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Abstract. Population-based search methods such as evolutionary algorithms, 

shuffled complex algorithms, simulated annealing and ant colony search are 

increasingly used as automatic calibration methods for a wide range of 

numerical models. This paper proposes the use of particle swarm optimisation 

to calibrate the parameters a one-class support vector machine. This approach is 

developed and tested in the calibration of a one-class SVM, applied to several 

data sets. The results indicate that the proposed method is able to match or 

surpass the performance of a one-class SVM with parameters optimized using a 

standard grid search method, with much lower CPU time required.  

1   Introduction 

During the past two decades, a great deal of research has been devoted to the 

development of traditional classification methods (binary and multi-class 

classification) for pattern recognition [1]. Such research has focused primarily on four 

issues: (1) Determination of appropriate quantity and most informative kind of data 

(feature selection); (2) Dimension reduction for high dimensional features (feature 

selection); (3) Search for a classifier that can reliably solve linear or non-linear 

classification problems; and (4) Validation for the classifier. Non-linear classification 

methods such as Support Vector Machines (SVMs), K-Nearest Neighbour (KNN) 

classifier, Decision Tree and Artificial Neural Networks (ANNs) are widely used 

traditional classification problems. 

However, for a significant number of practical problems, traditional 

discriminating classifiers that are trained using positive and negative examples are not 

directly applicable, because negative examples may be either rare, entirely 

unavailable or statistically unrepresentative. Such problems include industrial process 

control, text classification and image analysis. One-Class Classification (OCC) is 

emerging as a solution, which characterizes the target class, seeking to distinguish one 

class from the universal set of multiple classes.  
One class classification (OCC) algorithms are receiving increasing interest 

both in the academia and industry [2, 3]. In some real-world applications, negative 

examples are hard or expensive to collect and label. Either a negative doesn’t exist, or 

collection and label of the negative is computationally very expensive. In an example 

of diagnosis of a disease, positive data are easy to access (e.g., all patients who have 

disease) and unlabeled data are abundant (e.g., all patient), but negative data are 

expensive if detection tests for the disease are expensive since all patients in the 
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database cannot be assumed to be negative samples if they have never been tested.  

The second example is system intrusion data. Historical data of system intrusion 

cannot be used to recognise new kinds of assault.  An effective security tool would be 

one designed to recognise assaults as they occur through the understanding and 

comparison of the current behaviour against nominal systems activity. Another 

example is the tool break detection problem. The challenge of the tool break detection 

problem lies in the break data is relative scarcity compared with normal cutting data 

since it is difficult and costly to obtain especially for new tool types and cutting tasks. 

In both cases, it is necessary to estimate the test example by constructing a new 

classifier which does not depend on such negative examples would be especially 

desirable. 

The One-Class Support Vector Machine is a general purpose learning 

method designed to handle the various one-class classification problems [4, 5]. The 

algorithm maps the data into the feature space corresponding to the kernel, with the 

outliers mapped to a small region enclosing the origin, and target class instances are 

separated from the origin with maximum margin. For a new point x, the value f(x) is 

determined by evaluating which side of the hyperplane it falls on, in feature space.  

To turn the one class SVM algorithm into an easy-to-use black-box method 

for practitioners, questions about the selection of parameters (such as the width of a 

Gaussian kernel, and the upper bound on the fraction of training errors and the lower 

bound of the fraction of support vectors ν) must to be tackled [4, 5]. The method 

proposed in this paper investigates the use of automatic calibration of one-class SVM 

to find the optimal parameters. Calibration is the process of modifying the input 

parameters to a numerical model until the output from the model matches an observed 

set of data [6]. In automatic calibration, parameters are adjusted automatically 

according to a specified search scheme and numerical measures of the goodness-of-fit. 

Compared to manual calibration, automatic calibration is faster while being less 

dependent on individual skill and effort, and relatively easy to implement. Previous 

work has involved the development and application of optimization algorithms for 

automatic model calibration, with the proposed methodology being demonstrated on 

numerical model calibration applications [6]. 

