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 Abstract 
 

 

A new derivation of an elliptic extended mild-slope wave equation, including the effects 

of energy dissipation and current, has been accomplished. A Galerkin-Eigenfunction 

method was used for this derivation and the final equation has been used to create a  

Finite Element Wave-Current Interaction Model (NM-WCIM). The NM-WCIM solves 

for the complex value of velocity potential, from which all other wave properties can be 

obtained. An iterative solution scheme based on the gradient of wave phase is 

implemented to solve for wave-current interaction. A novel post-processing technique for 

the NM-WCIM has been developed to obtain wave energy rays and hence breaking wave 

heights and eddy viscosity values. The model has been calibrated and tested against 

measured data and published results of similar models. The NM-WCIM was used to 

examine scenarios with complex wave-current interaction and bathymetry, including a 

case study of Casheen Bay on the west coast of Ireland. The NM-WCIM has proven itself 

to be an advancement over previous similar models in terms of efficiency and accuracy. 

 

Equations for the conservation of mass and momentum have been derived to examine 

wave-driven hydrodynamics in and around the surf-zone. These equations use a radiation 

stress driving force obtained, using a unique formula, from the velocity potential results 

of the NM-WCIM. The conservation equations also include turbulent diffusion terms 

based on eddy viscosity and a general bottom friction term for flow in any direction. The 

conservation of mass and momentum formulae have been used to develop a depth-

integrated Finite Element Wave-Driven Hydrodynamic Model (NM-WDHM) which 

iterates to a converged solution using a finite difference time-stepping procedure. This 

model was calibrated against measured data and published results of similar models and 

has been used in a coupled system with the NM-WCIM to examine many scenarios with 

complex bathymetric and wave conditions, including those in Casheen Bay. The NM-

WDHM has proven itself to be both accurate and computationally efficient. 
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A   =  Area 

A  = Wave Amplitude 

DA  = Area between Energy Rays and Perpendicular Lines to Rays 

Aξ  =  Amplitude of Instantaneous Set-Up  (Wave Amplitude) 
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F   =  External Force per unit Volume 

Bf   =  Friction Coefficient 

 f  =  Vertical Function such that ( ) ( ) (, , , )x y z f z x yφ φ=  
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g  =  Gravitational Acceleration 
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ijg  =  Conjugate Metric Tensor 

g   =  Determinant of the Metric Tensor Matrix 

 

stH  =  Stable Wave Height 

0H  =  Deep-Water Wave Height 

bH  =  Breaking Height 
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I   =  Integral of Various Functions 

i = 1−  
 

K  =  Effective Wave Number 
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0L  =  Deep-Water Wave Length 
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M  =  Mass 

M  =  Empirical Turbulence Coefficient 

bm  =  Slope of Beach 

 

N  =  Empirical Turbulence Coefficient 
IN  =  Two-Dimensional Shape Function 

n   =  Outward Unit Normal to Surface 

NM-WCIM   =  Newell Mullarkey Wave-Current Interaction Model 
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− −

 

 

ijR  =  Radiation Stress 
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2 m

H
H
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S   =  Surface 

Sφ   =  Phase of Velocity Potential 
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T  =  Period 
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( 1 2 3, ,u u u=u )  = Instantaneous Velocity 

u  =  Unsteady Component of Instantaneous Velocity 

′u  =  Wave Fluctuation of Velocity 
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1u ,  =  Horizontal Velocity 2u

 

V   =  Volume 
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α  =  An Empirical Wave Breaking Constant 
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NOMENCLATURE  C. Newell 
 

xΓ  =  Boundary 

γ  =  Energy Dissipation Factor 
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2
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Chapter 1: Introduction 
“How inappropriate to call this planet Earth when it is clearly Ocean,” Arthur C. Clarke. 

 
 

The annals of human history are fraught with attempts to control, tame or otherwise 

master the seas. Some human endeavours on the sea such as the empire building of the 

Conquistadores and more recently the search for offshore oil deposits in the North Sea 

have met with “success.” Yet it is clear from the myth of Odysseus being ship-wrecked 

by Poseidon to modern events such as the Asian tsunami of 2004 that we cannot even 

claim to understand the workings of the sea much less be masters of it. 

 

Having acknowledged one’s ignorance with respect to the machinations of the sea it 

should be pointed out that in recent times much effort has been expended to increase our 

understanding of the sea and that these efforts have not been in vain. At the present time 

humans can claim to have a deeper understanding of the processes that occur in the 

Earth’s seas and oceans than ever before. However, this understanding is by no means 

complete and further research will undoubtedly improve the way mankind interacts with 

the sea. 

 

Although human interaction with the sea occurs in many places by many means, from 

deep sea fishing in the cold North Atlantic to pleasure scuba diving in the warmer climate 

of the Great Barrier Reef, it is arguably along the world’s coastlines that most of our 

collective interaction with the sea occurs. The processes that occur along the coast affect 

us deeply. Not only do these coastal processes shape the coastline near which many of us 

live, but they also provide recreational amenity, scenic beauty, transport possibilities, 

processes to aid effluent treatment and a host of other effects we often take for granted. 

 

Waves are present to some degree at all coastlines and at many they are a dominant 

process. They contribute to the effects of erosion and accretion on the coast, they can be 

used for recreational processes such as surfing, they generate secondary processes such as 

longshore and rip currents and they impart forces on manmade structures such as ports, 

harbours and piers. Over the past few decades a large amount of research has been carried 

out with regard to wave behaviour in the coastal zone. More recently much of this 

research has been applied to methods to predict wave behaviour and wave generated 
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behaviour near the coast. The increasing computational power provided by modern 

computer systems has allowed complex scenarios and solutions to be examined. 

A detailed examination of the research completed in this area led me to believe that a 

more efficient succinct computer methodology, which would provide results as accurately 

and in some cases more accurately than existing prediction techniques and models, could 

be created. The underlying aim of my PhD research can therefore be stated as the creation 

of a new computer modelling system to examine wave behaviour and wave-generated 

effects in the coastal zone. It is my hope that this research will assist the coastal 

engineering community in examining the effects of waves, such as generated currents, 

applied forces, erosion, accretion etc. in the coastal zone and hence, will allow for an 

improved collective understanding of the sea. Such understanding will in turn allow us to 

interact in a responsible, sustainable and, most importantly, safe way with the sea. 

 

In order to discuss the scope of this project it is necessary to briefly examine wave 

processes and wave generated behaviour in the coastal zone. Waves approaching a shore 

undergo a number of processes. Waves approaching a shoreline at an angle gradually 

refract as they get closer to the shoreline, that is they gradually turn to align themselves 

with the contours of the sea-bed. As they approach shallower water waves also shoal; this 

means they increase in height as the water depth decreases. At some point they will 

increase to a height that is unsustainable and at this point (known as the breaking point) 

the wave collapses in a process known as breaking. The region between this breaking 

point and the shore is known as the surf zone. In the surf zone the wave height decreases 

from its height at breaking to zero. The breaking of waves leads to a momentum flux in 

both the onshore and longshore direction. The physical manifestation of this momentum 

flux in the onshore direction is a slight increase in mean sea level at the shore, known as 

set-up and a slight decrease in mean sea-level at the breaking point; this is known as set-

down. The longshore component of the momentum flux physically manifests itself as 

currents known as longshore and rip currents. 

 

It should be noted that in the presence of a current the direction of wave propagation will 

be altered by the direction and magnitude of the current. However, as discussed above, 

some currents are generated by waves. This leads to a circular relationship between the 

waves and wave-generated currents. The only way to accurately examine such a 

relationship is by using an iterative process. 
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It was decided that to provide a detailed analysis of waves and wave generated behaviour 

this project would examine the behaviour of monochromatic waves (waves of uniform 

period) approaching a coastline and would also examine the behaviour generated by the 

presence of these waves. It was decided that this examination would be carried out by 

using, or deriving where necessary, mathematical equations to describe wave and wave-

generated behaviour in the coastal zone. These mathematical developments are then 

applied to a computer model to simulate and predict a complete solution for wave and 

wave-generated behaviour in a variety of complex situations in the coastal zone. 

 

Initially an extensive literature review was carried out to examine existing research in the 

area and the state of the art for existing computer simulations of the type proposed by this 

project. Chapter 2 details this literature and state of the art review. Based on the research 

carried out in Chapter 2 it was then possible to select a detailed methodology for carrying 

out the proposed research. The subsequent chapters then detail how the research was 

carried out, the results obtained and the significance of these results. 

 

It was decided that two separate sub-models were needed to provide a full examination of 

waves, wave-current interaction and wave-generated currents in the surf zone. These were 

titled the Newell Mullarkey Wave-Current Interaction Model (NM-WCIM), which 

examines the behaviour of waves in the presence of a current, and the Newell Mullarkey 

Wave-Driven Hydrodynamic Model (NM-WDHM), which uses the principles of 

hydrodynamics to model wave-generated currents and wave-generated set-up and set-

down 

 

Chapter 3 of this thesis gives details of the formulation of the Newell Mullarkey Wave-

Current Interaction Model (NM-WCIM). A full derivation, using the Galerkin-

Eigenfunction method, of the elliptic mild-slope equation including the effects of current 

is provided. This equation is then used to form the basic equations of the finite element 

computer model to examine wave-current interaction. The necessary boundary conditions 

are derived for the model. Derivation of energy dissipation terms and their inclusion in 

the basic equations of the NM-WCIM are also presented in this chapter. 
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 4 

The formulation of the Newell Mullarkey Wave-Driven Hydrodynamic Model (NM-

WDHM) is discussed in Chapter 4. The mathematical basis for the model is presented and 

then adapted for use in the finite element numerical model. This chapter also presents the 

key driving term of the hydrodynamic model, namely radiation stress, obtained from the 

velocity potential results of the previously discussed NM-WCIM. Mathematical 

expressions are derived for the energy dissipation effects of turbulence and bottom 

friction. These expressions are applied to the basic equations of the NM-WDHM to 

provide a complete numerical scheme for model solution. 

 

Chapter 5 of this thesis examines a new use for Wave Rays. In this thesis wave energy 

rays are generated from the results of the NM-WCIM and then used to calculate and plot 

the progression of wave energy through a domain. This wave energy calculation is used to 

obtain a number of parameters such as breaking wave height and eddy viscosity which are 

necessary for the energy dissipation terms of the NM-WDHM. Chapter 5 provides a full 

mathematical formulation of the basic equations used to generate wave rays from wave 

potential values and a discussion of how this is implemented numerically. 

 

Chapter 6 of this thesis examines the use of the developed NM-WCIM, NM-WDHM and 

Wave Ray techniques to examine various phenomena occurring in the coastal zone. 

Discussion is provided of each result obtained. The chapter examines the use of the 

models in both one-dimensional and two-dimensional circumstances and discusses the 

results obtained. Results are initially compared to existing data to ensure accurate 

calibration and then a number of complex bathymetric scenarios are examined. In the two 

dimensional cases the bathymetry and obstacles vary in both the longshore and cross-

shore directions. The final part of Chapter 6 is a case study of Casheen Bay in Co. 

Galway, Ireland. The NM-WCIM, NM-WDHM and Wave Ray techniques are applied to 

the bay to obtain a detailed description of wave behaviour in the bay. The results obtained 

are then discussed with a view to the practical uses for the results data obtained. 

 

Overall conclusions drawn from the literature review, mathematical derivations, 

numerical model formulations and modelled results of the thesis are presented in Chapter 

7. This chapter discusses the advantages of the NM-WCIM and the NM-WDHM as well 

as briefly discussing possible future applications and extensions of the models. 

 



 

Chapter 2: Literature and State-of-the-Art Review 
“Research is the act of going up alleys to see if they are blind,” Plutarch. 

 
 

 

2.1 Introduction 

As discussed in Chapter 1 the overall aim of this project is to examine wave-current 

interaction and wave-generated effects in the coastal zone. As such it was necessary to 

carry out an extensive examination of literature regarding waves and coastal zone 

processes as well as a detailed examination of the current “state of the art” in computer 

modelling of such processes. This chapter initially discusses the physical processes at 

work in the coastal zone and then moves on to examine the various mathematical 

formulations that have been derived to describe these processes. The “state of the art” in 

terms of computer models using the discussed mathematical formulations is detailed. The 

final section of this chapter then discusses, based on this research, the methodology that 

has been undertaken for this project. 
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2.2 Coastal Zone Processes 

2.2.1 Gravity Waves 

At sea a surface gravity wave is caused by some external force causing a vertical 

disturbance in the water column. This external force can be wind, a vessel, seismic 

activity or the gravitational pull of the moon or sun. When the water column is disturbed 

vertically gravity acts upon the water column to return the column to its equilibrium 

position. The surface of the water has inertia as it returns towards its equilibrium position 

and therefore will progress past it. Each time the water column returns towards 

equilibrium it will pass its equilibrium position due to inertia. This oscillatory effect is 

known as a gravity wave. 

 

Gravity waves acquire energy from their exciting force and transmit it across the surface 

of the water body. This transmission of energy is known as wave propagation. Waves will 

propagate until they reach an obstacle which causes a reflection or dissipation of the 

wave’s energy. As a wave propagates it will also dissipate some energy due to interaction 

at the air-water interface and in shallower water at the sea-bed interface. 

 

As waves oscillate the water particles within them are continuously accelerating and 

decelerating. This produces dynamic pressure gradients in the water column which must 

be superimposed on the hydrostatic pressure to obtain a full description of the water 

pressure at any point in the column. 

 
Figure 2.1 – Sketch of Gravity Wave Properties  
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2.2.2 Wave Behaviour 

A visual examination of wave behaviour shows a number of important principles that are 

discussed in below. 

 

2.2.2.1 Reflection 

When a propagating wave collides with an obstacle a percentage of the wave’s energy 

may be reflected off the obstacle thus producing a wave travelling in a different direction 

to the original wave. This reflected wave may in some circumstances travel in exactly the 

opposite direction to the original wave. The percentage of reflection that occurs is usually 

dependant on properties of the obstacle such as shape and construction material. 

 
Figure 2.2 – Diagram of Wave Reflection off an Obstacle 
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2.2.2.2 Shoaling 

Shoaling is the gradual increase of wave height and reduction of wavelength as the wave 

propagates in increasingly shallow water. The celerity (speed of propagation) of the wave 

also decreases. 

 

2.2.2.3 Refraction 

Refraction of a surface gravity wave occurs when the wave propagates into shallower 

water. As a wave propagates into shallower water the direction of propagation changes so 

that the wave crest gradually aligns itself to be parallel with the contours of the sloping 

sea-bed. This occurs because if a wave approaches the shallower region at an angle the 

wavelength and celerity decreases for the portion of the wave that enters the shallower 

region first. This causes a turn in the direction of the wave because the portion of the 

wave still in deeper water does not suffer this change in wavelength and celerity. 

Refraction of a wave can also be caused by the presence of a current. 

 

 
Figure 2.3 – Diagram showing Refraction, Shoaling and Breaking of Waves 
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2.2.2.4 Diffraction 

When the height of a wave is higher at one point along its crest than at a neighbouring 

point the wave will undergo a process called diffraction. Diffraction is the transfer of 

energy along the crest of the wave from regions of higher wave height to regions of lower 

wave height. Therefore as a wave move forwards undergoing diffraction its height will 

change; decreasing in some locations and increasing in others. An example of diffraction 

would be when a wave passes an obstacle that creates a sheltered zone behind it. The 

wave will diffract into this zone once it passes the obstacle. It is worth noting that 

diffraction also occurs in cases where the wave height is affected by refraction. The 

diffraction experienced by the wave in this case is usually small compared to other causes 

of diffraction. 

 
Figure 2.4 – Diagram showing Diffraction of Waves 
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2.2.2.5 Breaking 

Breaking is a process through which a wave dissipates energy. The water particle velocity 

at the crest of a wave is proportional the wave height. Hence the greater the height of the 

wave the greater the crest particle velocity. If the crest particle velocity becomes equal to 

the celerity of the wave the wave becomes unstable and it breaks. This means that the 

wave collapses. This process can occur in any water depth if the wave height is large 

enough, however, it most frequently occurs as waves approach the shoreline because the 

effects of shoaling cause wave height to increase and celerity to decrease. 

 

Smith (2003) describes four different types of breaking wave after Galvin (1968). These 

are spilling, plunging, collapsing and surging. 

 

2.2.2.5.1 Spilling Breakers 

A spilling breaker can be described as one where turbulence and foam first appear at the 

top of the wave and then spread down the shoreward face of the wave as it breaks. 

Sorenson (2006) describes the energy dissipation from this breaker type as “relatively 

uniform” across the surf zone. Komar (1998) states that spilling breakers usually occur on 

beaches of gentle slope with waves of high steepness. 

 
Figure 2.5 – Sketch of a Spilling Breaker 
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2.2.2.5.2 Plunging Breakers 

A plunging breaker occurs when the crest of the wave develops a tongue which curls over 

the shoreward face of the wave and then collapses into the base of the wave. This type of 

breaking may lead to a series of irregular waves that propagate towards the shore and 

break also. Sorenson (2006) states that the energy dissipation for plunging breakers is 

“more confined” to the breaking point than spilling breakers. Komar (1998) states that 

plunging breakers usually occur on steeper beaches with waves of intermediate steepness. 

 

 
Figure 2.6 – Sketch of a Plunging Breaker 
 

 

 

2.2.2.5.3 Collapsing Breakers 

Collapsing breakers are described by some authors such as Sorenson (2006) as a 

transitional class of breakers that occur between plunging and surging breakers. Other 

authors such as the Smith (2003) describe them as a separate type of breaker in their own 

right. A collapsing breaking wave is one where the crest of the wave remains unbroken as 

the lower portion of the wave on the shoreward side becomes steeper until it reaches a 

point at which it collapses. Figure 2.7 on the following page shows a sketch of a 

collapsing breaker. 
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Figure 2.7 – Sketch of a Collapsing Breaker 
 

 

 
2.2.2.5.4 Surging Breakers 

A surging breaker is one where the crest of the wave remains unbroken and the shoreward 

face of the wave progresses up the slope of the beach where some minor breaking may 

occur. Sorenson (2006) states that this form of breaking is a progression towards a 

standing wave that could occur due to reflection of the wave by the beach. . Komar 

(1998) states that surging breakers usually occur on beaches of high gradient with waves 

of low steepness. 

 
Figure 2.8 – Sketch of a Surging Breaker  
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2.2.3 Water Particle Velocity 

It has been discovered experimentally and later explained mathematically that as a wave 

propagates in deep water it causes an approximately circular motion of the water particles 

beneath its surface. The diameters of the circles decrease with increasing depth and go to 

zero at a depth approximately equal to half the wave length. The geometry of these 

particle orbits is such that when a wave crest passes a certain point in the water body the 

particle velocity at that point is in the direction of wave propagation whereas when a 

trough passes the same point the particle velocity will be counteracting the direction of 

wave propagation. When a wave moves into shallow water the particle orbits change from 

circular shape towards an elliptical shape, the reduction in water depth reduces the 

vertical components of the orbit. At the seabed a linear horizontal particle velocity 

dominates. This is self-evident because water cannot flow through the sea-bed. The wave 

particles generally progress slowly in the direction of wave propagation as they rotate, 

this process is known as mass transport. 

 
Figure 2.9 – Sketch of Circular Water Particle Motion in Deep Water. Wave propagating from left to 
right.  
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2.2.4 Set-up/Set-down 

Waves breaking on a beach generate an excess momentum flux. This excess flux comes 

about due to the difference in momentum between the particle velocity in the direction of 

wave propagation at a crest of a wave and the particle velocity opposing wave 

propagation at the trough. This excess momentum flux is called radiation stress after 

Longuet-Higgins and Stewart (1964). In the cross shore direction equilibrium is 

maintained against this momentum flux by a rise in the mean sea level at the shore and a 

corresponding decrease in sea-level at the breaker point known as set-up and set-down 

respectively. 

 

 

 
Figure 2.10 – Sketch of Set-up and Set-down 
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2.2.5 Wave Generated Currents 

When waves break on a beach at an angle both a cross-shore and longshore component of 

radiation stress is generated. As described in Section 2.2.4 the physical manifestation of 

the cross-shore radiation stress is set-up and set-down. In the longshore direction the 

excess momentum flux may drive a current. This is the wave generated portion of 

longshore current. Depending on bottom topography and obstacles waves may generate 

currents in any direction. Currents generated perpendicular to the coastline are called rip 

currents. 

 

 
Figure 2.11 – Sketch of Longshore Current generated by Obliquely Incident Waves 
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2.2.6 Wave-Current Interaction 

The presence of a current in any domain across which waves propagate will affect the 

direction of wave propagation. Depending on the magnitude and direction of the current, 

the group velocity may decrease, thus increasing the wave amplitude, or it may increase 

thus reducing the wave amplitude. The refraction of waves caused by the presence of a 

current is a similar phenomenon to that which occurs when the direction of light is 

changed as it passes through a glass block. In some extreme cases the presence of a very 

strong current may cause the majority of wave energy to be reflected. When the presence 

of a current causes a change in wave behaviour this will also affect any wave generated 

currents which in turn influence the waves. This circular relationship is very complex and 

can be difficult to examine numerically. 

 
Figure 2.12 – Sketch of Change in Wave Crest Behaviour due to Wave-Current Interaction 
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2.2.7 Turbulent Diffusion / Lateral Mixing 

Turbulent diffusion and lateral mixing are two terms used to describe the same process. 

Smith (2003) describes the process as “The exchange of momentum caused by turbulent 

eddies which tend to "spread out" the effect of wave forcing beyond the region of steep 

gradients in wave decay.” Conceptually this means that the effects of any wave generated 

phenomenon (e.g. longshore current) occur in a larger area than the particular area where 

the wave is forcing the generation of the phenomenon. This spreading of the wave effects 

is caused by small eddies which develop in the water body. 

 
Figure 2.13 – Cross-Shore Profile of Longshore Current showing the effects of Lateral Diffusion 
 

 

2.2.8 Bottom Friction 

The roughness of the sea bed is analogous to the roughness of a river bed in open channel 

flow. Just as the velocity of the water passing over a river bed is affected by frictional 

forces between it and the bed so are wave and longshore current velocities damped by 

friction with the sea-bed. The magnitude of this frictional effect is governed by the 

material of the sea-bed and its in-situ conditions. For example a sandy sea-bed would be 

expected to have a more significant frictional effect than a smooth sea-bed made of rock. 
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2.3 Mathematical Description of Coastal Zone Processes 

 

Section 2.2 gives a brief description of the main processes occurring in the coastal zone. 

Without a mathematical theory for how these processes occur it would be impossible to 

predict or model the processes. In many cases a number of theories exist and it is 

incumbent upon the users to select the most appropriate theory or combination of theories 

for their specific requirements. 

 

2.3.1 Wave Theories 

Wave theories can be broken down into two distinct types; regular wave theory and 

irregular wave theory. Regular wave theory (often termed monochromatic wave theory) 

assumes all the waves being examined satisfy a single set of criteria with regards to wave 

height, period and direction. The waves are assumed to be almost sinusoidal in shape. 

Due to the regularity of this assumed wave it is possible to carry out detailed 

mathematical analyses of regular waves to calculate wave kinematics and dynamics. 

Irregular wave theory acknowledges the fact that real bodies of water consist of a series of 

waves of different heights and periods travelling in different directions. As such irregular 

waves must be treated using statistical methods to approximate the varying wave 

conditions. It is important to select the appropriate wave theory for a given purpose. 

Demerbilek and Vincent (2002) explain that irregular wave theories are usually used to 

determine a range of wave conditions and from that select a representative wave height, 

direction and period for use with regular wave theory to calculate specific kinematics and 

dynamics. It is evident that for the purposes of this project regular, monochromatic waves 

should be used for modelling purposes with the particular individual wave properties 

being obtained  from irregular wave theory if necessary. 

 

2.3.1.1 Regular Wave Theory 

No mathematical theory can fully describe every wave process. Some theories are more 

useful for examining certain criteria than others so the onus is on the user to select the 

most appropriate theory or set of theories for use in any given application. Developed 

monochromatic wave theories range from the simplest linear wave theory to perturbation 

methods and Fourier-series approximations for non-linear wave theory. 
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2.3.1.1.1 Linear (Airy) Theory 

The simplest linear theory for describing wave motion was presented by Airy (1845). 

Linear theory is the easiest wave theory to apply and provides quite accurate results in a 

wide variety of circumstances. Some assumptions are made in the derivation of Linear 

Theory (also sometimes referred to as small amplitude theory due to assumption number 

9). These assumptions are listed by Demerbilek and Vincent (2002): 

 

1. The fluid is homogeneous and incompressible; therefore, the density ρ is a 

constant. 

2. Surface tension can be neglected. 

3. The coriolis effect due to the earth's rotation can be neglected. 

4. Pressure at the free surface is uniform and constant. 

5. The fluid is ideal or inviscid (lacks viscosity). 

6. The flow is irrotational so that water particles do not rotate (only normal forces 

are important and shearing forces are negligible). 

7. The particular wave being considered does not interact with any other water 

motions.  

8. The bed is a horizontal, fixed, impermeable boundary, which implies that the 

vertical velocity at the bed is zero. 

9. The wave amplitude is small with respect to the water depth and the waveform is 

invariant in time and space. 

10. Waves are plane or long-crested (two-dimensional). 

 

Assumptions 1, 2 and 3 are common assumptions for almost all coastal engineering 

applications and pose no problem for the application of linear theory to a wide variety of 

scenarios. Assumptions 4 and 5 are appropriate for the vast majority of coastal 

engineering problems. In some specialised cases it may be necessary to examine their 

effect on results, however these cases are beyond the scope of this project and will not be 

considered here. Assumptions 6 and 7 are not strictly accurate in cases where wave 

generated vortices or other phenomena such as the presence of a current effect the wave 

field. The author’s method for dealing with this issue when it occurs is outlined in the 

text. Assumption 8 is frequently relaxed and Linear Wave theory is very useful in many 

cases with sloping sea-beds where the bed is considered to slope “mildly” and thus does 

not produce reflection of waves. Many models, including the NM-WCIM developed in 
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this work, include extended terms in the mild-slope derivation to further address the 

assumption of a mild slope. Assumption 9 although true in deep water is not true in 

shallow water and thus linear theory does not provide appropriate wave shapes for 

shoaling waves; however, it has been shown to still provide accurate results for phase and 

energy flux in these zones as stated by Clyne (2008). Further evidence of this is provided 

by the widespread use of linear wave theory in existing wave models discussed by 

Vincent et al. (2002) such as RCPWAVE by Ebersole (1985) and Ebersole et al. (1986) 

and  STWAVE by Resio (1993) and the widespread use of mild-slope wave models for 

coastal engineering problems in models such as MIKE 21 –Danish Hydraulic Institute 

(2008b, c) 

 

Linear Wave Theory describes internal motion using the Laplace equation. This coupled 

with equations for the conservation of mass and momentum provides sufficient equations 

to solve for the water-particle velocities, local pressures and all other wave properties. 

The assumptions listed above can then be applied to obtain the equations for Linear Wave 

Theory in deep, transitional and shallow water. Linear Wave Theory can be used a 

number of times and superposition of results used to obtain a more accurate overall result 

of wave behaviour where required. 

 

2.3.1.1.2 Non-Linear Theory 

In many cases Linear Wave Theory will not provide accurate enough results for the 

particular application in question. In these cases a more complex solution is required in 

order to obtain more accurate results for wave behaviour. Several finite amplitude non-

linear wave theories have been developed, these include Stokes Theory, Boussinesq 

Theory, Cnoidal Theory and Solitary Wave Theory (a special case of Cnoidal Theory). 

However in cases where numerical solutions can be used it is suggested by Demerbilek 

and Vincent (2002) that these finite amplitude wave theories have all been superseded by 

the Fourier Series Approximation of Fenton (1988). 

 

2.3.1.1.2.1 Finite Amplitude Wave Theories 

2.3.1.1.2.1.1 Stokes Theory 

Stokes (1847, 1880) recognised the failing of Assumption 9 in Linear Wave Theory 

(Section 2.3.1.1.1) that wave height is small compared to water depth. This is clearly not 

the case in shallow water. Stokes provided second and third order solutions to the wave 
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equations which more accurately represented the behaviour of waves in the shoaling zone. 

The equations developed by Stokes have initial terms that correspond with those of Linear 

Wave Theory but extra second and third order terms are added to more accurately 

describe the wave behaviour.  

 

Modern forms of the Stokes perturbation method usually contain up to fifth order terms, 

such as that of Fenton (1985). One author, Cokelet (1977) experimented with 110th order 

Stokes Theory. Komar (1998) states that in general the effect of these extra terms is to 

widen the trough and narrow the crest of the wave as it propagates into increasingly 

shallow water. This peaking of wave crests is more in line with observed wave behaviour 

in shallow water. It is worth noting that higher order Stokes Theories prove to be 

inaccurate in deep water when compared to Linear Wave Theory. 

 

A corresponding difference is evident in water particle velocity, the velocity under a crest 

is increased in magnitude but shortened in duration whereas the exact opposite occurs to 

the velocity under a trough. The water particle motion in Stokes theory does not form a 

closed loop like Linear Wave Theory. Instead a slow advancement of particles in 

direction of wave propagation occurs. This phenomenon occurs in nature and is known as 

mass transport velocity. It can also be referred to as Stokes drift in this case. Stokes drift 

does not account for any return flow and is in the direction of wave propagation at all 

depths, which is not entirely accurate.  

 

As water depth gets shallower the effect of Stokes Theory is to extend the trough more 

and thus make it flatter. Sorenson (2006) states that any increase in wave steepness after 

the trough becomes horizontal causes a hump to form at the wave trough. This hump does 

not occur in nature. Hence Stokes Theory has a specific limit on the height a wave may 

approach in shallow water. This can cause problems with its implementation in shallow 

regions. The maximum wave height allowed in shallow water by second order Stokes 

Theory is approximately half of the water depth according to the Demerbilek and Vincent 

(2002) and Fenton (1985). It is recommended that beyond this depth another theory such 

as Cnoidal Theory, and in very shallow water Solitary Wave Theory, be used. 

 

In deep water the difference between Linear Wave Theory (essentially first order Stokes 

Theory) and Stokes Theories of lower orders is quite small but in transitional and shallow 
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water Stokes Theory provides more accurate results with the penalty of increased 

computational expense. As stated it is still not completely accurate in shallow water and 

hence further theories have been developed. 

 

2.3.1.1.2.1.2 Cnoidal Theory 

Cnoidal Theory is a wave theory developed by Korteweg and de Vries (1895). The theory 

is a non-linear wave theory that includes dispersion. It can only be used for waves 

progressing in one direction. Cnoidal Theory is defined using a Jacobian Elliptic function, 

cn, hence the name cnoidal. The mathematical implementation of Cnoidal Theory is very 

complex which somewhat limits its use. The Jacobian Elliptic function is defined in terms 

of a parameter Κ  (termed Κcn here for the sake of clarity). At the limiting values of Κcn 

equal to zero and Κcn equal to one, Cnoidal theory simplifies to Linear Wave Theory and 

Solitary Wave Theory, respectively. 

 

The difficulty in implementing Cnoidal Theory usually means that it is only used where 

strictly necessary. Usually, as stated by Sorenson (2006), this means the range where 

higher order Stokes Theory becomes inaccurate and Solitary Wave Theory is not yet 

useful. Due to its mathematical complexity Cnoidal Theory is usually utilised with the aid 

of pre-calculated graphs such as those of Wiegel (1960) and Masch and Wiegel (1961). 

 

2.3.1.1.2.1.3 Boussinesq Theory 

If the assumption is made that the pressure at any point in the water column is hydrostatic 

and that the water velocity potential increases polynomially from the seabed to the water 

surface it is possible to derive an easily solvable set of mathematical wave equations. 

These equations are termed the Boussinesq type equations after Boussinesq (1871, 1872). 

Chen et al. (2005) states that the assumptions made meant that Boussinesq type equations 

were “traditionally limited to shallow water.” However, they did allow the Boussinesq 

equations to be solved for two dimensions only, thus cutting the calculation work required 

for examining waves. 

 

Sukardi (2008) carries out a detailed examination of Boussinesq type equations. The 

original equations of Boussinesq were derived solely for a flat seabed but the work of 

authors such as Mei and LeMehaute (1966) and Peregrine (1967) extended the theory to 
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sloping sea-beds. The major difference between their respective works is the selected 

parameter to quantify horizontal particle velocity. Although this further work provided a 

version of the Boussinesq Theory that was valid for sloping seabeds it was still limited to 

shallow water and also limited in the maximum wave height it could model thus limiting 

the extent to which the model could be used in shallow water. To keep errors in the phase 

velocity less than 5%, the water depth has to be less than about one-fifth of the equivalent 

deep-water wavelength according to McCowan (1987).  More recent work by Madsen et 

al. (1991) and Nwogu (1993) provided further extensions to the Boussinesq approach to 

allow it to be used in deeper water. The Nwogu (1993) approach has become quite 

popular because it is relatively simple to apply and allows non-linear wave modelling 

using Boussinesq Theory into intermediate water depths. 

 

 

2.3.1.1.2.1.4 Solitary Wave Theory 

A solitary wave is the simplest solution to the Boussinesq Theory. It simply approximates 

a single crest progressive wave. The wave is assumed to be entirely above the Still Water 

level and hence has no trough. It is a lone wave so there is no period or wavelength 

associated with it. Sorenson (2006) describes Solitary Wave Theory as translatory rather 

than oscillatory. When ocean waves enter very shallow water they become sharp crests 

separated by wide troughs. Munk (1949) suggested that waves in this stage could be 

accurately modelled using Solitary Wave Theory. Solitary Wave Theory is therefore often 

considered appropriate for use in water that is too shallow for the application of Stokes or 

Cnoidal Theory. 

 

Due its non-oscillatory nature Solitary Wave Theory cannot be used to directly calculate 

wave period or wave length. Values for these parameters can be inferred from different 

wave theories used in the shallow zone approaching the region where Solitary Wave 

Theory is used. 

 

It is notable that Smith (2003) states that laboratory measured wave heights obtained by 

solitary waves just prior to breaking are often used as an indicator for the incipient point 

of ocean waves. 
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2.3.1.1.2.2 Numerical Wave Theories 

In addition to the Linear and Finite Amplitude Wave Theories discussed above a number 

of numerical methods have been developed to approximate wave propagation. Numerical 

methods can give quite accurate results especially when utilising modern computer 

systems to their full extent. Examples of numerical wave theory are the Stream Function 

Theory of Dean (1965, 1974) and the Fourier Series approach adopted by Fenton (1988). 

Both of these numerical theories take the approach of calculating coefficients of a series 

expansion to obtain a best fit solution to the non-linear free surface condition. The results 

provided by these numerical methods are very accurate and are widely used in the coastal 

engineering community because they can be used to obtain results in both shallow and 

deep water. 

 

 

2.3.1.2 Irregular Wave Theory 

A detailed discussion of irregular wave theory would be beyond the scope of this project. 

The main concerns of this project are with estimating specific dynamic and kinematic 

properties of given wave events. This is exclusively the domain of monochromatic wave 

theory. In some cases however, irregular wave theory is used to select appropriate wave 

parameters to examine using regular wave theory. It is hence beneficial to give a short 

description of the general principles of irregular wave theory. 

 

Irregular wave theory acknowledges that at any given time the wave field at a particular 

offshore location will consist of a variety of different wave heights, periods and 

directions. Longer period waves (swell) will generally be ones created elsewhere that 

have travelled to the given region whereas shorter period waves (wind sea) would more 

likely be generated at closer locations by atmospheric conditions. These “wind sea” 

waves often have very short crest lengths leading to a very confused water surface. The 

overall wave field will hence be a complex system and if the wave height at a given point 

is measured over a given time frame the series of crests and troughs will not be uniform. 

In most scenarios the scatter of this data will not be predictable as the number of 

interacting wave fields will be too difficult to separate from each other. The field of 

irregular wave theory is therefore based on the interpretation of this irregular data to 

obtain some useful parameters that may be used to describe wave behaviour at the point 

in question. Many statistical methods can be used to derive various parameters. Perhaps 
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the most commonly discussed is significant wave height. Significant wave height is a 

parameter introduced by Sverdrup and Munk (1947) and was initially selected as a 

parameter to tally with what sailors would classify as the wave height if they were 

examining a sea by eye. The most common way of calculating significant wave height 

from a set or irregular wave data is to calculate the average height of the highest one third 

of waves. 

 

Regular wave theory is often linked to irregular wave theory through the inclusion of 

empirical coefficients such as those to model breaking and turbulent effects. These 

parameters cannot be completely mathematically explained and hence in many cases must 

rely on some degree of empirical evidence which can only be obtained from irregular 

wave data sets. 

 

 

2.3.2 Wave Breaking 

As discussed in Section 2.2.2.5 above, there are a number of different ways in which a 

wave can break. It is understood by science that when any wave reaches a certain height 

(which varies depending on the given circumstances) it will be unstable and will break. 

However, the exact water particle behaviour that causes this process is not well 

understood. Traditionally the change in wave height due to breaking was assumed to be 

linear once breaking had been instigated. This method is discussed by Smith (2003) and 

was used successfully to calculate set-up and set-down and longshore current values by 

Longuet-Higgins and Stewart (1963), Bowen et al. (1968), Bowen (1969), Thornton 

(1970), Longuet-Higgins (1970a, b), Liu and Mei (1976), Mei and Angelides (1977), 

Péchon et al. (1997) and Newell et al. (2005b). Smith (2003) states that this over-predicts 

wave heights for slopes steeper than 1/30 and under predicts wave height for shallower 

slopes or barred bathymetry. 

 

Smith (2003) states that a more general model for wave height in the breaking zone is to 

solve a steady state energy equation in the surf-zone. Divoky et al. (1970) states that the 

breaking wave behaves like a bore and carries out an energy comparison using a wave 

height upwave of the breaker “bore” and the height downwave of the bore. Dally et al. 

(1985) uses an energy balance equation to examine wave breaking. Energy dissipation is 

assumed to be a function of excess wave energy over a stable wave height. Empirical 
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parameters are selected to provide the function of excess wave energy for a specific 

beach. Dally et al. (1985) allows for the continuation of breaking until a stable wave 

height is obtained even in situations where the sea bed becomes level after a period of 

breaking. It is impossible for the similarity method discussed above to treat this 

phenomenon correctly. Authors such as Battjes and Janssen (1978) provide equations for 

energy dissipation based on statistical wave breaking. This method can in some cases be 

used for monochromatic wave breaking by substitution of the monochromatic wave 

height being examined for the statistical wave height implied in the formula. Zhao et al. 

(2001) examined the Dally et al. (1985) solution, the Battjes and Janssen (1978) solution 

and solutions by Massel (1992), Chawla et al. (1998) and Isobe (1999). Newell and 

Mullarkey (2007a) examine the use of these solutions examined be Zhao et al. (2001) as a 

method for driving set-up/set-down. 

 

Most modern computer models include wave breaking as an energy dissipation effect. 

Zhao et al. (2001), Newell and Mullarkey (2007a) and Clyne (2008) all provide examples 

of how to include an energy dissipative term in the elliptic mild-slope equation discussed 

in Section 2.4.1.3.3.2. In all of these cases a general energy dissipation term was included 

in the mild-slope equation to be solved by the computer model. The inclusing of a general 

energy dissipation term allows the examination of different breaking wave criteria such as 

those of Dally et al. (1985), Battjes and Janssen (1978), Massel (1992), Chawla et al. 

(1998) and Isobe (1999). With the selection of an appropriate energy dissipation term 

within the solution scheme it was shown that broken wave results could be obtained using 

the same iterative solution scheme for a number of different breaking criteria. 

 

2.3.3 Set-up/Set-down 

The physical process causing set-up/set-down is discussed in Section 2.2.4. Longuet-

Higgins and Stewart (1963, 1964) introduced the concept of radiation stress and provided 

an equation for its calculation with respect to causing set-up/set-down.  The use of this 

description of radiation stress as a driving force in basic hydrodynamic equations has 

become widely accepted as the appropriate means to calculate set-up/set-down. Komar 

(1998) mentions that there may be some uncertainties with the Longuet-Higgins and 

Stewart (1963, 1964) method because it is based on linear wave theory which may not 

describe high waves in the surf-zone very well. However, Komar (1998) acknowledges 

that the fundamental cause of set-up/set-down is well described by Longuet-Higgins and 
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Stewart (1963, 1964)  and has been verified by both laboratory and field studies. It has 

been discussed and accepted by authors such as Smith (2003) and Mei et al. (2005). 

Péchon et al. (1997) shows that gradients of radiation stress have been used as a driving 

force in many existing wave-generated current models. Accurate values of set-up/set-

down have been obtained using this principle by Newell and Mullarkey (2007b), Newell 

et al. (2005b), , Mei and Angelides (1977) and Liu and Mei (1976). The methodology 

used to include radiation stress in general hydrodynamic models is discussed further 

below.  

 

2.3.4 Wave Generated Currents 

Bowen (1969), Longuet-Higgins (1970a, b) and Thornton (1970) used the formula for 

radiation stress to examine wave driven currents on a beach. The overall methodology is 

similar for all the authors. Komar (1998) suggests that the main difference between the 

approaches was the frictional affects applied to currents resulting from radiation stress 

and in the horizontal mixing of the fluid across the surf zone. The derivation of Longuet-

Higgins (1970a, b) has gained widespread acceptance and is the starting point for all 

modern investigations into radiation stress and the resulting wave driven currents. 

Authors such as Mei et al. (2005) and Smith (2003) show the continued use of the 

Longuet-Higgins (1970a, b) approach to calculate wave-driven currents. Newell and 

Mullarkey (2007b), Newell et al. (2005b),  Mei and Angelides (1977) and Liu and Mei 

(1976) are examples of models where wave-generated currents have been calculated on 

foot of calculated radiation stress values. Péchon et al. (1997) examines a number of state 

of the art wave-driven current models that use gradients of radiation stress. The use of 

radiation stress in computer models to calculate wave-driven currents is discussed in 

Section 2.4.2 below. 

 

2.3.5 Wave-Current Interaction 

The presence of a current as waves propagate can affect the way in which waves 

propagate. The inclusion of terms to take account of current in basic wave equations is 

addressed by authors such as Booij (1981) and Kirby (1984), who discuss the inclusion of 

current terms in the mild-slope equations based on linear wave theory. In practice it 

proved difficult to implement and many wave models disregarded wave-current 

interaction. Péchon et al. (1997) examined seven different wave models and found only 

two that included the effects of wave-current interaction. Newell and Mullarkey (2007b) 
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examine the effects of wave-current interaction in a finite element wave model based on 

the mild-slope equation including currents. Many existing state-of-the-art computer 

models such as MIKE 21 –– Danish Hydraulic Institute (2008b, c) –– still do not account 

for wave current interaction in their basic equations. It is evident that if the effects of 

current are not included in the original derivation of a basic wave equation, wave-current 

interaction will be ignored by any model using such an equation as its basis. 
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2.4 State-of-the-Art Modelling of Coastal Zone Processes 

2.4.1 Wave Models 

2.4.1.1 Introduction to Computer Wave Models 

A number of different computer models have been created to simulate wave propagation. 

The choice of wave propagation model depends mainly on what properties of the wave 

the user envisages as most important in their given circumstances. Wave propagation 

models broadly fall into two categories. These are phase resolving and energy balanced 

(phase averaged) models. In general phase resolving models are more likely to be used in 

the coastal zone where the water is shallow and the modelled domain is of the order of a 

few kilometres. Phase resolving models are more useful for dealing with domains where 

wave-growth is not important and bottom topography governs wave behaviour. In these 

coastal models the water depth rarely exceeds 20m. Energy balanced models are more 

likely to be used in areas where wave growth effects are important and bottom 

topography does not have a dominant influence on wave behaviour. 

 

2.4.1.2 Energy Balanced Wave Models 

Energy balanced models examine a spectrum of wave heights and periods. Nwogu and 

Demirbilek (2001) consider these models appropriate where “wind-input, shoaling and 

refraction are dominant.” Chen et al. (2005) describes energy balanced models as suited 

to “large scale wave growth and wave transformation applications.” Models such as 

SWAN ––  Booij et al. (1999) –– and STWAVE –– Resio (1993) –– are phase-averaged 

models. The phase averaging properties of these energy balanced models makes them 

unsuitable for circumstances where changes in domain properties such as changes in 

depth or domain shape lead to abrupt changes in the wave field within the range of a 

wavelength. Extensive meteorological data is usually required for the accurate 

implementation of an energy balanced model to a specific domain. 

 

2.4.1.3 Phase Resolving Wave Models 

2.4.1.3.1 Introduction to Phase Resolving Wave Models 

The second type of wave propagation model is the phase resolving type. This model is 

run independently for any given wave phase in a spectrum. Chen et al. (2005) describe 

phase resolving models as “better suited to domains with complex bathymetry and 

geometric features, where the effects of wave diffraction and reflection can be important.” 

The aims of this project are more in keeping with this type of wave model because it can 
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be applied to complex bathymetry and indeed the effects of diffraction and reflection will 

undoubtedly be important in the coastal regions being examined, especially considering 

the presence of various obstacles in the domain. It was hence decided that for this project 

a phase resolving type wave model would be used to simulate wave propagation. 

 

Phase resolving models can be either steady state or time dependant in nature. Time 

dependant models allow for change in sea level and incoming wave field for the model. 

Time dependant models are required if the change in water level within the domain or the 

wave field entering the domain is significant within the time it takes for a wave to 

propagate across the domain; Clyne (2008). In many cases it can be assumed that the 

variation in wave field and water depth is negligible when compared with the time taken 

for a wave to propagate across the modelled domain. In these cases a steady state model is 

sufficient. Vincent et al. (2002) gives examples of time-dependant phase resolving 

models for shallow water. These are by Jensen et al. (1987) and Demirbilek and Webster 

(1992a, b). However, Vincent et al. (2002) also state that these models “require extensive 

sets of meteorological data” and “cannot easily be applied.” In this project a general 

examination of waves, currents and wave-current interaction in the coastal zone is being 

carried out without reference to a specific location and hence it was deemed appropriate 

to use a steady-state model where external environmental conditions do not have a 

significant effect on the coastal zone to be examined. 

 

2.4.1.3.2 Steady State Phase Resolving Wave Models 

There are many different types of steady state phase-resolving wave propagation models 

and it was necessary to select an appropriate one for use in this project. Any of the wave 

theories discussed in Section 2.3.1 can be used as the mathematical basis for a numerical 

steady-state phase-resolving wave propagation mode. However, in most cases the phase-

resolving models are based on Linear Theory or Boussinesq Theory. These include Linear 

models such as RCPWAVE by Ebersole (1985) and Ebersole et al. (1986), REF/DIF by 

Kirby and Dalrymple (1984) and CGWAVE by Demirbilek and Panchang (1998) and 

Boussinesq models such as BOUSS-2D as described by Nwogu and Demirbilek (2001) 

and the models of Madsen and Sorenson (1992) and Wei et al. (1995). 

 

As described in Section 2.3.1.1.2.1.3 the traditional Boussinesq equations assumed a 

quadratic variation of wave velocity potential over the depth and were only suitable for 
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use in water of shallow depth. Although significant work has been completed by authors 

such as Nwogu (1993) to extend the effectiveness of Boussinesq Theory into the 

intermediate zone its usefulness for an overall model that can examine waves propagating 

in water of any depth is still limited. In comparison phase resolving wave models based 

on Linear Theory, which assume a hyperbolic cosine variation of the same property over 

the depth of the water column, are valid in water of all depths. 

 

This project examines wave propagation, reflection and refraction in the coastal zone for 

varying bathymetry. No assumption is made with regard to the water depth being shallow 

and in some cases the water depth is transitional or deep. Hence, the author decided that a 

steady state phase resolving wave model based on Linear Theory is more appropriate for 

the aims of this project. The computer model created in this work is not limited to 

examining shallow water waves. This decision is made by a number of other authors with 

similar research interests, such as Chen et al. (2005). 

 

2.4.1.3.3 Historical Development of Phase Resolving Models 

Over the years engineers and scientists have used various methods to examine the effects 

of wave propagation. The increasing availability of computer processing power in recent 

years has led to a gradual change away from approximate graphical techniques towards 

increasingly more accurate numerical solution schemes for wave theories. As discussed in 

Section 2.3.1.3.2 the scope of this project is concerned with models based on linear theory 

so the following discussing will be limited to that theory. 

 

2.4.1.3.3.1 Ray Tracing Techniques 

Early wave models were based on graphical techniques. A simplified linear refraction 

theory was usually developed for these models and then wave rays were drawn to trace 

the behaviour of a specific wave across a spatial domain. The effects of shoaling could 

also be included. Vincent et al. (2002) provides a development of a wave ray theory 

following the development of Dean and Dalrymple (1991). These wave rays were lines 

drawn perpendicular to the wave crest. One of the main principles of ray theory is that 

energy between the wave rays remains constant. Hence the rays tend to move closer 

together in areas of wave focusing and further apart when the opposite occurs. Ray 

tracing techniques are limited by a number of factors. Most wave ray theories cannot 

model reflected waves so any obstacles within a modelled domain cannot be reflecting. In 
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regions where complex bathymetry causes the occurrence of amphidromic points classic 

wave ray theory tends to break down because the wave rays cross leading to a physically 

impossible situation. Wave rays also tend to behave erratically in domains with rapidly 

varying bathymetry and Vincent et al. (2002) highlight the problems that may occur even 

when smoothing techniques are used for the seabed. Wave rays are usually drawn by a 

progressive method that goes from deep to shallow water, hence any inaccuracies early in 

the drawing process will be magnified downstream. In more recent times computer 

programs have been developed to draw wave rays, these include those of Harrison and 

Wilson (1964), Dobson (1967) and Noda et al. (1974). 

 

Wave ray techniques have mainly been superseded by numerical methods such as the 

mild-slope equation discussed in Sections 2.4.1.3.3.2 and 2.4.1.3.3.3; however, many 

authors have noted their usefulness as a speedy approach to obtain approximate solutions 

in simple circumstances. Clyne (2008) examines a new application of wave ray 

techniques for the simulation of wave breaking and recovery and for use in the 

construction of finite element solution meshes for more complex problems solved using 

the mild-slope equation. This method utilises a wave potential solution from an elliptic 

mild-slope wave model to draw progressive wave rays for the particular wave in question. 

 

2.4.1.3.3.2 Elliptic Mild-Slope Equation 

With the evident limitations on wave ray techniques and the increasing power of desktop 

computers numerical solution of wave behaviour has become significantly more popular 

than wave ray techniques. Various different numerical solutions have been derived based 

on the various wave theories described in Section 2.3.1. As discussed in Section 2.3.1.3.2 

Linear Theory has shown itself to be the most suitable for the current project. One 

numerical solution based on linear theory that includes the effects of refraction, 

diffraction and reflection has been adopted in various forms by most computer based 

numerical models used to examine wave behaviour. This solution is the Mild-Slope 

Equation originally developed by Berkhoff (1972). 

 

In the case of water waves of small amplitude it can be assumed that the fluid behaves in 

an incompressible, irrotational and inviscid manner. The use of such assumptions reduces 

the governing Navier-Stokes equations of motion for the fluid to a three dimensional 

Laplace equation. It would be possible to solve this three-dimensional Laplace equation 
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for wave behaviour but only in a very small domain due to the numerical intensity of the 

solution. A suggested method of more efficiently treating this three-dimensional Laplace 

equation is to integrate it vertically thus removing one degree of freedom from the system 

that must be solved. The vertically integrated Laplace equation for fluid motion is known 

as the mild-slope equation due to the assumption of a slowly varying seabed that is 

required to carry out the integration. 

 

Berkhoff (1972) was the first to carry out this vertical integration procedure and thus 

developed a combined refraction-diffraction numerical solution known as the mild-slope 

equation. The Mild-Slope Equation is sometimes referred to as the Elliptic Mild-Slope 

Equation in order to distinguish its full elliptic form as derived by Berkhoff (1972) from 

some of the approximations that were later used to make the solution of the equation more 

computationally efficient. 

 

The elliptic mild-slope equation developed by Berkhoff (1972) has been extended by a 

number of authors since. In general the alterations have included extra terms in the 

equation in order to account for the effects of various physical phenomena. These include 

the addition of terms to account for energy dissipation, both due to friction by Chen 

(1986), Dalrymple et al. (1984) and Liu (1994), and due to wave breaking by Dally et al. 

(1985) and De Girolamo et al. (1988). 

 

Extra terms have also been included in the Elliptic Mild-Slope equation to counteract the 

“mild slope” assumption made during its derivation. Although these terms don’t remove 

this assumption they allow for the mild-slope equation to be used in domains with a 

steeper seabed. These “Extended Mild-Slope” terms allow the use of the now Extended 

Mild-Slope Equation on slopes steeper than the 1 in 3 slope that Booij (1983) states is the 

limit of accuracy for the mild-slope equation. Authors that have addressed the extension 

of the Mild-Slope Equation to steeper slopes are Massel (1993, 1994), Chamberlain and 

Porter (1995), Porter and Staziker (1995) and Clyne and Mullarkey (2008). The wave 

equations developed as part of this work also include extended terms to address the mild 

slope assumption. 
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The effects of wave-current interaction have also been included in some extensions to the 

Mild-Slope Equation. The effect of currents on the wave solution of the mild-slope 

equation was examined by Booij (1981) and subsequently corrected by Kirby (1984). It 

was also examined by Kostense et al. (1988). Panchang et al. (1999) mentions that for 

implementation of the current terms in any solution to the Mild-Slope Equation including 

the current terms developed by the authors listed here it is necessary to know the specific 

wave direction at any given point. This may not always be available for complex models 

involving obstacles or rapidly varying bathymetry. Panchang et al. (1999) highlights the 

inclusion of terms that model the effect of currents on waves in the Mild-Slope Equation 

as an area where further research is required. Chen et al. (2005) and Kostense et al. 

(1988) use an iterative scheme that updates on the gradient of phase to address the 

problem of unknown wave direction. 

 

In order to make use of any variant of the Mild-Slope Equation an appropriate solution 

scheme is required. For most modern models this takes the form of either a finite 

difference or a finite element model. The complex nature of the equation is such that the 

discretisation of the equation over the domain in question and subsequent solving of the 

resulting system of equations is the most efficient solution. Due to its scalability and 

arbitrary unmapped meshing possibilities the finite element method has enjoyed increased 

favour in recent times. The programming of a finite element solution to the system of 

equations is, however, significantly more difficult than that of a finite difference scheme. 

Tsay and Liu (1983), Chen and Houston (1987), Demirbilek and Panchang (1998) and 

Clyne (2008) all developed finite element models for the Elliptic Mild-Slope Equation. 

Some of these models are discussed further in Section 2.3.1.3.4. 

 

The solution scheme used to solve the discretised Mild-Slope Equation within a finite 

element domain is the key factor in determining the efficiency of the finite element 

model. Earlier models such as Tsay and Liu (1983) and Chen and Houston (1987) were 

restricted to the use of Gaussian elimination for solving the systems of equations. Later 

models more efficiently deal with the solution process. The model of Demirbilek and 

Panchang (1998) used the conjugate gradient method, and Clyne (2008) used a forward 

elimination and back substitution with upper and lower triangular matrices method after  

Zienkiewicz (1977). Both of these models significantly reduce the computational intensity 

of the finite element solution to the mild-slope equation. 
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The Mild-Slope Equation within the domain is largely the same in all the models 

discussed. However the types of boundary conditions used on the boundaries of the 

domain vary from model to model. The selection of appropriate boundary conditions is of 

vital importance to the accuracy of the solution obtained. In some cases the same model 

may require different boundary conditions depending on the wave conditions and physical 

makeup of the domain being examined.  

 

Generally on the downstream (beach) boundary of the finite element a fully absorbing or 

partially reflecting boundary condition will be used. Berkhoff (1976) developed a 

boundary condition that allowed partial reflection based on a parameter that varied from 0 

to 1 where 0 was fully absorbing and 1 was completely reflecting. The assumption is 

made that the wave is travelling perpendicular to the reflecting obstacle when reflection 

occurs. A phase lag term is also included in the Berkhoff (1976) partial reflection 

solution. Both Isaacson and Qu (1990) and Steward and Panchang (2000) investigate the 

inclusion of a non-perpendicular wave angle at reflection in the Berkhoff (1976) partial 

reflection method. In both cases this involves iteration of the solution compared to the 

single step solution of the Berkhoff (1976) method. Although the Steward and Panchang 

(2000) method has been shown to give quite accurate results the Berkhoff (1976) method 

is still used in many computer models such as those of Xu and Panchang (1993), 

Thompson et al. (1996), Xu et al. (1996), and Demirbilek and Panchang (1998), because 

of its simplicity. The Clyne (2008) model incorporates a similar scaling factor to Berkhoff 

(1976) but for increased accuracy includes it with an absorbing boundary condition based 

on the parabolic approximation to the Mild-Slope Equation after Booij (1981). 

 

On the upstream (open) boundary a condition is required that specifies the input values of 

various wave properties and in the case of most models the upstream boundary condition 

is required to allow backscattered and reflected wave energy to escape from the domain 

so as not to pollute the results. A number of different boundary conditions have been 

developed to achieve this aim. Panchang et al. (1991) use a simple radiation condition 

that was derived assuming a constant depth outside the domain and assuming the crests of 

back scattered waves are parallel to the boundary.  Berkhoff (1972) developed a 

modelling method which uses a Sommerfeld radiation boundary condition which uses 

Hankel functions to represent the radiated wave field. The Hankel functions are solved as 

part of the overall system of equations. Zienkiewicz (1977) developed a radiation 
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condition using infinite elements. These infinite elements have shape functions that are 

applied on the open boundary and decay to zero at infinity. A method that combines the 

main points of Berkhoff (1972) and Zienkiewicz (1977) is used by Thompson et al. 

(1996). A hybrid grid is created using a main domain of conventional finite elements and 

a second semi-infinite domain using an analytical solution for constant depth with Hankel 

functions. Other authors such as Houston (1981), Tsay and Liu (1983) and Xu et al. 

(1996) use a super-element technique to link open boundary points to points at infinity 

where the backscattered wave field is known. This method requires the use of Bessel 

functions to describe the backscattered waves.  

 

More recently Kirby (1989) and Xu et al. (1996) investigate the use of a parabolic 

approximation to the Mild-Slope Equation as a radiation boundary condition. This 

method has the advantage of being more accurate when waves do not approach the 

boundary with crests parallel to that boundary. This is likely to be the case in most 

models. Clyne (2008) states that the radiation condition using a parabolic approximation 

to the Mild-Slope Equation is accurate for waves making small angles to the boundary 

and that this is the case in most models. Xu et al. (1996) compare the results of this 

method to the more traditional super-element method described above and find that the 

parabolic approximation method is not sensitive to the size of the domain and provides a 

more accurate result in cases where the super-element conditions have not been 

appropriately tuned to the problem being analysed. 

 

Panchang et al. (2000), Zhao et al. (2001), Clyne and Mullarkey (2004, 2008) and Clyne 

(2008) investigate a radiation boundary condition where initially the cross shore domain 

is solved using a one dimensional elliptic mild-slope wave model and then the results of 

this model are interpolated as an incident wave field in conjunction with the parabolic 

approximation to the Mild-Slope Equation on to the open boundary of a two-dimensional 

model. Panchang et al. (2000) obtains results superior to those of the traditional super 

element method using this technique and Zhao et al. (2001) obtained results better than 

the traditional method of Xu et al. (1996). The parabolic approximation used by Clyne 

and Mullarkey (2004, 2008) and Clyne (2008) is based on the original parabolic 

approximation of Radder (1979) and it corresponds to a simple version of that used by 

Booij (1981). 
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2.4.1.3.3.3 Parabolic Approximation to Mild-Slope Equation 

The increasing power of desktop computing in recent years has led to the creation of 

many computer models based on the Elliptic Mild-Slope Equation; however, in the recent 

past the computational intensity of such models prohibited their use in all but the smallest 

domains with the simplest bathymetry. At that time it was necessary to create 

approximate models that could reasonably accurately simulate the results of the Elliptic 

Mild-Slope Equation. Radder (1979) derived a parabolic approximation to the Elliptic 

Mild-Slope Equation, this parabolic approximation proved significantly less 

computationally intense and required less nodes per wavelength within the domain than a 

corresponding elliptic model. This improved efficiency was obtained with a 

corresponding loss in accuracy. The parabolic approximation does not include the effects 

of forward diffraction i.e. diffraction is only considered along the wave crest. It is also 

impossible to model wave reflection with the parabolic approximation and hence no 

reflecting obstacles could be included within a domain being examined using this method. 

Since the Radder (1979) derivation of the parabolic approximation other authors have 

included extra terms in the parabolic equation both to improve its accuracy and to allow it 

to model extra physical effects such as current interaction and breaking. Examples include 

Booij (1981), Berkhoff et al. (1982), Kirby and Dalrymple (1984), Kirby (1986), Kirby 

(1989) and Kirby et al. (1994). A large number of computer models were based on the 

parabolic approximation to the Mild-Slope Equation because of its efficiency. A selection 

of these is discussed in Section 2.4.1.3.4 below. The parabolic approximation to the Mild-

Slope Equation has also proved itself to be very useful as a boundary condition for 

models based on the complete Elliptic Mild-Slope Equation. This is discussed in Section 

2.3.1.3.3.2 above. 
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2.4.1.3.4 Examples of Steady State Phase Resolving Wave Models based on Linear 

Theory 

There are a vast number of steady state phase resolving computer wave models available 

based on Linear Theory. It would be beyond the scope of this project to examine every 

available model. However, a selection of state of the art models is examined in the 

following sections. 

 

2.4.1.3.4.1 RCPWAVE 

RCPWAVE is a finite difference steady state phase resolving model based on linear wave 

theory. Full details of RCPWAVE can be found in Ebersole (1985) and Ebersole et al. 

(1986). RCPWAVE is based on the parabolic simplification of the elliptic mild-slope 

equation discussed in Section 2.4.1.3.3.3 above. For this model the mild-slope equation is 

separated into real and imaginary components and used with an explicit form of the 

irrotationality equation to obtain three coupled equations that can be solved for wave 

height, direction and phase gradient. RCPWAVE solves these coupled equations using a 

forward marching scheme that starts with specific input wave conditions at the deep 

boundary of the domain being examined and calculates the solution towards the beach. 

This solution method can only be used in cases where no reflection occurs and refraction 

is only in the advancing wave direction. This precludes the presence of reflecting 

obstacles within the domain being examined. Vincent et al. (2002) discuss this fact and 

mention that this limitation allows larger mesh sizes to be used by RCPWAVE, hence it 

can be used to examine larger domains more efficiently than other models. Panchang et 

al. (1999) also examine RCPWAVE and mention that for certain frequencies and grid 

layouts a solution does not converge and hence in many cases it is necessary to carry out a 

stability analysis on an engineering problem prior to solving it with RCPWAVE. For 

wave breaking RCPWAVE calculates a limiting wave height using the method of Weggel 

(1972) beyond this limit the model initiates the breaking wave model of Dally et al. 

(1985) If during breaking wave height falls below the stable value discussed by Dally et 

al. (1985) the energy dissipation term that instigates breaking is switched off. 

 

2.4.1.3.4.2 REF/DIF 

REF/DIF, based on the equations of Kirby (1984) is a weakly non-linear wave refraction 

diffraction model. REF/DIF is based on a wide angle parabolic solution of the mild-slope 

equation. The full elliptic solution to the mild-slope equation and its parabolic 
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approximation are discussed in Section 2.4.1.3.3.2 and 2.4.1.3.3.3 above. REF/DIF also 

includes third order non-linear Stokes Theory terms to provide more accurate results for 

wave behaviour in the intermediate water. The inclusion of these third order terms in very 

shallow water would cause inaccurate results and hence REF/DIF includes a smooth 

correction between Stokes Theory and an approximation to linear theory by Hedges 

(1976) to provide smoother more accurate results in the surf zone. The inclusion of higher 

order terms can also cause numerical noise to occur in the solution especially in the 

vicinity of breaker points and obstacles such as islands. A noise filtering subroutine has 

been included in REF/DIF to counteract the occurrence of this noise. The smooth 

correction and noise filtering subroutines are discussed in Vincent et al. (2002) and in 

Kirby and Dalrymple (1986a, b) respectively. REF/DIF examines wave height with 

respect to a specific limit beyond which height it instigates a breaking wave energy flux 

decay model detailed by Dally et al. (1985). A spectral version of the REF/DIF model has 

also been developed. The basic mild-slope equations of the REF/DIF model include the 

effects of currents. Hence according to Vincent et al. (2002) “The model can simulate 

aspects of propagation associated with simple currents.” 

 

 

2.4.1.3.4.3 CGWAVE 

CGWAVE contrasts with RCPWAVE and REF/DIF in that instead of being based on the 

Parabolic Approximation of the mild-slope equation it is based on the full elliptic solution 

to the mild-slope equation. CGWAVE is developed in detail in Demirbilek and Panchang 

(1998) and is also examined by Panchang et al. (1999). The increased complexity of the 

elliptic mild-slope equation compared to the parabolic approximation allows CGWAVE 

to solve for refraction, diffraction, reflections by bathymetry and structures, dissipation 

due to friction and breaking, and nonlinear amplitude dispersion. The examination of all 

the effects means that in some places a very refined solution grid is required. CGWAVE 

uses a finite element solution scheme which provides a more scalable grid than a finite 

difference method. The conjugate gradient method developed by Panchang et al. (1991) is 

used to solve the system of equations developed using the finite element method. 

CGWAVE uses energy dissipation terms based on the equations of Dally et al. (1985), 

Demirbilek (1994) and Briggs et al. (1996) for wave breaking. CGWAVE does not yet 

include the effects of wave-current interaction. 
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2.4.1.3.4.4 Clyne (2008) 

The Clyne (2008) model is an updated version of the previous models by the same author 

discussed in Clyne and Mullarkey (2004, 2008). This is a finite element model based on 

the complete Elliptic Mild-Slope Equation extended to include the effects of a steep 

bottom. As with CGWAVE the superiority of the elliptic mild-slope equation above the 

parabolic approximation allows the Clyne (2008) model to solve for refraction, 

diffraction, reflections by bathymetry and structures and dissipation due to breaking. 

Clyne (2008) examines the use of this model for a wide variety of scenarios and compares 

it with both measured results and other models. The results are very favourable. The 

Clyne (2008) model uses a forward elimination and back substitution with upper and 

lower triangular matrices method after Zienkiewicz (1977) for solution of the system of 

matrices. Breaking is carried out in the model using an energy dissipation term after Dally 

et al. (1985) and Battjes and Janssen (1978). Wave-current interaction is not examined by 

the Clyne (2008) model. 

 

2.4.1.3.4.5 MIKE 21 

MIKE 21 is a state of the art finite difference computer model incorporating both a wave 

model and a hydrodynamic model. The MIKE 21 wave model can be run either using the 

parabolic approximation to the mild-slope equation discussed in Danish Hydraulic 

Institute (2008b), or using the complete elliptic solution to the mild-slope equation 

discussed in Danish Hydraulic Institute (2008c). Neither version of the MIKE 21 wave 

model includes the effects of wave current interaction. The model equations listed by 

Danish Hydraulic Institute (2008b, c) are based on the mild-slope equation in the absence 

of currents. The MIKE 21 wave model includes an energy dissipation term for wave 

breaking based on the work of Battjes and Janssen (1978). There is also a term included 

for the dissipation of energy due to bottom friction which for monochromatic waves is 

based on the work of Putnam and Johnson (1949). A spectral wave version of the MIKE 

21 model is available. 

 

2.4.1.3.4.6 PHAROS 

PHAROS is a finite element computer model based on the Berkhoff (1972) solution to the 

elliptic mild slope equation and extended to account for the presence of ambient currents. 

PHAROS includes terms for energy dissipation from wave breaking based on the work of 

Battjes and Janssen (1978) and energy dissipation terms due to bed friction are also 
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included after the work of Putnam and Johnson (1949). The PHAROS model can utilise 

reflection, partial reflection and transmission boundary conditions. Wave diffraction, 

refraction and shoaling due to bathymetry and ambient currents and wave reflection can 

be examined by PHAROS.   
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2.4.2 Models of Nearshore Currents and Set-up/Set-down 

2.4.2.1 Introduction 

Currents in the near shore region can be driven by tidal effects, wave breaking or wind 

effects. In general nearshore currents can be split into two distinct categories; those that 

travel parallel to the shore, known as longshore currents and those that travel 

perpendicular to the shore, known as cross-shore or rip currents. A current in any 

direction can be defined by its longshore and cross-shore components. In many cases 

circulation cells may form in the coastal region that comprises sections of coastline where 

a longshore current is dominant and interspersed with rip currents. Currents caused by 

wind may occur in any direction dependant on meteorological conditions. Currents 

caused by tidal effects are always a property of the tidal range and bathymetry at the 

location being examined. Wave-driven currents are caused by radiation stress, an effect of 

breaking waves which has been discussed in Sections 2.2.5 and 2.3.4 above. Obliquely 

breaking waves on a beach will create a longshore current which at abrupt bathymetric 

changes will give rise to a rip current. Waves breaking directly perpendicular to a beach 

may in some cases generate circulation cells depending on the bathymetry of the beach. 

Second order nearshore currents occur in cases where the set-up/set-down caused by 

cross-shore radiation stress varies along a coastline. This variation in set-up/set-down 

leads to a difference in water pressures and hence a hydrostatic flow of fluid from one 

location to another. Sorenson (2006) discusses the magnitude of longshore currents. The 

results of Szuwalski (1970) are quoted.  Szuwalski (1970) produced results of a very large 

number of longshore current measurements off the California coast taken at a number of 

different sites. The values of longshore current were generally below 0.5m/s but in some 

extreme cases reached values of approximately 1m/s. 

 

2.4.2.2 Analytical Calculation of Wave-Driven Currents 

The only nearshore currents that lend themselves to possible analytical calculation are 

wave-driven longshore currents. Longuet-Higgins (1970a, b) developed his work on 

Radiation Stress into a simple analytical formula for longshore current. The assumptions 

made in this derivation were uniformity of bathymetry and wave behaviour in the 

alongshore direction, no lateral mixing and a small angle of wave incidence. Komar and 

Inman (1970) also develop a formula for prediction of longshore current. Smith (2003) 

provides the equation of the Komar and Inman (1970) solution and shows that a value for 

longshore current can only be obtained at the midpoint of the surf zone using this method. 
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The solution is independent of both beach slope and bottom roughness which would 

indicate an assumed relationship between the two which leads to a constant value. 

 

2.4.2.3 Cross Shore Profile of Longshore Currents 

An idealised solution for longshore current would have a linear profile across the surf-

zone from zero at the beach to a maximum velocity at the breaker point beyond which the 

longshore velocity would be zero. The formula of Longuet-Higgins (1970a, b) provides 

this triangular profile exactly. In nature, however, the presence of turbulent diffusion has 

a mixing effect which smoothes this profile. The selection of the turbulent diffusion term 

is important for quantifying the degree of longshore current outside the surf zone and the 

peak value of longshore current within the surf zone.  

 

Physically the turbulent diffusion or lateral mixing is caused by horizontal eddies 

developed by wave breaking. Bowen (1969) assumed that a constant eddy coefficient 

could be used across the surf zone to model this process. Longuet-Higgins (1970b) 

developed a formula for calculating the eddy coefficient that linked the value of the 

coefficient with the distance offshore. Battjes (1975) suggests that the eddy coefficient is 

actually governed by the depth and hence its relationship to distance offshore is only valid 

for uniformly sloping beaches. Battjes (1975) derived a method based on beach slope and 

local rate of wave-energy dissipation, this relationship is very similar to that of Longuet-

Higgins (1970b) for uniform beaches but shows a difference for non-uniform ones. 

Thornton (1970) and Jonsson et al. (1974) based their calculation of the eddy coefficient 

on wave orbital motions a methodology which Battjes (1975) criticised because the main 

source of turbulence in the surf zone is wave breaking and not orbital motions. Church 

and Thornton (1993) discuss the use of an equation linking the eddy coefficient with 

turbulent kinetic energy. This methodology links the eddy viscosity directly to the 

dissipation of wave energy.  

 

The selection of an appropriate methodology for calculation of the eddy coefficient can 

depend largely on the scenarios being examined by the model in question. All the 

methodologies discussed in this section can be found in present state of the art models. 

Mei et al. (2005) suggest the use of the Longuet-Higgins (1970b) model. The NMLONG 

model of Larson and Kraus (1991) uses a methodology based on orbital motions. 

Kuriyama and Nakatsukasa (2000) and the TIDEFLOW-2D and  University of Liverpool 
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models examined by Péchon et al. (1997) use the Battjes (1975) method. The CIRCO and 

University of Thessaloniki models examined by Péchon et al. (1997) use the method 

based on turbulent kinetic energy. Leont'yev (1997) found that after examining various 

types of horizontal eddy viscosity coefficients the best agreement with available 

longshore current data was obtained from using a uniform value throughout the surf zone. 

The MIKE 21 HD model examined by Péchon et al. (1997) also uses a uniform value 

throughout the surf zone, however it is stated by Danish Hydraulic Institute (2008b) that 

the newer version of MIKE 21 also allows the user the option of applying the eddy 

viscosity as “A time-varying function of the local gradients in the velocity field.” After 

examination of the principles involved it was decided for this project it would be best to 

select appropriate turbulent diffusion and energy dissipation methods for each given 

circumstance as opposed to deciding on one overall method. It would then be possible to 

examine the results to determine the appropriateness of each method. 

 

2.4.2.4 Analytical Calculation of  Set-up/Set-down 

The physical process of set-up/set-down has been discussed in Section 2.2.4 and the 

available mathematical descriptions of the process have been examined in Section 2.3.3. 

Smith (2003) provides an analytical formula, after Longuet-Higgins and Stewart (1963), 

for calculating set-up and set-down in the case of simple waves approaching a beach with 

unvarying bathymetry in the alongshore direction. However, most modern calculation of 

set-up/set-down is focused on using numerical models that combine the effects of 

radiation stress with the governing equations for momentum and conservation of mass 

that define hydrodynamic behaviour of fluids. 

 

2.4.2.5 Bed Friction 

In the presence of both waves and current the friction between the water column and the 

sea-bed is a significant factor in the dissipation of energy. Indeed in the case of some 

wave-generated currents the bottom friction combined with turbulence effects are the only 

factors resisting the flow. Jonsson et al. (1974) proposed a formula for bottom friction in 

the presence of both waves and current. Mei et al. (2005) presents this quadratic law as 

appropriate for use in the presence of waves and current. Kraus and Larson (1991) also 

present the same formula for use in the presence of a large current and small waves. There 

is no indication provided, however, of the range of magnitudes of current for which it is 

valid. Péchon et al. (1997) examine a number of different wave-driven current models 
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and find that all but one of the seven models examined use a quadratic law of wave driven 

velocity to model bottom friction. This model is also used by Newell et al. (2005b). Some 

of the models examined by Péchon et al. (1997) also include a wave orbital velocity 

component in the bottom friction term similar to that included in the Newell et al. (2005b) 

model. 

 

 

2.4.2.6 Numerical Models for Wave-Generated Currents and Set-up/Set-down 

2.4.2.6.1 Introduction 

Set-up/set-down and wave generated currents have proved much easier to examine with 

the use of modern numerical models solved by computer. Although the early analytical 

and empirical formulae discussed above can be used in some simple circumstances it is 

necessary to run numerical models to obtain values of currents and set-up/set-down where 

complex bathymetry and wave scenarios are being examined. These numerical computer 

models are based on the conservation of mass and Navier-Stokes momentum equations 

that describe the hydrodynamic behaviour of fluids. The momentum equations can 

include terms to model bed friction, turbulent diffusion and the driving force of radiation 

stress generated by a wave field. In most cases the momentum equations are developed in 

a vertically averaged form that allows the model to be solved in two dimensions as 

opposed to a more computationally intensive solution in three dimensions. 

 

2.4.2.6.2 NMLONG 

The NMLONG model of Kraus and Larson (1991) and Larson and Kraus (2002) is a one 

dimensional, depth-averaged, finite difference model that solves for set-up/set-down and 

longshore currents for waves approaching a beach with non-varying bathymetry in the 

longshore direction. NMLONG uses gradients of radiation stress as a driving force within 

the momentum equations. The lateral dispersion term in the NMLONG model is based on 

energy dissipation as a function of eddy viscosity which in turn is taken as a function of 

characteristic wave orbital velocity. The bottom friction term in the NMLONG model is a 

quadratic law of wave driven velocity. 

 

  

 
 45 



LITERATURE AND STATE-OF-THE-ART REVIEW  C. Newell 
 
2.4.2.6.3 MIKE 21 HD 

MIKE 21 is a series of both wave and hydrodynamic models that examine behaviour in 

the coastal zone. The depth averaged hydrodynamic portion of the model that calculates 

set-up/set-down and wave-driven currents using a finite difference solution scheme in two 

dimensions is titled MIKE 21 HD. The basic equations of the MIKE 21 HD model are 

discussed by Danish Hydraulic Institute (2008a, b). The MIKE 21 HD model includes a 

quadratic law of wave driven velocity to model bottom friction and has the option of 

using a uniform value of eddy viscosity throughout the surf zone for lateral dispersion. 

However MIKE 21 HD also allows the user the option to apply the eddy viscosity as “A 

time-varying function of the local gradients in the velocity field.” Gradients of radiation 

stress are used by the MIKE 21 HD model as a driving force for wave generated effects. 

 

2.4.2.6.4 TELEMAC-3D 

TELEMAC-3D was examined by Péchon et al. (1997) and compared with a number of 

other wave driven models. TELEMAC-3D includes a constant viscosity coefficient and a 

wave energy dissipation term to model turbulent diffusion. It also includes a quadratic 

equation of wave driven velocity to model bottom friction. TELEMAC-3D uses an 

expression of radiation stress developed by Dingemans et al. (1987). It was noted by 

Péchon et al. (1997) that in order to obtain accurate results using the TELEMAC-3D 

model it was necessary to apply a correction coefficient to the driving terms obtained by 

the model. TELEMAC-3D does not adopt a depth averaged solution and must therefore 

be solved in three dimensions. 

 

2.4.2.6.5 Newell et al. (2005b) 

Newell et al. (2005b) is a publication of earlier work of this thesis. As such the model 

presented in the paper is an earlier version of final model presented in this thesis. The 

model uses gradients of radiation stress as the driving term in the momentum equations. 

The bottom friction is modelled using a quadratic law developed after Mei et al. (2005) 

and including the effects of wave orbital velocity. No turbulent diffusion had been 

included in the model at the 2005 stage. The Newell et al. (2005b) model is a depth-

averaged model and hence solutions are obtained for set-up/set-down and current over 

two depth-averaged dimensions. 
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2.5 Research Decisions based on Literature and State of the Art Review 

As stated in Chapter 1 the aim of this project was to examine the behaviour of waves in 

the presence of obstacles and complex bathymetry in the coastal zone and to examine the 

effects generated by these waves. 

 

2.5.1 Newell Mullarkey Wave-Current Interaction Model (NM-WCIM) 

It was apparent from the literature review carried out in this chapter that considering the 

stated aims of this project, monochromatic waves should be examined. The complexity of 

the bathymetry to be examined and the range of depths being examined lead to the 

conclusion that the most efficient wave theory to use for the broad range of scenarios 

being examined was linear wave theory. The extended elliptic solution to the mild-slope 

equation including the effects of currents is the most accurate solution available for linear 

wave theory and was therefore selected for use in this project. The inclusion of extended 

terms will address the assumption of a mild slope in the derivation of the elliptic equation. 

The wide availability and complexity of wave breaking methodologies led to the 

conclusion that it was not appropriate to limit the model to one breaking methodology. A 

better solution was to select an appropriate breaking methodology for each individual 

scenario being examined. It was apparent also from the state of the art numerical wave 

models examined in this chapter that the use of a finite element technique for numerical 

solution allowed more scalability. A finite element solution scheme was chosen for this 

project on the basis that it would allow a concentration of the results of the model in 

locations that were of interest without the necessity for detailed computationally intensive 

calculations in regions of little interest. 

 

2.5.2 Newell Mullarkey Wave-Driven Hydrodynamic Model (NM-WDHM) 

Use of the Navier-Stokes momentum equations and conservation of mass are considered 

the most appropriate way of examining wave-generated behaviour. From the literature 

review carried out above it was apparent the most widespread and favoured method of 

including a wave driving force in the momentum equations was using the gradients of 

radiation stress obtained from the wave field. It was considered appropriate to use this 

method for the current project. The use of a quadratic law including wave orbital terms is 

seen as the most accurate way to simulate bottom friction and it was decided that this 

project would include such a method. There is a wide range of methodologies available to 

describe turbulent diffusion effects and it was considered necessary to examine more than 
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one. The two most widespread and most scientifically viable methods were examined in 

detail in this project; namely the energy dissipation method based on eddy viscosity of 

Battjes (1975) and the methodology of Longuet-Higgins (1970b). Using the information 

discussed in this chapter it was decided to use a depth-integrated wave driven 

hydrodynamic model. It was considered that the increased computational load that would 

result from a three-dimensional model would have a serious detrimental effect on the 

possible range and number of scenarios that could be examined which would not be 

outweighed by the increase in accuracy of results. Section 2.5.1 discusses the use of a 

finite element solution technique in the NM-WCIM. The same arguments apply here and 

hence it was deemed appropriate to use a finite element solution technique for the NM-

WDHM. 



 

Chapter 3: Wave Current Interaction Model 
“Do not worry about your difficulties in mathematics, I assure you that mine are greater,” Albert Einstein. 
 

 

3.1 Introduction 

This chapter presents the derivation of the basic equations for the NM-WCIM. Berkhoff 

(1976) developed an elliptic solution to the mild-slope equation that excludes the effects 

of current. Booij (1981) developed a mild-slope equation including the effects of current 

(subsequently corrected by Kirby (1984) for inaccuracies in the current terms) using a 

variational calculus approach. Massel (1993) and Clyne (2008) developed an elliptic 

solution to the mild-slope wave equation using a Galerkin-Eigenfunction method, 

excluding the effects of current. This chapter presents a similar derivation using the 

Galerkin-Eigenfunction method of Massel (1993) for the formulation of an elliptic 

solution to the mild-slope equation including the effects of current. After derivation of 

this solution it will be adjusted for use in a finite element wave current interaction model. 

