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S3QL: A distributed domain specific language for
controlled semantic integration of life sciences data
Helena F Deus 1,2*, Miriã C Correa3, Romesh Stanislaus4, Maria Miragaia5, Wolfgang Maass6,
Hermínia de Lencastre5,7, Ronan Fox1 and Jonas S Almeida8

Abstract

Background: The value and usefulness of data increases when it is explicitly interlinked with related data. This is
the core principle of Linked Data. For life sciences researchers, harnessing the power of Linked Data to improve
biological discovery is still challenged by a need to keep pace with rapidly evolving domains and requirements for
collaboration and control as well as with the reference semantic web ontologies and standards. Knowledge
organization systems (KOSs) can provide an abstraction for publishing biological discoveries as Linked Data without
complicating transactions with contextual minutia such as provenance and access control.
We have previously described the Simple Sloppy Semantic Database (S3DB) as an efficient model for creating
knowledge organization systems using Linked Data best practices with explicit distinction between domain and
instantiation and support for a permission control mechanism that automatically migrates between the two. In this
report we present a domain specific language, the S3DB query language (S3QL), to operate on its underlying core
model and facilitate management of Linked Data.

Results: Reflecting the data driven nature of our approach, S3QL has been implemented as an application
programming interface for S3DB systems hosting biomedical data, and its syntax was subsequently generalized beyond
the S3DB core model. This achievement is illustrated with the assembly of an S3QL query to manage entities from the
Simple Knowledge Organization System. The illustrative use cases include gastrointestinal clinical trials, genomic
characterization of cancer by The Cancer Genome Atlas (TCGA) and molecular epidemiology of infectious diseases.

Conclusions: S3QL was found to provide a convenient mechanism to represent context for interoperation
between public and private datasets hosted at biomedical research institutions and linked data formalisms.

Keywords: S3DB, Linked Data, KOS, RDF, SPARQL, knowledge organization system, policy

Background
Knowledge engineering in the Life Sciences is challenged
by the combination of high specificity and high heteroge-
neity of the data needed to represent and understand
Biology’s systemic puzzles. Despite the deluge of data
that has invaded life sciences in the past decade [1], data-
driven discovery in Biology is hindered by a lack of
enough interlinked information to allow statistical algo-
rithms to find the patterns that inform hypothesis-driven
research [2,3]. Life Sciences research relies heavily on
bioinformatics integration tools like Ensembl [4], the

UCSC genome browser [5], Entrez Gene [6] or the gene
ontology [7] because these offer researchers portals to a
wealth of interlinked biological annotations within the
context of their experimentally derived results, thus play-
ing a lead role in advancing scientific discovery. The
amount of time and effort required to develop and main-
tain such tools has prompted Linked Data approaches for
data integration to become increasingly relevant in
Health Care and Life Sciences (HCLS) domains [8-10].
Briefly stated, Linked Data can be described as a bottom-
up solution for data integration: its focus is on creating a
global Web of Data where typed links between data
sources provide rich context and expressive reusable
queries over aggregated and distributed heterogeneous
datasets [8,11-13]. The architecture of that Web is
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expected by its original architects [14] to require a repre-
sentation of usage contexts that can be applied in the col-
laboration and controlled sharing of data. When this
functionality is supported, as that report anticipates,
“social machines” will be able to manage the simulta-
neous and conflicting views of data that fuel scientific
debate. The S3DB knowledge organization system was
designed to provide baseline support for that bottom-up
process by addressing a recurrent need for controlled
sharing of HCLS datasets [15,16]. This report describes a
convention, the S3QL language, to query and manipulate
it. It will also be demonstrated that S3QL provides a con-
venient mechanism to engage Linked Data in general.

1.1 Linked Data Best Practices
Linked data best practices set the stage for an interlin-
gua of relational data and logic in the web [17] by the
definition of core principles that can be summarized as:
1) information resources should be identified with
HTTP universal resource identifiers (URIs); 2) informa-
tion should be served against a URI in a standard
semantic web format such as the Resource Description
Framework (RDF) and 3) links should be established to
information resources elsewhere [10]. For large datasets,
it is also convenient that a web service supporting
SPARQL, the protocol and RDF query language, is also
deployed [18]. Aggregation of data sources is available
either by accessing metadata about the datasets as RDF
[19,20], or through direct aggregation of RDF assertions
in a single knowledgebase [21,22]. To ensure contextual
consistency and reusability across datasets, data ele-
ments and descriptors are mapped using standard voca-
bularies, namespaces and ontologies [23-25].

