

Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the published version when available.

Title	Harvesting effects on biomass and nutrient retention in Phragmites australis in a free-water surface constructed wetland in western Ireland
Author(s)	Healy, Mark G.; Newell, J; Rodgers, M.
Publication Date	2007
Publication Information	Healy, M. G., Newell, J. & Rodgers, M. (2007) 'Harvesting effects on biomass and nutrient retention in Phragmites australis in a free-water surface constructed wetland in western Ireland'. Biology and Environment: Proceedings of the Royal Irish Academy, 107B (3):139-145.
Link to publisher's version	http://ria.metapress.com/content/vv814468r6504u09/?p=8ac2c 2fd756348d1a31004fcb0a02dcfπ=1
Item record	http://hdl.handle.net/10379/2752

Downloaded 2024-05-25T19:41:00Z

Some rights reserved. For more information, please see the item record link above.

1	Published as: Healy, M.G., Newell, J., Rodgers, M. 2007. Harvesting effects on
2	biomass and nutrient retention in Phragmites australis in a free-water surface
3	constructed wetland in western Ireland. Biology and Environment: Proceedings of the
4	Royal Irish Academy 107B(3): 139-145. DOI: 10.3318/BIOE.2007.107.3.139
5	
6	HARVESTING EFFECTS ON BIOMASS AND NUTRIENT RETENTION IN
7	PHRAGMITES AUSTRALIS IN A FREE-WATER SURFACE CONSTRUCTED
8	WETLAND IN WESTERN IRELAND
9 10	M.G. Healy ¹ *, J. Newell ² and M. Rodgers ¹
11	
12	^{1*} Corresponding author. Department of Civil Engineering, National University of Ireland,
13	Galway, Ireland.
14	² Department of Mathematics, National University of Ireland, Galway, Ireland.
15	Tel: +353 91 495364; Fax: +353 91 750507; E-mail: Mark.Healy@nuigalway.ie
16	
17	ABSTRACT
18	
19	The aim of this study was to examine the seasonal variation in biomass, total nitrogen
20	(Tot-N) and total phosphorus (Tot-P) content of Phragmites australis in a 3-cell free-
21	water surface (FWS) constructed wetland in western Ireland and to investigate the effects
22	of harvesting on their biomass and nutrient content. One cell of the wetland was divided
23	into two plots: one plot, measuring 80 m ² , was completely harvested on the 16 th June,
24	2005, while the other plot, the control plot, remained uncut throughout the study duration.

At approximately monthly intervals over an 8-month study duration, completely 25 26 randomised 0.64m² areas within each plot were harvested to water level and the shoot 27 biomass and nutrient content were measured. In the control plot, the plant biomass, Tot-N 28 and Tot-P content peaked in August. In the June-cut plot, the shoot biomass, total 29 nitrogen (Tot-N) and total phosphorus (Tot-P) content peaked in September. The mean 30 rate of dry matter production (RPD), defined as the mean daily rate of dry matter production per unit area per day between harvests, attained maximum rates of 12.8g m⁻²d⁻ 31 ¹ and 4.2g m⁻²d⁻¹ for the control and June-cut plots, respectively, indicating that annual 32 33 harvesting of emergent vegetation may not have any beneficial effect on biomass 34 production or nutrient content under Irish climatic conditions.

35

Keywords: Free-water surface; constructed wetland; *Phragmites australis*; biomass;
nutrient uptake.

- 38
- 39

1. INTRODUCTION

40

41 Constructed wetland technology has been gaining in popularity and is now commonly 42 used for the treatment of municipal wastewater from small communities and agricultural 43 wastewater from farms. In Ireland, much research attention has focused on the 44 quantification of the effectiveness of constructed wetlands for the treatment of secondary 45 or tertiary wastewater (Healy and Cawley, 2002; Dunne *et al.*, 2005). However, studies 46 quantifying the seasonal variation of biomass, total nitrogen (Tot-N) or total phosphorus 47 (Tot-P) in emergent vegetation or the effect of harvesting on shoot re-growth rates under48 Irish climatic conditions are rare.

