

Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the

published version when available.

Downloaded 2024-03-13T10:20:45Z

Some rights reserved. For more information, please see the item record link above.

Title Architecture of a PVR appliance with 'Long Tail' internet-TV
capabilities

Author(s) Corcoran, Peter; Callaly, Frank

Publication
Date 2006

Publication
Information

F. Callaly, P. Corcoran, (2006) " Architecture of a PVR
appliance with 'Long Tail' internet-TV capabilities", IEEE
Transactions on Consumer Electronics, Vol. 52, No. 2, Page(s)
454-459.

Publisher IEEE

Item record http://hdl.handle.net/10379/291

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/

IEEE Transactions on Consumer Electronics, Vol. 52, No. 2, MAY 2006

Manuscript received January 25, 2006 0098 3063/06/$20.00 © 2006 IEEE

454

Architecture of a PVR Appliance
with 'Long-Tail' Internet-TV Capabilities

F. Callaly and P. Corcoran, Member, IEEE

Abstract — The design and implementation of a networked

PVR appliance incorporating support for Internet-TV is
described. The appliance incorporates support for the
bittorrent protocol and employs user tools for content
location, management and scheduling which encourage
background downloading of content and it is particularly
suited for “long-tail” content distribution applications. The
standard bittorrent algorithm has been modified to allow
client bandwidth and content storage to be managed from a
central content server. With this modified protocol each PVR
can function as a combined broadcast and storage node in an
Internet-wide distribution system1.

Index Terms — PVR, content distribution, Internet TV.

I. INTRODUCTION

Personal video recorders have revolutionized the way
consumers watch television. Time shifting allows programs to
be watched when it suits the viewer rather than the
broadcaster. This new added-value functionality is changing
the way consumers treat broadcast media sources. The
providers of such sources no longer have the clear ability to
differentiate their services based on the real-time nature of
broadcasting.

Interestingly, a new generation of digital services provider
sees opportunities in providing similar real-time services over
digital distribution networks [1]. There is not doubt that the
increased bandwidth of networks will make make such
services possible but we question if the availability of real-
time content will remain as compelling as it has done over the
last 50 years, thus enabling the providers of real-time content
to charge a premium for such services.

An alternative perspective is that of the “long-tail” of
content distribution. This implies supplying specialized niche
content to a far smaller audience than conventional
broadcasting. By employing the Internet as a distribution
mechanism such services become economically viable. Many
examples of success in the Internet marketplace are based on
such long-tail models: Google makes most of its revenues
from small advertisers and eBay from large volumes of niche
or one-off products/sales. Is this also where the future lies for
the broadcast industry?

 In this paper we propose a modified PVR with support for
network torrents. From a user perspective this allows content
to be harvested from a variety of network services. From the
perspective of the service provider we propose a modification

1 Peter Corcoran is Director of Research at the Consumer Electronics
Research Group of NUI, Galway (e-mail: peter.corcoran@nuigalway.ie).

 Frank Callaly is a PhD student at the Consumer Electronics Research
Group of NUI, Galway (e-mail: frankc@wuzwuz.nuigalway.ie).

of the bittorrent architecture to allow content providers to
broker distributed storage space on clients that have uploaded
their content. This allows each PVR to function as a store &
broadcast node for service providers. In effect a network of
PVRs that conforms to this architecture can act as a cost-
effective means of content distribution, yet retaining certain
useful aspects of more conventional broadcast services.

II. PVR OVERVIEW
In this paper we describe the software architecture of a PVR

appliance which is specifically designed to support “long-tail”
content distribution. This appliance provides conventional
PVR-style user interfaces but with additional features which
enhance its functionality and assist a viewer in locating,
registering and managing content sources.

A. Peer-to-Peer Networking Support
The appliance supports bittorrent peer-to-peer (P2P)

networking [2] and can manage and control access to similar
networking technologies using a standardized plugin interface.
Users can access P2P content using a specialized browser for
RSS feeds. Once content is located its status can be monitored
and, subject to certain limitations, the user can adjust the time for
which content will be stored and made available to other users.

B. UPnP Support
The appliance is UPnP compatible, allowing it to be easily

integrated with a WinXP desktop PC, or with a home network
which supports UPnP devices. Because it supports more
sophisticated content access mechanisms than conventional
UPnP appliances this requires some modifications to the
standard UPnP class hierarchy. Several examples of required
modifications are given in section III below.

