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Abstract

In the literature on judgment aggregation, an important open ques-

tion is how to measure the distance between any two judgment sets.

This is relevant for issues of social choice: if two individuals hold

different beliefs then we might want to find a compromise that lies

somewhere between them. We propose a set of axioms that determine

a measure of distance uniquely. This measure differs from the widely

used Hamming metric. The difference between Hamming’s metric and

ours boils down to one axiom. Given judgment sets A and B, this

axiom says that if the propositions in A ∩ B jointly imply that the

propositions in A − B share the same truth value, then the disagree-

ment between A and B over those propositions in A − B should be

counted as a single disagreement. We consider the application of our

metric to judgment aggregation, and also use the metric to measure

the distance between preference rankings.
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1 Introduction

A large literature on judgment aggregation exists, motivated by List and Pet-

tit’s (2002) initial contribution.1 The literature is concerned with aggregating

profiles of individual judgment sets into a collective judgment set. What is a

“judgment” set? First, consider a set of propositions that is finite and closed

under negation (that is, if a proposition is contained in the set then so is

its negation). This set is called the agenda. An (individual) judgment set

is a subset of the agenda, containing those propositions that the individual

believes to be true. A judgment set is complete if it contains one of every

proposition/negation pair in the agenda. In this paper we assume that all

judgment sets are complete. Consider the agenda {p,¬p, q,¬q, p∧q,¬(p∧q)}.

Since these propositions are logically interconnected, a judgment set must

contain p ∧ q if it contains both p and q. Another must contain ¬(p ∧ q)

if it contains both p and ¬q and so on. These are requirements of logical

consistency, and we assume that judgment sets are consistent in this sense.

How should we measure the distance between any two judgment sets?

This is relevant for issues of social choice: if two individuals hold different

beliefs then we might want to find a compromise that lies somewhere between

them.2

The most widely used metric in the literature is the Hamming metric.

This is simply the number of propositions over which the two individuals

disagree. So the distance between {p, q, p∧ q} and {p,¬q,¬(p∧ q)} is 2. But

therein lies the problem. The proposition ¬(p ∧ q) is a logical consequence

1List and Puppe (2009) is a survey to which we refer the interested reader. See also
List and Polak (2010) which is an introduction to the symposium in JET on this topic.

2Pigozzi (2006) and Miller and Osherson (2009) discuss the distance-based approach
to judgment aggregation.
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of p and ¬q, and p ∧ q is a logical consequence of p and q. So, given that

the individuals both accept p, the disagreement over p ∧ q is implied by the

disagreement over q. The Hamming metric appears to be double counting

because it ignores the fact that the propositions are logically interconnected.

We propose a set of axioms that determine an alternative metric uniquely.

This metric avoids the problem identified in the previous example. The

metric is based around the idea of “betweenness”. Judgment set C is between

judgment sets A and B if A, B and C are distinct and, on each proposition,

C agrees with A or with B (or both). This concept of betweenness is similar

to one used by Kemeny and Snell in their characterization of the well-known

Kemeny measure of distance between preference rankings.3

We now explain our metric. Imagine a graph where each feasible judgment

set is a vertex. We join two judgment sets with an edge if there is no other

judgment set between them. The distance between two judgment sets is the

length of the shortest path from one to the other.

Therefore, the distance from {p,¬q,¬(p ∧ q)} to {p, q, p ∧ q} is just 1,

even though they differ on 2 propositions. The sets {p,¬q,¬(p ∧ q)} and

{¬p, q,¬(p∧ q)} also differ on 2 propositions, but the distance between them

is 2.

The graph in this example is represented in Figure 1.

¬p, q, ¬(p ∧ q)

¬p, ¬q, ¬(p ∧ q)

p, ¬q, ¬(p ∧ q)

p, q, p ∧ q

Figure 1: Graph with judgment sets as vertices.

3See Kemeny and Snell (1962, Chapter 2). We discuss Kemeny and Snell’s contribution
in Section 3.2.
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Here is another way of thinking about our metric. To switch from {p, q, p∧

q} to {p,¬q,¬(p∧q)} requires just one change in belief (q to ¬q, for instance).