49

50 Wetland vegetation has desirable characteristics. They assimilate nutrients into plant 51 biomass and oxygenate the substrate in the vicinity of the plant root. Macrophytes 52 remove pollutants by directly assimilating them into their tissue and providing surfaces 53 and a suitable environment for microorganisms to transform the nutrients and reduce their 54 concentrations (Kaseva, 2004). Although the uptake of nutrients by the macrophyte 55 population only accounts for a small percentage of the total nutrient loading on a wetland 56 (Mantovi et al., 2003; Ciria et al., 2005), they still provide a variety of useful biological 57 functions, such as oxygenation of the rhizosphere (Armstrong et al., 2006).

58

59 Harvesting of the emergent macrophytes has a pronounced effect on the growth and 60 nutrient uptake rates. Although nutrient uptake and growth rates are higher in young 61 vegetation stands (Batty and Younger, 2004), other factors such as nutrient loading and 62 hydraulic retention time (HRT) may significantly affect the measured rates (Hardej and Ozimek, 2002; Solano et al., 2004). Karunaratne et al. (2004) investigated the effects of 63 64 harvesting *P. australis* in a wetland in Central Japan and found that biomass levels in an uncut section rose to a maximum of 1250g m^{-2} in July, whereas June-cut and July-cut 65 sections rose to levels of approximately 400g m⁻² in October and November, respectively. 66 The maximum rate of dry matter production (RDP - the mean rate of dry matter 67 production per unit ground area per day between sampling; $gm^{-2}d^{-1}$) was approximately 68 the same in the uncut and July-cut stands, attaining a rate of 18 and 12g m⁻²d⁻¹, 69

70	respectively. Kim and Geary (2001) found that there was no statistical difference in Tot-
71	P-uptake between harvested and unharvested Schoenoplectus mucronatus shoots in a
72	laboratory study in Australia.
73	
74	Over a 2-year study duration, Healy and Cawley (2002) examined the performance of a
75	free-water surface (FWS) constructed wetland treating secondary effluent from a small
76	community in Williamstown in North County Galway, Ireland (PE, 330). As they did not
77	examine the role of emergent vegetation in the treatment of wastewater, the objectives of
78	this study were: (i) to measure biomass, Tot-N and Tot-P profiles of P. australis in the
79	constructed wetland over a growing season, and (ii) to assess the effect of harvesting on
80	the their RPD and nutrient contents.
81	
82	2. MATERIALS AND METHODS
83	
84	2.1 SITE DESCRIPTION
85	
86	The Williamstown FWS tertiary treatment system wetland consists of two cells separated
87	by one retention pond connected in series. The three cells of the wetland are constructed
88	as shallow lagoons enclosed by boulder clay embankments lined with a high-density
89	polyethylene (HDPE) liner (Table 1). An extended-aeration activated sludge system
90	provides secondary treatment for the domestic wastewater from a population equivalent
91	of approximately 330. The combined system is designed to produce an effluent with less

92	than 20mg biochemical oxygen demand (BOD ₅) L^{-1} , 30mg suspended solids (SS) L^{-1} and
93	10mg ammonia-N (NH ₄ -N) L^{-1} .
94	
95	The wetland was fully operational less than six months after establishment, with
96	maximum macrophyte growth in the summer of 1999 - two years after establishment
97	from seedlings. Standing macrophyte coverage reached 93% in both cells.
98	
99	2.2 VEGETATION SAMPLING REGIME
100	
101	Commencing in April, 2005, the third cell of the wetland was divided into 2 plots: a
102	control plot, measuring 90 m ² , and a harvested (June-cut) plot, measuring 80 m ² . In the
103	control plot, completely randomised areas were sampled on the following dates: 2 nd
104	April, 18 th May, 16 th June, 20 th July, 25 th August, 22 nd September and 8 th November. In
105	the June-cut plot, an $80m^2$ section was harvested to water level on the 16^{th} June.
106	Subsequent to the harvesting, the June-cut plot was sampled in a manner similar to the
107	control plot.
108	
109	On each day of sampling, six completely randomised sections in the remaining
110	unharvested areas of the control and harvested plots were selected, each with a surface
111	area of 0.64m ² . Within each 0.64m ² area, the above-water level shoot height was

measured and number of shoots were counted and harvested. All sampling was conducted on above-water level biomass to prevent inundation of the stalks by the surface water and for ease of sampling. This sampling regime has been used by other researchers