C. Flexible Content Access Mechanisms
Content can be loaded in real-time or background modes

with different levels of QoS. Typically, real-time content will
be obtained from the local home network via, for example, a
cable-TV set-top box. Content from the Internet, in particular
content torrents, will normally be downloaded in a
background mode, although we have initiated some
investigations into micro-torrents which allow large content
files to be downloaded in smaller sequential blocks. This
mechanism trades off some of the benefits of using bittorrent
but allows earlier viewing of larger content files.

In our prototype it is assumed that this content will be
streamed in MPEG2 or MPEG4 format. The preferred
streaming mode is a unicast TCP/IP stream, although UDP
and RTP are also supported in unicast mode and multicast
addresses may be configured to allow local rebroadcasting of
content.

F. Callaly, and P. Corcoran: Architecture of a PVR Appliance with 'Long-Tail' Internet-TV Capabilities

455

Fig 1: Internal software architecture of PVR appliance; modules for

searching and managing content not shown

D. Transcode & LAN Rebroadcast Tools
The appliance is network enabled and incorporates

transcoding and rebroadcast capabilities; this allows it to be
used for “harvesting” content from a broadband connection
which can be redistributed to other networked appliances over
a home network. Content will typically be transcoded to
MPEG4 format for rebroadcast over a home WLAN, although
other video encoding standards are supported.

An overview of the architecture and software components
of the device is given in Fig 1. The appliance in implemented
using an embedded Linux operating system with integrated
UPnP system components. The principle system software
components include unicast and multicast stream handlers and
a bittorrent engine for receiving content and a range of
transcoder and buffering components which allow it to
function as a multi-functional content storage and
management appliance.

E. Appliance Hardware Platform & OS
Our appliance is based on the latest mini-ITX motherboards

which include MPEG4 hardware decoding and support a
Linux 2.6 kernel. In addition a TV decoding card with
MPEG2 encoding hardware is incorporated in these
appliances which also have DVD drives and, typically, an
80GB hard disk for content storage.

Primary network connectivity is via an 802.11g WLAN
card and there is support for both wireless and IR remote
controls. Standard TV sets can be driven or a SVGA output is
used for connection to Plasma screens.

F. Software Development Environment
A number of openly available libraries were used in device

development. Intel's UPnP library [6] was used to as the basis
for the middleware components of the devices. A number of
openly available media codecs were also used to
encode/decode content, in particular the libavcodec and
libavformat libraries from the ffmpeg [7] project were used,
Developing new codecs for each of the supported media
formats would be quite impractical when prototyping, as it
would require a large development effort. The video display
engine was based on the freely available Xine [8] video
engine.

III. PVR APPLIANCE MODEL

A. Generic Appliance Models
Earlier research work [3] has demonstrated that practically

all networked A/V appliance configurations can be designed
and prototyped as combinations of three generic types of
networked A/V appliance namely:

1) A/V streaming servers:
 Also known as MediaServers in UPnP parlance; these are

devices which provide access to media content. The content
may be derived from a number of sources including live
terrestrial or satellite TV, removable or fixed storage devices
(e.g. DVD, HDD) or other networked A/V servers (e.g.
Internet servers). These devices allow the user to browse the
available content so that items of interest can be easily
located. They also provide an interface for streaming clients to
access the content.

2) A/V streaming clients:
These are generally display devices, these are known as

MediaRenderers in UPnP and are charged with the task of
converting and/or filtering the received A/V stream to
optimize presentation on a display console.

3) A/V transcoding appliances:
These devices convert a data stream from one format to

another; for example it might be necessary to convert a high
resolution MPEG2 stream to a low resolution MPEG4 stream
for display on a handheld device. This type of device may also
be used as a buffer, so that a user can be pause or rewind a
live TV stream, even if this functionality is not supported by
the originating streaming server.

B. PVR System Components
These are illustrated in Fig 2 below. A base PVR can be built

from a standardized transcoder module and a media server
module. Content can be accessed from a range of different
sources as illustrated. These all appear as common content
under UPnP and a content-specific plugin is responsible for
handling the differences between each type of content.

It is useful, although not essential, to have a RAM buffer
between the hard disk storage and these higher level software
components. This facilitates various trick play modes such as
rewind, slow motion replay and skipping blocks of
advertising. Higher level components of the RAM buffer may
be incorporated into the transcoder or media server as
discussed in the next section.