This paper proposes a novel approach that combines particle swarm 

optimization (PSO) with one-class SVM, called the PSO-One-Class SVM (POCS) 

hybrid algorithm.  The proposed methodology is demonstrated on several applications, 

showing that the proposed POCS method possesses better ability to find good 

parameters (λ and ν) using one-class SVM in some applications. Performance 

comparison between PSO and a basic grid search approach is then presented.  

2   One-Class Support Vector Machine 

Schölkopf et al. have proposed a strategy of mapping the target-class data into the 

feature space corresponding to the kernel and to separate them from the origin using a 

boundary with maximum margin [4, 5]. The algorithm is an extension of the binary 

support vector algorithm to the case of one-class data. As described by Manevitz and 

Yousef [3], it is supposed that there is a dataset drawn from an underlying probability 
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distribution P, and one needs to estimate a “simple” subset S of the input space such 

that the probability that a test point from P lies outside of S is bounded by some a 

prior specified as (0,1)v . The solution for this problem is obtained by estimating a 

function f which is positive on S and negative on the complement SC [4, 5]. This is 

illustrated in Figure 1 in which target class data are labelled as +1 and outliers are 

labelled as -1. The origin is the only original point that is not a member of the target 

class, but the algorithm relaxes this constraint to return a function f that has the value -

1 in a restricted region around the origin and +1 elsewhere. 

 

 

 
 
 

To separate the data from the origin, we solve the following quadratic program: 
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where  and   are hyperplane parameters,  is the map from input space to feature 

space,   is the asymptotic fraction of outliers allowed, l  is the number of training 

instances, and   is a slack variable. For solutions to this problem,  and  , the 

decision function 
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specifies labels for test examples, e.g., -1 for outliers.  

Two commonly used kernel functions are the Gaussian Radial Basis 

Function (RBF) kernel )exp(),(
2

21 yxxxk    and the polynomial 

kernel  dcyxxxk ),( 21
, where the free parameter d is the degree of the 

polynomial kernel. 

3   Particle Swarm Optimisation 

Kennedy and Eberhart developed particle swarm optimisation based on the analogy of 

swarming animals, such as a flock of birds or school of fish [7]. . In each iteration, 

Figure 1: One-class SVM Classifier (Source: Manevitz and Yousef [3]). 
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each agent is updated with reference to two “best” values: pbest is the best solution (in 

terms of fitness) the individual particle has achieved so far, while gbest is the best 

obtained globally so far by any particle in the population. Each agent seeks to modify 

its position using the current positions, the current velocities, the distance between the 

current position and pbest, and the distance between the current position and gbest. 

The velocity of each agent is modified by the following equation: 
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A modification, the constriction factor approach, can generate higher quality 

solutions than the conventional PSO approach [8]. Here, the current position can be 

modified by the following equation: 
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Compared to genetic algorithm optimisation, there are not many parameters 

that need to be tuned in PSO. The parameters are: the number of particles; weighting 

factors; and the maximum change for a particle. It is generally found that operation is 

not very sensitive to parameter settings. For the number of particles, the typical range 

is 20 – 40 [9]. The weighting factors, c1 and c2, are often to 2 [9], though other 

settings are used in different papers, typically with c1 = c2 and in the range [0, 4] [9]. 

4   Automatic Calibration Scheme  

The general flow chart for the calibration process using PSO is presented below and 

illustrated in Figure 2: 

 

Step 1: Generation of initial condition of each agent 

We begin with initial population and velocities sampled randomly from the feasible 

space.  

 

Step 2: Evaluation of search point for each agent 

The objective function value is calculated by running one-class SVM model. 

 

Step 3: Modification of each searching point  

The current searching point of each agent is changed using (4) and (5). If the value is 

better than the current pbest of the agent, pbest is replaced by the current value. If the 

best value of pbest is better than the current gbest, gbest is replaced by the best value. 
 

Step 4: Stop. 

As the standard PSO’s search progresses, the entire population tends to converge 

towards the global optimum. This process is continued until a satisfactory condition is 
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met. The termination criterion is determined according to whether the maximum 

number of generations or a designated value of fitness is reached. 