115	(Karunaratne et al., 2004). The samples were dried at 75°C to a constant weight and the
116	total shoot dry biomass in each subsection (g biomass m ⁻²) was calculated. Each sample
117	was then ground in a mill and a subsample was tested for Tot-N and Tot-P content. Using
118	these data, the above-water biomass, Tot-N and Tot-P content, and the RDP for each
119	sampling section were obtained.
120	
121	Another 70m ² plot in the third cell of the wetland was harvested on 25 th August, 2005 to
122	investigate the effects of conducting a late harvest on the nutrient uptake and biomass
123	content of the emergent vegetation, but no re-growth occurred following harvesting.
124	
125	2.3 WATER QUALITY MEASUREMENTS
126	
127	The water level in each cell is controlled by overflow weirs. Throughout the study, the
128	water level in the study cell remained constant at 43cm. Wastewater samples were
129	collected each month at the inlet and outlet of each wetland cell and were tested for the
130	following parameters: chemical oxygen demand (COD) (closed reflux, titrimetric
131	method), Tot-N (persulfate method), NH ₄ -N (ammonia-selective electrode method),
132	nitrate-N (NO ₃ -N) (nitrate electrode method), ortho-phosphate (PO ₄ -P) (ascorbic acid
133	method) and SS (total suspended solids dried at 103-105°C). All water quality parameters
134	were tested in accordance with the Standard Methods (APHA-AWWA-WEF, 1995).
135	
136	2.4 STATISTICAL ANALYSIS
137	

138	A repeated measures mixed effects ANOVA was fitted to investigate whether the date
139	and plot type (control / harvested) had any effect on the longitudinal change in the mean
140	response (i.e. Tot-N, Tot-P, dry weight). Multiple comparisons were performed as
141	appropriate using Tukey 95% simultaneous confidence intervals while the underlying
142	model assumptions were checked using suitable residual plots. All analyses were
143	performed using Minitab 14.
144	
145	3. RESULTS AND DISCUSSION
146	
147	3.1 WATER QUALITY
148	
149	Influent and effluent wastewater characteristics are presented in Table 2. Throughout the
150	study duration, the total organic loading rate on the study cell was approximately 2g
151	$CODm^{-2}d^{-1}$ and the average influent Tot-N was $6\pm 3mg L^{-1}$. Nitrification of the
152	wastewater was not complete as the final effluent NH ₄ -N concentration was $1\pm 2mg L^{-1}$.
153	PO ₄ -P retention within the system was also limited over the study duration as there was
154	no significant difference in influent and effluent PO ₄ -P concentrations in the wetland.
155	
156	3.2 GROWTH DYNAMICS
157	
158	Figures 1, 2, 3 and 4 illustrates the seasonal changes in above-water shoot height,
159	biomass, Tot-N and Tot-P, respectively, in the control and June-cut plots of P. australis.
160	Harvesting of the emergent vegetation removed approximately 20g Tot-N m^{-2} and 2g

161 Tot-P m⁻² from the wetland cell loaded with approximately 0.58g Tot-N m⁻²d⁻¹ and 0.1g 162 Tot-P m⁻²d⁻¹.

163

In the control plot, the mean shoot biomass rose from 687 ± 227 g m⁻² in April to a 164 maximum of 1506±215g m⁻² in August. In the control plot, the mean stem density 165 remained constant at 122 ± 23 shoots m⁻² and the total shoot height rose from 1.8 ± 0.3 m in 166 167 April to a maximum of 2.6 ± 0.4 m in July (Table 3). The above-water shoot height 168 reduced to 1.9±0.3m in November (Figure 1). Shoot height reductions of this type have 169 been found by other researchers (Hardej and Ozimek, 2002; Karunaratne et al., 2004). 170 Following harvesting in the June-cut plot, the mean shoot biomass reached a maximum value of 286 ± 67 g m⁻² in September, indicating that harvesting in June had the effect of 171 172 delaying the period of peak growth by one month. This trend was evident in the shoot 173 height, Tot-N and Tot-P contents; maximum shoot height and density of 1.6±0.1m and 83 ± 23 shoots m⁻², respectively, were also attained during this month. The control plot had 174 a maximum above-water level RPD of 12.8g m⁻²d⁻¹ during July, whereas the June-cut 175 plot achieved a maximum above-water level RPD of $4.2 \text{ g m}^{-2} \text{d}^{-1}$ during September. This 176 177 result is generally in agreement with the findings of Karunaratne et al. (2004) who, in a wetland in Japan, found RPD values of 18 and 20g m⁻² d⁻¹ for control and July-cut plots 178 179 of P. australis when cut at 0.25m-0.3m above ground level. P. australis RPD values measured by Hill et al. (1997) in a wetland in Alabama, USA were 17.4g m⁻²d⁻¹. 180

