gold standard for repairing long gap nerve injuries is the autograft. Autograft provides a protective environment for repair and a natural internal architecture, which is essential for regeneration. Current clinically approved hollow nerve guidance conduits allow provision of this protective environment; however, they fail to provide an essential internal architecture to the regenerating nerve. In the present study, both structured and unstructured intraluminal collagen fibres are investigated to assess their ability to enhance conduit mediated nerve repair. This study presents a direct comparison of both structured and unstructured fibres in vivo. The addition of intraluminal guidance structures was shown to significantly decrease axonal dispersion within the conduit and reduced axonal mismatch of distal nerve targets \((p < 0.05)\). The intraluminal fibres were shown to be successfully incorporated into the host regenerative process, acting as a platform for Schwann cell migration and axonal regeneration. Ultimately, the fibres were able to provide a platform for nerve regeneration in a long term regeneration study (16 weeks) and facilitated increased guidance of regenerating axons towards their distal nerve targets.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Treatment of peripheral nerve injuries is currently limited to a small number of microsurgical treatment methods. These treatments are ineffective as these interventions often lead to painful neuropathies as a result of loss in motor control and sensory perception [1,2]. Over relatively short nerve gaps, spontaneous natural regeneration may occur. However, over larger gaps, microsurgical repair is essential for nerve regeneration [3–5]. The primary methods of repair include direct/primary repair, transplantation of autografts or allografts, and the use of hollow nerve guidance conduits [6]. Direct repair is limited to treating short nerve defects \(<5\) mm in length) and requires tension-free suturing of the damaged nerves [7,8].

Beyond this relatively short gap, autografting is the current gold standard for repair. Despite providing a number of advantages for repair, success in the clinic has been limited. This is partly due to a number of the intrinsic limitations of the gold standard, particularly nerve and axonal size mismatches between the donor nerve and the targeted injured nerve [6,9]. In addition there is a requirement for a second surgical site i.e. donor site that has a limited supply of nerve. Donor site complications often lead to morbidity and pain. Despite these limitations, autograft healing is characterised by some intrinsic ideal components for peripheral nerve repair. Autograft provides a natural architecture for guided nerve regeneration, as well as being readily incorporated into the regenerative process; due to the graft being derived from the host’s own tissue. The intrinsic network of extracellular matrix proteins and cell adhesion molecules provides regenerating axons, and migrating and proliferating Schwann cells (from the proximal and distal nerve stumps) with appropriate topographical and biological guidance cues to achieve functional nerve regeneration [10]. To recreate this natural internal architecture for repair an extracellular matrix derived platform (i.e. one made from collagen, fibronectin or laminin) often proves useful for repair [11–13].

In efforts to reconstruct this architecture this study proposes the use of a natural extracellular matrix protein (i.e. collagen) based construct which displays topographical features and structural characteristics which are beneficial for repair. This investigation...
incorporates such a system in the form of intraluminal collagen fibres into the lumen of a hollow nerve guidance conduit. Hollow nerve guidance conduits are the commercial alternatives to grafting and have a number of advantages for repair. These advantages include limiting myofibroblast infiltration, a reduction in scar and neuroma formation, and no associated donor pain [14]. However, hollow conduits provide only limited structural support (in the form of a fibrin cable) and guidance to regenerating axons and as a result functional recovery remains poor [6,8,15]. To overcome the limitations of the use of hollow conduits, intraluminal guidance structures (e.g. fibres, films, gels) are used to supplement/replace the fibrin cable and/or to recreate the natural topographical features of autograft [12,16—20]. This study uses intraluminal biologically derived collagen fibres for such a purpose. Ultimately, the addition of these extracellular matrix (ECM) derived components aims to recreate the hierarchical organisation and biological function of the native extracellular matrix. This investigation thoroughly analyses the incorporation of these components into the host regenerative process and assesses their feasibility for improving or enhancing conduit mediated nerve repair. In particular this study investigates the influence of intraluminal fibres on the levels of axonal dispersion within the biomaterial conduit.