1.2 Challenges involved in Publishing Primary
Experimental Life Sciences Datasets as Linked Data
The value of linked data for life scientists lies primarily in
the possibility to quickly discover information about pro-
teins or genes of interest derived, for example, from a
microarray or protein array experiment [26]. Life scientists
involved in primary research still face significant chal-
lenges in harnessing the power of Linked Data to improve
biological discovery. Part of the difficulty lies in the lack of
adequate and user-friendly mechanisms to publish biologi-
cal results as Linked Data prior to publication in scientific
articles. Efforts in linking life sciences data typically focus
on datasets which are already available in structured and
annotated formats, i.e. after the researchers have analysed,
correlated and manually annotated their results by brows-
ing the literature or submitting their data to multiple web-
based interfaces [27,28]. Current research [29,30] and our
own experience in developing content management sys-
tems for health care and life sciences [26,31,32], has identi-
fied the need to go beyond those data sets by creating

mechanisms for contextualizing linked life sciences data
with attribution and version before it can be shared with a
stable annotation. Advances have been made in that direc-
tion by other research efforts such as the recent publica-
tion of VoiD as a W3C note [33].
The technological advancements that will make primary

Life Sciences experimental results an integral part of the
Web of Data are also thwarted by challenges which go
beyond infrastructure and standards [30]. In particular,
HCLS datasets often include data elements, such as those
that could be used to identify individual patients, with
stringent requirements for privacy and protection [34].
The typical approach to privatizing data has been to make
it the responsibility of the data providers. Although this
may provide a temporary solution for a small number of
self-contained datasets, it quickly becomes unmanageable
when datasets aggregate both public and sensitive data
from multiple sources, each with its own requirements for
privacy and access control [35].
One final common concern in Life Sciences is the need

to enable data experts to edit and augment the data
representation models; failure to support this flexibility
has lead in the past to misinterpretation of primary
experimental data due to absence of critical contextual
information [36,37].

1.3 Knowledge organization systems for Linked Data
In order to address the information management needs of
Life Scientists, the practice of Linked Data standards must
be coupled with the implementation of Knowledge Orga-
nization Systems (KOSs), a view also espoused by the
W3C, where the Simple Knowledge Organization System
(SKOS) has been recently proposed as a standard [38,39].
In previous work we proposed the design principles of a
KOS, the Simple Sloppy Semantic Database (S3DB)
[15,16,40]. The S3DB core model is, much like SKOS,
task-independent and light-weight. Implementation of the
S3DB Core Model and operators resulted in a prototype
that has been validated and tested by Life Scientists to
address pressing data management needs or, in particular,
as a controlled Read-Write Linked Data system [31,41-43].
S3DB was shown to include the minimum set of features
required to support the management of experimental and
analytic results by Life Sciences experts while making use
of Linked Data best practices such as HTTP URI, subject-
predicate-object triples represented using RDF Schema,
links to widely used ontologies suggested by NCBO ontol-
ogy widgets [44] or new OWL classes created by the users
and a SPARQL endpoint [41]. Although complying with
these practices is enough to cover the immediate query or
“read” requirements of a Linked Data KOS, we found that
efficient data management or “write” operations, such as
inserting, updating and deprecating data instances within
a KOS could be more efficiently addressed with the
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identification of the S3DB Query Language (S3QL), a
Domain Specific Language (DSL) devised to abstract most
of the details involved in managing interlinked, contextua-
lized, RDF statements.
S3QL is not meant as an alternative to SPARQL but

rather as a complement: data management operations
enabled by S3QL can also be formalized in SPARQL.
However, the availability of a data management DSL that
can be serialized to SPARQL provides an abstraction layer
that can be intuitively used by domain experts. As such,
DSLs can provide a solution for bridging the gap between
the formalisms required by Linked Data best practices
such as SPARQL and RDFS, and the basic controlled
read/write management requirements of HCLS experts
[12,45,46]. DSLs optimize beyond general purpose lan-
guages in the identification of the domain in which a task
belongs, drastically reducing the development time [47].
The task of adding a graph to a triple store is supported
by most graph stores by means of the SPARQL 1.1.
Update language [48]. To enable controlled “write” opera-
tions targeting the dataset, it would be useful to annotate,
for example, the creator of a named graph, under which
circumstances it was created and who has permission to
modify it. Similarly, upon changes to the dataset, annota-
tion of the modifier and a comment describing the change
would be in the interest of the communities using the
data. Many triple stores are in fact quad stores to enable
partial support of that requirement for contextual repre-
sentation. The most common approach is to use a named
graph, a set of triples identified by a URI [49] that indi-
cates the source of a graph. The S3DB Query Language
(S3QL) presented in this report was devised with the
intent of automating Linked Data management by creating
those contextual descriptors in a single S3QL transaction,
including author, creation date and description of the data.
By making use of those contextual descriptors, we pro-

pose a method for fine grained permission control in
S3QL that relies on s3db:operators [50], a class of func-
tions, with states, that may be used as the predicate of an
RDF triple between a user and a dataset with privacy
requirements. These operators, described in [40] and
made available for experimentation at [51], operate on
the adjacency matrix defined by the nodes and edges of
an RDF graph. They can be applied in a variety of scenar-
ios such as optimizing queries or, as is the case with
S3QL, to propagate permission assignments. In the latter
case, an adjacency matrix includes both the edges
between instances of S3DB entities and the transitions of
permission on S3DB entities such as, e.g. the assertion
that a User’s permission on a Project propagates to its
entities. Accordingly, by defining user permissions as
states of s3db:operators, the core model’s adjacency
matrix is used to propagate the ability to control, view
and modify S3DB entities.