182 The Tot-N content of the control plot rose from a minimum value of 5 ± 1 g Tot-N m⁻² 183 (7.7 \pm 1.8mg g⁻¹ dry weight (DW)) in April to a maximum value of 23 \pm 6g Tot-N m⁻²

 $(15.5\pm2.3\text{mg g}^{-1}\text{ DW})$ in August. This value then decreased to $20\pm6\text{g}$ Tot-N m⁻² 184 $(15.5\pm1.7\text{mg g}^{-1}\text{ DW})$ and $7\pm3\text{g}$ Tot-N m⁻² $(10.6\pm2.1\text{mg g}^{-1}\text{ DW})$ in September and 185 186 November, respectively. These results are comparable to similar studies in the same 187 climatic conditions (Batty and Younger, 2004) but are well below those recorded in 188 warmer climates (Bragato et al., 2006). In a wetland in Northeast Italy, Bragato et al. (2006) measured maximum and minimum Tot-N values of 27mg g^{-1} DW in July and 7.1 189 mg g⁻¹ DW in October, respectively. In the June-cut plot the Tot-N content of the 190 biomass reached a maximum of 6.7 ± 1.6 g Tot-N m⁻² (23.4 ±1.9 mg g⁻¹ DW). 191

192

The Tot-P contents of the biomass behaved similarly to the Tot-N content measurements: in the control plot, the Tot-P content rose from a minimum value of 0.48 ± 0.07 g Tot-P m⁻² $(0.7\pm0.1\text{mg g}^{-1}\text{ DW})$ during April to a maximum value of 2.4 ± 0.5 g Tot-P m⁻² (1.6 ± 0.2 mg g⁻¹ DW) in August before decreasing to 0.7 ± 0.4 g Tot-P m⁻² (1.0 ± 0.4 mg g⁻¹ DW) during November. Bragato et al. (2006) measured maximum Tot-P contents of 0.8mg g⁻¹ DW in July. In the June-cut plot, the Tot-P contents did not achieve the control plot values; the maximum Tot-P value was 0.6 ± 0.1 g Tot-P m⁻² (2.2 ± 0.2 mg g⁻¹ DW) in September.

200

201

3.3 STATISTICAL ANALYSIS

202

Case Profile plots for each response variable – dry weight, Tot-N and Tot-P - are presented in Figures 2, 3 and 4, respectively. On the basis of the graphical evidence, there is a strong suggestion of a higher mean response (for each of the three responses of interest) for the control plots when compared to the June-cut plots. There is a suggestion

207	also that the longitudinal monthly growth pattern is different across the plots where each
208	response tends to decrease from August in the control plots as opposed to in September in
209	the June-cut plots (i.e. a Date/Plot interaction).
210	
211	The formal results based on the (separate) ANOVA models are as follows:
212	
213	Dry Weight
214	
215	There was evidence of a significantly lower mean Tot-N for the June-cut plots when
216	compared to the control plots (p<0.001) and of a significant Plot/Date interaction
217	(p<0.001) (Fig. 2). The estimated difference in mean dry weight in the control plots
218	compared to June-cut plots in September ranged from 694.3 to 1336 g m ⁻² .
219	
220	Tot-N
221	
222	There was evidence of a significantly lower mean Tot-N for the June-cut plots when
223	compared to the control plots (p<0.001) and of a significant Plot/Date interaction
224	(p<0.001) (Fig. 3). The estimated difference in mean Tot-N in the control plots compared
225	to June-cut plots in September ranged from 7.76 to 19.33 mg g^{-1} .
226	
227	Tot-P
228	

There was evidence of a significantly lower mean Tot-P for the June-cut plots when compared to the control plots (p<0.001) and of a significant Plot/Date interaction (p<0.001) (Fig. 4). The estimated difference in mean Tot-P in the control plots compared to June-cut plots in September ranged from 0.63 to 1.65 mg g⁻¹.