The adjustments include the incorporation of appropriate boundary conditions and 

integration of the solution over a triangular finite element. 

 

 

The progression of Chapter 3 is as follows: 

• Initially the governing equations of continuity and momentum for fluid motion are 

discussed and the continuity equation is used to develop a Laplacian equation in 

terms of velocity potential – Sections 3.2 and 3.3 

• A set of non-linear boundary conditions at the free surface and sea-bed are 

developed using the kinematic and momentum equations – Section 3.4 

• The developed Laplacian and boundary conditions are used to obtain a set of 

harmonic wave equations – Section 3.5 

• A vertical eigenfunction is derived by solving the Laplacian equation and its 

boundary conditions on a flat sea bed with a constant current – Section 3.6 

• A Laplacian equation weighted by the vertical equation is then integrated over the 

depth. Using integration by parts combined with the free surface and seabed 

boundary conditions results in the two-dimensional extended mild-slope wave 

equation – Section 3.7 
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• The developed mild-slope equation is used to create a one-dimensional and two-

dimensional finite element model (NM-WCIM) – Sections 3.8 and 3.9 

• A Helmholtz form of the finite element mild-slope wave current interaction model 

is developed – Section 3.10 

• Boundary conditions for the finite element model are examined – Section 3.11 

• Energy dissipation in the NM-WCIM is discussed – Section 3.12 

• Practical aspects of the iterative use of the NM-WCIM are discussed – Section 

3.13 
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3.2 Equations of Continuity and Momentum 

This section discusses the governing equations of fluid motion, known as the Navier-

Stokes Equations for conservation of mass and momentum, within a system following 

closely the work of  Berkhoff (1976) and Clyne (2008). 

 

 
Figure 3.1 – Fixed Volume of Water in Three-Dimensional Space 
 
Figure 3.1 describes a fixed volume of fluid V  with a surface  and an outward normal 

to that surface n . Moving fluid is considered to have an instantaneous velocity 

 and a density 

S

( 1 2 3, ,u u u=u ) ρ .  

 

3.2.1 Continuity Equation 

To formulate any equation for continuity (also known as conservation of mass) within a 

system the mass of that system must first be examined. Mass is defined as the product of 

volume and density. Therefore the mass of the fixed volume described in Figure 3.1 is as 

follows: 

V

M dVρ= ∫∫∫  (3.1) 

 
To examine the change in mass of a fixed volume of fluid with respect to time one must 

examine both a possible change in density within the volume and the flow of fluid 

through the surface of the volume. Hence the derivative of mass with respect to time may 

be expressed as follows: 

.
V S

dM dV dS
dt t

ρ ρ∂= +
∂∫∫∫ ∫∫ u n  (3.2) 
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If the mass is assumed to remain constant then the following is clearly true: 

0dM
dt

=  (3.3) 

 
It is convenient at this stage to examine the divergence theory of Gauss. This states that if 

a vector ( , , )x y za is a continuous function and its first partial derivatives are continuous 

within the domain containing V  then the following identity holds true: 

.
V S

dV dS∇ =∫∫∫ ∫∫a n a.  (3.4) 

 
The Gauss divergence theorem can be used with the second term on the right hand side of 

Equation (3.2) leading to the following expression: 

( ).
V V

M dV dV
t t

ρ ρ∂ ∂= + ∇
∂ ∂∫∫∫ ∫∫∫ u  (3.5) 

 
Combining Equation (3.5) with the assumption of Equation (3.3) gives: 

( )0 .
V

dV
t
ρ ρ∂⎛ ⎞= +∇⎜ ∂⎝ ⎠∫∫∫ u ⎟  (3.6) 

 
The volume V  selected for this derivation is arbitrary in nature and hence the following 

simplification of Equation (3.6) can be made: 

.
t

0ρ ρ∂ +∇ =
∂

u  (3.7) 

 
Equation (3.7) is the Continuity Equation. The first term is the change in density with 

respect to time and the second term is the divergence of the mass flux density vector. 

 

 

3.2.2 Momentum Equation 

Momentum  is defined as the vector resulting from the product of mass and velocity. 

Thus working with Equation 

p

(3.1) the following definition can be made: 

V

dVρ= ∫∫∫p u  (3.8) 

 
The rate of change of momentum with respect to time (known as impulse) can then be 

obtained using Equation (3.2): 

( ).
V S

d dV dS
dt t

ρ ρ∂= +
∂∫∫∫ ∫∫

p u u n u  (3.9) 
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Newton’s principle is that the rate of change of momentum per unit time acting on a 

volume V  is equal to the total force exerted on the volume. In the case of this derivation 

shear forces acting on the body are ignored due to the assumption of negligible viscosity. 

Therefore the forces acting on the body consist of the force of gravity, described as an 

external force vector per unit volume F , and the pressure, described as a vector K  

(including shear stresses and other stresses) acting on the volume’s surface. 

( ).
V S V S

dV dS dV dS
t

ρ ρ ρ∂ + = +
∂∫∫∫ ∫∫ ∫∫∫ ∫∫

u u n u F K  (3.10) 

 
The pressure can be defined as a pressure  acting normal to the surface. The pressure 

vector hence takes on a negative sign as the normal  is defined earlier in this section as 

positive in the outward direction from the surface, whereas the pressure acts inwards on 

the surface. 

p

n

.p ′= − +K n σ n  (3.11) 
Where  is a general stress term. .′σ n
 

Using the result of Equation (3.11) with Equation (3.10) yields the following: 

( ).
V S V S S

dV dS dV p dS dS
t

. 0ρ ρ ρ∂ ′+ − + −
∂∫∫∫ ∫∫ ∫∫∫ ∫∫ ∫∫

u u n u F n σ n =

a

 (3.12) 

 
An inner product of Equation (3.12) and a constant vector  gives: 

( ). . . . . . .
V S V S S

dV dS dV p dS dS
t

0ρ ρ ρ∂ ′+ − + −
∂∫∫∫ ∫∫ ∫∫∫ ∫∫ ∫∫

ua u n u a F a n a a σ n =

′

 (3.13) 

 
Expressing the last term of Equation (3.13) in tensor notation gives: 

. . i ij j
S S

dS a n dSσ′− = −∫∫ ∫∫aσ n  (3.14) 

 
Equation (3.14) can also be expressed as follows using the Gauss divergence theorem: 

. . i ij
iS V

dS a dV
x

σ∂′− = −
∂∫∫ ∫∫∫aσ n ′

′

′

 (3.15) 

 
Exploiting the fact that  in this case allows Equation i j jiσ σ′ = (3.15) to be written as 

follows: 

( ). . . .
S V

dS dV′− = − ∇∫∫ ∫∫∫aσ n aσ  (3.16) 
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Applying the Gauss divergence theorem from Equation (3.4) on the second and fourth 

terms of  Equation (3.13) gives: 

( )

( ) ( )

. . .

. . . .
V V

V V V

dV dV
t

dV p dV dV 0

ρ ρ

ρ

∂ + ∇ ⎡ ⎤⎣ ⎦∂

′− + ∇ − ∇

∫∫∫ ∫∫∫

∫∫∫ ∫∫∫ ∫∫∫

ua u u a

F a a aσ =
 (3.17) 

 

( ) ( ) ( ). . . . . . .
V

p d
t

ρ ρ ρ∂⎛ ⎞′+∇ − +∇ −∇ =⎡ ⎤⎜ ⎣ ⎦∂⎝ ⎠∫∫∫
ua u ua F a a aσ 0V⎟  (3.18) 

 
The second term of Equation (3.18) can be expanded as follows: 

( ) ( ) ( ). . j j
i j j j j i j i j i

i i i

u a
u u a u a u a u u u

ix x x
ρ ρ ρ ρ ρ

∂ ∂∂ ∂∇ = = + +⎡ ⎤⎣ ⎦ ∂ ∂ ∂
u ua

x∂

)∇

)∇

 

 
( ) ( ) ( ) ( ) (. . . . . . . .ρ ρ ρ ρ∇ = ∇ + ∇ +⎡ ⎤⎣ ⎦u u a u a u a u u u u a  (3.19) 

 
The vector  is a constant vector. Hence: a

0∇ =a  (3.20) 
 
Therefore using Equation (3.20) in Equation (3.19) gives: 

( ) ( ) ( ) (. . . . . .ρ ρ ρ∇ = ∇ +⎡ ⎤⎣ ⎦u u a u a u a u u  (3.21) 
 
Using Equation (3.21) with Equation (3.18) yields: 

( ) ( ) ( ) ( ) ( ). . . . . . . . .
V

p d
t

ρ ρ ρ ρ∂⎛ ⎞′+ ∇ + ∇ − +∇ −∇ =⎜ ⎟∂⎝ ⎠∫∫∫
ua ua u a u u Fa a aσ 0V  (3.22) 

 
The vector  can now be isolated: a

( ) ( ) ( ). . . . .
V V

p dV dV
t

ρ ρ ρ ρ∂⎛ ⎞ ′+ ∇ + ∇ − +∇ − ∇ =⎜ ⎟∂⎝ ⎠∫∫∫ ∫∫∫
ua u u u u F aσ 0  (3.23) 

 
The vector  and volume V  are arbitrary in nature and provide neither is zero the 

Equation 

a

(3.23) reduces to: 

( ) ( ) ( ). . .p
t

0ρ ρ ρ ρ∂ ′+ ∇ + ∇ − + ∇ −∇ =
∂

u u u u u F σ  (3.24) 

 
Expanding the first term of Equation (3.24) yields: 

( ) ( ) ( ). . .p
t t

0ρρ ρ ρ ρ∂ ∂ ′+ + ∇ + ∇ − +∇ −∇ =
∂ ∂
u u u u u u F σ  (3.25) 
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Equation (3.25) can also be expressed as: 

( ) ( ) ( ). . p
t t
ρ ρ ρ ρ ρ∂ ∂⎛ ⎞ ′+ ∇ + + ∇ − + ∇ − ∇ =⎜ ⎟∂ ∂⎝ ⎠

uu u u u F σ. 0  (3.26) 

 
Using Equation (3.7) with Equation (3.26) gives: 

( ) ( ). p
t

ρ ρ ρ∂ ′+ ∇ − + ∇ −∇ =
∂
u u u F σ. 0  (3.27) 

 
Equation (3.27) can now be divided across by ρ : 

( ) ( ).
. p

t ρ ρ
′∇∂ ∇+ ∇ − + − =

∂
σu u u F 0  (3.28) 

 

Moving the general stress term in Equation (3.28) to the right hand side of the equation 

yields:  

( ) ( ).
. p

t ρ ρ
′∇∂ ∇+ ∇ − + =

∂
σu u u F  (3.29) 

 
The product rule for vectors can be expressed as follows: 

( ) ( ) ( ) ( ) (. . .∇ = ∇ + ∇ + × ∇ × + × ∇ ×u v u v v u u v v u )

⎤⎦

 (3.30) 
 

In the case where  this becomes: =u v

( ) ( ) ( ). 2 . 2∇ = ∇ + × ∇×⎡⎣u u u u u u  (3.31) 
 
Equation (3.31) can then be rearranged to give: 

( ) ( ) ( )1. .
2

∇ = ∇ − × ∇×⎡⎣u u uu u u ⎤⎦  (3.32) 

 
The second term in Equation (3.29) can be replaced by the result of Equation (3.32): 

( ) ( ) ( ).1 .
2

p
t ρ ρ

′∇∂ + ∇ − × ∇ × − + =
∂

σu u u u u F ∇  (3.33) 

 
When F  represents a conservative vector field the following is true: 

Ω= − ∇F  (3.34) 
 
Equation (3.33) can now be rewritten taking account of Equation (3.34): 

( ) ( ) ( ).1 .
2

p
t

Ω
ρ ρ

′∇∂ ∇+ ∇ − × ∇ × + + ∇ =
∂

σu u u u u  (3.35) 
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The external force potential representing gravity can be expressed as: 

 
gzΩ =  (3.36) 

 
Using Equations (3.34) and (3.36)  with Equation (3.29) yields: 

( ) ( ).
. pgz

t ρ ρ
′∇∂ ∇+ ∇ + ∇ + =

∂
σu u u  (3.37) 

 
Equation (3.37) can be expressed as follows: 

( ).
. p gz

t ρ ρ
′∇⎛ ⎞∂⎛ ⎞+ ∇ = −∇ + +⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠

σ
u u  (3.38) 

 
This form of the momentum equation in the absence of viscosity is given by many authors 

including Mei et al. (2005). 
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3.3 Application of Velocity Potential to Continuity and Momentum Equations 

 

3.3.1 Application of Velocity Potential to the Continuity Equation  

In the coastal zone properties of fluid flow are often expressed in terms of a scalar 

quantity called the velocity potential . The gradient of the velocity potential is the 

velocity. In order to model coastal flow in terms of velocity potential it is necessary to 

assume irrotational flow. This assumption is justified for an ideal fluid where the onset of 

motion has no tendency to cause rotation. The assumption of irrotational flow can be 

expressed mathematically by setting the curl of the water particle velocity to zero: 

Φ

0′∇ × =u  (3.39) 
 
Wave orbital velocity is real component of the gradient of velocity potential: 

(Re′ = ∇Φu )

0

 (3.40) 
 
If the fluid is assumed to be incompressible and homogeneous Equation (3.7) reduces to: 

.∇ =u  (3.41) 
 
 
 
3.3.2  Separation of Velocity and Free Surface Height into Steady and Unsteady 

Components 

The instantaneous velocity of the particle  can be separated into a steady and oscillatory 

portion: 

u

= +u U u  (3.42) 
 
where  is the steady component and  is the unsteady component. The unsteady 

component can be further separated as follows: 

U u

′= +u u u′′

′

j
′

 (3.43) 
 
where  is the wave fluctuation and  is the turbulent fluctuation.  ′u ′′u

 

Equations (3.42) and (3.43) may be combined as follows: 

′ ′= + +u U u u  (3.44) 

 

Equation (3.44) can be expressed in tensor notation as: 

j j ju U u u′ ′= + +   ,  (3.45) 1,2,3j =
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The free surface height η  can also be separated into an unsteady and steady component: 

η ζ η= +  (3.46) 
where ζ  is the unsteady component and η  is the steady component. 

 

3.3.3 Laplace’s Equation 

It is not unreasonable to assume that if  is split into its steady and unsteady components 

these components will individually satisfy Equation 

u

(3.41). This gives the following 

equations for the unsteady wave component and the steady component: 

. ′∇ =u 0

0

0

 (3.47) 
 

.∇ =U  (3.48) 
 

Substitution of Equation (3.40) into Equation (3.47) leads to the following Laplace 

Equation: 
2.∇∇Φ = ∇ Φ =  (3.49) 

 

 
 

3.3.4 Application of Velocity Potential to the Momentum Equation 

Equation (3.38) is the Momentum Equation and can be expressed in tensor notation as 

follows: 

( ) 0iji i
j

j i j

u uu p gz
t x x x

σ
ρ ρ
⎛ ⎞ ′∂∂ ∂ ∂+ + + + = 1,2,3j =⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

,  (3.50) 

 
Substituting Equation (3.45) into Equation (3.50) separates the velocity terms into their 

steady and unsteady components. 

( ) ( ) ( )
( ) 0

i i i j j j i i i
j

ij

i j

U u u U u u U u u
t x

p gz
x x

ρ

σ
ρ

⎛ ⎞∂ ∂′ ′′ ′ ′′ ′ ′′+ + + + + + +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠
′∂∂+ + + =

∂ ∂

,  (3.51) 1,2,3j =

In the absence of a time average turbulent effects in Equation (3.51) can safely be 

neglected giving: 

( ) ( ) ( ) ( ) 0ij
i i j j i i

j i jx∂
1,2,3j =u U u U u U p gz

t x x
σ

ρ ρ
⎛ ⎞ ′∂∂ ∂ ∂′ ′ ′+ + + + + + + =⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

,  (3.52) 
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The steady component of velocity is constant or slowly varying throughout time. Hence 

the following identity is appropriate: 

0iU
t

∂ =
∂

,  (3.53) 1,2,3i =

 
Using Equation (3.53) with Equation (3.52) gives: 

( ) ( ) 0iji i i
j j

j j i j

u u Uu U p gz
t x x x x

ρ 1,2,3j =
σ

ρ
⎛ ⎞⎛ ⎞′ ′∂∂ ∂ ∂ ∂′⎜ ⎟+ + ⎜ + ⎟ + + + =

⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠
,  (3.54) 

 
Carrying out further expansion on Equation (3.54) gives: 

( ) 0

i i i i
j j j

j j j

iji
j

j i i j

u u Uu u U
t x x

U pU gz
x x x x

ρ ρ ρ ρ

σ
ρ ρ

′ ′∂ ∂ ∂′ ′+ + +
∂ ∂ ∂

′∂∂ ∂ ∂+ + + +
∂ ∂ ∂ ∂

u
x

′∂
∂

=

1,2,3j =,  (3.55) 

 
 

Using Equation (3.40) with Equation (3.55) gives: 

( ) 0

i

i j j i j j

iji
j j

j i j i i j

U
t x x x x x x

U pU U gz
x x x x x x

ρ ρ ρ

σ
ρ ρ ρ

⎛ ⎞ ⎛ ⎞ ∂∂ ∂Φ ∂Φ ∂ ∂Φ ∂Φ+ +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
′∂⎛ ⎞ ∂∂ ∂Φ ∂ ∂+ + + + + =

1,2,3j =

⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

,  (3.56) 

 
 
Again following Booij (1981) in relation to the product of wave variables the second term 

on the left hand side will also be removed as it not considered significant. Its contribution 

is considered negligible because it is the product of a spatial derivative of  and a second 

order spatial derivative of Φ . This leaves the following equation: 

Φ

( ) 0

i
j

i j j j i 1,2,3j =
iji

j
j i i j

U U
t x x x x x

U pU gz
x x x x

ρ ρ ρ

σ
ρ ρ

⎛ ⎞ ⎛ ⎞∂∂ ∂Φ ∂Φ ∂ ∂Φ+ +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
′∂∂ ∂ ∂+ + + + =

∂ ∂ ∂ ∂

,  (3.57) 
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In order to examine the unsteady boundary condition any term that includes all steady 

terms can be removed from Equation (3.56). The fifth and sixth terms on the left hand 

side of Equation (3.57) contain both steady and unsteady portions. Figure 3.2, below, 

examines these terms. 

 

 
Figure 3.2 - Diagram of Steady and Unsteady Pressure components in water column 
 
The steady part of p gzρ+  amounts to gρ η  where η  is the set-up. Hence the unsteady 

portion may be defined as: 

(p gz g p g z )ρ ρ η ρ η+ − = + −  (3.58) 

 

It is now possible to remove the steady portion of Equation (3.57) by removing the fourth 

term on the left hand side and using the result of Equation (3.58).  At this point it will also 

be necessary to introduce a wave energy dissipation term as a replacement for the general 

stress term. A force is applied within the momentum equation that opposes the direction 

of flow of the particles. It is assumed that this force is proportional to the instantaneous 

velocity of the particles. 

 

( )( ) 0

i
j

i j j j i , 1, 2,i j =

i i i

U U
t x x x x x

p g z
x x x

ρ ρ ρ

ρ η ργ

⎛ ⎞ ⎛ ⎞∂∂ ∂Φ ∂Φ ∂ ∂Φ+ +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

⎛ ⎞∂ ∂ ∂Φ+ + − + =⎜ ⎟∂ ∂ ∂⎝ ⎠

3,  (3.59) 
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Booij (1981) replaces i

j

U
x

∂
∂

 in this case with j

i

U
x

∂
∂

. Booij (1981) states that this would not 

normally be the case but the mean flow varies slowly spatially so the replacement is one 

small term with another one. This changes Equation (3.59) to be: 

( )( ) 0

j
j

i j i j i , 1, 2,i j =

i i i

U
U

t x x x x x

p g z
x x x

ρ ρ ρ

ρ η ργ

∂⎛ ⎞ ⎛ ⎞∂ ∂Φ ∂Φ ∂ ∂Φ+ +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

⎛ ⎞∂ ∂ ∂Φ+ + − + =⎜ ⎟∂ ∂ ∂⎝ ⎠

3,  (3.60) 

Equation (3.60) can now be rewritten as follows. A small term, 
ix

γρ
⎛ ⎞∂Φ ⎜ ∂⎝ ⎠

⎟ , is added to the 

equation in order to allow the spatial derivative to be isolated. The gradient of γ  is 

significantly smaller than the gradient of  or Φ ( z )η−  and hence the new term will not 

affect the accuracy of the equation. The same method was used by Clyne (2008).  

( )( ) 0

j
i i j i

i i ix
∂ =
∂

, 1, 2,i j =

pU
t x x x x

g z
x x

ρ ρ

γρ η ργ ρ

⎛ ⎞⎛ ⎞∂ ∂Φ ∂ ∂Φ ∂+ +⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞∂ ∂Φ+ − + + Φ⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

3,  (3.61) 

 
Isolating the spatial derivatives in Equation (3.61) gives the following: 

( )

( )( ) ( ) 0

j
i i j i , 1, 2,i j =

i i

U p
x t x x x

g z
x x

ρ ρ

ρ η ργ

⎛ ⎞⎛ ⎞∂ ∂Φ ∂ ∂Φ ∂+ +⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
∂ ∂+ − + Φ =

∂ ∂

3,  (3.62) 

 
Taking a spatial derivative outside brackets Equation (3.62) can be written as: 

( ) 0j
i j

U p g z
x t x

ρ ρ ρ η ργ
⎡ ⎤∂ ∂Φ ∂Φ+ + + − + Φ = , 1, 2,i j =⎢ ⎥∂ ∂ ∂⎢ ⎥⎣ ⎦

3,  (3.63) 

 
Equation (3.63) is valid throughout the fluid including on the free surface.  

 

Integrating Equation (3.63) gives the following equation which is valid throughout the 

fluid: 

( ) ( )j
j

U p g z C t 1,2,3j =
t x

ρ ρ ρ η ργ∂Φ ∂Φ+ + + − + Φ =
∂ ∂

,  (3.64) 



WAVE-CURRENT INTERACTION MODEL  C. Newell 
 

 

 

Equation (3.64) can also be written as: 

( ) ( ). p g z C t
t

η γ
ρ

∂Φ + ∇Φ + + − + Φ =
∂

U  (3.65) 

Equation (3.65) is an equation for waves on a current similar to the Bernoulli Equation in 

the absence of waves. 

 

The constant  is arbitrary in time and constant spatially. The addition of a constant 

term to the velocity potential will not affect the velocity field and hence it is appropriate 

to set  equal to zero. Equation 

( )C t

( )C t (3.64) becomes: 

( ) 0j
j

U p g z
t x

ρ ρ ρ η ργ∂Φ ∂Φ+ + + − + Φ = 1,2,3j =
∂ ∂

,  (3.66) 

Re-expressing Equation (3.66) in terms of pressure leads to an equation where the first 

two terms on the right hand side represent the hydrodynamic pressure components and the 

third term is the static component: 

 

( )j
j

p U g z
t x

ρ ρ ρ η ργ∂Φ ∂Φ= − − − − − Φ
∂ ∂

,  (3.67) 1,2,3j =

 62 
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Figure 3.3 - Full Definition of Surface Measurements including Turbulence

63 
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3.4 Non-Linear Boundary Conditions 

In order to solve Equation (3.49) boundary conditions must be obtained for the domain 

being examined. In this case the domain is bounded by the free surface of the water 

column and the sea bed. 

  

3.4.1 Kinematic Free Surface Boundary Condition for Laplacian Equation 

The following derivation obtains a kinematic boundary condition at the free surface. It 

follows the work of Mei et al. (2005) and Clyne (2008). Figure 3.3, above, shows the free 

surface and seabed boundaries of the water column in the presence of wave and turbulent 

effects. Figure 3.3 shows that the order of magnitude of the turbulent wave effects is 

significantly less than the oscillatory portion of the waves. It is hence considered 

appropriate to disregard the turbulent effects in the selection of boundary conditions. 

Figure 3.4 shows a simplified version of Figure 3.3 in the absence of turbulence. 

 
Figure 3.4 – Diagram of Free Surface and Sea-bed Boundaries in the absence of Turbulence 
 
In the presence of turbulent effects the water surface is defined from Figure 3.3 as: 

z η′′=  (3.68) 
 
Therefore: 

0z η′′− =  (3.69) 
 
Define a function ( ),F tx  where ( , )x y=x : 

( ) ( ), ,F t z tη′′= − =x x 0  (3.70) 
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Figure 3.5 – Following the motion of a particle on the free surface 
 
Assuming a water particle on the free surface moves at a velocity . The position of the 

free surface after a short time  becomes: 

u

dt

( ,F dt t dt+ + =x u ) 0  (3.71) 
 
Employing a Taylor series expansion of Equation (3.71) gives: 

( ) ( ) ( )2, , . ..........FF dt t dt F t F dt O dt
t

∂⎛ ⎞+ + = + + ∇ + +⎜ ⎟∂⎝ ⎠
x u x u  (3.72) 

 
Individually each term on the right hand side of Equation (3.72) is equal to zero. The 

higher order terms need not be considered and the first term has been set up to equal zero 

in Equation (3.70). This leaves: 

.F F
t

∂ + ∇ =
∂

u 0  (3.73) 

 

Examining spatial and temporal gradients of the function  gives the following: F

( )F z
t t t

ηη ′′∂ ∂ ∂′′= − = −
∂ ∂ ∂

 (3.74) 

 

, , , ,1F F FF
x y z x y

η η′′ ′′⎛ ⎞ ⎛∂ ∂ ∂ ∂ ∂∇ = = − −⎜ ⎟ ⎜∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝

⎞
⎟
⎠

 (3.75) 
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Equation (3.73) can be rewritten as follows using the results of Equations (3.74) and 

(3.75): 

1 2 3 0u u u
t x y

η η η′′ ′′ ′′∂ ∂ ∂+ + −
∂ ∂ ∂

=  at z η′′=  (3.76) 

 

Substituting Equations (3.42) and (3.46) into Equation (3.76) gives the following equation 

where steady and unsteady components of both velocity and free surface height are 

separated: 

( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 1 1 1 1

2 2 2 2 2 2 3 3 0

u U u U u U
t t x x x

u U u U u U u U
y y y

ζ ζ ζ ζ η

ζ ζ η

′ ′′ ′ ′′∂ ∂ ∂ ∂ ∂+ + + + + + +
∂ ∂ ∂ ∂ ∂

′ ′′∂ ∂ ∂+ + + + + + − + =
∂ ∂ ∂

 at z η′′=  (3.77) 

 
Expressing Equation (3.77) more explicitly and multiplying across by -1 for simplicity: 

1 1 1 2 2 2 3

z

1 1 1 2 2 2 3 0

u u u u u u u
t t x x x y y y

U U U U U U U
x x x y y y

ζ ζ ζ ζ η ζ ζ η

ζ ζ η ζ ζ η

′ ′′ ′ ′′ ′ ′′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂− − − − − − − − +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

′ ′′ ′ ′′∂ ∂ ∂ ∂ ∂ ∂− − − − − − + =
∂ ∂ ∂ ∂ ∂ ∂

 at η′′=  (3.78)

 
 
Using Equation (3.43) gives: 

( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 1 1 1 1

2 2 2 2 2 2 3 3

1 1 1 2 2 2 3 0

u u u u u u
t t x x x

u u u u u u u u
y y y

U U U U U U U
x x x y y y

ζ ζ ζ ζ η

ζ ζ η

ζ ζ η ζ ζ η

′ ′′ ′ ′′∂ ∂ ∂ ∂ ∂′ ′′ ′ ′′ ′ ′′− − − + − + − +
∂ ∂ ∂ ∂ ∂

′ ′′∂ ∂ ∂′ ′′ ′ ′′ ′ ′′ ′ ′′− + − + − + + +
∂ ∂ ∂

′ ′′ ′ ′′∂ ∂ ∂ ∂ ∂ ∂− − − − − − +
∂ ∂ ∂ ∂ ∂ ∂

=

 at z η′′=  (3.79) 

In the absence of a time-averaged component to Equation (3.79) it is possible to ignore 

the turbulent terms because as shown in Figure 3.3 they are an order of magnitude less 

than the oscillatory components. This leads to the following equation: 

1 1 2 2 3u
′ ′

z

1 1 2 2 3 0

u u u u
t x x y y

U U U U U
x x y y

ζ η ζ η ζ

η ζ η ζ

⎛ ⎞ ⎛ ⎞′ ′ ⎛ ⎞∂ ∂ ∂ ∂ ∂⎛ ⎞′ ′ ′ ′− − − − − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞′ ′⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞− − − − + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

 at η=  (3.80) 
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The steady terms will be eliminated at this point to apply Equation (3.80) approximately 

to the free surface: 

1 1 2

2 3 1 2 0

u u u
t x x y

u u U U
y x

ζ η ζ η

ζ ζ ζ

⎛ ⎞ ⎛ ⎞′ ′∂ ∂ ∂ ∂⎛ ⎞′ ′ ′− − − −⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠
′ ′⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎛ ⎞′ ′− + − −⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠y

′
=

 at z η=  (3.81) 

 
Booij (1981) removes terms consisting of the product of two unsteady parameters because 

their contribution is not significant. These terms may now be removed from Equation 

(3.81) yielding: 

1 2 3 1 2 0u u u U U
t x y x y

ζ η η ζ ζ⎛ ⎞ ⎛ ⎞′ ′ ⎛ ⎞∂ ∂ ∂ ∂ ∂⎛ ⎞′ ′ ′− − − + − − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

′
 at z η=  (3.82) 

 
In order to further the derivation at this stage it is necessary to assume that the horizontal 

gradients of the mean free surface are small. Booij (1981) considers this acceptable as the 

gradients of the mean free surface are expected to be of the same order as the slope of the 

seabed and the consideration of a mild slope is essential to the formulation of the mild-

slope equation. The drawbacks caused by this assumption will be addressed by the 

inclusion of extended terms in the developed mild-slope equation. This leads to the 

further simplification of Equation (3.82): 

1 2 3 0U U u
t x y

ζ ζ ζ′ ′ ′⎛ ⎞∂ ∂ ∂⎛ ⎞ ′− − − + =⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 at z η=  (3.83) 

 
Multiplying Equation (3.83) by -1 and expressing the remaining unsteady term as a 

function of velocity potential leads to the following expression of the Kinematic Free 

Surface Boundary Condition: 

1 2 0U U
t x y z

ζ ζ ζ′ ′ ′∂ ∂ ∂ ∂Φ+ + −
∂ ∂ ∂ ∂

=  at z η=  (3.84) 

 
Expressing Equation (3.48) with  gives: 1, 2j =

3

3

0j

j

U U
x x

∂ ∂+ =
∂ ∂

 at z η=  (3.85) 

 
An assumption will be made at this stage that the vertical variation of the steady 

component of vertical velocity is small in the vicinity of the free surface. This assumption 

is necessary to obtain a suitable Kinematic Free Surface Boundary Condition and is 
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required to obtain a condition similar to that of authors such as Panchang et al. (1999) and 

Kirby (1984). This assumption gives: 

0j

j

U
x

∂
=

∂
,  at 1, 2j = z η=  (3.86) 

 
Thus the Kinematic Free Surface Boundary Condition of Equation (3.84) may be 

rewritten as: 

( ) 0j
j

U
t x z

ζ ζ′∂ ∂ ∂Φ′+ − = 1, 2j =
∂ ∂ ∂

 ,  at z η=  (3.87) 

 
3.4.2 Dynamic Free Surface Boundary Condition for Laplace’s Equation 

A Dynamic Free Surface Boundary Condition can be obtained by applying Equation 

(3.66) at z η=  ( )ζ η′= + , where . This includes the assumption as before that the 

effects of turbulence are negligible and hence 

0p=

η  defines the free surface. 

0j
j

U g
t x

ρ ρ ρ ζ ργ∂Φ ∂Φ ′+ + + Φ
∂ ∂

=   at z η= ,  (3.88) 1,2,3j =

 
It is considered that if Equation (3.64) is applied at z η=  it will be approximately the 

same as Equation (3.88): 

0j
j

U g
t x

ρ ρ ρ ζ ργ∂Φ ∂Φ ′+ + + Φ
∂ ∂

=   at z η= ,  (3.89) 1,2,3j =

 
Equation (3.89) can then be divided by the density to give: 

0j
j

U g
t x

ζ γ∂Φ ∂Φ ′+ + + Φ
∂ ∂

=  at z η= ,  (3.90) 1,2,3j =

 
The vertical component of U  at the free surface is very small and hence the subscript j  

need only be used to symbolise the two horizontal directions. This gives the Dynamic 

Free Surface Boundary Condition: 

0j
j

U g
t x

ζ γ∂Φ ∂Φ ′+ + + Φ
∂ ∂

=  at z η= ,  (3.91) 1, 2j =

 
Equation (3.91) can also be rearranged to obtain an expression for ζ : 

1
j

j

U
g t x

ζ γ
⎡ ⎤∂Φ ∂Φ′ = − + + Φ⎢ ⎥∂ ∂⎢ ⎥⎣ ⎦

 at z η= ,  (3.92) 1, 2j =
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3.4.3 Combined Free Surface Boundary Condition for the Laplace Equation 

Equation (3.87), the Kinematic Free Surface Boundary Condition, can be expressed in 

tensor notation as: 

( ) 0j
j

U
t x z

ζ ζ′∂ ∂ ∂Φ′+ − = 1, 2j =
∂ ∂ ∂

 ,  at z η=  (3.93) 

 
Multiplying Equation (3.93) by g  gives: 

( ) ( ) 0j
j

g gU g
t x z

ζ ζ∂ ∂ ∂Φ′ ′+ − = 1, 2j =
∂ ∂ ∂

,  at z η=  (3.94) 

 
Substituting Equation (3.91) into Equation (3.94) gives: 

0

k
k

j j k j
j k

U
t t x

U U U U g
x t x z

γ

γ

⎛ ⎞∂ ∂Φ ∂Φ− − − Φ⎜ ⎟∂ ∂ ∂⎝ ⎠
⎛ ⎞∂ ∂Φ ∂Φ ∂Φ+ − − − Φ − =⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

,  at 1, 2j = z η=  (3.95) 

 
Multiplying Equation (3.95) by -1 gives the Combined Free Surface Boundary condition: 

0k j j k j
k j k

U U U U U g
t t x x t x z

γ γ
⎛ ⎞ ⎛ ⎞∂ ∂Φ ∂Φ ∂ ∂Φ ∂Φ ∂Φ+ + Φ + + + Φ +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

=  (3.96) 

at z η= , ,  1, 2j = 1, 2k =
 
 

 

3.4.4 Kinematic Seabed Boundary Condition 

To fully describe the state of wave behaviour a boundary condition at the interface 

between the water column and the seabed is required. 

 

At the seabed: 

z = − h  (3.97) 
  
Therefore: 

0z h+ =  (3.98) 
 
Define a function  where ( )F ′ x ( , )x y=x : 

( ) ( ) 0F z h′ = + =x x  (3.99) 
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Figure 3.6 – Following the motion of a particle on the seabed 
 
Assuming a water particle on the seabed moves at a velocity u . After a short time  the 

function becomes: 

dt

( ) 0F dt′ + =x u  (3.100) 
 
Employing a Taylor series expansion: 

( ) ( ) ( ) ( )2. ..........F dt F F dt O dt′ ′ ′+ = + ∇ + +x u x u  (3.101)  
Individually each term on the right hand side of Equation (3.101) is equal to zero. The 

higher order terms need not be considered and the first term has been set up to equal zero 

in Equation (3.99). This leaves: 

. F ′∇ =u 0  (3.102) 
 
Equation (3.102) can be expressed in tensor notation as follows: 

( ) 0i i
i i

u F u z h
x x
∂ ∂′ = +

∂ ∂
=  (3.103) 

 
Expressing the spatial derivative in Equation (3.103) more explicitly gives: 

0i i i
i i i

z hu F u u
x x x
∂ ∂ ∂′ = + =

∂ ∂ ∂
,  (3.104) 1,2,3i =

 

Acknowledging the fact that 
i

z
x

∂
∂

 is only non-zero in the vertical direction Equation 

(3.104) can be rewritten as follows: 

0i i
i i

hu F w u
x x

⎛ ⎞∂ ∂′ = + =⎜ ⎟∂ ∂⎝ ⎠
,   (3.105) 1,2,3i =

 
where  3w u=
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Using Equation (3.42) and acknowledging that the boundary condition is valid for the 

steady and unsteady components independently gives the following boundary condition 

for wave particle velocity: 

. F′ ′∇ =u 0  (3.106) 
 
Equation (3.106) can be written more explicitly using the identity of Equation (3.40): 

, , , ,1h h
x y z x y

⎛ ⎞⎛ ⎞∂Φ ∂Φ ∂Φ ∂ ∂ =⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠
0 (3.107) 

 
Rewriting Equation (3.107) in tensor form gives the Kinematic Seabed Boundary 

Condition: 

0
k k

h
x x z

∂Φ ∂ ∂Φ+ =
∂ ∂ ∂

 at  ,  (3.108) z h= − 1, 2k =
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3.4.5 Summary of Laplace’s Equation and Non-Linear Boundary Conditions 

Laplace’s Equation and the Non-Linear Boundary Conditions developed in this section 

are summarised in Table 3.1 below. 
Table 3.1 – Non-Linear Boundary Conditions for Laplace’s Equation 

  Boundary Condition Equation 

(a) Laplace’s Equation 2. 0∇∇Φ = ∇ Φ =  (3.49) 

(b) Kinematic Free Surface 

Boundary Condition 
( ) 0j

j

U
t x z

ζ ζ′∂ ∂ ∂Φ+ −
∂ ∂ ∂

=   

at z η= ,  1, 2j =

(3.87) 

(c) Dynamic Free Surface 

Boundary Condition 
1

j
j

U
g t x

ζ γ
⎡ ⎤∂Φ ∂Φ′ = − + + Φ⎢ ⎥∂ ∂⎢ ⎥⎣ ⎦

  

at z η= ,  1, 2j =

(3.92) 

(d) Combined Free Surface 

Boundary Condition 

0

k
k

j j k j
j k

U g
t t x z

U U U U
x t x

γ

γ

⎛ ⎞∂ ∂Φ ∂Φ ∂Φ+ + Φ +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
⎛ ⎞∂ ∂Φ ∂Φ+ + + Φ =⎜ ⎟∂ ∂ ∂⎝ ⎠

at z η= , ,  1, 2j = 1, 2k =

(3.96) 

(e) Kinematic Seabed 

Boundary Condition 
0

k k

h
x x z

∂Φ ∂ ∂Φ+ =
∂ ∂ ∂

 

at  ,  z h= − 1, 2k =

(3.108) 
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3.5 Harmonic Form of Wave Equations 

3.5.1 Laplace’s Equation 

In order to obtain a harmonic solution to the wave equations discussed in Sections 3.2 to 

3.4, above, it is necessary to select a harmonic solution for velocity potential. Berkhoff 

(1976), Booij (1981), Mei (2005) and Clyne (2007) as well as many other authors all 

select the same criteria: 

( ) (, , , Re ( , , ) i tx y z t x y z e ωφ −Φ = )  (3.109) 

 
where ,  is angular frequency and 2 1i = − ω t is time. φ  is a three-dimensional spatial 

form of velocity potential that is complex: 

1 i 2φ φ φ= +  (3.110) 
 
Similarly a real component of the complex variable for set-up must also be defined. 

( ) (Re Re i te ωζ ζ ξ −′ = = )

⎤ =⎦

 (3.111) 

 
Using Equation (3.109) it is possible to convert the necessary equations derived in 

Sections 3.2 to 3.4 into harmonic forms. 

 
Equation (3.49) can be expressed as follows using Equation (3.109): 

( )2Re 0i te ωφ −⎡∇⎣  (3.112) 

 

The harmonic term can be taken outside the derivative completely as it does not vary 

spatially: 
2Re 0i te ω φ−⎡ ⎤∇ =⎣ ⎦  (3.113) 

 
Dividing across by the harmonic function yields a harmonic Laplace equation: 

2 0φ∇ =  (3.114) 
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3.5.2 Dynamic Free Surface Boundary Condition 

Equation (3.109) can be used to express Equation (3.92) as follows:  

( ) ( ) ( )
Re Re1 Re

i t i t

i t
j

j

e e
U e

g t x

ω ω
ω

φ φ
ζ γ φ

− −

−
⎡ ⎤⎡ ⎤ ⎡ ⎤∂ ∂⎣ ⎦ ⎣ ⎦⎢ ⎥⎡ ⎤′ = − + + ⎣ ⎦⎢ ⎥∂ ∂
⎣ ⎦

 at z η= , 

 (3.115) 

1, 2j =

Expanding the derivatives within Equation (3.115) gives:  

( ) ( )1 Re Re Rei t i t i t
j

j

i e U e e
g x

ω ω ω ⎤
⎦

φζ ωφ γ φ− − −
⎡ ⎤⎡ ⎤⎛ ⎞∂⎡ ⎤ ⎡′ ⎢ ⎥= − − + +⎢ ⎥⎜ ⎟⎣ ⎦ ⎣⎜ ⎟∂⎢ ⎥⎢ ⎥⎝ ⎠⎣ ⎦⎣ ⎦

 at z η= , 

 (3.116) 

1, 2j =

 

Cancelling  gives:  i te ω−

1
j

j

i U
g x

φζ ωφ γφ
⎡ ⎤⎛ ⎞∂′ = − − + +⎢ ⎜ ⎟⎜ ⎟∂⎢ ⎥⎝ ⎠⎣ ⎦

⎥  at z η= ,  (3.117) 1, 2j =

 
Equation (3.117) may be rewritten as follows: 

0j
j

i U g
x
φωφ γφ ζ

⎛ ⎞∂ ′− − −⎜ ⎟⎜ ⎟∂⎝ ⎠
=  at z η= ,  (3.118) 1, 2j =

 
3.5.3 Combined Free Surface Boundary Condition 

Equation (3.96) can be expressed as follows using Equation (3.109): 

( ) ( ) ( )

( ) ( ) ( )

( )

Re Re Re

Re Re Re

Re 0

i t i t i t
k

k

i t i t i t
j j k j

j k

i t

e U e e
t t x

U e U U e U e
x t x

g e
z

ω ω ω

ω ω

ω

φ φ γ φ

φ φ γ

φ

− − −

− −

−

⎛ ⎞∂ ∂ ∂⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ +⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦∂ ∂ ∂⎝ ⎠
⎛ ⎞∂ ∂ ∂⎡ ⎤ ⎡ ⎤ ⎡+ + +⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣∂ ∂ ∂⎝ ⎠

∂ ⎡ ⎤+ =⎣ ⎦∂

ωφ − ⎤
⎦  (3.119) 

at z η= , ,  1, 2j = 1, 2k =
 
Separating Equation (3.119) into more explicit components yields: 

( ) ( ) ( )( )
( )

( ) ( )( )
( )

Re Re Re

Re

Re Re

Re 0

i t i t i t
k

k

i t
j

j

i t i t
j k j

j k j

i t

e U e e
t t t x t

U e
x t

U U e U e
x x x

g e
z

ω ω

ω

ω ω

ω

φ φ γ

φ

φ γ φ

φ

− −

−

− −

−

⎛ ⎞∂ ∂ ∂ ∂ ∂⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ +⎜ ⎟⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
∂ ∂⎛ ⎞⎡ ⎤+ ⎜ ⎟⎣ ⎦∂ ∂⎝ ⎠

⎛ ⎞∂ ∂ ∂⎡ ⎤ ⎡ ⎤+ +⎜ ⎟⎣ ⎦ ⎣ ⎦∂ ∂ ∂⎝ ⎠
∂ ⎡ ⎤+ =⎣ ⎦∂

ωφ −

 (3.120) 

at z η= , ,   1, 2j = 1, 2k =
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Equation (3.120) can be re-expressed as follows: 
2

2

Re Re

Re Re Re

Re Re Re

i t i t
k

k

ji t i t i t
j

j j

ji t i t i tk
k j j k

j k j k j k

e i e U
x

U
i e i e U i e

x x

U Ue U e U e U U
x x x x x x

ω ω

ω ω ω

ω ω ω

φω φ ω

φω φ ω ω γφ

φ φ φ

− −

− − −

− − −

⎡ ⎤∂⎡ ⎤− − ⎢ ⎥⎣ ⎦ ∂⎣ ⎦
⎡ ⎤ ⎡ ⎤∂ ∂ ⎡ ⎤− − −⎢ ⎥ ⎢ ⎥ ⎣ ⎦∂ ∂⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤ ⎡ ⎤∂ ∂∂ ∂ ∂+ + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

+ Re Re Re Re 0ji t i t i t i t
j j

j j j

U
e U e e U g e

x x x
ω ω ω ωγ φφ γφ γ− − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤∂ ⎡ ⎤∂ ∂+ + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥∂ ∂ ∂⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦ z

φ∂ =
∂

 (3.121) 

at z η= , ,  1, 2j = 1, 2k =
 
 

At this stage the term with 
kx

γ∂
∂

 can be ignored because the value of 
kx

γ∂
∂

 is significantly 

smaller in magnitude than the other terms in Equation (3.121): 

2

2

Re Re

Re Re Re

Re Re Re

i t i t
k

k

ji t i t i t
j

j j

ji t i t i tk
k j j k

j k j k

e i e U
x

U
i e i e U i e

x x

U Ue U e U e U U
j kx x x x

ω ω

ω ω ω

ω ω ω

φω φ ω

φω φ ω ω γφ

x x
φ φ φ

− −

− − −

− − −

⎡ ⎤∂⎡ ⎤− − ⎢ ⎥⎣ ⎦ ∂⎣ ⎦
⎡ ⎤ ⎡ ⎤∂ ∂ ⎡ ⎤− − −⎢ ⎥ ⎢ ⎥ ⎣ ⎦∂ ∂⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤ ⎡∂ ∂∂ ∂+ + +⎢ ⎥ ⎢ ⎥ ⎢∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥ ⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦ ⎣

+

⎤∂
⎥
⎥⎦

Re Re Re 0ji t i t i t
j

j j

U
e e U g e

x x z
ω ω ωφ φγφ γ− − −⎡ ⎤ ⎡ ⎤∂ ⎡ ⎤∂ ∂+ + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥∂ ∂ ∂⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦

 (3.122) 

at z η= , ,  1, 2j = 1, 2k =
 
Assuming the imaginary part of  Equation (3.122) is also zero the following can be stated: 

2

2

i t i t
k

k

ji t i t i t
j

j j

ji t i t i tk
k j j k

j k j k

ji t

j

e i e U
x

U
i e i e U i e

x x

U Ue U e U e U U
j kx x x x

U
e

x

ω ω

ω ω ω

ω ω ω

ω

φω φ ω

φω φ ω ω γφ

x x
φ φ φ

γφ

− −

− − −

− − −

−

⎡ ⎤∂⎡ ⎤− − ⎢ ⎥⎣ ⎦ ∂⎣ ⎦
⎡ ⎤ ⎡ ⎤∂ ∂ ⎡ ⎤− − −⎢ ⎥ ⎢ ⎥ ⎣ ⎦∂ ∂⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤ ⎡∂ ∂∂ ∂+ + +⎢ ⎥ ⎢ ⎥ ⎢∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥ ⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦ ⎣
⎡ ∂

+
∂⎣

⎤∂
⎥
⎥⎦

0i t i t
j

j

e U g e
x z

ω ωφ φγ− −⎤ ⎡ ⎤ ⎡ ⎤∂ ∂+ + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥∂ ∂⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎦ ⎣ ⎦

 (3.123) 

at z η= , ,  1, 2j = 1, 2k =
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Dividing Equation (3.123) by  gives: i te ω−

2

2

2

0

j j k
k k

k j j k j

j
j k j

j k j j

U U Ui U i U U j
kx x x x x

U
U U g U i

x x z x x

x
φ φ φω φ ω ω φ

φ φ φγ φ γ ωγφ

∂ ∂ ∂∂ ∂− − − + +
∂ ∂ ∂ ∂ ∂

∂∂ ∂ ∂+ + + + − =
∂ ∂ ∂ ∂ ∂

∂
∂

 (3.124) 

at z η= , ,  1, 2j = 1, 2k =
 

An expression for 
z
φ∂

∂
 at the surface can be obtained using the harmonic form of the 

combined free surface boundary condition: 

2

2

2
1

j j
k k

k j j k

jk
j j k j

j k j k j j

U U
i U i U

x x x x

Uz g UU U U U i
x x x x x x

φ φω φ ω ω φ
φ

φ φ φγ φ γ ωγφ

∂ ∂⎡ ⎤∂ ∂+ + −⎢ ⎥∂ ∂ ∂ ∂∂ ⎢ ⎥= ⎢ ⎥∂∂ ∂ ∂ ∂ ∂⎢ ⎥− − − − +
∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦

  (3.125) 

at z η= , ,  1, 2j = 1, 2k =
 
 

 
3.5.4 Kinematic Seabed Boundary Condition 

Substituting Equation (3.112) into Equation (3.108) gives: 

( ) ( )Re Re 0i t i t

k k

he
x x z

ω ωφ φ− −∂ ∂ ∂⎡ ⎤ ⎡+ =⎣ ⎦ ⎣∂ ∂ ∂
e ⎤

⎦   at ,  (3.126) z h= − 1, 2k =

 
The harmonic term can be taken outside the spatial derivatives completely as it does not 

vary spatially: 

Re Re 0i t i t

k k

he e
x x z

ω ωφ φ− −⎡ ⎤ ⎡∂ ∂ ∂+
⎤

⎢ ⎥ ⎢ ⎥∂ ∂ ∂⎣ ⎦ ⎣ ⎦
= z h= − at ,  (3.127) 1, 2k =

 

Dividing Equation (3.127) by  gives an expression for i te ω−

z
φ∂

∂
 at the seabed using the 

harmonic form of the kinematic seabed boundary condition: 

k k

h
z x
φ φ∂ ∂ ∂= −

∂ ∂ ∂x
 at  ,  (3.128) z h= − 1, 2k =
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3.5.5 Summary of Harmonic Wave Equations 

Laplace’s Equation and the Non-Linear Boundary Conditions developed in this section 

are summarised in Table 3.2 below. 

 
Table 3.2 – Summary of Harmonic Wave Equations 

  Boundary Condition Equation 

(a) Laplace’s 

Equation 

2 0φ∇ =  (3.114) 

(b) Dynamic Free 

Surface 

Boundary 

Condition 

0j
j

i U g
x
φωφ γφ ζ

⎛ ⎞∂− − −⎜ ⎟⎜ ⎟∂⎝ ⎠
=  

at z η= ,  1, 2j =

(3.118) 

 

(c) 

 

Combined 

Free Surface 

Boundary 

Condition 

2

2

2

1

j
k

k j

j k
k j

j k j k

j
j k j

j k j j

U
i U i

x x

U UU U
z g x x x x

U
U U U i

x x x x

φω φ ω ω φ

φ φ φ

φ φγ φ γ ωγφ

⎡ ⎤∂∂+ +⎢ ⎥∂ ∂⎢ ⎥
⎢ ⎥∂ ∂∂ ∂ ∂⎢ ⎥= − −
⎢ ⎥∂ ∂ ∂ ∂ ∂
⎢ ⎥

∂∂ ∂⎢ ⎥− − − +⎢ ⎥∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦

 

at z η= , ,  1, 2j = 1, 2k =

(3.125) 

(d) Kinematic 

Seabed 

Boundary 

Condition 

k k

h
z x
φ φ∂ ∂ ∂= −

∂ ∂ ∂x
 

at  ,  z h= − 1, 2k =

(3.128) 
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3.6 Vertical Function for Two-Dimensional Laplace Equation 

Using separation of variables and a vertical function f it is possible to develop a Laplacian 

equation in terms of a two-dimensional velocity potential. This section examines the form 

of the vertical function and the form of the two-dimensional velocity potential term. In 

order to make the development of a vertical term possible it will be necessary for the 

derivation to assume propagation of simple harmonic waves on a constant depth. A 

similar process is carried out by authors such as Clyne (2008) and Booij (1981). 

 

3.6.1 Propagation of Simple Harmonic Waves on a Constant Depth 

On a constant depth the seabed boundary condition of Equation (3.128) reduces to: 

0
z
φ∂ =

∂
 at  ,  (3.129) z h= − 1, 2k =

 

Table 3.3 below summarises the harmonic wave equations for a progressive wave on a 

constant depth. 

 
Table 3.3 – Summary of Harmonic Wave Equations on a Constant Depth 

  Boundary Condition Equation 

(a) Laplace’s 

Equation 

2 0φ∇ =  (3.114) 

 

(b) 

 

Combined 

Free Surface 

Boundary 

Condition 

2

2

2

1

j
k

k j

j k
k j

j k j k

j
j k j

j k j j

U
i U i

x x

U UU U
z g x x x x

U
U U U i

x x x x

φω φ ω ω φ

φ φ φ

φ φγ φ γ ωγφ

⎡ ⎤∂∂+ +⎢ ⎥∂ ∂⎢ ⎥
⎢ ⎥∂ ∂∂ ∂ ∂⎢ ⎥= − −
⎢ ⎥∂ ∂ ∂ ∂ ∂
⎢ ⎥

∂∂ ∂⎢ ⎥− − − +⎢ ⎥∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦

 

at z η= , ,  1, 2j = 1, 2k =

(3.125) 

(c) Kinematic 

Seabed 

Boundary 

Condition 

0
z
φ∂ =

∂
 

at  ,  z h= − 1, 2k =

(3.129) 

 
 
 
 
 
 78 
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3.6.2 Governing Equations for Vertical Function 

3.6.2.1 Laplace’s Equation 

In order to reduce  the velocity potential from a three-dimensional form to a two-

dimensional velocity potential using separation of variables a function f is defined as 

follows using the Laplace Equation (3.114): 

( ) ( ) ( )
2 2 2

2 2
2 2 2, , , 0fx y z f z x y f f

x y z
φ φφ φ ∂ ∂ ∂⎡ ⎤∇ = ∇ = + +⎡ ⎤⎣ ⎦⎣ ⎦ ∂ ∂ ∂

φ =  (3.130) 

for  0h z− < <
 
Equation (3.130) can be rearranged as follows with the definition of : 2κ

2 2 2

2 2 2
2

f
x y z

f

φ φ

κ
φ

∂ ∂ ∂+ −∂ ∂ ∂= = −  (3.131) 

 
It is assumed that using a negative value of the  variable in Equation 2κ (3.131) will 

provide a propagating wave where  is the eigenvalue called wave number in this case. κ
 
This leads to the following definitions: 

2 2
2

2 2x y
φ φ κ φ∂ ∂+ = −

∂ ∂
 (3.132) 

2
2

2

f f
z

κ∂ =
∂

 (3.133) 

2
2

2 0f f
z

κ∂ − =
∂

 (3.134) 

 
 
At this stage it is necessary to examine a solution for velocity potential. The following 

form of velocity potential is selected by Booij (1981), Mei et al. (2005) and Clyne (2008): 
iSA e φ

φφ =  (3.135) 
where Aφ  is the amplitude of velocity potential and Sφ  is its phase. 
 
For waves on a constant depth the phase can be expressed as follows: 

1 2S xφ κ κ= + y

2

 (3.136) 

where 
2 2
1 2κ κ κ+ =  (3.137) 

If  and  are constant the wave they describe is a plane wave. i.e. A wave with an 

infinitely straight crest. 

1κ 2κ
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Substituting Equation (3.136) into Equation (3.132) gives the following: 

( ) ( ) (
2 2

2
2 2

iS iS iS )A e A e A
x y

φ φ
φ φ κ∂ ∂+ = −

∂ ∂
e φ

φ  (3.138) 

 
Using Equation (3.136) this becomes: 

( ) ( )1 2 1 2

2 2
2

2 2
iSi x i y i x i yA e A e A

x y
e φκ κ κ κ

φ φ κ+ +∂ ∂+ = −
∂ ∂ φ  (3.139) 

 
Dividing Equation (3.139) by Aφ  gives: 

( ) ( )1 2 1 2

2 2
2

2 2
iSi x i y i x i ye e

x y
e φκ κ κ κ κ+ +∂ ∂+ =

∂ ∂
−  (3.140) 

 
Assuming a plane wave as discussed above gives the following simplification of Equation 

(3.140): 
2 2 2

1 2
iS iS iSe e eφ φ φκ κ κ− − = −  (3.141) 

 
Dividing Equation (3.141) by iSe φ  gives: 

2 2
1 2κ κ κ+ = 2  (3.142) 

 
Equation (3.142) is identical to Equation (3.137) thus proving that the chosen solution for 

wave potential in Equation (3.135) satisfies Equation (3.132) and also that the selected 

eigenvalue has been chosen correctly as the wave number of a propagating wave.  

 

Use can now be made of the vertical function f of Equation (3.130) to obtain a useful 

solution to wave behaviour for the two-dimensional simplification of velocity potential. 

An assumption of constant current on a constant depth will be required to obtain this 

dispersion relation.  

 

 
3.6.2.2 Combined Free Surface Boundary Condition applied to Vertical Function 

Using Equation (3.130) with the combined free surface boundary condition of Equation 

(3.125) in the case of a constant depth, slowly varying current with no energy dissipation 

terms yields: 

 
2

21 2 k
j j j k

j j k j k

Udf f i U f U f U U f
dz g x x x x x

φ φ φφ ω φ ω
⎡ ⎤∂∂ ∂= + − −⎢ ⎥∂ ∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦

∂
 (3.143) 

at z η= , ,  1, 2j = 1, 2k =
 



WAVE-CURRENT INTERACTION MODEL  C. Newell 
 

 
 81 

Expression of Equation (3.143) explicitly yields: 
2 22 j j k

j j k

i U f U U fdf f
dz g g x g x x

ωω φ φ φφ ∂ ∂= + −
∂ ∂ ∂

 (3.144) 

at z η= , ,  1, 2j = 1, 2k =
 
Expanding the tensor terms of Equation (3.144) into a more explicit form gives the 
following: 

2 2
1 2 1 1

2

2 2 2
1 2 2 1 2 2

2

2 2i U f i U f U U fdf f d
dz g g x g y g dx

U U f U U f U U fd d d
g dxdy g dydx g dy

ω ωω φ φ φ φφ

φ φ φ

∂ ∂= + + −
∂ ∂

− − −
 at z η=  (3.145) 

 
Combining similar terms gives the following: 

2
1 2

2 2 2d2 2
1 1 2 2

2 2

2 2

2

i U f i U fdf f
dz g g x g y

U f U U f U fd d
g dx g dxdy g dy

ω ωω φ φ φφ

φ φ φ

∂ ∂= + +
∂ ∂

− − −
 at z η=  (3.146) 

 
 

Equations (3.147) to (3.161) describe some necessary gradients of velocity potential using 

the identity in Equation (3.135): 

( 1 2i x i yd dA e
dx dx

κ κ
φ )φ +=  (3.147) 

1 2
1

i x i yd i A e e
dx

κ κ
φ

φ κ=  (3.148) 

1
d i
dx
φ κ φ=  (3.149) 

 
 

(2

2

12
i y i xd di A e e

dx dx
κ

φ
φ κ= )1κ  (3.150) 

2 1

2
2
12

i y i xd A e e
dx

κ κ
φ

φ κ= −  (3.151) 

2
2

12

d
dx

φ κ φ= −  (3.152) 

 

(1

2

1
i x i yd di A e e

dxdy dy
κ κ

φ
φ κ= )2  (3.153) 

1 2

2

1 2
i x i yd A e e

dxdy
κ κ

φ
φ κ κ= −  (3.154) 
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2

1 2
d
dxdy

φ κ κ φ= −  (3.155) 

( 1 2i x i yd dA e e
dy dy

κ κ
φ )φ =  (3.156) 

1 2
2

i x i yd i A e e
dy

κ κ
φ

φ κ=  (3.157) 

2
d i
dy
φ κ φ=  (3.158) 

 
 

(1

2

22
i x i yd di A e e

dy dy
κ κ

φ
φ κ= )2  (3.159) 

1 2

2

2 22
i x i yd i i A e e

dy
κ κ

φ
φ κ κ=  (3.160) 

2
2
22

d
dy

φ κ φ= −  (3.161) 

 
 

Using Equations (3.149), (3.152), (3.155), (3.158), (3.161) with Equation (3.146) yields: 

( ) ( )

( ) ( ) ( )

2
1 2

1 2

2 2

2

φ

2 21 1 2 2
1 1 2

2 2

2

i U f i U fdf f i i
dz g g g

U f U U f U f
g g g

ω ωω φφ κ φ κ

κ φ κ κ φ κ φ

= + +

− − − − − −
 at z η=  (3.162) 

 
Diving Equation (3.162) by φ  gives the following equation: 

( ) ( )

( ) ( ) ( )

2
1 2

1 2

2 2

2κ2 21 1 2 2
1 1 2

2 2

2

i U f i U fdf f i i
dz g g g

U f U U f U f
g g g

ω ωω κ κ

κ κ κ

= + +

− − − − − −
 at z η=  (3.163) 

 
 
Equation (3.163) can be simplified to: 

2 2 2 2 2
1 1 2 2 1 1 1 2 1 2 2 22 2 2df f U U U U U U

dz g
ω ω κ ω κ κ κ κ κ⎡ ⎤= − − + + +⎣ ⎦  at z η=  (3.164) 

 
 

Writing Equation (3.164) in vector form gives: 

( ) 2
.df f

dz g
ω= −⎡ ⎤⎣ ⎦U κ  at z η=  (3.165) 
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3.6.2.3 Kinematic Seabed Boundary Condition applied to Vertical Function 

On the assumption of a constant depth the kinematic seabed boundary condition from 

(3.128) simplifies to the following: 

0
z
φ∂ =

∂
 at  (3.166) z = − h

 
Using the function f, defined in Equation (3.130), with Equation (3.166) yields: 

0f
z

∂ =
∂

 at   (3.167) z h= −

 
 
3.6.2.4 Summary of Governing Equations for Vertical Function 

Table 3.4 below summarises the governing equations developed in this section for the 

vertical function. The equations form a boundary value problem in homogenous ordinary 

differential equations. 

 
 

Table 3.4 – Summary of Governing Equations for Vertical Function 
  Boundary Condition Equation 

(a) Laplace’s Equation 2
2

2 0f f
z

κ∂ − =
∂

 
(3.134) 

(b) Combined Free Surface 

Boundary Condition 
( ) 2

.df f
dz g

ω= −⎡ ⎤⎣ ⎦U κ  at z η=  (3.165) 

(c) Kinematic Seabed 

Boundary Condition 
0f

z
∂ =
∂

 at  z h= −
(3.167) 

 
 
 
 
3.6.3 Solving for the form of the Vertical Function 

Equations (3.134), (3.165) and (3.167) form the basis of an eigenvalue problem. The 

solution to an eigenvalue problem for f is: 
mzf Ce=  (3.168) 

 
Therefore: 

2
2

2
mzd f m Ce

dz
=  (3.169) 
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Substituting Equations (3.168) and (3.169) into Equation (3.134) gives the following: 
2 2 0mz mzm Ce Ceκ− =

z

 (3.170) 
2 2mz mzm Ce Ceκ=  (3.171) 

m κ= ±  (3.172) 
 
 
The function f can now be updated using Equation (3.172): 

1 2
zf C e C eκ −= + κ  (3.173) 

1 2
zdf C e C e

dz
κκ κ −= − zκ

h

h

2

 (3.174) 

 
3.6.3.1 Kinematic Seabed Boundary Condition 

At the seabed and Equation z = − (3.167) applies. Using Equation (3.174) at the seabed 

yields: 

1 2 0z zC e C eκ κκ κ −− =  at  (3.175) z = −

1 2 0h hC e C eκ κκ κ− − =   (3.176) 
2

1 2
hC C e κ=  (3.177) 

 
 
Once again the function f can now be updated, this time using Equation (3.177): 

2
2

h z zf C e e C eκ κ κ−= +  (3.178) 

2
2 2

h z zdf C e e C e
dz

κ κ κκ −= − κ  (3.179) 

 
 
3.6.3.2 Combined Free Surface Boundary Condition 

At the free surface z η= and Equation (3.165) apply. Letting z η=  in Equation (3.178) 
and (3.179) gives: 

2
2 2

hf C e e C eκ κη κη−= +   (3.180) 

2
2 2

hdf C e e C e
dz

κ κη κηκ −= − κ  (3.181) 

 
Substitution of Equations (3.180) and (3.181) into Equation (3.165) yields: 

( )
2

22 2 2
2 2 .

h
h C e e C eC e e C e

g

κ κη κη
κ κη κηκ κ ω

−
− +− = −⎡ ⎤⎣ ⎦Uκ  (3.182) 

( )
2 2

22 2 1 .
h

h e ee e
g

κ κη
κ κηκ κ ω+− = −⎡⎣ Uκ ⎤⎦  (3.183) 

 

 



WAVE-CURRENT INTERACTION MODEL  C. Newell 
 

 
 85 

Defining as the depth of the fluid column from the mean free surface to the seabed 

gives: 

h′

h h η′ = +  (3.184) 
 
 
Using Equation (3.184) with Equation (3.183) gives the following: 

( ) ( )
2

22 11
h

h ee
g

κ
κκ ω

′
′ +− = −⎡⎣ U κ. ⎤⎦  (3.185) 

( )
2

2

2

1 1 .
1

h

h

e
e g

κ

κκ ω
′

′
− = −⎡⎣+

U κ ⎤⎦  (3.186) 

( ) ( ) 2
tanh .g hκ κ ω′ = −⎡ ⎤⎣ ⎦Uκ  (3.187) 

 

Upon development of the mild-slope equation in Section 3.7, κwill be defined as 

follows: 

S
S

φ

φ

κ
∇

=
∇

κ  (3.188) 

 
For a constant depth Sφ  is defined in Equation (3.136). 

 

Equation (3.187) is the two-dimensional dispersion equation and is identical to the one 

developed by Booij (1981). Although this dispersion relation has been obtained for a 

constant depth it is considered suitable by authors such as Booij (1981), Mei et al. (2005) 

and Clyne (2008) for use with slowly varying (mild slope) bathymetry. Berkhoff (1976) 

also uses this relation in the absence of current. Equation (3.187) may also be written as: 

( ) 22 .σ ω= −⎡⎣ Uκ ⎤⎦

)

 (3.189) 
 
Where: 

(2 tanhg hσ κ κ ′=  (3.190) 
 
In this case  is referred to as the intrinsic frequency and as the absolute frequency.  σ ω
 
During implementation of the NM-WCIM the presence of a product of current and a κ  

vector on the right hand side of Equation (3.189) introduces the need for an iterative 

approach to solving the  dispersion equation. This process is discussed in Section 3.13. 
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3.6.3.3 Further Manipulation of the Vertical Function 

It is now possible to manipulate the equation for the vertical function to get an explicit 

form of  f . Multiplying both terms on the right hand side of Equation (3.178) by a term 

amounting to unity yields: 

2
2 2

h h
h z z

h

e e
hf C e e C

e e

κ κ
κ κ κ

κ

− −
−

−

⎛ ⎞ ⎛ ⎞
= +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
eκ−  (3.191) 

The constant  can be changed to incorporate 2C 1
he κ−

⎛
⎜
⎝ ⎠

⎞
⎟  without affecting the equation. 

This leaves: 

2 2
h z h zf C e e C e eκ κ κ κ− −′ ′= +  (3.192) 

 

Expressing the exponential values in (3.192) more succinct form gives: 

( ) (
2 2

h z h zf C e C eκ + −′ ′= + )κ +

)

 (3.193) 

 

Incorporating a further factor of 0.5 into the  constant allows Equation 2C (3.193) to be 

expressed as follows: 

(2 coshf C hκ′′= ⎡⎣ z+ ⎤⎦  (3.194) 

 

At this point the following definition can be made: 

( ) ( ) (, ,z x y z x y x yη′ = − ),

)

 (3.195) 

 

Using Equation (3.184) and Equation (3.195) with Equation (3.194) gives: 

(2 coshf C hκ′′ ′ ′= ⎡⎣ z+ ⎤⎦  (3.196) 

 

2C ′′  can now be selected as an appropriate term to set 1f =  when : 0z ′ =

( )
[ ]

cosh
cosh

h z
f

h
κ

κ
′ ′+⎡ ⎤⎣=

′
⎦  (3.197) 

 

Berkhoff (1976), Booij (1981), Mei et al. (2005) and Clyne (2008) all use  a vertical 

function similar to that of Equation (3.197). 
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3.7 Derivation of Mild-Slope Equation 

To obtain a two-dimensional wave solution the Laplace equation described in  Equation 

(3.114) is multiplied by the vertical function of Equation (3.130) and Equation (3.197) 

and integrated over the depth of the water column. In Section 3.6 a constant depth and 

constant current are assumed when examining the vertical function. In the case of the 

derivation to follow the current and depth are both assumed to vary. The method followed 

is similar to the Galerkin-Eigenfunction method of Massel (1993) but in this case the 

effects of currents will not be neglected. 

 

Table 3.2 from Section 3.5.4 (reproduced below) summarises the harmonic wave 

equations for a varying current and depth that will be utilised in this section. 

 
Table 3.2 – Summary of Harmonic Wave Equations 

  Boundary Condition Equation 

(a) Laplace’s 

Equation 

2 0φ∇ =  (3.114) 

 

(b) 

 

Combined 

Free Surface 

Boundary 

Condition 

2

2

2

1

j
k

k j

j k
k j

j k j k

j
j k j

j k j j

U
i U i

x x

U UU U
z g x x x x

U
U U U i

x x x x

φω φ ω ω φ

φ φ φ

φ φγ φ γ ωγφ

⎡ ⎤∂∂+ +⎢ ⎥∂ ∂⎢ ⎥
⎢ ⎥∂ ∂∂ ∂ ∂⎢ ⎥= − −
⎢ ⎥∂ ∂ ∂ ∂ ∂
⎢ ⎥

∂∂ ∂⎢ ⎥− − − +⎢ ⎥∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦
 

at z η= , ,  1, 2j = 1, 2k =

(3.125) 

(c) Kinematic 

Seabed 

Boundary 

Condition 

k k

h
z x
φ φ∂ ∂ ∂= −

∂ ∂ ∂x
 

at  ,  z h= − 1, 2k =

(3.128) 
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3.7.1 Vertical Integration of Weighted Laplace Equation 

In this case the values of depth and current may vary so the application of the vertical 

function to the velocity potential may be expressed as follows: 

( ) ( ) ( )( ) (, , , , , , )x y z f z h h x y x yφ κ′ ′ ′= φ  (3.198) 

 
Utilising the vertical function f  with Equation (3.114) and integrating the product over 

the depth of the fluid column yields: 

( ) ( )( ) ( )2, , , , ,
h

f z h h x y x y z dz
η

κ φ
−

∇∫ 0=  (3.199) 

 
Equation (3.199) can be expressed more explicitly as: 

2 2 2

2 2 2( ) 0
h

f z dz
x y z

η φ φ φ
−

⎛ ⎞∂ ∂ ∂+ + =⎜ ∂ ∂ ∂⎝ ⎠
∫ ⎟  (3.200) 

 
Separating Equation (3.200) into horizontal and vertical components gives: 

2
2

2( ) ( ) 0h
h h

f z dz f z dz
z

η η φφ
− −

∂∇ + =
∂∫ ∫  (3.201) 

 
where 

h x y
∂ ∂∇ = +
∂ ∂

 (3.202) 

 
Integration by parts of the second term of Equation (3.201) gives the following: 

2

2( ) ( )
h h h

ff z dz dz f z
z z z z

ηη ηφ φ φ
− − −

∂ ∂ ∂ ∂= − +
∂ ∂ ∂∫ ∫ ∂

 (3.203) 

 
Substitution of Equation (3.203) for the second term of Equation (3.201) gives: 

2 0h
h h h

ff dz dz f
z z z

ηη η φ φφ
− − −

∂ ∂ ∂∇ − + =
∂ ∂ ∂∫ ∫  (3.204) 

 
Examining the first term in Equation (3.204): 

2
h

k kx x
φ φ∂ ∂∇ =

∂ ∂
, k=1,2 (3.205) 

 
Substituting Equation (3.198) into Equation (3.205) gives: 

(2
h

k k

)f
x x

φ φ∂ ∂∇ =
∂ ∂

, k=1,2 (3.206) 
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The vertical function f , as defined in Equation (3.197), is only a function of the 
horizontal coordinates so the derivative of f  in Equation (3.207) is not a partial 
derivative. 

2
h

k k k

df f
x dx x

φφ φ
⎛ ⎞∂∇ = +⎜∂ ∂⎝ ⎠

∂
⎟  (3.207) 

 

Equation (3.207) can be expanded to: 
2 2

2
h

k k k k k k k k

d f df df f
dx dx dx x dx x x x

φ φ φφ φ ∂ ∂ ∂∇ = + + +
∂ ∂ ∂ ∂

 (3.208) 

 
Therefore: 

2 2
2 2h

k k k k k kh h h h

d f df 2f dz f dz f dz f dz
dx dx dx x x x

η η η ηφφ φ
− − − −

∂ ∂∇ = + +
∂ ∂ ∂∫ ∫ ∫ ∫

φ  (3.209) 

 
 
Examining the second term in Equation (3.204) gives: 

h h

f fdz dz
z z z z

η ηφ f φ
− −

∂ ∂ ∂ ∂=
∂ ∂ ∂ ∂∫ ∫  (3.210) 

 
 
Examining the third term in Equation (3.204): 

h h

f f f
z z

η

η z
φ φ φ

− −

∂ ∂ ∂= −
∂ ∂ ∂

 (3.211) 

 
As shown in Equation (3.197) 1f =  when z η=  hence: 

h h

f f
z z z

η

η

φ φ φ

− −

∂ ∂ ∂= −
∂ ∂ ∂

     (3.212) 

 
Substituting Equations (3.212), (3.210) and (3.209) into (3.204) gives: 

2 2
22 0

k k k k k kh h h h h

d f df f ff dz f dz f dz dz f
dx dx dx x x x z z z z

η η η η

η

φ φ φ φφ φ
− − − − −

∂ ∂ ∂ ∂ ∂ ∂+ + − + −
∂ ∂ ∂ ∂ ∂ ∂ ∂∫ ∫ ∫ ∫ =  

  (3.213) 
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It is evident that the fifth term of Equation (3.213) can be defined using combined free 

surface boundary condition in Equation (3.125): 

2

2

2
1

j j
k k

k j j k

jk
j j k j

j k j k j j

U U
i U i U

x x x x

Uz g UU U U U i
x x x x x x

η

η

φ φω φ ω ω φ
φ

φ φ φγ φ γ ωγφ

∂ ∂⎡ ⎤∂ ∂+ + −⎢ ⎥∂ ∂ ∂ ∂∂ ⎢ ⎥= ⎢ ⎥∂∂ ∂ ∂ ∂ ∂⎢ ⎥− − − − +
∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦

 (3.214) 

 
The sixth term of Equation (3.213) can be defined using the seabed boundary condition  

in Equation (3.128): 

k kh

h
z x
φ φ

−

∂ ∂= −
∂ ∂ x

∂
∂

 (3.215) 

 
 
3.7.2 Gradients of the vertical function in Equation (3.213) 

Equation (3.213) contains horizontal gradients of the vertical function f. These are non-

zero if depth and current are varying. Equations for these can be obtained using the 

dispersion equation listed in Equation (3.187). Initially the required gradients will be 

expressed symbolically. The first horizontal derivative of the vertical function is: 

k k k k

η 1, 2k =df f f h f z
dx x h x z x

κ
κ η

′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂= + +
′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂

  ,  (3.216) 

 
It should be noted that this derivation is carried out for the mean free surface including 

set-up, where: 

( ) ( ) (, ,h h x y h x y x yη′ ′= = + ),

)

 (3.217) 
 
κ  is also a function of the horizontal derivatives 

( ,x yκ κ=   (3.218) 
 
At this point Equation (3.195) should also be recalled: 

( ) ( ) (, ,z z x y z x y x yη′ ′= = − ),  (3.219) 
 
The second horizontal derivatives of the vertical function may be expressed as follows: 

2

k k k k k k

d f f f h f z
dx dx x x h x z x

κ
κ η

⎡ ⎤′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂= + +⎢ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦

η
⎥  (3.220) 

 
Similarly the cross-derivative is: 

2

j k j k k k

d f f f h f z
dx dx x x h x z x

κ η
κ η

⎡ ⎤′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂= + +⎢ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦
⎥  (3.221) 
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Expressing Equation (3.220) more explicitly yields: 
2

k k k k k k

k k k k

k k k

k k k

d f f f h f z
dx dx x h x z x x

f f h f z h
h x h x z x x

f f h f z z
z x h x z x

f f h
x x h x

κ η
κ κ η

κ η
κ η

κ η
κ η

κ
κ

⎡ ⎤′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂= + +⎢ ⎥′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦
⎡ ⎤′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂+ + +⎢ ⎥′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎣
⎡ ⎤′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂+ + +⎢ ⎥′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦

′∂ ∂ ∂ ∂ ∂+ + +
′∂ ∂ ∂ ∂ ∂

kx

κ

η
η

⎦

k

f z
z x

η
η

⎡ ⎤′∂ ∂ ∂
⎢ ⎥′∂ ∂ ∂⎣ ⎦

 (3.222) 

 
Similarly Equation (3.221) can be expressed explicitly as: 

2

j k k k k j

k k k j

k k k

j k k

d f f f h f z
dx dx x h x z x x

f f h f z h
h x h x z x x

f f h f z z
z x h x z x

f f h
x x h x

κ η
κ κ η

κ η
κ η

κ η
κ η

κ
κ

⎡ ⎤′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂= + +⎢ ⎥′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦

⎡ ⎤′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂+ + +⎢ ⎥′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎣

⎡ ⎤′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂+ + +⎢ ⎥′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦

′∂ ∂ ∂ ∂ ∂+ + +
′∂ ∂ ∂ ∂ ∂

jx

κ

η
η

⎦

k

f z
z x

η
η

⎡ ⎤′∂ ∂ ∂
⎢ ⎥′∂ ∂ ∂⎣ ⎦

 (3.223) 

 
A full expansion of the terms in Equation (3.222) gives: 

2 2 2 2 2

2

2 2 2

2 2

2 2 2

k k k k k k k k k k

k k k k k k

k k k k

d f f f h f z f
dx dx x x h x x z x x x x

f h h f z z f h
h x x z x x h x x

f h f z d f d
h x x z x dx z d

κ η
κ η

η η κ
η η κ

κ η κ κ
κ κ η κ

′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂= + + +
′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂+ + +
′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂+ + +
′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

κ κ
κ

2 2
k k

k k k k

z
x x

f z h f h z
h z x x z h x x

η
η

η η
η η

′∂ ∂
∂ ∂

′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂+ +
′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

 (3.224) 

 
Similarly a full expansion of the terms in Equation (3.223) gives: 

2 2 2 2 2

2

2 2 2

2 2

2 2 2

j k j k j k j k k

k j k j k j

k j j k

d f f f h f z f
dx dx x x h x x z x x x x

f h h f z z f h
h x x z x x h x x

f h f z f
h x x z x x z

κ η
κ η

η η κ
η η κ

κ η κ κ
κ κ η κ

′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂= + + +
′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂+ + +
′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂+ + +
′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

j

κ κ
κ

2 2

j k

j k j k

z
x x

f z h f h z
h z x x z h x x

η
η

η η
η η

′∂ ∂
∂ ∂

′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂+ +
′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

 (3.225) 
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Isolating the terms containing the vertical function in Equation (3.224) gives: 
2 2 2 2

2 2 222 2 2

2 2 2

2 2 2

2 2 2

k k k k k k k k

k k k

k k k k k

d f f h f f z
dx dx h x x x x z x x

f h f f z
h x x z x

f h f z h f z
h x x h z x x z x

κ η
κ η

κ η
κ η

κ η
κ η κ η

′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂= + +
′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

⎛ ⎞ ⎛ ⎞ ⎛ ⎞′ ′⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂+ + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠
′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂+ + +

′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
η

kx
κ

∂

 (3.226) 

 
Similarly isolating the terms containing the vertical function in Equation (3.225) gives: 

2 2 2 2

2 2 2

2 2 2

2 2 2 2

j k j k j k j k

k j k j k j

k j k j k j

d f f h f f z
dx dx h x x x x z x x

f h h f f z z
h x x x x z x x

f h f h f z h f
h x x h x x z h x x h z

κ η
κ η

κ κ η η
κ η η

κ κ η
κ κ η

′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂= + +
′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂+ + +
′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂+ + + +
′ ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

2 2

k j

k j k j

h z
x x

f z f z
z x x z x x

η
η

η κ κ η
κ η κ η

′ ′∂ ∂ ∂
∂ ∂ ∂

′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂+
′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

 (3.227) 
 
Equation (3.226)  is the corresponding equation in this derivation to Equation 26 in the 

Massel (1993) derivation. This derivation includes the effects of set-up, η , its effects are 

neglected in the Massel (1993) derivation. 
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3.7.3 Use of dispersion relation to obtain gradients of the wave number 

 
Examining Equation (3.187) gives: 

( ) ( )22 tanh . 2 . 0g hω κ κ ω′− + −κ U κ U =  (3.228) 
 
Where is defined as discussed in Equation κ (3.188): 

S
S

φ

φ

κ
∇

=
∇

κ  

A function G can be selected as follows: 

( ) (22 tanh . 2 .G g hω κ κ ω′= − + −κ U κ U)

h

 (3.229) 
 
By setting: 

2
1 tanhG gω κ κ ′= −  (3.230) 

( ) ( )
2

2
2 . 2 . . 2 .