We have found the target audience for S3QL to be both
life sciences application developers, who use it through a
RESTful application programming interface (API), and life
sciences researchers who use it through user interfaces for
weaving the ontologies that best represent the critical con-
textual information in their experimental results. The
applicability of S3QL to other linked data KOSs such as
the Simple Knowledge Organization System (SKOS) [39]
is explored with an example and the advantages of the
solution proposed are discussed in three biomedical data-
sets with very different requirements for controlled opera-
tions: gastrointestinal clinical trials [42], cancer genomic
characterization [41] and molecular epidemiology [52].

Methods
This section overviews the core model for S3DB, includ-
ing the set of operators that enable fine grained permis-
sion control and the distributed infrastructure supporting
S3QL. The principles defined here are implemented as a
prototypical application available at http://s3db.org.

The S3DB Knowledge Organization Model
S3QL is a DSL to programmatically manipulate data as
instances of entities defined in a KOS. One of the key fea-
tures of the KOS defined using the S3DB core model [16]
is the use of typed named graphs to separate the identifica-
tion of the domain, the metadata describing the data, from
its observational instantiation - the data itself. We have
previously shown that this approach to representing RDF
greatly facilitates the assembly of SPARQL and lowers the
entry barrier for biomedical researchers interested in using
Semantic Web Technologies to address their data man-
agement needs [41]. That separation is achieved by using
the representation of domain as triples that are themselves
the predicates of the statements that instantiate that
domain (as detailed by Fig. two in [40]). For example, the
triple [Person hasAge Age], identified as :R12 through a
named graph of type s3db:rule, describes the domain while
the triple [John: R12 26 ], identified by a named graph of
type s3db:statement, instantiates that domain. Through
the logic encoded in the RDF Schema definition of domain
(rdfs:domain) and range (rdfs:range), the assertion that
“John” is of type “Person” and that “26” is an “Age” is
enabled in the S3DB KOS. S3DB’s use of named graphs to
describe the domain enables updates to the domain with-
out affecting the consistency of its instantiation - in the
example above, modifying “hasAge” with “hasAgeInYears”
will not affect queries that have already been assembled
using that property.
In the S3DB core [40], a meta-model for this data is

also created with the specific objective of enabling propa-
gation of operations, such as permission assignments,
between the domain description and the data itself,
described in the following section (see Figures 1, 2
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and 3). In the example above, the two triples are respec-
tively assigned to entities of type s3db:rule and s3db:state-
ment where indexes “Person” is identified by a named
graph of type s3db:collection and “John” is identified by a
named graph of type s3db:item. The S3DB Core specifies
three other entities which are specifically devised to
enable knowledge organization and operator propagation:
s3db:project entails a list of s3db:rule and s3db:collection
and are typically applied in domain contextualization;
s3db:deployment corresponds to the physical location of
an S3DB system (its URL) and s3db:user is the subject of
permission assignment operations. It is worth noting
that, by making use of S3DB entities, blank nodes are
avoided by assigning a unique alphanumeric identifier to
every instance of an S3DB entity. The S3DB entities can
also be identified using the first letter of their names, D,
P, R, C, I, S or U, which will be used in subsequent exam-
ples to indicate, respectively, s3db:deployment, s3db:

project, s3db:rule, s3db:collection, s3db:item, s3db:state-
ment or s3db:user.

Operators for Permission Control
The second key feature that makes S3DB appropriate
for controlled management operations is support for
permission control embedded in its core model. As
described above and in [40], the hierarchy of permis-
sions to view/edit entities in S3DB is modelled by an
adjacency matrix, which is used as a transition matrix in
the propagation of permission states. For a walkthrough
of the propagation mechanism, see additional file 1. The
s3db:operator states applied to the S3DB transition
matrix modulate propagation by three core functions -
merge, migrate and percolate. This behaviour for propa-
gation of permission is described in detail in equation 5
of [40] and is reproduced here in Equation 1. The S3DB
transition matrix (T) is defined by 12 s3db:relationships

<delete> E _id value </delete> <where> </where> E < > _id E </ > 

EntityID 

<insert> E _id value </insert> <where> </where> E < > _id E </ > 

E.a < > value E.a </ > 

EntityAttributeValue 

EntityID 

<update> E _id value </update> <where> 

</where> 

E < > _id E </ > 

E.a < > value E.a </ > 

EntityID 

<select> 

E.a 

</select> 

<where> </where> E.a < > value E.a </ > 

<from> </from> E * 

, 

<update> E _id value </update> <where> 

</where> 

E < > _id E </ > 

E.a < > value E.a </ > 

EntityID 

Vi
ew

 
Ch

an
ge

 
Us

e 

EntityAttributeValue 

EntityAttributeValue 

Figure 1 S3QL language specification using rail diagrams. Rail diagrams are read from the left to the right - any string that can be
composed following these diagrams is a valid S3QL query. Valid forms of E and E.a will vary according to the Core Model used in the KOS. For
example, if the S3DB Core model is used, any entity in figure 2 can be used in place of E; upon choice of E, E.a is any attribute that can be
attained by following a line from E.
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describing dependencies and inference rules between
entities of the S3DB core model. The operator state vec-
tor (f) is used as the predicate of a triple established
between an s3db:user and an entity of the S3DB core
model. The JavaScript application at [51] can also be
used to attempt this set of propagation behaviours for
s3db:operators both on the S3DB transition matrix or
with alternative adjacency matrixes.

