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Abstract

We aim to show how parameter-robust numerical method may be employed to solve equations arising in

the modeling of wave-current interactions.

We present two such models: a complete flow model for wave-current interaction in the presence

of weakly turbulent flow leading to an Orr-Sommerfeld type problem, and a system of two singularly

perturbed reaction-diffusion equations from a k-ǫ turbulence model. The numerical results are compared

with experimental data.

Presented at Boundary and Interior Layers (BAIL), Toulouse, July 2004.

1. Introduction

Parameter-robust numerical methods are of significant interest in modern numerical analysis: they yield

accurate, layer-resolved, computed solutions to singularly perturbed differential equations. Importantly,

their accuracy is independent of the singular perturbation parameter, and thus the width of the boundary

layers.

Many of these methods are mesh based. That is, they use the same discretizations as one would use

for a “classical” problem whose solution does not exhibit layers. Instead of modifying the scheme to

stabilize it, a mesh tailored to the specific problem is used. In this study we employ the a priori fitted

piecewise-uniform meshes of Shishkin, see, e.g., [9].

A complete flow model for the interaction of waves and currents leads to a variant on the fourth-order

Orr-Sommerfeld equation, and is described in §2. A crucial component of the model is a depth-varying

eddy viscosity distribution. For a given current profile, this is computed using a two equation turbulence

model described in §4.

Since the models generate the function that establishes the width of the boundary layers, it is appro-

priate to use a numerical method whos accuracy does not depend on the layer width.

2. A complete flow model

The physical system under consideration consists of waves propagating in the positive x-direction that

are of amplitude a, length λ, and frequency ω. These are present in a channel of depth d. We compute

velocity components that vary only with depth and so use the depth z as a real-valued independent

variable. Boundary conditions are evaluated at the mean water level, z = 0, and at the channel bed

z = −d. The wave amplitude and frequency are taken as known and are used as inputs to the model.

The wavelength λ, or equivalently the wavenumber k, can be measured experimentally and are also
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outputs of the model. Here k is a complex-valued quantity. The real part of k is the number of waves

per unit length and the imaginary part of k determines the spatial wave decay due to dissipation.
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a (wave amplitude)

(surface elevation)

Also present is a steady current U(z),

where −d ≤ z ≤ 0. This represents

the horizontal velocity of a fluid particle

in the absence of waves or, if waves are

present, the horizontal velocity averaged

over a wave cycle. Hence it is referred to as

the mean current. In the diagram above,

U(z) is acting in the same direction as the

waves, and so is called a wave-following

current. Alternatively, we may consider a

wave-opposing current.

The model presented here assumes that

U(z) is known and so is said to be of reac-

tive type [7]. Other models that attempt

to predict U(z) are said to be generative

(see, e.g., [1, 2]).

The main assumptions of the model are that quantities are functions of x, z and t (i.e., none vary in

the y-direction); the bed is locally horizontal; boundary conditions can be evaluated at the mean water

level; the fluid temperature, and hence its viscosity, is constant over depth; the slope of the waves is

small.

A key aspect of the model we present here is the use of an eddy viscosity distribution. The Boussinesq

eddy viscosity concept assumes that there is an analogy between turbulence stress and viscous stresses

in laminar flow. For our purposes it can be taken to mean that there is a depth-varying nonnegative

quantity, the (kinematic) eddy viscosity νt(z), which mimics the behaviour of the kinematic molecular

viscosity ν which is constant over depth at a fixed temperature. Therefore the model (1–5) below is

formulated so that the term ν is augmented by νt(z).

Owing to the interaction of waves with the steady current, both the horizontal and vertical velocities

of a particle, uT (x, z, t) and wT (x, z, t), do indeed vary with time. It is these quantities, along with the

wavenumber, that we want to predict.

Considering first the horizontal component, the velocity is expressed as the sum of the steady mean

current U(z) and a wave-like term written as a harmonic

uT (x, z, t) = U(z) + u(x, z, t). where u(x, z, t) =
∞
∑

n=1

un(z) cos n(kx − ωt).

The vertical velocity has zero mean component and so it is assumed that

wT (x, z, t) = w(x, z, t) =
∞
∑

n=1

wn(z) sin n(kx − ωt).