Firewall
&

Network
Port

Manager

Unicast Stream
Handler

Multicast
Stream
Handler

Bittorrent Engine

Internal
Buffers

Stream
Merging

&
Routing

Hard Disk
Storage

Software
Transcode
Modules

(or
Transcode
Hardware)

TV-Out

HDTV-Out

VGA /SVGA
Broadband

Internet

MPEG -2/4

Network Stream Output

Local Video
Outputs

MPEG-2/4

Personal Video Recorder

Transcoder

Content Sources

HDD
DVD
Analogue TV Signal
Digital TV
Network Stream

Media
Server

LAN or WiFi
Stream

Memory Buffer Storage

 HDD Storage

Fig 2:PVR System Components

IEEE Transactions on Consumer Electronics, Vol. 52, No. 2, MAY 2006 456

C. Transcoder Components
These are illustrated in Fig 3 below. The main transcoding

engine is implemented in Python which allows rapid
prototyping of the transcoder workflow. Lower level
components such as the A/V codecs and the A/V multiplexer
and demultiplexer modules are built using open-source library
components with Python or C/C++ wrappers as appropriate.
The A/V buffer interface provides access to the RAM buffer
extensions of the filesystem described in the previous section.
This is implemented independently from the transcoder
module.

A number of reusable software components were
developed specifically for the generic transcoder module. An
RTSP [9] video on demand (VOD) server was developed
which is used by server devices to export content to clients.
Using RTSP, a TCP connection is initially established
between the client and the server, this connection is used to
setup and control the stream. The A/V stream is then sent over
a separate UDP connection, As the UDP data is being sent
over a wireless network, the server will attempt to use the
most robust format that the client can accept. This may be
RTP packets or MPEG transport stream packets.

A specialized HTTP server was also developed, this server
can be used in a similar manner as the RTSP server. It is used
by clients that do not support the RTSP protocol. Both of
these servers read A/V streams from loadable access modules.
Each access module allows streams to be read from a
particular source, e.g. hard drive, video capture card, CD,
DVD. This means that they can be extended to read from new
sources as they arise.

IV. MODIFICATIONS TO UPNP

The standard UPnP class structures need to be modified for
our appliance. Some examples are illustrated in Fig 4 below.
In particular Fig 4(a) illustrates how the content directory
class hierarchy needs to be modified to take account of
background downloading of video content and the additional

capability for local rebroadcast of a video stream using
multicasting.

Additional modifications to the content tree section are
illustrated in Fig 4(b) where the standard content class for
movies is extended to incorporate a videoBroadcast class
object.

Fig 4(a): Extended UPnP content directory class hierarchy.

Fig 4(b): Content tree section for downloadable content.

V. NETWORK OPERATION
The operation of the appliance on a typical network is

illustrated in Fig 5 below. The main system component
exports software interfaces to content server and renderer
modules. These may run on the same physical device as the

Virtual Transcoder Appliance

Transcoding Engine

RTSP
Server

HTTP
Server

UPnP
Content

Directory
Service

RTSP
Client

HTTP
Client

UPnP A/V
Transport

Service

A/V
Mux/Demux

Interface

AVI
Mux/

Demux

MPEG-
TS

Mux/
Demux

A/V
Codec

Interface

MPEG2
Codec

MPEG4
Codec

 Scalable A/V
Buffer Interface

FIFO
Buffer

FIFO
Buffer

Random
Access
Buffer

Fig 3: Transcoder Subsystem Software Components

F. Callaly, and P. Corcoran: Architecture of a PVR Appliance with 'Long-Tail' Internet-TV Capabilities

457

main PVR appliance, but they may also interface with separate
media server and renderer appliances. The media server
appliance may provide real-time content by, for example,
decoding a conventional TV signal using a tuner card and re-
encoding it as an MPEG digital stream.

The simplest form of content renderer is a laptop computer
running a video player which can process real-time streamed
content. An alternative content renderer can be provided using
a TV set and a media adapter. This allows MPEG content to
be streamed to a conventional analog TV set. PVR
functionality is provided by buffering media streams on a
local hard disk drive.

Our appliance supports several of the more popular media
adapters available on the market.