fobject,k+1 = merge([fobject,k, migrate(T × fsubject,k)])

l = length(f )

l = 1 → migrate(f ) = f = f [1]

l > 1 → migrate(f ) = f [2, ..., l]

(1)

The s3db:operators [40] have a scope and applicability in
linked data beyond permission management. In S3QL we
define three operator types for controlled management

operations: for each of the rights to view, change/edit or
use instances of S3DB entities. The format used to assign
permission was defined as a three character string, where
each operator occupies respectively the first, second or
third positions and may assume value N, S or Y according
to the level of permission intended: no permission (N),
permission limited to the creator of the resource (S) or full
permission (Y). For example, the permission assignment
“YSN” specifies complete permission to view (Y) the sub-
ject entity, partial permission to change it (S) and no per-
mission to use it (N). States may be defined as dominant,
by use of uppercase (Y, N or S) or recessive, by use of low-
ercase characters (y, n or s). Dominant and recessive per-
missions are used to decide on the outcome of multiple
permissions converging on the same entity (as detailed in
[40]). Missing permission states, indicated by the dash
character ‘-’ (which has no lower or upper case) are also

rdf:id 

rdfs:label 

dc:description 

dc:created 

dc:creator 

deployment 

user 

project 

collection 

rule 

item 

statement 

nn

foaf:mbox 

s3db:object_id 

s3db:object 

foaf:fo mbox
s3db:subject_id 

b:s3dbs3d

s3db:project_id 

s3db:predicate_id 

s3db:collection_id 

s3db:item_id 

s3db:rule_id rdf:value 

E E.a E.a a

Figure 2 Entities in the S3DB Core Model and its attributes. A minimal set of common attributes was defined (left) for each of the S3DB
entities using RDF Schema (rdfs) and Dublin core (dc) terminology - these are rdf:id, rdfs:label, dc:description, dc:created and dc:creator. Other
attributes, which are specific to each of the S3DB entities (right), such as foaf:mbox for the entity User or s3db:project_id for the entity Collection
reflect the s3db:relationships described above and formalized in the S3DB conceptual model (figure 3).
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allowed, as well as a mechanism to succinctly specify tran-
sitions with variable memory length (l in equation 1). The
propagation of permissions in the S3DB Core Model
ensures that for every entity and every user, two types of

permission are defined: the assigned permission, or the
permission state assigned directly to a user in an entity,
and the effective permission, which is the result of the pro-
pagation of s3db:operators.

Figure 3 The S3DB conceptual model. Five attributes (id, label, description, creator and created) and four methods (select, update, insert and
delete) are common to all S3DB entities. In the current S3QL implementation, the label and description attributes are defined by the submitter
of the data, whereas the id, created and creator attributes are automatically assigned by the system. Other dependencies were devised to
comply with the definition of s3db:relationships.
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Components of a Distributed System
One of the requirements for RDF-based knowledge
management ecosystems is the availability of queries
spanning across multiple SPARQL endpoints. Automa-
tion of distributed queries in systems supporting permis-
sion control, such as S3DB, is challenged by user
authentication. In S3QL, we propose addressing this
through delegation to authentication authorities. As a
result, a user (or usage), can be identified by a URI that
is independent of the authorities that validate it. When-
ever possible, it is recommended that authentication
credentials be protected by use of OAuth [53].
Use of URIs and Internationalized Resource Identifiers

(IRIs) to identify data elements is one of the core princi-
ples of Linked Data. However, many programming
environments cannot easily handle URIs as element
identifiers. Problems range from decreased processing
speed to a need for encoding the URIs in web service
exchanges. As an anticipation for that class of problems,
the URIs for entities in S3DB are interchangeable with
alphanumeric identifiers formulated as the concatena-
tion of one of D, U, P, C, R, I or S (referring to S3DB
entities described in The S3DB Knowledge Organiza-
tional Model) identifying the entity and a unique num-
ber. As an example, for a deployment located at URL
http://q.s3db.org/demo, the alphanumeric P126 is resol-
vable to an entity of type Project with URI http://q.s3db.
org/s3dbdemo/P126. To facilitate exchange of URI in
distinct deployments, the URI above could also be speci-
fied as D282:P126, where “D282” is the alphanumeric
identifier of the S3DB deployment located at URL
http://q.s3db.org/demo. Every s3db:deployment is identi-
fied by a named graph in the form D[number]; for com-
pleteness, metadata pertaining to each s3db:deployment,
such as the corresponding URL, is described using the
vocabulary of interlinked datasets (VoiD) [19] and
shared through a root location.