We intend to compute approximations to the first order coefficient u1(z) and the wavenumber k. From

these one can compute first harmonic w1(z) of the vertical component of the orbital velocity using the

continuity equation: u(z) = w′(z)/k.

In this model, the stream-function Ψ(x, z, t) is introduced and is defined as

u1(z) =
∂Ψ

∂z
, w1(z) = −∂Ψ

∂x
,

which is then given the form

Ψ(x, z, t) = ℜ{ψ(z) exp(iθ)} ,
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where θ = kx − ωt is the phase function and ℜ{·} denotes the real part of a complex number.

The differential equation that must be solved is the fourth-order problem

− iν

ω − kU

(

d2

dz2
− k2

)2

ψ +
dψ2

dz2
−

(

k2 − k

ω − kU

d2U

dz2

)

ψ =

i

ω − kU

{(

d2

dz2
+ k2

){

νt

(

d2

dz2
+ k2

)

ψ

}

− 4k2 d

dz

(

νt
dψ

dz

)}

on Ω := (−d, 0), (1)

subject to the bottom boundary conditions

ψ = 0,
dψ

dz
= 0, on z = −d, (2)

and, at the free surface conditions (z = 0),

ψ = a
(ω

k
− U

)

, (3)

(ν + νt)
d2ψ

dz2
= −a

(

(ν + νt)
d2U

dz2
+

dνt

dz

dU

dz
+ k(ν + νt)(ω − kU)

)

, (4)

and

i(ν + νt)
d3ψ

dz3
+ i

dνt

dz

d2ψ

dz2
−

{

ω − kU + 3ik2(ν + νt)
} dψ

dz
= a

(

(ω − kU)

{

dU

dz
− ik

dνt

dz

}

− gk

)

. (5)

3. Numerical Solution of the Orr-Sommerfeld Equations

The equation (1) is singularly perturbed because the coefficient ν and function νt(z), multiplying the

highest derivatives are both small in magnitude. As a consequence the solution exhibits layers at the

boundaries and particularly at the lower boundary.

A similar problem, though real-valued and linear, was studied by Sun and Stynes [12]. They showed

how to construct a piecewise uniform mesh on which one can apply a finite element method based.

The solution to the discrete problem converges uniformly to the continuous one independently of a

perturbation parameters.

Our finite element formulation is based of the sesquelinear form

B(ν+νt)
(u, v) := ((ν + νt)u

′′, v′′) + k2 ((ν + νt)u, v′′) + 4k2 ((ν + νt)u
′, v′)

+ ([i(ω − kU) + k2(ν + νt)]u
′′, v) +

([

ikU ′′ − ik2(ω − kU) + k4(ν + νt)
]

u, v
)

, (6)

for all u, v ∈ H2
⋆ (Ω), where H2

⋆ (Ω) is a subspace of H2(Ω) chosen so that functions belonging to it satisfy

the boundary conditions (2)–(3).

We seek not only an approximation of ψ(z) but also an approximation of ψ′(z) from which to predict

the vertical component w(z) of the flow velocity. Thus it is natural to choose piecewise cubic Hermite

basis functions, which lie in C1(Ω̄):

vh(z) =
N

∑

i=1

viφ
0
i (z) +

N
∑

i=1

v′
iφ

1
i (z),

where φ0
i (z) and φ1

i (z) are the usual basic functions for Hermite interpolation.

An iterative scheme is then formulated based on boundary condition (5). Now the problem is to find

approximations ψ(x), ψ′(x) and k such that the variational formulation of (1)–(4) and the extra condition

(5) are satisfied. For further details of the numerical method, see [6] and [7].
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4. The Turbulence Model

To calculate a suitable eddy viscosity distribution νt(z) for a given current profile, we employ a model

due to Thomas [13]. This is a so-called “two equation model” based on the well-known k-ǫ model, where

k is the kinematic energy per unit mass of the turbulent motion, and ǫ is the rate of viscous dissipation

(see, e.g., [10]). In the study of waves and currents, the notations k and ǫ are usually reserved for the

wavenumber and wave-slope respectively. Therefore we follow Thomas’s notation and use E for the

turbulent kinetic energy and D for the rate of dissipation.

The model leads to a system of two coupled singularly perturbed nonlinear reaction-diffusion equations

that are solved for E(z) and D(z). Then the Kolmogorov-Prandtl expression relates these to νt(z):

νt(z)D(z) = Cµfµ(z)E(z)2 for z ∈ [−d, 0]. (7)

Here Cµ is an empirical closure constant, and fµ(z) is a damping function used in order to obtain correct

behaviour near the bed, and taken to depend on the local turbulence Reynolds number.