 

 

5   Evaluation 

5.1 Fitness Function 

 

In order to obtain successful calibration by using automatic optimisation routines, it is 

necessary to formulate the calibration objective. The fitness function is formulated as 

follows (minimisation of fitness is assumed): 
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For maximization problems, the fitness can be calculated as the reciprocal of the 

objective function value so that solutions with larger objective function value get 

smaller fitness. 

 

Initialise population 

Run One-class SVM 

Evaluation 

Modification of each agent 

Condition? 

 Start 

 Stop 

Figure 2:  Outline of PSO for Optimisation Problems 
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5.2 Datasets 

 

In order to test the validity of the proposed methodologies, the POCS method was 

applied to the following datasets: 

 

Tremor Dataset: (The Tremor dataset from Exeter University, UK)1. 

For the calibration, 89 positive examples and 90 negative examples were used for 

training. In order to evaluate the performance of the calibrated models, test data (45 

positive examples and 46 negative examples) and validation data (44 positive 

examples and 43 negative examples) were used.  

 

Diabetes dataset (The Pima Indians Diabetes Database from UCI)
2

. 

For the calibration, 185 positive examples and 327 negative examples were used for 

training. In order to evaluate the performance of the calibrated models, test data (34 

positive examples and 95 negative examples) and validation data (49 positive 

examples and 78 negative examples) were used.  

 

Vehicle dataset (The vehicle dataset from Statlog, to recognize a vehicle from its 

silhouette). 2
 For the calibration, 219 positive examples and 63 negative examples 

were used for training. In order to evaluate the performance of the calibrated models, 

test data (202 positive examples and 80 negative examples) and validation data (213 

positive examples and 69 negative examples) were used.  

 

When negative examples (objects which should be rejected) are available, they can be 

used during the training to improve the performance [2]. 

 

5.3 Experiment Setup  

 

In our research we used the OSU SVM (version 3.0). The OSU SVM Support Vector 

Machine Toolbox for MATLAB uses the LIBSVM packag3. The relevant experiment 

parameters using the PSO for one-class SVM calibration are listed in Table 1.  
 

Table 1: Experimental Parameters 

Parameter Description Range 

λ Kernel parameter [0.0001 100] 

ν 
Fraction of outliers and 

support vectors 
[0.01 0.3] 

1c  Weighting factor 1 2.5 

2c  Weighting factor 2 2.5 

G  The total iterations 30 

P The number of particles 60 

 

                                                 
1 The dataset is available at http://www.dcs.ex.ac.uk/studyRes. 
2 The dataset is available at http://www-it.et.tudelft.nl/~davidt/occ/index.html. 
3 OSU SVM 3.0 is available at http://svm.sourceforge.net/download.shtml. 96
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The results, including the optimal parameters, positive rate, best and worst calibration 

results, average values, and the standard deviations using PSO for the objective 

function after 30 generations with a population size 60, are listed in Table 2. Table 2 

also shows the validation result results of applying the calibrated parameter set to the 

validation dataset. From Table 2, it can be seen that PSO is able to find optimal 

calibration parameters of one-class SVM with good positive rates of the 10 random 

runs, and all the negative examples can be classified (negative rate =100%) in the ten 

random runs. The negative rate is formulated as follows: 

 

 Outliers correctly classified 

Total outliers in test set
NegativeRate     (9) 

 

The small standard deviations of fitness by the PSO imply that the method 

POCS is stable.  