The distance between two judgment sets is the smallest number of logically

coherent changes needed to convert one into the other.

The classic “doctrinal paradox” provides a more complex example.4 Here

the agenda is {p,¬p, q,¬q, r,¬r, ((p ∧ q) ↔ r),¬((p ∧ q) ↔ r)}. The corre-

sponding graph is represented in Figure 2.

A B

D C

p, q,¬r,¬((p ∧ q) ↔ r) p,¬q, r,¬((p ∧ q) ↔ r)

¬p,¬q, r,¬((p ∧ q) ↔ r)¬p, q, r,¬((p ∧ q) ↔ r)

Figure 2: Graph for the doctrinal paradox agenda.

In Figure 2, A = {p, q, r, (p ∧ q) ↔ r)}, B = {p,¬q,¬r, (p ∧ q) ↔ r)},

C = {¬p,¬q,¬r, (p ∧ q) ↔ r)} and D = {¬p, q,¬r, (p ∧ q) ↔ r)}. Like

before, we connect two judgment sets with an edge if there is no judgment

set between them. As we can see, no judgment set is more than a distance

of 2 away from any other.

It is worth pointing out that the Hamming distance between two judgment

sets can also be calculated by determining the length of a shortest path in an

unweighted graph. To see this, note that our notion of betweenness can be

applied to all complete judgment sets, not just consistent ones. If we admit

4Kornhauser (1992) and Kornhauser and Sager (1993).
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these inconsistent judgment sets, then (returning to our original example)

the graph is as illustrated in Figure 3.

¬p, q, p ∧ q

p, q, p ∧ q

¬p,¬q, p ∧ q

p,¬q, p ∧ q

¬p, q,¬(p ∧ q) ¬p,¬q,¬(p ∧ q)

p,¬q,¬(p ∧ q)p, q,¬(p ∧ q)

Figure 3: Graph with all complete judgment sets as vertices.

The Hamming distance between {p,¬q,¬(p ∧ q)} and {p, q, p ∧ q} is 2,

the length of the shortest path between them.

Here is an outline of the paper. Section 2 contains an axiomatisation

of our metric. In Section 3.1 we consider the application of our metric to

distance-based judgment aggregation. We show, using a natural distance-

based procedure, that our metric can produce a different collective outcome

than that which would arise under Hamming’s metric. The two metrics differ

then in their implication. We also show that our metric can produce a differ-

ent collective outcome than that which would arise under a “premiss-based”

approach to judgment aggregation. In Section 3.2 we use the metric to mea-

sure the distance between preference rankings. The final section concludes.
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2 Axiomatisation

In this section, we provide an axiomatisation of our metric.

For any given agenda, let F be the set of all complete and consistent

judgment sets. A measure of distance between judgment sets A and B will

be denoted by d(A,B) where d : F × F → R.

The first three axioms say that d is a metric.

Axiom 1. d(A,B) = 0 if and only if A = B.

Axiom 2. d(A,B) = d(B,A).

Axiom 3. d(A,B) ≤ d(A,C) + d(C,B).

For all A,B,C ∈ F , we say that C is between A and B if and only if

A *= C *= B and (A ∩ B) ⊂ C. We use the word “between” here not in the

geometric sense but rather to mean that C represents a compromise between

A and B.

Axiom 4. If there is a judgment set between A and B then there exists

C ∈ F − {A,B} such that d(A,B) = d(A,C) + d(C,B).

Axiom 4 requires that the distance function should at least partially reflect

the concept of betweenness defined above. The axiom states that when there

is a judgment set between A and B according to that definition, then there

should also be a judgment set between them in the geometric sense. We do

not go so far as to make the additional requirement that the judgment sets

that are between A and B in the former sense are the same as the judgment

sets that are between A and B in the latter sense.

It is important to note that the Hamming metric satisfies Axiom 4. More-

over, that additional requirement, that the two concepts of betweeness co-

incide, is also satisfied by that measure of distance (this is illustrated in

Figure 3).