S S
G

S S
φ

φ φ

ω κ ω κ
⎛ ⎞ ⎛ ⎞∇ ∇
⎜ ⎟ ⎜= − = −
⎜ ⎟ ⎜∇ ∇⎝ ⎠ ⎝ ⎠

κ U κ U U φ ⎟
⎟

U

2

 (3.231) 

 
The G function can be expressed as: 

1G G G= +   (3.232) 
where: 

( ) ( )( )1 1 1 1 2, , ,G G h G h x xκ κ′ ′= =  

( )2 2 1 2, ,G G x xκ=  
 
Equation (3.229) can also be expressed as follows: 

2
2 tanhG h

g
ωλ κ+′ = = κ ′  (3.233) 

 
Where  can be defined in terms of the  from Equation λ′ σ (3.190) as follows: 

2

g
σλ′ =   (3.234) 
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3.7.3.1 Horizontal derivatives of κ 

The horizontal partial derivatives of G can be used to obtain first and second horizontal 

derivatives of the function with respect to  and .  Using Equation κ h′ (3.228) with 

Equation (3.230) and (3.231) gives: 

( ) ( )( ) ( )1 1 2 1 2 2 1 2, , , , ,G x x h x x G x xκ ′ + 0κ =  (3.235) 

 
Initially examining the first horizontal derivative of G: 

1 2 0
k k k

G dGdG
dx x dx

∂= + =
∂

 (3.236) 

 
2G  will be obtained numerically throughout the modelling of this project. For any step in 

an iterative scheme  will be calculated based on the results of the previous iteration. 

Hence  and its derivatives will be isolated from  for this derivation. 

2G

2G 1G

 

1 2 1 1 2 0
k k k k k k

G G G G dGdG h
dx x x x h x dx

κ
κ

⎛ ⎞ ⎛ ⎞′∂ ∂ ∂ ∂∂ ∂= + = + +⎜ ⎟ ⎜ ⎟′∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
=  (3.237) 

 
Rearranging Equation (3.237) to obtain the horizontal derivative of  gives: κ

1 2

1

k

k

G dh
h x dx

Gx
κ

κ

′∂ ∂− −
′∂ ∂∂ = ∂∂

∂

k

G

 (3.238) 

 
Examining the second horizontal derivative of G gives: 

2 22
1 2 0

k k k k k k

G d Gd G
dx dx x x dx dx

∂= +
∂ ∂

=  (3.239) 

 

Using Equation (3.237) with Equation (3.239) gives: 

1 1

2 2 22
1 2 1 1 2

1 1

0

k k k

k k k k k k k k k k k

k k k

G G h d
x h x dx

G d G G G d Gd G h dh
dx dx x x dx dx h x h x dx dx dx

G G h
x x h x

κ κ
κ κ

κ
κ

κ
κ

⎡ ⎤⎛ ⎞′∂ ∂∂ ∂ ∂+⎢ ⎥⎜ ⎟′∂ ∂ ∂ ∂ ∂⎝ ⎠⎢ ⎥
⎢ ⎥⎡ ⎤ ⎛ ⎞′ ′∂ ∂ ∂∂ ∂ ∂⎢= + = + + +⎜ ⎟⎢ ⎥ ′ ′⎢∂ ∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦ ⎝ ⎠
⎢ ⎥

⎛ ⎞′∂ ∂∂ ∂ ∂⎢ ⎥+ +⎜ ⎟⎢ ⎥′∂ ∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

⎥ =
⎥

 (3.240) 
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Equation (3.240) can be expanded to: 
2 2 2 2

1 1 1 1
2 2

22 2
1 1 2 0

k k k k k

k k k k k k

G G G Gh h

k

h
x h x x h x h x x

G G d Gh
x x h x x dx dx

κ κ κ
κ κ κ

κ
κ

⎛ ⎞ ⎛′ ′∂ ∂ ∂ ∂∂ ∂ ∂ ∂ ∂+ + +⎜ ⎟ ⎜′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝
⎛ ⎞′∂ ∂∂ ∂+ + + =⎜ ⎟′∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

⎞ ′∂
⎟
⎠  (3.241) 

 
Isolation of the second horizontal derivative of  gives: κ

2 2 2 2 22
1 1 1 1 1

2 22

1

k k k k k k k k

k k

G G G G G dh h h 2

k k

Gh
x h x x h x h x x h x x dx dx

Gx x

κ κ κ
κ κ κκ

κ

⎛ ⎞ ⎛ ⎞′ ′ ′∂ ∂ ∂ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂ ∂+ + + + +⎜ ⎟ ⎜ ⎟′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ⎝ ⎠ ⎝ ⎠= ∂∂ ∂ −
∂

′

 

  (3.242) 
 
 
Expansion and separation of the explicit  term as before gives: 2G

2 22 2 22 2
1 1 1 1 2

2 22

1 1

2
k k k k k k k k

k k

G G G Gh h h d G
x h x h x x h x x dx dx

G Gx x

κ κ
κ κκ

κ κ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞′ ′ ′∂ ∂ ∂ ∂∂ ∂ ∂ ∂ ∂− − − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠= −∂ ∂∂ ∂
∂ ∂

 (3.243) 

 
 
3.7.3.2 Derivatives of G1 with respect to κ and  ′h

In order to complete the symbolic derivations listed in Section 3.7.3.2 above it is 

necessary to individually calculate each of the components as follows: 

( 21 tanhG gω κ κ
κ κ

∂ ∂ ′= −
∂ ∂

)h  (3.244) 

21 sech tanhG h g h g hκ κ κ
κ

∂ ′ ′= − −
∂

′  (3.245) 

( ) (
2

21
2 sech tanhG h )g h g hκ κ κ

κ κ κ
∂ ∂ ∂′ ′= − −
∂ ∂ ∂

′  (3.246) 

 

The first term in Equation (3.246) may be written as:  

( ) ( )2 2 2sech sech 2sech sech tanhh g h h g h h g h h hκ κ κ κ κ κ κ
κ
∂ ′ ′ ′ ′ ′ ′ ′− = − − −

∂
′  (3.247) 

( )2 2 2 2sech sech 2sech tanhh g h h g h h g h hκ κ κ κ κ κ
κ
∂ ′ ′ ′ ′ ′ ′− = − +

∂
′  (3.248) 

 
Examining the second term of Equation (3.246) gives: 

( ) 2tanh sechg h ghκ
κ
∂ ′ ′=

∂
hκ ′  (3.249) 
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Combining Equations (3.248) and (3.249): 
2

2 2 2 21
2 sech 2sech tanh sechG h g h h g h h ghκ κ κ κ

κ
∂ ′ ′ ′ ′ ′ ′= − + −
∂

hκ ′  (3.250) 

2
2 2 21

2 2 sech tanh 2 sechG g h h h ghκ κ κ
κ

∂ ′ ′ ′ ′= −
∂

hκ ′  (3.251) 

 

( ) (
2

21 sech tanhG h )g h g h
h h h

κ κ κ
κ

∂ ∂ ∂′ ′= − −
′ ′ ′∂ ∂ ∂ ∂

′  (3.252) 

 
 

The first term in Equation (3.252) may be written as: 

( ) ( )2 2 2sech sech 2sech sech tanhh g h g h h g h h h
h

κ κ κ κ κ κ κ κ∂ ′ ′ ′ ′ ′ ′− = − − −
′∂

′    

 (3.253) 

( )2 2 2 2sech sech 2 sech tanhh g h g h h g h h
h

κ κ κ κ κ κ κ∂ ′ ′ ′ ′ ′− = − +
′∂

′  (3.254) 

 
Examining the second term of Equation (3.252) gives: 

( ) 2tanh sechg h g
h

κ κ κ∂ ′ =
′∂

h′  (3.255) 

 
 

Combining Equations (3.254) and (3.255): 
2

2 2 21 2 sech tanh 2 sechG h g h h g h
h

κ κ κ κ
κ

∂ ′ ′ ′= −
′∂ ∂

κ ′  (3.256) 

 
 
 

( 21 tanhG g
h h

ω κ κ∂ ∂ ′= −
′ ′∂ ∂

)h  (3.257)

2 21 sechG g
h

κ∂ ′= −
′∂

hκ  (3.258) 

 
 

(
2

2 21
2 sechG )g h

h h
κ κ∂ ∂ ′= −

′ ′∂ ∂
 (3.259) 

2
3 21

2 2 sech tanhG g h
h

κ κ∂ ′=
′∂

hκ ′  (3.260) 
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(
2

2 21 sechG )g h
h

κ κ
κ κ

∂ ∂ ′= −
′∂ ∂ ∂

 (3.261) 

2
2 2 21 2 sech tanh 2 sechG gh h h g h

h
κ κ κ κ

κ
∂ ′ ′ ′= −

′∂ ∂
κ ′  (3.262) 

 
 
Equation (3.262) is identical to Equation (3.256) as expected.  

 

 

 

3.7.3.2 Derivatives of G2 with respect to κ and x 

The gradient of  with respect to 2G x  can be expanded as follows: 

2 2 2

k k

dG G G
dx x x

κ
κ

∂ ∂ ∂= +
∂ ∂ ∂ k

 (3.263) 

 
The second differential of  with respect to 2G x  becomes: 

2
2 2 2

k k k k k

d G G Gd
dx dx dx x x

κ
κ

⎛ ⎞∂ ∂ ∂= +⎜ ∂ ∂ ∂⎝ ⎠
⎟  (3.264) 

 
This may be expanded as: 

2 2 2
2 2 2

k k k k k k

d G G G
dx dx x x x x

κ
κ

∂ ∂ ∂= +
∂ ∂ ∂ ∂ ∂

 (3.265) 

 
Equation

 
(3.231) can be expressed in index notation as follow: 

2

2 2
ˆ ˆ

k k
k

j j
j j

S S
U U

kx xG
S S
x x

φ φ

φ φ

κ κ
ω

⎛ ⎞ ⎛ ⎞∂ ∂⎜ ⎟ ⎜ ⎟
∂⎜ ⎟ ⎜= −⎜ ⎟ ⎜∂ ∂⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
e e

∂ ⎟
⎟  (3.266) 

 
Further expansion of

 
(3.266)

 
gives: 

2

2 2

2

ˆˆ

k k k

k k k
jj

jj

S S SU U UG
x x SS

xx

x
φ φ φ

φφ

κ ω∂ ∂ ∂
= −

∂ ∂ ∂∂∂
∂∂

ee

κ
 (3.267) 
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The partial derivative of  with respect to 2G x  can be calculated as follows: 

2
2

2

2

ˆˆ

k k k

k k k
jj

jj

S S SU U UG

kx x x x x SS
xx

φ φ φ

φφ

κ

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟∂ ∂ ∂∂ ∂ ∂ ⎜= −⎜ ⎟ ⎜∂ ∂ ∂ ∂ ∂ ∂∂∂⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟∂⎜ ⎟∂ ⎝ ⎠⎝ ⎠

ee
x

ωκ ⎟
⎟  (3.268) 

 
Equation (3.268) can be rewritten as: 

2
2

2
2

ˆˆ
k k k

k k k k k
jj

jj

S S SG U U U
kx x x x xSS

xx

φ φ φ

φφ

κ ωκ∂ ∂ ∂⎛ ⎞ ⎛∂ ∂= −⎜ ⎟ ⎜∂ ∂ ∂ ∂ ∂∂⎝ ⎠ ⎝∂
∂∂

ee
x
⎞∂
⎟∂ ⎠

 (3.269) 

 
Equation (3.269) may be expressed more explicitly as: 

22
2

2 2

2
2

ˆ2ˆ

k
k

k k k k
k

k k k k k
k k jj

k k k jj

S SU U
x x x S SUG U

x x x x xS S SS U U
x x x xx

φ φ

φ

φ φ φφ

κ ωκ

∂ ∂⎛ ⎞∂
⎜ ⎟∂ ∂ ∂ ⎛ ⎞∂ ∂∂∂ ⎜ ⎟= − ⎜⎜⎜ ⎟∂ ∂∂ ∂ ∂∂ ⎝ ⎠⎜ ⎟+⎜ ⎟∂ ∂ ∂ ∂∂ ⎝ ⎠

ee

φ+ ⎟⎟∂ ∂ ∂
 (3.270) 

 
Full expansion of Equation (3.270) gives: 

2 22 2
2

2 2

2 2 2

ˆˆ ˆ

k k k k k k

k k k k k k k k k
jj j

jj j

S S S S S SU U U U U UG

k kx x x x x x x x x x xSS S
xx x

φ φ φ φ φ φ

φφ φ

κ κ ωκ∂ ∂ ∂ ∂ ∂ ∂∂ ∂∂ = + −
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂∂ ∂

∂∂ ∂
ee e

+
∂

 (3.271) 

The partial derivative of  with respect to  can be expressed as follows: 2G κ

2
2

2 2

ˆˆ

k k k

k k k
jj

jj

S S SU U UG
x x xSS

xx

φ φ φ

φφ

κ ω
κ

∂ ∂ ∂∂ = −
∂ ∂ ∂ ∂∂

∂∂
ee

∂
 (3.272) 
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Using Equations (3.271) and (3.272) with Equation (3.263) gives the following:  

2

2

2

22
2

2

2

2

2ˆ

ˆ
2

2
ˆ

ˆ
2

ˆ

k k

k k k k k
j

k kj

j
jk k

k k k k k
j

kj
j

j
k k

k k k k
j

j

S SU U
x x x S SS U U

x xx S
xS SU UdG

dx x x x SUS
xSx

xS SU U
x x x xS

x

φ φ

φ φφ

φ

φ φ

φφ

φ

φ φ

φ

κ

κ

κ
ω

ωκ

⎛ ⎞
⎜ ⎟

∂ ∂∂⎜ ⎟
⎜ ⎟∂ ∂ ∂ ∂ ∂∂ ⎛⎜ ⎟
⎜ ⎟ ∂ ∂∂ ∂⎜ ⎟
⎜ ⎟ ∂∂ ∂
⎜ ⎟= + +

∂ ∂ ∂ ∂⎜ ⎟∂ −⎜ ⎟ ∂∂∂⎜ ⎟
⎜ ⎟ ∂∂ ∂∂⎜ ⎟− +⎜ ⎟∂ ∂ ∂ ∂∂
⎜ ⎟
⎜ ⎟∂⎜ ⎟⎝ ⎠

e

e

e
e

e

kx
κ

⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟ ∂⎜
⎜ ∂
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

⎟
⎟

 (3.273) 

 
 
A second derivative of Equation (3.271) produces: 

2

2

222
2

2

2

2

ˆ

2

ˆ

2

ˆ

k k

k k k

j
j

k k

k k k k k k

j
j

k k

k k k k
j

j

S SU U
x x xS

x

S SU UG
x x x x x xS

x

S SU U
x x x xS

x

φ φ

φ

φ φ

φ

φ φ

φ

κ

κ

ωκ

⎛ ⎞
⎜ ⎟

∂ ∂∂⎜ ⎟
⎜ ⎟∂ ∂ ∂∂⎜ ⎟
⎜ ⎟∂
⎜ ⎟
⎜ ⎟∂ ∂∂ ∂ ⎜= +

∂ ∂ ∂ ∂ ∂ ∂⎜ ⎟∂
⎜ ⎟

∂⎜ ⎟
⎜ ⎟∂ ∂∂⎜ ⎟− +⎜ ⎟∂ ∂ ∂ ∂∂
⎜ ⎟
⎜ ⎟∂⎜ ⎟⎝ ⎠

e

e

e

⎟  (3.274) 
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Further expansion of Equation (3.274) gives: 
2 22

2 2

2 22 2

2 2

2
2

32

2

22

ˆ ˆ

4 4

ˆ ˆ

2

ˆ

k k k k

k k k k k k k k

j j
j j

k k k k

k k k k k k k k

j j
j j

k k k k

k k k k

j
j

S S S SU U U U
x x x x x x x xS S

x x

S S S SU U U U
x x x x x x x xS S

x xG
x x S SU U

x x x xS
x

φ φ φ φ

φ φ

φ φ φ φ

φ φ

φ φ

φ

κκ

κ κ

κ

∂ ∂ ∂ ∂∂ ∂ ∂+
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂

∂ ∂

∂ ∂ ∂ ∂∂ ∂+ +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂

∂ ∂∂ =
∂ ∂ ∂ ∂

+ +
∂ ∂ ∂ ∂∂

∂

e e

e e

e

2 22

2

2 3 2

2

ˆ

22

ˆ ˆ

k k

k k k k

j
j

k k k k

k k k k k k k k k k k k
j j

j j

S SU U
x x x xS

x

S S SU U U U 2S
x x x x x x x x x x x xS S

x x

φ φ

φ

φ φ φ

φ φ

κ

ωκωκ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

∂ ∂⎜ ⎟
⎜ ⎟∂ ∂ ∂ ∂∂⎜ ⎟
⎜ ⎟∂
⎜ ⎟
⎜ ⎟∂ ∂ ∂∂ ∂− − + +⎜ ⎟

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂⎜ ⎟
⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

e

e e

φ∂∂

 (3.275) 

Using Equations (3.275) and (3.272) with (3.265) gives: 
2 22

2 2

2 22 2

2 2

2
2

32

2

22

ˆ ˆ

4 4

ˆ ˆ

2

ˆ

k k k k

k k k k k k k k

j j
j j

k k k k

k k k k k k k k

j j
j j

k k k k

k k k k

j
j

S S S SU U U U
x x x x x x x xS S

x x

S S S SU U U U
x x x x x x x xS S

x xd G
dx dx S SU U

x x x xS
x

φ φ φ φ

φ φ

φ φ φ φ

φ φ

φ φ

φ

κκ

κ κ

κ

∂ ∂ ∂ ∂∂ ∂ ∂+
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂

∂ ∂

∂ ∂ ∂ ∂∂ ∂+ +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂

∂ ∂
=

∂ ∂
+ +

∂ ∂ ∂ ∂∂
∂

e e

e e

e

2 22

2

2 3 2

2

2

ˆ

22

ˆ ˆ

2

ˆ

k k

k k k k

j
j

k k k k

k k k k k k k k k k k k
j j

j j

k k

k

j
j

S SU U
x x x xS

x

S S SU U U U 2S
x x x x x x x x x x x xS S

x x

S SU U
x xS

x

φ φ

φ

φ φ φ

φ φ

φ φ

φ

κ

ωκωκ

κ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

∂ ∂⎜ ⎟
⎜ ⎟∂ ∂ ∂ ∂∂⎜ ⎟
⎜ ⎟∂
⎜ ⎟
⎜ ⎟∂ ∂ ∂∂ ∂− − + +⎜ ⎟

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂⎜ ⎟
⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

∂ ∂
+

∂ ∂∂
∂

e

e e

e

φ∂∂

22

ˆ

k

k k k k
j

j

SU
x x xS

x

φ

φ

ω κ

⎛ ⎞
⎜ ⎟
⎜ ⎟∂ ∂−⎜ ⎟∂ ∂ ∂∂⎜ ⎟
⎜ ⎟∂⎜ ⎟
⎝ ⎠

e
 (3.276) 
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During computer modelling 
k

S
x

φ∂
∂

and its magnitude will be obtained numerically from the 

previous iterations. 

3.7.3.3 Further expansion of the horizontal derivatives of κ 

Equation (3.273) can be used with Equation (3.238) to give: 

2

2

22
1

2 2

2

1

2

ˆ

2 2

ˆ ˆ

2 2

ˆ

k k

k k k

j
j

k k k k

k k k k k k
j j

j j

k k k

k k k k
j

j

k

S SU U
x x xS

x

S SU UG h SU U
h x x x x x xS S

x x

S SU U U
x x x xS

x
Gx

φ φ

φ

φ φ φ φ

φ φ

φ φ

φ

κ

κ κ

ωκ ω

κ

κ

⎛ ⎞
⎜ ⎟

∂ ∂∂⎜ ⎟
⎜ ⎟∂ ∂ ∂∂⎜ ⎟
⎜ ⎟∂
⎜ ⎟
⎜ ⎟∂ ∂′∂ ∂ ∂− − +⎜ ⎟

′∂ ∂ ∂ ∂ ∂ ∂ ∂⎜ ⎟∂ ∂
⎜ ⎟∂ ∂⎜ ⎟
⎜ ⎟∂ ∂∂⎜ ⎟− + −
⎜ ⎟∂ ∂ ∂ ∂∂
⎜ ⎟⎜ ⎟∂∂ ⎝ ⎠= +∂∂

∂

e

e e

e

S∂

1

ˆ

k

k
j

j

xS
xS

x
G

φ

φ

κ

κ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟ ∂⎜ ⎟
⎜ ⎟ ∂∂
⎜ ⎟

∂∂⎜ ⎟
⎜ ⎟⎜ ⎟∂⎝

∂
∂

e
⎠  (3.277) 

 
 
 

Isolating the 
kx

κ∂
∂

 terms on one side of the equation yields: 

2

2

22
1

2

2

1

2

ˆ

2

ˆ
2

2ˆ

2

ˆ

1

k k

k k k

j
j

k k

k k k

j
k k j

k k
kj

j

k

kk
j

j

S SU U
x x xS

x

S SU UG h
h x x x xS

S SU U x
x xS U

x

SU
xSx

x
G

φ φ

φ

φ φ

φ

φ φ

φ

φ

φ

κ

κ

κ

ωκ

ωκ

κ

∂ ∂∂
∂ ∂ ∂∂

∂

∂ ∂′∂ ∂− − +
′∂ ∂ ∂ ∂ ∂∂

⎡ ⎤∂ ∂⎛ ⎞ ∂
⎢ ⎥⎜ ⎟∂ ∂∂⎢ ⎥⎜ ⎟

−⎢ ⎥⎜ ⎟∂⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟∂∂ −⎢ ⎥⎜ ⎟ =∂∂⎢ ⎥⎜ ⎟∂
⎢ ⎥⎜ ⎟⎜ ⎟∂⎝ ⎠⎢ ⎥−⎢ ⎥∂
⎢ ⎥∂⎢ ⎥
⎢ ⎥⎣ ⎦

e

e
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Dividing across by the coefficient of 
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 gives: 
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Simplifying Equation (3.279) gives: 
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Equation (3.280) can now be written as follows using Equations (3.245) and (3.258): 
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Equation (3.243) can be rewritten using the results of Section 3.7.3.2: 
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Bringing the terms containing 
2

k kx x
κ∂

∂ ∂
 to one side yields: 
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Isolating the 
2

k kx x
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 term gives: 
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Dividing both sides by the coefficient of the 
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k kx x
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∂ ∂
 term gives: 
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Equation (3.285) may be simplified as follows: 
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⎢ ⎥
⎢ ⎥
⎢ ⎥

⎛ ⎞⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟∂⎢ ⎥⎜ ⎟⎢ ⎥∂ ∂ ∂⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤
⎢ ⎥
⎢ ⎥∂ ∂ ∂∂ − +⎢ ⎥∂ ∂ ∂ ∂∂∂⎢ ⎥
⎢ ⎥∂∂⎢⎣ ⎦

ee
⎥

 

  (3.286) 
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Using the results of Section 3.7.3.2 with Equation (3.286) gives the following:

 

 
 
 
 
 

( )

( )

2
3 2

2 2

2
2 2

2 2

2

2

2

2 sech
2 sech tanh

2 sech tanh

sech

2 sech tanh
2

2 sech

2

k k k k

k k

k k

k k

h g h h hg h h
x x x xh g h h

hg h
x x

gh h h h
x xg h

S
x

x x

φ

κ κ κ κ κ κ
κ κ κ

κ κ

κ κ κ κ
κ κ

κ

κ

′ ′⎛ ⎞− ⎛ ⎞ ⎛ ′ ′∂ ∂ ∂ ∂′ ′− −⎜ ⎟⎜ ⎟ ⎜⎜ ⎟ ∂ ∂ ∂ ∂′ ′ ′+ ⎝ ⎠ ⎝⎝ ⎠
′∂′− −

∂ ∂

′ ′ ′⎛ ⎞⎛ ⎞′∂ ∂−⎜ ⎟⎜ ⎟⎜ ⎟ ∂ ∂′− ⎝ ⎠⎝ ⎠

∂
∂

−

∂ =
∂ ∂

⎞
⎟
⎠

2 2

2 2

2 22 2

2 2

3 22 2

2 2

2

ˆ ˆ

4 4

ˆ ˆ

2 2

ˆ ˆ

k k k k

k k k k k k k k

j j
j j

k k k k

k k k k k k k k

j j
j j

k k k k

k k k k

j j
j j

S S S SU U U U
x x x x x x x xS

x

S S S SU U U U
x x x x x x x xS S

x x

S SU U U U
x x x xS S

x x

φ φ φ φ

φ

φ φ φ φ

φ φ

φ φ

φ φ

κ

κ κ

κ κ

∂ ∂ ∂ ∂∂ ∂ ∂+
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂

∂

∂ ∂ ∂ ∂∂ ∂+ +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂

∂ ∂

∂ ∂ ∂
+ +

∂ ∂ ∂ ∂∂ ∂
∂ ∂

e e

e e

e e

2

2 3 2222

ˆ ˆ

k k k k

k k k k

k k k k k k k k k k k k
j j

j j

S S
x x x x

S S S SU U U U
x x x x x x x x x x x xS S

x x

φ φ

φ φ φ φ

φ φ

ωκωκ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎛ ⎞
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟
⎢ ⎜ ⎟
⎢ ⎜ ⎟
⎢ ⎜ ⎟
⎢ ⎜ ⎟
⎢ ⎜ ⎟
⎢ ⎜ ⎟
⎢ ⎜ ⎟
⎢ ⎜ ⎟

∂⎢ ⎜ ⎟
⎢ ⎜ ⎟∂ ∂ ∂ ∂⎢ ⎜ ⎟
⎢ ⎜ ⎟
⎢ ⎜ ⎟
⎢ ⎜ ⎟∂ ∂ ∂ ∂∂ ∂ ∂⎢ − − + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎢ ∂ ∂⎜ ⎟
⎢ ⎜ ⎟⎜ ⎟∂ ∂⎢⎢ ⎝ ⎠⎣ ⎦

e e

2
2

2 2sech tanh
ˆˆ

k k k

k k k
jj

jj

S S SU U Uh g h g h
x x xSS

xx

φ φ φ

φφ

κ ωκ κ κ

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥

⎡ ⎤
⎢ ⎥
⎢ ⎥∂ ∂ ∂

′ ′ ′− − − +⎢ ⎥∂ ∂ ∂∂∂⎢ ⎥
⎢ ⎥∂∂⎢ ⎥⎣ ⎦

ee

 

  (3.287) 
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3.7.3.4 Derivatives of the vertical function 

The vertical function f was defined in Equation (3.197) as follows: 

( )
[ ]

cosh
cosh

h z
f

h
κ

κ
′ ′+⎡ ⎤⎣ ⎦=

′
 

where: 

z z η′ = −  and h h η′ = +  
 

Massel (1993) selects a representation using trigonometric functions for this term but the 

more accepted practice in the coastal engineering field is the use of hyperbolic functions 

as derived in Section 3.6.3.3. Berkhoff (1976), Booij (1981), Mei et al. (2005) and Clyne 

(2008) all use this function. 

 
 
In order to evaluate the various terms discussed in Section 3.7.3.3 it is necessary to obtain 

first and second derivatives of the vertical function with respect to ,  and .  h′ κ z′

 
 
3.7.3.4.1 Derivatives of the vertical function with respect to h : ′

The derivative of f from Equation (3.197)  with respect to h is calculated as follows: ′

( )
( )

cosh
cosh

h zf
h h h

κ
κ

⎡ ⎤′ ′+⎡ ⎤∂ ∂ ⎣ ⎦= ⎢′ ′ ′∂ ∂
⎥

⎡ ⎤⎢ ⎥⎣ ⎦⎣ ⎦
 (3.288) 

 
Expanding (3.288) gives: 

( )( ) ( ) ( )
2

cosh cosh cosh cosh

cosh

h h z h zf h h
h h

κ κ κ

κ

∂ ∂′ ′ ′ ′ ′+ − +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∂ ′ ′∂ ∂=
′ ′∂

hκ ′
 (3.289) 

( ) ( )
2

cosh sinh cosh sinh
cosh

h h z h zf
h h

κ κ κ κ κ κ
κ

′ ′ ′ ′ ′+ − +⎡ ⎤ ⎡ ⎤∂ ⎣ ⎦ ⎣ ⎦=
′ ′∂

h′
 (3.290) 

 
 

Dividing the numerator and the denominator by co  gives: sh hκ ′

( ) ( )sinh cosh tanh
cosh

h z h z hf
h h

κ κ κ κ κ
κ

′ ′ ′ ′+ − +⎡ ⎤ ⎡ ⎤∂ ⎣ ⎦ ⎣ ⎦=
′ ′∂

′
 (3.291) 

 
Equation (3.291) may be rewritten as: 

( ) ( )sinh cosh
cosh

h z h zf
h h

κ κ λ κ
κ

′ ′ ′ ′ ′+ − +⎡ ⎤ ⎡ ⎤∂ ⎣ ⎦ ⎣=
′ ′∂

⎦  (3.292) 
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The second derivative of f with respect to  is approached the same way: h′

( )

( )
( )

( )
( )

2

2

22 2
2

cosh sinh
cosh

cosh sinh1
cosh sinhcosh

cosh
cosh sinh

h h z
h

h h z hf
h h h zh

h
hh z h

κ κ κ
κ

κ κ κ

κ κ κκ
κ

κ κ κ

⎛ ⎞⎡ ⎤′ ′ ′+⎡ ⎤∂ ⎣ ⎦⎜ ⎟′ ⎢ ⎥
′∂⎜ ⎟′ ′ ′− +⎢ ⎡ ⎤ ⎥⎣ ⎦∂ ⎣⎜ ⎟=

′∂ ⎜ ⎟⎡ ⎤′ ′ ′′ +⎡ ⎤ ∂⎣ ⎦⎜ ⎟′⎢ ⎥−
′∂⎜ ⎟′ ′ ′− +⎢ ⎡ ⎤ ⎥⎣ ⎦⎣ ⎦⎝ ⎠

⎦  (3.293) 

 
 

Isolating a term from Equation (3.293) to be expanded on its own gives:  

( )
( )

( ) ( )
cosh sinh

cosh sinh cosh sinh
cosh sinh

h h z
h h z h z

h h hh z h

κ κ κ
κ κ κ κ κ

κ κ κ

⎡ ⎤′ ′ ′+⎡ ⎤∂ ∂ ∂⎣ ⎦ ′ ′ ′ ′ ′⎢ ⎥ = + − +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦′ ′ ′∂ ∂ ∂′ ′ ′− +⎢ ⎡ ⎤ ⎥⎣ ⎦⎣ ⎦
hκ ′

  (3.294) 
 

( )
( )

( ) ( )

( ) ( )

2 2

2 2

cosh sinh
cosh cosh sinh sinh

cosh sinh

cosh cosh sinh sinh

h h z
h h z h z

h h z h

h z h h h z

κ κ κ
κ κ κ κ κ κ

κ κ κ

κ κ κ κ κ κ

⎡ ⎤′ ′ ′+⎡ ⎤∂ ⎣ ⎦ ′ ′ ′ ′ ′⎢ ⎥ = + + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦′∂ ′ ′ ′− +⎢ ⎡ ⎤ ⎥⎣ ⎦⎣ ⎦
′ ′ ′ ′ ′ ′− + −

h′

+⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

 

  (3.295) 
 

( )
( )

cosh sinh
0

cosh sinh

h h z

h h z h

κ κ κ

κ κ κ

⎡ ⎤′ ′ ′+⎡ ⎤∂ ⎣ ⎦⎢ =
′∂ ′ ′ ′− +⎢ ⎡ ⎤ ⎥⎣ ⎦⎣ ⎦

⎥  (3.296) 

 
 
 

Isolating the second term containing a derivative from Equation (3.293) gives: 

2cosh 2 cosh sinhh h
h

κ κ κ κ∂ ′ ′=
′∂

h′  (3.297) 

 
 
Using Equations (3.296) and (3.297) with Equation (3.293) gives: 

( )

[ ]
( )

( )

2

2

22 2

cosh 0
1 cosh sinh

2 cosh sinhcosh
cosh sinh

h
f h h z

h h hh
h z h

κ

κ κ κ
κ κ κκ

κ κ κ

′⎛ ⎞
⎜ ⎟∂ ⎡ ⎤′ ′ ′⎜ ⎟+⎡ ⎤= ⎣ ⎦′∂ ′ ′⎢ ⎥−⎜ ⎟′
⎜ ⎟′ ′ ′− +⎢ ⎡ ⎤ ⎥⎣ ⎦⎣ ⎦⎝ ⎠

 (3.298) 

 
 
This can be expanded as: 

( ) ( )2 2 2 22

2 4

2 cosh sinh sinh 2 cosh sinh cosh
cosh

h h h z h h h zf
h h

κ κ κ κ κ κ κ κ
κ

′ ′ ′ ′ ′ ′ ′ ′− + +⎡ ⎤ ⎡ ⎤∂ ⎣ ⎦ ⎣ ⎦=
′ ′∂

+
 

  (3.299) 
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Dividing the numerator and denominator by  gives: 3cosh hκ ′

( ) ( )2 2 22

2

2 tanh sinh 2 tanh cosh
cosh

h h z h hf
h h

κ κ κ κ κ κ
κ

′ ′ ′ ′ ′− + +⎡ ⎤ ⎡ ⎤∂ ⎣ ⎦ ⎣=
′ ′∂

z′+ ⎦  (3.300) 

 
Equation (3.300) can then be written as: 

( ) ( )22

2

2 sinh 2 cosh
cosh

h z h zf
h h

κλ κ λ κ
κ

′ ′ ′ ′ ′− + +⎡ ⎤ ⎡ ⎤∂ ⎣ ⎦ ⎣=
′ ′∂

′+ ⎦

κ

 (3.301) 

 
 
 
 
3.7.3.4.2 Derivatives of the vertical function with respect to : 

The derivative of f from Equation  with respect to is calculated as follows: κ

( )
( )

cosh
cosh

h zf
h

κ
κ κ κ

⎡ ⎤′ ′+⎡ ⎤∂ ∂ ⎣= ⎢ ′∂ ∂
⎦ ⎥

⎡ ⎤⎢ ⎥⎣ ⎦⎣ ⎦
 (3.302) 

 
Expanding Equation (3.302) yields: 

( ) ( )
2

cosh cosh cosh cosh

cosh

h h z h zf
h

κ κ κ
κ

κ κ

∂ ∂′ ′ ′ ′ ′+ − +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∂ ∂=
′∂

hκ
κ

′
∂  (3.303) 

 
( ) ( ) ( )

2

cosh sinh cosh sinh
cosh

h z h h z h h z hf
h

κ κ κ
κ κ

′ ′ ′ ′ ′ ′ ′ ′+ + − +⎡ ⎤ ⎡ ⎤∂ ⎣ ⎦ ⎣ ⎦=
′∂

κ ′
 (3.304) 

 
 

Dividing the numerator and denominator by  gives: cosh hκ ′

( ) ( ) ( )sinh cosh tanh
cosh

h z h z h h z hf
h

κ κ
κ κ

′ ′ ′ ′ ′ ′ ′+ + − +⎡ ⎤ ⎡ ⎤∂ ⎣ ⎦ ⎣ ⎦=
′∂

κ ′
 (3.305) 

 
 

Equation (3.305) may also be written as: 

( ) ( ) ( )sinh cosh

cosh

hh z h z h zf
h

λκ κ
κ

κ κ

′ ′′ ′ ′ ′ ′ ′+ + −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∂ =
′∂

+
 (3.306) 
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The second derivative of f with respect to  is approached the same way: κ

( )

( ) ( )
( )

( ) ( )
( )

2

2

22 2
2

cosh sinh
cosh

cosh sinh1
cosh sinhcosh

cosh
cosh sinh

h z h h z
h

h h z hf
h z h h zh

h
h h z h

κ κ
κ

κ κ κ

κ κ κκ
κ

κκ κ

⎡ ⎤⎛ ⎞′ ′ ′ ′ ′+ +⎡ ⎤∂ ⎣ ⎦⎢ ⎥⎜ ⎟′
⎜ ⎟∂⎢ ⎥′ ′ ′ ′− +⎡ ⎤⎣ ⎦∂ ⎝ ⎠⎢ ⎥=

∂ ⎢ ⎥⎛ ⎞′ ′ ′ ′ ′′ + +⎡ ⎤ ∂⎣ ⎦⎢ ⎥⎜ ⎟ ′−
⎜ ⎟ ∂⎢ ⎥′ ′ ′ ′− +⎡ ⎤⎣ ⎦⎝ ⎠⎣ ⎦

 (3.307) 

 

Examining the first term on the right hand side of Equation (3.293) containing a 

derivative gives 

( ) ( )
( )

( ) ( )

( )

cosh sinh
cosh sinh

cosh sinh

cosh sinh

h z h h z
h z h h z

h h z h

h h z h

κ κ
κ κ

κ κκ κ

κ κ
κ

⎛ ⎞′ ′ ′ ′ ′+ +⎡ ⎤∂ ∂⎣ ⎦⎜ ⎟ ′ ′ ′ ′ ′= + +⎡ ⎤⎣ ⎦⎜ ⎟∂ ∂′ ′ ′ ′− +⎡ ⎤⎣ ⎦⎝ ⎠
∂′ ′ ′ ′− +⎡ ⎤⎣ ⎦∂

 

  (3.308) 
 
Equation (3.308) can be expanded to give: 

( ) ( )
( )

( ) ( )

( ) ( )
( )

( ) ( )

2

2

cosh sinh
cosh cosh

cosh sinh

sinh sinh

cosh cosh

sinh sinh

h z h h z
h z h h z

h h z h

h h z h z h

h h z h

h h z h h z

κ κ
κ κ

κ κ κ

κ κ

κ κ

κ κ

⎛ ⎞′ ′ ′ ′ ′+ +⎡ ⎤∂ ⎣ ⎦⎜ ⎟ ′ ′ ′ ′ ′= + +⎡ ⎤⎣ ⎦⎜ ⎟∂ ′ ′ ′ ′− +⎡ ⎤⎣ ⎦⎝ ⎠
′ ′ ′ ′ ′+ + +⎡ ⎤⎣ ⎦
′ ′ ′ ′− +⎡ ⎤⎣ ⎦
′ ′ ′ ′ ′ ′− + +

′

⎡ ⎤⎣ ⎦

 

  (3.309) 
 
Equation (3.309) simplifies to: 

( ) ( )
( )

(2
cosh sinh

cosh cosh
cosh sinh

h z h h z
z h h z

h h z h

κ κ
κ κ

κ κ κ

⎛ ⎞′ ′ ′ ′ ′+ +⎡ ⎤∂ ⎣ ⎦⎜ ⎟ ′ ′ ′= )′+⎡ ⎤⎣ ⎦⎜ ⎟∂ ′ ′ ′ ′− +⎡ ⎤⎣ ⎦⎝ ⎠
 (3.310) 

 
 
Examining the second term on the right hand side of Equation (3.293) containing a 

derivative gives: 

2cosh 2 cosh sinhh h h hκ κ
κ
∂ ′ ′ ′=

∂
κ ′  (3.311) 
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So Equation (3.307) can be rewritten using Equations (3.310) and (3.311): 
 

( )

( )
( )

( ) ( )
( )

( )

2
2

2

22 2

cosh cosh
cosh

2 cosh cosh1
cosh sinhcosh

2 cosh sinh
cosh sinh

z h h z
h

h z h h zf
h z h h zh

h h h
h h z h

κ κ
κ

κ κ

κ κ κκ
κ κ

κ κ

⎡ ⎤⎛ ⎞′ ′ ′ ′+⎡ ⎤⎣ ⎦⎢ ⎥⎜ ⎟′
⎜ ⎟⎢ ⎥′ ′ ′ ′ ′+ +⎡ ⎤⎣ ⎦∂ ⎝ ⎠⎢ ⎥=

∂ ⎢ ⎥⎛ ⎞′ ′ ′ ′ ′′ + +⎡ ⎤⎣ ⎦⎢ ⎥⎜ ⎟ ′ ′−
⎜ ⎟⎢ ⎥′ ′ ′ ′− +⎡ ⎤⎣ ⎦⎝ ⎠⎣ ⎦

′

 

  (3.312) 
 

In a more explicit form this becomes: 

( ) ( )
( ) ( )

( )

2 3 3

2

2 22

2 4

cosh cosh 2 cosh cosh

2 cosh sinh sinh

2 cosh sinh cosh

cosh

z h h z h z h h z

h h z h h h z

h h h h zf
h

κ κ κ κ

κ κ κ

κ κ κ
κ κ

⎡ ⎤′ ′ ′ ′ ′ ′ ′ ′ ′+ + + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎢ ⎥
′ ′ ′ ′ ′ ′ ′− + +⎢ ⎡ ⎤⎣ ⎦

⎢ ⎥
′ ′ ′ ′ ′+ +⎡ ⎤⎢ ⎥∂ ⎣ ⎦⎣ ⎦=

′∂

⎥

   

  (3.313) 
 
 
Dividing the numerator and denominator by  gives: 3cosh hκ ′

( ) ( )
( ) ( ) ( )

2

2 22

2

cosh 2 cosh

2 tanh sinh 2 tanh cosh

cosh

z h z h z h z

h h z h h z h h h zf
h

κ κ

κ κ κ κ
κ κ

⎡ ⎤′ ′ ′ ′ ′ ′ ′+ + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎢ ⎥
′ ′ ′ ′ ′ ′ ′ ′ ′ ′− + + + +⎢ ⎡ ⎤ ⎡∂ ⎤⎥⎣ ⎦ ⎣⎣ ⎦=

′∂
⎦  

  (3.314) 
 
Equation (3.314) can be rewritten as follows: 

( ) ( )

( ) ( ) ( )

2

2
2

2 2

2

cosh 2 cosh

2 sinh 2 cosh

cosh

z h z h z h z

h h z h z h h zf
h

κ κ

λ λκ κ
κ κ

κ κ

⎡ ⎤′ ′ ′ ′ ′ ′ ′+ + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎢ ⎥
′ ′⎢ ⎥′ ′ ′ ′ ′ ′ ′ ′− + + + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎢ ⎥∂ ⎣ ⎦=

′∂
 (3.315) 

 

( ) ( ) ( )
2 2

2
22

2

2 2sinh 2 cosh

cosh

h hh z h z z h z h z
f

h

λ λκ κ
κ κ

κ κ

⎡ ⎤′ ′ ′ ′⎛ ⎞′ ′ ′ ′ ′ ′ ′ ′ ′− + + + + + +⎡ ⎤ ⎡ ⎤⎢ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦∂ ⎝ ⎠⎣ ⎦=
′∂

  

  (3.316) 
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3.7.3.4.3 Cross derivatives of the vertical function with respect to and : κ ′h

The derivative with respect to  of Equation κ (3.290) is: 

( )

( )
( )

( )
( )

2

2

22
2

cosh sinh
cosh

cosh sinh1
cosh sinhcosh

cosh
cosh sinh

h h z
h

h z hf
h h h zh

h
h z h

κ κ κ
κ

κ κ κ κ

κ κ κ κκ
κ

κκ κ κ

⎛ ⎞⎡ ⎤′ ′ ′+⎡ ⎤∂ ⎣ ⎦⎜ ⎟′ ⎢ ⎥
∂⎜ ⎟′ ′ ′− +⎢ ⎡ ⎤ ⎥⎣ ⎦∂ ⎣⎜ ⎟=

′∂ ∂ ⎜ ⎟⎡ ⎤′ ′ ′′ +⎡ ⎤ ∂⎣ ⎦⎜ ⎟′⎢ ⎥−
∂⎜ ⎟′ ′ ′− +⎢ ⎡ ⎤ ⎥⎣ ⎦⎣ ⎦⎝ ⎠

⎦  (3.317) 

 
 

Examining the first term containing a derivative on the right hand side of Equation 

(3.317) gives: 

( )
( )

( )

( )

( )
( )

cosh sinh
cosh sinh

cosh sinh

cosh sinh

cosh sinh

cosh sinh

h h z
h h

h z h

h z h

h h z

h z h

κ κ κ
κ κ κ

κ κκ κ κ

κ κ
κ

κ κ

κ κ

⎡ ⎤′ ′ ′+⎡ ⎤∂ ∂⎣ ⎦ ′ ′⎢ ⎥ = + z

κ

′⎡ ⎤⎣ ⎦∂ ∂′ ′ ′− +⎢ ⎡ ⎤ ⎥⎣ ⎦⎣ ⎦
∂ ′ ′− +⎡ ⎤⎣ ⎦∂

′ ′ ′+ +⎡ ⎤⎣ ⎦
′ ′ ′− +⎡ ⎤⎣ ⎦

′  (3.318) 

 
( )

( )
( ) ( ) ( )( )

( ) ( ) ( )( )
( ) ( )

cosh sinh
cosh cosh sinh sinh

cosh sinh

cosh cosh sinh sinh

cosh sinh cosh sin

h h z
h z h h z h h h z

h z h

h h h z h z h h z

h h z h z

κ κ κ
κ κ κ κ κ

κ κ κ κ

κ κ κ κ κ

κ κ κ

⎡ ⎤′ ′ ′+⎡ ⎤∂ ⎣ ⎦ ′ ′ ′ ′ ′ ′ ′ ′ ′⎢ ⎥ = + + + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣∂ ′ ′ ′− +⎢ ⎡ ⎤ ⎥⎣ ⎦⎣ ⎦
′ ′ ′ ′ ′ ′ ′ ′ ′− + + +

⎦

+⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣
′ ′ ′ ′ ′+ + − +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ h hκ ′

⎦
 

  (3.319) 
 

( )
( )

( ) (

( ) ( )

cosh sinh
cosh cosh sinh sinh

cosh sinh

cosh sinh cosh sinh

h h z
z h h z z h h z

h z h

h h z h z h

κ κ κ
κ κ κ κ κ κ

κ κ κ κ

κ κ κ κ

⎡ ⎤′ ′ ′+⎡ ⎤∂ ⎣ ⎦ ′ ′ ′ ′ ′ ′ ′⎢ ⎥ = + − )′+⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣∂ ′ ′ ′− +⎢ ⎡ ⎤ ⎥⎣ ⎦⎣ ⎦
′ ′ ′ ′ ′ ′+ + − +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

⎦  

  (3.320) 
 
Examining the second term containing a derivative on the right hand side of Equation  

(3.317) gives: 

2cosh 2 cosh sinhh h h hκ κ
κ
∂ ′ ′ ′=

∂
κ ′  (3.321) 
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Equation (3.317) can be rewritten using Equations (3.320) and (3.321): 

( )

( ) ( )
( ) ( )

( )
( )

2

2

22

cosh cosh sinh sinh
cosh

cosh sinh cosh sinh1
cosh sinhcosh

2 cosh sinh
cosh sinh

z h h z z h h z
h

h h z h z hf
h h h zh

h h h
h z h

κ κ κ κ κ κ
κ

κ κ κ κ

κ κ κ κκ
κ κ

κ κ κ

⎛ ⎛ ⎞′ ′ ′ ′ ′ ′ ′ ′+ − +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣⎜ ⎟′
⎜ ⎟′ ′ ′ ′ ′ ′+ + − +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∂ ⎝ ⎠=

′∂ ∂ ⎡ ⎤′ ′ ′′ +⎡ ⎤⎣ ⎦ ′ ′ ′⎢ ⎥−
′ ′ ′− +⎢ ⎡ ⎤ ⎥⎣ ⎦⎣ ⎦

⎦ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

  (3.322) 
 
Expanding Equation (3.322) gives: 

( ) ( )
( ) ( )

( ) ( )

3 2

3 2

2 22

cosh cosh cosh sinh sinh

cosh sinh cosh cosh sinh

2 cosh sinh sinh 2 cosh sinh cosh

z h h z z h h h z

h h z h h z h

h h h h z h h h h zf
h

κ κ κ κ κ κ κ

κ κ κ κ κ

κ κ κ κ κ κ κ κ
κ

⎛⎛ ⎞′ ′ ′ ′ ′ ′ ′ ′ ′+ − +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎜⎜ ⎟
⎜ ⎟⎜ ′ ′ ′ ′ ′ ′ ′+ + − +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎝ ⎠

′ ′ ′ ′ ′ ′ ′ ′ ′− + + ′+⎡ ⎤ ⎡∂ ⎤⎣ ⎦ ⎣⎝=
′∂ ∂

⎦
4cosh hκ

⎞
⎟
⎟

⎜ ⎟
⎜ ⎟

⎠
′

 

  (3.323) 
 
Dividing the numerator and denominator by  gives: 3cosh hκ ′

( ) ( )
( ) ( )

( ) ( )22

cosh tanh sinh

sinh cosh tanh

2 tanh sinh 2 tanh cosh

cosh

z h z z h h z

h z h z h

h h h z h h h zf
h h

κ κ κ κ κ

κ κ κ

κ κ κ κ κ κ
κ κ

⎛ ⎞′ ′ ′ ′ ′ ′ ′+ − +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎜ ⎟
′ ′ ′ ′ ′⎜ ⎟+ + − +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎜ ⎟

⎜ ⎟′ ′ ′ ′ ′ ′ ′ ′− + +⎡ ⎤ ⎡∂ ⎣ ⎦ ⎣⎝ ⎠=
′ ′∂ ∂

+ ⎤⎦  (3.324) 

 
Equation (3.324) may be rewritten and simplified as follows: 

( ) ( )

( ) ( )

( ) ( )
2

2

cosh sinh

sinh cosh

22 sinh cosh

cosh

z h z z h z

h z h z

hh h z h zf
h h

κ κ λ κ
λκ κ
κ

λλ κ κ
κ

κ κ

⎛ ⎞
′ ′ ′ ′ ′ ′ ′+ − +⎡ ⎤ ⎡ ⎤⎜ ⎟⎣ ⎦ ⎣ ⎦

⎜ ⎟′⎜ ⎟′ ′ ′ ′+ + − +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎜ ⎟
⎜ ⎟′ ′⎜ ⎟′ ′ ′ ′ ′ ′− + +⎡ ⎤ ⎡ ⎤⎜ ⎟⎣ ⎦ ⎣∂ ⎝=

′ ′∂ ∂

+ ⎦ ⎠  (3.325) 

 

( )

( ) ( )

2

2

2 cosh

1 2 sinh

cosh

hz h

h z h zf
h h

λ λκ κ
κ κ

λ λ κ
κ κ

⎛ ⎞′ ′ ′⎛ ⎞′ ′− + + z′⎡ ⎤⎜ ⎟⎜ ⎟ ⎣ ⎦
⎝ ⎠⎜ ⎟
⎜ ⎟′ ′ ′ ′ ′ ′− − +⎡ ⎤∂ ⎣ ⎦⎝=

′ ′∂ ∂
⎠  (3.326) 
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In order to provide confirmation of the result of Equation (3.326) the same derivative can 

be obtained from Equation (3.304): 

( )

( ) ( )
( )

( ) ( )
( )

2

2

22
2

cosh sinh
cosh

cosh sinh1
cosh sinhcosh

cosh
cosh sinh

h z h h z
h

h h h z hf
h h z h h zh

h
hh h z h

κ κ
κ

κ κ

κ κ κκ
κ

κ κ

⎛ ⎞⎡ ⎤′ ′ ′ ′ ′+ +⎡ ⎤∂ ⎣ ⎦⎜ ⎟′ ⎢ ⎥
′∂⎜ ⎟′ ′ ′ ′− +⎢ ⎡ ⎤ ⎥⎣ ⎦∂ ⎣ ⎦⎜ ⎟=

′∂ ∂ ⎜ ⎟⎡ ⎤′ ′ ′ ′ ′′ + +⎡ ⎤ ∂⎣ ⎦⎜ ⎟′⎢ ⎥−
′∂⎜ ⎟′ ′ ′ ′− +⎢ ⎡ ⎤ ⎥⎣ ⎦⎣ ⎦⎝ ⎠

 (3.327) 

 
Examining the first term containing a derivative on the right hand side of Equation 

(3.327): 

( ) ( )
( )

( ) (

( ) ( )
( )
( )

( )

cosh sinh
cosh cosh

cosh sinh

sinh sinh

cosh cosh

sinh sinh

cosh sinh

cosh

h z h h z
h z h h z

h h h z h

h z h h z

h h z h

h h z h

h h z

h

κ κ
κ κ κ

κ κ

κ κ κ

κ κ κ

κ κ κ

κ κ

κ

⎡ ⎤′ ′ ′ ′ ′+ +⎡ ⎤∂ ⎣ ⎦ ′ ′ ′ ′ ′⎢ ⎥ = + + )⎡ ⎤⎣ ⎦′∂ ′ ′ ′ ′− +⎢ ⎡ ⎤ ⎥⎣ ⎦⎣ ⎦
′ ′ ′ ′ ′+ + +⎡ ⎤⎣ ⎦

′ ′ ′ ′− +⎡ ⎤⎣ ⎦
′ ′ ′ ′− +⎡ ⎤⎣ ⎦

′ ′ ′+ +⎡ ⎤⎣ ⎦
′ ′− +( ) sinhz hκ ′⎡ ⎤⎣ ⎦

 

  (3.328) 
 
Equation (3.328) simplifies as follows: 

( ) ( )
( )

( )

( )

cosh sinh
cosh cosh

cosh sinh

sinh sinh

h z h h z
z h h z

h h h z h

z h h z

κ κ
κ κ κ

κ κ

κ κ κ

⎡ ⎤′ ′ ′ ′ ′+ +⎡ ⎤∂ ⎣ ⎦ ′ ′ ′⎢ ⎥ = + ′⎡ ⎤⎣ ⎦′∂ ′ ′ ′ ′− +⎢ ⎡ ⎤ ⎥⎣ ⎦⎣ ⎦
′ ′ ′ ′+ +⎡ ⎤⎣ ⎦

 (3.329) 

 
Examining the second term containing a derivative on the right hand side of Equation  

(3.327) gives: 

2cosh 2 cosh sinhh h
h

κ κ κ κ∂ ′ ′=
′∂

h′  (3.330) 
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Equation (3.328) can be rewritten using Equations (3.329) and (3.330): 

 

( )

( )
( )

( )
( )

( ) ( )
( )

2

2

22

cosh cosh

sinh sinh
cosh

cosh sinh1
cosh sinhcosh

cosh sinh
2 cos

cosh sinh

z h h z

z h h z
h

h h zf
h h z hh

h z h h z

h h z h

κ κ κ

κ κ κ
κ

κ κ

κ κ κκ

κ κ
κ

κ κ

⎛ ⎞′ ′ ′ ′+⎡ ⎤⎣ ⎦⎜ ⎟
′ ′ ′ ′⎜ ⎟+ +⎡ ⎤⎣ ⎦′⎜ ⎟

′ ′ ′+ +⎡ ⎤⎜ ⎟⎣ ⎦∂ = ⎜ ⎟
⎜ ⎟′∂ ∂ ′ ′ ′− +⎡ ⎤′ ⎣ ⎦⎝ ⎠

⎡ ⎤′ ′ ′ ′ ′+ +⎡ ⎤⎣ ⎦⎢ ⎥−
′ ′ ′ ′− +⎢ ⎡ ⎤ ⎥⎣ ⎦⎣ ⎦

h sinhh hκ κ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

′ ′⎜ ⎟
⎜ ⎟
⎝ ⎠

 

  (3.331) 
 
 

( ) ( )
( ) ( )

( ) ( )

3 2

3 2

2 22

cosh cosh cosh sinh sinh

cosh sinh cosh sinh cosh

2 cosh sinh sinh 2 cosh sinh cosh

z h h z z h h h z

h h z h z h h

h h h h z h h h h zf
h

κ κ κ κ κ κ κ

κ κ κ κ κ

κ κ κ κ κ κ κ κ
κ

⎛ ⎞′ ′ ′ ′ ′ ′ ′ ′ ′+ − +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎜ ⎟
′ ′ ′ ′ ′ ′ ′⎜ ⎟+ + − +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎜ ⎟

⎜ ⎟′ ′ ′ ′ ′ ′ ′ ′ ′ ′− + + +⎡ ⎤ ⎡∂ ⎤⎣ ⎦ ⎣⎝ ⎠=
′∂ ∂

⎦
4cosh hκ ′

 

  (3.332) 
 

As expected Equation (3.332) is identical to Equation (3.323). 
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3.7.3.4.4 Derivatives of the vertical function with respect to z: 

Examination of Equation (3.219) yields: 

1z
η

′∂ = −
∂

  (3.333) 

 
where: 

1z
z
′∂ =

∂
  (3.334) 

 

Vertical integration of the vertical function described in Equation (3.197)  gives:  

( )cosh
cosh

h zf f
z z z h

κ
κ

⎡ ⎤′ ′+⎡ ⎤∂ ∂ ∂ ⎣= = ⎢′ ′ ′∂ ∂ ∂ ⎢ ⎥⎣ ⎦

⎦ ⎥  (3.335) 

 
 

Equation (3.335) can be expanded to give: 

( )(1 cosh
cosh

f h z
z h z

κ
κ

∂ ∂ ′ ′= )+⎡ ⎤⎣ ⎦′ ′∂ ∂
 (3.336) 

 
( )sinh

cosh
h zf

z h
κ κ

κ
′ ′+⎡ ⎤∂ ⎣=
′∂

⎦  (3.337) 

 
 
 

It is possible to obtain the second derivative with respect to of the vertical function 

from Equation 

z

(3.337): 

( )2

2

sinh
cosh

h zf
z z h

κ κ
κ

⎡ ⎤′ ′+⎡ ⎤∂ ∂ ⎣= ⎢′ ′∂ ∂ ⎢ ⎥⎣ ⎦

⎦ ⎥  (3.338) 

 
 

Equation (3.338) can be expanded and simplified as follows: 

( ) ( )2

2 2

cosh sinh sinh cosh

cosh

h h z h zf z z
z h

κ κ κ κ κ κ

κ

∂ ∂⎡ ⎤ ⎡ ⎤′ ′ ′ ′ ′+ − +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦∂ ′∂ ∂=
′∂

h′
 (3.339) 

 
( )22

2 2

cosh cosh
cosh
h hf

z h
κ κ κ

κ
′ ′ + z′⎡ ⎤∂ ⎣ ⎦=

′∂
 (3.340) 

 
( )22

2

cosh
cosh

h zf
z h

κ κ
κ

′ ′+⎡ ⎤∂ ⎣=
′∂

⎦  (3.341) 
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3.7.3.4.5 Cross derivative of the vertical function with respect to and z: κ
Working with Equation (3.337) gives: 

( )2 sinh
cosh

h zf
z h

κ κ
κ κ κ

⎛ ⎞′ ′+⎡ ⎤∂ ∂ ⎣= ⎜⎜′ ′∂ ∂ ∂ ⎝ ⎠

⎦ ⎟⎟  (3.342) 

 
Equation (3.342) may be expanded to give: 

( )( ) ( )( )
( )

2

2

cosh sinh sinh cosh

cosh

h h z h zf
z h

κ κ κ κ κ κ
κ κ

κ κ

∂ ∂′ ′ ′ ′ ′+ − +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∂ ∂ ∂=
′∂ ∂ ′

h′
 (3.343) 

 
After differentiation Equation (3.343) becomes: 

( )( )
( )( )

( )( )

( )
2

2

sinh
cosh sinh cosh

sinh

cosh

h z
h h

h zf
z h

κ κ
κκ κ κ

κκ κ
κ

κ κ

∂⎡ ⎤′ ′+⎡ ⎤⎣ ⎦⎢ ⎥ ∂∂′ ′− +⎡ ⎤⎢ ⎥ ⎣ ⎦∂ ∂⎢ ⎥′ ′+ +⎡ ⎤⎣ ⎦∂ ⎢ ⎥∂⎣ ⎦=
′∂ ∂ ′

z hκ′ ′

   

  (3.344) 
 
Equation (3.344) can be expanded as follows: 

( ) ( ) ( ) ( )2

2

cosh cosh cosh sinh sinh sinh
cosh

h z h h z h h z h h h zf
z h

κ κ κ κ κ κ κ κ
κ κ

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ + + + −⎡ ⎤ ⎡ ⎤ ⎡ ⎤∂ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦=
′ ′∂ ∂

+

′

 

  (3.345) 
 
 
3.7.3.4.6 Cross derivative of the vertical function with respect to h  and z: 

Working with Equation (3.337) gives: 

( )2 sinh
cosh

h zf
h z h h

κ κ
κ

⎛ ⎞′ ′+⎡ ⎤∂ ∂ ⎣= ⎜⎜′ ′ ′∂ ∂ ∂ ⎝ ⎠

⎦ ⎟⎟  (3.346) 

 
Equation (3.346) may be expanded as follows: 

( ){ } ( )
( )

2

2

cosh sinh sinh cosh

cosh

h h z h zf h h
h z h

κ κ κ κ κ κ

κ

∂ ∂′ ′ ′ ′ ′+ − +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∂ ∂ ∂=
′ ′∂ ∂ ′

h′
 (3.347) 

 
Equation (3.347) may be simplified as follows: 

( ) ( ) ( )2 22

2

cosh cosh sinh sinh
cosh

h h z h zf
h z h

κ κ κ κ κ κ
κ

′ ′ ′ ′ ′+ − +⎡ ⎤ ⎡ ⎤∂ ⎣ ⎦ ⎣ ⎦=
′ ′ ′∂ ∂

h′
 (3.348) 
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3.7.4 Summary of Equations developed to date for Mild Slope Equation  

Table 3.5 gives details of the integrated version of the Laplace Equation and gradients of 

vertical function and wave numbers that will be used to construct the mild slope equation. 
Table 3.5 - Summary of Integrated Laplace Equation and Derivatives of the  

Vertical Function and Wave Number 
  Boundary Condition Equation 

(a) Development 

of Laplace’s 

Equation 

2 2
22

0

k k k k k kh h h

h h

d f dff dz f dz f dz
dx dx dx x x x

f f dz f
z z z z

η η η

η

η

φφ

φ φφ

− − −

− −

∂ ∂+ +
∂ ∂

∂ ∂ ∂ ∂− + − =
∂ ∂ ∂ ∂

∫ ∫ ∫

∫

φ
∂

 

(3.213) 

(b) Derivatives 

of the 

Vertical 

Function  

( )
( )

2

22

2

cosh cosh

sinh sinh

cosh

h h z

h z hf
h z h

κ κ κ

κ κ κ
κ

⎛ ⎞′ ′ ′+⎡ ⎤⎣ ⎦⎜ ⎟
⎜ ⎟′ ′ ′− +⎡ ⎤∂ ⎣ ⎦⎝ ⎠=

′ ′ ′∂ ∂
 

(3.348) 

(c)  ( ) ( )
( )

( )2

2

cosh cosh

cosh sinh

sinh sinh

cosh

h z h h z

h h z

h h h zf
z h

κ κ κ

κ κ

κ κ κ
κ κ

⎛ ⎞′ ′ ′ ′ ′+ +⎡ ⎤⎣ ⎦⎜ ⎟
′ ′ ′⎜ ⎟+ +⎡ ⎤⎣ ⎦⎜ ⎟

⎜ ⎟′ ′ ′ ′− +⎡ ⎤∂ ⎣ ⎦⎝ ⎠=
′ ′∂ ∂

 

(3.345) 

(d)  ( )sinh
cosh

h zf f
z z h

κ κ
κ

′ ′+⎡ ⎤∂ ∂ ⎣ ⎦= =
′ ′∂ ∂

 
(3.337) 

(e)  ( ) ( )
( ) ( )

( )

2

2 22

2

cosh 2 cosh

2 tanh sinh

2 tanh cosh

cosh

z h z h z h z

h h z h h z

h h h zf
h

κ κ

κ κ

κ κ
κ κ

⎡ ⎤′ ′ ′ ′ ′ ′+ + + ′⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣⎢ ⎥
′ ′ ′ ′ ′ ′− + +⎢ ⎡⎣ ⎦

⎢ ⎥
′ ′ ′ ′+ +⎡ ⎤⎢ ⎥∂ ⎣ ⎦⎣ ⎦=

′∂

⎦
⎤ ⎥

 

(3.314) 

(f)  ( ) ( )
( )

2

cosh sinh

cosh sinh

cosh

h z h h z

h h z hf
h

κ κ

κ κ
κ κ

⎛ ⎞′ ′ ′ ′ ′+ +⎡ ⎤⎣ ⎦⎜ ⎟
⎜ ⎟′ ′ ′ ′− +⎡ ⎤∂ ⎣ ⎦⎝ ⎠=

′∂
 

(3.304) 

(g)  
( )

( ) ( )

2

2

2 cosh

1 2 sinh

cosh

hz h

h z h zf
h h

λ λκ κ
κ κ

λ λ κ
κ κ

⎛ ⎞′ ′ ′⎛ ⎞′ ′− + + z′⎡ ⎤⎜ ⎟⎜ ⎟ ⎣ ⎦
⎝ ⎠⎜ ⎟
⎜ ⎟′ ′ ′ ′ ′ ′− − +⎡ ⎤∂ ⎣ ⎦⎝ ⎠=

′ ′∂ ∂
 

(3.326) 

(h)  ( ) ( )22

2

2 sinh 2 cosh
cosh

h z h zf
h h

κλ κ λ κ
κ

′ ′ ′ ′ ′− + + ′+⎡ ⎤ ⎡∂ ⎤⎣ ⎦ ⎣=
′ ′∂

⎦  
(3.301) 
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(i)  ( ) ( )sinh cosh
cosh

h z h zf
h h

κ κ λ κ
κ

′ ′ ′ ′ ′+ − +⎡ ⎤ ⎡∂ ⎤⎣ ⎦ ⎣=
′ ′∂

⎦  
(3.292) 

(l)  ( )22

2

cosh
cosh

h zf
z h

κ κ
κ

′ ′+⎡ ⎤∂ ⎣ ⎦=
′∂

 
(3.341) 

(j) Derivatives 

of the Wave 

Number ( )
2

2 2
2

22

2

2

2

2sech

ˆ

2

ˆ

2

ˆ

sech tanh
2

k k

k k k

j
j

k k

k k k

j
j

k k

k k k k
j

j

k

k k

j

S SU Uhg h
kx x x xS

x

S SU U
x x xS

x

S SU U
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3.7.5 Evaluating terms of the Mild-Slope Equation 

The results summarised in Section 3.7.4 are now combined. 

 

3.7.5.1 Combined Free Surface Boundary Condition 

Equation (3.214) may be expressed as follows using the result of Equation (3.130):  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2

2

2
1

j j
k k

k j j k

jk
j j k j

j k j k j j

U Uf f
f i U i f U

x x x x

z g Uf f fUU U U f U i
x x x x x x

η f
η

φ φ
ω φ ω ω φ

φ
φ φ φ

γ φ γ ωγ φ

∂ ∂∂ ∂⎡ ⎤
+ + −⎢ ⎥∂ ∂ ∂ ∂∂ ⎢ ⎥= ⎢ ⎥∂ ∂∂ ∂ ∂∂⎢ ⎥− − − − +

∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦
 (3.349) 
 
 

The derivative in the sixth term of Equation (3.349) can be expanded as follows: 

( )2 2 2

j k j k k j k j k j k k j

f f f ff f f
x x x x x x x x x x x x x

φ φ φ φ φφ φ
∂ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂= + = + + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

 (3.350) 

 
 

Substitution of Equation (3.350) into Equation (3.349) yields: 

2

2

2

2 2

1

j
k k

k k j

j j k
k k j

j k j k j k

k
j j k j k

j k j k j k

j k j k
k j j k

j
j j

j j j

Uff i U i U f i f
x x x

U U Uf ffU U U
x x x x x x

U fU f U U f U U
z g x x x x x x

f fU U U U
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η
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φ φ φ
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φγ φ γ φ γ

∂∂ ∂+ + +
∂ ∂ ∂

∂ ∂ ∂∂ ∂ ∂− − −
∂ ∂ ∂ ∂ ∂ ∂

∂∂ ∂ ∂= − − −
∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂− −
∂ ∂ ∂ ∂

∂ ∂ ∂− − − +
∂ ∂ ∂

∂ ∂
∂

f
η

ωγφ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢
⎢
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

⎥
⎥  (3.351) 

 
 

At z η= : 

1f =   (3.352) 
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Using Equation (3.216) and the results summarised in Section 3.7.4 gives the following: 

( ) ( )
( )

( )
( )

( ) ( )

2

2

cosh sinh

cosh sinh
cosh

cosh sinh

cosh sinh
cosh

sinh
1

cosh

k k

k

k

h z h h z

h h z hdf
dx h x

h h z

h z h h
h x

h z
h x

κ κ

κ κ κ
κ

κ κ κ

κ κ κ
κ

κ κ η
κ

⎛ ⎞′ ′ ′ ′ ′+ +⎡ ⎤⎣ ⎦⎜ ⎟
′ ′ ′ ′⎜ ⎟− +⎡ ⎤ ∂⎣ ⎦= ⎜ ⎟′ ∂⎜ ⎟

⎜ ⎟⎜ ⎟
⎝ ⎠
⎛ ⎞′ ′ ′+⎡ ⎤⎣ ⎦⎜ ⎟

′ ′ ′⎜ ⎟− +⎡ ⎤ ′∂⎣ ⎦+ ⎜ ′ ∂⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠
⎛ ⎞′ ′+⎡ ⎤ ∂⎣ ⎦+ −⎜ ⎟⎜ ⎟′ ∂⎝ ⎠

⎟    

 (3.353) 
 

Equation (3.353) and the equations summarised in Section 3.7.4 may now be calculated at 

the free surface. 

 

 Equation (3.353) at z η= : 

sinh
coshk k

df h
dx h x

κ κ
κ

′ ∂⎛ ⎞= − ⎜ ⎟′ ∂⎝ ⎠
η  (3.354) 

tanh
k k

df h
dx x

ηκ κ ∂′= −
∂

 (3.355) 

k k

df
dx x

ηλ ∂′= −
∂

 (3.356) 

 
Equation (3.292) at z η= : 

sinh cosh
cosh

f h h
h h

κ κ λ κ
κ

′ ′∂ −=
′∂

′
′

 (3.357) 

f
h

λ λ∂ ′= −
′∂

′  (3.358) 

0f
h

∂ =
′∂

 (3.359) 

 
 
 
 
 
 



WAVE-CURRENT INTERACTION MODEL  C. Newell 
 

 
 125 

 
 
Equation (3.301) at z η= : 

( ) ( )22

2

2 sinh 2 cosh
cosh

h z h zf
h h

κλ κ λ κ
κ

′ ′ ′ ′ ′− + +⎡ ⎤ ⎡ ⎤∂ ⎣ ⎦ ⎣=
′ ′∂

′+ ⎦  (3.360) 

2 2

2

2 sinh 2 cosh
cosh

f h
h h

κλ κ λ κ
κ

′ ′ ′∂ − +=
′ ′∂

h′  (3.361) 

2
2

2 2 2f
h

λ λ∂ ′= − +
′∂

2′  (3.362) 

2

2 0f
h

∂ =
′∂

 (3.363) 

 
Equation (3.304) at z η= : 

( ) ( ) ( )sinh cosh

cosh

hh z h z h zf
h

λκ κ
κ

κ κ

′ ′′ ′ ′ ′ ′ ′+ + −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∂ =
′∂

+
 (3.364) 

sinh cosh

cosh

hh hf
h

λκ κ
κ

κ κ

′ ′′ ′ −∂ =
′∂

h′
 (3.365) 

f h hλ λ
κ κ κ

′ ′ ′ ′∂ = −
∂

 (3.366) 

0f
κ

∂ =
∂

 (3.367) 

 
Equation (3.337) at z η= : 

( )sinh
cosh

h zf
z h

κ κ
κ

′ ′+⎡ ⎤∂ ⎣=
′∂

⎦  (3.368) 

sinh
cosh

f h
z h

κ κ
κ

′∂ =
′∂

 (3.369) 

df
dz

λ′=  (3.370) 

 
Equation (3.341) at z η= : 

( )22

2

cosh
cosh

h zf
z h

κ κ
κ

′ ′+⎡ ⎤∂ ⎣=
′∂

⎦  (3.371) 

2 2

2

cosh
cosh

f h
z h

κ κ
κ

′∂ =
′∂

 (3.372) 

2
2

2

d f
dz

κ=   (3.373) 
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Equation (3.314) at z η= : 

( ) ( ) ( )
2 2

2
22

2

2 2sinh 2 cosh

cosh

h hh z h z z h z h z
f

h

λ λκ κ
κ κ

κ κ
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2 2 2
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2 2f h hλ
κ κ κ

′ ′ ′ ′∂ = − +
∂
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2

λ  (3.376) 
2

2 0f
κ
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∂

 (3.377) 

 
Equation (3.326) at z η= : 

( )

( ) ( )

2

2

2 cosh

1 2 sinh

cosh

hz h

h z h zf
h h

λ λκ κ
κ κ

λ λ κ
κ κ
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2
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h h
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2 22 2f h
h
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κ κ κ κ κ

′ ′ ′ ′ ′ ′∂ = − + + −
′∂ ∂

2h  (3.380) 
2

0f
h κ
∂ =

′∂ ∂
 (3.381) 

 
Equation (3.345) at z η= : 

( ) ( ) ( ) ( )2

2

cosh cosh cosh sinh sinh sinh
cosh

h z h h z h h z h h h zf
z h

κ κ κ κ κ κ κ κ
κ κ

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ + + + −⎡ ⎤ ⎡ ⎤ ⎡ ⎤∂ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦=
′ ′∂ ∂

+

 (3.382) 
2 2

2

cosh cosh sinh sinh
cosh

2f h h h h h h
z h

κ κ κ κ κ
κ κ

′ ′ ′ ′ ′∂ + −=
′ ′∂ ∂

κ ′  (3.383) 
2 2f hh

z
λ λκ

κ κ
′ ′∂ ′= + −

′∂ ∂ κ
 (3.384) 

 
Equation (3.348) at z η= : 

( ) ( )2 22

2

cosh cosh sinh sinh
cosh

h h z h zf
h z h

κ κ κ κ κ κ
κ

′ ′ ′ ′ ′+ − +⎡ ⎤ ⎡ ⎤∂ ⎣ ⎦ ⎣ ⎦=
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 (3.385) 

2 2 2 2 2

2

cosh sinh
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f h
h z h

κ κ κ
κ

′∂ −=
′ ′ ′∂ ∂

hκ ′  (3.386) 

2
2f

h z
κ λ∂ ′= −

′ ′∂ ∂
2  (3.387) 
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Substituting the results of Equations (3.354) to (3.387) into Equation (3.226) gives: 
2 2 2 2

2

2

0 0

0 0

0

k k k k k k k k

k k k k k k

k k k k

k k

d f h z
dx dx x x x x x x

h h z z
x x x x x

h h
x x x x
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x x

κ ηλ
η

κ κ η ηκ
η η

κ κ

λ λ η κκ
κ κ η

⎡ ⎤ ⎡ ⎤ ⎡ ⎤′ ′∂ ∂ ∂ ∂= + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤ ⎡′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂+ + +⎢ ⎥ ⎢ ⎥ ⎢∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦ ⎣
⎡ ⎤′ ′∂ ∂ ∂ ∂+ +⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

′ ′ ′⎛ ⎞ ∂ ∂ ∂′+ + − +⎜ ⎟ ∂ ∂ ∂⎝ ⎠

x
⎤
⎥
⎦

( )2 2
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k k k k

z
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z h h z
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κ η
η

η ηκ λ
η η

⎡ ⎤′∂ ∂ ∂
⎢ ⎥∂ ∂ ∂⎣ ⎦

⎡ ⎤′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂′+ − +⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦

    at z η=   

 (3.388) 
 
Similarly the cross-derivative becomes: 

( )

2 2

2
2

2 2

2

j k j k

k j

k j k j

k j k j

d f z
dx dx x x

z
x x

z h h z
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η
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η

η ηκ λ
η η
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κ κ η η

′∂ ∂′=
∂ ∂ ∂

′⎛ ⎞∂ ∂ ∂+ ⎜ ⎟∂ ∂ ∂⎝ ⎠

⎛ ⎞′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂′+ − +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
⎛ ⎞′ ′ ′ ′⎛ ⎞ ∂ ∂ ∂ ∂ ∂ ∂′+ + − +⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠  

at z η=   

 (3.389)   
 

Equation (3.388) can then be simplified as follows using Equation (3.333): 
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2 2
2

2
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2

2

k k k k k k
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dx dx x x x x
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h
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⎡ ⎤ ⎡ ⎤∂ ∂ ∂= − +⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦
⎡ ⎤′ ′⎛ ⎞ ∂ ∂′− + −⎜ ⎟ ⎢ ⎥∂ ∂⎝ ⎠ ⎣ ⎦

⎡ ⎤′∂ ∂′− − ⎢ ⎥∂ ∂⎣ ⎦

  at z η=   

 (3.390) 
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Similarly the cross-derivative can be simplified as:

( )

2 2
2

2 2

2

j k j k k j

k j k j

k j k j

d f
dx dx x x x x

h h
x x x x

hh
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η η ηλ κ

η ηκ λ
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∂ ∂ ∂ ∂

⎛ ⎞′ ′∂ ∂ ∂ ∂′+ − − −⎜⎜ ∂ ∂ ∂ ∂⎝ ⎠
⎛ ⎞′ ′⎛ ⎞ ∂ ∂ ∂ ∂′+ + − − −⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠

⎟⎟  at z η=   (3.391) 

 
Equation (3.351) can be rewritten using f from Equations (3.356) and (3.390): 
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⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎛ ⎞∂⎢ ⎥⎜ ⎟

∂⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟

⎛ ⎞′ ′∂ ∂ ∂ ∂⎢ ⎥⎜ ⎟′+ − − −⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟⎛ ⎞′ ′⎛ ⎞ ∂ ∂ ∂ ∂⎢ ⎥⎜ ⎟′+ + − − −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂⎝ ⎠⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

 (3.392) 

 

Simplification of Equation (3.392) yields: 

2

2

2
2

2 2

2
1

j j
k k k

k k j j k

j k k
k j j j k

j k k j j k j k

j
j k j j

j k j k j

j k

j k

U U
i U i U i U

x x x x x

U U UU U U U U
x x x x x x x x

U
U U U U i

x x x x x

z g
x x

U U

η

η φ φω φ ωλ φ ω ω φ

η η φ φλ φ λ φ

η φ η φλ γ φ λ γ φ γ ωγφ
φ

η ηλ κ

φ

∂ ∂∂ ∂ ∂′− + + −
∂ ∂ ∂ ∂ ∂

∂ ∂ ∂∂ ∂ ∂ ∂′ ′+ + − −
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂∂ ∂ ∂ ∂′ ′+ − + − +
∂ ∂ ∂ ∂ ∂

∂ =
∂ ∂∂ ′− +

∂ ∂ ∂

− ( )2 2

2

k j

k j k j

k j k j

x x

h h
x x x x

hh
x x x x

η

η

η ηκ λ

λ λ η κ κ ηκ
κ κ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎛ ⎞∂⎢ ⎥⎜ ⎟

∂⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟

⎛ ⎞′ ′∂ ∂ ∂ ∂⎢ ⎥⎜ ⎟′+ − − −⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟⎛ ⎞′ ′⎛ ⎞ ∂ ∂ ∂ ∂⎢ ⎥⎜ ⎟′+ + − − −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂⎝ ⎠⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

 (3.393) 
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3.7.5.2 Kinematic Seabed Boundary Condition 
 
Equation (3.215) multiplied by the vertical function may be expanded as follows using 

Equation (3.198): 

( )
k kh h

f hf f
z x

φφ

− −

∂∂ = −
∂ ∂ ∂x

∂  (3.394) 

 
Expansion of Equation (3.394) gives: 

2

k k k kh hh

h ff f f
z x x x
φ φ φ

− −−

∂ ∂ ∂ ∂= − −
∂ ∂ ∂ ∂ ∂

h
x

∂  (3.395) 

 
 
Substitution of Equation (3.395) into Equation (3.213) gives: 

2 2
2

2

2

0

k k k k k kh h h h

k k k kh h

d f df f ff dz f dz f dz dz
dx dx dx x x x z z z

h f hf f
x x x x

η η η η

η

φ φ φφ φ

φ φ

− − − −

− −

∂ ∂ ∂ ∂+ + −
∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂+ + =
∂ ∂ ∂ ∂

∫ ∫ ∫ ∫
∂+
∂

 (3.396) 

 
Equation (3.396) can be rewritten as: 

2 2 2
2 2

0

k k k k k k k kh h h hh

k k h

d f df h f ff dz dz f f dz dz
dx dx dx x x x x x z z

f hf
z x x

η η η η

η

φ φ φφ φ

φ φ

− − − −−

−

∂ ∂ ∂ ∂ ∂ ∂+ + + −
∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂+ + =
∂ ∂ ∂

∫ ∫ ∫ ∫
 (3.397) 

 
 
Isolating the horizontal derivative of velocity potential in the second and third terms of 

Equation (3.397) gives: 

2 2 2
2 2

0

k k k k k k kh h h hh

k k h

d f df h f ff dz dz f f dz dz
dx dx x dx x x x z z

f hf
z x x

η η η η

η

φ φφ φ

φ φ

− − − −−

−

⎛ ⎞∂ ∂ ∂ ∂+ + + −⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

∂ ∂ ∂+ + =
∂ ∂ ∂

∫ ∫ ∫ ∫
∂
∂

 (3.398) 

 
Leibniz’s Rule states that: 

( ) ( )
a a

z a z b
b b

D Ydz DYdz Da Y Db Y= == + −∫ ∫   (3.399) 

where , ,D
x y t

∂ ∂ ∂=
∂ ∂ ∂
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In this case let the function Y be the same as 2f : 

( ) ( )2 2 2
a a

z a z b
b b

D f dz Df dz Da f Db f== + −∫ ∫ 2
=  (3.400) 

 
( )2

2 2
a a

z a z b
k k k kb b

f a b 2f dz dz f f
x x x x=

∂ ⎛ ⎞ ⎛ ⎞∂ ∂= + −⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
∫ ∫ =

∂
 (3.401) 

 
If we choose limits of η and : h−

( ) ( )2
2 2

z hz
k k k kh h

f h
f dz dz f f

x x x x

η η

η
η

=−=
− −

∂ ⎛ ⎞ ∂ −⎛ ⎞∂ ∂= + −⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠
∫ ∫ 2  (3.402) 

 
 
Rearranging gives: 

( )2
2 2

z
k k k kh h

f hdz f dz f f
x x x x

η η

η

η
=

− −

∂ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂= − −⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠
∫ ∫ 2

z h=−
 (3.403) 

 
( )2

2 2

z h
k k kh h

f hdz f f dz
kx x x

η η

x
η

=−
− −

∂ ⎛ ⎞⎛ ⎞∂ ∂+ = − ⎜⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
∫

∂
⎟∫  (3.404) 

Using Equation (3.404) with Equation (3.398) gives: 