 

Table 2: One-Class SVM Calibration and Validation Results Using PSO  

Calibration and validation results using PSO for the tremor dataset 

Trial 

Optimal 

Parameter 

λ 

Optimal 

Parameter 

ν 

Calibration Result Validation Result 

Positive Rate (%) Positive Rate (%) 

Best 0.0054 0.02 100 88.64 

Worst 0.1371 0.01 91.11 88.64 

Mean   97.111 87.048 

STD   3.4831 2.6368 

Calibration and validation results using PSO for the diabetes dataset 

Trial 

Optimal 

Parameter 

λ 

Optimal 

Parameter 

ν 

Calibration Result Validation Result 

Positive Rate (%) Positive Rate (%) 

Best 0.0001 0.03 100 100 

Worst 0.0001 0.04 100 100 

Mean   100 100 

STD   0 0 

Calibration and validation results using PSO for the vehicle dataset 

Trial 

Optimal 

Parameter 

λ 

Optimal 

Parameter 

ν 

Calibration Result Validation Result 

Positive Rate (%) Positive Rate (%) 

Best 4.0090 0.01 99.50 99.06 

Worst 0.0285 0.03 99.01 98.12 

Mean   99.402 98.872 

STD   0.2066 0.3963 

 

Figure 3 shows an example that entire population converged around the 

global optimum after 3 generations using PSO with the population size of 60 for the 

tremor dataset, so a fixed number of iterations or generations (G=30) has been 

suggested as a stopping criterion in the calibration process for the three test datasets. 
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Figure 3: Iteration process using PSO  

 

5.4 Comparison with Grid Search 

 

For the purposes of comparison with PSO, we perform an standard grid search over 

the same range of parameters and with the same increments; i.e. λ = 0.0001, 0.1001,..., 

100 and ν = 0.01,0.03,…, 0.3. Thus, for the grid search, the number of model 

evaluations equal to 15×1000. The grid search method is simply an exhaustive search 

to determine the global optimum among those at each point on the grid of parameter 

values. Clearly, it is not very efficient, but is deterministic and reliable. If n is the 

number of parameters, the method employs a moving n-dimensional grid with spacing 

determined by the increment specified. The algorithm tries to centre the grid around 

the minimum point for each dimension (parameter), moving in an appropriate 

direction during each iteration. The optimization is successful when the grid becomes 

centered on a minimum point across all dimensions. Table 3 also shows the results of 

using the basic grid search to find that the best (λ, ν) and calibration and validation 

results.  

From Tables 2 to 3, it is seen that the results of PSO and grid search are very 

close. Thus, it is clear that the PSO optimisation framework considered here is 

capable of searching more efficiently than the standard grid method on the objective 

function under a limited computational budget (60×30 evaluations). The above results 

indicate the number of function evaluations using PSO is around 88 percent less than 

grid search. This implies that we get a considerable advantage by using PSO. 

 

Table 3: One-class SVM Calibration and Validation Results Using grid search 

 

Calibration and validation results using grid search method for the tremor data 

Evaluations Optimal Optimal Calibration Result Validation Result 
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Parameter 

λ 

Parameter 

ν 
Positive Rate (%) Positive Rate (%) 

15×1000 0.0001 0.2 100 88.64 

 

Calibration and validation results using grid search method for the diabetes data 

Evaluations 

Optimal 

Parameter 

λ 

Optimal 

Parameter 

ν 

Calibration Result Validation Result 

Positive Rate (%) Positive Rate (%) 

15×1000 0.1001 0.1 85.29 85.71 

Calibration and validation results using grid search method for the vehicle dataset 

Evaluations 

Optimal 

Parameter 

λ 

Optimal 

Parameter 

ν 

Calibration Result Validation Result 

Positive Rate (%) Positive Rate (%) 

15×1000 3.7001 0.01 99.06 99.50 

6 Concluding Remarks 

When using one-class SVM for classification problems, it is difficult to decide the 

width of a Gaussian kernel λ, and the upper bound on the fraction of training errors 

and the lower bound of the fraction of support vectors ν. To tackle this problem, an 

automatic calibration scheme has been formulated that considers the calibration 

problem in a general single objective framework. The scheme seeks to optimise the 

true positive rate. The hybrid method POCS was presented that can find good 

parameters for a one-class SVM. It has been shown that the proposed method 

performed more efficiently when compared with traditional grid search method. The 

simulation results indicated that the proposed method was able to reduce the required 

simulation runs to 12% of grid search while achieving comparable calibration and 

validation results. The results provide us with confidence that the proposed method is 

indeed a viable method to reduce the computation effort required in calibrating one-

class SVM model.  
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