The approach of Thomas [13] is to expand νt(z), E(z) and D(z) in terms of the wave slope ǫ. Here

we concentrate only on the zero-order equations. Our unknowns, then, will be the functions E0(z) and

D0(z), which are the zero-order terms in the expansions of E(z) and D(z), and satisfy and then develop

the zero-order E-D model as

ν0
t (z)D0(z) =Cµfµ(z)E2

0(z) for z ∈ Ω̄, (8a)

d

dz

[(

ν +
ν0

t

σE

)

dE0

dz

]

+ ν0
t (z)

[

dU

dz

]2

=D0(z) for z ∈ Ω, (8b)

d

dz

[(

ν +
ν0

t

σD

)

dD0

dz

]

+ C1Df1(z)Cµfµ(z)E0

[

dU

dz

]2

=C2Df2(z)
D2

0

E0
for z ∈ Ω, (8c)

where Ω := (−d, 0). The boundary conditions are

E0(−d) = E′(0) = D′
0(−d) = 0, D0(0) = (5.87/d)E

3

2

0 (0). (9)

The three functions fµ(z), f1(z) and f2(z) in (8) are “wall function”, and are present in the formulation

to ensure correct behaviour in the near-wall region. In general their value is close to unity over all of

Ω, except near the bottom boundary where they change rapidly. For details of the these functions and

the values of the empirically established terms C1D, C2D ( closure constants) and σE and σD (diffusion

constants) we refer the reader to [4].

We solve numerically the E-D equations by applying a finite element method on a piecewise uniform

mesh. Such meshes for systems of reaction-diffusion equations have been analysed by Shishkin and

collaborators, see e.g., [11]. Solutions to the system that we study here exhibit two distinct, interacting

layers near each boundary. It has been shown that a piecewise uniform mesh can yield a parameter-robust

approximation with finite difference [8] and finite element [5] methods.

To resolve the interacting layers at the bed, we construct a piecewise uniform mesh with two transition

parameters τ1 and τ2 chosen according to the formula

τ1 = −d + C1ν lnN and τ2 = −d + C2

√
ν lnN,

where C1 and C2 are user chosen values.

We divide [−d, 0] into the three subintervals [−d, τ1], [τ1, τ2], and [τ2, 0]. We place a uniform mesh on

each subinterval in such a way that there are N/4 evenly spaces mesh points on each of the subintervals

[−d, τ1], [τ1, τ2], and N/2 mesh points in the remainder of the region.
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5. Numerical Results

We now compare numeric results with data from physical experiments [3]. Waves of amplitude a =

0.05987m and frequency ω = 0.9844 Hz were propagated in a flume with water of depth 0.5m.

The current distribution U(z) for the wave-following case is shown opposite, and is shown on the

left of Figure 1. The data is fitted with a continuous function which is then used as an input for the

E–D model. The resulting ν0
t (z) is shown in the centre of Figure 1. A detail of the ν0

t (z) close to the

channel bed is shown on the right.
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Figure 1: A current profile U(z) and computed ν0
t (z)

Figure 2 below show the predicted horizontal component of the orbital velocity. We give both the

results obtained when ν0
t (z) ≡ 0 (i.e., we neglect the effects of turbulence) and with ν0

t (z) as given in

Figure 1. From the picture on the left we see that both approaches yield predictions that agree very well

(over most of the depth) with the experimentally obtained data. In the picture on the right we show the

results obtained in the region closest to the channel bed. Here the model for pure viscous flow clearly

under estimates the width of the boundary layer. When the eddy viscosity term in included, it seems

that the layer is excessively dissipated. The computed wave numbers were k = 2.149 + 4.509 × 10−4i for

ν0
t ≡ 0, and k = 2.149 + 3.230 × 10−3i when the turbulence term in included.

6. Conclusion

We have shown that piecewise uniform meshes can be successfully applied to the study of wave-current

interactions.

Within the region closest to the bed, the agreement between experimental data and the numerical

simulation of the model is not entirely satisfactory. However, careful selection of the problem parameters,

data parameterization, and choice of wave-functions is an area of on-going research.
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