2 2
2 2

0

k k k k k k kh h h

k k h

d f f f

h

f dz f dz f dz dz
dx dx x x x x x z z

f hf
z x x

η η η

η

φ η φ η

φ φ

φ φ

− − −

−

⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂+ − + −⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠

∂ ∂ ∂+ + =
∂ ∂ ∂

∫ ∫ ∫
−
∫

 (3.405) 

 
Expanding Equation (3.405) yields: 

2 2
2 2

0

k k k k k k k kh h h h

k k h

d f f ff dz f dz f dz dz
x x x x dx dx z z x

f hf
z x x

η η η η

η

x
φ φ φ ηφ φ

φ φ

− − − −

−

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂+ + − − ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

∂ ∂ ∂+ + =
∂ ∂ ∂

∫ ∫ ∫ ∫
∂

 (3.406) 
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3.7.5.2 Evaluation of Remaining Mild-Slope Equation Terms 

Working with the following part of Equation (3.406) gives: 

 

( )2 2
2

1 cosh
coshh h

f dz h z dz
h

η η

κ
κ− −

⎡ ⎤
′ ′= ⎢′ ⎣ ⎦

∫ ∫ + ⎥  (3.407) 

 
where: 

[2 1cosh 1 cosh 2
2

]x x= +  (3.408) 

 
 
Therefore: 

( )2
2

1 1 1 cosh 2
cosh 2h h

f dz h z dz
h

η η

κ
κ− −

⎡ ⎤
′ ′= + +⎡⎢ ⎣′ ⎣ ⎦

∫ ∫ ⎤ ⎥⎦  (3.409) 

 
( )2

2

sinh 21
2 cosh 2h h

h z
f dz z

h

ηη κ
κ κ− −

′ ′+⎡ ⎤
= +⎢′ ⎣ ⎦

∫ ⎥  (3.410) 

 
 
Recalling the definition of (3.217) : 

h h η′ = +  
 
Acknowledging that: 
z z η′ = −  (3.411) 

( )2
2

sinh 2 01 sinh 2
2cosh 2 2h

hf dz h
h

η κκη
κ κ κ−

⎡ ⎤⎛ ⎞′⎛ ⎞= + − − +⎢ ⎜⎜ ⎟′ ⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦
∫ ⎥⎟  (3.412) 

 
2

2

1 sinh
2cosh 2h

hf dz h
h

η κη
κ κ−

′⎡= + +⎢′ ⎣ ⎦∫
2 ⎤

⎥  (3.413) 

 
2

2

1 sinh 2
2cosh 2h

hf dz h
h

η κ
κ κ−

′⎡ ′= +⎢′ ⎣ ⎦∫ ⎤
⎥  (3.414) 

 

2
2

1 1 sinh 2
2 4

coshh

h h
f dz

h

η κ κ

κ κ−

′ ′+
=

′∫  (3.415) 
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It is possible to define Relative Wave Celerity, C, for a plane wave on a current 

undergoing refraction as follows: 

C σ
κ

=  (3.416) 

 
In the case of waves experiencing the effects diffraction also the exact relative wave 

celerity would be: 

preciseC
S

σ=
∇

 (3.417) 

 
It would be impossible to use this definition of wave celerity without applying some sort 

of iterative mathematical scheme which in turn would also be inaccurate. Hence, the 

plane wave solution of relative wave celerity defined in (3.416) is deemed sufficiently 

accurate for present purposes. Using Equation (3.190) with Equation (3.416) gives: 

tanhg h
C

κ κ
κ

′
=  (3.418) 

 
 

Relative Wave Group Velocity , Cg, is defined by: 

4
1 1

42 sinh
g

h
LC

h
L

π

π

⎡ ⎤′
⎢ ⎥
⎢= +

′⎛ ⎞⎢ ⎥
⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

C⎥  (3.419) 

1 21
2 sinh 2g

hC
h

κ
κ
′⎡= +⎢ ′⎣ ⎦

C⎤⎥  (3.420) 

Working with Equations (3.418) and (3.420) gives the following development: 

21 21
2 sinh 2g

hCC C
h

κ
κ
′⎡= +⎢ ′⎣ ⎦

⎤
⎥  (3.421) 

 
1 2 tanh1
2 sinh 2g

h g hCC
h

κ
κ κ
′⎡ ⎤ ⎡= +⎢ ⎥ ⎢′⎣ ⎦ ⎣

κ ′⎤
⎥⎦

 (3.422) 

 
2

2

1 2 sinh1
2 sinh 2 tanh coshg

h gCC
h h

κ
κ κ κ κ
′ ′⎡ ⎤⎡ ⎤= + ⋅ ⎢⎢ ⎥′ ′⎣ ⎦ ⎣ ⎦

h
h

κ
⎥′

 (3.423) 

 
2 2

2

sinh sinh 1
2 tanh tanh sinh 2 coshg
g h h g hCC

h h h
κ κ κ
κ κ κ κ

′ ′ ′⎡ ⎤
= +⎢ ′ ′ ′⎣ ⎦ hκ⎥ ′

 (3.424) 
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2 2

2

sinh sinh 2 2 sinh 1
2 tanh sinh 2 coshg

g h h h g hCC
h h

κ κ κ κ
κ κ κ

′ ′ ′ ′⎡ ⎤+= ⎢ ′ ′⎣ ⎦ hκ⎥ ′
 (3.425) 

 

2 2

2

sinh sinh 2 2 sinh 1
sinh cosh2 2sinh cosh
cosh

g
g h h h g hCC h hh h

h

κ κ κ κ
κ κ κκ κ
κ

⎡ ⎤
⎢ ⎥′ ′ ′ ′+= ⎢ ′ ′⎢ ⎥′ ′

′⎣ ⎦

⎥  (3.426) 

 
2 2

2

sinh sinh 2 2 sinh 1
4sinh coshg

g h h h g hCC
h h

κ κ κ κ
κ κ

′ ′ ′ ′⎡ ⎤+= ⎢ ′⎣ ⎦
2 κ⎥ ′

 (3.427) 

 

2

sinh 2 2 1
4 coshg

g h h gCC
h

κ κ
κ κ

′ ′+⎡ ⎤= ⎢ ⎥ ′⎣ ⎦
 (3.428) 

2

1 1sinh 2
4

coshg

h h
CC g

h

κ κ

κ κ

′ ′+
=

′
2  (3.429) 

 
 

Therefore using Equations (3.415) and (3.429): 

2
2

1 1 sinh 2
2 4

cosh
g

h

h h CC
f dz

h g

η κ κ

κ κ−

′ ′+
=

′∫ =  (3.430) 

 
Substituting Equation (3.430) in Equation (3.406) gives: 

2 2

0

g g

k k k k k k k kh h

k k h

CC CC d f f ff dz dz
x x g x x g dx dx z z x x

f hf
z x x

η η

η

φ φ φ ηφ φ

φ φ

− −

−

⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂+ + − − ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

∂ ∂ ∂+ + =
∂ ∂ ∂

∫ ∫
∂

 (3.431) 
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Examining the fourth term of Equation (3.431) in conjunction with Equation (3.337) 

gives the following development: 

( )2 2
2

1 sinh
coshh h

f f dz h z dz
z z h

η η

κ κ
κ− −

∂ ∂ ′ ′= ⎡⎣′∂ ∂∫ ∫ + ⎤⎦  (3.432) 

 

( )( )
2

2

1 cosh 2 1
cosh 2h h

f f dz h z dz
z z h

η ηκ κ
κ− −

∂ ∂ ′ ′= ⎡ ⎤⎣ ⎦′∂ ∂∫ ∫ + −  (3.433) 

 

( )
2

2

1 1 sinh 2
cosh 2 2 hh

f f dz h z z
z z h

ηη κ κ
κ κ −−

∂ ∂ ⎡ ′ ′= ⎡ ⎤⎣ ⎦⎢′∂ ∂ ⎣ ⎦∫ ⎤+ − ⎥  (3.434) 

 

[ ]
2 2

2 2

1 1 1 1sinh 2 sinh 0
cosh 2 2 cosh 2 2h

f f dz h h
z z h h

η κ κκ η
κ κ κ κ−

∂ ∂ ⎡ ⎤ ⎡′= − −⎢ ⎥ ⎢′ ′∂ ∂ ⎣ ⎦ ⎣∫ ⎤+ ⎥⎦
 

 (3.435) 
 

2

2

1 1 sinh 2
cosh 2 2h

f f dz h h
z z h

η κ η κ
κ κ−

∂ ∂ ⎡ ′= − − +⎢′∂ ∂ ⎣ ⎦∫ ⎤
⎥  (3.436) 

 
2

2

1 1 sinh 2
cosh 2 2h

f f dz h h
z z h

η κ κ
κ κ−

∂ ∂ ⎡ ′= − +⎢′∂ ∂ ⎣ ⎦∫ ⎤′⎥  (3.437) 

 
2

2

sinh 2 1
2cosh 2h

f f h hdz
z z h h

η κ κ
κ κ−

′ ′∂ ∂ ⎡ ⎤= −⎢ ⎥′ ′∂ ∂ ⎣ ⎦∫  (3.438) 

 

2

2

sinh 2 2

2cosh 2h

h
f f h hdz
z z h

η
κ

κ κ
κ−

′⎡ ⎤−⎢ ⎥′∂ ∂ ′= ⎢ ⎥′∂ ∂ ⎢ ⎥
⎣ ⎦

∫  (3.439) 

 
2

2

sinh 2 2
4coshh

f f hdz
z z h

η κ κ
κ−

′ ′∂ ∂ −=
′∂ ∂∫
h κ  (3.440) 

 
2

2

sinh 2 2 2 sinh 2
4cosh 4coshh

2

f f h hdz h
z z h

η κ κ κ κ κ
κ κ−

′ ′∂ ∂ − −= +
′∂ ∂∫ h

′
′

 (3.441) 

 

2
2

1 1sinh 2 4 sinh cosh4 2
cosh 4coshh

h h
2

f f hdz
z z h h

η κ κ κ κ κκ
κ κ κ−

′ ′+ ′ ′∂ ∂ = − +
′∂ ∂∫

h
′

 (3.442) 
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2
2

1 1sinh 2
4 2 tanh

coshh

h hf f dz h
z z h

η κ κ
κ

κ κ−

′ ′+∂ ∂ ′= − +
′∂ ∂∫ κ κ  (3.443) 

Using the results of Equation (3.430) with Equation (3.443) gives: 
2

g

h

CCf f dz
z z g

η κ
λ

−

−∂ ∂ ′=
∂ ∂∫ +  (3.444) 

 
Equation (3.444) may also be written as: 

2 2
2g

h

CC Gf f dz
z z g g

η κ ω
−

− +∂ ∂ = +
∂ ∂∫  (3.445) 

 
 

Working with the third term of Equation (3.431) using Equation (3.226) gives: 
2 2 2 2

2 2

2 2

2

k k k k k k k kh h h h

k k k kh h

k

d f f h f z ff dz f dz f dz f dz
dx dx h x x x x x x z

f h h ff dz f dz
h x x x x

z
x x

η η η η

η η

κ η
κ η

κ κ
κ

η η
η

− − − −

− −

⎛ ⎞ ⎛ ⎞′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂= + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞′ ′∂ ∂ ∂ ∂ ∂ ∂+ +⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟′∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

′⎛ ⎞∂ ∂ ∂+ ⎜ ⎟∂ ∂ ∂⎝ ⎠

∫ ∫ ∫ ∫

∫ ∫
2 2

2

2 2

2

2 2

k kh h

k k k kh h

f f hf dz f dz
z h x x

f z h f z df dz f dz
h z x x z x dx

η η

η η

κ
κ

η η
η κ η

− −

− −

⎛ ⎞⎛ ⎞ ′∂ ∂ ∂ ∂+ ⎜ ⎟⎜ ⎟ ⎜ ⎟′ ′∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂+ +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

∫ ∫

∫ ∫

k

κ

 

 (3.446) 
 

 

Each of the integrals in Equation (3.446) is now examined in turn with reference to the 

various equations described in the summary section above, Equations (3.213), (3.281), 

(3.287), (3.292), (3.301), (3.326), (3.304), (3.313), (3.337), (3.345) and  (3.348): 

 
 

( ) ( ) ( )

( )2 2

sinh cosh
1

cosh coshh h

h z h z h z
ff dz dzhh h z

η η κ κ
λκ κ κ

κ− −

⎛ ⎞′ ′ ′ ′ ′ ′+ + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∂ ⎜ ⎟= ′ ′⎜ ⎟′∂ ′ ′− +⎡ ⎤⎜ ⎟⎣ ⎦⎝ ⎠
∫ ∫  (3.447) 

( ) ( ) ( )

( )
2

2

sinh cosh
1

cosh
cosh

h

h

h

h z h z h z dz
ff dz

h h h z

η

η

η

κ κ

κ κ λ κ
κ

−

−

−

⎡ ⎤
′ ′ ′ ′ ′ ′+ + +⎡ ⎤ ⎡ ⎤⎢ ⎥⎣ ⎦ ⎣ ⎦∂ ⎢ ⎥= ⎢ ⎥′∂ ′ ′⎢ ⎥′ ′− +⎡ ⎤⎣ ⎦⎢ ⎥⎣ ⎦

∫
∫

∫
 (3.448) 
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32

1
coshh

f
1

hf dz I I
h

η λ
κ κ κ−

′ ′∂ ⎡= −⎢′∂ ⎣ ⎦∫ ⎤
⎥  (3.449) 

 
( ) ( )

( )2 2

sinh cosh1
cosh coshh h

h z h zff dz dz
h h h z

η η κ κ κ
κ λ κ− −

⎛ ⎞′ ′ ′ ′+ +⎡ ⎤ ⎡ ⎤∂ ⎣ ⎦ ⎣ ⎦⎜=
⎜′ ′∂ ′ ′ ′− +⎡ ⎤⎣ ⎦⎝ ⎠

∫ ∫ ⎟
⎟

 (3.450) 

( ) ( )

( )
2

2

sinh cosh
1

cosh
cosh

h

h

h

h z h z dz
ff dz
h h

h z dz

η

η

η

κ κ κ

κ
λ κ

−

−

−

⎛ ⎞
′ ′ ′ ′+ +⎡ ⎤ ⎡ ⎤⎜ ⎟⎣ ⎦ ⎣ ⎦∂ ⎜= ⎜′ ′∂

⎜ ⎟′ ′ ′− +⎡ ⎤⎣ ⎦⎜ ⎟
⎝ ⎠

∫
∫

∫

⎟
⎟  (3.451) 

[ 22

1
coshh

f ]1f dz I I
h h

η

κ λ
κ−

∂ ′=
′ ′∂∫ −  (3.452) 

 
 
 

 

( ) ( ) ( )

( )

2

2 22 2
2 2

2

2 sinh cosh
1

2cosh 2 coshh h

h h z h z h z
ff dz dz

hh z h z h z

η η
λ κ κ

κ
λκ κ κ

κ
− −

′ ′⎛ ⎞′ ′ ′ ′ ′ ′− + + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎜ ⎟∂ ⎜ ⎟= ′ ′⎛ ⎞′ ⎜ ⎟∂ ′ ′ ′ ′ ′+ + + +⎡ ⎤⎜ ⎟ ⎣ ⎦⎜ ⎟
⎝ ⎠⎝ ⎠

∫ ∫  

 (3.453) 

( ) ( ) ( )

( )

( ) ( )

2 2 2
2 2

2 2 2

2 2

2 sinh cosh

1 2 cosh
cosh

cosh

h

h h

h

h h z h z h z dz

f hf dz h h z dz
h

h z h z dz

η

η η

η

λ κ κ
κ

λ κ
κ κ κ

κ

−

− −

−

⎛ ⎞′ ′ ′ ′ ′ ′ ′ ′− + + +⎡ ⎤ ⎡ ⎤⎜ ⎟⎣ ⎦ ⎣ ⎦
⎜ ⎟
⎜ ⎟′ ′⎛ ⎞∂ ⎜ ⎟′ ′ ′= + − +⎡ ⎤⎜ ⎟ ⎣ ⎦′ ⎜ ⎟∂ ⎝ ⎠
⎜ ⎟
⎜ ⎟′ ′ ′ ′+ + +⎡ ⎤⎣ ⎦⎜ ⎟⎜ ⎟
⎝ ⎠

∫

∫ ∫

∫

 

 (3.454) 
2 2

2
32 2 2

1 2 2
coshh

f h h 2

1 5f dz I h I I
h

η λ λ
κ κ κ κ−

⎛ ⎞′ ′ ′ ′⎛ ⎞∂ ′= − + −⎜ ⎜ ⎟′∂ ⎝ ⎠⎝ ⎠
∫ + ⎟  (3.455) 

 
 
 

 
( ) ( )

( )
2

2 2 2 2

2 sinh cosh1
cosh 2 coshh h

h z h zff dz dz
h h h z

η η κλ κ κ
κ λ κ− −

⎛ ⎞′ ′ ′ ′ ′− + +⎡ ⎤ ⎡ ⎤∂ ⎣ ⎦ ⎣ ⎦⎜ ⎟=
⎜ ⎟′ ′∂ ′ ′ ′+ +⎡ ⎤⎣ ⎦⎝ ⎠

∫ ∫  (3.456) 
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( )

( ) ( )

2 2

2

2 2

2 cosh
1

cosh
2 sinh cosh

h

h

h

h z dz
ff dz

h h
h z h z dz

η

η

η

λ κ

κ
κλ κ κ

−

−

−

⎛ ⎞
′ ′ ′+⎡ ⎤⎜ ⎟⎣ ⎦∂ ⎜ ⎟= ⎜ ⎟′ ′∂

⎜ ⎟′ ′ ′ ′ ′− + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎜ ⎟
⎝ ⎠

∫
∫

∫
 (3.457) 

(
2

2
12 2

1 2 2
coshh

f )2f dz I I
h h

η

λ κλ
κ−

∂ ′= −
′ ′∂∫ ′  (3.458) 

( )

( ) ( ) ( )

2
22

2

2 cosh1
cosh

1 2 sinh coshh h

hz h zff dz dz
h h

h z h z h z

η η λ λκ κ
κ κ

κ κ
λ λ κ κ− −

⎛ ⎞′ ′ ′⎛ ⎞′ ′ ′− + +⎡ ⎤⎜ ⎟⎜ ⎟∂ ⎣ ⎦= ⎝ ⎠⎜ ⎟′ ′∂ ∂ ⎜ ⎟′ ′ ′ ′ ′ ′ ′ ′− − + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎝ ⎠

∫ ∫  

 (3.459) 

( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2
2

2
2

2

2 cosh

cosh
1

cosh
1 sinh cosh

sinh cosh

h

h

h

h

h

h h h z dz

h z h z dz
ff dz

h h
h h z h z

z h h z h z dz

η

η

η

η

η

λ λ κ κ
κ κ

κ κ

κ κ
λ κ κ

λ κ κ

−

−

−

−

−

⎡ ⎤′ ′ ′⎛ ⎞′ ′ ′− − +⎡ ⎤⎢ ⎥⎜ ⎟ ⎣ ⎦
⎝ ⎠⎢ ⎥
⎢ ⎥
⎢ ⎥′ ′ ′ ′+ + +⎡ ⎤⎣ ⎦⎢ ⎥∂ = ⎢ ⎥′ ′∂ ∂ ⎢ ′ ′ ′ ′ ′ ′+ − + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎢
⎢
⎢

′ ′ ′ ′ ′ ′ ′− + + +⎡ ⎤ ⎡ ⎤⎢ ⎣ ⎦ ⎣ ⎦⎢⎣ ⎦

∫

∫
∫

∫

∫

⎥
⎥
⎥
⎥
⎥
⎥

dz

 

 (3.460) 

( )
2 2

1 4 2 32

1 2 1
coshh

f hf dz h I I h I I
h h

η λ λ κ κ λ λ
κ κ κ κ−

⎡ ⎤′ ′ ′⎛ ⎞∂ ′ ′ ′= − − + + −⎢ ⎥⎜ ⎟′ ′∂ ∂ ⎝ ⎠⎣ ⎦
∫ ′−  (3.461) 

 
 
 
 

( ) ( )2

1 sinh cosh
coshh h

ff dz h z h z dz
z h

η η

κ κ κ
κ− −

∂ ′ ′ ′ ′= +⎡ ⎤ ⎡⎣ ⎦ ⎣′ ′∂∫ ∫ + ⎤⎦  (3.462) 

( ) ( )2

1 sinh cosh
coshh h

ff dz h z h z dz
z h

η η

κ κ κ
κ− −

⎛ ⎞∂ ′ ′ ′ ′= +⎡ ⎤ ⎡ ⎤⎜ ⎟⎣ ⎦ ⎣ ⎦⎜ ⎟′ ′∂ ⎝ ⎠
∫ ∫ +  (3.463) 

( 22

1
coshh

f )f dz I
z h

η

κ
κ−

∂ =
′ ′∂∫  (3.464) 

 
 
 

 

( )
2

2 2
2 2

1 cosh
coshh h

ff dz h z dz
z h

η η

κ κ
κ− −

∂ ′ ′= +⎡ ⎤⎣ ⎦′ ′∂∫ ∫  (3.465) 
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( )
2

2 2
2 2

1 cosh
coshh h

ff dz h z dz
z h

η η

κ κ
κ− −

⎛ ⎞∂ ′ ′= ⎡ ⎤⎜ ⎣ ⎦⎜′ ′∂ ⎝ ⎠
∫ ∫ + ⎟⎟  (3.466) 

(
2

2
12 2

1
coshh

f )f dz I
z h

η

κ
κ−

∂ =
′ ′∂∫  (3.467) 

 
 
 
 

( ) ( )
( ) ( )

( ) ( )

2

2

3

cosh cosh
1 cosh sinh cosh

cosh
sinh sinh cosh

h h

h z h h z
ff dz h h z h z dz
z h

h h h z h z

η η
κ κ κ

κ κ κ
κ κ

κ κ κ κ
− −

⎛ ⎞′ ′ ′ ′ ′+ +⎡ ⎤⎣ ⎦⎜ ⎟∂ ′ ′ ′ ′ ′⎜ ⎟= + + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦′ ′∂ ∂ ⎜ ⎟
⎜ ⎟′ ′ ′ ′ ′ ′− + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎝ ⎠

∫ ∫  (3.468) 

 

( ) ( )

( ) ( )

( ) ( )

2

2

3

cosh cosh

1 cosh sinh cosh
cosh

sinh sinh cosh

h

h h

h

h h z h z dz

ff dz h h z h z dz
z h

h h h z h z dz

η

η η

η

κ κ κ

κ κ κ
κ κ

κ κ κ κ

−

− −

−

⎛ ⎞
′ ′ ′ ′ ′+ +⎡ ⎤⎜ ⎟⎣ ⎦

⎜ ⎟
⎜ ⎟∂ ⎜ ⎟′ ′ ′ ′ ′= + + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦′ ′ ⎜ ⎟∂ ∂
⎜ ⎟
⎜ ⎟′ ′ ′ ′ ′ ′− + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎜ ⎟⎜ ⎟
⎝ ⎠

∫

∫ ∫

∫

 (3.469) 

 

( ) ( )

( ) ( )

( ) ( )

2

2

2

cosh

1 sinh cosh
cosh

tanh sinh cosh

h

h h

h

h z h z dz

ff dz h z h z dz
z h

h h h z h z dz

η

η η

η

κ κ

κ κ
κ κ

κ κ κ κ

−

− −

−

⎛ ⎞
′ ′ ′ ′+ +⎡ ⎤⎜ ⎟⎣ ⎦

⎜ ⎟
⎜ ⎟∂ ⎜ ⎟′ ′ ′ ′= + + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦′ ′ ⎜ ⎟∂ ∂
⎜ ⎟
⎜ ⎟′ ′ ′ ′ ′ ′− + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎜ ⎟⎜ ⎟
⎝ ⎠

∫

∫ ∫

∫

 (3.470) 

 

( ) ( )

( ) ( )

( ) ( )

2

2

2

cosh

1 sinh cosh
cosh

sinh cosh

h

h h

h

h z h z dz

ff dz h z h z dz
z h

h h z h z

η

η η

η

κ κ

κ κ
κ κ

λ κ κ

−

− −

−

⎛ ⎞
′ ′ ′ ′+ +⎡ ⎤⎜ ⎟⎣ ⎦

⎜ ⎟
⎜ ⎟∂ ⎜ ⎟′ ′ ′ ′= + + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦′ ′ ⎜ ⎟∂ ∂
⎜ ⎟
⎜ ⎟′ ′ ′ ′ ′− + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎜ ⎟⎜ ⎟
⎝ ⎠

∫

∫ ∫

∫ dz

 (3.471) 

 

( ) ( ) ( )
2

2
22

1 cosh 1
coshh h

ff dz h z h z dz h I
z h

η η

κ κ
κ κ− −

⎛ ⎞∂ ′ ′ ′ ′ ′ ′= + + + −⎡ ⎤⎜ ⎟⎣ ⎦⎜ ⎟′ ′∂ ∂ ⎝ ⎠
∫ ∫ λ  (3.472) 
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( )(
2

42

1 1
coshh

f )2f dz I h I
z h

η

κ λ
κ κ−

∂ ′ ′= + −
′ ′∂ ∂∫  (3.473) 

 
( )
( ) ( )

2 22

3 2

cosh cosh1
cosh sinh sinh coshh h

h h zff dz dz
z h h h h z h z

η η κ κ κ
κ κ κ κ κ− −

⎛ ⎞′ ′ ′+⎡ ⎤∂ ⎣ ⎦⎜ ⎟=
⎜ ⎟′ ′ ′∂ ∂ ′ ′ ′ ′ ′− + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎝ ⎠

∫ ∫  (3.474) 

( )

( ) ( )

2 2

2

3
2

cosh cosh
1

cosh
sinh sinh cosh

h

h

h

h h z dz
ff dz

z h h
h h z h z

η

η

η

κ κ κ

κ
κ κ κ κ

−

−

−

⎛ ⎞
′ ′ ′+⎡ ⎤⎜ ⎟⎣ ⎦∂ ⎜ ⎟= ⎜ ⎟′ ′ ′∂ ∂

⎜ ⎟′ ′ ′ ′ ′− + dz+⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎜ ⎟
⎝ ⎠

∫
∫

∫
 (3.475) 

(
2

2 2
13

1 cosh sinh
coshh

f )2f dz h I h I
z h h

η

κ κ κ κ
κ−

∂ ′= −
′ ′ ′∂ ∂∫ ′  (3.476) 

(
2

2 2
12

1 tanh
coshh

f )2f dz I h I
z h h

η

κ κ κ
κ−

∂ ′= −
′ ′ ′∂ ∂∫  (3.477) 

(
2

2
12

1
coshh

f )2f dz I I
z h h

η

κ κλ
κ−

∂ ′= −
′ ′ ′∂ ∂∫  (3.478) 

 
 
Where: 

( )2
1 cosh

h

I h z dz
η

κ
−

′ ′= +⎡⎣∫ ⎤⎦  (3.479) 

( ) ( )2 cosh sinh
h

I h z h z dz
η

κ κ
−

′ ′ ′ ′= + +⎡ ⎤ ⎡⎣ ⎦ ⎣∫ ⎤⎦  (3.480) 

( ) ( ) ( )3 cosh sinh
h

I h z h z h z dz
η

κ κ
−

′ ′ ′ ′ ′ ′= + + +⎡ ⎤ ⎡⎣ ⎦ ⎣∫ ⎤⎦  (3.481) 

( ) ( )2
4 cosh

h

I h z h z dz
η

κ
−

′ ′ ′ ′= + +⎡⎣∫ ⎤⎦  (3.482) 

( ) ( )2 2
5 cosh

h

I h z h z dz
η

κ
−

′ ′ ′ ′= + +⎡⎣∫ ⎤⎦  (3.483) 

 
The integrals from 1I  to 5I  are expanded in detail in Section 3.7.7. 
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Substituting Equations (3.449), (3.452), (3.455), (3.458), (3.461), (3.464), (3.467), 

(3.470), (3.473) and (3.478) into Equation (3.446) gives: 

[ ]

( ) ( )

2 2

2 1 3 12 2

2
2

2 1 22 2

2 2

32 2

1 1
cosh cosh

1 1 2 2
cosh cosh

1 2 2
cosh

k k k k k kh

k k k k

d f h hf dz I I I I
dx dx h x x h x x

2

z h hI I I
x x h h x

h hI
h

η λ κκ λ
κ κ κ

η κ λ κλ
η κ κ

λ λ
κ κ κ

−

′ ′ ′∂ ⎛ ⎞ ∂⎛ ⎞ ⎡ ⎤′= − + −⎜ ⎟ ⎜ ⎟⎢ ⎥′ ′∂ ∂ ∂ ∂⎝ ⎠ ⎣ ⎦⎝ ⎠
⎛ ⎞′ ′∂ ∂ ∂ ∂⎡ ⎤ ⎡ ⎤′ ′+ + − ⎜ ⎟⎢ ⎥ ⎢ ⎥′ ′∂ ∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦ ⎝ ⎠

′ ′ ′ ′
+ − +

′

∫

x
′

( )

( )

( )

2
1 5

2
2

12

2

1 4 2 32

2
1 22

1
cosh

1 22 1
cosh

12
cosh

k k

k k

k k

h I I
x x

z I
x x h

h hh I I h I I
h x

zI I
h

κ κ

η η κ
η κ

λ λ κκ κ λ λ
κ κ κ

κ κλ
κ

⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞ ∂ ∂′− +⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦

⎛ ⎞′⎛ ⎞∂ ∂ ∂ ⎡ ⎤+ ⎜ ⎟⎜ ⎟ ⎢ ⎥′∂ ∂ ∂ ⎣ ⎦⎝ ⎠ ⎝ ⎠
⎛ ⎞⎡ ⎤′ ′ ′ ′⎛ ⎞ ∂ ∂′ ′ ′ ′+ − − + + − −⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟′ ∂ ∂⎝ ⎠⎣ ⎦⎝ ⎠

′∂⎛ ⎞′+ −⎜ ⎟′⎝ ⎠

x

( )( )4 22

12 1
cosh

k k

k k

h
x x

zI h I
h x x

η
η

η κκ λ
κ η

′∂ ∂
∂ ∂ ∂

′∂ ∂ ∂⎛ ⎞′ ′+ + −⎜ ⎟′ ∂ ∂ ∂⎝ ⎠
 (3.484) 
 
 

Equation (3.484) can be rewritten as follows: 

[ ]

2 2

1 2 1 32 2

2

2 1 22 2

2 2

12 2

1
cosh cosh

2 2
cosh cosh

2 2
cosh

k k k k k kh

k k k k

d f h hf dz I I I I
dx dx h x x h x x

z hI I I
h x x h x x

h h I
h

η λ κ λ κ
κ λ κ κ λ

λ κ η λ λ κ
κ λ η κ

λ λ
κ κ λ

−

′ ′ ′ ′∂ ∂⎛ ⎞ ⎛ ⎞= − + + − +⎜ ⎟ ⎜ ⎟′ ′ ′ ′∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

⎛ ⎞′ ′ ′ ′ ′⎡ ⎤∂ ∂ ∂ ∂′+ + − ⎜ ⎟⎢ ⎥′ ′ ′∂ ∂ ∂ ∂ ∂⎣ ⎦ ⎝ ⎠

′ ′ ′ ′⎛ ⎞
+ − −⎜ ⎟′ ′⎝ ⎠

∫
2

h

3 5

22

12

1 2 3 42

2

1 22

1

cosh

4 2 2 2 22 2
cosh

2 2
cosh

k k

k k

k k

h I I
x x

z I
h x x

h hh I h I I I
h x

z zI I
h

κ κ
κ λ

λ κ η η
κ λ η

λ λ κ κ κ
κ κ κ λ λ λ

λ κ κ
κ λ η η

⎡ ⎤ ⎛ ⎞′ ∂ ∂+⎢ ⎥ ⎜ ⎟′ ∂ ∂⎝ ⎠⎣ ⎦
⎡ ⎤ ⎛ ⎞′ ′⎛ ⎞∂ ∂ ∂+ ⎢ ⎥ ⎜ ⎟⎜ ⎟′ ′ ∂ ∂ ∂⎝ ⎠⎢ ⎥ ⎝ ⎠⎣ ⎦

′ ′ ′⎛ ⎞ ∂ ∂⎛ ⎞ ⎛ ⎞′ ′+ − − + − − +⎜ ⎟ ⎜ ⎟⎜ ⎟′ ′ ′ ′ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠
′ ′ ′⎛ ∂ ∂+ −

′ ′ ∂ ∂⎝

x
′

2 42

2 22
cosh

k k

k k

h
x x

z zh I I
h x x

η

λ κ η κ
κ λ η λ η

′⎞ ∂ ∂
⎜ ⎟ ∂ ∂⎠

′ ′ ′⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞′+ − +⎜ ⎟⎜ ⎟′ ′ ′∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠
 (3.485) 
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Selecting a set of coefficients yields: 

( ) ( )

[ ] [ ]

[ ]

[ ]

2 2

1 1 2 2 1 1 3 32 2

2

2 2 1 1 2 22 2

1 1 3 3 5 52

1 12

cosh cosh

cosh cosh

cosh

cosh

k k k k k kh

k k k k

k k

d f hf dz A I A I B I B I
dx dx h x x h x x

h hC I D I D I
h x x h x x

E I E I E I
h x x

zH I
h

η λ λ
κ κ

λ η λ
κ κ

λ κ κ
κ

λ
κ η

−

′ ′ ′∂ ∂= + + +
′ ′∂ ∂ ∂ ∂

⎛ ⎞′ ′∂ ∂+ + + ⎜ ⎟′ ′∂ ∂ ∂ ∂⎝ ⎠
⎛ ⎞′ ∂ ∂+ + + ⎜ ⎟′ ∂ ∂⎝ ⎠

′ ′⎛ ∂+
′ ∂⎝

∫
2κ

′ ′∂

( )

( )

( )

2

1 1 2 2 3 3 4 42

1 1 2 22

2 2 4 42

cosh

cosh

cosh

k k

k k

k k

k k

x x
hJ I J I J I J I

h x x
hM I M I

h x x

P I P I
h x x

η η

λ κ
κ

λ η
κ

λ η κ
κ

⎛ ⎞⎞ ∂ ∂
⎜ ⎟⎜ ⎟ ∂ ∂⎠ ⎝ ⎠

′ ′∂ ∂+ + + +
′ ∂ ∂

′ ′∂ ∂+ +
′ ∂ ∂

′ ∂ ∂+ +
′ ∂ ∂

 (3.486) 

 
Where 
 

1 1A = −  (3.487) 

2A κ
λ

=
′

 (3.488) 

1
hB
κ
′

= −  (3.489) 

3
1B
λ

=
′
 (3.490) 

2
zC κ

λ η
′∂=

′ ∂
 (3.491) 

1 2D λ′=  (3.492) 

2 2D κ= −  (3.493) 
2 2

1 2

2h hE λ
κ λ
′ ′ ′

= −
′

 (3.494) 

3
2hE
κ

′
= −  (3.495) 

5
1E
λ

=
′

 (3.496) 

22

1
zH κ

λ η
′⎛ ⎞∂= ⎜ ⎟′ ∂⎝ ⎠

 (3.497) 

1
4 2 2hJ hλ

κ κ λ
′ ′ ′= − −

′
κ

 (3.498) 
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2
2 2J h
λ

′= −
′

 (3.499) 

3 2J = −  (3.500) 

4
2J κ
λ

=
′

 (3.501) 

2

1
2 zM κ
λ η

′∂=
′ ∂

 (3.502) 

2 2 zM κ
η
′∂= −

∂
 (3.503) 

2
2 2 zP h
λ η

′∂⎛ ⎞′= −⎜ ⎟′ ∂⎝ ⎠
 (3.504) 

4
2 zP κ
λ η

′∂=
′ ∂

 (3.505) 

 
 

Examining the last term of Equation (3.431) gives: 

k k k kh h

f h h ff
x x x x

φ φ
− −

⎛ ⎞∂ ∂ ∂ ∂= ⎜⎜∂ ∂ ∂ ∂⎝ ⎠
f ⎟⎟  (3.506) 

 
 
Using the definitions of (3.217) and (3.219): 

h h η′ = +  
z z η′ = −  
 
when  z h= −

z h′ ′= −  
 
From Equation (3.353) the horizontal derivative of the vertical function can be obtained at 

the seabed, where : z h′ ′= −

[ ]

[ ]
[ ]

[ ] ( )

2

2

cosh 0 sinh
cosh

cosh sinh 0

cosh 0 sinh
cosh

sinh 0
1

cosh

k k

k

k

h hdf
dx h x

h

h h
h x

h x

κ κ
κ

κ κ
κ κ

κ

κ η
κ

′ ′⎛ ⎞− ∂= ⎜ ⎟′ ∂⎝ ⎠
′⎛ ⎞

⎜ ⎟
′− ′∂⎜+ ⎜ ′ ∂⎜ ⎟

⎜ ⎟
⎝ ⎠
⎛ ⎞ ∂+ −⎜ ⎟′ ∂⎝ ⎠

⎟
⎟  (3.507) 
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Simplification of Equation (3.507) gives: 

2 2

sinh sinh
cosh coshk k

df h h h h
dx h x h x

κ κ κ κ
κ κ

′ ′ ′− ∂ −⎛ ⎞ ⎛= +⎜ ⎟ ⎜′ ′∂ ∂⎝ ⎠ ⎝ k

′∂⎞
⎟
⎠

′

 (3.508) 

 
Calculation of the vertical function from Equation (3.197) at  gives: z h′ = −

1
cosh

f
hκ

=
′

 (3.509) 

 
 
Equation (3.506) can be rewritten using Equations (3.508) and (3.509): 

2 2

1 sinh sinh
cosh cosh coshk k k k kh

f h h h h hf h
x x x h h x h

κ κ κ κφ φ
κ κ κ

−

⎛ ⎞′ ′ ′∂ ∂ ∂ − ∂ − ∂⎛ ⎞ ⎛ ⎞= +⎜ ⎟⎜ ⎟ ⎜ ⎟′ ′ ′∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠x
′

 (3.510) 

 
 
Equation (3.510) can be rewritten as follows: 

( ) ( )2

1 tanh tanh
coshk k k k kh

f h hf h h hh
x x x h x

κφ φ κ κ κ
κ

−

⎛ ⎞′∂ ∂ ∂ ∂ ∂′ ′ ′= − + −⎜ ⎟′∂ ∂ ∂ ∂ ∂⎝ ⎠x
 (3.511) 

 
Equation (3.511) can be written more symbolically as: 

2coshk k k k kh

f h h hf h
x x x h x

λ κφ φ
κ κ

−

⎛ ⎞′ ′∂ ∂ ∂ − ∂ ∂= ⎜′∂ ∂ ∂ ∂ ∂⎝ ⎠x
′

− ⎟  (3.512) 

 
Selecting a coefficient W6 in Equation (3.512) gives: 

62coshk k k kh

f h hf W
x x x x h

η λφ φ
κ

−

⎛ ⎞′ ′∂ ∂ ∂ ∂= −⎜ ⎟ ′∂ ∂ ∂ ∂⎝ ⎠
 (3.513) 

 
Expanding Equation (3.513) gives: 

62 2cosh coshk k k kh

f h h
6f W

x x h x h x
λ λφ φ φ

κ κ
−

⎛ ⎞⎛ ⎞′ ′ ′∂ ∂ ∂ ∂= − ⎜ ⎟⎜ ⎟′ ′∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
Wη  (3.514) 
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Combining Equations (3.514) and (3.486) gives: 

( ) ( )

[ ] [ ]

[ ]

2 2 2

1 1 2 2 1 1 3 32 2

2

2 2 1 1 2 2 62 2 2

1 1 3 3 5 52

cosh cosh

cosh cosh

cosh

cosh

k k k k k k k kh h

k k

k k

d f f h hf dz f A I A I B I B I
dx dx x x h x x h x x

h hC I D I D I W
h x h x

E I E I E I
h x x

η λ λ
κ κ

λ η λ
κ κ

λ κ κ
κ

λ

− −

′ ′ ′∂ ∂ ∂ ∂+ = + + +
′ ′∂ ∂ ∂ ∂ ∂ ∂

⎛ ⎞′ ′∂ ∂+ + + + ⎜ ⎟′ ′∂ ∂⎝ ⎠
⎛ ⎞′ ∂ ∂+ + + ⎜ ⎟′ ∂ ∂⎝ ⎠

′
+

∫

kx

κ

′ ′∂
∂

[ ]

( )

( )

( )

( ) ( )

2

1 1 62

1 1 2 2 3 3 4 42

1 1 2 2 62

2 2 4 42

6 62 2

cosh

2
cosh

cosh

cosh cosh

k k

k k

k k

k k

k k

zH I W
h x x

hJ I J I J I J I
h x x

hM I M I W
h x x

P I P I
h x x

hW W
h x h x

η η
κ η

λ κ
κ

λ η
κ

λ η κ
κ

λ λ η
κ κ

⎛ ⎞′⎛ ⎞∂ ∂ ∂+ ⎜ ⎟⎜ ⎟′ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
′ ′∂ ∂+ + + +

′ ∂ ∂
′ ′∂ ∂+ + −

′ ∂ ∂
′ ∂ ∂+ +

′ ∂ ∂

′ ′ ′∂ ∂+ −
′ ′∂ ∂

 (3.515) 
 
Selecting appropriate symbolic notation for the coefficients of Equation (3.515) gives: 

2 2 2

1 2 3 42

2

5 6 72

8 9 6 6

cosh

k k k k k k k

k k k k k k k k k kh h

k k k k k k

h hQ Q Q Q
x x x x x x x

d f f h hf dz f Q Q Q
dx dx x x h x x x x x x

h hQ Q W W
x x x x x x

η

κ η

λ κ κ η η κ
κ

η η κ η
− −

⎛ ⎛ ⎞′ ′∂ ∂ ∂ ∂ ∂+ + +⎜ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎜
⎜ ⎛ ⎞ ⎛ ⎞′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎜+ = + + +⎜ ⎟ ⎜ ⎟⎜′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
⎜

′ ′∂ ∂ ∂ ∂ ∂ ∂+ + + −
∂ ∂ ∂ ∂ ∂ ∂⎝

∫

h′ ⎞
⎟
⎟
⎟
⎟
⎟
⎟

⎜ ⎟
⎜ ⎟⎜ ⎟

⎠
 (3.516) 
Where: 

1 1 1 2Q A I A I= + 2

3

2

2

5

1

4

2

4

 (3.517) 

2 1 1 3Q B I B I= +  (3.518) 

3 2Q C I=  (3.519) 

4 1 1 2Q D I D I= +  (3.520) 

5 1 1 3 3 5Q E I E I E I= + +  (3.521) 

6 1Q H I=  (3.522) 

7 1 1 2 2 3 3 4Q J I J I J I J I= + + +  (3.523) 

8 1 1 2Q M I M I= +  (3.524) 

9 2 2 4Q P I P I= +  (3.525) 
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3.7.6 Complete Mild-Slope Equation 

To assemble the complete Mild-Slope Equation it is necessary to substitute Equations  

(3.393), (3.445) and (3.516) into Equation (3.431) as follows: 

 
2 2 2

1 2 3 42

2

5 6 72

8 9 6 6

cosh

k k k k k k k

g g

k k k k k k k k k k

k k k k k k

h hQ Q Q Q
x x x x x x x

CC CC hQ Q Q
x x g x x g h x x x x x x

h hQ Q W W
x x x x x x

κ η

φ φ φλ κ κ η η κ
κ

η η κ η

⎛ ⎛ ⎞′ ′∂ ∂ ∂ ∂ ∂+ + +⎜ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎜
⎛ ⎞ ⎛ ⎞′ ′⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂+ + + + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

′ ′∂ ∂ ∂ ∂ ∂ ∂+ + + −
∂ ∂ ∂ ∂ ∂ ∂⎝

h′

2

2

2

2 2

2
1

j
k k

k k j

j j k
k k j

j k j k k j

k
j j k j k

j k j k j k
g

k k

j k

U
i U i U i

x x x

U U UU U U
x x x x x x

UU U U U U
x x x x x xCC

g x x g

U U

η φω φ ωλ φ ω ω φ

φ η ηλ φ λ φ

φ φ η φλ
κ φ ηφ λ

λ

φ

⎞
⎟
⎟

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟

⎠
∂∂ ∂′− + +

∂ ∂ ∂

∂ ∂ ∂∂ ∂ ∂′ ′− + +
∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂′− − +
∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞− ⎛ ⎞∂ ∂′− + − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ∂∂ ∂⎝ ⎠⎝ ⎠ ′−

− ( )

2
2

2 2

2

1

j k k j

k j k j

k j k j

j
j

j k

x x x x

h h
x x x x

hh
x x x x

U
U

g x x

η η ηκ

η ηκ λ

λ λ η κ κ ηκ
κ κ

ηγ φ λ γ φ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎛ ⎞∂ ∂⎢ ⎥⎜ ⎟+

∂ ∂ ∂ ∂⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟

⎛ ⎞′ ′∂ ∂ ∂ ∂⎢ ⎥⎜ ⎟′+ − − −⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟⎛ ⎞′ ′⎛ ⎞ ∂ ∂ ∂ ∂⎢ ⎥⎜ ⎟′+ + − − −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂⎝ ⎠⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

∂ ∂′+ − +
∂ ∂

0j
j

U i
x
φγ ωγφ

⎡ ⎤∂− + =⎢ ⎥∂⎢ ⎥⎣ ⎦
 
 (3.526) 
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Multiplying Equation (3.526) by g  yields: 

( )

2 2 2

1 2 3 42

2 2

5 6 72

8 9 6 6

cosh

k k k k k k k

g
g

k k k k k k k k k k

k k k k k k

h hQ Q Q Q
x x x x x x x

CC hCC Q Q Q
x x x x h x x x x x x

h hQ Q W W
x x x x x x

κ η

φ φ φσ κ κ η η κ
κ

η η κ η

⎛ ⎞⎛ ⎞′ ′∂ ∂ ∂ ∂ ∂+ + +⎜ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎜
⎜∂ ⎛ ⎞ ⎛ ⎞ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎜+ + + + +⎜ ⎟ ⎜ ⎟⎜′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
⎜

′ ′∂ ∂ ∂ ∂ ∂ ∂⎜+ + + −⎜⎜ ∂ ∂ ∂ ∂ ∂ ∂⎝

h′

2

2

2 2
2

2

2 2

2

j
k k

k k j

j j k
k k j

j k j k k j

k
j j k j k

j k j k j k

g
k k

j k k

j k

U
i U i U i

x x x

U U UU U U
x x x x x x

UU U U U U
x x x x x x

CC g
x x

x x x

U U

η φω φ ωλ φ ω ω φ

φ η ηλ φ λ φ

φ φ η φλ
φ ηφκ φσ

η η ηλ κ

φ

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟
⎠

∂∂ ∂′− + +
∂ ∂ ∂

∂ ∂ ∂∂ ∂ ∂′ ′− + +
∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂′− − +
∂ ∂ ∂ ∂ ∂ ∂

⎛ ⎞∂ ∂+ − − +⎜ ⎟ ∂ ∂ ∂∂ ∂⎝ ⎠ ′− +
∂ ∂ ∂

− ( )

( )

2 2

2

0

j

k j k j

k j k j

j j
j k

x

h h
x x x x

hh
x x x x

i U U
x x

η ηκ λ

λ λ η κ κ ηκ
κ κ

ηωγφ γ φ λ γ φ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎛ ⎞
⎢ ⎥⎜ ⎟

∂⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟

⎛ ⎞′ ′∂ ∂ ∂ ∂⎢ ⎥⎜ ⎟′+ − − −⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟⎛ ⎞′ ′⎛ ⎞ ∂ ∂ ∂ ∂⎢ ⎥⎜ ⎟′+ + − − −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂⎝ ⎠⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

⎡ ⎤∂ ∂′+ − + =⎢ ⎥∂ ∂⎢ ⎥⎣ ⎦

 

 (3.527) 
 

Equation (3.527) is the Complete Extended Mild-Slope Equation including current and 

energy dissipation. 
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If 
kx

η∂
∂

, 
2

k k

h
x x

′∂
∂ ∂

, 
2

k kx x
κ∂

∂ ∂
, 

k kx x
κ κ⎛ ⎞∂ ∂

⎜ ⎟∂ ∂⎝ ⎠
 and

k k

h h
x x

⎛ ⎞′ ′∂ ∂
⎜ ∂ ∂⎝ ⎠

⎟  are considered negligible the 

Unextended (traditional) Mild-Slope Equation including current and dissipation is 

obtained. This is the same as the equation of Kirby (1984) with the addition of the energy 

dissipation terms: 

 
( )

( )

2
2 2 2

2

2

0

g
g g

k k k k

j j k
k k j j k

k j j k j k j

j
j

CC
CC CC

x x x x

U U Ui U i U U U U
kx x x x x x x

i U
x

φ φ φκ φσ ω φ

x
φ φ φ φω ω φ

ωγφ γ φ

∂∂ ∂+ + − +
∂ ∂ ∂ ∂

⎡ ⎤∂ ∂ ∂∂ ∂ ∂+ + − − −⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦
⎡ ⎤∂+ − =⎢ ⎥∂⎢ ⎥⎣ ⎦

∂  (3.528) 

 

 

 

In the absence of current Equation (3.528) becomes the traditional Mild-Slope Equation 

including breaking of Clyne (2008): 
2

2 0g g g
k k k k

CC CC CC i
x x x x

φ φ φκ ωγφ∂ ∂ ∂+ + +
∂ ∂ ∂ ∂

=  (3.529) 
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In the absence of energy dissipation: 

0γ =  (3.530) 
 
Therefore Equation (3.527) can be used to obtain the Complete Extended Mild-Slope 

Equation including current with no energy dissipation: 

( )

2 2 2

1 2 3 42

2 2

5 6 72

8 9 6 6

cosh

k k k k k k k

g
g

k k k k k k k k k k

k k k k k k

h hQ Q Q Q
x x x x x x x

CC hCC Q Q Q
x x x x h x x x x x x

h hQ Q W W
x x x x x x

κ η

φ φ φσ κ κ η η κ
κ

η η κ η

⎛ ⎞⎛ ⎞′ ′∂ ∂ ∂ ∂ ∂+ + +⎜ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎜
⎜∂ ⎛ ⎞ ⎛ ⎞ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎜+ + + + +⎜ ⎟ ⎜ ⎟⎜′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
⎜

′ ′∂ ∂ ∂ ∂ ∂ ∂⎜+ + + −⎜⎜ ∂ ∂ ∂ ∂ ∂ ∂⎝

h′

2

2

2 2
2

2

2 2

2

j
k k

k k j

j j k
k k j

j k j k k j

k
j j k j k

j k j k j k

g
k k

j k k

j k

U
i U i U i

x x x

U U UU U U
x x x x x x

UU U U U U
x x x x x x

CC g
x x

x x x

U U

η φω φ ωλ φ ω ω φ

φ η ηλ φ λ φ

φ φ η φλ
φ ηφκ φσ

η η ηλ κ

φ

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟
⎠

∂∂ ∂′− + +
∂ ∂ ∂

∂ ∂ ∂∂ ∂ ∂′ ′− + +
∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂′− − +
∂ ∂ ∂ ∂ ∂ ∂

⎛ ⎞∂ ∂+ − − +⎜ ⎟ ∂ ∂ ∂∂ ∂⎝ ⎠ ′− +
∂ ∂ ∂

− ( )2 2

2

0

j

k j k j

k j k j

x

h h
x x x x

hh
x x x x

η ηκ λ

λ λ η κ κ ηκ
κ κ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥ =⎢ ⎥⎛ ⎞
⎢ ⎥⎜ ⎟

∂⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟

⎛ ⎞′ ′∂ ∂ ∂ ∂⎢ ⎥⎜ ⎟′+ − − −⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟⎛ ⎞′ ′⎛ ⎞ ∂ ∂ ∂ ∂⎢ ⎥⎜ ⎟′+ + − − −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂⎝ ⎠⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

 (3.531) 

 

Equation (3.528) can be used to obtain the traditional unextended Mild-Slope Equation 

including current with no energy dissipation, following Kirby (1984): 

( )2
2 2 2

2

2 0

g
g g

k k k k

j j k
k k j j k

k j j k j k j k

CC
CC CC

x x x x

U U Ui U i U U U U
x x x x x x x x

φ φ φκ φσ ω φ

φ φ φω ω φ

∂∂ ∂+ + − +
∂ ∂ ∂ ∂

⎡ ⎤∂ ∂ ∂∂ ∂ ∂+ + − − −⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦

φ∂ =

 (3.532) 

Equation (3.529) can be used to obtain the Mild-Slope Equation in the absence of current. 

This corresponds exactly to the equations of Berkhoff (1976) and Clyne (2008): 
2

2 0g g
k k k k

CC CC CC
x x x x

φ φ φκ∂ ∂ ∂+ +
∂ ∂ ∂ ∂ g =  (3.533) 
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3.7.6.1 Summary of Mild-Slope Equations 

 

Table 3.6 summarises the various mild-slope wave equations developed Section 3.7.6. 
 

Table 3.6 – Summary of Mild Slope Wave Equations 
  Boundary Condition Equation

(a) Extended 

Elliptic 

Mild-Slope 

Equation 

Including 

Current and 

Energy 

Dissipation 

( )2
2 2

2 2 2

1 2 32

4 5

2

6 72

8 9
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g
g g

k k k k k k

k k k k k

k k k k

k k k k

k k k k
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x x x x x x

hQ Q Q
x x x x x
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hQ Q
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φ φ φ ηφκ φσ

κ η

κ κ

φσ η η κ
κ
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∂ ∂ ∂ ∂ ∂
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∂ ∂ ∂ ∂
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k
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U
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x x x x x x

x
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η
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φ φ η φλ
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φ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
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∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂′− − +
∂ ∂ ∂ ∂ ∂ ∂

+
∂′−

∂ ∂

− ( )

( )

2

2 2

2

k k j

k j k j

k j k j

j j
j k

x x x

h h
x x x x

hh
x x x x

i U U
x x

η ηκ

η ηκ λ

λ λ η κ κ ηκ
κ κ

ηωγφ γ φ λ γ φ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎛ ⎞∂ ∂⎢ ⎥⎜ ⎟+

∂ ∂⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟

⎛ ⎞′ ′∂ ∂ ∂ ∂⎢ ⎥⎜ ⎟′+ − − −⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟⎛ ⎞′ ′⎛ ⎞ ∂ ∂ ∂ ∂⎢ ⎥⎜ ⎟′+ + − − −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂⎝ ⎠⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦
⎡ ∂ ∂′+ − +⎢ ∂ ∂⎢⎣

0
⎤

=⎥
⎥⎦  

(3.534) 
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(b) Elliptic 

Mild-Slope 

Equation 

Including 

Current and 

Energy 

Dissipation  

( )

( )

2
2 2

2

2

0

g
g g

k k k k

j j
k k

k j j k

k
j j k

j k j k

j
j

CC
CC CC

x x x x
U U

i U i U
x x x x

UU U U
x x x x

i U
x

φ φ 2φκ φσ ω φ

φ φω ω φ

φ φ

ωγφ γ φ

∂∂ ∂+ + −
∂ ∂ ∂ ∂

∂ ∂⎡ ⎤∂ ∂+ −⎢ ⎥∂ ∂ ∂ ∂⎢ ⎥+ ⎢ ⎥∂ ∂ ∂⎢ ⎥− −
∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦

⎡ ⎤∂+ − =⎢ ⎥∂⎢ ⎥⎣ ⎦

+

 

(3.535) 

(c) Elliptic 

Mild-Slope 

Equation 

Including 

Energy 

Dissipation 

2
2 0g g g

k k k k

CC CC CC i
x x x x

φ φ φκ ωγφ∂ ∂ ∂+ + +
∂ ∂ ∂ ∂

=  (3.536) 
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(d) 

 

Extended 

Elliptic 

Mild-Slope 

Equation 

Including 

Current 

( )2
2 2

2 2 2

1 2 32

4 5

2

6 72

8 9

cosh

g
g g

k k k k k k

k k k k k

k k k k

k k k k

k k k k

CC
CC CC g

x x x x x x

hQ Q Q
x x x x x

h hQ Q
x x x x

hQ Q
h x x x x

hQ Q
x x x x

φ φ φ ηφκ φσ

κ η

κ κ

φσ η η κ
κ

η η κ

∂ ⎛ ⎞∂ ∂ ∂ ∂+ + − − ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
′∂ ∂ ∂+ +

∂ ∂ ∂ ∂ ∂

⎛ ⎞ ⎛ ⎞′ ′∂ ∂ ∂ ∂+ +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
⎛ ⎞ ′∂ ∂ ∂ ∂+ + +⎜ ⎟′ ∂ ∂ ∂ ∂⎝ ⎠

′∂ ∂ ∂ ∂+ +
∂ ∂ ∂ ∂

6 6

2

2

2

2 2

2

k k

j
k k

k k j

j j k
k k j

j k j k k j

k
j j k j k

j k j k j k

j

j k

hW W
x x

U
i U i U i

x x x

U U UU U U
x x x x x x

UU U U U U
x x x x x x

x

U U

η

η φω φ ωλ φ ω ω φ

φ η ηλ φ λ φ

φ φ η φλ

ηλ

φ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟′∂ ∂+ −⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

∂∂ ∂′− + +
∂ ∂ ∂

∂ ∂ ∂∂ ∂ ∂′ ′− + +
∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂′− − +
∂ ∂ ∂ ∂ ∂ ∂

+
∂′−

∂ ∂

− ( )

2

2 2

2

0

k k j

k j k j

k j k j

x x x

h h
x x x x

hh
x x x x

η ηκ

η ηκ λ

λ λ η κ κ ηκ
κ κ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥ =⎢ ⎥⎛ ⎞∂ ∂⎢ ⎥⎜ ⎟+

∂ ∂⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟

⎛ ⎞′ ′∂ ∂ ∂ ∂⎢ ⎥⎜ ⎟′+ − − −⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟⎛ ⎞′ ′⎛ ⎞ ∂ ∂ ∂ ∂⎢ ⎥⎜ ⎟′+ + − − −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂⎝ ⎠⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

 

(3.537) 

(e) Elliptic 

Mild-Slope 

Equation 

Including 

Current 

( )2
2 2

2

2

0

g
g g

k k k k

j j
k k

k j j k

k
j j k

j k j k

CC
CC CC

x x x x
U U

i U i U
x x x x

UU U U
x x x x

φ φ 2φκ φσ ω φ

φ φω ω φ

φ φ

∂∂ ∂+ + −
∂ ∂ ∂ ∂

∂ ∂⎡ ⎤∂ ∂+ −⎢ ⎥∂ ∂ ∂ ∂⎢ ⎥+ =⎢ ⎥∂ ∂ ∂⎢ ⎥− −
∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦

+

 

(3.538) 

(f) Elliptic 

Mild-Slope 

Equation 

2
2 0g g

k k k k

CC CC CC
x x x x

φ φ φκ∂ ∂ ∂+ +
∂ ∂ ∂ ∂ g =  (3.539) 
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3.7.7 Integral Summary 

In order to implement the extended mild-slope wave equation in a finite element model it 

is necessary to evaluate the integrals 1I  to 6I  from Equations (3.479) to (3.483) as 

follows: 

 
 
 

( )2
1 cosh

h

I h z dz
η

κ
−

′ ′= +⎡ ⎤⎣ ⎦∫  

let ( ) ( ) (h z h z h zκ κ η η κ′ ′+ = + + − = + =⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦) x  
therefore the limits go to  and 0 hκ ′
dx
dz

κ=  

1 dx dz
κ

=  

 
2

1
0

1 cosh
h

I
κ

κ

′

= ∫ xdx  (3.540) 

2

1
0

1
2

h x xe eI
κ

κ

′ −⎛ ⎞+= ⎜ ⎟
⎝ ⎠
∫ dx  (3.541) 

2 2
1

0

1 2
4

h
x xI e e

κ

κ

′
−= + +∫ dx  (3.542) 

2 2

1
0

1 2
4 2 2

hx xe eI x
κ

κ

′−⎡ ⎤
= + −⎢

⎣ ⎦
⎥  (3.543) 

2 2 0

1
1 2

4 2 2 2 2

h he e eI h
κ κ

κ
κ

′ ′− −⎡ ⎤⎛ ⎞ ⎛′= + − − + −⎢⎜ ⎟ ⎜
⎝ ⎠ ⎝⎣ ⎦

0

0 e ⎞
⎥⎟
⎠

 (3.544) 

2 2

1
1 2

4 2

h he eI h
κ κ

κ
κ

′ ′−⎡ ⎤− ′= ⎢
⎣ ⎦

+ ⎥  (3.545) 

1
sinh 2 2

4
h hI κ κ
κ
′ ′+=  (3.546) 
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( ) ( )2 cosh sinh
h

I h z h z dz
η

κ κ
−

′ ′ ′ ′= + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∫  

let ( ) ( ) (h z h z h z xκ κ η η κ′ ′+ = + + − = + =⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦)  
therefore the limits go to  and 0 hκ ′
dx
dz

κ=  

1 dx dz
κ

=  

 

2
0

1 cosh sinh
h

I x
κ

κ

′

= ∫ xdx  (3.547) 

2
0

1 cosh sinh
h

I x xd
κ

κ

′

= ∫ x  (3.548) 

( )( )
2

0

1
4

x x x xh e e e e
I

κ

κ

− −′ + −
= ∫ dx  (3.549) 

( 2 2
2

0

1
4

h
x xI e e

κ

κ

′
−= −∫ )dx  (3.550) 

2 2

2
0

1
4 2 2

hx xe eI
κ

κ

′−⎡ ⎤
= +⎢

⎣ ⎦
⎥  (3.551) 

2 2 0 0

2
1

4 2 2

h he e e eI
κ κ

κ

′ ′−⎡ ⎤⎛ ⎞ ⎛+ += −⎢⎜ ⎟ ⎜
⎝ ⎠ ⎝⎣ ⎦

⎞
⎥⎟
⎠

 (3.552) 

2 2

2
1 1

4 2

h he eI
κ κ

κ

′ ′−⎡ ⎤+= ⎢
⎣ ⎦

− ⎥  (3.553) 

[2
1 cosh 2 1

4
I κ

κ
′= ]h −  (3.554) 
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( ) ( ) ( )3 cosh sinh
h

I h z h z h z dz
η

κ κ
−

′ ′ ′ ′ ′ ′= + + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∫  

let ( ) ( ) (h z h z h zκ κ η η κ′ ′+ = + + − = + =⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦) x  
therefore the limits go to  and 0 hκ ′
dx
dz

κ=  

1 dx dz
κ

=  

3
0

1 cosh sinh
h xI x

κ

κ κ

′

= ∫ xdx  (3.555) 

3 2
0

1 cosh sinh
h

I x x xd
κ

κ

′

= ∫ x  (3.556) 

( )( )
3 2

0

1
4

x x x xh e e e e
I x

κ

κ

− −′ + −
= ∫ dx  (3.557) 

( 2 2
3 2

0

1
4

h
x xI x e e

κ

κ

′
−= −∫ )dx  (3.558) 

( 2 2
3 2

0

1
4

h
x x )I xe xe dx

κ

κ

′
−= −∫  (3.559) 

2
3 2 2

0 0

1 1
4 4

h h
x 2xI xe dx xe dx

κ κ

κ κ

′ ′
−= −∫ ∫  (3.560) 

 
For the first term in Equation (3.560) 
 let u and  x= 2xdv e dx=

 1du
dx

=  

  du dx=
 
  2 xv e d= ∫ x

 
2

2

xev =  

2 2
2

0 002 2

hh hx x
x xe exe dx dx

κκ κ′′ ′⎡ ⎤
= −⎢ ⎥
⎣ ⎦

∫ ∫  (3.561) 

2
2

0 00

1
2 2

hh hx
x xe 2xxe dx e dx

κκ κ′′ ′⎡ ⎤
= −⎢ ⎥
⎣ ⎦

∫ ∫  (3.562) 

2 2
2

0 0 0

1
2 2 2

h hh x x
x xe exe dx

κ κκ ′ ′′ ⎡ ⎤ ⎡ ⎤
= −⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

∫  (3.563) 

2 2
2

0

1
2 2 2

h h h
x h e exe dx

κ κ κκ′ ′ ′′⎡ ⎤ ⎡
= −⎢ ⎥ ⎢
⎣ ⎦ ⎣

∫
1
2
⎤

− ⎥
⎦

 (3.564) 
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2 2
2

0

2
4 4

h h h
x h e exe dx

κ κ κκ′ ′ ′′⎡ ⎤ ⎡ −= −⎢ ⎥ ⎢
⎣ ⎦ ⎣

∫
1⎤
⎥
⎦

 (3.565) 

2 2
2

0

2 1
4

h h h
x h e exe dx

κ κ κκ′ ′ ′′ − +=∫  (3.566) 

 

Similarly for the second term in equation (3.560): 
 let u and  x= 2xdv e dx−=

 1du
dx

=  

  du dx=

  2xv e d−= ∫ x

 
2

2

xev
−

= −  

2 2
2

0 002 2

hh hx x
x xe exe dx dx

κκ κ′′ ′− −
− ⎡ ⎤

= − +⎢ ⎥
⎣ ⎦

∫ ∫  (3.567) 

2
2

0 00

1
2 2

hh hx
x xe 2xxe dx e dx

κκ κ′′ ′−
− ⎡ ⎤

= − +⎢ ⎥
⎣ ⎦

∫ −∫  (3.568) 

2 2
2

0 0 0

1
2 2 2

h hh x x
x xe exe dx

κ κκ ′ ′′ − −
− ⎡ ⎤ ⎡ ⎤

= − −⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

∫  (3.569) 

2 2
2

0

1
2 2 2

h h h
x h e exe dx

κ κ κκ′ ′ ′− −
− ′⎡ ⎤ ⎡

= − − −⎢ ⎥ ⎢
⎣ ⎦ ⎣

∫
1
2
⎤
⎥
⎦

 (3.570) 

2 2
2

0

2
4 4

h h h
x h e exe dx

κ κ κκ′ ′ ′− −
− ′⎡ ⎤ ⎡−= −⎢ ⎥ ⎢

⎣ ⎦ ⎣
∫

1⎤−
⎥
⎦

 (3.571) 

2 2
2

0

2
4

h h h
x h e exe dx

κ κ κκ′ ′ ′− −
− ′− −=∫

1+
 (3.572) 

 
Using Equations (3.566) and (3.572) in Equation (3.560) gives: 

2 2 2 2

3 2

1 2 1 2 1
4 4 4

h h h hh e e h e eI
κ κ κ κκ κ

κ

′ ′ ′ ′− −⎡ ⎤′ ′⎛ ⎞ ⎛− + − − += −⎢⎜ ⎟ ⎜
⎝ ⎠ ⎝⎣ ⎦

⎞
⎥⎟
⎠

 (3.573) 

2 2 2 2
3 2

1 2 1 2
16

h h h hI h e e h e eκ κ κ κκ κ
κ

′ ′ ′ ′− −′ ′⎡= − + + +⎣ 1⎤− ⎦  (3.574) 

2 2 2
3 2

1 2 2
16

h h hI h e h e e eκ κ κκ κ
κ

′ ′ ′−′ ′⎡= + − +⎣
2 hκ ′− ⎤⎦  (3.575) 

2 2 2 2

3 2 2

1
4 2 8 2

h h h hh e e e eI
κ κ κ κκ

κ κ

′ ′ ′− −′ ⎛ ⎞ ⎛+= −⎜ ⎟ ⎜
⎝ ⎠ ⎝

′ ⎞−
⎟
⎠

 (3.576) 

( ) (3 2 2

1cosh 2 sinh 2
4 8

h )I hκ κ
κ κ

′ ′= − hκ ′  (3.577) 

(3 2

1 2 cosh 2 sinh 2
8

)I h hκ κ κ
κ

′ ′= − h′  (3.578)
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( ) ( )2
4 cosh

h

I h z h z dz
η

κ
−

′ ′ ′ ′= + +⎡ ⎤⎣ ⎦∫  

let ( ) ( ) (h z h z h zκ κ η η κ′ ′+ = + + − = + =⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦) x  
therefore the limits go to  and 0 hκ ′
dx
dz

κ=  

1 dx dz
κ

=  

2
4 2

0

1 cosh
h

I x
κ

κ

′

= ∫ xdx  (3.579) 

( )( )
4 2

0

1
4

x x x xh e e e e
I x

κ

κ

− −′ + +
= ∫ dx  (3.580) 

( 2 2
4 2

0

1 2
4

h
x x )I x e e dx

κ

κ

′
−= + +∫  (3.581) 

2
4 2

0 0 0

1 2
4

h h h
x 2xI xe dx xdx xe dx

κ κ κ

κ

′ ′ ′
−⎡ ⎤

= + +⎢
⎣ ⎦
∫ ∫ ∫ ⎥

0⎤⎦

 (3.582) 

2

0
0

2
h

h
xdx x

κ
κ

′
′

⎡ ⎤= ⎣ ⎦∫  (3.583) 

2 2

0

2
h

xdx h
κ

κ
′

′⎡= −⎣∫  (3.584) 

2 2

0

2
h

xdx h
κ

κ
′

′=∫  (3.585) 

From Equations (3.566) and(3.572): 
2 2

2

0

2
4

h h h
x h e exe dx

κ κ κκ′ ′ ′′ − +=∫
1

 (3.586) 

2 2
2

0

2 1
4

h h h
x h e exe dx

κ κ κκ′ ′ ′− −
− ′− −=∫

+
 (3.587) 

 

2 2 2 2
2 2

4 2

1 2 1 2 1
4 4 4

h h h hh e e h e eI h
κ κ κ κκ κκ

κ

′ ′ ′ ′− −′ ′⎡ ⎤− + − − +′= + +⎢ ⎥
⎣ ⎦

 (3.588) 

2 2 2 2

4 2 2

1 2 2 1 1 2
4 4 4 4 4 4

h h h hh e h e e e hI
κ κ κ κκ κ κ

κ κ κ

′ ′ ′ ′− −′ ′⎛ ⎞ ⎛ ⎞− − − ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

2 2

2 24κ
′

+  (3.589) 

2 2 2 2 2

4 2 2 2

1 1
4 2 8 2 8 8

h h h hh e e e e hI
κ κ κ κκ κ

κ κ κ

′ ′ ′ ′− −′ ′⎛ ⎞ ⎛ ⎞− += − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

2

2

2
κ

+  (3.590) 

( ) ( )
2 2

4 2 2 2

2 1 1sinh 2 cosh 2
8 8 8

hI h hκ κ κ
κ κ κ

′ ′ ′= − + + 2

2
8

hκ
κ

′  (3.591) 

( 2 2
4 2

1 2 sinh 2 cosh 2 1 2
8

I h h hκ κ κ κ
κ

′ ′ ′= − + )h′+  (3.592) 
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( ) ( )2 2
5 cosh

h

I h z h z dz
η

κ
−

′ ′ ′ ′= + +⎡⎣∫ ⎤⎦   

let ( ) ( ) (h z h z h z xκ κ η η κ′ ′+ = + + − = + =⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦)  
therefore the limits go to  and 0 hκ ′
dx
dz

κ=  

1 dx dz
κ

=  

2 2
5 3

0

1 cosh
h

I x
κ

κ

′

= ∫ xdx  (3.593) 

( )( )2
5 3

0

1
4

x x x xh e e e e
I x

κ

κ

− −′ + +
= ∫ dx  (3.594) 

(2 2 2
5 3

0

1 2
4

h
x x )I x e e dx

κ

κ

′
−= + +∫  (3.595) 

2 2 2 2 2
5 3

0 0 0

1 2
4

h h h
x xI x e dx x dx x e dx

κ κ κ

κ

′ ′ ′
−⎡ ⎤

= + +⎢
⎣ ⎦
∫ ∫ ∫ ⎥  (3.596) 

 

For the first term in Equation (3.596): 
 let and  2u x= 2xdv e dx=

 2du x
dx

=  

  2du xdx=
 
  2 xv e d= ∫ x

 
2

2

xev =  

2 2
2 2 2

0 002

hh hx
x x e xx e dx xe dx

κκ κ′′ ′⎡ ⎤
= −⎢ ⎥
⎣ ⎦

∫ ∫  (3.597) 

 

From Equation (3.566): 
2 2

2

0

2 1
4

h h h
x h e exe dx

κ κ κκ′ ′ ′′ − +=∫  

Therefore Equation (3.597) becomes: 

2 2 2 2
2 2

0 0

2
2 4

hh x h
x x e h e ex e dx

κκ κ κκ
′′ ′ ′′⎡ ⎤ ⎡ − += −⎢ ⎥ ⎢

⎣ ⎦ ⎣
∫

1h ⎤
⎥
⎦

 (3.598) 

2 2 2 2 2
2 2

0

2
2 4

h h h
x h e h e ex e dx

κ κ κ κκ κ′ ′ ′′ ′⎡ ⎤ ⎡ − += −⎢ ⎥ ⎢
⎣ ⎦ ⎣

∫
1h′ ⎤
⎥
⎦

 (3.599) 

2 2 2 2 2
2 2

0

2 2
4

h h h h
x h e h e ex e dx

κ κ κ κκ κ′ ′ ′′ ′− +=∫
1′ −

 (3.600) 
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Similarly for the third term in Equation (3.596): 
 let and  2u x= 2xdv e dx−=

 2du x
dx

=  

  2du xdx=
 
  2xv e d−= ∫ x

 
2

2

xev
−

= −  

2 2
2 2 2

0 002

hh hx
x x e xx e dx xe dx

κκ κ′′ ′−
− ⎡ ⎤

= − +⎢ ⎥
⎣ ⎦

∫ −∫  (3.601) 

 
From Equation (3.572): 

2 2
2

0

2 1
4

h h h
x h e exe dx

κ κ κκ′ ′ ′− −
− ′− −=∫

+
 

 
Therefore Equation (3.601) becomes: 

2 2 2 2
2 2

0 0

2
2 4

hh x h
x x e h e ex e dx

κκ κ κκ
′′ ′ ′− − −

− ′⎡ ⎤ ⎡− −= − +⎢ ⎥ ⎢
⎣ ⎦ ⎣

∫
1h ⎤+
⎥
⎦

 (3.602) 

2 2 2 2 2
2 2

0

2
2 4

h h h
x h e h e ex e dx

κ κ κκ κ′ ′ ′− − −
− ′ ′⎡ ⎤ ⎡− −= − +⎢ ⎥ ⎢

⎣ ⎦ ⎣
∫

1hκ ′ ⎤+
⎥
⎦

 (3.603) 

2 2 2 2 2
2 2

0

2 2
4

h h h
x h e h e ex e dx

κ κ κ κκ κ′ ′ ′− − −
− ′ ′− − −=∫

1h′ +
 (3.604) 

 
For the second term in Equation (3.596): 

3
2

0 0

22
3

hh xx dx
κκ ′′ ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

∫  (3.605) 

3 3
2

0

22
3

h hx dx
κ κ′ ′

=∫  (3.606) 

 
Therefore using Equations (3.600), (3.604) and (3.606) Equation (3.596) now becomes: 

2 2 2 2 2 3 3

5 3 2 2 2 2 2

2 2 1 2
1 4

4 2 2 1
4

h h h

h h h

h e h e e h

I
h e h e e

κ κ κ

κ κ κ

κ κ κ

κ κ κ

′ ′ ′

′ ′ ′− − −

′ ′⎡ ⎤− + − +⎢ ⎥
⎢=

′ ′− − − +⎢ ⎥+⎢ ⎥⎣ ⎦

3
′

⎥  (3.607) 

2 2 2 2 2 2 2 2 2 2

5 3 3 3

2 2 2 2
1 4

4 2
3

h h h h hh e h e h e h e e e

I
h

κ κ κ κ κκ κ κ κ

κ κ

′ ′ ′ ′ ′− −′ ′ ′ ′⎡ ⎤− − − + −
⎢ ⎥
⎢ ⎥=

′⎢ ⎥+⎢ ⎥⎣ ⎦

hκ ′−

 (3.608) 
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2 2 2 2 2 2 3
2 2

5 3

1 1
4 2 2 2 2

h h h h h he e e e e e hI h h
κ κ κ κ κ κ κκ κ

κ

′ ′ ′ ′ ′ ′− − −⎡ ⎤′⎛ ⎞ ⎛ ⎞ ⎛ ⎞− + −′ ′= − +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

32
3

+  (3.609) 

 
3 3

2 2
5 3

1 1sinh 2 cosh 2 sinh 2
4 2

hI h h h h h κκ κ κ κ κ
κ

′⎡ ⎤′ ′ ′ ′ ′= − +⎢ ⎥
⎣ ⎦

2
3

+  (3.610) 

 
 
 
 
 
 
 
 
Summarising the results of the above integrals 1I  to 5I  from Equations (3.546), (3.554), 

(3.578), (3.592) and (3.610) gives: 

 

1
sinh 2 2

4
h hI κ κ
κ
′ ′+=  

 

[ ]2
1 cosh 2 1

4
I hκ

κ
′= −  

 

( )3 2

1 2 cosh 2 sinh 2
8

I h hκ κ κ
κ

′ ′= − h′  

 

( )2 2
4 2

1 2 sinh 2 cosh 2 1 2
8

I h h h hκ κ κ κ
κ

′ ′ ′= − + ′+  

 
3 3

2 2
5 3

1 1sinh 2 cosh 2 sinh 2
4 2

hI h h h h h κκ κ κ κ κ
κ

′⎡ ⎤′ ′ ′ ′ ′= − +⎢ ⎥
⎣ ⎦

2
3

+  
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3.8 One Dimensional Finite Element Mild-Slope Wave Model 

Initially the finite element formulation for a one-dimensional finite element wave-current 

interaction model is examined (1d-NM-WCIM). This model can examine wave behaviour 

along a line of linear finite elements. 