In addition this study incorporates a number of longitudinal grooves on the surface of the collagen fibres for additional topographical guidance (Fig. 1). The use of topographical guidance cues has shown to have beneficial effects for nerve repair. Topographical cues have been shown to introduce complex signalling responses within the growth cone of a regenerating and have resulted in profound changes in the neuronal response to injury [21]. Structural cues have been incorporated on a number of substrates in vitro resulting in a significant increase in aligned neurite outgrowth [21—23]. This increase in neurite alignment and growth is accompanied by a significant reduction in the number of neurites and neurite branching. Mahoney et al. demonstrated increased alignment and growth of PC12 cells on micro-structured polyimide for features in the range of 20—30 μm versus features which had a width of 40—60 μm [24]. Preliminary work by our own group demonstrated increased aligned growth of PC12 neurites on micro-structured PLGA film with features ranging from 5 to 10 μm in width [25]. Based on these results, topographical guidance features have been combined with the aforementioned intraluminal guidance structures in the form of structured collagen fibres to assess their combined ability to enhance peripheral nerve repair.

2. Materials and methods

2.1. Extrusion and crosslinking of collagen fibres

The extrusion procedure and crosslinking were carried out in the same manner as reported by Zeugolis et al. [26,27]. A 5 ml syringe (BD Scientific, UK) containing 5 mg/ml bovine type I atellocollagen was extruded at a rate of 0.3 ml/min by a syringe pump (KD-Scientific 200, KD-Scientific Inc., Massachusetts, USA) through 0.03 mm inner diameter silicone tubing (Polymer Technologies Ltd, Warwickshire, UK) into a fibre formation buffer (118 mM phosphate buffer and 20% of polyethylene glycol, Mw 8000, pH 7.50 and 37 °C). Fibres were allowed to remain in the fibre formation buffer for 5 min and transferred into a fibre incubation buffer (6.0 mg phosphate buffer and 75 ms sodium chloride; pH 7.10 and 37 °C) for a further 5 min. The extruded collagen fibres were subsequently cross-linked with N-(3-dimethylaminopropyl)-N-ethylcarbodiimide (EDC) and N-hydroxysuccinimide (NHS), at a ratio of 30 ms:10 ms respectively, in 50 mM MES buffer (pH 5.5), for 24 h. After this period, the fibres were rinsed three times with sterile distilled water and allowed to air-dry, under the tension of their own weight. Similarly, for non-cross-linked collagen fibres, fibres were briefly dipped in distilled water for

![Fig. 1. Images of unstructured and structured collagen fibres and their incorporation into a hollow collagen nerve guidance conduit.](image-url)
6662

Table 1

List of the treatment groups and number of animals used for the current in vivo study and the experimental procedures (nerve morphometry and retrograde tracing) carried out on each respective group.

<table>
<thead>
<tr>
<th>Treatment Group</th>
<th>Nerve morphometry (No. of animals)</th>
<th>Retrograde tracing (No. of animals)</th>
<th>Nerve gap (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autograft</td>
<td>8</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Hollow collagen conduit</td>
<td>8</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Unstructured fibres</td>
<td>8</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Structured fibres</td>
<td>8</td>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>

approximately 1 min and then allowed to dry under the tension of their own weight for 24 h. The diameter of the collagen fibres were measured using an inverting microscope (Mason Technology, Dublin, Ireland). The degree of crosslinking was confirmed via the ninhydrin assay.

2.2. Fabrication of structured collagen fibres

Microgrooves were produced on the surface of the collagen fibres using an excimer laser (ATL Atles®, Wermsielkirchen, Germany) in conjunction with a machining centre (Optec MicroMaster®, Frameries, Belgium). Argon fluoride gas (Spectra Gases, UK), with a 3–7 ns pulse duration, was chosen as the active laser medium for the laser. Argon fluoride gas allows operation of the laser at a wave-length of 193 nm, which results in the clean ablation of a large range of materials in particular biological substrates. This allows structuring of the collagen fibres without damage to the underlying substrate [28]. A pulse repetition frequency of 100 Hz with a constant speed of 500 μm/s was selected to give the optimal compromise of process speed and feature accuracy. The microgrooves were generated using a standard mask projection machining approach. For each parameter, a different dimensioned mask was used with a varied demagnification, to produce topographical features of defined width and depth (Table 2).