- 233
- 234

4. CONCLUSIONS

235

236 This 8-month study of the growth and nutrient retention dynamics of P. australis in a 237 FWS constructed wetland showed that the above-water shoot biomass in the control plot varied throughout the growing season and reached a maximum value of 1506 ± 215 gm⁻² 238 239 during August. Maximum RPD rates occurred in the control plot during July and 240 maximum Tot-N and Tot-P contents were measured in August. The effects of a June 241 harvesting of the above-water biomass were investigated but neither biomass, Tot-N and 242 Tot-P content, nor the RPD attain the values of the control plot. A repeated measures 243 ANOVA, using a significance level of alpha = 0.05 indicated that the dry matter, Tot-N 244 and Tot-P content of the control plot was greater than the June-cut plot. The maximum RPD of the June-cut plot was $4.2 \text{ m}^{-2} \text{ d}^{-1}$, indicating that harvesting of *P. australis* is not 245 246 recommended in June as a method to permanently remove nutrients from wetlands under 247 Irish climatic conditions.

- 248
- 249

ACKNOWLEDGEMENTS

251	This project was funded by the Irish EPA under the Small Scale Study scheme. The first
252	author would like to express his appreciation to the late Dr. John Mulqueen, NUI,
253	Galway. The help of Mr. Brian Finan, Gardening and Grounds Supervisor, NUI Galway
254	is also acknowledged.
255	
256	
257	
258	
259	
260	
261	
262	
263	
264	
265	
266	
267	
268	
269	
270	
271	
272	
273	

274 REFERENCES 275 276 APHA-AWWA-WEF. 2005. Standard methods for the examination of water and wastewater. 21st edition. American Public Health Association. Washington, USA. 277 278 279 Armstrong, J., Jones, R.E. and Armstrong, W. 2006. Rhizone phyllosphere oxygenation 280 in *Phragmites* and other species in relation to redox potential, convective gas flow, 281 submergence and aeration pathways. The New Phytologist 172, 719-731. 282 283 Batty, L.C. and Younger, P.L. 2004. Growth of Phragmites australis (Cav.) Trin ex. 284 Steudel in mine water treatment wetlands: effects of metal and nutrient uptake. 285 Environmental Pollution 132, 85-93. 286 287 Bragato, C., Brix, H. and Malagoli, M. 2006. Accumulation of nutrients and heavy metals 288 in Phragmites australis (Cav.) Trin. Ex Steudel and Bolboschoenus maritimus (L.) Palla 289 in a constructed wetland of the Venice lagoon watershed. Environmental Pollution 144, 290 967-975. 291 292 Ciria, M.P., Solano, M.L. and Soriano, P. 2005. Role of macrophyte Typha latifolia in a 293 constructed wetland for wastewater treatment and assessment of its potential as a biomass 294 fuel. Biosystems Engineering 92, 535-544.

295

296	Dunne, E.J., Culleton, N., O'Donovan, G., Harrington, R. and Olsen, A.E., 2005. An
297	integrated constructed wetland to treat contaminants and nutrients from dairy farmyard
298	dirty water. Ecological Engineering 24, 221-234.
299	

Hardej, M. and Ozimek, T. 2002. The effect of sewage sludge flooding on growth and
morphometric parameters of *Phragmites australis* (Cav.) Trin. Ex Steudel. Ecological
Engineering 18, 343-350.

303

Healy, M. and Cawley, A.M. 2002. The nutrient processing capacity of a constructed wetland in western Ireland. Journal of Environmental Quality **17**, 1739-1747.

306

Hill, D.T., Payne, V.W.E., Rogers, J.W., Kown, S.R. 1997. Ammonia effects on the
biomass production of five constructed wetland plant species. Bioresource Technology
62, 109-113.

310

Karunaratne, S., Asaeda, T. and Yutani, K. 2004. Shoot regrowth and age-specific
rhizome storage dynamics of *Phragmites australis* subjected to summer harvesting.
Ecological Engineering 22, 99-111.

314

- 315 Kaseva, M.E. 2004. Performance of a sub-surface flow constructed wetland in polishing
- 316 pre-treated wastewater a tropical case study. Water Research **38**, 681-687.

318	Kim, S-Y. and Geary, P.M. 2001. The impact of biomass harvesting on phosphorus
319	uptake by wetland plants. Water Science and Technology 44 (11-12), 61-67.
320	
321	Mantovi, P., Marmiroli, M., Maestri, E., Tagliavini, S., Piccinini, S. and Marmiroli, N.
322	2003. Application of a horizontal subsurface flow constructed wetland on treatment of
323	dairy parlor wastewater. Bioresource Technology 88, 85-94.
324	
325	Solano, M.L., Soriano, P. and Ciria, M.P. 2004. Constructed wetlands as a sustainable
326	solution for wastewater treatment in small villages. Biosystems Engineering 87, 109-118.
327	
328	
329	
330	
331	
332	
333	
334	
335	
336	
337	
338	
339	
340	

CAPTIONS FOR FIGURES

Fig. 1 - Comparison of the seasonal variation in above-water shoot height in uncut and June-cut plots in Williamstown constructed wetland, Ireland.