Availability and Documentation
The specification of the S3QL language has been made
available at http://link.s3db.org/specs and one example
of the output RDF is available at http://link.s3db.org/
example. S3QL has been implemented through a REST
application programming interface (API) for the S3DB
prototype, which is publicly available at http://s3db.org.
Both the prototype and its API were developed in PHP
with MySQL or PostgreSQL for data storage. Documen-
tation about the S3DB implementation of S3QL as an
API can be found at http://link.s3db.org/docs. S3QL
queries may be tested at the demo implementation at
http://link.s3db.org/s3qldemo and a translator for the
compact notation is available at http://link.s3db.org/
translate.

Results
S3QL Syntax
S3QL is a domain specific language devised for facilitat-
ing management operations such as “insert”, “update” or
“delete” using entities of a Linked Data KOS such as the
S3DB core model described above. Its syntax, however,
is loosely tied to the S3DB Core Model, and can easily
be applied to a set of KOS’ core models in which S3DB
is included. The complete syntax of S3QL in its XML
(eXtended Markup Language) flavour is represented in
the railroad diagram of Figure 1. The S3QL syntax
includes three elements: the description of the opera-
tion, the target entity and the input parameters. Four
basic operation descriptions were deemed necessary to
fully support read/write operations: select, insert, update
and delete. The action of these operations mimic those
of the structured query language (SQL) and target
instances of entities (E) defined in the core model. Input
parameters include the set of attributes defined for each
of the entities either in the alphanumeric form asso-
ciated with entity instances (EntityId) or in the form of
EntityAttributeValue (E.a). The values for E.a are deter-
mined upon choice of E - for an example using S3DB
entities and attributes see Figure 2: E may be replaced
with any of the entities defined in the S3DB Core
Model (Deployment, User, Project, Collection, Rule, Item
or Statement); upon choice of E, valid forms of E.a
include any of the attributes defined for E (e.g. rdf:id,
rdfs:label, rdfs:comment). A table summarizing all avail-
able operations, targets and input parameters is made
available at http://link.s3db.org/specs. The formal S3QL
syntax is completed by enclosing the outcome of one of
the diagrams on Figure 1 with the <S3QL> tag. For
example, the following XML structure is a valid S3QL
query for an operation of type insert where the target is
the S3DB entity Project and the input parameter, formu-
lated as EntityAtributeValue is “label = Test":
<S3QL>
<insert>project</insert>
<where>
<label>Test</label>
</where>

</S3QL>
The set of 12 s3db:relationships (see Table one of

[40]) in the S3DB Model determine the organizational
dependencies of S3DB entities. For example s3db:PC is
the s3db:relationship that specifies a dependency
between an instance of a Collection (C) and an instance
of a Project (P) (Figure 3). The S3QL syntax fulfils this
constraint by assigning project_id (the identifier of an
S3DB Project) as an attribute of a Collection. In this
description of attributes associated with the S3DB core
model we make use of the assumption, as in other
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KOSs and in the Linked Data in general, that there is no
restriction to adding relationships beyond those
described here. S3QL was identified as the minimal
representation to interoperate with the S3DB core
model and therefore only those relationships are
explored in this report.
The syntax diagram in Figure 1 generates XML, a

standard widely used in web service implementations.
That alternative often results in verbose queries that
could easily be assembled from more compact notations.
One example to consider is the form: action (E | E.a =
value). Here the symbol ‘|’ should be interpreted, as in
Bayesian inference, as a condition and be read “given
that”. The letter “E“ corresponds to the first letter of
any S3DB entity (D, P, R, C, I, S or U) and E.a is any of
its attributes as described in Figure 2. In this example,
the query insert(P | label = test) is equivalent to the
example query above. That particular variant is also
accepted by the S3DB prototype and a converter for this
syntax into complete S3QL/XML syntax was made avail-
able at http://link.s3db.org/translate. For further com-
pactness of this alternative formulation, entity identifiers
used as parameters may be replaced with its corre-
sponding alphanumeric identifiers - for example projec-
t_id = 156 may be replaced with P156. This alternative
notation will be used in the subsequent examples.

S3QL Permission Control
Permission states are assigned using an S3QL query such
as insert(U| U1,P157,permission_level = ysn), which
includes the action insert, the target entity User and
three input parameters: identifier of the User (U1), iden-
tifier of the entity (P157) and permission assignment
(ysn). Effectively, this will result in the creation of the tri-
ple [:U1: ysn: P157], where the subject is of type s3db:
user, the predicate is of type s3db:operator and the object
is of type s3db:project. The inclusion of this triple in a
dataset will modulate the type of management operation
that a user may perform. As described in the Methods
section, each position in the permission assignment
operator (ysn) encodes, respectively, for permission to
“view”, “change” or “use” the object entity. Values y, s
and n indicate, respectively, that the user has full permis-
sion to view it (y), permission to change its metadata
only if he was the creator of the entity (s) and no permis-
sion to insert (n) child entities. Each S3QL operation is
therefore tightly woven to each of the three operators:
select is controlled by “view"; update and delete are con-
trolled by “change” and insert is controlled by “use”
(shaded areas in Figure 1). The ‘use’ operator encodes for
the ability of a user to create new relationships with the
target entity, which is defined separately from the right
to “change” it. For example, in the case of a user (U1)
being granted “y” as the effective permission to “change”