A rotary stage was used in conjunction with the aforementioned excimer laser system to create micro-structured fibres with multiple grooves orientated longitudinally across its surface (Fig. 1). Structuring of the surface was confirmed using a scanning white light interferometric surface profiler (NewView 100, Zygo, Middlefield, CT, USA) and Scanning Electron Microscopy (SEM) (Phenom® Desktop Scanning Electron Microscopy FEI®, Eindhoven, The Netherlands).

2.3. Characterisation of collagen fibres

Characterisation of the micro-structured fibres was carried out in the Advance Microscope Facility (Centre of Research on Adaptive Nanostructures and Nanodevices, Trinity College Dublin) on a Carl Zeiss Auriga® focused ion beam (FIB) system. Depth measurements and groove widths were then measured using this SEM – FIB system. Briefly, samples were sputter-coated (Cressington 208 HR sputter coating system) with a protective 10 nm palladium over layer and grounded with a cryostat (Microme 120, Micromelt, Walldorf) at −20 °C. Sections were immediately evaluated under an upright Scanning Electron Microscopy (SEM) (Phenom® Desktop Scanning Electron Microscopy FEI®, Eindhoven, The Netherlands).

2.4. Preparation of intraluminal conduits and experimental groups for in vivo implantation

Intraluminal conduits were constructed by enclosing 18 collagen fibres within a hollow collagen conduit. The conduit widths were then filled with unstructured and non-structured collagen fibres respectively. Structured fibres of approximately 50 μm diameter and 4 longitudinal channels (10 μm widths and a high depth) were used for all in vivo experimentation. Samples were stabilised by a 2 h incubation period in 70% ethanol, rinsed in sterile 0.1 μ phosphate buffer and stored until use. 56 adult female Lewis rats weighing between were between 220 and 230 g were randomly assigned to one of four experimental groups (Table 1). Two experimental procedures were carried out for each experimental group: both nerve morphometry (n = 8) and simultaneous retrograde tracing (n = 6) analyses. All experimental procedures were carried out in accordance to National and Institutional guidelines set out by the Cruelty to Animals Act 1876 as amended by the European Communities (Amendment of Cruelty to Animals Act, 1876) Regulations 2002 & 2005.

2.5. Surgical procedure

Rates were anaesthetised by intraperitoneal injection under asper-atic conditions. The left sciatic nerve was exposed and isolated at the mid-thigh level using a dorsal gluteal muscle splitting approach. The nerve was resected 5 mm proximally from the distal bifurcation of the tibial and peroneal branches and a 5 mm nerve segment was removed, resulting in the creation of a 10 mm nerve gap. The proximal and distal ends of the transected nerve were inserted 1 mm into 12 mm long collagen tubes (with/without intraluminal fillers) and secured to the epineurium using 10-0 monofilament nylon sutures (Ethicon, Location). The wound was finally closed in layers and the animals received buprenorphine hydrochloride for the treatment of pain. Animals were continuously monitored for signs of distress or pain. For autograft repair the nerve were similarly transected at two different sites, approximately 1 cm apart, rotated 180° and re-attached to the transected nerve stumps, using 10-0 nylon sutures (Johnson & Johnson, Dublin, Ireland).

2.6. Nerve histology

Sixteen weeks post-implantation, the sciatic nerve was re-exposed under anaesthesia. The exposed sciatic nerve was fixed in situ using Trump’s fixative solution (4% formaldehyde, 1% glutaraldehyde in 0.1 μ phosphate buffer saline solution) for 30 min [29]. The fixative solution was removed from the injury site, and the sciatic nerve was resected and divided into three 1 mm sections: 1 mm proximal to graft, midgraft and 1 mm distal to the graft. The sections were placed in the Trump’s fixative solution and stored for sectioning. Sections from the midsection of the nerve were post-fixed in 1% osmium tetroxide solution and passed through series of graded alcohol solutions for serial dehydration of the samples. Sections were immersed in spurr resin (EMS, Fort Washington, USA) and 1 μm semi-thin sections were cut using a glass knife on a Leica UltraCut E® Microtome (Rankin Biomedical Corp., Michigan, USA), stained with 1% toluidine blue and mounted for light microscopy and subsequent electron microscopy.