VI. OVERVIEW OF BITTORRENT
The bittorrent protocol is a peer-to-peer TCP based protocol

which has been designed for distributed file sharing and
distribution over the Internet. Bittorrent breaks files down into
smaller fragments, typically a quarter of a megabyte (256 KB)
in size. Peers download missing fragments from each other
and upload those that they already have to peers that request
them. The protocol is 'smart' enough to choose the peer with
the best network connections for the fragments that it's
requesting.

A. The Bittorrent Architecture
To increase the overall efficiency of a “content swarm” (the

ad-hoc P2P network temporarily created to distribute a
particular file), the bittorrent clients request from their peers
the fragments that are most rare; in other words, the fragments
that are available on the least number of peers, making most
fragments available widely across many machines and
avoiding bottlenecks. The file fragments are not usually
downloaded in sequential order and need to be reassembled by
the receiving machine.

It is important to note that clients start uploading fragments
to their peers before the entire file is downloaded. Sharing by
each peer therefore begins when the first complete segment is
downloaded and can begin to be uploaded if another peer
requests it. This scheme is particularly useful for trading large
files such as videos and operating systems. This is contrasted
with conventional file serving where high demand can lead to
saturation of the host's resources as the consumption of
bandwidth to transfer the file to many requesting downloaders
surges.

With bittorrent, high demand can actually increase
throughput as more bandwidth and additional “seeds” of the
file become available to the group.

B. Bittorrent Terminology
Torrent - a torrent can mean either a .torrent metadata file

or all files described by it, depending on context. The torrent
file contains metadata about all the files it makes
downloadable, including their names and sizes and checksums
of all pieces in the torrent. It also contains the address of a
tracker that coordinates communication between the peers in
the swarm.

Swarm - together, all users sharing a torrent are called a
swarm. Six peers and two seeds make a swarm of eight.

Peer - a peer is one instance of a bittorrent client running
on a computer on the Internet that you connect to and transfer
data. Usually a peer does not have the complete file, but only
parts of it, however, 'peer' can be used to refer to any
participant in the swarm (in this case, also known as a 'client').

Seed - a seed is a peer that has a complete copy of the
torrent and still offers it for upload. The more seeds there are,
the better the chances are for completion of the file.

Leech - a leech is usually a peer who has a negative effect
on the swarm by having a very poor share ratio - in other
words, downloading much more than they upload. Most
leeches are users on asynchronous Internet connections who
do not leave their bittorrent client open to seed the file after
their download has completed. However, some leeches
intentionally hurt the swarm to avoid uploading by using
modified clients or excessively limiting their upload speed.

Tracker - a tracker is a server that keeps track of which
seeds and peers are in the swarm. Clients report information to
the tracker periodically and in exchange receive information
about other clients that they can connect to. The tracker is not
directly involved in the data transfer and does not have a copy
of the file.

C. Files Sharing with Bittorrent
To share a file using the bittorrent protocol, a user creates a

.torrent file, a small "pointer" file that contains: (i) the
filename, size, and the hash of each block in the file (which
allows users to make sure they are downloading the real
thing); (ii) the address of a "tracker" server and (iii) other data
such as client instructions.

The torrent file is then distributed to users, often via email
or placed on a website. The bittorrent client is started as a
"seed node", allowing other users to connect and begin

Fig 5: Overview of the PVR Appliance.

IEEE Transactions on Consumer Electronics, Vol. 52, No. 2, MAY 2006 458

downloading. When other users finish downloading the entire
file, they can optionally "reseed" it--becoming an additional
source for the file. One outcome of this approach is that if all
seeds are taken offline, the file may no longer be available for
download, even if a client has a copy of the torrent file.
However, everyone can eventually get the complete file as
long as there is at least one distributed copy of the file, even if
there are no seeds.

Downloading with the bittorrent protocol is
straightforward. Each person who wants to download the file
first downloads the torrent and opens it in the bittorrent client
software. The torrent file tells the client the address of the
tracker, which, in turn, maintains a log of which users are
downloading the file and where the file and its fragments
reside. For each available source, the client considers which
blocks of the file are available and then requests the rarest
block it does not yet have. This makes it more likely that peers
will have blocks to exchange. As soon as the client finishes
importing a block, it hashes it to make sure that the block
matches what the torrent file said it should be. Then it begins
looking for someone to upload the block to.