The critical axiom is Axiom 5.
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Axiom 5. If there is no judgment set between A and B then d(A,B) = 1.

Hamming’s metric violates Axiom 5. No judgment set exists between {p, q, p∧

q} and {p,¬q,¬(p ∧ q)} yet the Hamming distance between them is 2.

Here is our justification for Axiom 5. Take two distinct judgment sets

A and B that have no judgment set between them. This means that there

is no judgment set in F − {A,B} that is a superset of A ∩ B. Therefore,

if one accepts the propositions in A ∩ B then one must either accept every

proposition in A − B or reject every proposition in A − B. In other words,

if the propositions in A ∩ B are true, then the propositions in A − B are

logically equivalent. Since A and B both accept the propositions in A ∩ B,

the disagreement between A and B over the propositions in A − B should

simply count as one disagreement. Hence, d(A,B) = 1.

The argument above is perfectly general, but the examples below may

help clarify it.

Example 1. The agenda is {p,¬p, q,¬q, p ∧ q,¬(p ∧ q)}. Let A =

{p, q, p∧q} and B = {p,¬q,¬(p∧q)}. A∩B = {p} and there is no judgment

set in F − {A,B} that is a superset of A∩B. Note that A−B = {q, p∧ q}.

Consider the following truth table.

p q p ∧ q

T T T

T F F

Both A and B agree that p is true. Given this, there are only two possi-

bilities. Either you accept both q and p ∧ q, or you reject both q and p ∧ q

(and accept ¬q and ¬(p∧ q)). Judgment set A takes the former route, judg-

ment set B takes the latter route. However, notice from the truth table that

from the perspective of proposition p (which both A and B agree is true),

the propositions q and p ∧ q are logically equivalent. Given this, the differ-

ent truth values assigned to these propositions by A and B should count as
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reflecting just one disagreement, and so d(A,B) should be one. Hamming’s

metric counts them as reflecting two disagreements.

Example 2. The agenda is {p,¬p, q,¬q, r,¬r, ((p∧ q) ↔ r),¬((p∧ q) ↔

r)}. Let A = {p, q,¬r,¬((p ∧ q) ↔ r)} and B = {¬p, q,¬r, ((p ∧ q) ↔ r)}.

A∩B = {q,¬r} and there is no judgment set in F−{A,B} that is a superset

of A ∩ B. Note that A − B = {p,¬((p ∧ q) ↔ r)}. Consider the following

truth table.

q ¬r p ¬((p ∧ q) ↔ r)

T T T T

T T F F

Both A and B accept q and ¬r. Given this, there are only two possibili-

ties. Either you accept both p and ¬((p ∧ q) ↔ r), or you reject both p and

¬((p∧ q) ↔ r) (and accept ¬p and ((p∧ q) ↔ r)). Judgment set A takes the

former route, judgment set B takes the latter route. However, notice from

the truth table that from the perspective of the set of propositions {q,¬r}

(which both A and B accept), the propositions p and ¬((p ∧ q) ↔ r) are

logically equivalent. Given this, the different truth values assigned to these

propositions by A and B should count as reflecting just one disagreement,

and so d(A,B) should be one. Hamming’s metric counts them as reflecting

two disagreements.

These examples help clarify our argument for Axiom 5.

We now present our theorem.

Let G = (V, E) be a graph with the same number of vertices as there

are judgment sets in F , and a set of edges E defined as follows. Let v be a

bijection from F to the set of vertices V. For all A,B ∈ F , the set of edges

E contains {v(A), v(B)} if and only if there is no judgment set between A

and B.
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Define a function g with domain F × F as follows. For all A,B ∈ F ,

g(A,B) is equal to the length of a shortest path from v(A) to v(B) in graph

G.

Our theorem is the following.5

Theorem. The function g is unique in satisfying all of the axioms.