 
Figure 3.7 – Definition Sketch of Wave Behaviour for One-Dimensional Situation  
 
 
 

 

 
 
3.8.1 Simplification of two dimensional terms to one dimension 

In the case of a longshore (shore parallel) current: 

1 0U =  
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Therefore for a longshore current Equation (3.531) becomes: 

 

( )

2 2 2

1 2 3 42

2 2

5 6 72

8 9 6 6
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k k k k k k k

g
g

k k k k k k k k k k
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x x x x x x

κ η

φ φ φσ κ κ η η κ
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η η κ η

⎛ ⎞⎛ ⎞′ ′∂ ∂ ∂ ∂ ∂+ + +⎜ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎜
⎜∂ ⎛ ⎞ ⎛ ⎞ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎜+ + + + +⎜ ⎟ ⎜ ⎟⎜′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
⎜

′ ′∂ ∂ ∂ ∂ ∂ ∂⎜+ + + −⎜⎜ ∂ ∂ ∂ ∂ ∂ ∂⎝
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2
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2

g
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Ui U i U i
x x x

U U UU U U
x x x x x x
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CC g
x x
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η φω φ ωλ φ ω ω φ

φ η ηλ φ λ

φ φ η φλ
φ ηφκ φσ η η ηλ κ

φ

⎟
⎟
⎟
⎟
⎟
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⎟
⎟⎟
⎠

∂∂ ∂′− + +
∂ ∂ ∂

∂ ∂ ∂∂ ∂ ∂′ ′− + +
∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂′− − +
∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞∂ ∂+ − − +⎜ ⎟ ∂ ∂ ∂∂ ∂⎝ ⎠ ′− +

∂ ∂ ∂ ∂

− ( )
2

2 2

2 2 2 2

2

2 2 2 2

0

x

h h
x x x x

hh
x x x x

η ηκ λ

λ λ η κ κ ηκ
κ κ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

=⎢ ⎥⎛ ⎞⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟⎛ ⎞′ ′∂ ∂ ∂ ∂⎢ ⎥⎜ ⎟′+ − − −⎜ ⎟⎢ ⎥⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎢ ⎥⎜ ⎟
⎢ ⎥⎛ ⎞′ ′⎛ ⎞ ∂ ∂ ∂ ∂⎜ ⎟′+ + − − −⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠⎝ ⎠⎝ ⎠⎣ ⎦

 (3.611) 
 
 
 



WAVE-CURRENT INTERACTION MODEL  C. Newell 
 

 
 162 

 
Figure 3.8 - Sketch showing terms that do not vary in x2 for One-Dimensional Model 
 

As shown in Figure 3.8 for a one dimensional model , , 2U κ η ,  and h  will not vary in 

the 

′

2x  direction. Hence Equation (3.611) reduces to: 

2 2 2

1 2 3 42
1 1 1 1 1 1 1

2

5 6 72
1 1 1 1 1 1

8 9 6 6
1 1 1 1 1 1

coshg
k k

h hQ Q Q Q h
x x x x x x x

hCC Q Q Q
x x h x x x x x x

h hQ Q W W
x x x x x x

κ η

φ φσ κ κ η η κ
κ

η η κ η

⎛ ⎞⎛ ⎞′ ′∂ ∂ ∂ ∂ ∂+ + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎜ ⎟
⎜ ⎟⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎜ ⎟+ + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟′ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠
⎜ ⎟

′ ′∂ ∂ ∂ ∂ ∂ ∂⎜+ + + −⎜⎜ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

′

2
2 2 2 2

2 2
1 1 2 2 2

2 0gCC g i U U
x x x x x
φ η φ φφκ φσ ω φ ω

⎟
⎟⎟

⎛ ⎞∂ ∂ ∂ ∂+ − − + + − =⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

 

 (3.612) 
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Equation (3.612) may be expanded to give: 
2 2 2

1 2 3 42
1 1 1 1 1 1 1

2 2

5 6 72
1 1 2 2 2 2 1 1 1 1 1 1

8 9 6
1 1 1 1 1

cosh
g

g g

h hQ Q Q Q h
x x x x x x x

CC hCC CC Q Q Q
x x x x x x h x x x x x x

h hQ Q W
x x x x x

κ η

φ φ φ φσ κ κ η η κ
κ

η η κ

⎛ ⎞′ ′∂ ∂ ∂ ∂ ∂+ + + ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂+ + + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

′ ′∂ ∂ ∂ ∂ ∂+ + + −
∂ ∂ ∂ ∂ ∂

′

6
1

2
2 2 2 2

2 2
1 1 2 2 2

2 0g

W
x

CC g i U U
x x x x x

η

φ η φ φφκ φσ ω φ ω

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

∂⎜ ⎟
⎜ ⎟⎜ ⎟∂⎝ ⎠

⎛ ⎞∂ ∂ ∂ ∂+ − − + + − =⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
 (3.613) 

gCC  does not vary in the 2x  direction hence Equation (3.613) may be simplified to give 

the following equation for a one dimensional hydrodynamic model: 

 
2 2 2

1 2 3 42
1 1 1 1 1 1 1

2 2

5 6 72
1 1 2 2 1 1 1 1 1 1

8 9 6 6
1 1 1 1 1 1

coshg g

h hQ Q Q Q h
x x x x x x x

hCC CC Q Q Q
x x x x h x x x x x x

h hQ Q W W
x x x x x x

κ η

φ φ φσ κ κ η η κ
κ

η η κ η

⎛ ⎛ ⎞′ ′∂ ∂ ∂ ∂ ∂+ + +⎜ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎜
⎜⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎜+ + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

′ ′∂ ∂ ∂ ∂ ∂ ∂+ + + −
∂ ∂ ∂ ∂ ∂ ∂⎝

′

2
2 2 2 2

2 2
1 1 2 2 2

2 0gCC g i U U
x x x x x
φ η φ φφκ φσ ω φ ω

⎞
⎟
⎟
⎟
⎟

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟

⎠
⎛ ⎞∂ ∂ ∂ ∂+ − − + + − =⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

 

 (3.614) 
 
 
Equation (3.135) can be rewritten as: 

( 1 1 2 2i S x xiSA e A e ϕϕ κ
φ φφ += = )  (3.615) 

 
A new one dimensional velocity potential term, φ̂ , may now be defined as follows: 

 
1 1ˆ iS xA e ϕ

φφ =  (3.616) 
 
Hence: 

 
2 2 ˆi xe κφ φ=  (3.617) 
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Use of Equation (3.617) yields the following version of Equation (3.614): 

 

( ) 2 2
2 2 2 2

2 2 2

1 2 3 42
1 1 1 1 1 1 1

2
2
2 5 6 72

1 1 1 1 1 1 1
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ˆ ˆˆ
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⎛ ⎞′ ′∂ ∂ ∂ ∂ ∂+ + + ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
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κ

′

( ) ( )2 2 2 2 2 2 2 2 2 2 2 2

6
1 1

2 2 2 2 2
2 2 2 2

1 1
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η
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⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
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⎜ ⎟
⎜ ⎟
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=

 (3.618) 
 
Dividing Equation (3.618) by  gives: 2 2i xe κ
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κ
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∂ ∂ ∂ ∂ ∂ ∂⎝
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′
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⎞
⎟
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⎜ ⎟
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⎠
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 (3.619) 
 
Simplification of Equation (3.619) yields: 
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 (3.620) 

 
Equation (3.620) is a restructured form of the Extended Mild-Slope Equation including 

Currents that is suitable for use in a one-dimensional model (linear finite elements) of 

wave propagation in the presence of a shore-parallel current. 
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The following abbreviation will be used at this stage: 
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 (3.621) 

 

3.8.2 Integration over a finite element 

Equation (3.620) can now be multiplied by a weighting function ( IW ) and the product 

integrated over the length of the element. In the interest of maintaining consistency with 

previous authors the equation will also be multiplied by -1 at this stage: 
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 (3.622) 
 
Examining the first term of Equation (3.622) in more detail using Green’s Theorem gives: 
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∫ ∫  (3.624) 
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Substituting Equation (3.625) into Equation (3.622) gives: 
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Expressing φ̂  in terms of shape functions JL  gives: 

ˆ ˆ J JLφ φ=  (3.627) 
 

( )

( )

2 2
2 2 2 2

1 10 0 0

2 2 2
2

1 10 0 0 0

2 2

1 10 0 0

ˆ ˆˆ ˆ2

ˆ
ˆ ˆ ˆ

ˆ
ˆ ˆ 0

l l
J J I J J I I I

g g

l

J Jl l l lI
J J I J J I J J I

g g

J Jl l l
J J I J J I I

g

U L W dx U L W dx CC W CC W
x x

L WCC dx CC L W dx L W dx L W dx
x x

L
CC L W dx Q L W dx g W dx

x x

φ φωκ φ κ φ

φ
κ φ σ φ ω φ

φηκ φ σ φ

∂ ∂− − +
∂ ∂

∂ ∂+ + + −
∂ ∂

∂∂′− − + =
∂ ∂

∫ ∫

∫ ∫ ∫ ∫

∫ ∫ ∫

 (3.628) 

 
Rearranging Equation (3.628) gives: 

2 2
2 2 2 2

1 10 0 0

2 2 2
2

1 10 0 0 0

2 2

1 10 0 0

ˆ ˆˆ ˆ2

ˆ ˆ ˆ

ˆ ˆ ˆ 0

l l
I J J I J J I I

g g

l

l l l lI J
J I J J I J J I

g g

l l l J
I J J I J J I J

g

U W L dx U W L dx CC W CC W
x x

W LCC dx CC W L dx W L dx W L dx
x x

LCC W L dx Q W L dx g W dx
x x

φ φωκ φ κ φ

φ κ φ σ φ ω φ

ηκ φ σ φ φ

∂ ∂− − +
∂ ∂

∂ ∂+ + + −
∂ ∂

∂ ∂′− − + =
∂ ∂

∫ ∫

∫ ∫ ∫ ∫

∫ ∫ ∫

ˆJ J  (3.629) 

 
The superscript I is a free superscript and varies between one and two. Hence Equation 

(3.629) is actually two equations. Where 1I =  Equation (3.629) becomes: 

1 2 2 1 1 1
2 2 2 2

1 10 0 0

1
2 1 2 1 2 1
2

1 10 0 0 0

2 1 2 1 1

1 10 0 0

ˆ ˆˆ ˆ2

ˆ ˆ ˆ

ˆ ˆ ˆ 0

l l
J J J J

g g

l

l l l lJ
J J J J J

g g

l l l J
J J J J J

g

U W L dx U W L dx CC W CC W
x x

W LCC dx CC W L dx W L dx W L dx
x x

LCC W L dx Q W L dx g W dx
x x

φ φωκ φ κ φ

φ κ φ σ φ ω φ

ηκ φ σ φ φ

∂ ∂− − +
∂ ∂

∂ ∂+ + + −
∂ ∂

∂ ∂′− − + =
∂ ∂

∫ ∫

∫ ∫ ∫ ∫

∫ ∫ ∫

ˆJ J  (3.630) 

 
Where 2I =  Equation (3.629) becomes: 

2 2 2 2 2 2
2 2 2 2

1 10 0 0

2
2 2 2 2 2 2
2

1 10 0 0 0

2 2 2 2 2

1 10 0 0

ˆ ˆˆ ˆ2

ˆ ˆ ˆ

ˆ ˆ ˆ 0

l l
J J J J

g g

l

l l l lJ
J J J J J

g g

l l l J
J J J J J

g

U W L dx U W L dx CC W CC W
x x

W LCC dx CC W L dx W L dx W L dx
x x

LCC W L dx Q W L dx g W dx
x x

φ φωκ φ κ φ

φ κ φ σ φ ω φ

ηκ φ σ φ φ

∂ ∂− − +
∂ ∂

∂ ∂+ + + −
∂ ∂

∂ ∂′− − + =
∂ ∂

∫ ∫

∫ ∫ ∫ ∫

∫ ∫ ∫

ˆJ J  (3.631) 
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This means that the variable I provides a row number so Equation (3.630) and Equation 

(3.631) can now be put together as a vector equation: 
1 1 1 1

2 2
2 2 2 22 2 2 2

1 10 0 0

1

1 1 1
1 2 2 2

2 2 2 22
10 0 0

1

ˆ ˆˆ ˆ2

ˆ ˆ ˆ

l l
J J J J

g g

l

l l lJ
J J J J J

g g

W W W W
U L dx U L dx CC CC

x xW W W W

W
x W W WLCC dx CC L dx L dx

x W W WW
x

φ φωκ φ κ φ

φ κ φ σ φ ω

⎧ ⎫ ⎧ ⎫ ⎧ ⎫ ⎧ ⎫∂ ∂− − +⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬∂ ∂⎩ ⎭ ⎩ ⎭ ⎩ ⎭ ⎩ ⎭

⎧ ⎫∂
⎪ ⎪∂ ⎧ ⎫ ⎧ ⎫ ⎧ ⎫∂⎪ ⎪+ + + −⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨∂∂ ⎩ ⎭ ⎩ ⎭ ⎩⎪ ⎪
⎪ ⎪∂⎩ ⎭

∫ ∫

∫ ∫ ∫
0

1 1 1
2 2

2 2 2
1 10 0 0

ˆ

ˆ ˆ ˆ 0

l
J J

l l l J
J J J J J

g

L dx

W W W LCC L dx Q L dx g dx
x xW W W

φ

ηκ φ σ φ φ

⎬
⎭

⎧ ⎫ ⎧ ⎫ ⎧ ⎫∂ ∂′− − + =⎨ ⎬ ⎨ ⎬ ⎨ ⎬∂ ∂⎩ ⎭ ⎩ ⎭ ⎩ ⎭

∫

∫ ∫ ∫

 

 (3.632) 
 
 
 
The superscript J may also be one or two and hence defines the row number of a matrix: 

1 11 1
1 2 2 2 1 2

2 2 2 22 22 2
0 0

1

11 1 1 2
1

2 2 2 2
1 1 1 100

1

ˆ ˆ
2

ˆ ˆ

ˆˆ ˆ
ˆ

l l

l

g g g

l

W W
U L L dx U L L dx

W W

W
xW W L LCC CC CC

x x x xW W W
x

φ φ
ωκ κ

φ φ

φφ φ
φ

⎧ ⎫ ⎧ ⎫⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪⎡ ⎤ ⎡ ⎤−⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎣ ⎦ ⎣ ⎦
⎩ ⎭ ⎩ ⎭⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

⎧ ⎫∂
⎪ ⎪ ⎧ ⎫∂⎧ ⎫ ⎧ ⎫ ⎡ ⎤∂ ∂ ∂ ∂⎪ ⎪ ⎪− + +⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥∂ ∂ ∂ ∂∂ ⎣ ⎦⎩ ⎭ ⎩ ⎭

⎪

⎪ ⎪⎪ ⎪ ⎩ ⎭
⎪ ⎪∂⎩ ⎭

∫ ∫

∫

11 1
2 1 2 2 1 2
2 2 22 2

0 0

1 11 1
2 1 2 2 1 2

2 22 2
0 0

1
2 1 2

2

ˆ

ˆ ˆ

ˆ ˆ

ˆ ˆ

l l

g

l l

g

dx

W W
CC L L dx L L dx

W W

W W
L L dx CC L L dx

W W

W
Q L L

W

φ φ
κ σ

φ φ

φ φ
ω κ

φ φ

σ

⎧ ⎫ ⎧ ⎫⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪⎡ ⎤ ⎡ ⎤+ +⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎣ ⎦ ⎣ ⎦
⎩ ⎭ ⎩ ⎭⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

⎧ ⎫ ⎧ ⎫⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪⎡ ⎤ ⎡ ⎤− −⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎣ ⎦ ⎣ ⎦
⎩ ⎭ ⎩ ⎭⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

⎧ ⎫
′ ⎡ ⎤− ⎨ ⎬ ⎣ ⎦
⎩ ⎭

∫ ∫

∫ ∫

1ˆ

1 11 1 2

22 2
1 1 10 0

ˆ ˆ
0

ˆ ˆ

l l W L Ldx g dx
x x xW

φ φη
φ φ

⎧ ⎫ ⎧ ⎫⎧ ⎫ ⎡ ⎤∂ ∂ ∂⎪ ⎪ ⎪ ⎪+ =⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥∂ ∂ ∂⎣ ⎦⎩ ⎭⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭
∫ ∫

 (3.633) 
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Equation (3.633) can be reduced to:  
1 11 1 1 2 1 1 1 2

2 2
2 2 2 22 1 2 2 2 1 2 22 2

0 0

1 1 1 2

1 1
1 1 1 1

2 2 2 1 2 2
1 1 0

1 1 1 1

ˆ ˆ
2

ˆ ˆ

ˆ ˆ

l l

g g g

l

W L W L W L W L
U dx U

W L W L W L W L

W L W L
x x x xW W

CC CC CC
x xW W W L W L

x x x x

φ φ
ωκ κ

φ φ

φ φ

⎧ ⎫ ⎧ ⎫⎡ ⎤ ⎡ ⎤⎪ ⎪ ⎪ ⎪−⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

⎡ ∂ ∂ ∂ ∂
⎢ ∂ ∂ ∂ ∂⎧ ⎫ ⎧ ⎫∂ ∂ ⎢− + +⎨ ⎬ ⎨ ⎬ ⎢∂ ∂ ∂ ∂ ∂ ∂⎩ ⎭ ⎩ ⎭ ⎢

∂ ∂ ∂ ∂⎢⎣

∫ ∫

1

2
0

1 11 1 1 2 1 1 1 2
2 2
2 2 1 2 2 2 1 2 22 2

0 0

11 1 1 2 1 1 1 2
2 2

2 1 2 2 2 1 2 22
0

ˆ

ˆ

ˆ ˆ

ˆ ˆ

ˆ ˆ

ˆ

l

l l

g

l

g

dx

W L W L W L W L
CC dx dx

W L W L W L W L

W L W L W L W L
dx CC

W L W L W L W L

φ
φ

φ φ
κ σ

φ φ

φ φ
ω κ

φ

⎤
⎥

dx

⎧ ⎫⎪ ⎪⎥ ⎨ ⎬⎥ ⎪ ⎪⎩ ⎭⎥
⎥⎦

⎧ ⎫ ⎧ ⎫⎡ ⎤ ⎡ ⎤⎪ ⎪ ⎪ ⎪+ +⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

⎧ ⎫⎡ ⎤ ⎡ ⎤⎪ ⎪− −⎨ ⎬⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎪ ⎪⎩ ⎭

∫

∫ ∫

∫
1

2
0

1 2
1 1

1 11 1 1 2
1 12

2 1 2 2 1 22 2
1 2 20 0

1 1

ˆ

ˆ ˆ
0

ˆ ˆ

l

l l

dx

L LW W
x xW L W L

Q dx g
xW L W L L LW W

x x

φ

φ φησ
φ φ

⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

⎡ ⎤∂ ∂
⎢ ⎥⎧ ⎫ ⎧ ⎫∂ ∂⎡ ⎤ ∂⎪ ⎪ ⎪ ⎪⎢ ⎥′− +⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥∂ ∂ ∂⎣ ⎦ ⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭⎢ ⎥

∂ ∂⎢ ⎥⎣ ⎦

∫

∫ ∫ dx =

 (3.634) 
 
The finite element model created for this project will be using the Galerkin method in 

which the weighting function is equal to the shape functions being used. Hence, at this 

stage IW  will be replaced with IL . The Galerkin method and shape functions for both the 

one-dimensional and two-dimensional models are discussed in Appendix A. 

 
1 11 1 1 2 1 1 1 2

2 2
2 2 2 22 1 2 2 2 1 2 22 2

0 0

1 1 1 2

1 1 1 1
1 1 1 1 2

22 1 2 2 2
0

1 1 1 1

ˆ ˆ
2

ˆ ˆ

ˆ

ˆ

l l

l

g g

L L L L L L L L
U dx U dx

L L L L L L L L

L L L L
x x x x L L L L

CC dx CC
L L L L
x x x x

φ φ
ωκ κ

φ φ

φ
κ

φ

⎧ ⎫ ⎧ ⎫⎡ ⎤ ⎡ ⎤⎪ ⎪ ⎪ ⎪−⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

⎡ ⎤∂ ∂ ∂ ∂
⎢ ⎥ ⎧ ⎫∂ ∂ ∂ ∂ ⎪ ⎪⎢ ⎥+ +⎨ ⎬⎢ ⎥∂ ∂ ∂ ∂ ⎪ ⎪⎩ ⎭⎢ ⎥

∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦

∫ ∫

∫
12

2 1 2 2 2
0

1 11 1 1 2 1 1 1 2
2 2

2 1 2 2 2 1 2 22 2
0 0

11 1 1 2 1 1 1 2
2 2

2 1 2 2 2 1 2 22
0

ˆ

ˆ

ˆ ˆ

ˆ ˆ

ˆ

ˆ

l

l l

l

g

dx
L L L L

L L L L L L L L
dx dx

L L L L L L L L

L L L L L L L L
CC dx Q

L L L L L L L L

φ
φ

φ φ
σ ω

φ φ

φ
κ σ

φ

⎧ ⎫⎡ ⎤ ⎪ ⎪
⎨ ⎬⎢ ⎥

⎣ ⎦ ⎪ ⎪⎩ ⎭

⎧ ⎫ ⎧ ⎫⎡ ⎤ ⎡ ⎤⎪ ⎪ ⎪ ⎪+ −⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

⎧ ⎫⎡ ⎤ ⎡⎪ ⎪ ′− −⎨ ⎬⎢ ⎥
⎣ ⎦ ⎣⎪ ⎪⎩ ⎭

∫

∫ ∫

∫
1

2
0

1 2
1 1

1 1 1
1 1

2 21 2 2
1 12 20 0

1 1

ˆ

ˆ

ˆ ˆ ˆ
0

ˆ

l

l

g g

l

dx

L LL L
x x L L

g dx CC CC
x x L LL LL L

x x

φ
φ

φη φ
φ

⎧ ⎫⎤ ⎪ ⎪
⎨ ⎬⎢ ⎥
⎦ ⎪ ⎪⎩ ⎭

⎡ ⎤∂ ∂
⎢ ⎥ ⎧ ⎫∂ ∂ ⎧ ⎫ ⎧ ⎫∂ ∂⎪ ⎪⎢ ⎥+ − +⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥∂ ∂∂ ∂ ⎩ ⎭ ⎩ ⎭⎪ ⎪⎩ ⎭⎢ ⎥

∂ ∂⎢ ⎥⎣ ⎦

∫

∫
1x

φ∂ =
∂

 (3.635) 
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3.8.3 Parabolic mild slope boundary condition 

With the exception of the last two terms Equation (3.635) may now be used with the finite 

element computer solution scheme of Zienkiewicz (1977) to solve for the unknown 

values of ˆJφ (that is the value of φ̂  at node J) bearing in mind that φ̂  is complex and will 

have two components at each node. Examination of the last two terms shows that within 

the domain they cancel each other out at each node. Hence they need only be examined at 

the boundary node at either end of the model. 

 
3.8.3.1 Parabolisation of Elliptic Mild-Slope Equation 

At the boundary nodes the last two terms must now be converted into a form that the 

solution scheme can control. At this point the parabolic approximation to the mild-slope 

equation will be used. Equation (3.533) can be expressed as follows: 

 
2 2

2
2 2 0g g g g gCC CC CC CC CC

n s n n s s
φ φ φ φ φκ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ + + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

=  (3.636) 

 
The parabolic approximation to the mild-slope equation assumes there is no diffraction in 

the direction of wave propagation. In order to remove the forward diffraction terms it is 

necessary to rewrite Equation (3.636) in terms of (3.135); iSA e φ
φφ = . 

Figure 3.9 – Definition Sketch of Domain showing Boundary treatment  
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It is necessary to examine the derivatives of this equation assuming in this case that n is 

the direction perpendicular to the boundary through which the wave is exiting and  s is 

parallel to that boundary: 

iS iSSA
e iA e

n n n
φφ φφ

φ
φ ∂∂∂ = +

∂ ∂ ∂
 (3.637) 

 
Equation (3.637) can be rewritten as: 

iS SA
e i

n n n
φφφ φ φ

∂∂ ∂= −
∂ ∂ ∂

 (3.638) 

 
Substitution of Equation (3.135) into Equation (3.637) yields: 

SA
i

n n A n
φφ

φ

φ φ φ
∂∂∂ = +

∂ ∂ ∂
 (3.639) 

 
The second derivative of velocity potential with respect to n is: 

222

2 2 22iS iS iS iSS S SA A
e i e iA e A e

n n n n n n n
φ φ φ

S
φφ φ φ φφ φ

φ φ
φ ∂ ∂ ∂ ∂∂ ∂∂ = + + −

∂ ∂ ∂ ∂ ∂ ∂ ∂
 (3.640) 

 
Substitution of Equations (3.638) and (3.135) into Equation (3.640) gives: 

222

2 2 22
S S S S SA

i i i
n n A n n n n n n

φ φ φ φ φφ

φ

φ φ φ φ φ φ
∂ ∂ ∂ ∂ ∂⎛ ⎞∂∂ ∂= + − + −⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

 (3.641) 

2 222

2 2 2
S SA

i
n n A n n n n2

S
iφ φ φφ

φ

φ φ φ φ φ
∂ ∂ ∂⎛ ⎞∂∂ ∂= + + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

 (3.642) 

 
It is now possible to remove the effects of forward diffraction from the equations. The 

removal of the derivatives of the amplitude of velocity potential from Equations (3.642) 

and (3.639) yields: 
2 22

2 2
S S

i
n n n n 2

S
i

n
φ φ φφ φ φ φ

∂ ∂ ∂⎛ ⎞∂ ∂= + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
 (3.643) 

S
i

n n
φφ φ

∂∂ =
∂ ∂

 (3.644) 

 

Substitution of Equations (3.643) and (3.644) into the elliptic solution of Equation (3.636) 

gives the following: 
2 2 2

2
2 22 0g g g g g

S S S S
i i CC CC i CC CC

n n n n s n n s s
φ φ φ φφ φ φφ φ φ φκ

⎡ ⎤∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞⎢ ⎥+ + + + + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦
CC =

 (3.645) 
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The one remaining term containing the derivative of velocity potential with respect to n 

may now be isolated on one side of the equation: 

( )

( )

2 2

2

2
2

2

2 g
g g

g
g g

S S S SCC
i CC i CC i C

n n n n n n

CC
CC CC

s s s

φ φ φφ φ φ φ

φ φ φκ

∂ ∂ ∂ ∂∂⎛ ⎞ ⎛ ⎞∂ = − − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

∂∂ ∂− − −
∂ ∂ ∂

gCφ

 (3.646) 

 
( ) ( )2 2 2

2
2 2

1 12 g g

g g

S S S SCC CC
i i i

n n CC n n n n s CC s s
φ φ φ φφ φ φφ φ φ φκ

∂ ∂ ∂ ∂∂ ∂⎛ ⎞ ⎛ ⎞∂ ∂= − − − − − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

∂

 (3.647) 
 

It can be assumed that at the downwave boundary where the wave is exiting the domain 

the shoaling and refraction process has caused the wave to be parallel to the beach 

boundary. This means the following assumption can be made: 

S

n
φ κ

∂
=

∂
 (3.648) 

 
 
Using Equation (3.648) with Equation (3.647) gives: 

( ) ( )2
2

2

12 g

g g

CC CCii i
n CC n n s CC s s
φ κφ κ φ φκ 2gφκ φ φκ

∂ ∂∂ ∂ ∂ ∂= − − − − − −
∂ ∂ ∂ ∂ ∂ ∂

 (3.649) 

( ) ( )2

22 2 2 2 2
g g

g g

CC CCi i i
n CC n n s CC s s 2

iφ φ φκ φ κ φ φ φκ
κ κ κ

∂ ∂∂ ∂ ∂ ∂= − + − + + +
∂ ∂ ∂ ∂ ∂ ∂

 (3.650) 

( ) ( )2

2

1 1
2 2 2 2

g g

g g

CC CCi ii
n n CC n s CC s s
φ κ φ φφ φ κφ

κ κ κ
∂ ∂∂ ∂ ∂ ∂= − − + + +

∂ ∂ ∂ ∂ ∂ ∂
 (3.651) 

2

2

1 1
2 2 2

g
g

g g

CC CCii CC
n n CC n CC s s

g

s
φ κ φ φφ φ κφ

κ κ
∂ ∂⎡ ⎤∂ ∂ ∂= − − + + + ∂

⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦
 (3.652) 

1 1
2 2 2

g
g

g g

CC ii C
n n CC n CC s

C
s

φ κ φφ φ κφ
κ κ

∂∂ ∂ ⎡ ∂ ∂ ⎤⎛= − − + + ⎜
⎞
⎟⎢ ⎥∂ ∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦

 (3.653) 

Equation (3.653) is the Parabolic Approximation to the Elliptic Equation in the absence of 

currents. 
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3.8.3.2 Comparison of Parabolic Approximation with that of Booij (1981) 

Equation 6.17 of Booij (1981) in the absence of a current is: 

gM CC
s s

φφ ∂ ∂⎛= ⎜∂ ∂⎝ ⎠
⎞
⎟  (3.654) 

Then using the following identities: 

1 0P =  (3.655) 

2 0.5P =  (3.656) 
A simplified expression is obtained for Equation 6.19 of Booij (1981). The wave will be 

propagating normal to the boundary due to shoaling. 

( ) ( ) ( )
1
21 1

2 2 0
2
g

g g g

CC
CC i CC i CC

n s
κ φκ φ κ κ φ

−
⎡ ⎤∂ ⎡ ∂ ∂ ⎤⎛ ⎞− − ⎜ ⎟⎢ ⎥ ⎢∂ ∂ ⎝ ⎠⎣ ⎦⎣ ⎦ s

=⎥∂
 (3.657) 

Equation (3.657) may now be manipulated as follows to isolate the gradient of velocity 

potential with respect to n: 

( ) ( ) ( ) ( )
1 1
2 21 1

2 2 0
2

g g
g g g

CC CC
CC i CC i CC

n n s
κ κφ φφ κ κ κ φ

−
∂ ∂ ⎡ ∂ ∂ ⎤⎛ ⎞+ − − ⎜ ⎟⎢∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦s

=⎥  (3.658) 

( ) ( ) ( ) ( )
1 1
2 21 1

2 2

2
g g

g g

CC CC
CC i CC i CC

n n s
κ κ

g s
φ φκ φ κ κ φ

−
∂∂ ⎡ ∂ ∂ ⎤⎛= − + + ⎜

⎞
⎟⎢ ⎥∂ ∂ ∂ ⎝ ⎠∂⎣ ⎦

 (3.659) 

( ) ( )
1
21

2

2
g

g

CC iCC i CC
n n a s

κ
g s

φ φφ κ κφ
κ

− ∂∂ ⎡ ∂ ∂ ⎤⎛= − + + ⎜
⎞
⎟⎢ ⎥∂ ∂ ∂ ⎝ ⎠∂⎣ ⎦

 (3.660) 

( ) ( )
1
21

2

2 2
g

g g

CC a iCC CC i CC
n n n a

κ
gs s

φ κ φφ κ κ κφ
κ

−
−
⎡ ⎤

∂ ∂ ∂ ⎡ ∂ ∂ ⎤⎢ ⎥⎛ ⎞ ⎛= − + + +⎜ ⎟ ⎜
⎞
⎟⎢ ⎥⎢ ⎥∂ ∂ ∂⎝ ⎠ ⎝∂ ∂ ⎠⎣ ⎦⎢ ⎥⎣ ⎦

 (3.661) 

1
2 2g

g g

a iCC i CC
n CC n n CC s sg
φ κ φκ φ κφ

κ κ
∂ − ∂ ∂ ⎡ ∂ ∂ ⎤⎛ ⎞ ⎛= + + +⎜ ⎟ ⎜

⎞
⎟⎢ ⎥∂ ∂ ∂ ∂⎝ ⎠ ⎝ ∂ ⎠⎣ ⎦

 (3.662) 

1 1
2 2 2

g
g

g g

CC ii C
n n CC n CC s

C
s

φ κ φφ φ κφ
κ κ

∂∂ ∂ ⎡ ∂ ∂ ⎤⎛= − − + + ⎜
⎞
⎟⎢ ⎥∂ ∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦

 (3.663) 

Equation (3.663) is identical to (3.653). This shows agreement between the parabolic 

approximations of this project and of Booij (1981) in the absence of a current. Clyne 

(2008) shows that both the Clyne (2008) and Radder (1979) parabolic approximations 

also match that of Booij (1981) in the absence of a current. Thus all four of the above 

mentioned parabolic approximations concur. 
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3.8.3.3 Parabolic Boundary Condition for 1d-NM-WCIM 

In Equation (3.653) n is the direction of wave propagation and s is the normal to the 

direction of wave propagation. An examination of the beach boundary shows that at this 

boundary: 

1n x= −  (3.664) 

1

d
dn dx

= − d  (3.665) 

 
2s x= −  (3.666) 

2

d d
ds dx

= −  (3.667) 

 
Therefore Equation (3.653) becomes: 

( ) ( ) ( )
1
21 1

2 2

1 2 2

0
2
g

g g g

CC
CC i CC i CC

x x
κ φκ φ κ κ φ

−
⎡ ⎤⎛ ⎞⎡ ⎤∂− − − ⎢ ⎜ ⎟⎢ ⎥∂ ∂⎣ ⎦ ⎝ ⎠⎣ ⎦x

∂ ∂ =⎥∂
 (3.668) 

 

As before 
2

0gCC
x

∂
=

∂
 for the one dimensional model. This leads to the following: 

( ) ( ) ( )
1
21 1 2

2 2
2

1 2

0
2
g

g g g

CC
CC i CC i CC

x x
κ φκ φ κ κ φ

−
⎡ ⎤⎡ ⎤∂− − − ⎢ ⎥⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦

∂ =  (3.669) 

 

Using Equation (3.617) with Equation (3.669) gives: 

( ) ( ) ( )
2 2 2 2 2 2

1
21 1

22 2
2

1

ˆ ˆ ˆ 0
2
gi x i x i x

g g g

CC
CC e i CC e i CC e

x
κ κ κ

κ φ κ κ φ κ φ
−

⎡ ⎤∂ ⎡− − − −⎢ ⎥ ⎣∂ ⎣ ⎦
κ ⎤ =⎦  (3.670) 

 

Dividing across by  yields: 2 2i xe κ

( ) ( ) ( )
1
21 1

22 2
2

1

ˆ ˆ 0
2
g

g g g

CC
CC i CC i CC

x
κ

κ φ κ κ φ κ φ
−

⎡ ⎤∂ ⎡ ⎤− − − −⎢ ⎥ ⎣ ⎦∂ ⎣ ⎦
ˆ =  (3.671) 

 

Expanding the first term in Equation (3.671) gives: 

( ) ( ) ( ) ( )
1 1
2 21 1

22 2
2

1 1

ˆˆ ˆ 0
2

g g
g g g

CC CC
CC i CC i CC

x x
κ κφφ κ κ κ φ κ φ

−
∂ ∂ ⎡ ⎤− − − − −⎣ ⎦∂ ∂

ˆ =  (3.672) 
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Isolating the 
1

ˆ

x
φ∂

∂
 term on one side of the equation gives: 

( ) ( ) ( ) ( )
1 1

22 21 1
22 2

1 1

ˆ ˆ ˆ
2

g g
g g

CC CC CC
CC i CC i

x x
κ κφ κ ˆgκφ κ κ φ φ

−
∂∂ = − − +

∂ ∂
 (3.673) 

 

Dividing Equation (3.673) by ( )
1
2

gCC κ
−  gives: 

( ) ( )
1

221
22

1 1

ˆ ˆ ˆ
2

g g
g

g

CC CC
CC i i

x x
κ κφ κ ˆ

CC
φ κφ φ

κ
− ∂∂ = − − +

∂ ∂
 (3.674) 

 
 
The last term may be reduced to give: 

( ) ( )
1
21 2

22

1 1

ˆ ˆ ˆ
2

g
g

CC iCC i
x x

κ κφ κ ˆφ κφ φ
κ

− ∂∂ = − − +
∂ ∂

 (3.675) 

 
 
Expanding the derivative in the first term on the right hand side of Equation (3.675) 
gives: 

( ) ( )
1
21 2

22

1 1 1

ˆ ˆ ˆ
2
g g

g g

CC CC iCC CC i
x x x

κ κφ κκ κ ˆ
2

φ κφ φ
κ

−
−
⎡ ⎤

∂⎛ ⎞∂ ∂⎢ ⎥= − + − +⎜ ⎟⎢ ⎥∂ ∂ ∂⎝ ⎠⎢ ⎥⎣ ⎦

 (3.676) 

 
 
Equation (3.676) can be reduced to give: 

2
2

1 1 1

ˆ 1 ˆ ˆ
2 2

g
g

g

CC iCC i
x CC x x

κφ κ κ ˆφ κφ φ
κ κ

∂⎛ ⎞∂ ∂= − + − +⎜ ⎟∂ ∂ ∂⎝ ⎠
 (3.677) 

 
 
Further simplifying Equation (3.677) yields: 

2
2

1 1 1

ˆ 1 1ˆ ˆ ˆ
2 2 2g

ia i
x x CC x

κφ κ ˆφ φ κφ φ
κ κ

∂ ∂ ∂= − − − +
∂ ∂ ∂

 (3.678) 

 
 
Hence: 

2
2

1 1 1

ˆ 1ˆ ˆ ˆ
2 2 2

g g
g

CC CC iCC
CC iCC

x x x
κφ κ ˆg

gφ φ κφ φ
κ

∂∂ ∂= − − − +
∂ ∂ ∂ κ

 (3.679) 

 
Isolating the velocity potential gives the following equation: 

2
2

1 1 1

ˆ 1 ˆ
2 2 2

g g g
g

CC CC iCC
CC iCC

x x x
κφ κ κg φ

κ κ
⎛ ⎞∂∂ ∂= − − − +⎜⎜∂ ∂ ∂⎝ ⎠

⎟⎟  (3.680) 
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3.8.3.4 Generalised Parabolic Boundary Condition with Gradient of Phase 

The methodology undertaken in Section 3.8.3.3 can also be carried out on the more 

general form of the parabolic equation given in Equation (3.647). Isolating the gradient of 

velocity potential with respect to n in Equation (3.647) yields: 

( ) ( )
2

2 2 2

2

1
2 2

2 2 2 2

g g

g
g

S S
in CC CCn i i i

S S Sn CC n s s
CC

n n n

φ φ

φ φ φ φ

φ κ φφ φ φ φ

⎡ ⎤∂ ∂⎡ ⎤
⎢ ⎥ ⎢ ⎥∂ ∂ ∂∂⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦= − − + − − +

∂ ∂ ∂∂ ∂ ∂⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥∂ ∂ ∂⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

S s
n

φ∂
∂ ∂ ∂
∂

 

 (3.681) 

Combining the final two terms of Equation (3.681) gives: 

( ) ( )
2

2 2 2

2

1
2 2

2 2 2

g g
g

g

S S
in CC CCn i i CC

S S Sn CC n s s
n n n

φ φ

φ φ φ

φ κφ φ φ φ

⎡ ⎤∂ ∂⎡ ⎤
⎢ ⎥ ⎢ ⎥

s
φ φ⎡ ⎤∂ ∂ ∂∂⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦= − − − − + + ∂

⎢ ⎥
∂ ∂ ∂∂ ∂ ∂⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ∂ ∂⎢ ⎥⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥∂ ∂ ∂⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 (3.682) 

Equation (3.682) can be expressed as: 

( )
2

2 21
2 2

2 2 2

g
g

g

S S
in CC n i i CC

S Sn CC n s
n n

φ φ

φ φ φ
S s
n

φ κ φφ φ φ φ

⎡ ⎤∂ ∂⎡ ⎤
⎢ ⎥ ⎢ ⎥∂ ∂ ∂⎢ ⎥∂ ⎡ ∂ ∂ ⎤⎛⎣ ⎦ ⎣ ⎦= − − − − + ⎜

⎞
⎟⎢ ⎥∂ ∂ ∂∂ ∂ ∂⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎝ ⎠∂⎣ ⎦

⎢ ⎥ ⎢ ⎥ ⎢ ⎥∂ ∂ ∂⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (3.683) 

 

Substituting Equations (3.665) and (3.667) into Equation (3.683) gives: 

( )
2

2
1 1 1

1 1 2

1 1

1
2 2

2 2 2

g
g

g

S S
ix x CC x i i CC

S S Sx CC x x
x x x

φ φ

φ φ φ 2

1

x
φ κ φφ φ φ φ

⎡ ⎤∂ ∂⎡ ⎤
⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂ ⎡ ⎤⎛ ⎞⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦− = + + + − ∂

⎢ ⎥⎜ ⎟∂ ∂ ∂∂ ∂ ∂⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎝ ⎠∂⎣ ⎦
⎢ ⎥ ⎢ ⎥ ⎢ ⎥∂ ∂ ∂⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (3.684) 

 

As before 
2

0gCC
x

∂
=

∂
 for the one dimensional model. This leads to the following: 

( )
2

2 2
1 1 1

1 1 2 2

1 1

1
2 2

2 2 2

g
g

g

S S
ix x CC x i i CC

S S

1

Sx CC x x x
x x

φ φ

φ φ φ

x

φ κ φφ φ φ φ

⎡ ⎤∂ ∂⎡ ⎤
⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂ ⎡ ⎤⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦− = + + + − ⎢ ⎥∂ ∂∂ ∂⎡ ⎤ ⎡ ⎤ ⎡ ⎤∂ ∂ ∂⎣ ⎦
⎢ ⎥ ⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦ ⎣ ⎦∂

 (3.685) 
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Using Equation (3.617) with Equation (3.685) gives: 

( ) ( )2 2

2 2 2 2 2 2

2 2 2 2

2

1 1 1

1 1

1

2
2
2

1 1

ˆ 1ˆ ˆ
2 2

2

ˆ ˆ

2 2

i x
gi x i x i x

g

i x i x
g

S S
ie x x CC x

e e
Sx CC x
x

i ie CC e
S S
x x

φ φ

φ

φ φ

κ
κ κ

κ κ

φ
φ φ

κ φ κ φ

⎡ ⎤∂ ∂⎡ ⎤
⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦ ⎣ ⎦− = + +

∂∂ ∂⎡ ⎤
⎢ ⎥∂⎣ ⎦

⎡ ⎤+ − −⎣ ⎦∂ ∂⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦

ˆe κφ

 (3.686) 

 
Dividing across by  yields: 2 2i xe κ−

( )
2

22
1 1 1 2

1 1

1 1

ˆˆ 1ˆ ˆ ˆ ˆ
2 2

2 2

g g

g

S S
ix x CC x CCi

S Sx CC x

1

2
S

x x x

φ φ

φ φ φ

κ φφ φ φ φ φ

⎡ ⎤∂ ∂⎡ ⎤
⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂⎢ ⎥∂ ⎣ ⎦ ⎣ ⎦= − − − − +

∂ ∂∂ ∂⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦ ⎣ ⎦

κ
∂
∂

 (3.687) 

 
 
Therefore: 

( ) ( )
2

2 22
21 1 1

1 1

1 1

ˆ 1 ˆ
2 2

2 2

g g
g g

g

S S
CC iCCCC CCiCCx x xCC S Sx x

x x

φ φ

φ φ φ

κκφ

1

2

g

S
x

φ

⎛ ⎞∂ ∂
⎜ ⎟∂∂ ∂ ∂∂ ⎜ ⎟= − − − − +⎜ ⎟∂ ∂∂ ∂
⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

∂
∂

 (3.688) 
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3.8.4 Complete One-Dimensional Finite Element Wave Driven Hydrodynamic 

Model 

 

Now at the beach boundary Equation (3.635) can be expressed as follows using the result 

of Equation (3.680): 
1 11 1 1 2 1 1 1 2
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∫
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0=
 (3.689) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



WAVE-CURRENT INTERACTION MODEL  C. Newell 
 

 
 178 

This leads to: 
1 11 1 1 2 1 1 1 2
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Evaluating the terms not inside integrals gives: 
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Equation (3.691) is the complete elliptic equation to be solved using the finite element 

solution scheme for the boundary element. In a more general form for every element the 

equation is: 
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Equation (3.692) may also be expressed as: 
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3.8.5 Complete One-Dimensional Finite Element Wave Driven Hydrodynamic 

Model with Gradients of Wave Phase on Boundary 

 

At the beach boundary Equation (3.635) can be expressed as follows using the result of 

Equation (3.688): 
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This leads to: 
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Evaluating the terms not inside integrals gives: 
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 (3.696) 

 

Equation (3.696) is the complete elliptic equation to be solved using the finite element 

solution scheme for the boundary element with a more general boundary condition than 

that of (3.691). In a more general form for every element the equation is the same as that 

of Equation (3.693). 
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3.9 Two-Dimensional Cartesian Finite Element Mild-Slope Wave-Current 

Interaction Model 

The finite element formulation of a full two-dimensional finite element wave current 

interaction model is examined (2d-NM-WCIM). This two-dimensional model uses 

triangular finite elements to examine wave behaviour over a two dimensional spatial 

domain. 

 
 
Figure 3.10 – Sketch of Scenario where 1d Wave Model would be Insufficient and a 2d Wave Model 
would be required 
 
 
The simplest form of the 2d-NM-WCIM is a wave model with an absorbing downstream 

boundary condition and specified values of wave potential on the boundary with no 

energy dissipation. Initially this will be examined. The application of more complex 

boundary conditions is discussed in the following sections.  
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A similar process to that used in Section 3.8 may be carried out for the two-dimensional 

finite element wave equation.  Firstly the following abbreviations may be defined: 

2 2 2

1 2 3 42

5 6 72

8 9 6 6

1
cosh

k k k k k k k

k k k k k k

k k k k k k

h hQ Q Q Q
x x x x x x x

hQ Q Q Q
h x x x x x x

h hQ Q W W
x x x x x x

κ η

κ κ η η κ
κ

η η κ η

⎛ ⎞⎛ ⎞′ ′∂ ∂ ∂ ∂ ∂+ + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎜ ⎟
⎜ ⎟⎛ ⎞ ⎛ ⎞ ′∂ ∂ ∂ ∂ ∂ ∂⎜ ⎟′′ = + + +⎜ ⎟ ⎜ ⎟⎜ ⎟′ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
⎜ ⎟

′ ′∂ ∂ ∂ ∂ ∂ ∂⎜ ⎟+ + + −⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

h′

 (3.697) 

 
 

( ) ( )
2

2 2
U kj

k j k j k j k j

h hQ h h
x x x x x x x x

λ λ η κ κ η η ηκ κ λ
κ κ

⎡ ⎤ ⎡ ⎤′ ′ ′ ′⎛ ⎞ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂′′ ′ ′= − + − + − − +⎢ ⎥ ⎢ ⎥⎜ ⎟ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎣ ⎦ ⎣ ⎦
 (3.698) 
 
 

Equation (3.531) may be expressed using Equations (3.697) and (3.698) and assuming 

that when the current varies in a direction it varies slowly in that direction (i.e.  

0j

j

U
x

∂
=

∂
): 

2

2 2 2

2

2
2

2

2

k
j j k j g

j j k j k k k

g

k
j j

k k j j k

j k j k j k j k
j k k j j k k j

Ui U U U U CC
x x x x x x x

CC

Ug Q i U U
x x x x x

U U U U U U U U U
x x x x x x x x

φ φ φ φω

φκ φσ ω φ

φ η η ηφσ ωφλ φλ

η φ η φ η η ηλ λ φλ φκ

⎛ ⎞∂∂ ∂ ∂ ∂ ∂− + + − ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
− + −

⎛ ⎞ ∂∂ ∂ ∂ ∂′′ ′ ′+ − + −⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
∂ ∂ ∂ ∂ ∂ ∂ ∂′ ′ ′− − − + +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

( ) 0j k U kj
U Q φ′′ =

 (3.699) 
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Equation (3.699) can now be multiplied by a weighting function and the product 

integrated over the finite element area: 
2

2 2 2

2

2

2

I I I Ik
j j k j g

j k k j k kA A A A

I I I I
g

k kA A A A

I I I k
j j

j jA A

UW i U dA W U U dA W U dA W CC dA
x x x x x x

W dA W dA W CC dA W g dA
x x

UW Q dA W i U dA W U
x x x

φ φ φω

φ ηφσ ω φ φκ

η ηφσ ωφλ φλ

⎛ ⎞∂∂ ∂ ∂ ∂− + + − ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

⎛ ⎞∂ ∂+ − − + ⎜ ⎟∂ ∂⎝ ⎠
∂∂ ∂′′ ′ ′− + −

∂ ∂ ∂

∫∫ ∫∫ ∫∫ ∫∫

∫∫ ∫∫ ∫∫ ∫∫

∫∫ ∫∫

kx
φ∂

( )
2

2

2

0

I
j k

k jA A

I I I
j k j k j k U kj

k j k jA A A

dA W U U dA
x x

W U U dA W U U dA W U U Q dA
x x x x

η φλ

η η ηφλ φκ φ

∂ ∂′−
∂ ∂

⎛ ⎞∂ ∂ ∂′ ′− + + =⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

∫∫ ∫∫

∫∫ ∫∫ ∫∫

k

′

 (3.700) 
 

Examining the second term in Equation (3.700) using Green’s Theorem: 
2 I

I I
j k j k j k

j k j k j kA A A

jI I k
k j

j k j kA A

WW U U dA W U U dA U U dA
x x x x x x

U UW U dA W U dA
x x x x

φ φ

φ φ

⎛ ⎞∂ ∂ ∂ ∂ ∂= −⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
∂ ∂∂ ∂− −
∂ ∂ ∂ ∂

∫∫ ∫∫ ∫∫

∫∫ ∫∫

φ

 (3.701) 

 
2 I

I I
j k j j k j k

j k k j kA S A

jI I k
k j

j k j kA A

WW U U dA n W U U dS U U dA
x x x x x

U UW U dA W U d
x x x x

φ φ

φ φ

∂ ∂ ∂= −
∂ ∂ ∂ ∂ ∂

∂ ∂∂ ∂− −
∂ ∂ ∂ ∂

∫∫ ∫ ∫∫

∫∫ ∫∫ A

φ∂

 (3.702) 

 
 
If there is no current at the boundary then Equation (3.702) becomes: 

 
2 I

I
j k j k

i k i kA A

jI I k
k j

j k j kA A

WW U U dA U U dA
x x x x

U UW U dA W U dA
x x x x

φ φ

φ φ

∂ ∂ ∂= −
∂ ∂ ∂ ∂

∂ ∂∂ ∂− −
∂ ∂ ∂ ∂

∫∫ ∫∫

∫∫ ∫∫
 (3.703) 

 
 
Examining the fourth term of Equation (3.700) in more detail using Green’s Theorem 

gives: 

 
I

I I
g g g

k k k k k kA A A

WW CC dA W CC dA CC dA
x x x x x x

φ φ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂− = − +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
∫∫ ∫∫ ∫∫

φ
 (3.704) 
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I
I I

g k g g
k k k k kA S A

WW CC dA n W CC dS CC
x x x x x

φ φ⎛ ⎞∂ ∂ ∂ ∂ ∂− = − +⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
∫∫ ∫ ∫∫ dAφ

 (3.705) 

 
I

I I
g g g

k k k kA S A

WW CC dA W CC dS CC dA
x x n x x

φ φ⎛ ⎞∂ ∂ ∂ ∂ ∂− = − +⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
∫∫ ∫ ∫∫

φ  (3.706) 

 
 
Substituting Equations (3.703) and (3.706) into Equation (3.700) gives: 

2 2 2

2
I

jI I
j j k k

j j k j kA A A

I
I I Ik k

j j g g
j k j k k kA A S A

I I I
g

A A A

I I

k kA

UWW i U dA U U dA W U dA
x x x x x

U U WW U dA W U dA W CC dS CC dA
x x x x n x x

W dA W dA W CC dA

W g dA W
x x

φ φ φω

φ φ φ

φσ ω φ φκ

φ η

∂∂ ∂ ∂ ∂− − −
∂ ∂ ∂ ∂ ∂

∂ ∂∂ ∂ ∂ ∂− + − +
∂ ∂ ∂ ∂ ∂ ∂ ∂

+ − −

⎛ ⎞∂ ∂+ −⎜ ⎟∂ ∂⎝ ⎠

∫∫ ∫∫ ∫∫

∫∫ ∫∫ ∫ ∫∫

∫∫ ∫∫ ∫∫

∫∫

φ∂

( )

2

2

2

2

2

0

I
j

jA A

I I Ik
j j k j k

j k j k k jA A A

I I
j k j k U kj

k jA A

Q dA W i U dA
x

UW U dA W U U dA W U U dA
x x x x x x

W U U dA W U U Q dA
x x

ηφσ ωφλ

η η φφλ λ φλ

η ηφκ φ

∂′′ ′+
∂

∂ ∂ ∂ ∂ ∂′ ′ ′− − −
∂ ∂ ∂ ∂ ∂ ∂

⎛ ⎞∂ ∂ ′′+ + =⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

∫∫ ∫∫

∫∫ ∫∫ ∫∫

∫∫ ∫∫

η

 (3.707) 

Expressing φ  in terms of shape functions JN  gives: 
J JNφ φ=  (3.708) 

 
( ) ( ) ( )

( ) ( )

( ) 2 2 2

2
J J J J J JI

jI I
j j k k

j j k j kA A A

J J J J
I I Ik k

j j g
j k j kA A S

J JI
I J J I J J I J J

g g
k kA A A A

N N NUWW i U dA U U dA W U dA
x x x x x

N NU UW U dA W U dA W CC dS
x x x x n

NWCC dA W N dA W N dA W CC N dA
x x

φ φ φ
ω

φ φ φ

φ
σ φ ω φ κ φ

∂ ∂ ∂∂∂− − −
∂ ∂ ∂ ∂ ∂

∂ ∂∂ ∂ ∂− + −
∂ ∂ ∂ ∂ ∂

∂∂+ + − −
∂ ∂

+

∫∫ ∫∫ ∫∫

∫∫ ∫∫ ∫

∫∫ ∫∫ ∫∫ ∫∫

( )

( )

( )

2

2
2

2

2

J J
I I J J I J J

j
k k jA A A

J J
I J J Ik

j j k
j k j kA A

I J J I J J I
j k j k j k U kj

k j k jA A

N
W g dA W Q N dA W i U N dA

x x x

NUW U N dA W U U dA
x x x x

W U U N dA W U U N dA W U U Q
x x x x

φη ησ φ ωλ φ

φη ηλ φ λ

η η ηλ φ κ φ φ

∂⎛ ⎞∂ ∂′′ ′− +⎜ ⎟∂ ∂ ∂⎝ ⎠

∂∂ ∂ ∂′ ′− −
∂ ∂ ∂ ∂

⎛ ⎞∂ ∂ ∂′ ′− + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

∫∫ ∫∫ ∫∫

∫∫ ∫∫

∫∫ ∫∫ 0J J

A

N dA =∫∫ ′

 
 (3.709) 
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Equation (3.709) becomes: 
 

2 2 2

2
J I J J

jI J J I J
j j k k

j j k j kA A A

J J
I J I J Ik k

j j g
j k j kA A S

I J
J I J J I J J I J J

g g
k kA A A A

UN W N Ni U W dA U U dA U W dA
x x x x x

U UN NU W dA U W dA W CC dS
x x x x n

W NCC dA W N dA W N dA CC W N dA
x x

ω φ φ φ

φφ φ

φ σ φ ω φ κ φ

∂∂ ∂ ∂ ∂− − −
∂ ∂ ∂ ∂ ∂

∂ ∂∂ ∂ ∂− + −
∂ ∂ ∂ ∂ ∂

∂ ∂+ + − −
∂ ∂

+

∫∫ ∫∫ ∫∫

∫∫ ∫∫ ∫

∫∫ ∫∫ ∫∫ ∫∫

( )

2

2
2

2

2

J
I J I J J I J J

j
k k jA A A

J
I J J I Jk

j j k
j k j kA A

I J J I J J I
j k j k j k U kj

k j k jA A

Ng W dA Q W N dA i U W N dA
x x x

U NU W N dA U U W dA
x x x x

U U W N dA U U W N dA U U Q W N
x x x x

η ηφ σ φ ωλ φ

η ηλ φ λ φ

η η ηλ φ κ φ

⎛ ⎞∂ ∂ ∂′′ ′− +⎜ ⎟∂ ∂ ∂⎝ ⎠
∂ ∂ ∂ ∂′ ′− −
∂ ∂ ∂ ∂

⎛ ⎞∂ ∂ ∂′ ′− + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

∫∫ ∫∫ ∫∫

∫∫ ∫∫

∫∫ ∫∫ 0J J

A

dAφ =∫∫ ′

 (3.710) 
 
 
In Equation (3.710) I is a free subscript that can be 1, 2 or 3. This means that Equation 

(3.710) is actually 3 equations: 
1

1 1

1 1 1

1
2 1 2 1 2 1

2
J J J

jJ J J
j j k k

j j k j kA A A

J J
J Jk k

j j g
j k j kA A S

J
J J J J J J J

g g
k kA A A A

UN W N Ni U W dA U U dA U W dA
x x x x x

U UN NU W dA U W dA W CC dS
x x x x n

W NCC dA W N dA W N dA CC W N dA
x x

ω φ φ φ

φφ φ

φ σ φ ω φ κ φ

∂∂ ∂ ∂ ∂− − −
∂ ∂ ∂ ∂ ∂

∂ ∂∂ ∂ ∂− + −
∂ ∂ ∂ ∂ ∂

∂ ∂+ + − −
∂ ∂

+

∫∫ ∫∫ ∫∫

∫∫ ∫∫ ∫

∫∫ ∫∫ ∫∫ ∫∫

( )

1 2 1 1

1 1

2
1 2 1 1

2

2

J
J J J J J

j
k k jA A A

J
J J Jk

j j k
j k j kA A

J J J J
j k j k j k U kj

k j k jA A

Ng W dA Q W N dA i U W N dA
x x x

U NU W N dA U U W dA
x x x x

U U W N dA U U W N dA U U Q W N
x x x x

η ηφ σ φ ωλ φ

η ηλ φ λ φ

η η ηλ φ κ φ

⎛ ⎞∂ ∂ ∂′′ ′− +⎜ ⎟∂ ∂ ∂⎝ ⎠
∂ ∂ ∂ ∂′ ′− −
∂ ∂ ∂ ∂

⎛ ⎞∂ ∂ ∂′ ′− + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

∫∫ ∫∫ ∫∫

∫∫ ∫∫

∫∫ ∫∫ 0J J

A

dAφ =∫∫ ′

 (3.711) 
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2
2 2

2 2 2

2
2 2 2 2 2 2

2
J J J

jJ J J
j j k k

j j k j kA A A

J J
J Jk k

j j g
j k j kA A S

J
J J J J J

g g
k kA A A A

UN W N Ni U W dA U U dA U W dA
x x x x x

U UN NU W dA U W dA W CC dS
x x x x n

W NCC dA W N dA W N dA CC W N dA
x x

ω φ φ φ

φφ φ

φ σ φ ω φ κ φ

∂∂ ∂ ∂ ∂− − −
∂ ∂ ∂ ∂ ∂

∂ ∂∂ ∂ ∂− + −
∂ ∂ ∂ ∂ ∂

∂ ∂+ + − −
∂ ∂

+

∫∫ ∫∫ ∫∫

∫∫ ∫∫ ∫

∫∫ ∫∫ ∫∫ ∫∫ J J

( )

2 2 2 2

2 2

2
2 2 2

2

2

2

J
J J J J J

j
k k jA A A

J
J J Jk

j j k
j k j kA A

J J J J
j k j k

k j k jA A

j k U kj

Ng W dA Q W N dA i U W N dA
x x x

U NU W N dA U U W dA
x x x x

U U W N dA U U W N dA
x x x x

U U Q W N

η ηφ σ φ ωλ φ

η ηλ φ λ φ

η η ηλ φ κ φ

⎛ ⎞∂ ∂ ∂′′ ′− +⎜ ⎟∂ ∂ ∂⎝ ⎠
∂ ∂ ∂ ∂′ ′− −
∂ ∂ ∂ ∂

⎛ ⎞∂ ∂ ∂′− + ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
′′+

∫∫ ∫∫ ∫∫

∫∫ ∫∫

∫∫ ∫∫

0J J

A

dAφ =∫∫

 (3.712) 

 
 
 
 

3
3 3

3 3 3

3
2 3 2 3 2 3

2
J J J

jJ J J
j j k k

j j k j kA A A

J J
J Jk k

j j g
j k j kA A S

J
J J J J J

g g
k kA A A A

UN W N Ni U W dA U U dA U W dA
x x x x x

U UN NU W dA U W dA W CC dS
x x x x n

W NCC dA W N dA W N dA CC W N dA
x x

ω φ φ φ

φφ φ

φ σ φ ω φ κ φ

∂∂ ∂ ∂ ∂− − −
∂ ∂ ∂ ∂ ∂

∂ ∂∂ ∂ ∂− + −
∂ ∂ ∂ ∂ ∂

∂ ∂+ + − −
∂ ∂

+

∫∫ ∫∫ ∫∫

∫∫ ∫∫ ∫

∫∫ ∫∫ ∫∫ ∫∫ J J

( )

3 2 3 3

3 3

2
3 2 3

3

2

2

J
J J J J J

j
k k jA A A

J
J J Jk

j j k
j k k kA A

J J J J
j k j k

k j k jA A

j k U kj

Ng W dA Q W N dA i U W N dA
x x x

U NU W N dA U U W dA
x x x x

U U W N dA U U W N dA
x x x x

U U Q W N

η ηφ σ φ ωλ φ

η ηλ φ λ φ

η η ηλ φ κ φ

⎛ ⎞∂ ∂ ∂′′ ′− +⎜ ⎟∂ ∂ ∂⎝ ⎠
∂ ∂ ∂ ∂′ ′− −
∂ ∂ ∂ ∂

⎛ ⎞∂ ∂ ∂′− + ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
′′+

∫∫ ∫∫ ∫∫

∫∫ ∫∫

∫∫ ∫∫

0J J

A

dAφ =∫∫

 (3.713) 
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Equations (3.711), (3.712) and (3.713) may be combined and written out vectorially as 

follows: 
1

1 1
2

2 2

3 3

3

1 1

2 2

3 3

2

j

J J J
jJ J J

j j k k
j j k j kA A A

j

J J
Jk k

j j
j k j kA

W
x

W W
UN W N Ni U W dA U U dA U W dA

x x x x x
W W

W
x

W W
U UN NU W dA U W
x x x x

W W

ω φ φ φ

φ

⎧ ⎫∂
⎪ ⎪∂⎪ ⎪⎧ ⎫ ⎧ ⎫⎪ ⎪ ∂∂ ∂ ∂ ∂⎪ ⎪ ⎪ ⎪⎪ ⎪− − −⎨ ⎬ ⎨ ⎬ ⎨ ⎬∂ ∂ ∂ ∂ ∂⎪ ⎪ ⎪ ⎪ ⎪ ⎪

⎩ ⎭ ⎩ ⎭⎪ ⎪∂⎪ ⎪
∂⎪ ⎪⎩ ⎭

⎧ ⎫ ⎧ ⎫
∂ ∂∂ ∂⎪ ⎪ ⎪ ⎪− +⎨ ⎬ ⎨ ⎬∂ ∂ ∂ ∂⎪ ⎪ ⎪ ⎪

⎩ ⎭ ⎩ ⎭

∫∫ ∫∫ ∫∫

∫∫

1

2

3

1

1 1 1
2

2 2 2 2 2 2

3 3 3
3

1

2

3

J
g

A S

k
J

J J J J J
g g

k kA A A A

k

k

W
dA CC W dS

n
W

W
x

W W W
W NCC dA W N dA W N dA CC W N dA
x x

W W W
W
x

W
g W

x
W

φφ

φ σ φ ω φ κ φ

η

⎧ ⎫
∂ ⎪ ⎪− ⎨ ⎬∂ ⎪ ⎪

⎩ ⎭
⎧ ⎫∂
⎪ ⎪∂⎪ ⎪ ⎧ ⎫ ⎧ ⎫ ⎧ ⎫
⎪ ⎪∂ ∂ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪+ + − −⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬∂ ∂⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪

⎩ ⎭ ⎩ ⎭ ⎩ ⎭⎪ ⎪∂⎪ ⎪
∂⎪ ⎪⎩ ⎭
⎧

⎛ ⎞∂+ ⎨⎜ ⎟∂⎝ ⎠

∫∫ ∫

∫∫ ∫∫ ∫∫ ∫∫ J J

1 1

2 2 2

3 3

1 1

2 2

3 3

1
2

2

3

2

2

J
J J J J J

j
k jA A A

J
J J Jk

j j k
j k j kA A

j k
k j

W W
N dA Q W N dA i U W N dA
x x

W W

W W
U NU W N dA U U W dA
x x x x

W W

W
U U W

x x
W

ηφ σ φ ωλ φ

η ηλ φ λ φ

ηλ

⎫ ⎧ ⎫ ⎧ ⎫
∂ ∂⎪ ⎪ ⎪ ⎪ ⎪ ⎪′′ ′− +⎬ ⎨ ⎬ ⎨ ⎬∂ ∂⎪ ⎪ ⎪ ⎪ ⎪ ⎪

⎩ ⎭ ⎩ ⎭ ⎩ ⎭
⎧ ⎫ ⎧ ⎫

∂ ∂ ∂ ∂⎪ ⎪ ⎪ ⎪′ ′− −⎨ ⎬ ⎨ ⎬∂ ∂ ∂ ∂⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎩ ⎭
⎧

∂ ⎪′− ⎨∂ ∂ ⎪
⎩

∫∫ ∫∫ ∫∫

∫∫ ∫∫

( )

1

2 2

3

1

2

3

0

J J J J
j k

k jA A

J J
j k U kj

A

W
N dA U U W N dA

x x
W

W
U U Q W N dA

W

η ηφ κ φ

φ

⎫ ⎧ ⎫
⎛ ⎞∂ ∂⎪ ⎪ ⎪+ ⎜ ⎟⎬ ⎨ ⎬⎜ ⎟∂ ∂⎪ ⎪ ⎪⎝ ⎠

⎭ ⎩ ⎭
⎧ ⎫
⎪ ⎪′′+ =⎨ ⎬
⎪ ⎪
⎩ ⎭

∫∫ ∫∫

∫∫

 (3.714) 
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The superscript J may also be 1,2 or 3 and hence defines the column number of a matrix: 
1

1 1 1
1 2 3 2 1 2 3

2 2 2

3 3 3

3

1
1 2 3

2

3

2

j

j j k
j j j j k k kA A

j

j
k

j k k

W
x

W
N N N W N N Ni U W dA U U dA
x x x x x x x

W
W
x

W
U N N NU W
x x x

W

φ φ
ω φ φ

φ φ

⎧ ⎫∂
⎪ ⎪∂⎪ ⎪⎧ ⎫ ⎧ ⎫ ⎧ ⎫⎪ ⎪⎡ ⎤ ⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂ ∂⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪− −⎢ ⎥⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥ ⎣ ⎦⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎣ ⎦

⎩ ⎭ ⎩ ⎭ ⎩ ⎭⎪ ⎪∂⎪ ⎪
∂⎪ ⎪⎩ ⎭

⎧ ⎫
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φ =

 (3.715) 
 

Equation (3.715) reduces to: 
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 (3.716) 
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The finite element model created for this project uses the Galerkin method in which the 

weighting function is equal to the shape functions being used. Hence at this stage IW  will 

be replaced with IN . The Galerkin shape functions are discussed in Appendix A. 
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φ
φ
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φ φ
ω φ κ φ

φ φ

σ

⎡ ⎤
⎢ ⎥
⎢ ⎥ ⎧ ⎫
⎢ ⎥ ⎪ ⎪
⎢ ⎥ ⎨ ⎬
⎢ ⎥ ⎪ ⎪

⎩ ⎭⎢ ⎥∂⎢ ⎥
∂⎢ ⎥⎣ ⎦

⎡ ⎤ ⎧ ⎫ ⎡ ⎤ ⎧ ⎫
⎢ ⎥ ⎪ ⎪ ⎢ ⎥ ⎪ ⎪− −⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥

⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎩ ⎭ ⎣ ⎦ ⎩ ⎭

′′−

∫∫

∫∫ ∫∫

1 1 2 1 3 1 1 1 1 2 1 3 1
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ηωλ φ

φ

⎡ ⎤ ⎧ ⎫ ⎡ ⎤ ⎧ ⎫
⎢ ⎥ ⎪ ⎪ ⎢ ⎥ ⎪ ⎪+⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥

⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎩ ⎭ ⎣ ⎦ ⎩ ⎭
⎡ ⎤ ⎧

∂ ⎢ ⎥′+ ⎢ ⎥∂ ⎢ ⎥⎣ ⎦

∫∫ ∫∫

1 1 1 2 1 3 1

2 1 2 2 2 3 2

3 1 3 2 3 3 3

1 1 1 2 1 3 1 1
2

2 1 2 2 2 3 2 2

3 1 3 2 3 3 3 3

k
j

j kA A
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x x

N N N N N N
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x x n
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φ
ηλ φ

φ

φ
η φλ φ

φ

⎫ ⎡ ⎤ ⎧ ⎫
∂ ∂⎪ ⎪ ⎢ ⎥ ⎪ ⎪′−⎨ ⎬ ⎨ ⎬⎢ ⎥∂ ∂⎪ ⎪ ⎪ ⎪⎢ ⎥⎩ ⎭ ⎣ ⎦ ⎩ ⎭

⎡ ⎤ ⎧ ⎫ ⎧ ⎫
∂ ∂⎢ ⎥ ⎪ ⎪ ⎪′− −⎨ ⎬ ⎨⎢ ⎥∂ ∂ ∂⎪ ⎪ ⎪⎢ ⎥⎣ ⎦ ⎩ ⎭ ⎩

∫∫ ∫∫

∫∫
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1 1 1 2 1 3 1 1 1 1 2 1 3 1

2 2 1 2 2 2 3 2 2 1 2 2 2 3 2

3 1 3 2 3 3 3 3 1 3 2 3 3 3

0

S

j k j k U kj
k jA A
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x x
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φ φ
η ηκ φ

φ φ

⎪
⎬
⎪
⎭

⎡ ⎤ ⎧ ⎫ ⎡ ⎤ ⎧
⎛ ⎞∂ ∂ ⎢ ⎥ ⎪ ⎪ ⎢ ⎥ ⎪′′+ +⎜ ⎟ ⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥⎜ ⎟∂ ∂ ⎪ ⎪ ⎪ ⎪⎝ ⎠ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎩ ⎭ ⎣ ⎦ ⎩

∫

∫∫ ∫∫ φ
⎫
⎪ =

⎭
 (3.717) 



WAVE-CURRENT INTERACTION MODEL  C. Newell 
 
Equation (3.717) is the finite element solution scheme for the elliptic mild-slope equation 

including the effects of current. The third last term of the equation is a boundary integral 

which will is discussed in detail in Section 3.11 of this chapter. 
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3.10 Helmholtz Equation for Finite Element Mild-Slope Wave-Current Interaction 

Model  

Clyne (2008) and many other authors use the Helmholtz form of the extended elliptic 

solution to the mild-slope equation. In the interests of brevity it was considered 

appropriate to produce a Helmholtz form of Equation (3.717) which includes currents. 

Initially the effects of energy dissipation will not be examined. 

 

The process for obtaining the Helmholtz form of the extended elliptic mild-slope wave 

equation commences with Equation (3.699): 
2

2 2 2

2

2
2

2

2

k
j j k j g

j j k j k k k

g

k
j j

k k j j k

j k j k j k j k
j k k j j k k j

Ui U U U U CC
x x x x x x x

CC

Ug Q i U U
x x x x x

U U U U U U U U U
x x x x x x x x

φ φ φ φω

φκ φσ ω φ

φ η η ηφσ ωφλ φλ

η φ η φ η η ηλ λ φλ φκ

⎛ ⎞∂∂ ∂ ∂ ∂ ∂− + + − ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
− + −

⎛ ⎞ ∂∂ ∂ ∂ ∂′′ ′ ′+ − + −⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
∂ ∂ ∂ ∂ ∂ ∂ ∂′ ′ ′− − − + +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

( ) 0j k U kj
U Q φ′′ =

 

 

At this stage it can be assumed that the accuracy of the model will not suffer if the effects 

of the gradients of η are assumed to be negligible. This leads to the following equation: 

2

2 2 2 2

2

0

k
j j k j g

j j k j k k

g

Ui U U U U CC
kx x x x x x x

CC Q

φ φ φ φω

φκ φσ ω φ φσ

⎛ ⎞∂∂ ∂ ∂ ∂− + + − ⎜∂ ∂ ∂ ∂ ∂ ∂ ∂⎝
′′− + − − =

∂
⎟
⎠  (3.718) 

Where: 
2 2

1 2 42

2

5 7

1
cosh

k k k k k

k k k k k

h hQ Q Q
x x x x x

Q
h h hQ Q W6

h

x x x x

κ

κ κ κ κ

⎛ ⎞⎛ ⎞′ ′∂ ∂ ∂ ∂+ +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎜ ⎟′′ = ⎜ ⎟′ ⎛ ⎞ ′ ′∂ ∂ ∂ ∂ ∂⎜ ⎟+ + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠x

′

 (3.719) 

 
 

 

The Helmholtz form of a the mild-slope equation involves replacing the velocity potential 

with a scaled version of itself: 

gCCφ φ′ =  (3.720) 

gCC
φ φ′

=  (3.721) 
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Combining Equation (3.721) with Equation (3.718) and multiplying by -1 gives: 

( )2
2 2

2 2

2

2

0

g
g g

k k k kg g g g

j
jg g g

k
j j k

j k j kg g

CC
CC Q CC

x x x xCC CC CC CC

i U
xCC CC CC

UU U U
x x x xCC CC

φ φ φ φσ κ

φ φ φσ ω ω

φ φ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂′ ′ ′ ′∂ ∂⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟′′+ + +
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞ ⎛ ⎞′ ′ ′∂⎜ ⎟ ⎜ ⎟ ⎜ ⎟− + +
⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞′ ′∂ ∂ ∂⎜ ⎟ ⎜ ⎟− − =
⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 (3.722) 

 
( )2 2 2

2

2 2

2 0

g
g g

k k k kg g g

k
j j j k

j j k j kg g g

CC QCC CC
x x x xCC CC CC CC

Ui U U U U
x x x x xCC CC CC CC

φ φ σ φ σ φφ κ

ω φ φ φ φω

⎛ ⎞ ⎛ ⎞ ∂′ ′ ′′ ′ ′∂ ∂⎜ ⎟ ⎜ ⎟ ′+ + + −
⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞ ⎛ ⎞′ ′ ′∂∂ ∂ ∂⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ + − −
⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

g

g

′
=

 (3.723) 

 
 

2 2 2
2

2

2 0

g g
k k g g g

k
j j j k

j j k j kg g

QCC CC
x x CC CC CC CC

Ui U U U U
x x x x xCC CC CC

φ σ φ σ φ ω φφ κ

φ φω

⎡ ⎤⎛ ⎞′ ′′ ′ ′∂ ∂⎢ ⎥⎜ ⎟ ′+ + − +
⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

⎛ ⎞ ⎛ ⎞ ⎛ ⎞′ ′∂∂ ∂ ∂⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ − −
⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

g

g

φ

′

′
=

 (3.724) 

 

The spatial derivative of Equation (3.721) is: 

g
g

k

k gg

CC
CC

x x
x CCCC

φ φ
φ

∂′∂ ′−⎛ ⎞′ ∂ ∂∂ ⎜ ⎟ =
⎜ ⎟∂ ⎝ ⎠

k  (3.725) 

 

Expressing Equation (3.724) using Equation (3.725) gives the following: 

2 2 2
2

2

2

g
g

k k
g g

k g g g g

g g
g g

j j k k k
j j j k

g j g j k g

CC
CC

x x QCC CC
x CC CC CC CC

CC CC
CC CCx x U x xi U U U U

CC x CC x x CC

φ φ
σ φ σ φ ω φφ κ

φ φφ φ
φω

⎡ ⎤⎛ ⎞∂′∂⎢ ⎥′⎜ ⎟−
′′ ′ ′ ′∂ ∂∂ ⎢ ⎥⎜ ⎟ ′+ + − +⎢ ⎥⎜ ⎟∂ ⎢ ⎥⎜ ⎟

⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
⎛ ⎞ ⎛ ⎞∂ ∂′∂ ′∂′⎜ ⎟− ′⎜ ⎟− ⎛∂ ∂ ′∂ ∂ ∂ ∂⎜ ⎟ ⎜ ⎟+ − −⎜ ⎟ ⎜ ⎟∂ ∂⎜ ⎟ ⎝⎜ ⎟

⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

0
⎞

⎜ ⎟ =
⎜ ⎟

⎠∂

 
 (3.726) 
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Equation (3.726) can be manipulated as follows: 

2 2 2
2

2

2 0

g
g g

k k k g g g

g g
g g

j j k k k
j j j k

g j g j k g

CC QCC CC
x x x CC CC CC

CC CC
CC CCx x U x xi U U U U

CC x CC x x CC

φ σ φ σ φ ω φφ φ κ

φ φφ φ
φω

⎡ ⎤∂′ ′′ ′ ′ ′∂ ∂ ′ ′⎢ ⎥− + + − +
∂ ∂ ∂⎢ ⎥⎣ ⎦

⎛ ⎞ ⎛ ⎞∂ ∂′∂ ′∂′⎜ ⎟− ′⎜ ⎟− ⎛ ⎞∂ ∂ ′∂ ∂ ∂ ∂⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂⎜ ⎟ ⎝ ⎠⎜ ⎟
⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

=
∂

 
 (3.727) 
 

2 2 2
2

2

2 0

g
g g

k k k k g g g

g g
g g

j j k k k
j j j k

g j g j k g

CC QCC CC
x x x x CC CC CC

CC CC
CC CCx x U x xi U U U U

CC x CC x x CC

φ σ φ σ φ ω φφ φ κ

φ φφ φ
φω

⎛ ⎞∂⎛ ⎞′ ′′ ′ ′ ′∂ ∂ ∂ ⎜ ⎟′ ′− + + − +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞∂ ∂′∂ ′∂′⎜ ⎟− ′⎜ ⎟− ⎛ ⎞∂ ∂ ′∂ ∂ ∂ ∂⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂⎜ ⎟ ⎝ ⎠⎜ ⎟

⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

=
∂

 
 (3.728) 
 

22 2 2 2
2

2

2 0

g
g g

k k k k g g g

g g
g g

j j k k k
j j j k

g j g j k g

CC QCC CC
x x x x CC CC CC

CC CC
CC CCx x U x xi U U U U

CC x CC x x CC

φ σ φ σ φ ω φφ φ κ

φ φφ φ
φω

∂′ ′′ ′ ′ ′∂ ′ ′− + + − +
∂ ∂ ∂ ∂

⎛ ⎞ ⎛ ⎞∂ ∂′∂ ′∂′⎜ ⎟− ′⎜ ⎟− ⎛ ⎞∂ ∂ ′∂ ∂ ∂ ∂⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂⎜ ⎟ ⎝ ⎠⎜ ⎟
⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

=
∂

 
 (3.729) 
 

22 2 2 2
2

22 2
0

g
g g

k k k k g g g

g gj j j jk k
j k

j g j j k g j k j kg g g

CC QCC CC
x x x x CC CC CC

CC CCi U i U U UU U U U
x CC x x x CC x x x xCC CC CC

φ σ φ σ φ ω φφ φ κ

ω ω φ φφ φ

∂′ ′′ ′ ′ ′∂ ′ ′− + + − +
∂ ∂ ∂ ∂

⎛ ⎞∂ ∂′ ′′ ′∂ ∂∂ ∂ ∂ ⎜ ⎟+ − − + −
⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ⎝ ⎠

φ′
=

 
 (3.730) 
 
Examining the last term of Equation (3.730) shows that this substitution may be made: 

2 1 g

j k j k j g kg g

CC
x x x x x CC xCC CC

φ φ φ⎛ ⎞ ⎛ ⎞ ⎛ ∂′ ′ ′∂ ∂ ∂ ∂⎜ ⎟ ⎜ ⎟ ⎜= −
⎜ ⎟ ⎜ ⎟ ⎜∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝

⎞
⎟
⎟
⎠

 (3.731) 
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( )

( )

22

2

1

g g g
g g

j k k j j k k j

j k gg g

g

g k j

CC CC CC CC
CC CC

x x x x x x x x
x x CCCC CC

CC
CC x x

φ φ
φ φ

φ

⎛ ⎞ ⎛∂ ∂ ∂ ∂′ ′∂ ∂⎜ ⎟ ⎜− −⎛ ⎞ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂′∂ ⎜ ⎟ ⎜⎜ ⎟ ′= −⎜ ⎟ ⎜⎜ ⎟∂ ∂ ⎜ ⎟ ⎜⎝ ⎠
⎜ ⎟ ⎜
⎝ ⎠ ⎝
⎛ ⎞∂ ′∂⎜ ⎟−
⎜ ⎟∂ ∂⎝ ⎠

g
⎞
⎟
⎟
⎟
⎟
⎟
⎠

 
 (3.732)   

( )
( )

22

2

1 1

1

g g

j k j k g k j g j kg g

g g g

k j g k jg

CC CC
x x x x CC x x CCCC CC

CC CC CC
x x CC x xCC

φ φ φ φ

φ φ

⎛ ⎞ ∂ ∂′ ′ ′ ′∂ ∂ ∂⎜ ⎟ = − −
⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

∂ ∂ ∂′ ′∂+ −
∂ ∂ ∂ ∂

x x
 (3.733) 

 
Using Equation (3.733) with Equation (3.730) yields:  

( )

22 2
2
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2

2 2
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g
g g

k k k k g g g

gj j j jk k
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j k g k j g j kg
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g

g
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x x x x CC CC CC

CC CCi U i U U UU U
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g
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CC CC
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U U
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φ σ φ σφ φ κ

ω ω φ φφ φ

φ φ φ

φ

∂′ ′′ ′∂ ′ ′− + + − +
∂ ∂ ∂ ∂

∂′′ ′∂ ∂∂ ∂+ − − +
∂ ∂ ∂ ∂ ∂

∂ ∂′ ′ ′∂ ∂− −
∂ ∂ ∂ ∂ ∂ ∂

−
∂′

+

φ ω φ′ ′

∂′
∂

( ) 0
1g g

k j g k j

CC CC
x x CC x x

φ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟ =

∂ ∂⎜ ⎟′∂−⎜ ⎟∂ ∂ ∂ ∂⎜ ⎟
⎝ ⎠

 (3.734) 

 
Which may be re-expressed as follows: 

( )
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2
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2

g
g g

k k k k g g g
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g gj j j jk k
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CC QCC CC
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CC CCi U i U U UU U
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CC CCU U U U U U
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U

φ σ φ σφ φ κ
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φ

∂′ ′′ ′∂ ′ ′− + + − +
∂ ∂ ∂ ∂

∂ ∂′ ′′ ′∂ ∂∂ ∂+ − − +
∂ ∂ ∂ ∂ ∂

∂ ∂′′ ′∂ ∂− + +
∂ ∂ ∂ ∂ ∂ ∂
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−

( )

φ ω φ′ ′

∂

( )
2 0g gj k

k jg

CC CCU
x xCC

∂ ∂
=

∂ ∂

 (3.735) 
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( )
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gj j kk k

k j k g kg g

CC CCi UQCC CC
x x x x CC xCC CC CC
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∂ ∂ ∂ ∂ ∂
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∂ ∂ ∂ ∂
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j
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∂ ∂

=
 (3.736) 
 
 

( )

( ) ( ) ( )
( )

( )

22 2 2 2
2

3
2

2

3 3 5
2 2 2

3
2

2

2 2

g gk
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∂ ∂ ∂ ∂
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∂
∂
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∂ ∂

=

 (3.737) 

 
 

Isolating the derivatives of the new scaled velocity potential in Equation (3.737) gives: 
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′∂ ⎜ ⎟ ′+ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂∂⎜ ⎟+ + −⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎜ ⎟
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x x x x x xCC CC CC

CCi U
xCC

φ σ ω σκ φ φ φ

φ φ

gφ φ φ

ω φ

⎛ ⎞∂′ ′′∂ ⎜ ⎟ ′ ′ ′+ − + + + −
⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

∂′ ′∂ ∂ ∂− +
∂ ∂ ∂ ∂

∂ ∂ ∂ ∂∂ ′ ′+ + −
∂ ∂ ∂ ∂ ∂ ∂

∂
′−

∂

′

22

0

j kk

g k g j k

U Ui U
CC x CC x x
ω φ φ′ ′∂ ∂+ −

∂ ∂ ∂

=

 (3.739) 

 
 

A new term can now be introduced: 
2 2

2 21 g

k k gg

CC QK
x x CCC

σκ
∂ ′′

= − + +
∂ ∂ C

  (3.740) 

 

 
Using Equation (3.740) with Equation (3.739) gives: 

( )

( ) ( ) ( )

( )

2 2 2
2

3
2

2

3 3 5
2 2 2

2

3
2

2

2 2 0

k k g g

gj j kk

g j k j k
g

g g gj j k j kk

j k j k k j
g g g

g j kk k

k g k g j k
g

K
x x CC CC

CCU U UU
CC x x x xCC

CC CC CC CCU U U U UU
x x x x x xCC CC CC

CC U Ui U i U
x CC x CC x xCC

φ ω σφ φ φ

φ φ

gφ φ φ

ω ω φ φφ

′∂ ′ ′ ′+ + −
∂ ∂

∂′ ′∂ ∂ ∂− +
∂ ∂ ∂ ∂

∂ ∂ ∂ ∂∂ ′ ′+ + −
∂ ∂ ∂ ∂ ∂ ∂

∂ ′ ′∂ ∂′− + − =
∂ ∂ ∂ ∂

′

 (3.741) 

 
Equation (3.741) is the Helmholtz Form of the Extended Elliptic Mild-Slope Wave 

Equation including Currents. 
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In order to obtain an equation which may be solved over a finite element Equation (3.741) 

can now be multiplied by a weighting function IW and integrated over the finite element 

area: 

( )

( ) ( )

( )

2 2
2

3
2

2

3 3
2 2

5
2

2

I I I I

k k g gA A A A

gj j kI Ik

g j k j kA A
g

gj j kI Ik

j k j kA A
g g

gj kI

k
g

W dA W K dA W dA W d
x x CC CC

CCU U UUW dA W dA
CC x x x xCC

CC CCU U UUW dA W
x x x xCC CC

CCU U
W

xCC

φ ωφ φ

φ φ

φ

⎛ ⎞′∂ ∂ ′ ′+ + −⎜ ⎟∂ ∂⎝ ⎠

∂′ ′∂ ∂ ∂− +
∂ ∂ ∂ ∂

∂ ∂∂ ′+ +
∂ ∂ ∂ ∂

∂
−

∂

∫∫ ∫∫ ∫∫ ∫∫

∫∫ ∫∫

∫∫ ∫∫

( )

g

A

dA

σ φ

φ

′

′

( )

2

3
2

2 2 0

g j kI

j g k kA A

gI Ik k

k g kA A
g

CC U U
dA W dA

x CC x x

CCi U i UW dA W dA
x CC xCC

φφ

ω ω φφ

∂ ′∂′ −
∂ ∂ ∂

∂ ′∂′− + =
∂ ∂

∫∫ ∫∫

∫∫ ∫∫

 (3.742) 

 
 
 
Examining the ninth term in Equation (3.742) gives: 

2

1

I
j k j k j kI I

g j k j g k j g kA A A

j jI Ik k

j g k g j kA A

I
k j

j g kA

U U U U U UWW dA W dA
CC x x x CC x x CC x

U UU UW dA W
x CC x CC x x

W U U dA
x CC x

φ φ

φ φ

φ

⎛ ⎞′ ′∂ ∂ ∂ ∂ ∂= −⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
∂ ′ ′∂∂ ∂− −
∂ ∂ ∂ ∂

⎛ ⎞ ′∂ ∂− ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

∫∫ ∫∫ ∫∫

∫∫ ∫∫

∫∫

dA

dA

φ′

 

 (3.743) 
 
Using Green’s Theorem with Equation (3.743) yields: 

2

1

I
j k j k j kI I

j
g j k g k j g kA S A

j jI Ik k

j g k g j kA A

I
k j

j g kA

U U U U U UWW dA n W dS d
CC x x CC x x CC x

U UU UW dA W
x CC x CC x x

W U U dA
x CC x

φ φ

φ φ

φ

′ ′∂ ∂ ∂ ∂= −
∂ ∂ ∂ ∂ ∂

∂ ′ ′∂∂ ∂− −
∂ ∂ ∂ ∂

⎛ ⎞ ′∂ ∂− ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

∫∫ ∫ ∫∫

∫∫ ∫∫

∫∫

A

dA

φ′

 

 (3.744) 
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If there is no current at the boundary then Equation (3.744) becomes: 

( )

2

1

I
j k j k jI I k

g j k j g k j g kA A A

jI Ik
k j g

g j k j kA A

U U U U U UWW dA dA W dA
CC x x x CC x x CC x

U UW dA W U U CC
CC x x x x

φ φ φ

φ φ−

∂′ ′ ′∂ ∂ ∂ ∂= − −
∂ ∂ ∂ ∂ ∂ ∂

′ ′∂ ∂ ∂ ⎡ ⎤− − ⎢ ⎥⎣ ⎦∂ ∂ ∂ ∂

∫∫ ∫∫ ∫∫

∫∫ ∫∫ dA∂
  

 (3.745) 
 
Substituting Equation (3.745) into Equation (3.742): 

( )

( ) ( )

( )

2 2
2

3
2

2

3 3
2 2

5
2

2

I I I I

k k g gA A A A

gj j kI Ik

g j k j kA A
g

g gj j kI Ik

j k j kA A
g g

gj kI

k
g

W dA W K dA W dA W d
x x CC CC

CCU U UUW dA W dA
CC x x x xCC

CC CCU U UUW dA W
x x x xCC CC

CCU U
W

xCC

φ ωφ φ

φ φ

φ φ

⎛ ⎞′∂ ∂ ′ ′+ + −⎜ ⎟∂ ∂⎝ ⎠

∂′ ′∂ ∂ ∂− +
∂ ∂ ∂ ∂

∂ ∂∂ ′ ′+ +
∂ ∂ ∂ ∂

∂
−

∂

∫∫ ∫∫ ∫∫ ∫∫

∫∫ ∫∫

∫∫ ∫∫

( )

A

dA

σ φ′

( )

( )

1

3
2

2 2 0

g

jA

I
j k jI k

j g k j g kA A

jI Ik
k j g

g j k j kA A

gI Ik k

k g kA A
g

CC
dA

x

U U U UW dA W dA
x CC x x CC x

U UW dA W U U CC dA
CC x x x x

CCi U i UW dA W dA
x CC xCC

φ

φ φ

φ φ

ω ω φφ

−

∂
′

∂

∂′ ′∂ ∂ ∂+ +
∂ ∂ ∂ ∂

′ ′∂ ∂ ∂ ∂⎡ ⎤+ + ⎢ ⎥⎣ ⎦∂ ∂ ∂ ∂

∂ ′∂′− + =
∂ ∂

∫∫

∫∫ ∫∫

∫∫ ∫∫

∫∫ ∫∫  

 (3.746) 

 

Examining the first term of Equation (3.746) in more detail using Green’s Theorem gives: 
I

I I

k k k k k kA A A

WW dA W dA
x x x x x x

φ φ⎛ ⎞ ⎛ ⎞′ ′∂ ∂ ∂ ∂ ∂ ∂= −⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
∫∫ ∫∫ ∫∫ dAφ′

 

 (3.747) 
I

I I
k

k k k k kA S A

WW dA n W dS
x x x x x

φ φ⎛ ⎞′ ′∂ ∂ ∂ ∂ ∂= −⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
∫∫ ∫ ∫∫ dAφ′

 

 (3.748) 
I

I I

k k k kA S A

WW dA W dS
x x n x x

φ φ⎛ ⎞′ ′∂ ∂ ∂ ∂ ∂= −⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
∫∫ ∫ ∫∫ dAφ′

 

 (3.749) 
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Substitution of Equation (3.749) into Equation (3.746) gives: 

( )

( ) ( )

( )

2 2
2

3
2

2

3 3
2 2

5
2

2

I
I I I

k k g gS A A A A

gj j kI Ik

g j k j kA A
g

g gj j kI Ik

j k j kA A
g g

j kI

g

WW ds dA W K dA W dA W d
n x x CC CC

CCU U UUW dA W dA
CC x x x xCC

CC CCU U UUW dA W dA
x x x xCC CC

U U
W

CC

φ φ ω σφ φ

φ φ

φ φ

′ ′∂ ∂ ∂ ′ ′− + + −
∂ ∂ ∂

∂′ ′∂ ∂ ∂− +
∂ ∂ ∂ ∂

∂ ∂∂ ′ ′+ +
∂ ∂ ∂ ∂

∂
−

∫ ∫∫ ∫∫ ∫∫ ∫∫

∫∫ ∫∫

∫∫ ∫∫

I Aφ′

( )

( )

( )

1

3
2

2 2 0

g g

k jA

I
j k jI k

j g k j g kA A

jI Ik
k j g

g j k j kA A

gI Ik k

k g kA A
g

CC CC
dA

x x

U U U UW dA W dA
x CC x x CC x

U UW dA W U U CC dA
CC x x x x

CCi U i UW dA W dA
x CC xCC

φ

φ φ

φ φ

ω ω φφ

−

∂
′

∂ ∂

∂′ ′∂ ∂ ∂+ +
∂ ∂ ∂ ∂

′ ′∂ ∂ ∂ ∂⎡ ⎤+ + ⎢ ⎥⎣ ⎦∂ ∂ ∂ ∂

∂ ′∂′− + =
∂ ∂

∫∫

∫∫ ∫∫

∫∫ ∫∫

∫∫ ∫∫  (3.750) 

 
 

 

 

 

In accordance with finite element methodology a shape function can now be applied to 

the unknown scaled velocity potential value: 
J JNφ φ′ ′=  (3.751) 
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Applying Equation (3.751) to Equation (3.750) gives: 
( )

( )
( )

( )

( ) ( )

2 2
2

3
2

2

3 3
2 2

2

J JI
I I J J I J J I J J

k k g gS A A A A

J J J J
gj j kI Ik

g j k j kA A
g

g gj j kI J J Ik

j k jA
g g

NWW ds dA W K N dA W N dA W N
n x x CC CC

N NCCU U UUW dA W dA
CC x x x xCC

CC CCU U UUW N dA W
x x x xCC CC

φφ ωφ φ

φ φ

φ

′∂′∂ ∂ ′ ′− + + −
∂ ∂ ∂

′ ′∂ ∂∂∂− +
∂ ∂ ∂ ∂

∂ ∂∂ ′+ +
∂ ∂ ∂ ∂

∫ ∫∫ ∫∫ ∫∫ ∫∫

∫∫ ∫∫

∫∫

dAσ φ′

( )
( )

( ) ( )

( ) ( ) ( )

( )

5
2

1

3
2

2

J J

kA

g gj kI J J

k jA
g

J J J JI
j k jI k

j g k j g kA A

J J J J
jI Ik

k j g
g j k j kA A

gI J J Ik

kA
g

N dA

CC CCU U
W N dA

x xCC

N NU U U UW dA W dA
x CC x x CC x

N NU UW dA W U U CC dA
CC x x x x

CCi UW N dA W
xCC

φ

φ

φ φ

φ φ

ω φ

−

′

∂ ∂
′−

∂ ∂

′ ′∂ ∂∂∂+ +
∂ ∂ ∂ ∂

′ ′∂ ∂∂ ∂ ⎡ ⎤+ + ⎢ ⎥⎣ ⎦∂ ∂ ∂ ∂

∂
′− +

∂

∫∫

∫∫

∫∫ ∫∫

∫∫ ∫∫

∫∫
( )2 0

J J
k

g kA

Ni U dA
CC x

φω ′∂
=

∂∫∫

 (3.752) 
 
 
This can be rearranged as: 

( )

( ) ( )

2 2
2

3
2

2

3 3
2 2

2

I J
I J I J J I J J I

k k g gS A A A A

J J
gj j kI J I Jk

g j k j kA A
g

g gj j kI J Jk

j k j kA
g g

W NW ds dA K W N dA W N dA W N dA
n x x CC CC

CCU U UU N NW dA W dA
CC x x x xCC

CC CCU U UU W N dA W
x x x xCC CC

φ ωφ φ φ φ

φ φ

φ

′∂ ∂ ∂ ′ ′ ′− + + −
∂ ∂ ∂

∂∂ ∂ ∂′ ′− +
∂ ∂ ∂ ∂

∂ ∂∂ ′+ +
∂ ∂ ∂ ∂

∫ ∫∫ ∫∫ ∫∫ ∫∫

∫∫ ∫∫

∫∫

( )

J Jσ ′

( )

( )

( )

5
2

1

3
2

2 2

I J J

A

g gj k I J J

k jA
g

I J J
j k jJ I Jk

g j k j g kA A

J J
j I J I Jk

k j g
g j k j kA A

g I J Jk

kA
g

N dA

CC CCU U
W N dA

x xCC

U U U UW N NdA W dA
CC x x x CC x

U U N NW dA U U CC W dA
CC x x x x

CCi U iW N dA
xCC

φ

φ

φ φ

φ φ

ω φ

−

′

∂ ∂
′−

∂ ∂

∂∂ ∂ ∂′ ′+ +
∂ ∂ ∂ ∂

∂ ∂ ∂ ∂⎡ ⎤′ ′+ + ⎢ ⎥⎣ ⎦∂ ∂ ∂ ∂

∂
′− +

∂

∫∫

∫∫

∫∫ ∫∫

∫∫ ∫∫

∫∫ 0
J

I Jk

g kA

U NW dA
CC x
ω φ∂ ′ =

∂∫∫

 (3.753) 
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The finite element model created for this project uses the Galerkin method in which the 

weighting function is equal to the shape functions being used. Hence at this stage IW  will 

be replaced with IN . The Galerkin method and shape functions are discussed in 

Appendix A. 