2.7. Morphology and stereology

The midsection of the resected nerve was quantified for axonal area, number of axons, axonal density, diameter of axons, and diameter of myelinated fibres, myelin thickness, axonal size distribution and g-ratio (Fig. 9). G-ratio was taken as the ratio of inner axonal diameter to the total axonal diameter and was used as a functional index of myelination. The ideal g-ratio was taken to be approximately between 0.6 and 0.7 [30]. All parameters were quantified using an upright florescent microscope (BX51U, Olympus Microscope®; Olympus Inc.) and analysed using ImageJ image analysis software (NIH, Bethesda, USA). The nerve area was quantified via tracing of the circumference of the regenerated tissue at 100× magnification using the area fraction method [31]. This method allows all axons to be equally sampled from the total nerve area. A 1600 μm² area was taken and counted using an unbiased counting frame and repeated in a systematic and random manner (Fig. 8). The number of axons per unit area was calculated and extrapolated to the total nerve area to give total nerve counts for the section. Similarly, the fibre and axon size distribution, average axon and myelinated fibre diameters, and myelin thickness were similarly counted. A minimum of 50 axonal profiles per sample were evaluated using this method.

2.8. Simultaneous retrograde tracing

At week 16, the sciatic nerve was re-exposed, at the location where the tibial and peroneal nerves branch off the sciatic nerve (Fig. 3). Distal from this branching point, the tibial and peroneal nerves were transected. The proximal end of the cut peroneal nerve was initially placed in a 5% diamidino yellow solution (Sigma Aldrich, Co. Wicklow, Ireland) for 30 min. Subsequently the cut end of the tibial nerve was exposed to 5% fast blue solution (Sigma Aldrich, Co. Wicklow, Ireland) for further 30 min. After exposure, the cut ends of the nerves were washed with 0.9% saline solution and were sutured back into the surrounding tissue to prevent leakage of the dye. Seven days after tracer application, the animals were transcardially perfused with 4% paraformaldehyde and 10% sucrose in phosphate buffered solution (PBS) and the spinal cord segments L1 to L6 were removed and post-fixed overnight. Sagittal longitudinal sections were embedded in Cryo-gel® (Instrumeds Ltd, St Louis, MO) and 30 μm thick sections were cut on a cryostat (Microm HM560E Cryostat®, Walldorf) at −20 °C. Sections were immediately evaluated under an

Table 2

Parameters for excimer laser structuring of the extruded collagen fibres and resulting diameters and depths of the micro-structured fibres.

<table>
<thead>
<tr>
<th>Targeted groove diameter (μm)</th>
<th>Actual mean diameter (±SD) (μm)</th>
<th>Mean depth (±SD) (μm)</th>
<th>Fluence used (mJ/cm²)</th>
<th>Speed (μm/s)</th>
<th>Rep. rate (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>3.45 (±0.32)</td>
<td>3.81 (±0.52)</td>
<td>176</td>
<td>250</td>
<td>100</td>
</tr>
<tr>
<td>5 (low depth)</td>
<td>5.09 (±0.50)</td>
<td>3.17 (±0.94)</td>
<td>86</td>
<td>500</td>
<td>100</td>
</tr>
<tr>
<td>5 (high depth)</td>
<td>4.80 (±0.44)</td>
<td>5.92 (±0.82)</td>
<td>120</td>
<td>500</td>
<td>100</td>
</tr>
<tr>
<td>10 (low depth)</td>
<td>9.65 (±0.55)</td>
<td>6.77 (±0.34)</td>
<td>130</td>
<td>500</td>
<td>100</td>
</tr>
<tr>
<td>10 (high depth)</td>
<td>11.08 (±1.11)</td>
<td>8.55 (±0.72)</td>
<td>233</td>
<td>500</td>
<td>100</td>
</tr>
</tbody>
</table>
upright fluorescent microscope (BX51 Upright Fluorescent Microscope®; Olympus Inc.). Neuronal profiles with blue cytoplasm and a dark nucleus were counted as FB-labelled neurons, profiles with a yellow nucleus and dark cytoplasm as DY-labelled neurons, and profiles with a yellow nucleus and blue cytoplasm as FB/DY-double-labelled neurons. All neurons in each section were counted.