an s3db:rule, then the metadata describing it may be
altered. If, however, that same user is granted permission
“n” to ‘use’ that same Rule, she is prevented from creating
Statements using that Rule. Although “use” may be inter-
preted as being equivalent to “insert” or “append” in
other systems, we have chosen to separate the terms
describing the operator “use” from the S3QL action
“insert”. The permission assigned at the dataset level will
then propagate in the S3DB transition matrix following
the behaviour formalized in equation 1, therefore avoid-
ing the need to assign permission to every user on every
entity. It is worth noting that the DSL presented here is
extensible beyond the 4 management actions (select,
insert, update, delete) described. The s3db:operators that
control permission on these actions are also extensible
beyond “view”, “change” and “use” and different imple-
mentations may support alternative states.
The permission control behaviour for S3QL operations

can be illustrated through the use of the Quadratus, an
application available at http://q.s3db.org/quadratus that
can be pointed at any S3DB deployment to assign permis-
sion states on S3DB entities to different users (Figure 4).
Other use case scenarios are also explored in the S3QL
specification at http://link.s3db.org/specs.

Global Dereferencing for Distributed Queries
A simple dereferencing system was devised for S3DB iden-
tifiers that relies on the identification of root deployments,
i.e. S3DB systems where alphanumeric identifiers for
S3DB deployments can be dereferenced to URL. This sim-
ple mechanism enables complex transactions of controlled
data. For an example of this behaviour see Figure 5, where
the S3DB UID D327:R172930, identifying an entity of type
Rule (R172930) available in deployment D327 is being
request by a user registered in deployment D309. In order
to retrieve the requested data, the URL of deployment
D327 must first be resolved at a root deployment such as,
for example, http://root.s3db.org.
The dereferencing mechanism is also applicable in more

complex cases where the root of two deployments sharing
data is not the same. Prepending the deployment identifier
of the root to the UIDs such as, for example, D1016666:
D327:R172930, where D1016666 identifies the root
deployment, would result in recursive URL resolution
steps such as select(D.url| D1016666) prior to step 4 in
Figure 5. This mechanism avoids broken links when S3DB
deployments are moved to different URLs by enabling
deployment metadata to be updated securely at the root
using a public/private key encryption system.

Implementation and benchmarking
In the current prototype implementation, S3QL is sub-
mitted to S3DB deployments using either a GET or POST
request and may include an optional authentication token
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(key). The REST specification [54] suggest separate HTTP
methods according to the intention of the operation:
often, “GET” is used to retrieve data, “PUT” is used to sub-
mit data, “POST” is used to update data and “DELETE” is
used to remove data. There are, however, many program-
ming environments that implement only the REST “GET”
method, including many popular computational statistics
programming frameworks such as R and Matlab. There-
fore, in order to fully explore the integrative potential of
this read/write semantic web service, and to support
operations beyond the 4 implemented, the S3DB proto-
type implementation of S3QL supports the “GET” method
for all S3QL operations, with the parameters of the S3QL
call appended to the URL. One drawback of relying on
GET is the limits imposed by the browser on URL length.
To address this potential problem, the S3DB prototype
also supports the use of “POST” for S3QL calls.

Two further challenges needed to be addressed in the
prototypical implementation of S3QL: 1) the need for a
centralized root location to support dereferencing of
deployment URI when the condensed version is used (e.
g. D282) and 2) distributed queries on REST systems
required users to authenticate in multiple KOSs. The
first challenge was addressed by configuring an S3DB
deployment as the root location, available at http://root.
s3db.org. Deployment metadata is submitted to this root
deployment at configuration time using S3QL; data per-
taining to each deployment can therefore be derefer-
enced to a URL using http://root.s3db.org/D[numeric].
The option to refer to another root deployment than
the default is possible during installation. To avoid over-
loading these root deployments with too many requests,
a local 24 hour cache of all accessed deployments is
kept in each S3DB deployment using the same strategy;

Figure 4 Quadratus, an interface to illustrate S3QL’s permission control mechanism and its effect on S3QL queries. Projects, Collections,
Rules, Items and Statements associated with GI Clinical Trials Project are displayed with effective and assigned permissions. Collections and Rules
retrieved using S3QL queries select(C|P1196457) and select(R| P1196457) inherit the permission assignment in the Project “ysn"; assigned permission
“N–” in Collection “Demographics” results in the effective permission of “Nsn” inherited by all Rules and Items that have a relationship with that
Collection, effectively preventing gi_user1 from accessing its data. The directed labelled graph of the propagation resolution is displayed on the
right side of the application illustrating the propagation mechanism.
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if the URL is cached, it will not be requested from the
root deployment. To address the second challenge, each
s3db:deployment can store any number of authentication
services supporting HTTP, FTP or LDAP protocols.
Once the user is authenticated, temporary surrogate
tokens are issued with each query. When coupled with
the user identifier in the format of a URI, these tokens
effectively identify the user performing the query regard-
less of the S3DB deployment where the query is
requested.
Screencasts illustrating processing time of data manip-

ulation using S3QL are available at http://www.youtube.
com/watch?v=2KZC6kI609s and http://www.youtube.
com/watch?v=FJSYLCwBaPI.