 

( )

( ) ( )

2 2
2

3
2

2

3 3
2 2

2

I J
I J I J J I J I J I

k k g gS A A A A

J J
gj j kI J I Jk

g j k j kA A
g

g gj j kI J Jk

j k jA
g g

N NW ds dA K N N dA W N N dA W N N dA
n x x CC CC

CCU U UU N NN dA N dA
CC x x x xCC

CC CCU U UU N N dA
x x xCC CC

φ ωφ φ φ φ

φ φ

φ

′∂ ∂ ∂ ′ ′ ′ ′− + + −
∂ ∂ ∂

∂∂ ∂ ∂′ ′− +
∂ ∂ ∂ ∂

∂ ∂∂ ′+ +
∂ ∂ ∂

∫ ∫∫ ∫∫ ∫∫ ∫∫

∫∫ ∫∫

∫∫

J I Jσ

( )
( )

( )

( )

5
2

1

3
2

2

I J J

kA

g gj k I J J

k jA
g

I J J
j k jJ I Jk

g j k j g kA A

J J
j I J I Jk

k j g
g j k j kA A

g I J Jk

kA
g

N N dA
x

CC CCU U
N N dA

x xCC

U U U UN N NdA N dA
CC x x x CC x

U U N NN dA U U CC N dA
CC x x x x

CCi U N N dA
xCC

φ

φ

φ φ

φ φ

ω φ

−

′
∂

∂ ∂
′−

∂ ∂

∂∂ ∂ ∂′ ′+ +
∂ ∂ ∂ ∂

∂ ∂ ∂ ∂⎡ ⎤′ ′+ + ⎢ ⎥⎣ ⎦∂ ∂ ∂ ∂

∂
′−

∂

∫∫

∫∫

∫∫ ∫∫

∫∫ ∫∫

∫
2 0

J
I Jk

g kA

i U NN dA
CC x
ω φ∂ ′+ =

∂∫ ∫∫

 (3.754) 
 
The first term in Equation (3.754) is an integral around the boundary of the finite element. 

It is hence apparent that for all internal elements in the domain this term will cancel out. It 

is only necessary to examine this term on the boundary. 
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In the simplest case where the boundary is a reflecting one the gradient of velocity 

potential across the boundary is zero, i.e. 0
n
φ′∂ =

∂
. Thus the Helmholtz type equation 

including currents, in the absence of energy dissipation, is similar for internal elements 

and perfectly reflecting boundary elements: 

 

( )

( ) ( )

2 2
2

3
2

2

3 3
2 2

2

I J
J I J J I J I J I J I

k k g gA A A A

J J
gj j kI J I Jk

g j k j kA A
g

g gj j kI J J I J Jk

j k j kA
g g

N N dA K N N dA W N N dA W N N dA
x x CC CC

CCU U UU N NN dA N dA
CC x x x xCC

CC CCU U UU N N dA N N d
x x x xCC CC

ω σφ φ φ φ

φ φ

φ φ

∂ ∂ ′ ′ ′ ′− + + −
∂ ∂

∂∂ ∂ ∂′ ′− +
∂ ∂ ∂ ∂

∂ ∂∂ ′ ′+ +
∂ ∂ ∂ ∂

∫∫ ∫∫ ∫∫ ∫∫

∫∫ ∫∫

∫∫

( )

J

( )

( )

( )

5
2

1

3
2

2 2

A

g gj k I J J

k jA
g

I J J
j k jJ I Jk

g j k j g kA A

J J
j I J I Jk

k j g
g j k j kA A

g I J Jk k

k gA
g

A

CC CCU U
N N dA

x xCC

U U U UN N NdA N dA
CC x x x CC x

U U N NN dA U U CC N dA
CC x x x x

CCi U i UN N dA N
x CCCC

φ

φ φ

φ φ

ω ωφ

−

∂ ∂
′−

∂ ∂

∂∂ ∂ ∂′ ′+ +
∂ ∂ ∂ ∂

∂ ∂ ∂ ∂⎡ ⎤′ ′+ + ⎢ ⎥⎣ ⎦∂ ∂ ∂ ∂

∂
′− +

∂

∫∫

∫∫

∫∫ ∫∫

∫∫ ∫∫

∫∫ 0
J

I J

kA

N dA
x

φ∂ ′ =
∂∫∫

 (3.755) 
 
However on boundaries that are not reflecting the first term of Equation (3.754) must be 

evaluated. 
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3.10.1 Derivatives of Wave Celerity and Group Velocity 

Although gradients of gCC can be obtained numerically during computer modelling in 
some cases it is helpful to have analytical derivatives where required. Recalling Equation  
(3.429): 
 

2

sinh 2 2
4 coshg

h hCC g
h

κ κ
κ κ

′ ′+=
′

  

  
Equation  (3.429) can also be expressed as follows: 
 

( ) ( )
2

sinh cosh
2 coshg

h h
CC g

h
κ κ

κ κ
′ ′ +

=
′

hκ ′
 (3.756) 

 
It can be seen from Equation (3.756) that gCC  is a function of  and h , i.e. 

, where . In the interests of clarity the following abbreviation 
will be used: 

κ ′

( ,g gCC CC hκ ′= ) ( )hκ κ ′=

 
ga CC=  (3.757) 

 
Hence the various derivatives of gCC  terms with respect to the horizontal coordinates 
can be expressed symbolically as follows: 
 

j j j

da a d dh a dh
dx dh dx h dx

κ
κ

′∂ ∂= +
′ ′∂ ∂

′  (3.758) 

 
 
 

 
1 1

2 2j j j

a a a d dh a d

j

h
x x dh dx ha a

κ
κ

⎡ ⎤′ ′∂ ∂ ∂ ∂= = +⎢ ′ ′∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦dx ⎥  (3.759) 

1 1
2 2j j j

a a d dh a dh
x dh dx h dxa a

κ
κ

′ ′∂ ∂ ∂= +
′∂ ∂ ∂ ′

 (3.760) 

 
 
 

 
( )1

2 2

1 1g

j j j

CC a d dh a dha
jx a x a dh dx h dx

κ
κ

−
∂ ⎡ ⎤′∂ ∂⎡ ⎤ = − = − +

′∂
⎢ ⎥⎣ ⎦ ′ ′∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦

 (3.761) 

1
2 2

1 1

j j j

a d dh a dha
x a dh dx a h dx

κ
κ

− ′∂ ∂ ∂⎡ ⎤ = − −⎣ ⎦ ′ ′∂ ∂ ∂
′  (3.762) 
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3 3
2 21 1 1

2 2j j j

a a d dh aa a
j

dh
x x dh dxa

κ
κ

− − ⎡ ⎤′ ′∂ ∂ ∂⎡ ⎤ = − = − +⎢⎢ ⎥ ′ ′∂ ∂ ∂⎣ ⎦ ⎢ ⎥⎣ ⎦h dx
∂

⎥∂
 (3.763) 

3 3
2 2

1 1 1

2 2j j j

a d dh a dh
x dh dx h dxa a a

κ
κ

′∂ ∂⎡ ⎤ = − −⎢ ⎥ ′ ′∂ ∂⎣ ⎦

′∂
∂

 (3.764) 

 
 
 

 
2

j k j k

a a
x x x x

⎛ ⎞∂ ∂ ∂= ⎜⎜∂ ∂ ∂ ∂⎝ ⎠
⎟⎟  (3.765) 

 
Using Equation (3.760) gives: 

2 1 1
2 2j k j k k

a a d dh a dh
x x x dh dx h dxa a

κ
κ

⎛ ⎞′ ′∂ ∂ ∂ ∂= +⎜ ′∂ ∂ ∂ ∂ ∂⎝ ⎠
⎟′

 (3.766) 

 
Equation (3.766) can be expanded to give: 

2 1 1 1 1
2 2j k j k j k

a a d dh a dh
x x x dh dx x h dxa a

κ
κ

⎛ ⎞ ⎛′∂ ∂ ∂ ∂ ∂= +⎜ ⎟ ⎜′ ′∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝

⎞′
⎟
⎠

 (3.767) 

 
Using the product rule this becomes:  

2 1 1 1
2 2

1 1 1 1
2 2

j k k j k j

k j k j

a d dh a d dh a
x x dh dx x dh dx xa a

dh a dh a
dx x h dx h xa a

κ κ
κ κ

′ ′∂ ∂ ∂ ∂ ⎛ ⎞⎛ ⎞= +⎜ ⎟ ⎜ ⎟′ ′∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

′ ′∂ ∂ ∂ ∂ ⎛ ⎞⎛ ⎞+ +⎜ ⎟ ⎜ ⎟′ ′∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

1∂

 (3.768) 

 
Further expansion of Equation (3.768) yields: 

2

3 3
2 2

1 1
2

1 1 1
2 2 2

1 1
2

j k k j j

k j

k j

a a
a d dh d dh dh

x x dh dx dh dx h dxa

d dh a a d dh a dh
dh dx dh dx h dxa a

a a
dh d dh dh h
dx dh dx ha

κ κκ κ
κ

κ κ
κ κ

κ
κ

j

⎡ ∂ ∂ ⎤⎛ ⎞ ⎛ ⎞∂ ∂⎜ ⎟ ⎜ ⎟⎢ ⎥′ ′∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ′
⎢ ⎥= +

′ ′ ′∂ ∂ ∂ ∂⎢ ⎥
⎢ ⎥⎣ ⎦
⎛ ⎞′ ′∂ ∂ ∂⎜ ⎟+ − −

′ ′⎜ ⎟∂ ∂ ∂
⎝
∂ ∂⎛ ⎞ ⎛ ⎞∂ ∂⎜ ⎟ ⎜ ⎟′ ′′ ′∂ ∂⎝ ⎠ ⎝ ⎠+ +

′ ′∂ ∂

′
′

⎠

′

3 3
2 2

1 1 1
2 2 2

j

k j

h
dx

dh a a d dh a dh
dx h dh dx h dxa a

κ
κ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
⎛ ⎞′ ′∂ ∂ ∂⎜ ⎟+ − −

′ ′ ′⎜ ⎟∂ ∂ ∂
⎝ ⎠j

′

 (3.769) 
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Re-expressing Equation (3.769) gives: 
2 2 2

2

3 3
2 2

2 2

2

3

1 1
2

1 1 1
2 2 2

1 1
2

1 1
2 2

j k k j j

k j

k j j

k

a d dh a d dh a dh
x x dh dx dh dx h dxa

d dh a a d dh a dh
dh dx dh dx h dxa a

dh a d dh a dh
dx h dh dx h dxa

dh a
dx h a

κ κ
κ κ

κ κ
κ κ

κ
κ

⎡ ⎤′ ′ ′∂ ∂ ∂= +⎢ ⎥′ ′ ′∂ ∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦
⎛ ⎞′ ′∂ ∂ ∂⎜ ⎟+ − −

′ ′⎜ ⎟∂ ∂ ∂
⎝ ⎠

⎡ ⎤′ ′ ′∂ ∂+ +⎢ ⎥′ ′ ′∂ ∂ ∂⎢ ⎥⎣ ⎦

′ ∂+ −
′∂

j

′
′

3
2 2

1

2j j

a d dh a dh
dh dx h dxa

κ
κ

⎛ ⎞′ ′∂ ∂⎜ ⎟−
′ ′⎜ ⎟∂ ∂

⎝ ⎠

 (3.770) 

 
Incorporating the terms outside brackets gives: 

2 2 2

2

3 3
2 2

2 2

2

1 1
2 2

1 1

4 4

1 1
2 2

j k j k j k

j k j

j k

a a d d dh dh a d dh dh
x x dh dh dx dx h dh dx dxa a

a a d d dh dh a a d dh dh
dh dh dx dx h dh dx dxa a

a d dh dh a dh
h dh dx dx h dxa a

κ κ κ
κ κ

κ κ κ
κ κ κ

κ
κ

⎡ ⎤′ ′ ′ ′∂ ∂ ∂= +⎢ ⎥′ ′ ′ ′∂ ∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦
⎛ ⎞′ ′ ′ ′∂ ∂ ∂ ∂⎜ ⎟+ − −

′ ′ ′ ′⎜ ⎟∂ ∂ ∂ ∂
⎝ ⎠

′ ′ ′∂ ∂+ +
′ ′ ′∂ ∂ ∂

k

3 3
2 2

1 1

4 4

j k

j k j k

dh
dx

a a d dh dh a a dh dh
h dh dx dx h h dx dxa a

κ
κ

⎡ ⎤′
⎢ ⎥
⎢ ⎥⎣ ⎦
⎛ ⎞′ ′ ′ ′∂ ∂ ∂ ∂⎜ ⎟+ − −

′ ′ ′ ′⎜ ⎟∂ ∂ ∂ ∂
⎝ ⎠

 (3.771) 

 
Equation (3.771) may be reduced to give: 

2 2 2

2

3 3
2 2

2 2

2

3
2

1 1
2 2

1 1

4 4
1 1

2 2
1

4

j k j k j k

j k

j k j k

a a d d dh dh a d dh dh
x x dh dh dx dx h dh dx dxa a

a a d d dh dh a a d dh dh
dh dh dx dx h dh dx dxa a

a d dh dh a dh dh
h dh dx dx h dx dxa a
a

a

κ κ κ
κ κ

κ κ κ
κ κ κ

κ
κ

κ

′ ′ ′ ′∂ ∂ ∂= +
′ ′ ′ ′∂ ∂ ∂ ∂ ∂

′ ′ ′ ′∂ ∂ ∂ ∂− −
′ ′ ′ ′∂ ∂ ∂ ∂

′ ′ ′ ′∂ ∂+ +
′ ′ ′∂ ∂ ∂

∂−
∂

j k

3
2

1

4j k j k

a d dh dh a a dh dh
h dh dx dx h h dx dxa

κ ′ ′ ′ ′∂ ∂ ∂−
′ ′ ′ ′∂ ∂ ∂

 (3.772) 
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The derivatives of gCC with respect to  and  will now be examined so that they can 
be used in the symbolic equations derived above. 

κ h′

 
 

( )
( )
( ) ( ) ( ) ( ) ( )

2 2 2

2

2 4

2 cosh cosh sinh

sinh cosh 2cosh 4 cosh sinh

4 cosh
g

h h h h h h

h h h h h h hCC a g
h

κ κ κ κ

κ κ κ κ κ κ κ
κ κ κ κ

⎡ ⎤′ ′ ′ ′ ′ ′⎡ ⎤+ +⎣ ⎦⎢ ⎥
⎢ ⎥′ ′ ′ ′ ′ ′ ′⎡ ⎤+ − − +⎡ ⎤∂ ∂ ⎣ ⎦ ⎣ ⎦⎣ ⎦= =

′∂ ∂
 
 (3.773) 
  

( ) ( ) ( ) ( )2 2

2 3

cosh sinh cosh 2 sinh
2 cosh

h h h h h ha g
h

κ κ κ κ κ κ
κ κ κ

′ ′ ′ ′ ′− −⎡ ⎤∂ ⎣ ⎦=
′∂

′
 (3.774) 

 
 

 
 

 

( )

( ) ( ) ( )

( ) ( ) ( )
( ) ( )

2
2 3

3 2 2 3

2 3

22 2 22

2 2

cosh 2 cosh sinh
2 cosh

cosh 3 sinh 2 cosh

cosh cosh sinh 4 cosh
6 cosh sinh2 sinhg

h h h h h
h

h h h h h h

h h h h h
h h hCC h ha g

κ κ κ
κ κ

κ κ κ κ κ

κ κ κ κ κ κ
κ κ κκ κ

κ κ

⎡ ⎤′ ′ ′ ′ ′⎡ ⎤−
′⎢ ⎥⎢ ⎥

′ ′ ′ ′ ′ ′− − −⎢ ⎢ ⎥⎣ ⎦
⎢

′ ′ ′ ′ ′⎡ ⎤ ⎡ ⎤+⎢+ ⎢ ⎥ ⎢ ⎥⎢ ′ ′ ′+∂ ′ ′+⎢ ⎥ ⎢ ⎥∂ ⎢ ⎣ ⎦ ⎣ ⎦⎣ ⎦= =
∂ ∂ 4 64 cosh hκ κ

⎥
⎥
⎥
⎥
⎥

′
 
 (3.775) 

( ) ( )3 3 2 2

2 2 3 3 22

2 3 2

2 2cosh sinh 2 tanh

cosh sinh 6 tanh
2 cosh

h h h h h h

h h h h h ha g
h

κ κ κ κ κ κ

κ κ κ κ κ κ
κ κ κ

′ ′ ′ ′ ′⎡ ⎤− − + −
⎢ ⎥

′ ′ ′ ′ ′ ′− + +∂ ⎢ ⎥⎣ ⎦=
′∂

′

 (3.776) 

 
 
 

 
 
 

( )
( )
( ) ( ) ( ) ( )

2 2 2

2

2 4

2 cosh cosh sinh

sinh cosh 4 cosh sinh

4 cosh
g

h h h h

h h h h hCC a g
h h h

κ κ κ κ κ κ

κ κ κ κ κ κ
κ κ

⎡ ⎤′ ′ ′ ′⎡ ⎤+ +⎣ ⎦⎢ ⎥
⎢ ⎥′ ′ ′ ′ ′⎡ ⎤+ − −⎡ ⎤∂ ∂ ⎣ ⎦ ⎣ ⎦⎣ ⎦= =

′ ′ ′∂ ∂
 (3.777) 

 
( ) ( )

3

cosh sinh
cosh

h h ha g
h h

κ κ κ
κ

′ ′−∂ =
′ ′∂

′
 (3.778) 
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( )
( )

( ) ( ) ( ) ( )

3 2

22 2

2 2 6

cosh cosh

3 cosh sinh cosh sinh

cosh
g

h h h

h h h h hCC a g
h h h

κ κ κ

κ κ κ κ κ κ
κ

⎡ ⎤′ ′ ′⎡ ⎤−⎣ ⎦⎢ ⎥
⎢ ⎥′ ′ ′ ′ ′+ − −⎡ ⎤∂ ∂ ⎣ ⎦⎣ ⎦= =

′ ′ ′∂ ∂
 (3.779) 

 
 

 
 

 
 

( )
( )

( ) ( ) ( ) ( )

3 2

22 2

6

cosh cosh

3 cosh sinh cosh sinh

cosh
g

h h h

h h h h h hCC a g
h h h

κ κ κ

κ κ κ κ κ
κ κ κ

⎡ ⎤′ ′ ′⎡ ⎤−⎣ ⎦⎢ ⎥
⎢ ⎥′ ′ ′ ′ ′+ − + ′⎡ ⎤∂ ∂ ⎣ ⎦⎣ ⎦= =

′ ′ ′∂ ∂ ∂ ∂
 (3.780) 

 
 
 

 
Table 3.7 below summarises the derivatives of gCC  obtained in this section. 
 

Table 3.7 – Summary of Derivatives of Celerity and Group Velocity for Helmholtz Type Equations. 
  Symbolically:  

(a)  

j j j

da a d dh a dh
dx dh dx h dx

κ
κ

′ ′∂ ∂= +
′ ′∂ ∂

 (3.758) 

(b)  1 1
2 2j j j

a a d dh a dh
x dh dx h dxa a

κ
κ

′ ′∂ ∂ ∂= +
′ ′∂ ∂ ∂

 
(3.760) 

(c)  1
2 2

1 1

j j j

a d dh a dha
x a dh dx a h dx

κ
κ

− ′ ′∂ ∂ ∂⎡ ⎤ = − −⎣ ⎦ ′ ′∂ ∂ ∂
 (3.762) 

 

(d) 

 

 
3 3
2 2

1 1 1

2 2j j j

a d dh a dh
x dh dx h dxa a a

κ
κ

′ ′∂ ∂⎡ ⎤ = − −⎢ ⎥ ′ ′∂ ∂⎣ ⎦

∂
∂

 
(3.764) 

(e)  2 2 2

2

3 3
2 2

2 2

32
2

1 1
2 2

1 1

4 4
1 1 1

2 2 4

j k j k j k

j k j k

j k j k

a a d d dh dh a d dh dh
x x dh dh dx dx h dh dx dxa a

a a d d dh dh a a d dh dh
dh dh dx dx h dh dx dxa a

a d dh dh a dh dh a
h dh dx dx h dx dxa a a

κ κ κ
κ κ

κ κ κ
κ κ κ

κ
κ κ

′ ′ ′ ′∂ ∂ ∂= +
′ ′ ′ ′∂ ∂ ∂ ∂ ∂

′ ′ ′ ′∂ ∂ ∂ ∂− −
′ ′ ′ ′∂ ∂ ∂ ∂

′ ′ ′ ′∂ ∂ ∂+ + −
′ ′ ′∂ ∂ ∂ ∂

3
2

1

4

j k

j k

a d dh dh
h dh dx dx

a a dh dh
h h dx dxa

κ ′ ′∂
′ ′∂

′ ′∂ ∂−
′ ′∂ ∂

 

(3.772) 
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Where: 

 

(f)  ( ) ( )
2

sinh cosh
2 coshg

h h
a CC g

h
κ κ

κ κ
′ ′ +

= =
′

hκ ′
 

(3.756) 

(g)  ( ) ( ) ( ) ( )2 2

2 3

cosh sinh cosh 2 sinh
2 cosh

h h h h h ha g
h

κ κ κ κ κ κ
κ κ κ

′ ′ ′ ′ ′− −⎡ ⎤∂ ⎣ ⎦=
′∂

′
 

(3.774) 

(h)  ( ) ( )3 3 2 2

2 2 3 3 22

2 3 2

2 2cosh sinh 2 tanh

cosh sinh 6 tanh
2 cosh

h h h h h h

h h h h h ha g
h

κ κ κ κ κ κ

κ κ κ κ κ κ
κ κ κ

′ ′ ′ ′ ′⎡ ⎤− − + −
⎢ ⎥

′ ′ ′ ′ ′ ′− + +∂ ⎢ ⎥⎣ ⎦=
′∂

′

 

(3.776) 

(i)  ( ) ( )
3

cosh sinh
cosh

h h ha g
h h

κ κ κ
κ

′ ′−∂ =
′ ′∂

′
 

(3.778) 

(j)  

( )

( )

( ) ( ) ( )
( )

3 2

2
2 2

2 2 6

cosh cosh

cosh
3 cosh sinh

sinh

cosh
g

h h h

h
h h

h hCC a g
h h h

κ κ κ

κ
κ κ κ

κ κ
κ

⎡ ⎤′ ′ ′⎡ ⎤−⎣ ⎦⎢ ⎥
⎢ ⎥′−⎡ ⎤

′ ′+⎢ ⎥⎢ ⎥
′ ′−∂ ⎢ ⎥⎢ ⎥∂ ⎣ ⎦⎣ ⎦= =

′ ′ ′∂ ∂
 

(3.779) 

(k)  

( )

( )

( ) ( ) ( )
( )

3 2

2
2 2

6

cosh cosh

cosh
3 cosh sinh

sinh

cosh
g

h h h

h
h h h

h hCC a g
h h h

κ κ κ

κ
κ κ

κ κ
κ κ κ

⎡ ⎤′ ′ ′⎡ ⎤−⎣ ⎦⎢ ⎥
⎢ ⎥′−⎡ ⎤

′ ′ ′+⎢ ⎥⎢ ⎥
′ ′+∂ ⎢ ⎥⎢ ⎥∂ ⎣ ⎦⎣ ⎦= =

′ ′ ′∂ ∂ ∂ ∂
 

(3.780) 
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3.11 Boundary Conditions for 2d-NM-WCIM 

There are a number of possible boundary conditions that may apply to the two-

dimensional finite element domain being examined by the 2d-NM-WCIM model. These 

are detailed in Table 3.1 and Figure 3.11 below: 
Table 3.8 – Boundary Conditions for Two-Dimensional Finite Element Wave Model 

Boundary Title Boundary Type Boundary Description 

Γ1 Reflecting Boundary Perfect reflection of all waves that occur 

at the boundary 

Γ2 Absorbing Boundary Absorption of all waves that interact 

with boundary – waves exit domain at 

this point 

Γ3 Radiating Boundary Backscattered or reflected waves may 

leave the domain along this boundary 

while specified waves may enter. 

 

 
Figure 3.11 – Sketch of possible Boundary Conditions within a Domain 
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Each of these boundary conditions must be inspected in turn. Each boundary condition 

will then be applied to Equation (3.754) via the first term in the equation. Initially the 

simplest case of applying an absorbing boundary condition to the non-Helmholtz form of 

the 2d-NM-WCIM will be examined. Then the more complex case of applying various 

boundary conditions to the Helmholtz form of the equation will be examined. 

 
3.11.1 Parabolic absorbing mild slope boundary condition for Non-Helmholtz 2d-

NM-WCIM 

In order to fully define the sixteenth term of Equation (3.717) it is necessary to once again 

use the parabolic solution to the mild-slope equation as defined in Equation (3.653) to 

obtain an absorbing boundary condition. Equation (3.653) can be multiplied by gCC−  to 

give: 

1
2 2 2

g g
g g

CC CC iCC iCC CC
n n n s g s
φ κ φφ φ κφ

κ κ
∂∂ ∂ ⎡ ∂ ∂ ⎤⎛ ⎞− = + − − ⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦

 (3.781) 

 
 

In the case the boundary under consideration is an absorbing boundary. Hence: 

2S = Γ  (3.782) 

 

 

 

Therefore: 

2 2

2 2

1
2 2

2

g gI I I
g

S

I I
g g

CC CC
CC W ds W ds W ds

n n n

iiCC W ds CC W ds
S s

φ κ φ φ
κ

φκφ
κ

Γ Γ

Γ Γ

∂∂ ∂− = +
∂ ∂ ∂

⎡ ∂ ∂ ⎤⎛ ⎞− − ⎜ ⎟⎢ ⎥∂ ∂⎝ ⎠⎣ ⎦

∫ ∫ ∫

∫ ∫
 (3.783) 

 
 
The last term of Equation (3.783) is: 

2 2

1

2

32 2
I

g

W
i iCC W ds CC W ds

s s s s
W

φ φ
κ κΓ Γ

⎧ ⎫
⎡ ∂ ∂ ⎤ ⎡ ∂ ∂ ⎤⎪ ⎪⎛ ⎞ ⎛ ⎞− = −⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦⎪ ⎪

⎩ ⎭
∫ ∫ g  (3.784) 
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This term can be expanded as follows using integration by parts: 

2 002 2 2

l l I
gI I

g g

CC ii iW CC ds W CCW ds
s s s s s

φ φ φ
κ κ κΓ

⎛ ⎞⎡ ∂ ∂ ⎤ ∂ ∂ ∂⎛ ⎞− = − + ⎜ ⎟⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦ ⎝ ⎠
∫ ∫  (3.785) 

 
 

2 0

0

2 2

2

g gI I
g

l

l I

g

CC i CC iiW CC ds W W
s s s

iW CC ds
s s

2
I

s
φ φ φ

κ κ

φ
κ

Γ

⎡ ∂ ∂ ⎤ ∂ ∂⎛ ⎞− = − +⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦

⎛ ⎞∂ ∂+ ⎜ ⎟∂ ∂⎝ ⎠

∫

∫

κ
 (3.786) 

 
 

2 0

0

2 2

2

g gI I
g

l

l I

g

CC i CC iiW CC ds W W
s s s

i W CC ds
s s

2
I

s
φ φ φ

κ κ

φ
κ

Γ

⎡ ∂ ∂ ⎤ ∂ ∂⎛ ⎞− = − +⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦

⎛ ⎞∂ ∂+ ⎜ ⎟∂ ∂⎝ ⎠

∫

∫

κ
 (3.787) 

 
 

2 0

2
0

2 2

2

g gI I
g

l

I
I

l

g

CC i CC iiW CC ds W W
s s s s

W Wi s s CC ds
s

φ φ
κ κ

κκ

2
I φ

κ

φ
κ

Γ

⎡ ∂ ∂ ⎤ ∂ ∂⎛ ⎞− = − +⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦

⎛ ⎞∂ ∂−⎜ ⎟ ∂∂ ∂+ ⎜ ⎟
∂⎜ ⎟⎜ ⎟

⎝ ⎠

∫

∫
 (3.788) 

 
 

2 0

2 2
0 0

2 2 2

2 2

g gI I I
g

l

l lI
I

g g

CC i CC iiW CC ds W W
s s s s

i W iCC dS W CC ds
s s s

φ φ φ
κ κ κ

s
φ κ φκ

κ κ

Γ

⎡ ∂ ∂ ⎤ ∂ ∂⎛ ⎞− = − +⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦

⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞+ + −⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠

∫

∫ ∫
 

 (3.789) 
 
 

2 0

2
0 0

2 2 2

2 2

g gI I I
g

l

l lI
g g I

CC i CC iiW CC ds W W
s s s s

iCC iCCW ds W ds
s s s s

φ φ φ
κ κ κ

φ κ φ
κ κ

Γ

⎡ ∂ ∂ ⎤ ∂ ∂⎛ ⎞− = − +⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦

∂ ∂ ∂ ∂+ −
∂ ∂ ∂ ∂

∫

∫ ∫
 (3.790) 
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Substitution Equation (3.790) into Equation (3.783) gives: 

2 0 0 0

00

2
0

1
2 2

2 2 2

2

l l l
g gI I I

g g

l I
g g gI I

l
l

g I

CC CC
CC W ds W ds W ds iCC W ds

n n n

CC i CC i iCC WW W
s s s

iCC
W ds

s s

φ κ φ φ
κ

φ φ
κ κ κ

κ φ
κ

Γ

∂∂ ∂− = + −
∂ ∂ ∂

∂ ∂ ∂ ∂− + +
∂ ∂ ∂ ∂

∂ ∂−
∂ ∂

∫ ∫ ∫ ∫

∫

∫

I

ds
s

κφ

φ
 (3.791) 

 
 

With the application of the Galerkin method Equation (3.791) becomes: 

2 0 0 0

00

2
0

1
2 2

2 2 2

2

l l l
g gI I I

g g

l I
g g gI I

l
l

g I

CC CC
CC W ds L ds L ds iCC L ds

n n n

CC i CC i iCC LL L
s s s

iCC
L ds

s s

φ κ φ φ
κ

φ φ
κ κ κ
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Expressing φ  in terms of shape functions JL  gives: 
J JLφ φ=  (3.793) 
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L is a shape function for elements with two nodes. Hence L3 will always be zero: 
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3.11.2 Complete Two-Dimensional Finite Element Wave Driven Hydrodynamic 

Model 

Substituting Equation (3.800) into Equation (3.717) gives the following finite element 

matrix equation for the non-Helmholtz form of the 2d-NM-WCIM including an absorbing 

(downwave boundary) where 0 to l is the along the absorbing boundary: 
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⎡ ⎤ ⎧ ⎫ ⎡ ⎤ ⎧ ⎫
⎢ ⎥ ⎪ ⎪ ⎢ ⎥ ⎪ ⎪+⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥

⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎩ ⎭ ⎣ ⎦ ⎩ ⎭
⎡ ⎤ ⎧

∂ ⎢ ⎥′+ ⎢ ⎥∂ ⎢ ⎥⎣ ⎦
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⎧ ⎫
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∫∫

∫∫

3 ⎫
⎪

⎭

 
 (3.801) 
 
 
Within the domain the boundary terms along the edge of each element will cancel each 

other out. In this model all other boundaries would have a specified velocity potential 

applied to them by means of a big-number method. Using the big number method the 

diagonal component of the mass matrix and the corresponding component of the right 

hand side vector for the node in question are multiplied by a large number so that the 

value in the right hand side vector is forced to be the solution at the given node.  
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Equation (3.801) may also be written as: 
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∂ ∂ ∂ ∂
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∫

∫ ∫∫ ∫∫ =

 (3.802) 
 
Equation (3.802) is the simplest form of the NM-WCIM. It can be solved for unbroken 

waves approaching a linear beach where there is no reflection of waves by obstacles. The 

following sections extend this equation to a form that can be used where the downwave 

boundary of the model area is varying in shape and where there are reflecting and 

radiating boundaries. To solve for velocity potential using Equation (3.802) it is necessary 

to isolate the real and imaginary components of the equation and solve an equation for the 

real components as follows: 



WAVE-CURRENT INTERACTION MODEL  C. Newell 
 

 
 224 

2 1 1

1 1 1

1 1

2

2

J I J J
jI J J I J

j j k k
j j k i kA A A

J J J
I J I J I Jk k

j j
i k j k k kA A A

I J J
J I J

g j k
k k j kA A

UN N N NU N dA U U dA U N dA
x x x x x

U UN N NU N dA U N dA g N dA
x x x x x x

N N NCC dA U U N dA
x x x x

ω φ φ φ

ηφ φ φ

ηφ λ φ

∂∂ ∂ ∂ ∂− −
∂ ∂ ∂ ∂ ∂

⎛ ⎞∂ ∂∂ ∂ ∂ ∂− + + ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
∂ ∂ ∂ ∂′+ −
∂ ∂ ∂ ∂

∫∫ ∫∫ ∫∫

∫∫ ∫∫ ∫∫

∫∫ 2
1

2 2 2
1 1 1

2

2 1

1 1
0 0

2

1
2 2

I J J

A

I J J I J J I J J
g

A A A

I J J I J J I J Jk
j j j k

j j k j kA A A

l l
g gI J J I J J I J

g

N N dA

CC N N dA Q N N dA N N dA

UU N N dA U N N dA U U N N dA
x x x x x

CC CC
L L dS L L dS CC L L

n n

ω φ

κ φ σ φ σ φ

η η ηωλ φ λ φ λ φ

κ φ φ κ
κ

−

′′− − +

∂∂ ∂ ∂′ ′ ′− − −
∂ ∂ ∂ ∂ ∂

∂∂+ + +
∂ ∂

∫∫ ∫∫

∫∫ ∫∫ ∫∫

∫∫ ∫∫ ∫∫

∫ ∫

1

( )

2
0

2 2 2
00

2
2 12

0

2 2 2

0
2

l
J

lJ J I J
g g gI J I J J

l

l J
g I J I J J I J J

j k j k U kj
k kA A

dS

CC CC CCL L L LL L dS
S S S S

CC LL dS U U N N dA U U Q N N dA
S S x x

φ

φ φ φ
κ κ κ

κ η ηφ κ φ φ
κ

∂ ∂ ∂ ∂+ − −
∂ ∂ ∂ ∂

⎛ ⎞∂ ∂ ∂ ∂ ′′+ + +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

∫

∫
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 (3.803) 
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3.11.3 A Generalised Curvilinear Downwave Absorbing Boundary Condition 

A more useful absorbing boundary condition can be obtained for downwave conditions 

where the “beach” boundary is not a straight line shape. Clyne (2008) develops an 

absorbing downstream boundary condition using generalised curvilinear coordinates that 

can be used on any shape of downstream boundary. The usefulness and accuracy of this 

methodology is examined and proved in Clyne (2008). It is possible to apply the same 

type of absorbing boundary condition to the 2d-NM-WCIM of this project.  

 

3.11.3.1 Generalised Curvilinear Coordinate System 

In order to obtain a boundary condition in a set of generalised curvilinear coordinates the 

system of coordinates must first be defined, following Clyne (2008) : 

 

 
Figure 3.12 – Sketch of Boundary Curve to the region R∂ R  
 

Figure 3.12 shows a boundary curve  that represents the shoreline. The distance along 

this curve, or any of the family of curves parallel to it, can be defined using the variable s. 

A second family of curves can be defined as those perpendicular to the original boundary 

curves and its parallels. Each member of this family will have a fixed value of s and 

distance along them may be measured using the variable n. The curve  can be 

represented by the vector r as follows: 

R∂

R∂

( ) ( )ˆ i
is x s=r e ,   (3.804) 1, 2i =

Where  is a unit vector. ê

 
 225 
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The tangent to the boundary curve  can also be defined: R∂

d
ds

= rt ,  where  (3.805) 1⋅ =t t

 
The unit normal vector n points in the outward direction from the region enclosed by the 

curve  and the unit tangent vector t points in the direction of increasing values of s. 

Hence the position vector of any point in the domain, , may be expressed as: 

R∂

( ),n sR

( ) ( ) ( ),n s s n s= +R r n  (3.806) 

 
The partial derivative of Equation (3.806) with respect to n gives a first basis vector for a 

set of generalised curvilinear coordinates: 

1n
∂ = =
∂
R n E  (3.807) 

 
Similarly the second basis vector can be obtained by taking the partial derivative with 

respect to s: 

2
d d dn n

s ds ds ds
∂ = + = + =
∂
R r n nt E  (3.808) 

 
Metric tensors can now be defined in terms of the basis vectors: 

11 1 1 1g = ⋅ = ⋅ =E E n n  (3.809) 

2
22 2 2 2 d dg n n

ds ds ds
= ⋅ = ⋅ + ⋅ + ⋅n nE E t t t dn  (3.810) 

2
2

22 1 2 d dg n n
ds ds

⎛ ⎞= + ⋅ + ⎜ ⎟
⎝ ⎠

n nt  (3.811) 

 

12 21 1 2 0dg g n
ds

= = ⋅ = ⋅ + ⋅ =nE E n t n  (3.812) 

12 21 0g g= =  (3.813) 

The metric tensors 12g  and 21g  are zero because n is perpendicular to t and 
d
ds
n

. 
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3.11.3.2 Transformation of the Helmholtz Type Elliptic Mild-Slope Wave Equation 

to a Generalised Curvilinear Coordinate System 

 

The downwave boundary condition will be constructed for use in the absence of a current. 

In the absence of a current Equation (3.741) becomes the Helmholtz type elliptic solution 

to the mild-slope equation of Clyne (2008): 
2

2 0
k k

K
x x

φ φ
′∂ ′+ =

∂ ∂
 (3.814) 

Recalling from Equation (3.740): 
2 2

2 21 g

k k gg

CC QK
x x CCC

σκ
∂ ′′

= − + +
∂ ∂ C

 

 
The  of this project is different to that of Clyne (2008). If set-up was to be ignored the 

 value here would be the same as that of Clyne (2008). 

K

K

 
Alternatively Equation (3.814) may be expressed as: 

2 2 0Kφ φ′ ′∇ + =  (3.815) 

In order to express Equation (3.815) in terms of the system of generalised curvilinear 

coordinates described above it will be necessary to use the tensor methods of Heinbockel 

(2001) and Clyne (2008). φ′∇  can be expressed in tensor notation as the covariant vector: 

,i ix
φφ ′∂′ =

∂
 (3.816) 

 
The contravariant form of this vector is then: 

ij
ig

x
φ′∂

∂
 (3.817) 

Where is the metric tensor, and hence  is the conjugate metric tensor. ijg ijg

Heinbockel (2001) and Clyne (2008) develop an expression for the divergence of any 

vector A in the above set of generalised curvilinear coordinates. Using tensor notation this 

is as follows: 

(,
1m

m ma
x
∂=

∂
g

g
)ma  (3.818) 

Where  is the divergence of the vector A and  is the determinant of the metric tensor 

matrix.  

,
m
ma g
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That is:
 

( )
( )i

ig Gα
α=g  (3.819) 

where is the cofactor of ( )iGα gαβ . 

 

The Laplacian term in Equation (3.815), 2φ′∇ , can be expressed as φ′∇ ⋅∇ , that is the 

divergence of φ′∇ . Hence the vector A can be replaced by the contravariant form of ,iφ′  in 

order to get the divergence of φ′∇  as follows:   

j ij
ia g

x
φ′∂=

∂
 (3.820) 

 
It is then possible to use Equation (3.818) to express 2φ′∇  as follows: 

2
,

1m
m

ij
j ia g

x x
φφ ′∂ ∂⎛′= ∇ = ⎜∂ ∂⎝ ⎠

g
g

⎞
⎟  (3.821) 

  
For an orthogonal two-dimensional system for ,   and hence the 

determinant of the metric tensor matrix will be: 

0ijg = i j≠ , 1, 2i j =

11 22g g=g  (3.822) 

 
Substituting Equation (3.822) into Equation (3.821) gives: 

 2
11 22

11 22

1 ij
j ig g g

x xg g
φφ ′∂ ⎛′∇ = ⎜∂ ∂⎝ ⎠

∂ ⎞
⎟  (3.823) 

 
Equation (3.823) may be expanded as: 

11 21
11 221 1

2

12 2211 22
11 222 1

1
g g g g

x x
g g

g g g g
x x

φ φ

φ
φ φ

⎡ ⎤′ ′∂ ⎛ ∂ ∂ ⎞⎛ ⎞+⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂⎝⎝⎢′∇ =
⎢ ′ ′∂ ⎛ ∂ ∂ ⎞⎛ ⎞+⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

2

2

x

x

∂ ⎠⎠ ⎥
⎥

∂

 (3.824) 

 
Further expansion and simplification of Equation (3.824) gives 

2 11
11 22 11 221 1 2

11 22

1 g g g g g g
x x xg g

φφ ′⎡ ∂ ∂ ∂ ⎤⎛ ⎞ ⎛′∇ = +⎜ ⎟ ⎜⎢∂ ∂ ∂⎝ ⎠ ⎝⎣ ⎦
22

2x
φ ′∂ ⎞

⎟⎥∂ ⎠
 (3.825) 
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( ) ( ) ( ) ( ) ( ) ( )1 1 1 11 12 2 2 2 2
11 22 11 11 22 221 1 2

11 22

1 g g g g g g
x x xg g

φ φφ − −′ ′⎡ ∂ ∂ ∂ ⎤⎛ ⎞ ⎛′∇ = +⎜ ⎟ ⎜⎢ ⎥∂ ∂ ∂⎝ ⎠ ⎝⎣ ⎦
2x

∂ ⎞
⎟∂ ⎠

 (3.826) 

 

( ) ( ) ( ) ( )1 1 1 12 2 2 2 2
11 22 11 221 1 2

11 22

1 g g g g
x x xg g

φφ − ′⎡ ∂ ∂ ∂ ⎤⎛ ⎞ ⎛′∇ = +⎜ ⎟ ⎜⎢ ⎥∂ ∂ ∂⎝ ⎠ ⎝⎣ ⎦
2x

φ− ′∂ ⎞
⎟∂ ⎠

 (3.827) 

 
This gives the following expression of the Laplacian term of the Helmholtz form of the 

elliptic mild-slope equation in generalised curvilinear coordinates. 

2 22 11
1 1 2

11 2211 22

1 g g
x g x x g xg g

φφ
⎡ ⎤⎛ ⎞ ⎛′∂ ∂ ∂ ∂′∇ = +⎢ ⎜ ⎟ ⎜⎜ ⎟ ⎜∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝⎣ ⎦

2

φ ⎞′
⎥⎟⎟
⎠

 (3.828) 

 
Equation (3.828) can now be linked with the system of generalised curvilinear 

coordinates discussed in Section 3.11.3.1 above.  Substituting Equation (3.809) into 

Equation (3.828) gives: 

2
221 1 2

2222

1 g
x x x g xg

φφ
⎡ ⎤⎛′∂ ∂ ∂ ∂⎛ ⎞′∇ = +⎢ ⎜⎜ ⎟ ⎜∂ ∂ ∂ ∂⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

2

1 φ ⎞′
⎥⎟⎟  (3.829) 

 
Expansion of Equation (3.829) yields: 

( ) ( )
2 2

222
22 2 21 1 2 21 2

22 2222

1 g
g

x x x x g gg x x

φ φ φ φφ
⎡ ⎤⎛ ⎞∂′ ′ ′ ′∂ ∂ ∂ ∂ ∂⎢ ⎥′∇ = + + +⎜ ⎟⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂∂ ∂⎝ ⎠⎣ ⎦

1 1  (3.830) 

 
Using Equation (3.811) the following relationships can be obtained: 

1
2 2

2
22 1 2 d dg n n

ds ds
⎛ ⎞⎛ ⎞= + ⋅ +⎜ ⎜ ⎟⎜ ⎝ ⎠⎝ ⎠

n nt ⎟⎟  (3.831) 

1
2 2

2

22

1 1 2 d dn n
ds dsg

−
⎛ ⎞⎛ ⎞= + ⋅ +⎜ ⎜ ⎟⎜ ⎝ ⎠⎝ ⎠

n nt ⎟⎟  (3.832) 

 

( )
2

2
221 1 2 d dg n n

x n ds d
∂ ∂ ⎛ ⎞= + ⋅ + ⎜ ⎟∂ ∂ ⎝ ⎠

n nt
s

 (3.833) 

( )
1

2 2 2
2

221

1 2 2 1 2
2

d d d dg n n n
x ds ds ds d

−
⎛ ⎞⎛∂ ⎛ ⎞ ⎛ ⎞= ⋅ + + ⋅ +⎜ ⎟⎜⎜ ⎟ ⎜ ⎟⎜ ⎟⎜∂ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎝

n n n nt t
s

⎞
⎟⎟
⎠

 (3.834) 
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1
2 2

2
2

22

1 1 2 d dn n
x s ds dsg

−
⎛ ⎞ ⎛ ⎞∂ ∂ ⎛ ⎞= + ⋅ +⎜ ⎟ ⎜ ⎜ ⎟⎜⎜ ⎟∂ ∂ ⎝ ⎠⎝ ⎠⎝ ⎠

n nt ⎟⎟  (3.835) 

3
2 2 2

2 2
2

22

1 1 1 2 1 2
2

d d d dn n n n
x s ds ds ds dsg

−
⎛ ⎞ ⎛ ⎞⎛ ⎞∂ ∂ ⎛ ⎞ ⎛ ⎞= − + ⋅ + + ⋅ +⎜ ⎟ ⎜ ⎟⎜⎜ ⎟ ⎜ ⎟⎜ ⎟⎜⎜ ⎟∂ ∂ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠

n n n nt t ⎟⎟  (3.836) 

3
2 22 2

2
2 2 2

22

1 . 1 2d d d d d d dn n n n
x ds ds ds ds ds ds dg

−
⎛ ⎞ ⎛ ⎞⎛ ⎞∂ ⎛ ⎞= − + ⋅ + ⋅ + ⋅ +⎜ ⎟ ⎜⎜ ⎟ ⎜ ⎟⎜⎜ ⎟∂ ⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠

t n n n n n nt t
s

⎟⎟  (3.837) 

 
In this case the generalised equation will only be needed for the absorbing boundary 

condition and hence the terms above can be limited to the boundary  where . 

Therefore Equation (3.831) becomes: 

R∂ 0n =

22 1g =  for  (3.838) 0n =

 
Equation (3.832) becomes: 

22

1 1
g

=  for  (3.839) 0n =

 
Equation (3.834) becomes: 

( )221

dg
x ds
∂ = ⋅

∂
nt  for  (3.840) 0n =

 
Equation (3.837) becomes: 

2
22

1 0
x g

⎛ ⎞∂ =⎜ ⎟⎜ ⎟∂ ⎝ ⎠
 for  (3.841) 0n =

 
Substitution of Equations (3.838), (3.839), (3.840) and (3.841) into Equation (3.830) 

gives: 

( ) ( )
2 2 2 2

2
2 2 2 2 21 2

d
ds x s n ds nx x

dφ φ φ φ φ φφ ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂′∇ = + + ⋅ = + + ⋅
∂ ∂ ∂ ∂∂ ∂

nt
′∂nt  (3.842) 

 
Equation (3.842) can now be substituted into Equation (3.815) to give an elliptic extended 

mild-slope equation in generalised curvilinear coordinates: 
2 2

2
2 2 0d K

s n ds n
φ φ φ φ′ ′ ′∂ ∂ ∂ ′+ + ⋅ + =

∂ ∂ ∂
nt  (3.843) 
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3.11.3.3 Transformation of the Non-Helmholtz Type Elliptic Mild-Slope Wave 

Equation to a Generalised Curvilinear Coordinate System 

The downwave boundary condition will be constructed for use in the absence of a current. 

In the absence of a current Equation (3.718) becomes: 

2 2 0g g
k k

CC CC Q
x x

φ φκ φσ
⎛ ⎞∂ ∂ ′′− − −⎜ ⎟∂ ∂⎝ ⎠

=  (3.844) 

 
Equation (3.844) can be rewritten as follows: 

2
21 0g

k k g k k

CC
K

x x CC x x
φ φ φ

∂∂ ∂ ′+ +
∂ ∂ ∂ ∂

=  (3.845) 

where: 
2

2 2

g

QK
CC
σκ ′′′ = +  (3.846) 

 
In order to express Equation (3.845) in terms of the system of generalised curvilinear 

coordinates described above it will be necessary to use the tensor methods of Heinbockel 

(2001) and Clyne (2008). φ∇  can be expressed in tensor notation as the covariant vector: 

,i ix
φφ ∂=

∂
 (3.847) 

 
The contravariant form of this vector is then: 

ij
ig

x
φ∂

∂
 (3.848) 

Where is the metric tensor, and hence  is the conjugate metric tensor. ijg ijg

 

The Laplacian term in Equation (3.845), 
2

k kx x
φ∂

∂ ∂
, can be expressed as φ∇ ⋅∇ , that is the 

divergence of φ∇ . Hence the vector A in Equation (3.818) can be replaced by the 

contravariant form of ,iφ  in order to get the divergence of φ∇  as follows:   

j ij
ia g

x
φ∂=

∂
 (3.849) 
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It is then possible to use Equation (3.818) to express 2φ∇  as follows: 

2
,

1m
m

ij
j ia g

x x
φφ ∂ ∂⎛= ∇ = ⎜∂ ∂⎝ ⎠

g
g

⎞
⎟  (3.850) 

  
For an orthogonal two-dimensional system for ,   and hence the 

determinant of the metric tensor matrix will be: 

0ijg = i j≠ , 1, 2i j =

11 22g g=g  (3.851) 

 
Substituting Equation (3.822) into Equation (3.850) gives: 

 2
11 22

11 22

1 ij
j ig g g

x xg g
φφ ∂ ⎛∇ = ⎜∂ ∂⎝ ⎠

∂ ⎞
⎟  (3.852) 

 
Equation (3.852) may be expanded as: 

11 21
11 221 1

2

12 2211 22
11 222 1

1
g g g g

x x
g g

g g g g
x x

φ φ

φ
φ φ

⎡ ⎤∂ ⎛ ∂ ∂ ⎞⎛ ⎞+⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂⎝⎝⎢∇ =
⎢ ∂ ⎛ ∂ ∂ ⎞⎛ ⎞+⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

2

2

x

x

∂ ⎠⎠ ⎥
⎥

∂

 (3.853) 

 
Further expansion and simplification of Equation (3.853) gives 

2 11
11 22 11 221 1 2

11 22

1 g g g g g g
x x xg g

22
2x

φ φφ ⎡ ∂ ∂ ∂ ⎤⎛ ⎞ ⎛∇ = +⎜ ⎟ ⎜⎢∂ ∂ ∂⎝ ⎠ ⎝⎣ ⎦

∂ ⎞
⎟⎥∂ ⎠

 (3.854) 

( ) ( ) ( ) ( ) ( ) ( )1 1 1 11 12 2 2 2 2
11 22 11 11 22 221 1 2

11 22

1 g g g g g g
x x xg g 2x

φ φφ − −⎡ ∂ ∂ ∂ ⎤⎛ ⎞ ⎛∇ = +⎜ ⎟ ⎜⎢ ⎥∂ ∂ ∂⎝ ⎠ ⎝⎣ ⎦

∂ ⎞
⎟∂ ⎠

 (3.855) 

( ) ( ) ( ) ( )1 1 1 12 2 2 2 2
11 22 11 221 1 2

11 22

1 g g g g
x x xg g 2x

φ φφ −⎡ ∂ ∂ ∂ ⎤⎛ ⎞ ⎛∇ = +⎜ ⎟ ⎜⎢ ⎥∂ ∂ ∂⎝ ⎠ ⎝⎣ ⎦

− ∂ ⎞
⎟∂ ⎠

 (3.856) 

 
 

 

This gives the following expression of the Laplacian term of the Non-Helmholtz form of 

the elliptic mild-slope equation in generalised curvilinear coordinates. 

2 22 11
1 1 2

11 2211 22

1 g g
x g x x g xg g 2

φ φφ
⎡ ⎤⎛ ⎞ ⎛∂ ∂ ∂ ∂∇ = +⎢ ⎜ ⎟ ⎜⎜ ⎟ ⎜∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝⎣ ⎦

⎞
⎥⎟⎟
⎠

 (3.857) 
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Equation (3.857) can now be linked with the system of generalised curvilinear 

coordinates discussed in Section 3.11.3.1 above.  Substituting Equation (3.809) into 

Equation (3.857) gives: 

2
221 1 2

2222

1 g
x x x g xg

φφ
⎡ ⎤⎛′∂ ∂ ∂ ∂⎛ ⎞′∇ = +⎢ ⎜⎜ ⎟ ⎜∂ ∂ ∂ ∂⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

2

1 φ ⎞′
⎥⎟⎟  (3.858) 

 
 

Expansion of Equation (3.858) yields: 

( ) ( )
2 2

222
22 2 21 1 2 21 2

22 2222

1 g
g

x x x x g gg x x

φ φ φ φφ
⎡ ⎤⎛ ⎞∂′ ′ ′ ′∂ ∂ ∂ ∂ ∂⎢ ⎥∇ = + + +⎜ ⎟⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂∂ ∂⎝ ⎠⎣ ⎦

1 1  (3.859) 

 
 

Substitution of Equations (3.838), (3.839), (3.840) and (3.841) into Equation (3.859) 

gives: 

( ) ( )
2 2 2 2

2
2 2 2 2 21 2

d
ds x s n ds nx x

dφ φ φ φ φ φφ ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂∇ = + + ⋅ = + + ⋅
∂ ∂ ∂ ∂∂ ∂

nt
′∂nt  (3.860) 

 
Using Equation (3.847) the following can be stated: 

[ ] , jj
φ φ∇ =  (3.861) 

 
The contravariant form of the tensor notation for gradients from Heinbockel (2001) can 

be used to state the following: 

( ) ( ) ,
i im

g g mCC g CC⎡ ⎤∇ =⎣ ⎦  (3.862) 

 

Using Equations (3.861) and (3.862) gives the following: 

( ) ( ) ( )
. , , gim im

g g m i m

CC
CC g CC g ix x

φφ φ
∂ ∂∇ ∇ = =

∂ ∂
 (3.863) 

 

Equation (3.863) can be expanded as follows: 

( ) ( ) ( ) ( ) ( )11 12 21 22
1 1 2 1 1 2 2

g g g gim
m i

CC CC CC CC CC
g g g g g 2

g

x x x x x x x x x x
φ φ φ φ φ∂ ∂ ∂ ∂ ∂∂ ∂ ∂ ∂= + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
∂

 (3.864) 
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Equation (3.864) can be rewritten to yield: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1
11 121 1 2 1

1 1
21 221 2 2

g gim
m i

g g

CC CC CC
g g g

2

g

x x x x x
CC CC

g g

x

x x x x

φ φ φ

φ φ

− −

− −

∂ ∂ ∂∂ ∂= +
∂ ∂ ∂ ∂ ∂ ∂

∂ ∂∂ ∂+ +
∂ ∂ ∂ ∂

∂

 (3.865) 

 Equation (3.865) can now be linked with the system of generalised curvilinear 

coordinates discussed in Section 3.11.3.1 above.  Substituting Equations (3.809), (3.811) 

and (3.813) into Equation (3.865) gives: 

 

( ) ( ) ( )12
21 2g gim

m i

CC CC CCd dg n n g

x x s s ds ds n n
φ φ φ

−
∂ ∂ ∂⎛ ⎞∂ ∂ ⎛ ⎞= + + ⋅ +⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠

n nt ∂  (3.866) 

 

For  this becomes: 0n =

( ) ( ) ( )g gim
m i

CC CC CC
g g

x x s s n n
φ φ φ∂ ∂ ∂∂ ∂= +

∂ ∂ ∂ ∂ ∂ ∂
∂ 0n = at  (3.867) 

 

Using Equations (3.860) and (3.867) with Equation (3.845) gives a Non-Helmholtz 

elliptic extended mild-slope equation in generalised curvilinear coordinates: 

 ( ) ( ) ( ) ( )2 2
2

2 2 0g g
g g

CC CCd CC CC K
s n ds n s s n n
φ φ φ φ φ φ

∂ ∂∂ ∂ ∂ ∂ ∂ ′+ + ⋅ + + +
∂ ∂ ∂ ∂ ∂ ∂ ∂

nt =  (3.868) 

 

 

 

3.11.3.4 Parabolisation of Elliptic Mild-Slope Wave Equation in Generalised 

Curvilinear Coordinate System 

The process for developing an absorbing downwave boundary for a generalised set of 

curvilinear coordinates is the same as that undertaken for Cartesian coordinates in Section 

3.11.1. The elliptic equation in the generalised set of coordinates must be simplified into a 

parabolic approximation to the mild-slope equation in the generalised curvilinear 

coordinate system. A similar wave solution to that of Section 3.11.1 is examined. The 

same wave is selected although this time it must be expressed in Helmholtz form. 

Recalling Equation (3.135): 
iSA e φ

φφ =  
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Also recalling Equation (3.721): 

gCC
φ φ′

=  

 
Combining these two equations yields:  

iS

g

A e
CC

φ
φ

φ′
=  (3.869) 

 
 

Equation (3.869) may be rearranged as follows: 
iS

gCC A e φ
φφ′ =  (3.870) 

iSA e φ
φφ′ ′=  (3.871) 

 

The first and second derivatives of the scaled velocity potential, φ′ may now be obtained 

in the same fashion as those for the unscaled velocity potential, φ  in Section 3.11.1. 

iS iSSA
e iA e

n n n
φφ φφ

φ
φ ∂′∂′∂ ′= +

∂ ∂ ∂
 (3.872) 

 
Equation (3.872) can be rewritten as: 

iS SA
e i

n n n
φφφ φ φ

∂′∂ ′∂ ′= −
∂ ∂ ∂

 (3.873) 

 
 

Substitution of Equation (3.871) into Equation (3.873) yields: 

SA
i

n n A n
φφ

φ

φ φ φ
∂′∂′ ′∂ ′= +

′∂ ∂ ∂
 (3.874) 

 
The second derivative of the scaled velocity potential with respect to n is: 

222

2 2 22iS iS iS iSS S S SA A
e i e iA e A e

n n n n n n n
φ φ φ φφ φ φ φφ φ

φ φ
φ ∂ ∂ ∂ ∂′ ′∂ ∂′∂ ′ ′= + + −

∂ ∂ ∂ ∂ ∂ ∂ ∂
 (3.875) 

 
Substitution of Equations (3.873) and (3.871) into Equation (3.875) gives: 

222

2 2 22
S S S S SA

i i i
n n A n n n n n n

φ φ φ φ φφ

φ

φ φ φ φ φ φ
∂ ∂ ∂ ∂ ∂′ ⎛ ⎞∂′ ′ ′∂ ∂ ′ ′ ′= + − + −⎜ ⎟⎜ ⎟′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

 (3.876) 
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2 222

2 2 2
S SA

i
n n A n n n n2

S
iφ φ φφ

φ

φ φ φ φ φ
∂ ∂ ∂′ ⎛ ⎞∂′ ′ ′∂ ∂ ′ ′= + + +⎜ ⎟⎜ ⎟′∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

 (3.877) 

 
Substitution of Equation (3.877) into the Helmholtz form of the elliptic mild-slope 

solution of Equation (3.843) gives: 
2 222

2
2 2 22 0

S S SA di i
s n A n n n n ds n

φ φ φφ

φ

φ φ φ φφ φ φ
∂ ∂ ∂′ ⎛ ⎞∂′ ′ ′ ′∂ ∂ ∂′ ′+ + + + + ⋅ +⎜ ⎟⎜ ⎟′∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

nt K ′ =  (3.878) 

Rearranging Equation (3.878) to isolate the derivative of the scaled velocity potential with 

respect to n yields: 
2 222

2
2 2 22 0

S S SA di i
s n A n n ds n n

φ φ φφ

φ

φ φ φ φ φ φ
∂ ∂ ∂′ ⎛ ⎞ ⎛ ⎞∂′ ′ ′∂ ∂ ′ ′+ + + ⋅ + + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟′∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

nt K ′ =  (3.879) 

2 222
2

2 2 22
S SAdi

n n ds s n A n n
φ φ φφ

φ

φ φ φ S
i Kφ φ φ

∂ ∂′⎛ ⎞ ⎛ ⎞∂′ ′ ′∂ ∂ ′ ′+ ⋅ = − − − − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟′∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

nt
∂

′  (3.880) 

1 2 22 2
2

2 2

12
S S SAd i i

n ds n n A n n s
φ φ φφ

φ

φ
2K φ

− ⎡ ⎤∂ ∂ ∂′⎛ ⎞ ⎛ ⎞∂′∂ ∂⎢ ⎥ ′= ⋅ + − − − − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟′∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

nt  (3.881) 

 
Equation (3.881) may be rationalised by multiplying the right hand side of the equation 

by the complex conjugate of the inverse term in curved brackets: 
2 22 2

2
2 2

12
S S SAd i i

n ds n n A n n s
φ φ φφ

φ

φ
2Kψ φ

⎡ ⎤∂ ∂ ∂′⎛ ⎞ ⎛ ⎞∂′∂ ∂⎢ ⎥ ′= ⋅ − − − − − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟′∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

nt  (3.882) 

22

1

4
Sd

ds n
φ

ψ =
∂⎛ ⎞⎛ ⎞⋅ + ⎜ ⎟⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠

nt

 (3.883) 

As stated previously in Section 3.11.1. It can be assumed that at the downwave boundary 

where the wave is exiting the domain the shoaling and refraction process has caused the 

wave to be parallel to the beach boundary. This means the following assumption of 

Equation (3.648) can be made here also: 

S

n
φ κ

∂
=

∂
 

 
Substituting Equation (3.648) into Equation (3.882) gives the following: 

2 2
2 2

2

1ˆ 2
Ad i i K

n ds n A n s
φ

φ

φ
2

κψ κ κ φ
⎡ ⎤′∂′∂ ⎛ ⎞ ′= ⋅ − − − − − −⎢⎜ ⎟ ′∂ ∂ ∂⎝ ⎠ ⎢ ⎥⎣ ⎦

nt ∂ ∂
⎥∂

 (3.884) 
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2
2

1ˆ
4d

ds

ψ
κ

=
⎛ ⎞⋅ +⎜ ⎟
⎝ ⎠

nt

 (3.885) 

 
To finalise the creation of a parabolic approximation to the mild-slope equation the 

forward diffraction term in Equation (3.884) must now be dropped. This is the term 

containing the second derivative of the scaled amplitude of velocity potential (i.e. the first 

term inside the square brackets): 
2

2 2
2

ˆ 2d i i K
n ds n s
φ κψ κ κ φ′ ⎡∂ ∂⎛ ⎞ ′= ⋅ − − − − −⎜ ⎟ ⎢∂ ∂⎝ ⎠ ⎣ ⎦

nt
⎤∂
⎥∂

 (3.886) 

Equation (3.886) is an expression of 
n
φ′∂

∂
 in a generalised set of curvilinear coordinates, 

after Clyne (2008), and hence can be used for absorbing downwave boundary condition 

where the boundary is not of straight line shape. Equation (3.886) may be expressed more 

succinctly as: 

( )
2

2 2
2

ˆ 2i i K
n n
φ κ

s
ψ κ κ φ′ ⎡ ⎤∂ ∂ ′= ϒ − − − − −⎢∂ ∂⎣ ⎦

∂
⎥∂

 (3.887) 

 
Where: 

d
ds

ϒ = ⋅ nt  (3.888) 

2

1ˆ
4 2ψ
κ

=
ϒ +

 (3.889) 

 

If Equation (3.648) was not substituted into Equation (3.882) a more general form of 

Equation (3.887) would be obtained: 

  
2 2 2

2
2

ˆ 2
S S S

i i K
n n n n

φ φ φφ
2s

ψ φ
⎡ ⎤∂ ∂ ∂⎛ ⎞ ⎛ ⎞′∂ ∂⎢ ′= ϒ − − − − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

⎥  (3.890) 
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3.11.3.5 Alternative Parabolisation in General Coordinate System 

An alternative simpler parabolic solution can be obtained if the gradient of Aφ′  with 
respect to n is considered negligible Equation (3.874). This would lead to the following 
equation: 
 

S
i

n n
φφ φ

∂′∂ ′=
∂ ∂

 (3.891) 

 
Similarly the second derivative of the scaled velocity potential with respect to n would 

now become: 
22

2 2

iS iSS S S
iA e A e

n n n n
φ φ φφ φ

φ φ
φ ∂ ∂ ∂′∂ ′ ′= −

∂ ∂ ∂ ∂
 (3.892) 

 
Substitution of Equations (3.873) and (3.871) into Equation (3.892) gives: 

22

2 2

S S
i

n n n

S

n
φ φ φφ φ φ

∂ ∂ ∂′∂ ′ ′= −
∂ ∂ ∂ ∂

 (3.893) 
2 22

2

S S
i

n n 2n
φ φφ φ φ

∂ ∂⎛ ⎞′∂ ′ ′= +⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠
 (3.894) 

 
Substitution of Equation (3.877) into the Helmholtz form of the elliptic mild-slope 

solution of Equation (3.843) gives: 
2 22

2
2 2 0

S S di
s n n ds n

φ φφ φ φ φ
∂ ∂⎛ ⎞′∂ ′ ′+ + + ⋅ +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

nt Kφ′∂ ′ =  (3.895) 

Rearranging Equation (3.895) to isolate the derivative of the scaled velocity potential with 

respect to n yields: 
2 22

2
2

S Sd i K
ds n s n n

φ φφ φ
2φ φ φ

∂ ∂⎛ ⎞′ ′∂ ∂ ′ ′− ⋅ = + + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

nt ′  (3.896) 

2 21 2
2

2

S Sd i K
n ds s n n

φ φφ φ
2φ φ φ

− ⎡ ⎤∂ ∂⎛ ⎞′ ′∂ ∂⎛ ⎞ ⎢ ′ ′= ⋅ − − − −⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

nt ⎥′  (3.897) 

Equation (3.897) is an slightly less computationally demanding expression of 
n
φ′∂

∂
 than 

Equation (3.886). It can also be used for absorbing downwave boundary conditions where 

the boundary is not of straight line shape. Equation (3.897)  can be expressed as: 
2 2 2

2
2

1 S S
i K

n n n s
φ φφ

2 φ
⎡ ⎤∂ ∂⎛ ⎞′∂ ⎢ ′= − − − −⎜ ⎟⎜ ⎟∂ ϒ ∂ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

∂ ⎥  (3.898) 
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3.11.3.6 Parabolisation of Non-Helmholtz Elliptic Mild-Slope Wave Equation in 

Generalised Curvilinear Coordinate System 

The process for developing an absorbing downwave boundary for a generalised set of 

curvilinear coordinates is the same as that undertaken for Cartesian coordinates in Section 

3.11.1. The Non-Helmholtz style elliptic equation in the generalised set of coordinates 

must be simplified into a parabolic approximation to the mild-slope equation in the 

generalised curvilinear coordinate system. A similar wave solution to that of Section 

3.11.1 is examined. Recalling Equation (3.135): 
iSA e φ

φφ =  
 
 
The first and second derivatives of the velocity potential, φ may now be obtained as 

follows: 

iS iSSA
e iA e

n n n
φφ φφ

φ
φ ∂∂∂ = +

∂ ∂ ∂
 (3.899) 

 
Equation (3.899) can be rewritten as: 

iS SA
e i

n n n
φφφ φ φ

∂∂ ∂= −
∂ ∂ ∂

 (3.900) 

 
 

Using Equation (3.135) with Equation (3.900) yields: 

SA
i

n n A n
φφ

φ

φ φ φ
∂∂∂ = +

∂ ∂ ∂
 (3.901) 

 
The second derivative of the scaled velocity potential with respect to n is: 

222

2 2 22iS iS iS iSS S S SA A
e i e iA e A e

n n n n n n n
φ φ φ φφ φ φ φφ φ

φ φ
φ ∂ ∂ ∂ ∂∂ ∂∂ = + + −

∂ ∂ ∂ ∂ ∂ ∂ ∂
 (3.902) 

 
Substitution of Equations (3.900) and (3.901) into Equation (3.902) gives: 

222

2 2 22
S S S S SA

i i i
n n A n n n n n n

φ φ φ φ φφ

φ

φ φ φ φ φ φ
∂ ∂ ∂ ∂ ∂⎛ ⎞∂∂ ∂ ′= + − + −⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

 (3.903) 

2 222

2 2 2
S SA

i
n n A n n n n2

S
iφ φ φφ

φ

φ φ φ φ φ
∂ ∂ ∂⎛ ⎞∂∂ ∂= + + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

 (3.904) 
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Substitution of Equation (3.904) into the elliptic mild-slope solution of Equation (3.868) 

gives: 

( ) ( ) ( ) ( )

2 222

2 2 2

2

2

0g g
g g

S S SA
i i

s n A n n n n

CC CCd CC CC K
ds n s s n n

φ φ φφ

φ

φ φ φ φ φ

φ φ φ φ

∂ ∂ ∂⎛ ⎞∂∂ ∂+ + + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

∂ ∂∂ ∂ ∂ ′+ ⋅ + + +
∂ ∂ ∂ ∂ ∂

nt =

 (3.905) 

Rearranging Equation (3.905) to isolate the derivative of the scaled velocity potential with 

respect to n yields: 

( ) ( )

( ) ( )

2 222
2

2 2 2

2

g
g

g
g

S S CCA
i CC

s n A n n s s

S CCdi CC
n n ds n n n

φ φ

φ

φ

φ

φ φ φ Kφ φ φ

φ φ φ

∂ ∂ ∂⎛ ⎞∂∂ ∂ ′+ + + + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
∂ ∂∂ ∂ ∂= − − ⋅ −

∂ ∂ ∂ ∂ ∂
nt

 (3.906) 

 

( )

( ) ( )2 222
2

2 2 2

2 g
g

g
g

S CCdi CC
n n ds n

S S CCA
i CC

s n A n n s s

φ

φ φφ

φ

φ

φ φ φ Kφ φ φ

⎛ ⎞∂ ∂∂ ⎜ ⎟+ ⋅ +
⎜ ⎟∂ ∂ ∂⎝ ⎠

∂ ∂ ∂⎛ ⎞∂∂ ∂ ′= − − − − − −⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

nt
 (3.907) 

 

( )

( ) ( )

222
1

2 2

2
2

2

2 g
g

g
g

SA
S CC s n A ndi CC

n n ds n S CC
i CC K

n s s

φ

φ

φ

φ

φ

φ φ φ
φ

φφ φ

−
⎡ ⎤∂⎛ ⎞∂∂⎢ ⎥− − − ⎜ ⎟⎛ ⎞ ⎜ ⎟∂ ∂ ∂ ∂ ∂∂ ⎢ ⎥⎝ ⎠⎜ ⎟= + ⋅ + ⎢ ⎥⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎢ ⎥∂ ′− − −⎢ ⎥∂ ∂ ∂⎣ ⎦

nt  (3.908) 

 
As stated previously in Section 3.11.1. It can be assumed that at the downwave boundary 

where the wave is exiting the domain the shoaling and refraction process has caused the 

wave to be parallel to the beach boundary. This means the following assumption of 

Equation (3.648) can be made here also: 

S

n
φ κ

∂
=

∂
 

 
Substituting Equation (3.648) into Equation (3.908) gives the following: 

( )

( ) ( )

2
21

2

2
2

2

2 g
g

g
g

A
i

CC n A ndi CC
n ds n CC

K CC
s s s

φ

φ

φ κφκ φ
φ κ

φ φφ

−
⎡ ⎤∂ ∂− − −⎢ ⎥⎛ ⎞∂ ∂ ∂∂ ⎢⎜ ⎟= + ⋅ + ⎢⎜ ⎟∂ ∂ ∂∂ ∂⎝ ⎠ ⎢ ⎥′− − −⎢ ⎥∂ ∂⎣ ⎦

nt ⎥
⎥

∂

 (3.909) 
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To finalise the creation of a parabolic approximation to the mild-slope equation the 

forward diffraction term in Equation (3.909) must now be dropped. This is the term 

containing the second derivative of the amplitude of velocity potential (i.e. the first term 

inside the square brackets): 

( )
( ) ( )

2
2 21

2

2 g
g

g
g

i KCC ndi CC
n ds n CC

CC
s s

κ
s
φφκ φ φ

φ κ
φ

−
⎡ ⎤∂ ∂′− − − −⎢ ⎥⎛ ⎞∂ ∂∂ ∂⎢ ⎥⎜ ⎟= + ⋅ +

⎜ ⎟ ⎢ ⎥∂ ∂ ∂ ∂⎝ ⎠ −⎢ ⎥
∂ ∂⎣ ⎦

nt  (3.910) 

Equation (3.910) is an expression of 
n
φ∂

∂
 in a generalised set of curvilinear coordinates. It 

can be used for absorbing downwave boundary condition where the boundary is not of 

straight line shape. Equation (3.910) may be expressed more succinctly as: 

( )
( ) ( )

2
2 21

2

2 g
g

g
g

i KCC n
i CC

n n CC
CC

s s

κ
s
φφκ φ φ

φ κ
φ

−
⎡ ⎤∂ ∂′− − − −⎢ ⎥⎛ ⎞∂ ∂∂ ∂⎢ ⎥⎜ ⎟= + ϒ +

⎜ ⎟ ⎢ ⎥∂ ∂ ∂ ∂⎝ ⎠ −⎢ ⎥
∂ ∂⎣ ⎦

 (3.911) 

 
Where: 

d
ds

ϒ = ⋅ nt  (3.912) 

 

If Equation (3.648) was not substituted into Equation (3.908) a more general form of 

Equation (3.911) would be obtained: 

( )

( ) ( )

2 2 2
21

2

2 g
g

g
g

S S
i KS CC n n

i CC
n n n CC

CC
s s

φ φ

φ
2s
φφ φ φ

φ

φ

−
⎡ ⎤∂ ∂⎛ ⎞ ∂⎢ ⎥′− − − −⎜ ⎟⎛ ⎞ ⎜ ⎟∂ ∂ ∂ ∂ ∂∂ ⎢ ⎥⎝ ⎠⎜ ⎟= + ϒ + ⎢ ⎥⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎢ ⎥∂−⎢ ⎥∂ ∂⎣ ⎦

 (3.913) 
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3.11.3.7 Absorbing Parabolic Downwave Boundary Condition 

Using Equation (3.887) it is now possible to examine how the boundary terms of 

Equation (3.754) would be affected by an absorbing parabolic downwave boundary 

condition in general curvilinear coordinates, : 2Γ

( )
2

2
2 2

2
ˆ 2I I

S

W dS W i i K d
n n
φ κψ κ κ φ

Γ

⎧ ⎫′ ⎡ ⎤∂ ∂⎪ ′= ϒ − − − − −⎨ ⎢∂ ∂⎪ ⎪⎣ ⎦⎩ ⎭
∫ ∫ S

s
∂ ⎪

⎬⎥∂
 (3.914) 

 
Equation (3.914) can be expanded to: 

2

2
2 2

2

2
3 2

2

ˆ
2 2 2 2

I I

S

i K
n sW dS W d

n
i i K i

n s

κ φκ φ φ φφ ψ
κ φκ φ κ φ κ φ κΓ

⎧ ⎫′⎡ ⎤∂ ∂′ ′ ′−ϒ − ϒ − ϒ − ϒ⎪ ⎪⎢ ⎥′∂ ⎪ ⎪∂ ∂⎢ ⎥= ⎨ ⎬∂ ′∂ ∂⎢ ⎥⎪ ⎪′ ′ ′+ − + +⎢ ⎥⎪ ⎪∂ ∂⎣ ⎦⎩ ⎭

∫ ∫ S

2

 (3.915) 

 

Equation (3.915) can now be expanded to explicitly express the velocity potential in 

terms of its real and imaginary components: 

1 iφ φ φ′ ′= + ′  (3.916) 

 
Substituting Equation (3.916) into Equation (3.915) yields: 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

2

2
1 2 1 2

2
2

1 2 1 22

3
1 2 1 2

2
2

1 2 1 22

ˆ
2 2

2 2

I I

S

i i i
n

K i i
sW dS W d

n i i i
n

i K i i i
s

κκ φ φ φ φ

φ φ φ φφ ψ
κκ φ φ κ φ φ

κ φ φ κ φ φ

Γ

⎧ ∂ ⎫⎡ ⎤′ ′ ′ ′−ϒ + − ϒ +⎪ ⎪⎢ ⎥∂⎪ ⎪⎢ ⎥
∂⎪ ⎪⎢ ⎥′ ′ ′ ′−ϒ + − ϒ +⎪ ⎪⎢ ⎥′∂ ⎪ ∂= ⎢⎨ ∂∂ ⎢ ⎥⎪ ⎪′ ′ ′ ′+ + − +

⎢ ⎥⎪ ⎪∂
⎢ ⎥⎪ ⎪∂⎢ ⎥⎪ ⎪′ ′ ′ ′+ + + +
⎢ ⎥⎪ ⎪∂⎣ ⎦⎩ ⎭

∫ ∫ S⎪
⎥⎬  (3.917) 

 
Expansion of Equation (3.917) gives the following: 

2 2
1 2 1 2

2 2
2 2 1 2

1 2 2 2

3 3
1 2 1 2

2 2
2 2 1 2

1 2 2 2

ˆ
2 2 2 2

2 2 2 2

I I

S

i i
n n

K i K i
s sW dS W

n i i
n n

i K K i
s s

κ κκ φ κ φ φ φ

φ φφ φφ ψ
κ κκ φ κ φ κ φ κ φ

φ φκ φ κ φ κ κ

⎧ ∂ ∂ ⎫⎡ ⎤′ ′ ′ ′−ϒ − ϒ − ϒ + ϒ⎪ ⎢ ⎥∂ ∂⎪ ⎢ ⎥
′ ′∂ ∂⎪ ⎢ ⎥′ ′−ϒ − ϒ − ϒ − ϒ⎪ ⎢ ⎥′∂ ⎪ ∂ ∂= ⎢ ⎥⎨ ∂ ∂∂ ⎢ ⎥⎪ ′ ′ ′ ′+ − − −

⎢ ⎥⎪ ∂ ∂
⎢ ⎥⎪ ′ ′∂ ∂⎢ ⎥⎪ ′ ′+ − + −
⎢ ⎥⎪ ∂ ∂⎣ ⎦⎩

∫
2

dS
Γ

⎪
⎪
⎪
⎪⎪
⎬
⎪
⎪
⎪
⎪
⎪⎭

∫  (3.918) 
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The real portion of Equation (3.918) may then examined as it will be the only part 

required for the finite element solution scheme: 

Real: 

2

2
2 2 1

1 2 1 2
1

2
3 2 2

2 1 2 2

ˆ
2 2 2 2

I I

S

K
n sW dS W d

n
K

n s

φκκ φ φ φφ ψ
φκκ φ κ φ κ φ κΓ

⎧ ⎫′⎡ ⎤∂∂′ ′ ′−ϒ + ϒ − ϒ − ϒ⎪ ⎪⎢ ⎥′∂ ⎪ ⎪∂ ∂⎢= ⎨ ⎬∂ ′∂∂⎢ ⎥⎪ ⎪′ ′ ′− − − −⎢ ⎥⎪ ⎪∂ ∂⎣ ⎦⎩ ⎭

∫ ∫ S⎥  (3.919) 
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3.11.3.8 Absorbing Parabolic Downwave Boundary Condition for Simpler Condition 

Using Equation (3.898) it is now possible to examine how the boundary terms of 

Equation (3.754) would be affected by an absorbing parabolic downwave boundary 

condition in general curvilinear coordinates, : 2Γ

2 2 2
2

2 2

1 S S
i K

n n n s
φ φφ φ

⎡ ⎤∂ ∂⎛ ⎞′∂ ∂⎢ ⎥ ′= − − − −⎜ ⎟⎜ ⎟∂ ϒ ∂ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

 

2

2 2 2
2

2 2

1I I

S

S S
W dS W i K d

n n n
φ φφ φ

Γ

⎧ ⎫⎡ ⎤∂ ∂⎛ ⎞′∂ ⎪ ⎢ ′= − − − −⎜ ⎟⎨ ⎜ ⎟∂ ϒ ∂ ∂ ∂⎢ ⎥⎪ ⎪⎝ ⎠⎣ ⎦⎩ ⎭
∫ ∫ S

s
∂ ⎪⎥⎬

2

 (3.920) 

 
Equation (3.920) can now be expanded to explicitly express the velocity potential in 

terms of its real and imaginary components: 

1 iφ φ φ′ ′= + ′  (3.921) 

 
Substituting Equation (3.921) into Equation (3.920) yields: 

( ) ( )

( ) ( )2

2 2

1 2 1 22

2
2

1 2 1 22

1I I

S

S S
i i i

n nW dS W d
n

K i i
s

φ φφ φ φ φφ

φ φ φ φ
Γ

⎧ ⎫⎡ ⎤∂ ∂⎛ ⎞⎪ ⎪⎢ ⎥′ ′ ′ ′− + − +⎜ ⎟⎜ ⎟′∂ ⎪ ∂ ∂⎢ ⎝ ⎠= ⎨ ⎢∂ ϒ⎪ ⎪∂⎢ ⎥′ ′ ′ ′− + − +⎪ ⎪⎢ ⎥∂⎣ ⎦⎩ ⎭

∫ ∫ S⎪⎥
⎬⎥  (3.922) 

 
Expansion of Equation (3.922) gives the following: 

2

2 2 2 2

1 2 1 22 2

2 2
2 2 1 2

1 2 2 2

1I I

S

S S S S
i i

n n n nW dS W d
n

K iK i
s s

φ φ φ φφ φ φ φφ

φ φφ φ
Γ

⎧ ⎫⎡ ⎤∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞⎪ ⎪⎢ ⎥′ ′ ′ ′− − − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟′∂ ⎪ ⎪∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠= ⎨ ⎬⎢ ⎥∂ ϒ⎪ ⎪′ ′∂ ∂⎢ ⎥′ ′− − − −⎪ ⎪⎢ ⎥∂ ∂⎣ ⎦⎩ ⎭

∫ ∫ S  (3.923) 

The real portion of Equation (3.923) may then examined as it will be the only part 

required for the finite element solution scheme: 

Real: 

2

2 2 2
21 1

1 2 12

1I I

S

S S
W dS W K d

n n n
φ φφ φφ φ φ

Γ

⎧ ⎫⎡ ⎤∂ ∂⎛ ⎞′ ′∂ ⎪ ⎢ ′ ′ ′= − + − −⎜ ⎟⎨ ⎜ ⎟∂ ϒ ∂ ∂ ∂⎢ ⎥⎪ ⎪⎝ ⎠⎣ ⎦⎩ ⎭
∫ ∫ 2 S

s
∂ ⎪⎥⎬  (3.924) 
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3.11.4 Radiation Boundary Condition 

The simplest way of applying a specific wave to a two-dimensional domain of this finite 

element wave model is to specify the velocity potential along any boundary through 

which waves are entering the domain. However, as discussed in Section 2.4.1.3.3.2 

above, the elliptic solution to the mild-slope wave equation allows wave propagation (and 

therefore dissipation) in any direction. Hence some backscattered or reflected waves will 

be expected to approach any boundary through which waves are entering the domain. 