D. Bittorrent Modifications for Long-Tail Broadcasting
Although the bittorrent protocol is a very well designed and

engineered protocol it suffers from some disadvantages in
practical usage scenarios. It does not provide, for example,
any mechanism for checking the integrity2 of the data files
which are downloaded from the Internet. All that bittorrent
guarantees is that you will get the original file referred to by
the torrent metadata. But it is possible that this original file
was corrupted or even behaves maliciously when activated.

As the bittorrent protocol is widely used to distribute illegal
copies of music and video files certain content providers have
fought back by creating bogus client software and bogus
torrents which attempt to disrupt or sabotage content swarms.
In short there is no means to indicate the quality of bittorrent
content prior to its download. However this difficulty can be
readily overcome by incorporating a means of encoding
and/or digitally signing the distributed content at source [5].

A second disadvantage is that clients may connect and
disconnect at will from a content swarm and may set their
upload and download rates at fixed values. This means that
clients may download files from the swarm at a faster rate
than they upload (or rebroadcast) them. Clients that “take”
more than they “give” from the swarm are known as
“leeches”. Also, as the number of clients in a swarm
decreases it takes progressively longer for the remaining
clients to “get all the pieces”. This tends to happen naturally
as the popularity of some distributed content begins to wane.

A third disadvantage is that a bittorrent client/peer
downloads data in no particular order. Thus it is not possible

2 Bittorrent does perform integrity checking on the raw data blocks of a
file it is handling, but what is meant here is that there is no way to confirm that
an audio/video file is actually MPEG compliant until it is completely
downloaded; bittorrent does not incorporate a means of encrypting, encoding,
or digitally signing data to guarantee that content has not been tampered with.

to begin playing a video when it is 50% downloaded – you
must wait until the complete file has been obtained. From the
perspective of service provider this is a significant drawback.
It means that bittorrent can only supply data to a PVR in a
“record” mode rather than in a “live” mode. This presents one
of the challenges that this research has uncovered – how can
we modify the bittorrent architecture and protocol to facilitate
a more timely and orderly delivery of content? We will not
answer this question here, but rather leave it as a subject for
future research.

In Fig 6 we illustrate how a service provider can control
and feed a content swarm of PVRs which support our
modified bittorrent protocol. Note that in an unfettered
Internet environment the computer which hosts the tracker
would not normally seed content as well. In fact this is one of
the advantages of bittorrent, particularly for illegal file
sharing applications.

In our system we host both tracker and seeding engine on
the same server. We have also removed most of the client-side
flexibility provided by the bittorrent protocol in favor of
adding client control functionality to the tracker. The idea
here is that clients cannot choose to throttle back on their
upload bandwidth which is, instead, controlled and managed
from a centralized server. This allows the server to prevent
client PVRs from leeching a content swarm.

We still allow a limited level of control at the client side,
for example a client can choose to reduce its upload
bandwidth but then it must hold data for a longer period of
time after the full torrent is downloaded. This is implemented
by means of a delete queue where a torrent may still be held
on the hard drive after the user has chosen to delete it until a
certain minimal time has elapsed.

Content Server

Tracker

Client Control

Content Swarm

Seeding Engine

LAN or W
iFi Stream

Client PVR

Client PVR

Client PVR

Client PVR

LAN or WiFi Stream
Client PVR

Client PVR

Client PVR

Content Store

Fig 6: Content Server Feeding and Controlling a Content Swarm

F. Callaly, and P. Corcoran: Architecture of a PVR Appliance with 'Long-Tail' Internet-TV Capabilities

459

VII. MODIFIED PVR ARCHITECTURE
The above considerations have led to the PVR architecture

illustrated in Fig 7 below. This is modified over the generic
PVR illustrated in Fig 2 above.

A. Torrent Manager
This component is distinct from the main transcoder module.

It is implemented with a similar user-interface to the standard
UPnP content browser, but at present operates in a permanent
record mode. After a torrent is fully uploaded it is then
transferred to the conventional HDD content list and appears, to
the user, as a standard MPEG file. This implementation is not
entirely satisfactory as some torrents may run out of supporting
peers and may never complete.

Our goal in providing centralized server control over clients
was to try and overcome this disadvantage of a conventional
content swarm. Thus, when a torrent remains incomplete beyond
a certain time limit it informs the central server which will re-
seed the missing data. In a more sophisticated implementation it
should be practical to query other PVR clients to determine if the
missing content is available outside of the main server.