2.9. Statistical analysis

All graphical data is presented as mean ± standard error of the mean (S.E.M.). Graphpad® v5.1 (GraphPad Software, California, USA) statistical analysis software was used for all statistical analysis. Statistical analysis included a one way analysis of variance (ANOVA) followed by a Tukey post hoc test for multiple comparisons. A p value of 0.05 was deemed statistically significant.

3. Results

3.1. Fabrication and characterisation of intraluminal collagen fibres

Intraluminal collagen fibres were fabricated using a fibre extrusion process (Fig. 1). These fibres were approximately 50 μm in diameter and were cross-linked using EDC:NHS at a ratio of 30 mM:10 mM to increase their strength, lower their degradation rate and to maintain their structural integrity in vivo. The degree of crosslinking was confirmed using a ninhydrin assay. This assay showed a significant reduction in the number of free amines in the cross-linked group versus the control non-cross-linked collagen fibres group (p < 0.05).

The cross-linked fibres were subsequently structured using an excimer laser system that was linked to a machining centre that produced the defined topographical features (Figs. 1 and 2). For depth measurements SEM combined with FIB cross-sectioning was used (Fig. 2). This analysis provided accurate measurements of the surface architecture of the collagen fibres after ablation of the surface (Table 2). Using the excimer laser system, a range of fibre diameters and depths were produced. These results assessed the ability to produce reproducible topographical features of controlled depth and width.
3.2. Surgical outcome of implanted intraluminal guidance conduits

Conduits were implanted in all animals; with only 10% of animals displaying minimum signs of irritation. 16 weeks post-implantation, all animals survived the entire period of implantation. At the defined endpoint, all conduits showed no signs of collapse (with minimum signs of premature degradation) and a tissue cable was seen to be present throughout the conduit for all.
implanted groups (Fig. 2). One instance of neuroma was noted for the autograft group and was excluded from further analysis.

3.3. Simultaneous retrograde tracing — innervation of distal targets

One week after exposure to the retrograde tracing dyes, the spinal column was removed and the L1-L6 segments of the spinal cord were isolated and sectioned for assessment. After sectioning, the number of fast blue (FB), diamidino yellow (DY) and double-labelled (DL) motor neurons were counted to assess the number of axons approaching their distal targets and the degree of misdirection of regenerated nerves. The total number of neurons was calculated by summing all the labelled profiles (i.e. FB + DY + DL) and comparing between groups. Retrograde tracing results showed a significantly higher total number of labelled neurons in both the structured fibres and unstructured fibres groups versus the control hollow conduit ($p < 0.05$). This suggests that statistically more regenerating axons are growing through their respective branches towards their distal targets versus control hollow conduits, at the point of the retrograde dye application (Fig. 3). The regenerating axons may not however have reached their distal targets. The total number of neurons in the structured fibres group was not statistically different to that of the autograft group.

The number of misdirected axons was calculated by dividing the number of dual labelled motor neurons by the total number of motor neurons. This allowed calculation of the percentage of misdirected axons. A significant reduction in the number of misdirected axons was seen in both the structured and unstructured fibre groups (0.84% ± 1.19% and 2.42% ± 2.33%) respectively versus the autograft group (17.83% ± 13.57%) ($p < 0.05$).

![Fig. 5. Histological overview of the regenerated nerve cables seen present at the midgraft level of each of the experimental groups as follows: (A) autograft (B) hollow conduit (C) structured fibre conduit and (D) unstructured fibre conduit. In both of the collagen fibre groups, fibres can be seen to have successfully been incorporated into the regenerative process with little to no apparent foreign body response. Fibres appear to have been reduced in area from the original circumferential area it is likely that the fibres at this stage have begun to partially degrade. All scale bars: 100 μm.](image-url)
3.4. Histological & morphological analysis of implanted conduits

Tissue samples were explanted and prepared for tissue sectioning. Samples were embedded in spur resin and 1 μm thick sections were stained with 1% toluidine blue for visualisation under light microscopy. Images were taken initially at 100× magnification at the midpoint for general observations of nerve regeneration and for quantitative evaluation of nerve regeneration (Figs. 4 and 5).