Clyne (2008) develops a radiation boundary condition that allows this backscattered wave 

energy to exit the modelled domain. Following the work of Kirby (1989) and Xu et al. 

(1996) this method utilises a parabolic approximation to the mild-slope equation to absorb 

excess wave energy above that of the incoming wave. This method assumes the crests of 

the backscattered waves are approximately parallel to the boundary in question. For an 

adequately sized finite element domain this is considered to be a reasonable assumption. 

 

The basic concept on which the radiation condition is based is that the velocity potential 

along the boundary is a sum of the velocity potential of the incoming wave and that of the 

outgoing (backscattered) wave: 
in outφ φ φ′ ′ ′= +  (3.925) 

 
Rearranging Equation (3.925) in terms of the outgoing velocity potential gives: 

out inφ φ φ′ ′= − ′  (3.926) 

 

The outgoing potential  will be absorbed by using a parabolic equation. This is similar to 

the process used at the beach boundary except in that case the entire potential is absorbed, 

at the radiating boundary only the outgoing potential is absorbed. 

 

Expressing the derivative of the outgoing velocity potential with respect to the outward 

pointing normal of the domain as a function f ′  yields: 

( ) ( ) (
out

out in inf
n n

φ )fφ φ φ φ φ′∂ ∂′ ′ ′ ′ ′ ′ ′= = − = −
∂ ∂

 (3.927) 

 

Equation (3.927) may now be rewritten as: 

(
in

outf
n n
φ φ φ′ ′∂ ∂ ′ ′− =

∂ ∂ )  (3.928) 
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( ) ( )
in

inf f
n n
φ φφ φ′∂ ′ ′ ′ ′= − +

∂ ∂
′∂  (3.929) 

 
Equation (3.887) is an absorbing boundary equation for φ′ . In this case φ′  will be 

replaced with (out in )φ φ φ′ ′ ′= −  because only the outgoing wave should be absorbed on the 

radiating boundary. Using φ′  and in

φ′  with Equation (3.887)  gives: 

( ) ( )
2

2 2
2

ˆ 2f i i K
n s
κφ ψ κ κ φ⎡ ∂ ∂′ ′ ′= Ψ − − − − −⎢ ∂ ∂⎣ ⎦

⎤
⎥  (3.930) 

( ) ( )
2

2 2
2

ˆ 2in inf i i K
n s
κφ ψ κ κ φ⎡ ∂ ∂′ ′ ′= Ψ − − − − −⎢ ∂ ∂⎣ ⎦

⎤
⎥  (3.931) 

 

Expansion of Equations (3.930) and (3.931) gives: 

( )

2
2 2

2

2
3 2

2

ˆ
2 2 2 2

i K
n sf

i i K i
n s

κ φκ φ φ φ
φ ψ

κ φκ φ κ φ κ φ κ

⎧ ⎫′⎡ ⎤∂ ∂′ ′ ′−ϒ − ϒ − ϒ − ϒ⎪ ⎪⎢ ⎥⎪ ∂ ∂′ ′ ⎢= ⎨
′∂ ∂⎢ ⎥⎪ ⎪′ ′ ′+ − + +⎢ ⎥⎪ ⎪∂ ∂⎣ ⎦⎩ ⎭

⎪⎥⎬  (3.932) 

( )
2

2 2
2

2
3 2

2

ˆ
2 2 2 2

in
in in in

in
in

in in in

i K
n sf

i i K i
n s

κ φκ φ φ φ
φ ψ

κ φκ φ κ φ κ φ κ

⎧ ⎫′⎡ ⎤∂ ∂′ ′ ′−ϒ − ϒ − ϒ − ϒ⎪ ⎪⎢ ⎥⎪ ∂ ∂′ ′ ⎢= ⎨
′∂ ∂⎢ ⎥⎪ ⎪′ ′ ′+ − + +⎢ ⎥⎪ ⎪∂ ∂⎣ ⎦⎩ ⎭

⎪⎥⎬  (3.933) 

 

Substituting Equations (3.932) and (3.933) into Equation (3.929) gives: 
2

2 2
2

2
3 2

2

2
2 2

2

2
3 2

2

ˆ
2 2 2 2

ˆ
2 2 2 2

in
in in in

in
in in in

i K
n s

n
i i K i

n s

i K
n s

i i K i
n s

κ φκ φ φ φφ ψ
κ φκ φ κ φ κ φ κ

κ φκ φ φ φ
ψ

κ φκ φ κ φ κ φ κ

⎧ ⎫′⎡ ⎤∂ ∂′ ′ ′−ϒ − ϒ − ϒ − ϒ⎪ ⎪⎢ ⎥′∂ ⎪ ⎪∂ ∂⎢ ⎥= ⎨ ⎬∂ ′∂ ∂⎢ ⎥⎪ ⎪′ ′ ′+ − + +⎢ ⎥⎪ ⎪∂ ∂⎣⎩
⎧ ′⎡ ⎤∂ ∂′ ′ ′−ϒ − ϒ − ϒ − ϒ⎪ ⎢ ⎥⎪ ∂ ∂⎢ ⎥−⎨

′∂ ∂⎢ ⎥′ ′ ′+ − + +⎢ ⎥∂ ∂⎣ ⎦⎩

⎦⎭

in

n
φ

⎫
⎪ ′∂⎪+⎬ ∂⎪ ⎪

⎪ ⎪⎭

 (3.934) 
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Equation (3.934) may now be separated into real and imaginary components using 

Equation (3.916): 

Real: 
2

2 2 1
1 2 1 2

1
2

3 2 2
2 1 2 2

2
2 2 1

1 2 1 2
1

2
3 2 2

2 1 2 2

ˆ
2 2 2 2

ˆ
2 2 2 2

in
in in in

in

in
in in in

K
n s

n
K

n s

K
n s

n
K

n s

φκκ φ φ φφ ψ
φκκ φ κ φ κ φ κ

φκκ φ φ φ φψ
φκκ φ κ φ κ φ κ

′⎡ ⎤∂∂′ ′ ′−ϒ + ϒ − ϒ − ϒ⎢ ⎥′∂ ∂ ∂⎢ ⎥= +
∂ ′∂∂⎢ ⎥′ ′ ′− − − −⎢ ⎥∂ ∂⎣

′⎡ ⎤∂∂′ ′ ′−ϒ + ϒ − ϒ − ϒ⎢ ⎥ ′∂∂ ∂⎢ ⎥− +
∂′∂∂⎢ ⎥′ ′ ′− − − −⎢ ⎥∂ ∂⎣ ⎦

⎦  (3.935) 

Imaginary: 
2

2 2 2
2 1 2 2

2
2

3 2 1
1 2 1 2

2
2 2 2

2 1 2 2
2

2
3 2 1

1 2 1 2

ˆ
2 2 2 2

ˆ
2 2 2 2

in
in in in

in

in
in in in

K
n s

n
K

n s

K
n s

n
K

n s

φκκ φ φ φφ ψ
φκκ φ κ φ κ φ κ

φκκ φ φ φ φψ
φκκ φ κ φ κ φ κ

′⎡ ⎤∂∂′ ′ ′−ϒ − ϒ − ϒ − ϒ⎢ ⎥′∂ ∂ ∂⎢ ⎥=
∂ ′∂∂⎢ ⎥′ ′ ′+ − + +⎢ ⎥∂ ∂⎣

′⎡ ⎤∂∂′ ′ ′−ϒ − ϒ − ϒ − ϒ⎢ ⎥ ′∂∂ ∂⎢ ⎥− +
∂′∂∂⎢ ⎥′ ′ ′+ − + +⎢ ⎥∂ ∂⎣ ⎦

⎦  (3.936) 

 
 

 

Equation (3.935) can now be used with the boundary term of Equation (3.754) to provide 

a boundary condition for a radiation boundary, : 3Γ

3

2
2 2 1

1 2 1 2
1

2
3 2 2

2 1 2 2

2
2 2 1

1 2 1 2

2
3 2

2 1 2

ˆ
2 2 2 2

ˆ
2 2 2 2

I I

S

in
in in in

I

in in in

K
n sW dS W dS

n
K

n s

K
n sW

K
n

φκκ φ φ φφ ψ
φκκ φ κ φ κ φ κ

φκκ φ φ φ
ψ

κκ φ κ φ κ φ κ

Γ

⎧ ⎫′⎡ ⎤∂∂′ ′ ′−ϒ + ϒ − ϒ − ϒ⎪ ⎪⎢ ⎥′∂ ⎪ ⎪∂ ∂⎢ ⎥= ⎨ ⎬∂ ′∂∂⎢ ⎥⎪ ⎪′ ′ ′− − − −⎢ ⎥⎪ ⎪∂ ∂⎣ ⎦⎩ ⎭

′∂∂′ ′ ′−ϒ + ϒ − ϒ − ϒ
∂ ∂−

′∂∂′ ′ ′− − − −
∂

∫ ∫

3

3

2
2

1

in

in
I

dS

s

W dS
n

φ

φ

Γ

Γ

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥⎪ ⎪⎢ ⎥⎨ ⎬

⎢ ⎥⎪ ⎪
⎢ ⎥⎪ ⎪∂⎣ ⎦⎩ ⎭
′⎧ ⎫∂+ ⎨ ⎬∂⎩ ⎭

∫

∫

 (3.937) 
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3.11.4.1 Incident Potential and Gradients 

It is apparent that in order to utilise the radiating boundary condition of Equation (3.937) 

the incident potential and its gradients must be known. Vincent et al. (2002) give the 

following formula for wave height in the surf zone: 

0 R SH H K K=  (3.938)

where H  is the wave height at a downwave point, RK  is the refraction coefficient, SK  is 

the shoaling coefficient and 0H  is the deep-water wave height. 

 
In the case of incident wave height Equation (3.938) becomes: 

0
in in

R SH H K K=  (3.939) 

 
The refraction coefficient RK  relates the wave angle at a given point to the deep-water 

wave angle. The relationship is given by  Vincent et al. (2002) as follows: 

0cos
cosRK α

α
=  (3.940) 

 
The wave angle at any given downwave point can be obtained using Snell’s law. Snell’s 

law relates the wave angle at a downwave point with the deep-water wave angle using the 

wave celerity and deep-water celerity as follows: 

0

0

sinsin constant
C C

αα = =  (3.941) 

 

The shoaling coefficient in Equation (3.939) may be obtained from the wave celerity and 

deep-water celerity using the following equation from Vincent et al. (2002): 

 

0

2S
CK
nC

= , where ( )
1 21
2 sinh 2

hn
h

κ
κ

⎛ ⎞′
= +⎜⎜ ′⎝ ⎠

⎟⎟  (3.942) 

 

Knowing the wave height on the boundary in question it is now necessary to use the 

calculated wave height and known period at the boundary to the incoming velocity 

potential on the boundary. Using the form of velocity potential from Equation (3.870) the 

following can be stated: 
iniSin in

gCC A e φ
φφ′ =  (3.943) 
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Equation (3.118) in the absence of current and energy dissipation is: 

0i gωφ ζ ′− =  at z η=  (3.944) 

 

Equation (3.944) implies that: 

g
ωζ φ′ =  (3.945) 

 

Therefore the amplitude of velocity potential can be related to the wave height as follows: 

2 2in in inH A A
gζ
ω⎛ ⎞

= = ⎜
⎝ ⎠

φ ⎟  (3.946) 

 

Manipulation of Equation (3.946) gives: 

2

in
in gHAφ ω

=  (3.947) 

 

Substituting Equation (3.947) into Equation (3.943) gives: 

1 2

0

2 2

x

in
x

i dx yin in
iSin

g g
gH gHCC e CC eφ

κ κ

φ
ω ω

⎛ ⎞
⎜ ⎟+⎜ ⎟⎜ ⎟
⎝
∫

′ = = ⎠  (3.948) 

 

The integration from 0x  to 1x  is an integration in the direction of wave propagation. For 

the case of the origin at the beach this amounts to an integration in the negative x 

direction. Equation (3.948) can be written more symbolically as: 

iniSin inA e φ
φφ ′′ =  where in in

g
gA CC Aφ φω

′ =  (3.949) 

 

The derivative of inφ′  with respect to s may be defined as follows: 

in in
in in in inin in

iS iSin in

in

A S A S
e iA e i

s s s s sA
φ φφ φ φ φ

φ
φ

φ φ φ
′ ′∂ ∂ ∂ ∂′ ′∂ ′ ′= + = +

∂ ∂ ∂ ∂ ∂′
 (3.950) 
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The second derivative may be expressed as follows: 

22

2 2

2

2

in in in

in in

in in in in inin
iS iS iS

in in in
iS iSin in

S A A A S
i e e i

s s s s s s
S S S

i A e A e
s s s

eφ φ φ

φ φ

φ φ φ φ φ

φ φ φ
φ φ

φ ′ ′ ′∂ ∂ ∂ ∂ ∂′∂ = + +
∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂′ ′+ −
∂ ∂ ∂

 (3.951) 

Re-expressing Equation (3.951) in terms of inφ′  gives: 

2 22

2 2 2

in in in in in in in inin in in in
in in

in in in

S A A A S S S S
i i i

s s s s s s s s sA A A
φ φ φ φ φ φ φ φ

φ φ φ

φ φ φ φ φ φ
′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂′ ′ ′ ′∂ ′ ′= + + + −

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂′ ′ ′

 (3.952) 

 

The derivative of inφ′  with respect to n can also be calculated: 

in in
in in in inin in

iS iSin in

in

A S A S
e iA e i

n n n n nA
φ φφ φ φ φ

φ
φ

φ φ φ
′ ′∂ ∂ ∂ ∂′ ′∂ ′ ′= + = +

∂ ∂ ∂ ∂ ∂′
  (3.953) 

 

A similar process may be carried out for the non-Helmholtz velocity potential. Using the 

form of velocity potential from Equation (3.135) the following can be stated: 
iniSin inA e φ

φφ =  (3.954) 

 

Substituting Equation (3.947) into Equation (3.954) gives: 

1 2

0

2 2

x

in
x

i dx yin in
iSin gH gHe eφ

κ κ

φ
ω ω

⎛ ⎞
⎜ ⎟+⎜ ⎟⎜ ⎟
⎝
∫

= = ⎠  (3.955) 

 

The integration from 0x  to 1x  is an integration in the direction of wave propagation. For 

the case of the origin at the beach this amounts to an integration in the negative x 

direction. Equation (3.948) can be written more symbolically as: 

iniSin inA e φ
φφ =  where in ingA Aφ φω

=  (3.956) 

 

The derivative of inφ  with respect to s may be defined as follows: 

in in
in in in inin in

iS iSin in
in

A S A S
e iA e i

s s s s A s
φ φφ φ φ φ

φ
φ

φ φ φ
∂ ∂ ∂ ∂∂ = + = +

∂ ∂ ∂ ∂ ∂
 (3.957) 
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The second derivative may be expressed as follows: 
22

2 2

2

2

in in in

in in

in in in in inin
iS iS iS

in in in
iS iSin in

S A A A S
i e e i

s s s s s s
S S S

i A e A e
s s s

eφ φ φ

φ φ

φ φ φ φ φ

φ φ φ
φ φ

φ ∂ ∂ ∂ ∂ ∂∂ = + +
∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂
+ −

∂ ∂ ∂

 (3.958) 

Re-expressing Equation (3.958) in terms of inφ′  gives: 
2 22

2 2 2

in in in in in in in inin in in in
in in

in in in

S A A A S S S S
i i i

s s s A s A s s A s s s
φ φ φ φ φ φ φ φ

φ φ φ

φ φ φ φ φ φ
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂′∂ = + + + −

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
 (3.959) 

 

The derivative of inφ  with respect to n can also be calculated: 

in in
in in in inin in

iS iSin in
in

A S A S
e iA e i

n n n n A n
φ φφ φ φ φ

φ
φ

φ φ φ
∂ ∂ ∂ ∂∂ = + = +

∂ ∂ ∂ ∂ ∂
  (3.960)
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3.11.5 Reflecting Boundary Condition 

In the case of a reflecting boundary no wave energy should be allowed exit the domain at 

all. This would occur in the case of a harbour wall or some other large sea-based structure 

that allows no energy to dissipate on it. In order for a boundary to prevent wave energy 

from passing through it the gradient of velocity potential must be zero: 

0
n
φ′∂ =

∂
 (3.961) 

 
Hence both the real and imaginary components of this gradient are also zero: 

1 0
n
φ′∂ =

∂
 (3.962) 

2 0
n
φ′∂ =

∂
 (3.963) 

 

In the case of the reflecting boundary condition, , the boundary term of Equation 

(3.754) disappears completely. 

1Γ
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3.11.6 Full Helmholtz form of the 2d-NM-WCIM finite element solution scheme 

Initially the imaginary terms of Equation (3.754) may be discarded to obtain the real 

equation that will be solved by the computer program: 

( )

( ) ( )

2
21

1 1 1

2

1 1 3
2

13 3
2 2

2

I J
I J I J J I J I J

k k gS A A A

J J
gj j kI J I J I J I Jk

g g j k jA A A
g

gj j kI J Jk

j kA
g g

N NW ds dA K N N dA W N N dA
n x x CC

CCU U UU N NW N N dA N dA N
CC CC x x x xCC

CCU U UU N N dA
x xCC CC

φ ωφ φ φ

σ φ φ

φ

′∂ ∂ ∂ ′ ′ ′− + +
∂ ∂ ∂

∂∂ ∂ ∂′ ′− − +
∂ ∂ ∂ ∂

∂∂ ′+ +
∂ ∂

∫ ∫∫ ∫∫ ∫∫

∫∫ ∫∫ ∫∫

∫∫

1
k

dAφ′

( )
( )

( )

( )

2

1

15
2

1 1

1

1 1

3
2

2

g I J J

j kA

g gj k I J J

k jA
g

I J J
j k jJ I Jk

g j k j g kA A

J J
j I J I Jk

k j g
g j k j kA A

gk

g

CC
N N dA

x x

CC CCU U
N N dA

x xCC

U U U UN N NdA N dA
CC x x x CC x

U U N NN dA U U CC N dA
CC x x x x

CCU

CC

φ

φ

φ φ

φ φ

ω

−

∂
′

∂ ∂

∂ ∂
′−

∂ ∂

∂∂ ∂ ∂′ ′+ +
∂ ∂ ∂ ∂

∂ ∂ ∂ ∂⎡ ⎤′ ′+ + ⎢ ⎥⎣ ⎦∂ ∂ ∂ ∂

∂
+

∂

∫∫

∫∫

∫∫ ∫∫

∫∫ ∫∫

2 2
2 0

J
I J J I Jk

k g kA A

U NN N dA N dA
x CC x

ωφ φ∂′ ′− =
∂∫∫ ∫∫

 (3.964) 

 

The first term of Equation (3.964) can now be replaced by the boundary terms of 

Equations (3.937) and (3.919) 

2,3

2
2 2 1

1 2 1 2
1

2
3 2 2

2 1 2 2

2
2 2 1

1 2 1 2

3 2
2 1 2

ˆ
2 2 2 2

ˆ
2 2 2 2

I I

S

in
in in in

I

in in in

K
n sW ds W ds

n
K

n s

K
n sW

K
n

φκκ φ φ φφ ψ
φκκ φ κ φ κ φ κ

φκκ φ φ φ
ψ

κκ φ κ φ κ φ κ

Γ

⎧ ⎫′⎡ ⎤∂∂′ ′ ′−ϒ + ϒ − ϒ − ϒ⎪ ⎪⎢ ⎥′∂ ⎪ ⎪∂ ∂⎢ ⎥= ⎨ ⎬∂ ′∂∂⎢ ⎥⎪ ⎪′ ′ ′− − − −⎢ ⎥⎪ ⎪∂ ∂⎣ ⎦⎩ ⎭

′∂∂′ ′ ′−ϒ + ϒ − ϒ − ϒ
∂ ∂−

∂∂′ ′ ′− − − −
∂

∫ ∫

3

3

2
2
2

1

in

in
I

ds

s

W ds
n

φ

φ

Γ

Γ

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥⎪ ⎪⎢ ⎥⎨ ⎬

′⎢ ⎥⎪ ⎪
⎢ ⎥⎪ ⎪∂⎣ ⎦⎩ ⎭
′⎧ ⎫∂+ ⎨ ⎬∂⎩ ⎭

∫

∫

 (3.965) 
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2,3

2
2 2 1

1 2 1 2
1

2
3 2 2

2 1 2 2

2
2 2 1

1 2 1 2

3 2
2 1 2

ˆ
2 2 2 2

ˆ
2 2 2 2

I I

S

in
in in in

I

in in in

K
n sW ds W ds

n
K

n s

K
n sW

K
n

φκκ φ φ φφ ψ
φκκ φ κ φ κ φ κ

φκκ φ φ φ
ψ

κκ φ κ φ κ φ κ

Γ

⎧ ⎫′⎡ ⎤∂∂′ ′ ′−ϒ + ϒ − ϒ − ϒ⎪ ⎪⎢ ⎥′∂ ⎪ ⎪∂ ∂⎢ ⎥= +⎨ ⎬∂ ′∂∂⎢ ⎥⎪ ⎪′ ′ ′− − − −⎢ ⎥⎪ ⎪∂ ∂⎣ ⎦⎩ ⎭

′∂∂′ ′ ′−ϒ + ϒ − ϒ − ϒ
∂ ∂−
∂′ ′ ′− − − −
∂

∫ ∫

3

3

2
2
2

1

in

in
I

ds

s

W ds
n

φ

φ

Γ

Γ

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥⎪ ⎪⎢ ⎥⎨ ⎬

′∂⎢ ⎥⎪ ⎪
⎢ ⎥⎪ ⎪∂⎣ ⎦⎩ ⎭
′⎧ ⎫∂+ ⎨ ⎬∂⎩ ⎭

∫

∫

 (3.966) 

 
Further expansion of Equation (3.966) gives: 

2,3 2,3 2,3

2,3 2,3 2,3

2,3 2,3

3

2 21
1 2

2
31

2 12

2
2 2

2 2

2
1

ˆ ˆ ˆ

ˆ ˆ ˆ2 2

ˆ ˆ2 2

ˆ ˆ

I I I I

S

I I I

I I

I in I

W ds W ds W ds W K ds
n n

W ds W ds W
s n

W K ds W ds
s

W ds W
n

1

ds

φ κψ κ φ ψ φ ψ φ

φ κψ ψ κ φ ψκ

φψκ φ ψκ

κψ κ φ ψ

Γ Γ Γ

Γ Γ Γ

Γ Γ

Γ

′∂ ∂′ ′= − ϒ + ϒ − ϒ
∂ ∂

′∂ ∂′ ′− ϒ − −
∂ ∂

′∂′− − +
∂

∂′ ′+ ϒ − ϒ
∂

∫ ∫ ∫ ∫

∫ ∫ ∫

∫ ∫

∫

φ

′

3 3

3 3 3

3 3

3

2
2 1

2
31

2 12

2
2 2

2 2

1

ˆ

ˆ ˆ ˆ2 2

ˆ ˆ2 2

in I in

in
I I in I

in
I in I

in
I

ds W K ds

W ds W ds W
s n

W K ds W ds
s

W ds
n

φ ψ φ

φ κψ ψκ φ ψκ

φψκ φ ψκ

φ

Γ Γ

Γ Γ Γ

Γ Γ

Γ

′+ ϒ

′∂ ∂′ ′+ ϒ + +
∂ ∂

′∂′+ +
∂

′∂+
∂

∫ ∫

∫ ∫ ∫

∫ ∫

∫

indsφ

 (3.967) 

As discussed in Appendix A the Galerkin method consists of substituting the weighting 

functions IW  with a shape function; a linear one in this case IL . 
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2,3 2,3 2,3

2,3 2,3 2,3

2,3 2,3

3

2 21
1 2

2
31

2 12

2
2 2

2 2

2
1

ˆ ˆ ˆ

ˆ ˆ ˆ2 2

ˆ ˆ2 2

ˆ ˆ

I I I I

S

I I I

I I

I in I

W ds L ds L ds L K ds
n n

L ds L ds L
s n

L K ds L ds
s

L ds L
n

1

ds

φ κψ κ φ ψ φ ψ φ

φ κψ ψ κ φ ψκ

φψκ φ ψκ

κψ κ φ ψ

Γ Γ Γ

Γ Γ Γ

Γ Γ

Γ

′∂ ∂′ ′= − ϒ + ϒ − ϒ
∂ ∂

′∂ ∂′ ′− ϒ − −
∂ ∂

′∂′− − +
∂

∂′ ′+ ϒ − ϒ
∂

∫ ∫ ∫ ∫

∫ ∫ ∫

∫ ∫

∫

φ

′

3 3

3 3 3

3 3

3

2
2 1

2
31

2 12

2
2 2

2 2

1

ˆ

ˆ ˆ ˆ2 2

ˆ ˆ2 2

in I in

in
I I in I

in
I in I

in
I

ds L K ds

L ds L ds L
s n

L K ds L ds
s

L ds
n

φ ψ φ

φ κψ ψκ φ ψκ

φψκ φ ψκ

φ

Γ Γ

Γ Γ Γ

Γ Γ

Γ

′+ ϒ

′∂ ∂′ ′+ ϒ + +
∂ ∂

′∂′+ +
∂

′∂+
∂

∫ ∫

∫ ∫ ∫

∫ ∫

∫

indsφ

 (3.968) 

 
Applying the Gauss divergence theorem to the second order derivates with respect to s, 

the fourth term in Equation (3.967) becomes: 

2,3 2,32,3

2,3 2,3

2
1 1

2
0

1 1

ˆ ˆ ˆ

ˆ ˆ

l I
I I

I I

L 1L ds L ds
s s s s

L ds L ds
s s s s

φ φψ ψ ψ

φ φψ ψ

Γ Γ

Γ Γ

⎛ ⎞′ ′∂ ∂ ∂− ϒ = − ϒ + ϒ⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

′ ′∂ ∂∂ ∂+ ϒ +
∂ ∂ ∂ ∂

∫ ∫

∫ ∫

φ
Γ

′∂
∂

ϒ
 (3.969) 

 
The eighth term in Equation (3.968) becomes: 

2,3 2,32,3

2,3 2,3

2
2 2

2
0

2 2

ˆ ˆ ˆ2 2 2

ˆ ˆ2 2

l I
I I

I I

L 2L ds L ds
s s s s

L ds L ds
s s s s

φ φψκ ψκ ψκ

φ φψ κκ ψ

Γ Γ

Γ Γ

⎛ ⎞′ ′∂ ∂ ∂− = − +⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

′ ′∂ ∂∂ ∂+ +
∂ ∂ ∂ ∂

∫ ∫

∫ ∫

φ
Γ

′∂
∂

 (3.970) 

 
Similarly: 

3 3
3

3 3

2
1 1 1
2

0

1 1

ˆ ˆ ˆ

ˆ ˆ

lin in inI
I I

in in
I I

LL ds L ds
s s s s

L ds L ds
s s s s

φ φ φψ ψ ψ

φ φψ ψ

Γ ΓΓ

Γ Γ

⎛ ⎞′ ′ ′∂ ∂ ∂∂⎜ ⎟ϒ = ϒ − ϒ
⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

′ ′∂ ∂∂ ∂− ϒ −
∂ ∂ ∂ ∂

∫ ∫

∫ ∫
ϒ

 (3.971) 
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3 3
3

3 3

2
2 2
2

0

2 2

ˆ ˆ ˆ2 2 2

ˆ ˆ2 2

lin in inI
I I

in in
I I

L 2L ds L ds
s s s s

L ds L ds
s s s s

φ φ φψκ ψκ ψκ

φ φψ κκ ψ

Γ ΓΓ

Γ Γ

⎛ ⎞′ ′∂ ∂ ∂∂⎜ ⎟= −
⎜ ⎟∂ ∂ ∂⎝ ⎠

′ ′∂ ∂∂ ∂− −
∂ ∂ ∂ ∂

∫ ∫

∫ ∫

′
∂

 (3.972) 

 
Substituting Equations (3.970), (3.969), (3.971) and (3.972) into Equation (3.968) yields: 

2,3 2,3 2,3

2,3 2,32,3

2,3 2,3 2,3

2 21
1 2 1

1 1

0

31
2 1

ˆ ˆ ˆ

ˆˆ ˆ

ˆ ˆ ˆ2 2

I I I I

S

l I
I I

I I I

W ds L ds L ds L K ds
n n

LL ds L
s s s s s

L ds L ds L ds
s s n

φ κψ κ φ ψ φ ψ φ

φ φ φψψ ψ

φ κψ ψ κ φ ψκ φ

Γ Γ Γ

Γ ΓΓ

Γ Γ Γ

′∂ ∂′ ′ ′= − ϒ + ϒ − ϒ
∂ ∂

⎛ ⎞′ ′∂ ∂ ∂∂ ∂− ϒ + ϒ + ϒ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

′∂∂ϒ ∂′ ′+ − −
∂ ∂ ∂

∫ ∫ ∫ ∫

∫ ∫

∫ ∫ ∫

1 ds
′

2,3 2,32,3

2,3 2,3 3

3 3
3

2 2 2
2

0

22 2
1

2 1
2 1

0

ˆ ˆ ˆ2 2 2

ˆ ˆ ˆ2 2

ˆ ˆ ˆ

l I
I I

I I I

lin
I in I in I

L

in

L K ds L ds
s s s

L ds L ds L ds
s s s s

L ds L K ds L
n s

φ φψκ φ ψκ ψκ

φ φψ κκ ψ ψ κ φ

φκψ φ ψ φ ψ

Γ ΓΓ

Γ Γ Γ

Γ Γ Γ

⎛ ⎞′ ′∂ ∂∂′− + − +⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

′ ′∂ ∂∂ ∂ ′+ + + ϒ
∂ ∂ ∂ ∂

⎛ ⎞′∂∂ ′ ′ ⎜ ⎟− ϒ + ϒ + ϒ
⎜ ⎟∂ ∂⎝ ⎠

∂−

∫ ∫

∫ ∫ ∫

∫ ∫

3 3 3

3 3 3

3 3
3

1 1

3 2
2 1 2

2 2

0

ˆˆ ˆ

ˆ ˆ ˆ2 2 2

ˆˆ ˆ2 2 2

ˆ2

in in inI
I I

I in I in I in

lin in inI
I I

I

L ds L ds L ds
s s s s s s

L ds L ds L K ds
n

L

1

2L ds L ds
s s s s

L

φ φψψ ψ

κψκ φ ψκ φ ψκ φ

φ φ ψψκ ψκ κ

Γ Γ Γ

Γ Γ Γ

Γ ΓΓ

′ ′∂ ∂ ∂∂ ∂ϒϒ − ϒ −
∂ ∂ ∂ ∂ ∂ ∂

∂′ ′ ′+ + +
∂

⎛ ⎞′ ′∂ ∂∂ ∂⎜ ⎟+ − −
⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

−

∫ ∫ ∫

∫ ∫ ∫

∫ ∫ s

φ

φ

′

′∂

3 3

2 1
in in

Ids L ds
s s n

φ φκψ
Γ Γ

′ ′∂ ∂∂ +
∂ ∂ ∂∫ ∫

 (3.973) 

 

A shape function may also be applied to the unknown value, in this case the scaled 

velocity potential: 
J JLφ φ′ ′=  (3.974) 
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Using Equation (3.974) with Equation (3.973) gives: 

2,3 2,3 2,3

2,3 2,32,3

2,3 2,3

2 21
1 2 1

1
1 1

0

3
1 2

ˆ ˆ ˆ

ˆˆ ˆ

ˆ ˆ 2

I I J J I J J I J J

S

l I J J
I J I J

J
I J I J J

W dS L L dS L L dS K L L dS
n n

L L LL dS L
s s s s s

LL dS L L dS
s s

dS

φ κψ κ φ ψ φ ψ φ

φ ψψ ψ φ φ

ψ φ ψ κ φ

Γ Γ Γ

Γ ΓΓ

Γ Γ

′∂ ∂′ ′ ′= − ϒ + ϒ − ϒ
∂ ∂

⎛ ⎞′∂ ∂ ∂ ∂ ∂′ ′+ − ϒ + ϒ + ϒ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

∂ϒ ∂ ′ ′+ −
∂ ∂

∫ ∫ ∫ ∫

∫ ∫

∫

( )

( )

2,3

2,3 2,32,3

2,3 2,3 3

3

1

2 2
2 2

0

2
2 2 1

2

ˆ2

ˆ ˆ ˆ2 2 2

ˆ ˆ ˆ2 2

ˆ ˆ

I J J

l I J
I J J I J

J J JI J I J I J in

JI J in

L L dS
n

L LK L L dS L dS
s s s

L LL dS L dS L L dS
s s s s

L L dS
n

κψκ φ

φψκ φ ψκ ψκ φ

ψ κκ φ ψ φ ψ κ φ

κψ φ ψ

Γ

Γ ΓΓ

Γ Γ Γ

Γ

∂ ′−
∂

⎛ ⎞′∂ ∂ ∂′ ′− + − +⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

∂ ∂ ∂ ∂′ ′ ′+ + + ϒ
∂ ∂ ∂ ∂

∂ ′− ϒ +
∂

∫ ∫

∫ ∫

∫ ∫ ∫

∫ ( )

( ) ( ) ( )

( ) ( ) ( )

3
3

3 3 3

3 3 3

2 1
1

0

1 1

3 2
2 1

2

ˆ

ˆˆ ˆ

ˆ ˆ ˆ2 2 2

ˆ2

linJI J in I

I J J JJ Jin I in I in

J JI J in I J in I J in

in
I

K L L dS L
s

L L L LdS L dS L dS
s s s s s s 1

2

J

J
L L dS L L dS K L L d

n

L

φφ ψ

ψψ φ φ ψ φ

κψκ φ ψκ φ ψκ φ

φψκ

Γ Γ

Γ Γ Γ

Γ Γ Γ

⎛ ⎞′∂′ ⎜ ⎟ϒ + ϒ
⎜ ⎟∂⎝ ⎠

∂ ∂ ∂ ∂ ∂ϒ ∂′ ′− ϒ − ϒ −
∂ ∂ ∂ ∂ ∂ ∂

∂′ ′+ + +
∂

′∂+
∂

∫

∫ ∫ ∫

∫ ∫ ∫ S

′

′

( ) ( )

( )
3 3

3

3 3

2 2
0

1
2

ˆˆ2 2

ˆ2

l I J JJ Jin I in

inJ JI in I

L L LdS L dS
s s s s s

LL dS L dS
s s n

ψψκ φ κ φ

φκψ φ

Γ ΓΓ

Γ Γ

⎛ ⎞ ∂ ∂ ∂ ∂′ ′⎜ ⎟ − −
⎜ ⎟ ∂ ∂ ∂ ∂⎝ ⎠

′∂∂ ∂ ′− +
∂ ∂ ∂

∫ ∫

∫ ∫

 

 (3.975) 

 
 

 

 

 

 

The results of Equation (3.975) may now be substituted in Equation (3.964) to give: 
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2,3 2,3 2,3

2,3 2,32,3

2,3 2,3

2 2
1 2 1

1
1 1

0

3
1 2

ˆ ˆ ˆ

ˆˆ ˆ

ˆ ˆ ˆ2 2

I J J I J J I J J

l I J J
I J I J

J
I J I J J I

L L ds L L ds K L L ds
n

L L LL ds L
s s s s s

LL ds L L ds L L
s s n

κψ κ φ ψ φ ψ φ

φ ψψ ψ φ φ

κψ φ ψ κ φ ψκ

Γ Γ Γ

Γ ΓΓ

Γ Γ

∂′ ′ ′− ϒ + ϒ − ϒ
∂

⎛ ⎞′∂ ∂ ∂ ∂ ∂′ ′+ − ϒ + ϒ + ϒ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

∂ϒ ∂ ∂′ ′+ − −
∂ ∂ ∂

∫ ∫ ∫

∫ ∫

∫ ∫

ds

( )

( ) ( )

2,3

2,3 2,32,3

2,3 2,3 3

3

1

2 2
2 2

0

2
2 2 1

2
2 1

ˆ ˆ ˆ2 2 2

ˆ ˆ ˆ2 2

ˆ ˆ

J J

l I J
I J J I J

J J JI J I J I J in

J JI J in I J in

ds

L LK L L ds L ds
s s s

L LL ds L ds L L ds
s s s s

L L ds K L L
n

φ

φψκ φ ψκ ψκ φ

ψ κκ φ ψ φ ψ κ φ

κψ φ ψ φ

Γ

Γ ΓΓ

Γ Γ Γ

Γ

′

⎛ ⎞′∂ ∂ ∂′ ′− + − +⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

∂ ∂ ∂ ∂′ ′ ′+ + + ϒ
∂ ∂ ∂ ∂

∂ ′ ′− ϒ + ϒ
∂

∫

∫ ∫

∫ ∫ ∫

∫

( ) ( ) ( )

( ) ( ) ( )

3
3

3 3 3

3 3 3

3

1

0

1 1

3 2
2 1

2

0

ˆ

ˆˆ ˆ

ˆ ˆ ˆ2 2 2

ˆ2

lin
I

I J J JJ Jin I in I in

J JI J in I J in I J in

lin
I

ds L
s

L L L Lds L ds L ds
s s s s s s 1

2

J

J
L L ds L L ds K L L

n

L
s

φψ

ψψ φ φ ψ φ

κψκ φ ψκ φ ψκ φ

φψκ

Γ Γ

Γ Γ Γ

Γ Γ Γ

Γ

⎛ ⎞′∂⎜ ⎟+ ϒ
⎜ ⎟∂⎝ ⎠

∂ ∂ ∂ ∂ ∂ϒ ∂′ ′− ϒ − ϒ −
∂ ∂ ∂ ∂ ∂ ∂

∂′ ′+ + +
∂

⎛ ⎞′∂⎜ ⎟+
⎜ ⎟∂⎝ ⎠

∫

∫ ∫ ∫

∫ ∫ ∫ ds

′

′

( ) ( )

( )
3 3

3 3

2 2

1
2 1

2 2
2

1 1 1

1

ˆˆ2 2

ˆ2

I J JJ Jin I in

inJ I JJI in I J

k kA

I J J I J I J I J I J

g gA A A

J
j I Jk

g j k

L L Lds L ds
s s s s

L N NL ds L ds dA
s s n x x

K N N dA W N N dA W N N dA
CC CC

U U NN dA
CC x x

ψψκ φ κ φ

φκψ φ φ

ω σφ φ φ

φ

Γ Γ

Γ Γ

∂ ∂ ∂ ∂′ ′− −
∂ ∂ ∂ ∂

′∂∂ ∂ ∂ ∂′ ′− + −
∂ ∂ ∂ ∂ ∂

′ ′ ′+ + −

∂ ∂ ′−
∂ ∂

∫ ∫

∫ ∫ ∫∫

∫∫ ∫∫ ∫∫

( )

( )
( )

( )

( )
( )

13
2

2

1 13 3
2 2

15
2

1 1

2
J

gj k I J

j kA A
g

g gj j kI J J I J Jk

j k j kA A
g g

g gj k I J J

k jA
g

I J J
j k jJ I Jk

g j k j g kA A

CCU U NN dA
x xCC

CC CCU U UU N N dA N N dA
x x x xCC CC

CC CCU U
N N dA

x xCC

U U U UN N NdA N dA
CC x x x CC x

φ

φ φ

φ

φ φ

∂ ∂ ′+
∂ ∂

∂ ∂∂ ′ ′+ +
∂ ∂ ∂ ∂

∂ ∂
′−

∂ ∂

∂∂ ∂ ∂′ ′+ +
∂ ∂ ∂ ∂

∫∫ ∫∫

∫∫ ∫∫

∫∫

∫∫ ∫

( )

( )

1

1 1

2 23
2

2 2 0

J J
j I J I Jk

k j g
g j k j kA A

J
g I J J I Jk k

k g kA A
g

U U N NN dA U U CC N dA
CC x x x x

CCU U NN N dA N dA
x CC xCC

φ φ

ω ωφ φ

−∂ ∂ ∂ ∂⎡ ⎤′ ′+ + ⎢ ⎥⎣ ⎦∂ ∂ ∂ ∂

∂ ∂′ ′+ − =
∂ ∂

∫

∫∫ ∫∫

∫∫ ∫∫

(3.976) 
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In the formation of any finite element matrix the known terms are entered in the right 

hand side vector. Hence the known terms in Equation (3.976) will be moved to the right 

hand side of the equals: 

2,3 2,3 2,3 2,3

2,3 2,3 2,3 2,3

2 2 1
1 2 1

0

3
1 1 1 2

ˆ ˆ ˆ ˆ

ˆˆ ˆ ˆ 2

ˆ2

l
I J J I J J I J J I

I J J J
J I J I J I J J

I

L L ds L L ds K L L ds L
n s

L L L Lds L ds L ds L L ds
s s s s s s

L L
n

φκψ κ φ ψ φ ψ φ ψ

ψψ φ φ ψ φ ψ κ φ

κψκ

Γ Γ Γ Γ

Γ Γ Γ Γ

⎛ ⎞′∂∂′ ′ ′− ϒ + ϒ − ϒ + − ϒ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

∂ ∂ ∂ ∂ ∂ϒ ∂′ ′ ′ ′+ ϒ + ϒ + −
∂ ∂ ∂ ∂ ∂ ∂

∂−
∂

∫ ∫ ∫

∫ ∫ ∫ ∫

2,3 2,3 2,32,3

2,3 2,3

2 2
1 2 2

0

2 2 1

2
2

1 1

ˆ ˆ ˆ2 2 2

ˆ ˆ2 2

l I J
J J I J J I J

J J I J
I J I J J

k kA

I J J I J I J

gA A

L Lds K L L ds L ds
s s s

L L N NL ds L ds dA
s s s s x x

K N N dA W N N dA
CC

φφ ψκ φ ψκ ψκ φ

ψ κκ φ ψ φ φ

ωφ φ

Γ Γ ΓΓ

Γ Γ

⎛ ⎞′∂ ∂ ∂′ ′ ′− + − +⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

∂ ∂ ∂ ∂ ∂ ∂′ ′ ′+ + −
∂ ∂ ∂ ∂ ∂ ∂

′ ′+ + −

∫ ∫ ∫

∫ ∫ ∫∫

∫∫ ∫∫

( ) ( )

( ) ( )
( )

2

1 1

1 13 3
2 2

2

1 13 5
2 2

2

J
jI J I J I Jk

g g jA A

J
g gj k jI J I J Jk

j k j kA A
g g

g g gj k j kI J J I J J

j k k jA A
g g

I
j k

g

U U NW N N dA N d
CC CC x x

CC CCU U U UNN dA N N dA
x x x xCC CC

CC CC CCU U U U
N N dA N N dA

x x x xCC CC

U U N
CC

σ φ φ

φ φ

φ φ

∂ ∂′ ′−
∂ ∂

∂ ∂∂∂ ′ ′+ +
∂ ∂ ∂ ∂

∂ ∂ ∂
′ ′+ −

∂ ∂ ∂ ∂

∂+

∫∫ ∫∫

∫∫ ∫∫

∫∫ ∫∫

k

A

( )
( )

( )
3

1 1 1

1

1 23
2

2
2

2 2

ˆ ˆ

J J J
j jJ I J I Jk k

j k j g k g j kA A A

J J
gI J I J J I Jk k

k j g
j k k g kA A A

g

JI J in I

U UU UN N NdA N dA N dA
x x x CC x CC x x

CCU UN NU U CC N dA N N dA N dA
x x x CC xCC

L L ds K L L
n

φ φ φ

ω ωφ φ

κψ φ ψ

−

Γ

∂ ∂∂ ∂ ∂′ ′ ′+ +
∂ ∂ ∂ ∂ ∂ ∂

∂∂ ∂ ∂⎡ ⎤ ′ ′+ + −⎢ ⎥⎣ ⎦∂ ∂ ∂ ∂

∂ ′ϒ − ϒ
∂

∫∫ ∫∫ ∫∫

∫∫ ∫∫ ∫∫

∫ ( )

2φ′ =

( )

( ) ( ) ( )

( ) ( )

3 3
3

3 3 3

3 3

1
1 1

0

3
1 1 2

2 2
1 2

0

ˆ ˆ

ˆ ˆ ˆ2

ˆ ˆ ˆ2 2 2

lin I JJ JJ in I in

J JJ J JI in I in I J in

linJ JI J in I J in I

L Lds L ds
s s s

L LL ds L ds L L ds
s s s s

L L ds K L L ds L
n s

φφ ψ ψ φ

ψ φ ψ φ ψκ φ

φκψκ φ ψκ φ ψκ

Γ ΓΓ

Γ Γ Γ

Γ Γ

⎛ ⎞′∂ ∂ ∂′ ′⎜ ⎟− ϒ + ϒ
⎜ ⎟∂ ∂ ∂⎝ ⎠

∂ ∂ ∂ϒ ∂′ ′ ′+ ϒ + −
∂ ∂ ∂ ∂

⎛ ′∂∂ ′ ′ ⎜− − −
∂ ∂⎝

∫ ∫

∫ ∫ ∫

∫ ∫ ( )

( ) ( ) ( )
3

3

3 3 3 3

2

21
2 2 1

ˆ2

ˆ ˆ ˆ2 2

I J Jin

inJ JJ JI in I in I I J in

L L ds
s s

L LL ds L ds L ds L L ds
s s s s n

ψκ φ

φψ κκ φ ψ φ ψ κ φ

ΓΓ

Γ Γ Γ Γ

⎞ ∂ ∂ ′⎟ +
⎜ ⎟ ∂ ∂⎠

′∂∂ ∂ ∂ ∂′ ′ ′+ + − − ϒ
∂ ∂ ∂ ∂ ∂

∫

∫ ∫ ∫ ∫
J

 (3.977) 

 

Equation (3.977) is the complete finite element equation for solution of the Helmholtz 

form of the extended elliptic mild-slope wave equation including currents but in the 

absence of energy dissipation. In accordance with the Galerkin method each variable will 
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now also be assigned a shape function for complete solution. It would be inefficient to 

rewrite the entire of Equation (3.977) in this form but an example will be expressed for 

the 19th term in the equation: 

1
1

M
J J L

j I J K L I K Mk
j k

g j k g k jA A

U U N N NN dA U U N N N dA
CC x x CC x x

Jφ φ
⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂′ ′− = − ⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ⎝ ⎠⎝ ⎠

∫∫ ∫∫  (3.978) 

 
Equation (3.978) can be rewritten as follows using the formula for derivatives of shape 

functions from Appendix A: 

1 12

1
4

M
k jJ

j I J K L I K Mk J L
j k

g j k gA A

U U b bNN dA U U N N N dA
CC x x CC

Jφ φ
⎛ ⎞ ⎛∂ ∂ ′ ′− = − ⎜ ⎟ ⎜⎜ ⎟∂ ∂ Δ ⎝ ⎠⎝ ⎠

∫∫ ∫∫
⎞
⎟  (3.979) 

 
A similar process is carried out for every term in Equation (3.977). 
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3.11.6.1 Special Case – Simple Progressive Wave with No Obstacles 

In the simple case of a wave progressing through the domain with no obstacles, such as 

that shown in Figure 3.13, the boundary conditions of Equation (3.977) can be simplified. 

The advantage that these simplifications provide for this special case is that an arbitrary 

depth can be assigned to all the boundaries of the domain. There is no requirement for the 

wave to be parallel to the absorbing boundary and hence no need to force refraction and 

shoaling.  

 

 
Figure 3.13 – Definition Sketch of Special Case of Simple Progressive Wave with No Obstacles 
 

Equation (3.136) states that for a wave propagating in the x direction: 

1 2S xφ κ κ= + y  

 
Derivatives of Equation (3.136) give: 

1

S
x
φ κ

∂
=

∂
 

2

S
y
φ κ

∂
=

∂
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Examining Figure 3.13 shows that on the downstream (beach) boundary, Γ2d, the 

following is true for a wave propagating as shown: 

1n x= −  
 
Thus: (3.980) 

1

d
dn dx

= − d  (3.981) 

The following is also true on Γ2d: 
2s x= −  (3.982) 

Therefore:  

2

d
ds dx

= − d  (3.983) 

 
Using Equation (3.981) the following can be stated: 

1

S
n
φ κ

∂
= −

∂
 (3.984) 

2
1

2

S
n n

φ κ∂ ∂= −
∂ ∂

 (3.985) 

 
Using Equation (3.983) the following can be stated: 

2

S
s
φ κ

∂
= −

∂
 (3.986) 

 

If the wave is progressing at an angle it will also be possible to apply an absorbing 

boundary on the side  of the mesh, which will absorb the longshore component of wave 

propagation. Examining Figure 3.13 shows that on the side absorbing boundary, Γ2l, the 

following is true for a wave propagating as shown: 

2n x=  (3.987) 

 
Thus: 

2

d d
dn dx

=  (3.988)  

The following is also true on Γ2l: 
1s x= −  

 (3.989) 
Therefore:  

1

d
ds dx

= − d  (3.990) 
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Using Equation (3.988) the following can be stated: 

2

S
n
φ κ

∂
=

∂
 (3.991) 

2
2

2

S
n n

φ κ∂ ∂=
∂ ∂

 (3.992) 

 
 
Using Equation (3.990) the following can also be stated: 

1

S
s
φ κ

∂
= −

∂
 (3.993) 

 
 
 

The first term of Equation (3.964) may be expressed as follows by substituting the result 

of Equation (3.890) gives the following: 
2 2 2

21
2 2

ˆ 2I I

S S

S S S
W ds W i i K

n n n n
φ φ φφ ds

s
ψ φ
⎧ ⎫⎡ ⎤∂ ∂ ∂⎛ ⎞ ⎛ ⎞′∂ ∂⎪ ⎪⎢ ′= ϒ − − − − −⎜ ⎟ ⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎢ ⎥⎪ ⎪⎝ ⎠ ⎝ ⎠⎣ ⎦⎩ ⎭

∫ ∫ ⎥
∂

 (3.994) 

 
 
 
 
Expanding Equation (3.994) gives: 

2 2 2
2

2 2

1
3 2 2

2
2 2

ˆ

2 2 2 2

I I

S S

S S
i K

n n s
W ds W

n S S S S S
i i K

n n n n n s

φ φ

φ φ φ φ φ

φφ φ φ
φ ψ

φφ φ φ

⎡ ⎤∂ ∂⎛ ⎞ ′∂⎢ ⎥′ ′ ′−ϒ − ϒ − ϒ − ϒ⎜ ⎟⎜ ⎟∂ ∂ ∂⎢ ⎥′∂ ⎝ ⎠= ⎢ ⎥
∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎛ ⎞ ′∂′ ′ ′− + − −⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

∫ ∫ ds

i

 (3.995) 
 
 
 
Isolating the real terms in Equation (3.995) yields: 

2 2 2
2 1

1 2 12 2

1
3 2 2

2 2
2 1 22 2

ˆ

2 2 2 2

I I

S S

S S
K

n n s
W ds W d

n S S S S S
K

n n n n n s

φ φ

φ φ φ φ φ

φφ φ φ
φ ψ

φφ φ φ

⎡ ⎤∂ ∂⎛ ⎞ ′∂⎢ ⎥′ ′ ′−ϒ + ϒ − ϒ − ϒ⎜ ⎟⎜ ⎟∂ ∂ ∂⎢ ⎥′∂ ⎝ ⎠= ⎢ ⎥
∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎛ ⎞ ′∂′ ′ ′+ + + +⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

∫ ∫ s  (3.996)  
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The results of Equations (3.984), (3.985), (3.991) and (3.992) can now be substituted in 

Equation (3.996) to give boundary conditions on the two absorbing boundaries. A 

radiation boundary condition will also be required for the Γ3 boundary: 

 

( )

( ) ( ) ( ) ( )

( )

( )

2

2
2 21 1

1 1 2 1 2
1

2
3 21 2

1 2 1 1 1 2 1 2

2
2 22 1

2 1 2 1 2

3 22
2 2 2 1 2 2

ˆ
2 2 2 2

ˆ
2 2 2

d

I I

S

I

K
n s

W ds W
n

K i
n s

K
n sW

K
n

κ φκ φ φ φ
φ ψ

κ φκ φ κ φ κ φ κ

κ φκ φ φ φ
ψ

κκ φ κ φ κ φ

Γ

′⎡ ⎤∂ ∂⎛ ⎞′ ′ ′−ϒ − + ϒ − − ϒ − ϒ⎜ ⎟⎢ ⎥∂ ∂′∂ ⎝ ⎠⎢ ⎥=
⎢ ⎥∂ ′∂ ∂⎛ ⎞′ ′ ′+ − + − − + − + −⎢ ⎥⎜ ⎟∂ ∂⎝ ⎠⎣ ⎦

′∂ ∂′ ′ ′−ϒ + ϒ − ϒ − ϒ
∂ ∂+
∂′ ′ ′+ + +
∂

∫ ∫ ds

2 3

1
2

2
2 22l

Ids W ds
n

s

φ
φκΓ Γ

⎡ ⎤
⎢ ⎥ ′∂⎢ ⎥ +

∂′∂⎢ ⎥+⎢ ⎥∂⎣ ⎦

∫ ∫

 

 (3.997) 

 

 

 

 

 

Equation (3.997) can be simplified as follows: 

2

2
2 21 1
1 1 2 1 2

1
2

3 21 2
1 2 1 1 1 2 1 2

2
2 22 1
2 1 2 1 2

2
3 22 2
2 2 2 1 2 2 2 2

2 2 2 2

2 2 2 2

d

I I

S

I

K
n sW ds W ds

n
K

n s

K
n sW

K
n s

κ φκ φ φ φφ
κ φκ φ κ φ κ φ κ

κ φκ φ φ φ

κ φκ φ κ φ κ φ κ

Γ

′⎡ ⎤∂ ∂′ ′ ′−ϒ − ϒ − ϒ − ϒ⎢ ⎥′∂ ∂ ∂⎢ ⎥=
∂ ′∂ ∂⎢ ⎥′ ′ ′− + − −⎢ ⎥∂ ∂⎣ ⎦

′⎡ ⎤∂ ∂′ ′ ′−ϒ + ϒ − ϒ − ϒ⎢ ⎥∂ ∂⎢ ⎥+
′∂ ∂⎢ ⎥′ ′ ′+ + + +⎢ ⎥∂ ∂⎣ ⎦

∫ ∫

2 3

1

l

Ids W ds
n
φ

Γ Γ

′∂+
∂∫ ∫

 

 (3.998) 

 

The final term of Equation (3.998) can now be examined. Recalling Equation (3.929) for 

radiation boundary conditions: 

( ) ( )
in

inf f
n n
φ φφ φ′ ′∂ ∂′ ′ ′ ′= − +

∂ ∂
 

 



WAVE-CURRENT INTERACTION MODEL  C. Newell 
 

 
 265 

Equation (3.890) is an absorbing boundary equation for φ′ . In this case φ′  will be 

replaced with (out in )φ φ φ′ ′ ′= −  because only the outgoing wave should be absorbed on the 

radiating boundary. Using φ′  and in

φ′  with Equation (3.890)  gives: 

( )
2 2 2

2
2

ˆ 2
S S S

f i i K
n n n s

φ φ φ

2φ ψ φ
⎡ ⎤∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ∂⎢′ ′ ′= ϒ − − − − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

⎥  (3.999) 

( )
2 2 2

2
2 2

ˆ 2in in
S S S

f i i K
n n n s

φ φ φφ ψ φ
⎡ ⎤∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ∂⎢′ ′ ′= ϒ − − − − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

⎥  (3.1000) 

 

Expansion of Equations (3.999) and (3.1000) gives: 

( )

2 2 2
2

2 2

3 2 2
2

2 2

ˆ

2 2 2 2

S S
i K

n n s
f

S S S S S
i i K

n n n n n s

φ φ

φ φ φ φ φ

φφ φ φ
φ ψ

φφ φ φ

⎧ ⎫⎡ ⎤∂ ∂⎛ ⎞ ′∂⎪ ⎪⎢ ⎥′ ′ ′−ϒ − ϒ − ϒ − ϒ⎜ ⎟⎜ ⎟⎪ ⎪∂ ∂ ∂⎢ ⎥⎪ ⎝ ⎠′ ′ = ⎢ ⎥⎨ ⎬
∂ ∂ ∂ ∂ ∂⎢ ⎥⎛ ⎞⎪ ⎪′∂′ ′ ′− + − −⎢ ⎥⎜ ⎟⎪ ⎪⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

i

⎪  (3.1001) 

( )

2 2 2
2

2 2

3 2 2
2

2 2

ˆ

2 2 2 2

in
in in in

in

in
in in in

S S
i K

n n s
f

S S S S S
i i K

n n n n n s

φ φ

φ φ φ φ φ

φφ φ φ
φ ψ

φφ φ φ

⎧ ⎫⎡ ⎤∂ ∂⎛ ⎞ ′∂⎪ ⎪⎢ ⎥′ ′ ′−ϒ − ϒ − ϒ − ϒ⎜ ⎟⎜ ⎟⎪ ⎪∂ ∂ ∂⎢ ⎥⎪ ⎝ ⎠′ ′ = ⎢ ⎥⎨ ⎬
∂ ∂ ∂ ∂ ∂⎢ ⎥⎛ ⎞⎪ ⎪′∂′ ′ ′− + − −⎢ ⎥⎜ ⎟⎪ ⎪⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

i

⎪  (3.1002) 

Substituting Equations (3.1001) and (3.1002) into Equation (3.929) gives: 
2 2 2

2
2 2

3 2 2
2

2 2

2 2 2
2

2

ˆ

2 2 2 2

ˆ

in in in

S S
i K

n n s

n S S S S S
i i K i

n n n n n s

S S
i K

n n

φ φ

φ φ φ φ φ

φ φ

φφ φ φ
φ ψ

φφ φ φ

φφ φ φ
ψ

⎧ ⎫⎡ ⎤∂ ∂⎛ ⎞ ′∂⎪ ⎪⎢ ⎥′ ′ ′−ϒ − ϒ − ϒ − ϒ⎜ ⎟⎜ ⎟⎪ ⎪∂ ∂ ∂⎢ ⎥′∂ ⎪ ⎝ ⎠ ⎪= ⎢ ⎥⎨ ⎬∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎛ ⎞⎪ ⎪′∂′ ′ ′− + − −⎢ ⎥⎜ ⎟⎪ ⎪⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

∂ ∂⎛ ⎞ ′∂′ ′ ′−ϒ − ϒ − ϒ − ϒ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠−
2

3 2 2
2

2 22 2 2 2

in

in

in
in in in

s

nS S S S S
i i K i

n n n n n s
φ φ φ φ φ

φ

φφ φ φ

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥
⎪ ⎪∂⎢ ⎥ ′∂⎪ ⎪+⎢ ⎥⎨ ⎬ ∂∂ ∂ ∂ ∂ ∂⎢ ⎥⎛ ⎞⎪ ⎪′∂′ ′ ′− + − −⎢ ⎥⎜ ⎟⎪ ⎪⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

 (3.1003) 
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The real component of Equation (3.1003) may now be isolated using Equation (3.916): 

2 2 2
2 1

1 2 12 2

1
3 2 2

2 2
2 1 22 2

2 2
2

1 2 12

ˆ

2 2 2 2

ˆ

in in i

S S
K

n n s

n S S S S S
K

n n n n n s

S S
K

n n

φ φ

φ φ φ φ φ

φ φ

φφ φ φ
φ ψ

φφ φ φ

φ φ φ
ψ

⎧ ⎫⎡ ⎤∂ ∂⎛ ⎞ ′∂⎪ ⎪⎢ ⎥′ ′ ′−ϒ + ϒ − ϒ − ϒ⎜ ⎟⎜ ⎟⎪ ⎪∂ ∂ ∂⎢ ⎥′∂ ⎪ ⎝ ⎠ ⎪= ⎢ ⎥⎨ ⎬∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎛ ⎞⎪ ⎪′∂′ ′ ′+ + + +⎢ ⎥⎜ ⎟⎪ ⎪⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

∂ ∂⎛ ⎞
′ ′ ′−ϒ + ϒ − ϒ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠−

2
1
2

1
3 2 2

2 2
2 1 22 22 2 2 2

in
n

in

in
in in in

s

nS S S S S
K

n n n n n s
φ φ φ φ φ

φ
φ

φφ φ φ

⎧ ⎫⎡ ⎤′∂⎪ ⎪⎢ ⎥− ϒ
⎪ ⎪∂⎢ ⎥ ′∂⎪ ⎪+⎢ ⎥⎨ ⎬ ∂∂ ∂ ∂ ∂ ∂⎢ ⎥⎛ ⎞⎪ ⎪′∂′ ′ ′+ + + +⎢ ⎥⎜ ⎟⎪ ⎪⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

 (3.1004) 

 

Examining Figure 3.13 shows that on the upstream radiating, Γ3u, the following is true for 

the backscattered (i.e. absorbed wave): 

1n x=  
 
Thus: (3.1005) 

1

d d
dn dx

=  (3.1006)  

 
 
The following is also true on Γ2d: 

2s x=  
 (3.1007) 
Therefore:  

2

d d
ds dx

=  (3.1008) 

 
Using Equation (3.1006) the following can be stated: 

1

S
n

φ κ
∂

=
∂

 (3.1009) 
2

1
2

S
n n

φ κ∂ ∂=
∂ ∂

 (3.1010) 

 

Examining Figure 3.13 shows that on the side radiating boundary, Γ3l, the following is 

true for the backscattered (i.e. absorbed wave): 

2n x= −  (3.1011) 
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Thus: 

2

d
dn dx

= − d  (3.1012)  

 
The following is also true on Γ2d: 

1s x=  
 (3.1013) 
Therefore:  

1

d d
ds dx

=  (3.1014) 

 
Using Equation (3.1012) the following can be stated: 

2

S
n
φ κ

∂
= −

∂
 (3.1015) 

 
2

2
2

S
n n

φ κ∂ ∂= −
∂ ∂

 (3.1016) 

 

 

  



WAVE-CURRENT INTERACTION MODEL  C. Newell 
 

 
 268 

Equations (3.1004), (3.1009), (3.1010), (3.1015) and (3.1016) can now be used with 

Equation (3.998) to give the following: 

2

2
2 21 1
1 1 2 1 2

1
2

3 21 2
1 2 1 1 1 2 1 2

2
2 22 1
2 1 2 1 2

2
3 22 2
2 2 2 1 2 2 2 2

ˆ
2 2 2 2

ˆ
2 2 2 2

d

I I

S

I

K
n sW ds W ds

n
K i

n s

K
n sW

K
n s

κ φκ φ φ φφ ψ
κ φκ φ κ φ κ φ κ

κ φκ φ φ φ
ψ

κ φκ φ κ φ κ φ κ

Γ

′⎡ ⎤∂ ∂′ ′ ′−ϒ − ϒ − ϒ − ϒ⎢ ⎥′∂ ∂ ∂⎢ ⎥=
∂ ′∂ ∂⎢ ⎥′ ′ ′− + − −⎢ ⎥∂ ∂⎣ ⎦

′⎡ ⎤∂ ∂′ ′ ′−ϒ + ϒ − ϒ − ϒ⎢ ∂ ∂⎢+
′∂ ∂⎢ ′ ′ ′+ + + +⎢ ∂ ∂⎣

∫ ∫

( )

( ) ( ) ( ) ( )

( )

( )

2

3

2
2 21 1

1 1 2 1 2

2
3 21 2

1 2 1 1 1 2 1 2

2
2 21 1

1 1 2 1 2

3
1 2

ˆ
2 2 2 2

ˆ
2

l

u

I

in
in in in

I

in

ds

K
n s

W d
K

n s

K
n s

W

κ φκ φ φ φ
ψ

κ φκ φ κ φ κ φ κ

κ φκ φ φ φ
ψ

κ φ

Γ

Γ

⎥
⎥
⎥
⎥⎦

⎧ ⎫′⎡ ⎤∂ ∂⎛ ⎞′ ′ ′−ϒ + ϒ − ϒ − ϒ⎪ ⎪⎜ ⎟⎢ ⎥∂ ∂⎪ ⎝ ⎠ ⎪⎢ ⎥+ ⎨ ⎬⎢ ⎥′∂ ∂⎛ ⎞⎪ ⎪′ ′ ′+ + + +⎢ ⎥⎜ ⎟⎪ ⎪∂ ∂⎝ ⎠⎣ ⎦⎩ ⎭

′∂ ∂⎛ ⎞′ ′ ′−ϒ + ϒ − ϒ − ϒ⎜ ⎟∂ ∂⎝ ⎠−
′+

∫

∫

( )

s

( ) ( )

( )

( ) ( ) ( ) ( )

3

3 ,3

2
21 2

1 1 1 2 1 2

1

2
2 22 1

2 1 2 1 2

2
3 22 2

2 2 2 1 2 2 2 2

2 2 2

ˆ
2 2 2 2

u

u l

in
in in

in
I

I

ds
K

n s

W ds
n

K
n s

W
K

n s

κ φκ φ κ φ κ

φ

κ φκ φ φ φ
ψ

κ φκ φ κ φ κ φ κ

Γ

Γ

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥⎨ ⎬⎢ ⎥′∂ ∂⎛ ⎞⎪ ⎪′ ′+ + +⎢ ⎥⎜ ⎟⎪ ⎪∂ ∂⎝ ⎠⎣ ⎦⎩ ⎭

′∂+
∂

′⎡ ∂ ∂⎛ ⎞′ ′ ′−ϒ − + ϒ − − ϒ − ϒ⎜ ⎟⎢ ∂ ∂⎝ ⎠+
′∂ ∂⎛ ⎞′ ′ ′+ − + − − + − + −⎜ ⎟∂ ∂⎝ ⎠⎣

∫

∫

( )

( ) ( ) ( ) ( )

3

3

2
2 22 1

2 1 2 1 2

2
3 22 2

2 2 2 1 2 2 2 2

ˆ
2 2 2 2

l

l

in
in in in

I
in

in in in

ds

K
n s

W d
K

n s

κ φκ φ φ φ
ψ

κ φκ φ κ φ κ φ κ

Γ

Γ

⎧ ⎫⎤
⎪ ⎪⎥
⎪ ⎪⎢ ⎥⎨ ⎬⎢ ⎥⎪ ⎪⎢ ⎥⎪ ⎪⎦⎩ ⎭
⎧ ⎫′⎡ ⎤∂ ∂⎛ ⎞′ ′ ′−ϒ − + ϒ − − ϒ − ϒ⎪ ⎪⎜ ⎟⎢ ⎥∂ ∂⎪ ⎝ ⎠⎢ ⎥− ⎨ ⎬⎢ ⎥′∂ ∂⎛ ⎞⎪ ⎪′ ′ ′+ − + − − + − + −⎢ ⎥⎜ ⎟⎪ ⎪∂ ∂⎝ ⎠⎣ ⎦⎩ ⎭

∫

∫ s⎪

 
 (3.1017) 
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Equation (3.1017) may be expressed more explicitly as: 

2

2
2 21 1
1 1 2 1 2

1
2

3 21 2
1 2 1 1 1 2 1 2

2
2 22 1
2 1 2 1 2

2
3 22 2
2 2 2 1 2 2 2 2

ˆ
2 2 2 2

ˆ
2 2 2 2

d

I I

S

I

K
n sW ds W ds

n
K i

n s

K
n sW

K
n s

κ φκ φ φ φφ ψ
κ φκ φ κ φ κ φ κ

κ φκ φ φ φ
ψ

κ φκ φ κ φ κ φ κ

Γ

′⎡ ⎤∂ ∂′ ′ ′−ϒ − ϒ − ϒ − ϒ⎢ ⎥′∂ ∂ ∂⎢ ⎥=
∂ ′∂ ∂⎢ ⎥′ ′ ′− + − −⎢ ⎥∂ ∂⎣ ⎦

′⎡ ⎤∂ ∂′ ′ ′−ϒ + ϒ − ϒ − ϒ⎢ ∂ ∂⎢+
′∂ ∂⎢ ′ ′ ′+ + + +⎢ ∂ ∂⎣

∫ ∫

2

3

2
2 21 1
1 1 2 1 2

2
3 21 2
1 2 1 1 1 2 1 2

2
2 22 1
2 1 2 1 2

2
3 22
2 2 2 1 2 2 2

ˆ
2 2 2 2

ˆ
2 2 2 2

l

u

I

I

ds

K
n sW d

K
n s

K
n sW

K
n

κ φκ φ φ φ
ψ

κ φκ φ κ φ κ φ κ

κ φκ φ φ φ
ψ

κκ φ κ φ κ φ κ

Γ

Γ

⎥
⎥
⎥
⎥⎦

⎧ ⎫′⎡ ⎤∂ ∂′ ′ ′−ϒ + ϒ − ϒ − ϒ⎪ ⎪⎢ ⎥⎪ ⎪∂ ∂⎢ ⎥+ ⎨ ⎬
′∂ ∂⎢ ⎥⎪ ⎪′ ′ ′+ + + +⎢ ⎥⎪ ⎪∂ ∂⎣ ⎦⎩ ⎭

′∂ ∂′ ′ ′−ϒ − ϒ − ϒ − ϒ
∂ ∂+

′∂ ∂′ ′ ′− + − −
∂

∫

∫ s

3

3 ,3

3

2
2

1

2
2 21 1
1 1 2 1 2

2
3 21
1 2 1 1 1 2 1 2

2
2 1

ˆ
2 2 2 2

ˆ

l

u l

u

in
I

in
in in in

I
in

in in in

i

I

ds

s

W ds
n

K
n sW d

K
n s

W

φ

φ

κ φκ φ φ φ
ψ

κκ φ κ φ κ φ κ

κ φ
ψ

Γ

Γ

Γ

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥⎪ ⎪⎢ ⎥⎨ ⎬

⎢ ⎥⎪ ⎪
⎢ ⎥⎪ ⎪∂⎣ ⎦⎩ ⎭
′∂+

∂

⎧ ⎫′⎡ ⎤∂ ∂′ ′ ′−ϒ + ϒ − ϒ − ϒ⎪ ⎪⎢ ⎥⎪ ⎪∂ ∂⎢ ⎥− ⎨ ⎬
′∂ ∂⎢ ⎥⎪ ⎪′ ′ ′+ + + +⎢ ⎥⎪ ⎪∂ ∂⎣ ⎦⎩ ⎭

′−ϒ
−

∫

∫

∫
2

s
φ

3

2
22 1

2 1 2

2
3 22 2
2 2 2 1 2 2 2 22 2 2 2l

in
n in in

in
in in in

K
n s ds

K
n s

κ φφ φ

κ φκ φ κ φ κ φ κΓ

⎧ ⎫′⎡ ⎤∂ ∂′ ′− ϒ − ϒ − ϒ⎪ ⎪⎢ ⎥⎪ ⎪∂ ∂⎢ ⎥⎨ ⎬
′∂ ∂⎢ ⎥⎪ ⎪′ ′ ′− + − −⎢ ⎥⎪ ⎪∂ ∂⎣ ⎦⎩ ⎭

∫

 (3.1018) 
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Further simplification yields: 
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ˆ ˆ ˆ ˆ

ˆ ˆ2 2

u u u u

l l l l

l

in
in I in I in I

in
I in I in I in I

I in I in

ds W ds W K ds W d
n s

W ds W ds W K ds W ds
n s

W ds W
n

κ φφ ψκ φ ψκ φ ψκ
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′∂′+ +
∂

′∂+
∂
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∫
 
 (3.1019) 
 
 

 

 

 

 

 

 

Replacing the weighting function with a shape function to follow the Galerkin method 

and applying the Gauss divergence theorem to the second order derivates with respect to s 

gives: 
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3 3 3 3

3 3 3
3

31 1 1
2 2

22 2
2 1 2 2

0

2

ˆˆ ˆ 2
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LL ds L K ds L
n s

L
s

φ φ φψψ ψ

κ φψκ φ ψκ φ ψκ ψκ
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∂ ∂
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 (3.1020) 
 
 
 
 
 
Applying a shape function to the velocity potential values in Equation (3.1020) gives: 
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 (3.1021) 

 
 
 
 

Equation (3.1021) can be substituted into Equation (3.964) to give a complete finite 

element equation for solution of the Helmholtz form of the extended elliptic mild-slope 

wave equation including currents for the given special case of a propagating wave in a 

domain with no obstacles: 
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3.12 Wave Breaking in the One-Dimensional and Two-Dimensional Wave-Current 

Interaction Models 

Section 2.3.2 discusses the inclusion of wave breaking effects in numerical wave models. 