B. Filesystem Modifications
A second aspect of the modifier PVR is that the file-system is

modified to separate torrent and non-torrent data files. This is
partly to allow a more detailed auditing of the torrent data
storage and partly to allow for a direct association between the
metadata for a torrent and the actual data file itself. The latter
aspect allows files to be kept on the hard disk after a user has
deleted them and to use these files for re-seeding a content
swarm. Information about such “retained” files is sent from the
client to the central content server.

VIII. CONCLUSIONS

Changes in TV viewing habits introduced by PVRs mean that
many people no longer view content at a fixed time. In fact the

viewing experience for many users of PVRs which are linked
with a content service is now a two stage process: (i) select and
reserve content and (ii) view the recorded content.

This has led us to investigate the addition of a bittorrent based
content service to a conventional PVR appliance. As bittorrent
is a distributed service we found that it was important to
consider centralizing certain control aspects of the protocol on a
central server. This provides additional levels of control over a
content swarm which are important to service providers. In
particular it allow better control of QoS aspects and allows the
service provider to exclude or eliminate leeching peers from the
swarm.

One difficulty we experienced was in performing meaningful
testing of modifications to the torrent related aspects of the
system operation. Because alterations were made to the clients
we were limited to testing content swarms with 4-6 client
appliances and these were mostly located on the same WAN
segment. Clearly this does not provide an adequate simulation
of a broader Internet environment and this issue needs to be
considered in further work. Nevertheless our conclusion is that a
bittorrent component can provide useful PVR services for
consumer appliances. It allows a new low-cost content
distribution mechanism to be easily added to any Internet
connected PVR appliance.

ACKNOWLEDGMENT
This research was funded under the Technology Development

Phase of the Enterprise-Ireland Commercialization Fund.

REFERENCES
[1] Microsoft TV IPTV Edition, http://www.microsoft.com/tv/

content/Solutions/IPTV/mstv_IPTV_Overview.mspx
[2] Bram Cohen, "Incentives Build Robustness in Bittorrent", in Workshop on

Economics of Peer-to-Peer Systems, Berkeley, CA, June 5--6, 2003.
[3] P. Corcoran and F. Callaly, “Rapid Prototyping of Networked A/V CE

Appliances”, IEEE Eurocon 2005, Belgrade, Nov 2005.
[4] P. Corcoran, A. Cucos and F. Callaly, “Home Networking Middleware

Infrastructure for Improved Audio/Video Appliance Functionality and
Interoperability”, IEEE Eurocon 2005, Belgrade, Nov 2005.

[5] P. Corcoran and A. Cucos, “Techniques for Securing Multimedia Content
in Consumer Electronic Appliances using Biometric Signatures”, IEEE
Trans. Consumer Electronics, Volume 51, Issue 2, May 2005 p545 – 551.

[6] Linux SDK for UPnP Devices, http://upnp.sourceforge.net/
[7] ffmpeg multimedia system, http://ffmpeg.sourceforge.net/
[8] Xine video player, http://xine.sourceforge.net/
[9] “Real Time Streaming Protocol”, Internet Engineering Task Force, RFC

2326

Peter Corcoran received the BAI (Electronic
Engineering) and BA (Math’s) degrees from Trinity
College Dublin in 1984. He continued his studies at
TCD and was awarded a Ph.D. in Electronic
Engineering for research work in the field of Dielectric
Liquids. In 1986 he was appointed to a lectureship in
Electronic Engineering at NUI, Galway.

Frank Callaly received the B.Eng. (Electronic &
Computer Engineering) degree from the National
University of Ireland, Galway in 2003. He continued his
studies with the Consumer Electronics Research Group at
the National University of Ireland, Galway and is currently
pursuing a Ph.D. degree in Electronic Engineering. His
current research interests include digital video encoding,
multimedia delivery techniques and home networking.

 PVR Client

Transcoder

Media
Server

Memory Buffer Storage

 HDD Storage

Standard
Media
Files

Torrent
Media

Delete
Buffer

Torrent
Manager

LAN or
WiFi

Stream

Content
Sources

HDD
DVD
Analogue TV
Digital TV
Network Stream

Content Swarm

Client PVR

Client PVR

Client PVR

Content
Server
Tracker

Client
Control

Fig 7: PVR Architecture incorporating Bittorrent Modules.