3.4.1. Incorporation of intraluminal fibres into the host regenerative process

Initial qualitative analysis at 100× magnification, showed a nerve tissue cable to have grown within the outer conduit in all conduit groups (Fig. 4). For both fibre groups, the structured and unstructured fibres were seen to have been incorporated into the host regenerative process. The collagen fibres were intact and a number of axons were seen to be in close proximity to the fibres (Fig. 6 and 7). Similarly, a number of vascular bundles were seen throughout the tissue and in close approximation to the implanted fibres.

The total axonal area was quantified after subtracting the area occupied by the implanted collagen fibres (Fig. 5) at 100× magnification using ImageJ image analysis software. The autograft group showed a significantly greater axonal area versus all implanted conduit groups (p < 0.05) at midgraft region of the nerve. The nerve tissue area was quantified by subtracting the scaffold area from the overall area of nerve tissue.

Further quantification was carried out at 1000× magnification using a systematic stereological approach (Fig. 9). The number of myelinated fibres, axon density, mean myelinated fibre diameter, mean axonal fibre diameter, g-ratio and myelin thickness were evaluated and compared. Axonal density was seen to be similar across all conduit groups, with no statistical differences observed between groups (p < 0.05) (Fig. 5). Similarly, the autograft group displayed a significant higher number of regenerated axons at the midgraft level versus all experimental groups (10906.6 ± 195.11 axons). The scaffold area to nerve tissue area was similarly evaluated. No statistical differences were seen in terms of mean axonal and fibre diameters (p < 0.05). Myelin thickness and g-ratio were statistically improved for the autograft group versus all experimental groups (p < 0.05) (Fig. 8). The number of myelinated fibres was significantly greater in the autograft group versus the remaining experimental groups (10906.6 ± 195.11) (p < 0.05).
4. Discussion

The use of intraluminal guidance structures is an important strategy for improving nerve regeneration in hollow nerve guidance conduits. These intraluminal fillers act as a replacement for or act as an anchor for the fibrin cable which forms during conduit mediated repair [18]. Strategies include the use of various types of scaffolds including gels, fibres, sponges and films. These fillers are made from a number of biological (collagen, fibrin, keratin) and artificial substrates (polylactic acid, poly(lactic-co-glycolic acid)) [6]. The addition of such intraluminal guidance structures or fillers results in changes in the response of regenerating axons and Schwann cells during repair. Localised effects occur on the growth cone of the regenerating axons in response to contact mediated intraluminal guidance cues. The effects of this localised signalling on nerve repair are still being realised [21]. These localised changes in signalling result in overall changes in the axonal regenerative response. In this investigation collagen fibres were used to assess their feasibility for nerve repair and to analyse the influence of these fibres on axonal dispersion within a hollow conduit. This study uses collagen as the major component for nerve repair. Collagen which comprises 30% of all proteins in the body is an essential component of nerve tissue [32]. Collagen is found in both the inner endoneurium (collagen type I and type II) and outer perineurium of peripheral nerves arranged in bundles of collagen fibres [33]. Collagen has a number of benefits for nerve repair. Advantages include controlled degradability (via crosslinking) and stability with minimal foreign body response which are very attractive properties for nerve repair.

Controlled crosslinking of the collagen allows degradation and tensile strength to be tailored for application in nerve repair. As can be seen the EDC:NHS cross-linked intraluminal collagen fibres were still visible within the lumen of the conduit up to 16 weeks after implantation (showing initial signs of degradation) and that axons were seen to have grown in close proximity to the implanted fibres (Fig. 6). Similarly the outer nerve guidance conduit, similarly made from collagen, was structurally intact after a period of 16 weeks with no instances of conduit collapse. Despite having not fully degraded, the intraluminal collagen fibres were shown not to significantly impede nerve regeneration. For nerve area calculations the scaffold area was subtracted from the total area to give a more representative quantification of nerve repair. It can be seen from the results that despite occupying space within the regenerated nerve cable there was no significant difference in nerve area between the fibre groups and the hollow nerve guidance conduit (Fig. 5) \((p < 0.05)\). Instead regeneration occurred in close proximity to the fibres. For future studies higher levels of nerve regeneration may be achieved using collagen fibres which degrade quicker. The space which is currently still occupied by the intraluminal fibres could potentially be replaced by additional regenerating axons.