Discussion
One of the major concerns in making use of Linked
Data to improve health care and life sciences research is
the need to ensure both the availability of contextual
information about experimental datasets and the ability
to protect the privacy of certain data elements which
may identify an individual patient. Domain specific lan-
guages (DSL) can ease the task of managing the contex-
tual descriptors that would be necessary to implement

permission control in RDF and, by doing so, could
greatly accelerate the rate of adoption of Linked Data
formalisms in the life sciences communities to improve
scientific discovery. We have described S3QL, a DSL to
perform read/write operations on entities of the S3DB
Core Model. S3QL attempts to address the requirements
in linking Life Sciences datasets including both publish-
able and un-publishable data elements by 1) including
contextual descriptors for every submitted data element
and 2) making use of those descriptors to ensure per-
mission control managed by the data experts them-
selves. This avoids the need to break a consolidated
dataset into its public and private parts when the results
are acceptable for publication.
Applying S3QL to the S3DB Core Model in a prototy-

pical application benefited from the definition of loosely
defined boundaries for RDF data that enabled propaga-
tion of permission while avoiding the need to document
a relationship for each data instance, individually, and
for each user. The assembly of SPARQL queries is also
facilitated by the identification of domain triples using
named graphs, from the data itself [41] and can be illu-
strated in the application at [55], where a subset of
S3QL can be readily converted into the W3C standard

↔
↔

Figure 5 The global S3QL dereferencing system. User U78 of deployment D309 issues a command to request all entities of type Statement
where the attribute Rule_id corresponds to the value D327:R172930 through S3QL operation select(S.value|D327:R172930) (1). If the URL
corresponding to deployment D327 is not cached locally or has not been validated in the past 24 h, a query is issued and executed at the root
deployment to retrieve the corresponding URL select(D.url|D327) (2,3). Once the URL is returned, query (1) is re-issued as select(S.value| R172930)
and executed at the URL for D327 (4). To validate the user, deployment D327 issues the command select(U.id|U76) at D309 using the key
provided (5,6) and returns the data only if U.id matches the value for user_id (7).
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SPARQL. Although the prototypical implementation of
S3QL fits the definition of an API for S3DB systems, it
is immediately apparent that the same notation could be
easily and intuitively extended to other KOS’ core mod-
els. For example, pointing the tool at http://q.s3db.org/
translate to a JavaScript Object Notation (JSON) repre-
sentation of the SKOS core model (skos.js) instead of
the default S3DB core model (s3db.js) results in a valid
S3QL syntax that could easily be applied as an API for
SKOS based systems, as illustrated by applying the
example query “select(C|prefLabel = animal)“ using
http://link.s3db.org/translate?core=skos.js&query=select
(C|prefLabel=animal) to retrieve SKOS concepts labelled
“animal”. The progress of adoption for life sciences
application developers can be further smoothed by com-
plete reliance on the REST protocol for data exchange
and the availability of widely used formats such as
JSON, XML or RDF/turtle.
The applicability of S3QL to life sciences domains is

illustrated here with three case studies: 1) in the domain
of clinical trials, a project [42] that requires collabora-
tion between departments with different interests; 2) in
the domain of the cancer genome atlas (TCGA) project,
a multi-institutional effort that requires multiple authen-
tication mechanism and sharing of data among multiple
institutions [41] and 3) in the domain of molecular epi-
demiology, a project where non-public data stored in an
S3DB deployment needs to be statistically integrated
with data from a public repository. All described use
cases shared one considerable requirement - the ability
to include, in the same dataset, both published and
unpublished results. As such, they required both the
annotation of contextual descriptors of the data, enabled
by S3QL, and the availability of controlled permission
propagation, enabled by the S3DB model transition
matrix. Future work in this effort may include the appli-
cation of S3QL in a Knowledge Organization System
based on SKOS terminology and the definition of a
transition matrix for SKOS to enable controlled permis-
sion propagation.

Gastro-intestinal Clinical Trials Use Case
As part of collaboration with the Department of Gastroin-
testinal Medical Oncology at The University of Texas M.
D. Anderson Cancer Center, an S3DB deployment was
configured to host data from gastro-intestinal (GI) clinical
trials. A schema was developed using S3DB Collections
and Rules and S3QL insert queries were used to submit
data elements as Items and Statements (see Figure 6). Two
permission propagation examples are illustrated, one of a
restrictive nature and the other permissive, which can also
be explored at http://q.s3db.org/quadratus (Figure 4). In
this example, the simple mechanisms of propagation
defined for S3QL support the complex social interaction

that requires a fraction of the dataset to be shared with
certain users but not with others. Contextual usage is
therefore a function of the attributes of the data itself (e.g.
its creator) and the user identification token that is sub-
mitted with every read/write operation.