Proof. We first prove that g satisfies Axioms 1 to 5. It suffices to check

that the graph G is connected. This means that it is possible to find a path

from any vertex to any other vertex of G.6 Let us note here that, for all

A,B,C,D ∈ F , (i) if C is between A and B then B is not between A and

C, and (ii) if C is between A and B, but D is not between A and B then

D is not between A and C. These two statement are easy to verify. Now

let us suppose that there exist A,B ∈ F such that there is no path from

v(A) to v(B) in graph G. It follows that {v(A), v(B)} is not contained in

the set of edges E . Recalling the definition of G, we see that there must exist

C ∈ F − {A,B} such that C is between A and B. Of course, as there is

no path connecting v(A) and v(B), v(C) cannot be connected to both v(A)

and v(B). Assume without loss of generality that v(A) and v(C) are not

connected. So there must exist D ∈ F − {A,C} such that D is between A

and C, and v(D) cannot be connected to both v(A) and v(C). It is implied by

(i) and (ii) above that D ∈ F − {A,B,C}. By repeatedly applying this type

of argument we see that the set F must be infinite. This is a contradiction.

So we conclude that G is connected.

We now prove that no other metric satisfies all of the axioms. Let d be a

metric satisfying all of the axioms. We claim that d = g.

By construction, g(A,B) = 1 implies that there is no judgment set be-

tween A and B. So, by Axiom 5, if n = 1 then g(A,B) = n implies

5We are grateful to a referee for suggesting a shortening of our original proof.
6Our g function is the standard concept of distance in graph theory, commonly known

as the geodesic distance. If G is connected then we can be sure that g satisfies all of our
axioms.
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d(A,B) = n. We proceed by induction on n. Fix any n ∈ N and assume that,

for all k ∈ {1, . . . , n} and all A,B ∈ F , if g(A,B) = k then d(A,B) = k.

Take two judgment sets A,B ∈ F with g(A,B) = n + 1. Consider any

judgment set C that is on a shortest path from A to B in graph G. Since

g(A,C) and g(C,B) are in {1, 2, . . . , n}, we know that d(A,C) = g(A,C)

and d(C,B) = g(C,B). It follows that d(A,C) + d(C,B) = n + 1 and so

d(A,B) ≤ n + 1.

By Axiom 4, there is a judgment set D such that d(A,B) = d(A,D) +

d(D,B). If the path from A to D is greater than n steps then there must be

an E such that d(A,D) = d(A,E)+d(E,D). In this way, we can construct a

sequence such that d(A,B) = d(A,A1)+d(A1, A2)+. . .+d(Am, B), with each

segment on the right-hand side requiring no more than n steps in the graph

G. In other words, g(A,A1) ≤ n, g(A1, A2) ≤ n and so on. By assumption

then, for each of the segments, the distance given by d is the same as that

given by g. The sum of these distances must be at least n + 1 since this is

the length of the shortest path from A to B. Hence, d(A,B) ≥ n+ 1. Thus,

d(A,B) = n+ 1.

3 Applications

3.1 Judgment aggregation

The metric we have developed is useful in that it can be applied to distance-

based judgment aggregation. A good argument can be made for the distance-

based approach to judgment aggregation, and we outline that argument in

this section. First, some background material.

Interest in a formal approach to judgment aggregation began after Korn-

hauser and Sager’s (1993) celebrated example.

Suppose that there are three judges who must collectively decide on a case

of breach of contract. The legal doctrine, which each judge accepts, states

that the defendant owes compensation to the plaintiff (proposition r) if and
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only if the contract between them is valid (proposition p) and the defendant

broke it (proposition q). Suppose that the judges hold the following beliefs.

p q r ↔ (p ∧ q) r

Judge 1 T T T T

Judge 2 F T T F

Judge 3 T F T F

Majority judgment T T T F

Table 1: The doctrinal paradox.