This study simultaneously investigates the incorporation of longitudinal micro-channels on the fibre surface. To date these micro-structured fibres have only been used in short term nerve regeneration studies (maximum of 6 weeks). This study characterises such a system in a long term nerve regeneration study (16 weeks) and compares them directly to their unstructured counterparts. The incorporation of additional topographical guidance features on the surface of the conduits was considered as...
a potential avenue to further improve nerve repair. It has been shown on flat PLGA films that micro-grooved surfaces as small as 5 μm and 10 μm in width increased aligned neurite outgrowth from PC12 cells [25].

Studies by Ribeiro et al. and later by Nichterwitz et al. have described the use of similar micro-structured intraluminal fibres both in vitro and in vivo [34,35]. In initial in vitro studies, micro-structured poly-ε-caprolactone (PCL) fibres displayed not only the ability both to support growth but also to facilitate increased alignment of Schwann cells and increased alignment of neurites extending from seeded rat dorsal root ganglion (DRG). The aligned Schwann cells also displayed increased L1 expression, known to be a marker for the switching of Schwann cells from a mature to a regenerative phenotype. These Schwann cells were said to form artificial glial Bands of Bungner, illustrating another benefit for repair. In a subsequent in vivo study, the PCL fibres were replaced with faster degrading poly-p-dioxanone (PDO) fibres and implanted in a rat sciatic nerve model using an epineurial sheath technique. Six weeks post-implantation; Schwann cells showed parallel and aligned migration along the fibres. Axons were seen to subsequently navigate through these Schwann cell bands. These studies further support the use of intraluminal fillers or their micro-structured counterparts.

Despite showing promising results, the aforementioned study had a number of limitations: the studies were carried out over a relatively short term (6 weeks versus 16 weeks in this current study), the study was carried out with no outer conduit, no comparisons of the micro-structured PDO fibres were made with...
control groups (such as autograft and hollow conduit used here or similarly no comparisons between structured and unstructured fibres) and finally no quantification of nerve regeneration were made. Despite this, the proof of concept study elucidates benefits for the current investigation.

Herein, this study evaluates and compares such microstructured fibres in vivo with their unstructured counterparts. Structuring of the fibres was carried out using an excimer laser system. The use of the excimer laser system allows precise control of a number of parameters (including groove width, groove depth and shape of the groove) when structuring the surface of the fibres (Table 2). Using the manufactured rotary stage in tandem with this system allowed the manufacture of collagen fibres with multiple longitudinal channels along their surface. Structuring of the surface however can become time-intensive especially if higher depths on the surfaces of the materials are required. For use as a tool outside these studies optimisation of each parameter would be required. The user needs to maintain a sufficient balance between time of production

Fig. 9. Morphological analysis of regenerated nerve. (A) Diagram of stereological approach to quantify nerve regeneration. A 1600 μm² unbiased counting frame was applied to a nerve section which was selected in a systematic random manner from the overall nerve regeneration area. Inclusion lines are represented in blue (upper and right lines of the unbiased frame) and any axon profile interacting with these inclusion lines are included in the analysis. Exclusion lines are represented in red (lower and left lines of the unbiased frame) and any axon profiles interacting with these exclusion lines are not included in the analysis. Scale bar, 5 μm. (B) Axon counts show significantly more axonal profiles in the regenerated tissue of the autograft group versus all experimental groups (p < 0.05). (C) No significant difference was seen in the mean myelinated diameter between each experimental group (p > 0.05). (D) G-ratio was significantly lower in the autograft group versus all conduit groups. The ideal g-ratio is between 0.6 and 0.7 [30]. (E) There was no significant difference seen in the unmyelinated fibre diameter between all experimental groups (p > 0.05). (F) Autograft displayed a significant higher myelin thickness versus all the conduit groups (p < 0.05). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
and meeting the required structural requirements. For this study fibres with a diameter of approximately 50 μm were produced with a groove width of approximately 10 μm running longitudinally across its surface. The choice of this groove width was based on in vitro studies which demonstrated increased axonal alignment and growth, as well as guided Schwann cell migration and alignment [25]. Similar studies have shown that fibres of approximately 10–80 μm from a broad range of materials have been used successfully for peripheral nerve repair [13,36–40]. These fibres act as a platform for guided Schwann cell migration during the early stages of peripheral nerve repair while providing a means of topographical guidance to regenerating axons.