The Cancer Genome Atlas Use Case
The cancer genome atlas (TCGA) is a pilot project to
characterize several types of cancer by sequencing and
genetically characterizing tumours for over 500 patients
throughout multiple institutions. S3QL was used in this
case study to produce an infrastructure that exposes the
public portion of the TCGA datasets as a SPARQL end-
point [41]. This was possible because SPARQL is entailed
by S3QL but not the opposite. Specifically, SPARQL
queries can be serialized to S3QL but the opposite is not
always possible, particularly as regards write and access
control operations. The structure of the S3DB Core Model
which explicitly distinguishes domain from instantiation
enables SPARQL query patterns, such as ?Patient: R390 ?
cancerType to be readily serialized into its S3QL equiva-
lent select(S|R390). Although this will not be further
explored in this discussion, it is worth noting that the
availability of this serialization allows for an intuitive syn-
tax of SPARQL queries by patterning them on the descrip-
tion of the user-defined domain Rule, such as, “Patient
hasCancerType cancerType”.

A Molecular Epidemiology Use Case
In this example, SPARQL was serialized to S3QL to sup-
port a computational statistics application. As a first step,
an S3DB data store was deployed using S3QL to manage
molecular epidemiology data related to strains of Staphylo-
coccus aureus bacteria collected at the Instituto de Tecno-
logia Química e Biológica (ITQB), in Portugal. Specifically,
the ITQB Staphylococcus reference database was devised
with a purpose of managing Multilocus Sequence Typing
(MLST) data, a typing method used to track the molecular
epidemiology of infectious bacteria [54-57]. As a second
step, we downloaded the public Staphylococcus aureus
MLST profiles database at http://www.mlst.net and made
it available through a SPARQL endpoint at http://q.s3db.
org/mlst_sparql/endpoint.php. The process of integration
of MLST profiles from the ITQB Staphylococcus database
with the publicly available MLST profiles is illustrated in
Figure 7. In this example, a federated SPARQL query is
assembled to access both MLST sources; data stored in
the S3DB deployment is retrieved by serializing the
SPARQL query into S3QL and providing an authentica-
tion token to identify the user, as described in Figure 3.
The assembled graph resulting from the federated
SPARQL query (see additional file 2), can be imported
into a statistical computing environment such as Matlab
(Mathworks Inc). Using this methodology, it was possible
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to cluster strains from two different data sources with very
different authentication requirements. The observation
that some Portuguese strains (PT1, PT2, PT15 and PT21)
that are not publicly shared cluster together with a group
of public UK strains (UK17, UK16, UK11, UK14, UK15,
UK13, UK12) and therefore may share a common ancestor
is an observation enabled by the data integrated through
S3QL.

Conclusions
Life sciences applications are set to greatly benefit from
coupling Semantic Web Linked Data standards and KOSs.
In the current report we illustrate data models from life
sciences domains weaved using the S3DB knowledge orga-
nization system. In line with the requirements for the
emergence of evolvable “social machines”, different per-
spectives on the data are made possible by a permission
propagation mechanism controlled by contextual attri-
butes of data elements such as its creator. The operation
of the S3DB KOS is mediated by the S3QL protocol
described in this report, which exposes its Application
Programming Interface for viewing, inserting, updating

and removing data elements. Because S3QL is implemen-
ted with a distributed architecture where URIs can be
dereferenced into multiple S3DB deployments, domain
experts can share data on their own deployments with
users of other systems, without the need for local
accounts. Therefore, S3QL’s fine grained permission con-
trol defined as instances of s3db:operators enables domain
experts to clearly specify the degree of permission that a
user should have on a resource and how that permission
should propagate in a distributed infrastructure. This is in
contrast to the conventional approach of delegating per-
mission management to the point of access. In the current
SPARQL specification extension various data sources can
be queried simultaneously or sequentially. There is still no
accepted convention for tying a query pattern to an
authenticated user, probably because SPARQL engines
would have no use for that information as most have been
created in a context of Linked Open Data efforts. The cri-
tical limitation in applying this solution for Health Care
and Life Sciences is the ability to make use of contextual
information to determine both the level of trust on the
data and to enable controlled access to elements in a
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Figure 6 Two use cases of permission propagation. Two users are granted full permission to view GI Clinical Trials Project ("y”), however none
of them can add new data ("n”) nor edit existing data unless they were its original creator ("s”). One of the users (giuser1) is prevented from
accessing any data with demographic elements such as, for example, the names of the Patients. In this case, an uppercase “N” is assigned in the
right to view the Collection DemographicData, which will be merged with the inherited “y” to produce an effective permission level of “N” for
the right to view (merge 1). For the second user (giuser2), permission is granted to use the Collection TissueData, indicating that the user can
create new instances in that Collection (merge 2).
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dataset without breaking it and storing it in multiple sys-
tems. To address this requirement, S3QL was fitted with
distributed control operational features that follow design
criteria found desirable for biomedical applications. S3QL
is not unique in its class, for example the linked data API,
which is being used by data.gov.uk is an alternative DSL to
manage linked data [58]. However, we believe that S3QL
is closer to the technologies currently used by application
developers and therefore may provide a more suitable
middle layer between linked data formalisms and applica-
tion development. It is argued that these features may
assist, and anticipate, future extensions of semantic web
provenance control formalisms.

Additional material

Additional file 1: Walkthrough of S3DB’s permission propagation:
merge, migrate and percolate.

Additional file 2: Matrix of MLST profiles in Portugal and the United
Kingdom.
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