As we see, majority voting on each proposition results in the inconsistent

collective judgment set {p, q, r ↔ (p ∧ q),¬r}. Just as the majority voting

paradox can be generalised through Arrow’s (1963) impossibility theorem,

so can this “doctrinal paradox”. List and Pettit (2002) arrived at the first

systematic result in this area by showing that no aggregation rule applied to

an agenda containing certain propositions can satisfy four conditions. More

general results have been obtained by Dietrich (2006, 2007), Dietrich and List

(2009, 2010), Dokow and Holzman (2010) and Nehring and Puppe (2010)

among others.7

A condition that has been central in the literature, particularly when

deriving impossibility theorems, is the “independence” condition. This is the

analog of the familiar “independence of irrelevant alternatives” condition from

the preference aggregation literature. This condition says that the collective

judgment on any proposition p within the agenda should depend only on

individual judgments on p. To illustrate, majority voting on each proposition,

as in Table 1, satisfies this condition.

The problem with the independence condition is that it cannot be recon-

ciled with a commitment to democratic and collectively rational aggregation.

7A number of extensions of the basic judgment aggregation model have been proposed,
most of which are discussed in List and Puppe (2009) and List and Polak (2010).
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To be more precise, if the agenda satisfies certain combinatorial properties,

and we want unanimous judgments to be respected at the collective level,

then any independent aggregation rule is either dictatorial or produces log-

ically inconsistent collective outcomes.8 Neither of these properties is desir-

able and so independence must be rejected.9

Various judgment aggregation rules exist that give up the independence

condition. We consider two such rules in this paper: distance-based rules

and premiss-based rules.

Distance-based rules were originally introduced in the area of belief merg-

ing in computer science.10 A distance-based rule maps each profile of indi-

vidual judgment sets (J1, ..., Jn) to a consistent and complete collective judg-

ment set J that minimizes the total distance from the individual judgment

sets, i.e. selects a J such that
∑

i∈N
d(J, Ji) is minimised.11 Distance-based

rules capture the idea of reaching a compromise between different individuals’

judgment sets. Miller and Osherson (2009) discuss other kinds of distance-

based procedures, but the one above is the most natural.

Premiss-based procedures designate a subset of the agenda as a set of pre-

misses and aggregate judgments on them by some independent rule, but allow

the collective judgments on all other propositions (the non-premisses or “con-

clusions”) to depend on the resulting collective judgments on the premisses.

In this way, logical consistency is “forced” on the collective judgment set by

the collective judgments reached on the premisses. For example, in Table 1,

if the premisses are {p, q, r ↔ (p∧q)} and we use majority rule on these, then

8This is the central theorem in the literature. See Dokow and Holzman (2010), Dietrich
and List (2007) and Nehring and Puppe (2002).

9In Duddy and Piggins (2010) we show how rejecting the independence condition can
lead to a counterpart of the Borda rule in a “possible worlds” model of judgment ag-
gregation. This approach began with List (2008). It is worth pointing out that for a
certain family of many-valued models, independence is compatible with unanimity, non-
dictatorship and a deductive closure condition. See Duddy and Piggins (2009).

10Konieczny and Pino Pérez (2002)
11N is the set of individuals and d is the metric.
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we end up with the consistent collective judgment set {p, q, r ↔ (p∧ q), r}.12

We consider some applications of our metric to distance-based judgment

aggregation. We accomplish two things. First, we demonstrate that our

metric can lead to a different collective outcome than that which would arise

under Hamming’s metric. Second, we demonstrate that our metric can lead

to a different collective outcome than that which would arise under a premiss-

based approach to judgment aggregation.

Consider the agenda {p,¬p, q,¬q, (p∧q),¬(p∧q)}. Consider the following

profile. The graph corresponding to this agenda is given in Figure 1.

p q p ∧ q

Two individuals T T T

Two individuals T F F

Three individuals F T F

Majority judgment T T F

Our metric T T T

Hamming’s metric F T F

Premiss-based rule T T T

Table 2: Different outcome to Hamming’s.

In Table 2 we see that our metric and Hamming’s metric can generate dif-

ferent collective outcomes from the same profile. Premiss-based aggregation

(under the natural assumption that the set of premisses is {p, q}) generates

the same outcome at this profile as our metric does. In fact, these two pro-

cedures will generate the same outcome at every profile for this agenda.