After 16 weeks implantation and despite the incorporation of additional structural guidance cues, there was a no significant difference present between the structured and unstructured fibre over a 16 week period (p < 0.05). There was a trend towards a slight increase in regeneration in the structured group versus their unstructured counterparts, although this trend was not deemed significant. The beneficial effect of such micro-structured fibres may be masked at such a late time point and may only have proven beneficial at the early stages of repair. Studies by Madduri et al. assessed the effect of aligned silk matrices versus their unaligned counterparts in vitro. This study showed that the introduction of an aligned matrix significantly increased Schwann cell migration and the rate of axonal growth after five days in culture [4]. Studies by Kim et al. and later by Clements et al. similarly allude to more efficient migration of Schwann cells and axonal regeneration through the addition of topographical guidance cues [18,21,41]. Similarly the introduction of structured fibres may have increased rates of migration and growth during the initial stages of repair.

However; addition of intraluminal fibres (either structured or unstructured) had distinct advantages for repair. In simultaneous retrograde tracing studies, intraluminal fibre groups displayed a significant reduction in axonal dispersion versus the autograft group (p < 0.05). Hence intraluminal fillers in this study were shown to consequently reduce axonal misdirection. Additionally the number of axons which were shown to be growing down their respective branches was statistically increased in comparison to using a hollow conduit alone. Ultimately, this response is likely to result in more defined muscle control for the end patient in the clinic. A further benefit for repair using either of the intraluminal fibre groups, was that the number of axons reaching their distal targets in both fibre groups was significantly greater than that of the hollow conduit group (p < 0.05). The combined results from retrograde tracing studies suggest a distinct advantage for repair through the use of intraluminal collagen fibres. Of note the use of autograft for peripheral nerve repair showed the highest amount of nerve regeneration. However, the rate of misdirection using autograft repair was significantly higher than the conduit groups. This high percentage of misdirected axons in autograft repair highlights another limitation of this treatment regime and the requirement for an alternative therapy. Ideally the replacement should match nerve regeneration levels seen in autograft while maintaining levels of axonal dispersion to a minimum.

To this end, intraluminal fibres have shown the ability to act as a supportive platform for growth and repair. They have shown the ability to guide axonal regeneration and to significantly reduce the levels of axonal mismatch during repair. The true benefits of such a system may only be realised over a critical nerve gap study (>15 mm in a rat). Future studies will aim towards targeting such a system. Despite showing distinct benefits for regeneration, levels of nerve regeneration remain lower than those of autograft. Future studies will focus on the creation of a more supportive environment for repair. This may be achieved through the addition of number of extrinsic factors [42]. These may be cellular (Schwann cells, stem cells) or molecular (neurotrophic factors, growth factors, ECM molecules) in nature and could aid in increasing overall levels of nerve regeneration.

5. Conclusions

Intraluminal collagen fibres provide beneficial effects for use in conduit mediated microsurgical repair of peripheral nerve injuries. Both structured and unstructured fibres become fully incorporated into the regenerative process and significantly reduce the level of axonal dispersion.

Acknowledgements

This material is based upon works supported by the Science Foundation Ireland under Grant No. 07/SRC/B1163 and Enterprise Ireland, Proof of Concept (PC/2008/399), co-funded by the European Regional Development Fund and Ireland’s EU Structural Funds Programmes 2007–2013.

The author would also like to thank Mr. Anthony Sloan for all his help and support in the technical writing and preparation of the submitted manuscript. Prof. Peter Dockery for all his advice on stereology and the interpretation of microscopic images.

References