Fig. 2 - Comparison of the seasonal variation in above-water biomass in uncut and Junecut plots in Williamstown constructed wetland, Ireland.

Fig. 3 - Comparison of the seasonal variation in above-water Tot-N in uncut and June-cut plots in Williamstown constructed wetland, Ireland.

Fig. 4 - Comparison of the seasonal variation in above-water Tot-P in uncut and June-cut plots in Williamstown constructed wetland, Ireland.

Table 1 - Details of combined wetland configuration.

Cell dimensions			ions				
Cell		Width m		Area m ²	Volume m ³	HRT [†] d	HLR [‡] m d ⁻¹
First cell	28	10	0.3	280	84	1.5	0.20
Retention pond	39	8	0.8	312	250	4.4	0.18
Third cell	47	9-12	0.4	564	225	4.1	0.10

^{\dagger} Approximate hydraulic residence time, based on a mean flow of 55 m³ d⁻¹.

[‡] Hydraulic loading rate.

Table 2 - Mean influent and effluent concentrations (± standard deviation) in Williamstown constructed wetland (n=7).

		Influent (mg L ⁻¹)			
Parameter	First cell	Retention pond	Third cell	Effluent (mg L ⁻¹)	
COD	32±5	29±9	24±9	23±9	
SS	11±5	7±8	4 <u>±</u> 4	1±2	
Tot-N	10±5	6±4	6±3	5±4	
NO ₃ -N	9±3	3±2	6±4	$4\pm\!4$	
NH ₄ -N	1±2	2±1	2±1	1±2	
PO ₄ -P	2±1	1±1	1±1	1±2	

Sampling Date	Stem density (no. shoots m ⁻²) Control June-cut		Total shoot height (m) Control June-cut	$(g m^{-2})$		RPD [†] (g m ⁻² d ⁻¹) Control June-cut		Shoot Tot-N content (g Tot-N m ⁻²) Control June-cut		Shoot Tot-P content (g Tot-P m ⁻²) Control June-cut	
2 April	102 ± 17	-	1.80±0.30 -	687 ± 227	-	-	-	5±1	-	0.48±0.07	-
18 May	101 ± 11	-	2.00±0.20 -	662 ± 91	-	-0.50	-	13 ± 2	-	1.95±0.43	-
16 June	133 ± 27	-	2.30±0.30 -	1056 ± 261	-	6.90	-	18 ± 2	-	2.19±0.07	-
20 July	141 ± 21	26 ± 10	2.60±0.40 1.30±0.10	0 1491 ± 312	28 ± 15	12.80	0.80	20 ± 5	0.8±0.50	2.30±0.40	0.10 ± 0
25 Aug.	143 ± 7	56±16	2.50±0.30 1.90±0.30	0 1506±215	170 ± 64	0.40	4.00	23 ± 6	4.1±1.00	2.40±0.50	0.40 ± 0.20
22 Sept.	115 ± 23	83 ± 23	2.30±0.50 2.00±0.10	0 1301±279	286 ± 67	-7.30	4.20	20 ± 6	6.7 ± 1.60	1.80 ± 0.30	0.60±0.10
8 Nov.	109 ± 17	59±17	1.90±0.30 1.80±0.20) 717±196	171 ± 66	-12.30	-2.50	7 ± 3	3±1.20	0.70±0.40	0.20±0.10

Table 3 - Comparison of the effects of shoot harvesting (± standard deviation) on *Phragmites australis* in Williamstown constructed wetland during 2005.

[†] RPD= rate of dry matter production above-water level per unit area per day between harvests.

Healy, M.G. et al. Fig 1.

Healy, M.G. et al. Fig 2.

Case Profile Plot of Dry weight vs Date

Panel variable: Plot

Case Profile Plot Total Nitrogen vs Date

Panel variable: Plot

Case Profile Plot of Total Phosphorus vs Date

Panel variable: Plot