However, premiss-based aggregation and distance-based aggregation with

our metric can differ at other agendas. Consider the agenda {p,¬p, q,¬q, p ↔

12Dietrich and Mongin (2010) is the most general analysis of the premiss-based approach
to date.
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q,¬(p ↔ q)}. Consider the profile in Table 3. The graph corresponding to

this agenda is given in Figure 4.

p q p ↔ q

Two individuals T T T

Two individuals T F F

Three individuals F T F

Our metric F T F

Premiss-based T T T

Table 3: A different outcome than the premiss-based approach.

¬p, q, ¬(p ↔ q)

¬p, ¬q, p ↔ q

p, ¬q, ¬(p ↔ q)

p, q, p ↔ q

Figure 4: Graph for agenda {p,¬p, q,¬q, p ↔ q,¬(p ↔ q)}.

In Table 3 we see that the distance-based approach with our metric gen-

erates a different collective outcome than that which would arise under the

premiss-based approach (again, under the natural assumption that the set

of premisses is {p, q}). So it is not evident that distance-based judgment

aggregation under our metric is biased towards premiss-based aggregation in

general.

One property of the distance-based approach is that the judgment set

that minimizes the total distance from the individual judgment sets may not

be unique. For example, with the agenda {p,¬p, q,¬q, (p ∧ q),¬(p ∧ q)} if

each complete and consistent judgment set is held by just one person, then

14



the distance-based approach produces a “tie”. In this case, every judgment

set will minimise the total distance. Returning to the legal origins of the

theory, we can interpret this as a situation in which a court is unable to

reach a verdict. Notice, however, that a tie will not arise in the case of the

classic doctrinal paradox (see Table 1). In that case, the collective judgment

set is unique and corresponds to {p, q, r ↔ (p ∧ q), r}.

3.2 Preference rankings

Kemeny (1959) introduced a measure of distance between preference rank-

ings that has become standard in the social choice literature. Here we model

preference rankings by strict weak orders.13 While the Hamming distance

between judgment sets A and B is |A− B|, the Kemeny distance between

preference rankings R and R′ is |R− R′| + |R′ − R|. We can immediately

see that the Kemeny distance is essentially the application of Hamming dis-

tance to strict weak orders. The addition of |R′ −R| is required because

relations and judgment sets represent negation differently. The negation of

xRy is represented by the absence of (x, y) from R, whereas the negation of

a proposition p is represented by the inclusion of ¬p in A (as well as the

exclusion of p).

Kemeny and Snell (1962) present an axiomatisation of the Kemeny met-

ric. We have followed their approach in this paper. They define “between-

ness” in the same way that we do, although they use the word in the inclu-

sive sense. For Kemeny and Snell, R′ is between R and R′′ if and only if

R∩R′′ ⊆ R′ ⊆ R∪R′′. It is equivalent to say R′ is between R and R′′ if and

only if J(R)∩ J(R′′) ⊆ J(R′) where J(R) is the judgment set counterpart of

R (which we will define below).

We outline here the six axioms used by Kemeny and Snell (K-S). Our

Axioms 1 and 2 are the same as the first and second K-S axioms. The third
13By a strict weak order we mean a binary relation that is asymmetric and negatively

transitive. We interpret incompleteness as indifference.
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K-S axiom combines our Axiom 3 with the requirement that d(R,R′′) =

d(R,R′)+d(R′, R′′) if and only if R′ is between R and R′′ (inclusively). Note

that this requirement is more demanding than our Axiom 4. The fourth K-S

axiom is a standard neutrality condition, requiring that the names of the

alternatives do not matter. The fifth K-S axiom states that if two rankings

have the same top (or bottom) equivalence class then their distance can be

calculated as if the items in that equivalence class were not being ranked. The

final K-S axiom fixes a unit of measurement by requiring that the minimum

positive distance is 1.

A measure of distance between judgment sets can be used to measure

the distance between weak orders provided that we translate the orders into

judgment sets. Let T be a two-place predicate and X a finite set of alter-

natives. Construct an agenda containing, for all x, y ∈ X, the propositions

xTy and ¬xTy. Given a binary relation R over X, let us define its judgment

set counterpart J(R) as follows. For all x, y ∈ X, if xRy then xTy ∈ J(R),

otherwise ¬xTy ∈ J(R). The set of feasible judgment sets contains all and

only those judgment sets that correspond to strict weak orders over X. We

can now see that the Kemeny distance from R to R′ is equal to the Hamming

distance from J(R) to J(R′).

We now show how our metric can be used to measure the distance be-

tween strict weak orders. Abusing notation, we write g(R,R′) instead of

g(J(R), J(R′)) in what follows. An important feature of our metric is that

when there is no judgment set between A and B the distance from A to B

is 1. This means that our metric, when applied to preference rankings, must

be different to Kemeny’s. To see this, suppose that R and R′ are strict weak

orders on {x, y, z}, with R ranking x first, and y and z tied second, while R′

places all three items in the same equivalence class. The Kemeny distance is

2 since R′ contains (y, x) and (z, x) while R excludes both of these. However,

there is no preference ranking between R and R′ (exclusively).

Let us briefly compare the Kemeny distance between orderings with
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the distance as determined by our metric. Consider the relations R =

{(x, y), (y, z), (x, z)} and R′ = {(y, x), (z, y), (z, x)}. Let k denote the Ke-

meny metric. We find that k(R,R′) = 6 and g(R,R′) = 4. One way of

thinking about this distance is that the Kemeny metric k counts 6 steps:

x

y

z

→
x

yz
→

x

z

y

→
xz

y
→

z

x

y

→
z

xy
→

z

y

x

Our metric g counts 4 steps:

x

y

z

→
x

yz
→ xyz →

z

xy
→

z

y

x

The distances determined by k and g do not always differ. Consider

R′′ = {(y, x), (y, z), (x, z)}. We find that k(R,R′′) = g(R,R′′) = 2. It is also

true that k(R′′, R′) = g(R′′, R′) = 4. Indeed, this serves as an example of

our metric violating the third K-S axiom. Note that R′′ is between R and R′

and yet g(R,R′) < g(R,R′′) + g(R′′, R′). Our metric satisfies all of the other

K-S axioms.

Suppose that we model preferences by complete strict orderings only.14

When indifference is not permitted it is natural to define the Kemeny dis-

tance between preference rankings P and P ′ as being 1

2
(|P − P ′|+ |P ′ − P |),

which is equal to |P − P ′|. In the judgment set framework, the set of feasi-

ble judgment sets now contains only those judgment sets that correspond to

complete strict orderings. Here we find that, for all P , P ′, the Kemeny dis-

tance from P to P ′ is equal to the distance from J(P ) to J(P ′) as determined

by our metric.

We can think about the difference between the Kemeny metric and our

14By a complete strict ordering we mean a binary relation that is asymmetric, transitive
and complete.
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metric in the following way. Under the Kemeny metric, the path from R to

R′ requires 6 steps because, at each step, we can raise or lower the position

of one alternative relative to just one other alternative. Under our metric,

at each step we can raise or lower the position of one alternative relative

to multiple other alternatives, provided those other alternatives are together

in a single equivalence class. This is why the restriction to complete strict

orderings eliminates the difference between the metrics.

4 Conclusion

We have identified a weakness with Hamming’s metric when applied to judg-

ment sets. Hamming’s metric fails to respect the fact that propositions are

logically interconnected, and this leads it to double count. We have proposed

an alternative metric, and we have demonstrated that it is unique in satisfy-

ing five axioms. We have also explored the implications of using the metric

in distance-based judgment aggregation. Additionally, we have shown how

the metric can be used to derive a measure of distance between preference

rankings.

We hope that this paper stimulates further work on metrics for judgment

sets. Do better metrics exist than the one we have described here? What are

the implications of these alternative metrics for judgment aggregation? In

addition, can an axiomatic basis be found for the distance-based procedure

itself?15 We leave these questions to future research.
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