Where simple linear breaking will be implemented in the NM-WCIM it is possible to 

solve the model with no energy dissipation (i.e. unbroken waves) and apply a scaling 

factor afterwards based on the similarity method discussed in Section 2.3.2. This will 

involve the selection of an appropriate insipience depth and a specific relationship 

between wave height in the breaking zone and water depth. Using the wave ray post-

processing method discussed in Section 5.6 it is possible to apply the same methodology 

to more complex non-linear breaking processes. 

 

As shown in Equation (3.527) it is also possible to include a dissipative term in the basic 

equations of the NM-WCIM. Zhao et al. (2001) and Clyne (2008) are among the authors 

who include an energy dissipation term based on eddy viscosity in their model equations. 

This same process has been applied to the NM-WCIM. All the non-dissipative terms in 

Equation (3.527) have already been accounted for and thus to include energy dissipation 

in the previously derived finite element equations it is only necessary to carry out 

integration of the dissipative terms over the finite element and isolate the real portion. 

 

 

 

 

3.12.1 Energy Dissipation in 1d-NM-WCIM 

Due to the constant nature of the one-dimensional model in the longshore direction only 

one of the dissipative terms will interact with the one-dimensional model. Equation 

(3.535) becomes the following in the one dimensional: 
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 (3.1023) 
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In the presence of energy dissipation Equation (3.693) therefore becomes:  
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Isolating the real terms in Equation (3.1024) yields: 
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3.12.2 Energy dissipation in 2d-NM-WCIM 
Similarly the two-dimensional finite element solution of Equation (3.977) becomes the 

following when the energy dissipation terms are included: 
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3.12.3 Expressing energy dissipation in terms of the parameters of wave breaking 

The energy dissipation term  in Equations (3.1025) and (3.1026) above must be 

obtained prior to running the wave model. As discussed in Section 2.3.2 there is a wide 

variety of different wave breaking models that link wave breaking to energy dissipation. 

Zhao et al. (2001) examines a number of these different models. The various formulae for 

energy dissipation listed by Zhao et al. (2001) are described below: 

 

3.12.3.1 Battjes and Janssen (1978) breaking solution 

Both Zhao et al. (2001) and Clyne (2008) provide a monochromatic wave version of the 

Battjes and Janssen (1978) energy dissipation factor for spectral waves. The equation 

varies slightly between authors. Clyne (2008) provides a full derivation starting with the 

spectral wave basis and hence this equation is chosen here: 

2

1
bQ

r
αγ ω
π

=  (3.1027) 

 
α is a constant, taken by Zhao et al. (2001) as unity.  Clyne (2008) describes the  term 

as the probability of a wave height being equal to Hm (within the Rayleigh wave height 

distribution). 

2
(1 )bQ

r
bQ e

− −

=  (3.1028) 

2 m

Hr
H

=  (3.1029) 

 
Where Hm is the maximum sustainable wave height (insipience height) and  is the 

wave height obtained from the monochromatic wave solution of Equation  (3.1026). Zhao 

et al. (2001) uses the criterion of Miche (1954) to select the maximum height, Hm. This  

Miche (1954) criterion has also been used by other wave breaking models to define the 

insipience point as described in Section 5.7.2. 

00.88 tanh
0.88mH dγ κ

κ
⎡= ⎢⎣ ⎦

⎤
⎥  (3.1030) 

 

However, in shallow water Zhao et al. (2001) state that this may be reduced to: 

0mH dγ=  (3.1031) 

γ

bQ

H
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Battjes and Janssen (1978) state that Equation (3.1030) was selected in such a way that it 

would reduce to Equation (3.1031) in shallow water. Equation (3.1031) is used by various 

wave models as a breaking model within its own right to give a linear decrease in wave 

height within the breaking zone. This approach is discussed further in Section 5.7.1. Zhao 

et al. (2001) suggest a value of 0.8 for . Newell and Mullarkey (2007a) use a value of 

0.78. The Clyne (2008) model also uses the solution of Battjes and Janssen (1978) for 

energy dissipation due to wave breaking. It is obvious that this breaking criteria includes 

the use of wave height. As such it is necessary to run the wave model iteratively to obtain 

a solution for the broken wave heights within a domain. 

 

To carry out the iterative process successfully both Zhao et al. (2001) and Clyne (2008) 

suggest the application of a lower limit to the use of the Battjes and Janssen (1978) 

criterion to prevent  for having a negative value. Clyne (2008) relates mH  to the root 

mean squared wave height and Zhao et al. (2001) relates it to the significant wave height, 

hence the selected lower limit varies between the authors.  Clyne (2008) suggests: 

0.3b mH H=  (3.1032) 

 
Zhao et al. (2001) use: 

0.3 2bH = mH  (3.1033) 

 
Throughout the implementation of wave breaking in this project  was maintained above 

or equal to zero using the Zhao et al. (2001) method.  

 
 

 

3.12.3.2 Massel (1992) breaking solution 

An alternative to Equation (3.1027) is the equation of Massel (1992). This equation also 

examines an energy dissipation factor caused by wave breaking. Zhao et al. (2001) 

reproduces the equation of Massel (1992): 
1

1 0.65 1 0.35
g

H H
d d

σγ
π

−
⎡⎛ ⎞ ⎛ ⎞= + −⎜ ⎟ ⎜ ⎟⎢⎝ ⎠ ⎝ ⎠⎣ ⎦

H
C d

⎤
⎥  (3.1034) 

 
In order to prevent the energy dissipation factor from going below zero it is also 

necessary to apply an upper limit to this formula. Zhao et al. (2001) states that if H from 

0γ

γ

γ
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one step in the iterative procedure is greater than 2.85d then γ for the next iterative step 

would be less than zero. In order to avoid this a limit of 2.85d was imposed upon H. 

Massel (1992) breaking solution has no insipience point and is active throughout the 

domain. The results of Newell and Mullarkey (2007a) show that this has an effect on the 

suitability of this method for use alongside wave-driven hydrodynamic models. 

 

Zhao et al. (2001) introduces an improvement to the Massel (1992) methodology to 

alleviate this issue.  Zhao et al. (2001)  suggests the application of a lower limit to broken 

wave height similar to that described in Section 3.12.3.1 above could be appropriate. The 

results of The results of Newell and Mullarkey (2007a) confirm this. 

 

3.12.3.3 Chawla et al. (1998) breaking solution 

A second alternative to Equation (3.1027) is the Chawla et al. (1998) breaking solution, 

based on the work of Thornton and Guza (1983). This work is based on spectral wave 

analysis and hence may not be strictly applicable to linear wave theory. Zhao et al. (2001) 

give the following equation for the energy dissipation factor due to wave breaking created 

for a monochromatic wave by Chawla et al. (1998):  
3

5
4 5

3
2 g

B H
C d

π σγ
λ

=  (3.1035) 

Chawla et al. (1998) suggest values of 1.0 and 0.6 for B and λ respectively. 

The Chawla et al. (1998) breaking solution has no insipience point and is active 

throughout the domain. The results of Newell and Mullarkey (2007a) show that this has 

an effect on the suitability of this method for use alongside wave-driven hydrodynamic 

models. 
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3.13 NM-WCIM in Operation 

3.13.1 Iteration of NM-WCIM for Solution of Wave Current Interaction 

This chapter has presented the various equations used in the NM-WCIM. In the case of a 

simple wave in the absence of currents and energy dissipation the finite-element solution 

to Equation (3.1026) is a one step procedure with no iteration. In the presence of a current 

it is impossible to solve the dispersion relation (Equation (3.189)) in one step so an 

iterative process is required. Equation (3.189) may be re-expressed as follows:  
2

2 .σ ω κ
⎡ ⎤⎛ ⎞

= −⎢ ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

κU
κ

⎥  (3.1036) 

 
At this stage the following substitution can be made to generalise the equation. 

Sφ= ∇κ  (3.1037) 

 
Therefore Equation (3.1036) becomes: 

2

2 .
S
S

φ

φ

σ ω κ
⎡ ⎤⎛ ⎞∇
⎢ ⎜= −

⎜ ⎟∇⎢ ⎥⎝ ⎠⎣ ⎦
U ⎥⎟  (3.1038) 

 
An iterative process can be used with Equation (3.1038) by initially solving in the 

absence of a current and on successive iterations updating the value of Sφ∇ . Sφ∇  can be 

obtained from the velocity potential results of the previous step. An equation to do this is 

derived in Section 5.8. Experience with the NM-WCIM has shown that it converges in 4 

to 5 iterations for wave-current interaction. 

 

3.13.2 Iteration of NM-WCIM for Energy Dissipation 

In the case of energy dissipation, iteration is also required. The model is initially 

calculated in the absence of energy dissipation and this provides an initial value for wave 

height in the next iteration. The wave heights calculated from this first step are used to 

obtain a γ   value using one of the breaking methods described in Section 3.12. The finite 

element solution is then re-run using the calculated γ  value to get new wave heights. This 

allows for the calculation of a new γ  value for the second iteration. Iteration continues 

until convergence of wave heights occurs. Usually this takes approximately 10 to 20 

iterations. 
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Chapter 4: Wave-Driven Hydrodynamic Model 
“The cure for anything is salt water: sweat, tears or the sea,” Isak Dinesen. 

 

 

4.1 Introduction 

In order to examine the effects of wave generated set-up/set-down and currents it is 

necessary to create a hydrodynamic model (NM-WDHM) using driving terms from the 

NM-WCIM developed in Chapter 3. The derivation of this wave-driven current model 

closely follows the methodology adopted by Mei et al. (2005) to obtain conservation laws 

of mass and horizontal momentum for a current field in the presence of waves. 

 

The progression of Chapter 4 is as follows: 

• Depth and time averaged equations for the mean motion of the water body are 

developed. The conservation of mass and conservation of momentum equations 

are developed into a depth integrated form – Section 4.3 

• A unique equation is developed to express the radiation stress driving force term 

of the momentum equation as a function of velocity potential – Section 4.5 

• A bottom friction term is developed for the momentum equation – Section 4.6 

• A turbulent diffusion term is developed for the momentum equation – Section 4.7 

• The NM-WDHM finite element equations are formed from the conservation of 

mass equation and the conservation of momentum equation including radiation 

stress, bottom friction and turbulent diffusion – Section 4.8 

 

 

4.2 Initial Definitions 

It will be useful to distinguish the vertical coordinate and vertical component of velocity 

from the horizontal components. 

 

Horizontal velocity: ,  1u 2u

Vertical velocity:  w

Horizontal coordinates: ,  1x 2x

Vertical coordinate:  z
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Figure 4.1 – Full Definition of Surface Measurements including Turbulence 

 
286 



WAVE-DRIVEN HYDRODYNAMIC MODEL 
 

  
 287 

4.3 Depth and Time-Averaged Equations for Mean Motion of Water Body 

In order to examine wave-generated behaviour a set of equations must be developed to 

describe the mean motion of the water body. This section develops a set of depth and time 

averaged equations of motion that will be used with a finite element solution scheme to 

model wave-generated behaviour. 

 

For this project an overbar indicates integration and averaging over a wave-period: 

0

1 T

xdt x
T

=∫  (4.1) 

 
Figure 4.2 – Variation of Free Surface and Mean Surface over Short and Long Time Scales 
 

In order to obtain mean horizontal velocity, the instantaneous velocity is integrated over 

the depth and also integrated and averaged over the time period T, which is the wave 

period. 
 
1

i i
h

U u dz 1, 2i =
h

η

η

′′

−

=
+ ∫  for  (4.2) 

1
v i

h

W w d
h

η

η

′′

−

=
+ ∫ z 1, 2i = for  (4.3) 

 
Equation (4.2) can be rearranged as: 

( )i i
h

U h u
η

η
′′

−

+ = ∫ dz  for  (4.4) 1, 2i =

 
Similarly Equation (4.3) can be rearranged as: 

( )v i
h

W h w
η

η
′′

−

+ = ∫ dz  for  (4.5) 1, 2i =
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Separating the instantaneous horizontal velocity into its steady component (long time 

scale) and oscillatory component (short time scale) as in Equation (3.42) gives: 

( ), , ,i i iu U u x y z t= +  for  (4.6) 1, 2i =

 
Similarly separating the instantaneous vertical velocity into its steady component (long 

time scale) and oscillatory component (short time scale) gives: 

( ), , ,vw W w x y z t= +  for  (4.7) 1, 2i =

Examining Equation (4.6) gives the following: 

i iu u U= − i

 
The time averaged integral of Equation (4.8) is: 

for  (4.8) 1, 2i =

i i
h h h

u dz u dz U dz
η η η′′ ′′ ′′

− − −

= −∫ ∫ ∫ i

 
for  (4.9) 1, 2i =

 
Acknowledging the slowly varying nature of  over a short time scale gives: iU

i i i
h h h

u dz u dz U dz
η η η′′ ′′ ′′

− − −

= −∫ ∫ ∫
 
for  (4.10) 1, 2i =

 
Equation (4.10) becomes: 

[ ]i i i h
h h

u dz u dz U z
η η

η
′′ ′′

′′

−
− −

= −∫ ∫
 
for  (4.11) 1, 2i =

 
Simplifying Equation (4.11) gives: 

[ ]i i i
h h

u dz u dz U h
η η

η
′′ ′′

− −

′′= − +∫ ∫
 
for  (4.12) 1, 2i =

 
Figure 4.3 – Function of long time scale plotted over short time period 
 



WAVE-DRIVEN HYDRODYNAMIC MODEL  C. Newell 
 

 
 289 

When a time averaged integral over a short time period is obtained for a function of a 

long time scale the original function is returned. As shown in Figure 4.3 over a single 

wave-period U  varies only slightly yielding the following: 

2

2

1
Tt

Tt

UU Udt T
T T

+

−

= =∫ U=
 
for  (4.13) 1, 2i =

Using Equation (4.13) with Equation (4.12) gives: 

[ ]i i i
h h

u dz u dz U h
η η

η
′′ ′′

− −

′′= − +∫ ∫
 
for  (4.14) 1, 2i =

 

h  is not a function of time so Equation (4.14) becomes: 

i i i
h h

u dz u dz U h
η η

η
′′ ′′

− −

⎡= − +⎣∫ ∫ ⎤⎦
 
for  (4.15) 1, 2i =

 
Using Equation (4.2) with Equation (4.15) gives: 

i i
h h h

u dz u dz u dz
η η η′′ ′′ ′′

− − −

= −∫ ∫ ∫ i

 
for  (4.16) 1, 2i =

 Hence: 

0i
h

u dz
η′′

−

=∫
 
for  (4.17) 1, 2i =

 
Using the definitions above it is now possible to derive an equation for conservation of 

mass. 
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4.3.1 Averaged Equation for Conservation of Mass 

Equation (3.41) states that: 

. 0∇ =u  

  

This can be re-written as: 

0i

i

u w
x z

∂ ∂+ =
∂ ∂

 for  (4.18) 1, 2i =

 

Integrating Equation (4.18) over the depth gives: 

0i

ih

u w dz
x z

η′′

−

⎡ ⎤∂ ∂+ =⎢ ⎥∂ ∂⎣ ⎦
∫ for  (4.19) 1, 2i =

 

Equation (4.19) may be expressed more explicitly as: 

[ ] [ ] 0i
h

ih

du dz w w
dx

η

η

′′

−
−

+ − =∫  for  (4.20) 1, 2i =

Leibniz’s rule as stated in Equation (3.399) can now be applied: 

( ) ( )
a a

z a z b
b b

D Ydz DYdz Da Y Db Y= == + −∫ ∫  

where , ,D
x y t

∂ ∂ ∂=
∂ ∂ ∂

 

Using Leibniz’s rule Equation (4.20) becomes: 

0i i i
i i ih h

d hu dz u w u w
dx x x

η

η

η′′

− −

⎡ ⎤ ⎡ ⎤′′∂ ∂+ − + − + =⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦
∫  for  (4.21) 1, 2i =

 
The kinematic boundary condition, Equation (3.73) is: 

.F F
t

∂ + ∇ =
∂

u 0

0

 (4.22) 

Where Equation (3.70) states:
 ( ) ( ), ,F t z tη′′= − =x x   

  
Substituting Equation (3.70) into Equation (3.73) gives: 

( ) ( ).
z

z
t
η

η
′′∂ −

′′+ ∇ − =
∂

u 0  (4.23) 

 



WAVE-DRIVEN HYDRODYNAMIC MODEL  C. Newell 
 

 
 291 

 
Expressing Equation (4.23) in tensor form yields: 

( ) ( ) 0i
i

z
u z

t x
η

η
′′∂ − ∂ ′′+ −

∂ ∂
=  for  at 1, 2,3i = z η=  (4.24) 

 
Equation (4.24) may be expanded as follows:  

0i i
i i

z zu u
t t x x

η η′′ ′′∂ ∂ ∂ ∂− + − =
∂ ∂ ∂ ∂

 for  at 1, 2,3i = z η=  (4.25) 

 

Acknowledging that 0z
t

∂ =
∂

 and 0
z

η′′∂ =
∂

 gives: 

0i
i

u w
t x

η η′′ ′′∂ ∂+ −
∂ ∂

=  for  at 1, 2i = z η′′=  (4.26) 

 
Equation (4.26) can be re-written as: 

i
i

u w
t x

η η′′ ′′∂ ∂+ =
∂ ∂

 for  at 1, 2i = z η′′=  (4.27) 

 
at z h= −  a rigid seabed is assumed leading to: 

0iu w= =  for a real fluid (4.28) 

So Equation (3.105) becomes: 

0i
i h

hu w
x

−

⎡ ⎤∂ + =⎢ ⎥∂⎣ ⎦
  for  at 1, 2i = z h= −  for an inviscid fluid (4.29) 

 
Using Equations (4.27), (4.28) and (4.29) with Equation (4.21) gives: 

0i
i h

u dz
x t

η η
−

′′∂ ∂+ =
∂ ∂∫  for  (4.30) 1, 2i =

 
Integrating the last term of Equation (4.30) over time gives: 
 

2

2

1
Tt

Tt

dt
t T t
η η

+

−

′′∂ ∂=
∂ ∂∫  (4.31) 

 
Equation (4.31) may be simplified as: 

[ ] 2

2

1 Tt

Ttt T
η η

+

−

∂ ′′=
∂

 (4.32) 
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Expanding Equation (4.32) yields: 

2 2

1
T Tt tt T

η η η
+ −

⎡ ⎤∂ ′′ ′′= −⎢∂ ⎣ ⎦
⎥  (4.33) 

 
 
Equation (4.33) may be written as: 

2 2 2 2 2 2

1
T T T T T Tt t t t t tt T

η η ζ ζ η ζ ζ
+ + + − − −

⎡ ⎤∂ ′ ′′ ′ ′′= + + − − −⎢∂ ⎣ ⎦
⎥  (4.34) 

 
 

 
Figure 4.4 – Diagram showing relative orders of magnitude and time scales of oscillatory and 
turbulent fluctuations of wave surface 
 

As shown in Figure 4.4 the order of magnitude of the turbulent terms is minor compared 

to the oscillatory component. It is hence valid to disregard the effects of the turbulent 

terms in Equation (4.34). Figure 4.4 also shows that for a periodic wave 
2 2
T Tt t

ζ ζ
+ −

≈ so 

assuming the variation of η  is assumed to be linear over a wave period: 

2 2

1
T Tt tt T t

η ηη η
+ −

⎡ ⎤∂ ∂= − ≈⎢ ⎥∂ ⎣ ⎦ ∂
 (4.35) 

 
 
Therefore averaging Equation (4.30) over time gives: 

0i
i h

u dz
x t

η η′′

−

∂ ∂+ =
∂ ∂∫  for  (4.36) 1, 2i =

 

Substituting Equation (4.4) into Equation (4.36) gives: 

( ) 0i
i

d dU h
dx dt

ηη⎡ ⎤+ + =⎣ ⎦  for  (4.37) 1, 2i =

Equation (4.37) is the equation for conservation of mass within a system. 
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4.3.2 Averaged Equation for Conservation of Momentum 

4.3.2.1 Complete Momentum Balance Equation including time 

The equation for conservation of momentum within a system may be rewritten as follows 

in the absence of the energy dissipation term (for wave breaking). Recalling Equation 

(3.37):   

( ) ( ).
. pgz

t ρ ρ
′∇∂ ∇+ ∇ + ∇ + =

∂
σu u u  

 

Equation (3.37), the equation for conservation of momentum within a system, may be 

rewritten as follows: 

( ) (. gz p
t

ρ ρ ρ∂ ′+ ∇ + ∇ +∇ = ∇
∂
u u u σ ).  (4.38) 

 
Expressing Equation (4.38) in tensor notation yields: 
 

( ) ( )j j
i

i j j i

u u
u p gz

t x x x x ijρ ρ ρ σ
∂ ∂ ∂ ∂ ∂ ′+ = − − +
∂ ∂ ∂ ∂ ∂

 for  (4.39) , 1, 2,i j = 3

 
Equation (4.39) can be expressed as follows: 

( )ij
j j

i ij ij
i i

u u
u p gz

t x x
ρ ρ δ ρ δ σ

∂ ∂ ∂ ′+ = − + +
∂ ∂ ∂

3 for  (4.40)
 

, 1, 2,i j =

 
In the case of the wave-driven current model the predominant energy losses are due to 

bed friction. Mei et al. (2005) express this as the gradient of the stress tensor. This 

corresponds to the gradient of the stress tensor in Equation (4.40) . σ′

 
It is known from simple calculus that: 

j i jui
i j

i i i

u uuu u
x x x

ρ ρ ρ
∂ ∂∂+ =
∂ ∂ ∂

3 for  (4.41) , 1, 2,i j =

 
Recalling Equation (3.41) and from continuity: 

0i

i

u
x

∂ =
∂  

for  (4.42) 1, 2,3i =

Therefore: 

j i
i

i i

u u
u ju

x x
ρ ρ

∂ ∂
=

∂ ∂
for  (4.43) , 1, 2,i j = 3
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Hence Equation (4.40) can be rewritten as: 

( )j i j
ij ij ij

i i

u u u
p gz

t x x
ρ ρ δ ρ δ σ

∂ ∂ ∂ ′+ = − + −
∂ ∂ ∂

3for  (4.44) , 1, 2,i j =

 

Acknowledging that  and changing the subscript i to only include 1 and 2 and no 

longer 3 yields: 

3u w=

( ) ( )3 3
j i j j

ij ij j j j
i i

u u u u w
p p gz

t x z x z 3ρ ρ ρ δ σ δ ρ δ σ
∂ ∂ ∂ ∂ ∂′ ′+ + = − − − + −
∂ ∂ ∂ ∂ ∂  

 for ,  (4.45) 1, 2i = 1, 2, 3j =

 

The horizontal component of the equation for conservation of momentum can be obtained 

by examining  from Equation (4.45): 1, 2j =

( ) 3j i j j
ij ij

i i

u u u u w
p

t x z x
σ

ρ ρ ρ δ σ
′∂ ∂ ∂ ∂∂ ′+ + = − + +

∂ ∂ ∂ ∂ ∂
j

z
2 for  (4.46) , 1,i j =

 

The vertical component of the equation for conservation of momentum  can be obtained 

by examining 3j =  in Equation (4.45) (recalling that ):  3u w=

( )
2

3i 33

i i

u ww w p gz
t x z z x z

σ σρ ρ ρ ρ
′ ′∂ ∂∂ ∂ ∂+ + = − + + +

∂ ∂ ∂ ∂ ∂ ∂
i ∂

1, 2i =, for  (4.47) 

 

4.3.2.2 Horizontal Momentum Balance Equation including Time Integrated over 

Depth 

Vertical integration can be carried out on Equation (4.46). Integration will be carried out 

from  to h− η′′ . After vertical integration and using the Leibniz rule, Equation (3.399), the 

first term of Equation (4.46)  becomes: 

j
j j

h h

u
dz u dz u

t t

η η

η t
ηρ ρ ρ

′′ ′′

′′
− −

∂ ′′∂ ∂⎡ ⎤= − ⎣ ⎦∂ ∂∫ ∫ ∂
, for  (4.48) 1, 2j =

 
Similarly the second term in Equation (4.46) becomes: 

i j
i j i j i j h

i i ih h

u u hdz u u dz u u u u
ix x x x

∂
, 1,i j =

η η

η

ηρ ρ ρ ρ
′′ ′′

−
− −

∂ ′′∂ ∂⎡ ⎤ ⎡ ⎤= − −⎣ ⎦ ⎣ ⎦∂ ∂ ∂ ∂∫ ∫ 2
 
for  (4.49) 

  



WAVE-DRIVEN HYDRODYNAMIC MODEL  C. Newell 
 

 
 295 

Integration yields the following for the third term in Equation (4.46): 

j
j j h

h

u w
dz u w u w

z

η

η
ρ ρ ρ

′′

−
−

∂
⎡ ⎤ ⎡ ⎤= −⎣ ⎦ ⎣ ⎦∂∫   for  (4.50) 1, 2j =

 
Summing up Equations (4.48), (4.49) and (4.50) gives the following for the left hand side 

(LHS) of Equation (4.46): 

i j i j i j h
i ih

j j j j h
h

hLHS u u dz u u u u
x x

u dz u u w u w
t t

η

η

η

η η

ηρ ρ ρ

ηρ ρ ρ ρ

′′

−
−
′′

′′ −
−

′′∂ ∂⎡ ⎤ ⎡ ⎤= − −⎣ ⎦ ⎣ ⎦∂ ∂

′′∂ ∂⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ − + −⎣ ⎦ ⎣ ⎦ ⎣ ⎦∂ ∂

∫

∫

ix
∂
∂

 
for  (4.51) , 1, 2i j =

 

i j j j j i j j i j
i i ih h h

hLHS u u dz u dz u w u u u u w u u
x t t x

η η

η

η ηρ ρ ρ ρ
′′ ′′

− − ′′ −
x

⎡ ⎤ ⎡ ⎤′′ ′′∂ ∂ ∂ ∂= + + − − − + ∂
⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦

∫ ∫
 

for  (4.52) , 1, 2i j =

 

i j j j j i j i j
i i ih h h

hLHS u u dz u dz u w u u u w u u
x t t x

η η

η

η ηρ ρ ρ ρ
′′ ′′

− − −′′

⎡ ⎤⎛ ⎞ ⎡′′ ′′∂ ∂ ∂ ∂= + + − + − +⎢ ⎥⎜ ⎟ ⎢ ⎥∂ ∂ ∂ ∂⎝ ⎠ ⎣⎣ ⎦
∫ ∫ x

⎤∂
∂ ⎦

 

for  (4.53) , 1, 2i j =

 
Using Equations (4.28) and (4.26) with Equation (4.53) gives: 

[ ]0i j j j j h
i h h

LHS u u dz u dz u w u w
x t

η η

η
ρ ρ ρ

′′ ′′

−′′
− −

∂ ∂ ⎡ ⎤= + + − −⎣ ⎦∂ ∂∫ ∫ ρ
 
for  (4.54) , 1, 2i j =

i j j
i h h

LHS u u dz u dz
x t

η η

ρ ρ
′′ ′′

− −

∂ ∂= +
∂ ∂∫ ∫  for  (4.55) , 1, 2i j =

 
The right hand side of Equation (4.46) can also be integrated vertically: 

( ) 3j
ij ij

ih h

RHS p dz dz
x z

η η σ
δ σ

′′ ′′

− −

′∂∂ ′= − + +
∂ ∂∫ ∫  for  (4.56) , 1, 2i j =
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Using Leibniz’s rule on Equation (4.56) gives: 

( ) 3j
ij ij ij ij ij ij h

i i ih h

hRHS p dz p p dz
x x x

η η

η

σηδ τ δ σ δ σ
′′ ′′

′′ −
− −

′∂′′∂ ∂ ∂′ ′⎡ ⎤ ⎡ ⎤= − + − − + − − + +⎣ ⎦ ⎣ ⎦∂ ∂ ∂∫ ∫ z∂

2

 (4.57) 

for  , 1,i j =

( )

3 3

ij ij ij ij ij ij h
i i ih

j j h

hRHS p dz p p
x x x

η

η

η

ηδ σ δ σ δ σ

σ σ

′′

′′ −
−

′′ −

′′∂ ∂ ∂′ ′⎡ ⎤ ⎡ ⎤= − + − − + − − +⎣ ⎦ ⎣ ⎦∂ ∂ ∂

′ ′⎡ ⎤ ⎡ ⎤+ −⎣ ⎦ ⎣ ⎦

∫ ′

2

 
for  (4.58) , 1,i j =

On the free surface of a fluid the atmospheric force per unit area must balance the stresses 

in the fluid in order to satisfy equilibrium. Using Cauchy’s theorem the following 

relationship can be defined where F
jτ  is the jth component of atmospheric force per unit 

area: 

( ) F
ij ij i jp nδ σ τ′− + =   at z η ′′= , for (4.59)

 
 

Examining the horizontal externally applied horizontal stress component only (i.e. 

) yields: 1, 2j =

( ) 3 3
F

ij ij i j jp n nδ σ σ τ′ ′− + + = at z η ′′= , for  (4.60) , 1,i j = 2

because  for  3 0jδ = 1, 2j =

 

Examining the vertical externally applied horizontal stress component only (i.e. 3j = ) 

yields: 

( ) ( )3 3 33 33 3 3
F

i i ip n p nδ σ δ σ τ′ ′− + + − + = at z η ′′= , for  (4.61) 1, 2i =

The unit normal n  pointing out of the fluid body is defined as: 

( 1 2 3, ,n n n=n )  (4.62) 

 

At the free surface z η ′′= and therefore a function for the free surface can be defined as in 

Equation (3.70): 

( ), , , 0F x y z t z η ′′= − =  (4.63) 

 
  

, 1, 2,i j = 3
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Differentiation of F leads to: 

, ,F
x y

η η′′ ′′⎛ ⎞∂ ∂∇ = − −⎜ ∂ ∂⎝ ⎠
1⎟  (4.64) 

 
The outward unit normal at the free surface is then defined as follows acknowledging that 

the z-axis points upwards out of the fluid column as shown in Figure 4.1: 

F
F

∇=
∇

n  (4.65) 

 
Equation (4.60) can then be rewritten using the results of Equations (4.64) and (4.65): 

( ) 3
F

ij ij j j
i

p F
x
ηδ σ σ τ′′∂′ ′− − + + = ∇

∂
at z η ′′=  for  (4.66) , 1, 2i j =

 
 

A similar relationship to Equation (4.60) can be developed for the sea-bed and bottom 

stress. The pressure term on the left hand side of the Cauchy equation is dropped here 

because the  term on the right hand side only measures additional stress caused by 

fluid movement: 

B
jτ

3 3
B

ij j i jn nσ σ τ′ ′+ =  at , for  and  (4.67) , 1,i j = 2

 

At the seabed and therefore a function for the seabed can be defined as follows 

similar to the  function of Equation (3.99): F ′

( ), , , 0B x y z t z h= + =  (4.68) 

 
Differentiation of B leads to: 

, ,1h hB
x y

⎛ ⎞∂ ∂∇ = ⎜ ∂ ∂⎝ ⎠
⎟  (4.69) 

 
In the case the outward pointing normal from the fluid column is in the negative z-

direction. The outward unit normal at the seabed is therefore: 

B
B

∇= −
∇

n  (4.70) 

 
  

z h= − 1, 2j =

z h= −
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Equation (4.67) can then be rewritten using the results of Equations (4.69) and (4.70): 

3
B

ij i j
h B
x

σ σ τ∂′ ′+ = − ∇
∂

at  (4.71) z = −h

 
Substituting Equations (4.66) and (4.71) into Equation (4.58) gives: 

( )

3 3

ij ij ij ij ij ij h
i i ih

j j h

hRHS p dz p p
x x x

η

η

η

ηδ σ δ σ δ σ

σ σ

′′

′′ −
−

′′ −

′′∂ ∂ ∂′ ′⎡ ⎤ ⎡ ⎤= − + − − + − − +⎣ ⎦ ⎣ ⎦∂ ∂ ∂

′ ′⎡ ⎤ ⎡ ⎤+ −⎣ ⎦ ⎣ ⎦

∫ ′

 (4.72) 

for  

 

( ) [ ]F
ij ij j ij jh

i ih

h BRHS p dz F p B
x x

η

δ σ τ δ τ
′′

−
−

∂ ∂′= − + + ∇ + + ∇
∂ ∂∫  (4.73) 

for  

 

( ) [ ] F B
ij ij j jh

i jh

hRHS p dz p F B
x x

η

δ σ τ τ
′′

−
−

∂ ∂′= − + + + ∇ + ∇
∂ ∂∫  (4.74) 

for  

 
Putting Equations (4.55) and (4.74) together gives: 

( ) [ ] F B
i j j ij ij j jh

i i jh h h

hu u dz u dz p dz p F B
x t x x

η η η

ρ ρ δ σ τ τ
′′ ′′ ′′

−
− − −

∂ ∂ ∂ ∂′+ = − + + + ∇ +
∂ ∂ ∂ ∂∫ ∫ ∫ ∇

 
for  (4.75) 

 
Equation (4.75) is the horizontal momentum balance equation. It is for a column of fluid 

with unit area and height hη′′ + . The terms on the left hand side of the equation are the 

net momentum flux and the acceleration through the sides of the column of fluid. The 

terms on the right hand side are the net stresses on the sides of the column, the pressure 

exerted by the seabed to the fluid and the surface stresses at the free surface and the 

seabed. 

 
  

, 1,i j = 2

2

2

2

, 1,i j =

, 1,i j =

, 1,i j =
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4.4.3 Vertically Integrated Horizontal Momentum Balance Equation averaged over 

time 

The left hand side of Equation (4.75) can be averaged over time.  

i j j i j j
i ih h h

u u dz u dz u u dz u dz
x t x t

η η η

ρ ρ ρ ρ
′′ ′′ ′′ ′′

− − − −

∂ ∂ ∂ ∂+ = +
∂ ∂ ∂ ∂∫ ∫ ∫

h

η

∫

′

for  (4.76)
 

 

Using Equation (3.45) the following can be stated: 

j j j j
h h h h

u dz U dz u dz u dz
η η η η′′ ′′ ′′ ′′

− − − −

′ ′= + +∫ ∫ ∫ ∫ for  (4.77) 

 
Figure 4.5 – Plot of wave particle velocity and turbulent velocity over depth

  

It can be seen from Figure 4.5 that the positive and negative portions of both the wave 

particle velocity and turbulent velocity plots over the depth are roughly equal. This shows 

that the integrals of ju′  and ju′′ from  to h− η′′  are approximately zero. This gives the 

following: 

j j
h h

u dz U dz
η η′′ ′′

− −

≈∫ ∫
 
for  (4.78) 

, 1,= 2

2

i j

, 1,=i j

, 1,i j = 2
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Hence the following can be stated: 

j j
h h

u dz U dz
t t

η η

ρ ρ
′′ ′′

− −

∂ ∂=
∂ ∂∫ ∫

 
for  (4.79) 

 

Equation (4.79) can now be expanded as follows: 

[ ]j j
h

u dz U h
t t

η

ρ ρ η
′′

−

∂ ∂ ′′= +
∂ ∂∫

 
for  (4.80) 

 

Examining the time averaged integral of a function f gives: 

2

2

1
Tt

Tt

f f dt
t T t

+

−

∂ ∂=
∂ ∂∫  (4.81) 

Equation (4.81) becomes: 

2

2

1 Tt

Tt

f f
t T

+

−

∂ =
∂

 (4.82) 

 
Equation (4.82) can be expressed more explicitly as: 

2
T Tt t

2

f f
f
t T

+ −
−

∂ =
∂

 (4.83) 

 
Therefore: 

f f
t t

∂ ∂≈
∂ ∂

 (4.84) 

 
Using Equation (4.84) with Equation (4.80) gives: 

[ ]j j
h

u dz U h
t t

η

ρ ρ η
′′

−

∂ ∂ ′′= +
∂ ∂∫

 
for  (4.85) 

 
Equation (4.13) can now be used to re-express Equation (4.85) as follows: 

[ ]j j
h

u dz U h
t t

η

ρ ρ η
′′

−

∂ ∂ ′′= +
∂ ∂∫

 
for  (4.86) 

 
 

  

, 1,= 2

2

2

2

i j

, 1,i j =

, 1,i j =

, 1,i j =
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The depth,
 

, does not vary over time so Equation (4.86) becomes: h

j j
h

u dz U h
t t

η

ρ ρ η
′′

−

∂ ∂ ⎡= +⎣∂ ∂∫ ⎤⎦
 
for  (4.87) 

 

Using Equation (4.87) with Equation (4.76) gives: 

(i j j i j j
i ih h h

u u dz u dz u u dz U h
x t x t

η η η

ρ ρ ρ ρ η
′′ ′′ ′′

− − −

∂ ∂ ∂ ∂ )⎡ ⎤+ = + +⎣ ⎦∂ ∂ ∂ ∂∫ ∫ ∫ for  (4.88)
 

 
Explicitly expressing the steady and unsteady terms in Equation (4.88) gives:  

( )

i j j i j i j i j j i
i ih h h h h h

j

u u dz u dz U U dz u u dz U u dz U u dz
x t x

U h
t

η η η η η η

ρ ρ ρ

ρ η

′′ ′′ ′′ ′′ ′′ ′′

− − − − − −

⎡ ⎤∂ ∂ ∂
⎢ ⎥+ = + + +

∂ ∂ ∂ ⎢ ⎥⎣ ⎦
∂ ⎡ ⎤+ +⎣ ⎦∂

∫ ∫ ∫ ∫ ∫ ∫

 
 for (4.89) i j  

2

2

2

 
Figure 4.6 – Variation in velocity terms and their products over time 

, 1,i j =

, 1,=i j

, 1,=
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Examining Equation (4.17) and Figure 4.6 shows that the time averaging of a single 

unsteady velocity term is zero. Hence Equation (4.89) becomes: 

( )i j j i j i j j
i i ih h h h

u u dz u dz U U dz u u dz U h
x t x x t

η η η η

ρ ρ ρ ρ ρ η
′′ ′′ ′′ ′′

− − − −

∂ ∂ ∂ ∂ ∂ ⎡ ⎤+ = + + +⎣ ⎦∂ ∂ ∂ ∂ ∂∫ ∫ ∫ ∫
 

 for (4.90)  

 
Equation (4.90) may be expanded as follows: 

( ) ( )i j j i j i j j
i i ih h h

u u dz u dz U U h u u dz U h
x t x x t

η η η

ρ ρ ρ η ρ η
′′ ′′ ′′

− − −

∂ ∂ ∂ ∂ ∂⎡ ⎤ ⎡+ = + + +⎣ ⎦ ⎣∂ ∂ ∂ ∂ ∂∫ ∫ ∫ ⎤+ ⎦

 
 

 for (4.91) 

 
A further expansion of Equation (4.91) yields: 

( ) ( ) ( )

( )

j i
i j j i j i j

i i ih h

j
j i j

i h

U Uu u dz u dz U U h U h U h
ix t x x

U
h U u u dz

t t x

η η

η

ρ ρ ρ η ρ η ρ η

ηρ η ρ

′′ ′′

− −

′′

−

∂ ∂∂ ∂ ∂+ = + + + + +
∂ ∂ ∂ ∂

∂⎡ ⎤∂ ∂+ + + +⎢ ⎥∂ ∂ ∂⎣ ⎦

∫ ∫

∫

x∂

 
 

 for (4.92) 

 
Equation (4.92) may be rewritten as: 

( ) ( )

( )

j
i j j j i i

i ih h

j
j i

i

i h

U
u u dz u dz U U h U h

j

x t x

U
h U u u d

t t x

η η

η

ρ ρ ρ η ρ η

ηρ η ρ ρ

′′ ′′

− −

′′

−

∂∂ ∂ ∂ ⎡ ⎤+ = + + +⎣ ⎦∂ ∂ ∂ ∂

∂ ∂ ∂+ + + +
∂ ∂ ∂

∫ ∫

∫
 (4.93)

 

sing Equation (4.37) with Equation (4.93) gives: 

x

z

for 

 
U

( )

( )

j
i j j j i

i ih h

j
j

i h

U
u u dz u dz U U h

x t t x

U
h U u u

t t x i jdz
η

ρ ρ ρ ρ η

ηρ η ρ ρ

− −

′′

−

∂
+ = − + +

∂ ∂ ∂ ∂

∂ ∂ ∂+ + + +
∂ ∂ ∂

∫ ∫

∫
 for 

 (4.94) 

 

2

2

2

2

2

η η η′′ ′′∂ ∂ ∂

 

, 1,=i j

, 1,=i j

, 1,=i j

, 1,i j =

, 1,i j =
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Simplification of Equation (4.94) yields: 

( ) j j
i j j i i j

i i ih h h

U U
u u dz u dz h U u u dz

x t t x x

η η η

ρ ρ ρ η ρ
′′ ′′ ′′

− − −

∂ ∂⎡ ⎤∂ ∂ ∂+ = + + +⎢ ⎥∂ ∂ ∂ ∂ ∂⎣ ⎦
∫ ∫ ∫  for 

 (4.95) 

 
The right hand side of Equation (4.75) is now examined. 

 

Initially the various symbols for pressure at the seabed will be examined: 

[ ] h
p

− is the total pressure at the seabed. 

(g hρ η + ) is the hydrostatic pressure at the seabed. 

bp is the dynamic pressure at the seabed. 

 
Hence the mean dynamic pressure at the seabed may be defined as: 

(b h
)p p gρ η

−
⎡ ⎤= − +⎣ ⎦ h  (4.96) 

 
Therefore: 

( )bh
j j j

h hp p g h h
x x x

ρ η
−

∂ ∂⎡ ⎤ = + +⎣ ⎦ ∂ ∂ ∂
∂  for (4.97)  

 
The following identity will now be useful: 

( ) ( ) ( )21
2j j

g h g h h
x x∂

1, 2j =ρ η ρ η η∂ ∂⎡ ⎤+ = + +⎢ ⎥∂ ⎣ ⎦
 for

 
 (4.98) 

( ) ( ) ( )21
2j j

hg h g h g h
x x x

ηρ η ρ η ρ η∂ ∂ ∂
1, 2j =

⎡ ⎤+ = + + +⎢ ⎥∂ ∂ ∂⎣ ⎦
 for

 
 (4.99) 

( ) ( ) ( )21
2j j j

hg h g h g h
x x x

ηρ η ρ η ρ η∂ ∂ ∂⎡ ⎤+ = + − +⎢ ⎥∂ ∂ ∂⎣ ⎦
 for

 
 (4.100) 1, 2j =

 
Using Equation (4.100) with Equation (4.97) gives: 

( ) ( )21
2bh

j j j

h hp p g h g h
jx x x x

ηρ η ρ η
−

∂ ∂ ∂ ⎡ ⎤⎡ ⎤ = + + − +⎢ ⎥⎣ ⎦ ∂ ∂ ∂ ∂⎣ ⎦
∂

2

 for
 

 (4.101) 1, 2j =

 
  

, 1, 2i j =

, 1,i j =
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Using Equations (4.95) and (4.101) to obtain a time averaged version of (4.75) gives: 

( ) ( )

( ) ( )21
2

j j
i i j ij ij b

i i i jh h

j j

F B
j j

U U hh U u u dz p dz p
t x x x x

g h g h
x x

F B

η η

ρ η ρ δ σ

ηρ η ρ η

τ τ

′′ ′′

− −

∂ ∂⎡ ⎤ ∂ ∂ ∂′+ + + = − + +⎢ ⎥∂ ∂ ∂ ∂ ∂⎣ ⎦

∂ ∂⎡ ⎤+ + − +⎢ ⎥∂ ∂⎣ ⎦

+ ∇ + ∇

∫ ∫

  

 for
  

(4.102) , 1,i j = 2

Rewriting Equation (4.102) gives: 

( ) ( )

( )21
2

j j
i b

i j j

ij i j ij
i jh h h

F B
j j

U U hh U p g h
t x x x

p dz u u dz dz g h
x x

F B

η η η

ηρ η ρ η

δ ρ σ ρ η

τ τ

′′ ′′ ′′

− − −

∂ ∂⎡ ⎤ ∂ ∂+ + = − +⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

⎡ ⎤∂ ∂ ⎡ ⎤′⎢ ⎥+ − + + + +⎢ ⎥∂ ∂ ⎣ ⎦⎢ ⎥⎣ ⎦

+ ∇ + ∇

∫ ∫ ∫

 
 for

  
(4.103)

 

, 1,i j = 2

This may be rewritten as follows: 

( ) ( )

( ) ( )21
2

j j
i b

i j j

ij i j ij ij
i h h

F B
j j

U U hh U p g h
t x x x

p u u dz g h dz
x

F B

η η

ηρ η ρ η

δ ρ δ ρ η σ

τ τ

′′ ′′

− −

∂ ∂⎡ ⎤ ∂ ∂+ + = − +⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

⎡ ⎤∂ ⎡ ⎤ ′⎢ ⎥+ − + + + + +⎢ ⎥∂ ⎣ ⎦⎢ ⎥⎣ ⎦

+ ∇ + ∇

∫ ∫  

 for
 

 (4.104) , 1,i j = 2

 

 

Introducing the term ijR in Equation (4.104) gives: 

( ) ( )j j F B
i b ij ij j j

i j j i h

U U hh U p g h R dz F
t x x x x

ηηρ η ρ η σ τ τ
′′

−

⎡ ⎤∂ ∂⎡ ⎤ ∂ ∂ ∂ ′⎢ ⎥+ + = − + + − + + ∇ +⎢ ⎥∂ ∂ ∂ ∂ ∂ ⎢ ⎥⎣ ⎦ ⎣ ⎦
∫ B∇

2

  

 for
 

 (4.105) , 1,i j =

 
Where: 

( ) ( )21
2ij ij i j ij

h

R p u u dz g h
η

δ ρ δ ρ η
′′

−

⎡ ⎤= + − +⎢ ⎥⎣ ⎦∫  for
 

 (4.106) , 1,i j = 2
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Examining the following term: 

( )
h h

g z dz g dz g z
η η

ρ η ρ η ρ
− −

− = −∫ ∫
h

dz
η

−
∫  (4.107) 

( )
2

2h
h h

zg z dz g z g
ηη η

ρ η ρ η ρ
−

− −

⎡ ⎤⎡ ⎤− = − ⎢ ⎥⎣ ⎦ ⎣ ⎦
∫  (4.108) 

( )
2 22

2 2h

hg z dz g h g
η ηρ η ρ η η ρ
−

⎡ ⎤
⎡ ⎤− = + − −⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

∫  (4.109) 

( )
2 22

2 2h

g gg z dz g g h
η ρ η ρρ η ρ η ρ η
−

− = + − +∫
h

 (4.110) 

( ) 2 22
2h

gg z dz h h
η ρρ η η η
−

⎡− = + +⎢⎣∫ ⎤
⎥⎦

 (4.111) 

( ) ( 2

2h

gg z dz h
η ρρ η η
−

− = +∫ )  (4.112) 

 

Equation (4.106) can be rewritten using the result of Equation (4.112): 

( ) ( )ij ij i j ij
h h

R p u u dz g z dz
η η

δ ρ δ ρ η
′′

− −

= + − −∫ ∫  for
 

 (4.113) , 1, 2i j =

( )ij ij i j
h h h

R pdz g z dz u u dz
η η η

ρ η δ ρ
′′ ′′

− − −

⎡ ⎤
⎢ ⎥= − − +
⎢ ⎥⎣ ⎦
∫ ∫ ∫  for

 
 (4.114)  , 1, 2i j =
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4.3.3 Some Simplifications of the Horizontal Momentum Balance Equation 

4.3.3.1 Preliminary Orders of Magnitude 

In order to use the equations derived in Section 4.3.2 in an engineering model it is 

necessary to carry out some simplifications. Firstly to solve to a steady state for wave 

generated set-up/set-down and currents it is acceptable to state the following for the 

steady state solution: 

0jU
t t

η∂ ∂= =
∂ ∂

 for
 

 (4.115) 1, 2j =

 
If atmospheric disturbance of the free surface is discounted the following simplification 

can also be applied: 

0F
jτ =  for

 
 (4.116) 1, 2j =

 
It is noted by Mei (2005) that the transient effects such as wind could have a “very direct 

influence on short-term evolution of beaches.” However Mei (2005) goes on to comment 

that very little research has been carried out into this topic. 

 

Examining Equation (4.105) we can assume that viscosity, bottom slope and wave slope 

are all small quantities. Clearly viscosity would be of the order of . Wave steepness 

would be of the order Aκ  as shown below: 

 

Wave Steepness  =
AH O

L L
ξ⎛ ⎞

⎜ ⎟
⎝ ⎠

∼  (4.117) 

2
L
πκ =  (4.118) 

 Hence:  

1O
L

κ ⎛ ⎞
⎜ ⎟
⎝ ⎠

∼  (4.119) 

So (H O A
L

)ξκ∼  (4.120) 

Examination of beach properties would also lead to the conclusion that the order of the 

bottom slope would be less than or equal to the order of magnitude of the wave slope: 

 

(h O A )ξκ∇ ≤  (4.121) 

μ
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4.3.3.2 Viscous Stress Terms 

It is known from kinematics that any particle on the free surface remains on the free 

surface. Hence a water particle undergoing wave orbital velocity will have an orbit with a 

radius of approximately the same size as the wave height which in turn is of the same 

order as the wave amplitude. The horizontal displacement that a particle undergoes per 

wave period will be approximately equal to the radius and hence wave amplitude. Hence 

it is possible to say that: 

Horizontal velocity, (i

A
u O O A

T
ξ )ξω⎛ ⎞

⎜ ⎟
⎝ ⎠

∼ ∼  (4.122) 

 

If the assumption is made that velocity varies at the same rate as a wave length then the 

horizontal gradient of horizontal particle velocity ( )A
O O

L
ξ Aξ

ω
κω⎛ ⎞

⎜ ⎟
⎝ ⎠

∼ ∼ .  

 

The order of magnitude of the viscous stress term in Equation (4.105) is now examined. 

The viscous stress term is a product of viscosity ( )O μ⎡ ⎤⎣ ⎦ and the gradients of horizontal 

velocity .  This leads to the following order of magnitude expression for the 

vertical integration of the viscous stress term: 

(O Aξκω⎡⎣ )⎤⎦

(ij
h

dz O A h
η

ξσ μκω
′′

−

′∫ ∼ )  (4.123) 

 

Similarly Equation (4.114) can be examined with respect to orders of magnitude leading 

to the following expression: 

ij i j
h

R O u u dz
η

ρ
−

⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦
∫  for

 
 (4.124) , 1, 2i j =

Using Equation (4.122) with Equation (4.124) yields: 

( )( )2

ijR O A hξρ ω∼  for
 

 (4.125) , 1, 2i j =

Using Equations (4.123) and (4.125) the following can be obtained: 

( )2

ij
h

ij

dz
AhO O O

R A AA h

η

ξ ξξ

σ
μκω μκ νκ

ρω ωρ ω

′′

−

′ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

∫
∼ ∼ ∼  for

 
 (4.126) , 1, 2i j =
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Where μν
ρ

= . It is known that the Reynolds number based on wave orbital velocity and 

wavelength is: 

2

A Aξ ξω
νκ κδ

≡ =ER  (4.127) 

Where  is the boundary layer thickness. δ
 
 

Equation (4.126) can then be related to the Reynolds Number, : ER

ij
h

ij

dz
O O

R A

η

ξ

σ
νκ
ω

′′

−

′
⎡ ⎤

⎡ ⎤⎢ ⎥ ⎣ ⎦⎢ ⎥⎣ ⎦

∫
∼ ∼ -1

ER  for
 

 (4.128) , 1,i j = 2

 
Under practical circumstances the ratio expressed in Equation (4.128) is very small and 

hence the integral of viscous stress can be assumed to be negligible with respect to 

radiation stress for present purposes.  

 

4.3.3.3 Bottom Stress Terms 

The bottom stress term, B
iτ , however, cannot be assumed to be negligible. Mei (2005) 

uses the assumption that the square of the slope of the seabed is small. Using Equation 

(4.69) the following can be stated: 

 
22

21h hB
x y

⎛ ⎞∂ ∂⎛ ⎞∇ = + +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
 (4.129) 

 
Equation (4.129) can also be expressed as: 

( )21B∇ = + ∇h  (4.130) 
 

Hence: 

( )21B O h∇ = + ∇  (4.131) 

 
Therefore: 

( )21B B
j jB Oτ τ ⎡∇ = + ∇⎣ h ⎤

⎦  (4.132) 
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4.3.3.4 Integration of Vertical Momentum Equation 

In order to examine the mean dynamic pressure of Equation (4.96) it is necessary to 

integrate the vertical momentum equation. Equation (4.47) becomes: 

( )
2

3 3i i

i iz z z z z

u ww wp gz dz dz dz dz dz d
z t x z x

η η η η η σ σρ ρ ρ ρ
′′ ′′ ′′ ′′ ′′ ′′′ ′∂ ∂∂ ∂ ∂⎡ ⎤+ = − − − + +⎢ ⎥∂ ∂ ∂ ∂ ∂⎣ ⎦∫ ∫ ∫ ∫ ∫ 3

z

z
z

η ∂
∂∫   

 for
  

(4.133) 1, 2i =
 
 

Equation (4.133) can be expanded to give the following: 

[ ] [ ] ( ) [ ] [ ]3
33 33

2 2

i
z z

iz

i
z

iz

w

z

p p g z dz dz
x t

u w dz w w
x

η η

η η

η

η

σρ η σ σ ρ

ρ ρ ρ

′′ ′′

′′

′∂ ∂′ ′− + − = + − −
∂ ∂

∂ ⎡ ⎤ ⎡ ⎤− − +⎣ ⎦ ⎣ ⎦∂

∫ ∫

∫
       for

 
 (4.134) 1, 2i =

 
Using the Leibniz Rule, Equation (3.399), Equation (4.134) becomes: 

[ ] [ ] ( ) [ ] [ ] [ ]

[ ]

[ ]

3 3 33 33

2 2

i iz z
i iz

i
iz z

i z
i

p p g z dz
x x

wdz w u wdz
t t x

u w w w
x

η

η η η

1, 2i =
η η

η

η η

ηρ η σ σ σ σ

ηρ ρ ρ

ηρ ρ ρ

′′

′′ ′′

∂ ∂′ ′ ′ ′− + − = − + −
∂ ∂

∂ ∂ ∂− + −
∂ ∂ ∂
∂ ⎡ ⎤ ⎡ ⎤+ − +⎣ ⎦ ⎣ ⎦∂

∫

∫ ∫       for
 

 (4.135) 

 
Equation (4.135) can be rearranged to give: 

[ ] ( )

[ ]

2
3

33 3 33

iz
iz z

i z
i i z

i z
i

p g z wdz u wdz
t x

w u w w
t x x

p
x

η η

η

η

η

ρ η ρ

η ηρ ρ

ησ σ σ

′′ ′′

′′

⎡ ⎤∂ ∂= − + +⎢ ⎥∂ ∂⎣ ⎦
⎡ ⎤⎛ ⎞∂ ∂ ∂⎡ ⎤− + − − −⎢ ⎥⎜ ⎟ ⎣ ⎦∂ ∂ ∂⎝ ⎠⎣ ⎦

⎡ ⎤∂′ ′ ′− − + − +⎢ ⎥∂⎣ ⎦

∫ ∫

i dzτ∫                     for
 

 (4.136) 1, 2i =

 
 
The boundary terms of Equation (4.136) are now examined. 

 
Examining the case of 3j =  from Equation (4.59) gives: 

( )3 3 3
F

i i ip nδ σ τ′− + =  at z η′′= , for  (4.137) 1, 2,3i =
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Expressing Equation (4.137) more explicitly gives: 

( ) ( ) ( )13 13 1 23 23 2 33 33 3 3
Fp n p n p nδ σ δ σ δ σ τ′ ′ ′− + + − + + − + =  at z η′′=  (4.138) 

 
Equation (4.138) can be expanded as follows using Equation (4.65) : 

( ) ( ) ( )13 13 23 23 33 33 3
1 2

Fp p p F z
x x
η ηδ σ δ σ δ σ τ

⎛ ⎞ ⎛ ⎞∂ ∂′ ′ ′− + − + − + − + − + = ∇⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
 at η′′=  (4.139) 

 
This may be simplified as:

 
( )13 23 33 33 3

1 2

Fp F τ z
x x
η ησ σ δ σ

⎛ ⎞ ⎛ ⎞∂ ∂′ ′ ′− + − + − + = ∇⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
 at η′′=  (4.140) 

 
Equation (4.140) may be rewritten as follows: 

3 33 3
F

i
i

p F
x
ησ σ∂′ ′− − + = ∇

∂
τ z at η′′=  for  (4.141) 1, 2i =

 
If the atmospheric pressure is zero the Equation (4.141) becomes:

 
33 3 0i

i

p
x
ησ σ ∂′ ′− + − =

∂
 at z η′′=  for  (4.142) 1, 2i =

 

Using Equations (4.27) and (4.142) with Equation (4.136) and acknowledging an 

atmospheric pressure of zero at the free surface gives: 

[ ] ( )

[ ]2
3 33

iz
iz z

i zz
i z

p g z wdz u wdz
t x

w dz
x

η η

η

ρ η ρ

ρ σ σ

′′ ′′

′′

⎡ ⎤∂ ∂= − + +⎢ ⎥∂ ∂⎣ ⎦

∂ ′ ′⎡ ⎤− − +⎣ ⎦ ∂

∫ ∫

∫
  for  (4.143) 1, 2i =

 
 Obtaining the time average of the terms in Equation (4.143) yields: 

( )

2
3 33

iz
iz z

i zz i z

p g z wdz u wdz
t x

w dz
x

η η

η

ρ η ρ

ρ σ σ

′′ ′′

′′

⎡ ⎤∂ ∂⎡ ⎤ ⎢ ⎥= − + +⎣ ⎦ ∂ ∂⎢ ⎥⎣

∂⎡ ⎤ ⎡ ⎤′ ′− − + ⎣ ⎦⎣ ⎦ ∂

∫ ∫

∫

⎦

 

for  (4.144) 1, 2i =
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Using the result of Equation (4.84) with Equation (4.144) gives: 

( )

2
3 33

iz
iz z

i zz i z

p g z wdz u wdz
t x

w dz
x

η η

η

ρ η ρ

ρ σ σ

′′ ′′

′′

⎡ ⎤∂ ∂⎡ ⎤ ⎢ ⎥= − + +⎣ ⎦ ∂ ∂⎢ ⎥⎣

∂⎡ ⎤ ⎡ ⎤′ ′− − + ⎣ ⎦⎣ ⎦ ∂

∫ ∫

∫

⎦

 

for  (4.145) 1, 2i =

 
The time average of the vertical velocity is zero:  

0
z

wdz
η′′

=∫  (4.146) 

 
Giving the following simplification of Equation (4.144): 

( ) 2
3 3i iz zzi iz z

p g z u wdz w dz
x x

η η

ρ η ρ ρ σ σ
′′ ′′∂ ∂⎡ ⎤⎡ ⎤ ⎡ ⎤′ ′= − + − − +⎣ ⎦ ⎣ ⎦⎣ ⎦∂ ∂∫ ∫ 3

)

 for  (4.147) 1, 2i =

 

 

4.3.3.5 Use of Dimensional Analysis to Simplify the Mean Water Pressure 

Equation (4.128) shows that the integrated viscosity term is of the order  relative 

to the other terms in the equation. Using Equation (4.18), the continuity equation, the 

order of 

(O -1
ER

33 z
σ⎡ ⎤′⎣ ⎦  can be obtained. Rearranging Equation (4.18) gives: 

i

i

u w
x z

∂ ∂= −
∂ ∂

 for  (4.148) 1, 2i =

Therefore:  

i

i

u wO
x z

∂ ∂⎡
⎢∂ ∂⎣ ⎦

∼ ⎤
⎥  for  (4.149) 1, 2i =

It is clear from Equation (4.149) that the following is true: 

i

i

u wO
x z

⎡ ⎤∂ ∂
⎢∂ ∂⎣ ⎦

∼ ⎥  for  (4.150) 1, 2i =

Hence the following is true: 

33
i

z
i

uw O
z x

σ μ μ
⎛ ⎞∂∂⎡ ⎤′ = ⎜ ⎟⎣ ⎦ ∂ ∂⎝ ⎠

∼  for  (4.151) 1, 2i =
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The magnitude of 33σ′  is hence negligible leading to the following expression of Equation 

(4.147) when examined using Equation (4.128): 

( ) ( )( )2 1iz zi z

p g z u wdz w O
x

η

ρ η ρ ρ
′′⎡ ⎤∂ ⎡ ⎤⎡ ⎤ ⎢ ⎥ 1, 2i =≅ − + − +⎣ ⎦ ⎣ ⎦∂⎢ ⎥⎣ ⎦
∫ -1

ER  for  (4.152) 

Examining Equation (4.152) at the seabed, where , and using Equation (4.28) 

yields: 

z h= −

( ) ( )( )1ih
i h

p g h u wdz O
x

η

ρ η ρ
′′

−
−

⎡ ⎤∂⎡ ⎤ ⎢ ⎥≅ + + +⎣ ⎦ ∂⎢ ⎥⎣ ⎦
∫ -1

ER  for  (4.153) 1, 2i =

 
Equations (4.152) and (4.153) yield the conclusion that viscosity does not have a direct 

influence on the time averaged pressure at any point in the fluid depth. 

 

Using Equation (4.96) with Equation (4.153) yields: 

( )( )1b i
i h

p u wdz O
x

η

ρ
′′

−

⎡ ⎤∂
⎢ ⎥≅ +

∂⎢ ⎥⎣ ⎦
∫ -1

ER  for  (4.154) 1, 2i =

 
Therefore: 

( )( )h∇ , 1,i j =1b i
j j i h

h hp u wdz O
x x x

η

ρ
′′

−

⎡ ⎤∂ ∂ ∂
⎢ ⎥≅ +

∂ ∂ ∂⎢ ⎥⎣ ⎦
∫ -1

ER 2 for  (4.155)  

Examination of Equation (4.155) shows that its order of magnitude is: 

( )( )2
b

j

hp O h A h
x

ρ ω κ∂ = ∇
∂

 for  (4.156) 1, 2j =

 
Assuming the length scale of variables U ,η  and ijR is of the same order of magnitude as 

the wavelength: examination of other terms in Equation (4.105) for orders of magnitude 

gives the following results: 

( ) ( )( )2j
i

i

U
h U O h A

x
ρ η ρ ω κ

∂
+ =

∂
 for  (4.157) , 1,i j = 2

( ) ( )g h O ghA
x
ηρ η ρ κ∂+ =

∂
 (4.158) 

( )( )2ij

i

R
O h A

x
ρ ω κ

∂
=

∂
 for  (4.159) , 1,i j = 2
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Equation (4.156) is at least an order of magnitude lower than the terms in Equations 

(4.157), (4.158) and (4.159) under the assumption that the slope of the seabed h∇  is 

small. Hence the term b
j

hp
x

∂
∂

is unimportant and can be ignored. 

 

Equation (4.105) may now be rewritten as follows using the results of Equations (4.116), 

(4.127), (4.132) and (4.156): 

( ) ( )j j ij B
i

i j

U U R
h U g h

t x x x
η

j
i

ρ η ρ η τ
∂ ∂ ∂⎡ ⎤ ∂+ + = − + − +⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

 for  (4.160) , 1, 2i j =
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4.3.4 Radiation Stress 

For the purposes of further examination it will be helpful to split the velocity and free 

surface variables into two separate components caused by wave and turbulent fluctuations 

respectively as in the case of Equation (3.43): 

i iu u u′= + i′′ for  (4.161) 1,2,3i =

ζ ζ ζ η η′ ′′ ′′= + = −  (4.162) 

 

 
Figure 4.7 – Diagram showing different Time Scales of Wave and Turbulent Fluctuations 
 
 
It is appropriate to make the assumption in this case that the characteristic time scales of 

the two components are not close and hence there is no relationship between the two. 

Figure 4.7 shows that the product of two terms with different characteristic time scales 

produces a function that when integrated over time will produce a result close to zero. 

This leads to the following results: 

 

0i iu u′ ′′ = for  (4.163) 

0ζ ζ′ ′′ =  (4.164) 

 
 

 

0ζ ζ′ ′′ =
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The last term in Equation (4.114) can now expanded as follows: 

i j i j
h h

u u dz u u dz
η η ζ ζ

ρ ρ
′′ ′ ′′+ +

− −

=∫ ∫  for  (4.165) , 1, 2,i j = 3

Equation (4.165) may be expanded as follows: 

i j i j i j
h h

u u dz u u dz u u dz
η η ζ ζ

η

ρ ρ
′′ ′ ′′+

− −

⎡ ⎤
= +⎢ ⎥ , 1, 2,i j =

⎢ ⎥⎣ ⎦
∫ ∫ ∫ 3 for  (4.166) 

 

Re-expressing this yields: 

i j i j i j
h h

u u dz u u dz u u dz
η η ζ ζ

η

ρ ρ ρ
′′ ′ ′′+

− −

= +∫ ∫ ∫  for  (4.167) , 1, 2,i j = 3

 
Expanding the final term of Equation 

 
(4.167) gives: 

( )( )i j i j i i j j
h h

u u dz u u dz u u u u dz
η η ζ ζ

η

ρ ρ ρ
′′ ′ ′′+

− −

′ ′′ ′ ′′= + + +∫ ∫ ∫  for  (4.168) , 1, 2,i j = 3

 
 
 
Further expansion of the final term gives the following: 

( )i j i j i j i j i j i j
h h

u u dz u u dz u u u u u u u u dz
η η ζ ζ

η

ρ ρ ρ
′′ ′ ′′+

− −

′ ′ ′ ′′ ′′ ′ ′′ ′′= + + + +∫ ∫ ∫ 3 for  (4.169) , 1, 2,i j =

 
Using Equation (4.163) with Equation (4.169) and assuming that the turbulent setup is an 

order of magnitude less than the wave set up yields: 

i j i j i j
h h

u u dz u u dz u u dz
η η ζ

η

ρ ρ ρ
′′ ′

− −

′ ′= +∫ ∫ ∫  for  (4.170) , 1, 2,i j = 3

 
Using Equation (4.122) the order of magnitude of each term of Equation (4.170) can be 

given as follows: 

( )( )( )( ) ( )2 2
i j

h

u u dz O A A h O A h
η

ξ ξ ξρ ρ ω ω ρω
−

′ ′∫ ∼ ∼  for  (4.171) , 1, 2,i j = 3

( ) ( )( )( ) ( )2 3
i ju u dz O A A A O A

ζ

ξ ξ ξ ξ
η

ρ ρ ω ω ρ
′

′ ′∫ ∼ ∼ ω 3 for  (4.172) , 1, 2,i j =
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Using the assumption that the amplitude of the wave is significantly less than the water 

depth shows that the second term in Equation (4.122) is an order of magnitude less than 

the first term. This leads to the following equation:
 

( )2 3
i j i j

h h

u u dz u u dz O A
η η

ξρ ρ ρω
′′

− −

= +∫ ∫  for  , 1, 2,i j = 3

So: (4.173) 

i j i j i j
h h h

u u dz u u dz u u dz
η η η

ρ ρ ρ
′′

− − −

′ ′ ′′ ′′≅ +∫ ∫ ∫  for  (4.174) , 1, 2,i j = 3

 
Ignoring the viscous stresses in Equation (4.143) due to their small order of magnitude 

gives: 

[ ] ( ) 2
iz z

iz z

p g z wdz u wdz w
t x

η η

ρ η ρ ρ
′′ ′′⎡ ⎤∂ ∂ ⎡ ⎤= − + + −⎢ ⎥ ⎣ ⎦∂ ∂⎣ ⎦
∫ ∫  for  (4.175) 1, 2i =

 
Integrating Equation (4.175) vertically and carrying out a time average gives the 

following: 

( ) 2
i

ih h h z h z h

pdz g z dz wdz dz u wdz dz w dz
t x

η η η η η η η

ρ η ρ ρ ρ
′′ ′′ ′′ ′′ ′′ ′′ ′′

− − − − −

⎛ ⎞ ⎛ ⎞∂ ∂= − + + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
∫ ∫ ∫ ∫ ∫ ∫ ∫  (4.176) 

for  1, 2i =
 

Evaluating the first integral on the right hand side of Equation (4.176) gives: 

[ ]
2

2

2 ih
ih h z h zh

z

h

pdz g z wdz dz u wdz dz w dz
t x

ηη η η η η
ηρ η ρ ρ ρ

′′′′ ′′ ′′ ′′ ′′ ′′
′′

−
− − −−

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎡ ⎤ ∂ ∂⎜ ⎟= − + + −⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ∂ ∂⎣ ⎦ ⎝ ⎠ ⎝ ⎠⎝ ⎠
∫ ∫ ∫ ∫ ∫

η

−
∫  (4.177) 

for  1, 2i =
 

 

Simplification of Equation (4.177) yields the following: 

( )2 2

2 i
ih h z h z

gpdz h wdz dz u wdz dz w dz
t x

η η η η ηρ η ρ ρ ρ
′′ ′′ ′′ ′′ ′′ ′′

− − −

⎛ ⎞ ⎛ ⎞∂ ∂′′= + + + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
∫ ∫ ∫ ∫ ∫

h

η

−
∫  (4.178) 

for  1, 2i =
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The first term on the right hand side of Equation (4.178) will now be split into its wave 

and turbulent components: 

( ) ( 22hη η ζ ζ′′ ′ ′′+ = + + + )h  (4.179) 

( ) ( ) ( )22 22h hη η ζ ζ η ζ ζ′′ ′ ′′ ′ ′′+ = + + + + + + h  (4.180) 

( ) ( ) ( )22 22 2 2 2h hη η ζ η ζ ζ ζ η ζ ζ′′ ′ ′ ′′ ′′ ′ ′′+ = + + + + + + + + 2h h h  (4.181) 

( ) 22 2 22 2 2 2 2 2hη η ηζ ζ ηζ η ζ ζ η ζ ζ′′ ′ ′ ′′ ′ ′′ ′′ ′ ′′+ = + + + + + + + + + 2h h h h  (4.182) 

( ) ( )22 2 2 2 2 2 2 2h h h hη η ζ ζ ηζ ηζ ζ ζ ζ ζ′′ ′ ′′ ′ ′′ ′ ′′ ′ ′′+ = + + + + + + + +  (4.183) 

 

The first term of Equation (4.178) becomes: 

( ) ( )22 2 2 2 2 2 2 2
2 2
g gh h hρ ρ hη η ζ ζ ηζ ηζ ζ ζ ζ ζ′′ ′ ′′ ′ ′′ ′ ′′ ′ ′′+ = + + + + + + + +  (4.184) 

 

Equation (4.184) can then be simplified as follows using the assumption that the time 

scales of the wave and turbulent components are very different and after removal of terms 

negated by time integration: 

( ) ( )22 2 2

2 2
g gh hρ ρη η ζ⎡′′ ′ ′′+ = + + +⎢⎣

ζ ⎤
⎥⎦

 (4.185) 

( ) ( )22 2 2

2 2
g gh hρ ρη η ζ⎡′′ ′ ′′+ = + + +⎢⎣

ζ ⎤
⎥⎦

 (4.186) 

 
Using Leibniz’s rule, Equation (3.399), the second term on the right hand side of 

Equation (4.178) yields: 

h z h z h

hwdz dz wdz dz wdz wdz
t t t t

η η η η η η

η

ηρ ρ ρ ρ
′′ ′′ ′′ ′′ ′′ ′′

′′− −

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂′ ′ ′= − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
∫ ∫ ∫ ∫ ∫ ∫

−

′  (4.187) 

( ) ( )0 0
h z h z h

wdz dz wdz dz wdz
t t t

η η η η ηηρ ρ ρ ρ
′′ ′′ ′′ ′′ ′′

− −

⎛ ⎞ ⎛ ⎞∂ ∂ ∂′ ′= − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠
∫ ∫ ∫ ∫ ∫

−

′  (4.188) 

h z h z

wdz dz wdz dz
t t

η η η η

ρ ρ
′′ ′′ ′′ ′′

− −

⎛ ⎞ ⎛∂ ∂′ =⎜ ⎟ ⎜⎜ ⎟ ⎜∂ ∂⎝ ⎠ ⎝
∫ ∫ ∫ ∫

⎞
′⎟⎟
⎠

 (4.189) 

 
Hence acknowledging the result of Equation (4.146): 

0
h z h z

wdz dz wdz dz
t t

η η η η

ρ ρ
′′ ′′ ′′ ′′

− −

⎛ ⎞ ⎛ ⎞∂ ∂′ =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
∫ ∫ ∫ ∫ ′ =  (4.190) 
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Using Equation (4.2) the time averaged vertical velocity is: 

1 1

h h

W wdz wdz w
h h

η η η

ηη η

′′ ′′

− −

⎛ ⎞
⎜= = +
⎜+ + ⎝ ⎠

∫ ∫ ∫ dz ⎟
⎟  (4.191) 

 
The third and fourth terms on the right hand side of Equation (4.178) are examined with a 

view to splitting them into their wave and turbulent components. 

( )( )i i i i
i ih z h z

u wdz dz U u u W w w dz dz
x x

η η η η

ρ ρ
′′ ′′

− −

⎛ ⎞⎛ ⎞∂ ∂ ′ ′′ ′ ′′= + + + +⎡ ⎤⎦ 1, 2i =⎜ ⎟⎜ ⎟ ⎣⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
∫ ∫ ∫ ∫  for  (4.192) 

 
Figure 4.8 – Vertical Component of Total Steady Particle Velocity 
 

The total steady particle velocity at the surface may be split into the horizontal and 

vertical component. The  vertical component is equal to the overall velocity multiplied by 

the sine of the slope of the mean position of the water surface. The slope of the water 

surface is considered to be very small and hence its sine will also be small. This means 

the vertical steady particle velocity at the surface  is small. The vertical steady particle 

velocity within the fluid column is considered to be at a maximum at the surface so 

therefore the vertical component of steady velocity and its products are small everywhere 

and can be ignored. This gives the following expression of Equation (4.192): 

 

( )( )i i i i
i ih z h z

u wdz dz U u u w w dz dz
x x

η η η η

ρ ρ
′′ ′′

− −

⎛ ⎞⎛ ⎞∂ ∂ ′ ′′ ′ ′′= + + +⎡ ⎤⎦ 1, 2i =⎜ ⎟⎜ ⎟ ⎣⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
∫ ∫ ∫ ∫  for  (4.193) 
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Equation (4.193) can be expressed more explicitly as: 

i i i
i

i i ii ih z h z

U w u w u w
u wdz dz dz dz

U w u w u wx x

η η η η

ρ ρ
′′ ′′

− −

⎛ ⎞′ ′ ′ ′′ ′⎛ ⎞ + +⎡ ⎤∂ ∂⎜ ⎟
⎟ 1, 2i ==⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎜ ′′ ′ ′′ ′′ ′′+ + +∂ ∂ ⎣ ⎦⎝ ⎠ ⎝ ⎠

∫ ∫ ∫ ∫  for  (4.194) 

 
Figure 4.9 – The product of velocity functions with different time scales over time 
 

Figure 4.9, shows that the product of velocity functions with different time scales produce 

a function that integrates to zero over time. Hence Equation (4.194) becomes: 

i i
i ih z h z

u wdz dz u w u w dz dz
x x

η η η η

ρ ρ
′′ ′′

− −

⎛ ⎞⎛ ⎞∂ ∂ ⎡ ⎤′ ′ ′′ ′′≅ +⎜ i⎜ ⎟ ⎣ ⎦⎜ ⎟ ⎜∂ ∂⎝ ⎠ ⎝ ⎠
∫ ∫ ∫ ∫ ⎟⎟ 1, 2i = for  (4.195) 

 
and: 

2 2

h h

w dz w w dz
η η

ρ ρ
′′

− −

⎡ ′ ′′≅ +⎣∫ ∫ 2 ⎤
⎦  (4.196) 

 
 
Substituting Equations (4.186), (4.190), (4.195) and (4.196) into Equation (4.178) gives: 

( )2 2 2 2 2

2 i i
ih h z

gpdz h u w u w dz dz w w dz
x

η η ηρ η η η ρ ρ
′′

− −

⎛ ⎞∂⎡ ⎤ ⎡ ⎤⎡ ⎤′ ′′ ′ ′ ′′ ′′ ′ ′′= + + + + + − +⎜ ⎟⎣ ⎦⎢ ⎥ ⎣ ⎦⎜ ⎟⎣ ⎦ ∂⎝ ⎠
∫ ∫ ∫

h

η

−
∫

 
for  (4.197) 1, 2i =
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Substituting Equations (4.174) and (4.197) into (4.106) yields: 

( )

( )

2 2 2

2

2 2

2

2ij ij i i ij i j i j
ih z h h

h

g h

gR u w u w dz dz h u u dz u u dz
x

w w dz

η η η η

η

ρ η ζ ζ

ρδ ρ δ η ρ ρ

ρ

− − −

−

⎡ ⎤
⎡ ⎤⎢ ⎥′ ′′+ + +⎢ ⎥⎣ ⎦⎢ ⎥

⎢ ⎥⎛ ⎞∂ ⎡ ⎤⎢ ⎥ ′′ ′′⎡ ⎤′ ′ ′′ ′′ ′ ′= + + − + + +⎜ ⎟ ⎢ ⎥⎣ ⎦⎢ ⎥⎜ ⎟∂ ⎣ ⎦⎝ ⎠⎢ ⎥
⎢ ⎥

⎡ ⎤⎢ ⎥′ ′′− +⎣ ⎦⎢ ⎥⎣ ⎦

∫ ∫ ∫ ∫

∫

 

for  (4.198) , 1,i j = 2

 
Expressing wave and turbulent portions of Equation (4.198) separately yields: 

2
2

2
2

2

2

ij ij l i j
lh z h h

ij l i j
lh z h h

gR u w dz dz w dz u u dz
x

g u w dz dz w dz u u dz
x

η η η η

η η η η

ρ ζδ ρ ρ ρ

ρ ζδ ρ ρ ρ

− − −

− −

⎡ ⎤⎛ ⎞′ ∂ ′ ′ ′ ′ ′= + − +⎢ ⎥⎜ ⎟⎜ ⎟∂⎢ ⎥⎝ ⎠⎣

−

⎡ ⎤⎛ ⎞′′ ∂ ′′ ′′′′ ′′ ′′+ + − +⎢ ⎥⎜ ⎟⎜ ⎟∂⎢ ⎥⎝ ⎠⎣ ⎦

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

⎦
, , 1, 2i j l = for  (4.199) 

 

2
2

2
2

2

2

ij ij ij l i j
lh z h h

ij l i j
lh z h h

gR R u w dz dz w dz u u dz
x

g u w dz dz w dz u u dz
x

η η η η

η η η η

ρ ζδ ρ ρ ρ

ρ ζδ ρ ρ ρ

− − −

− −

⎡ ⎤⎛ ⎞′ ∂′ ′′ ′ ′ ′ ′ ′+ = + − +⎢ ⎥⎜ ⎟⎜ ⎟∂⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞′′ ∂ ′′ ′′′′ ′′ ′′+ + − +⎢ ⎥⎜ ⎟⎜ ⎟∂⎢ ⎥⎝ ⎠⎣ ⎦

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫
−

 for 

 (4.200) 

, , 1, 2i j l =

 
 
Where: 

2
2

2ij ij l i j
lh z h h

gR u wdz dz w dz u u dz
x

η η η ηζρδ ρ ρ
− −

⎡ ⎤⎛ ⎞′ ∂′ ′ ′ ′
−

= + − +⎢ ⎜ ⎟⎜ ⎟∂⎢ ⎥⎝ ⎠⎣ ⎦
∫ ∫ ∫ ∫ ′ ′⎥ , , 1, 2i j l = for  (4.201) 

2
2

2ij ij l i j
lh z h h

gR u w dz dz w dz u u dz⎥ , , 1, 2i j l =x

η η η ηζδ ρ ρ ρ
− − −

⎡ ⎤⎛ ⎞′′ ∂ ′′ ′′′′ ′′ ′′ ′′= + − +⎢ ⎜ ⎟⎜ ⎟∂⎢ ⎥⎝ ⎠⎣ ⎦
∫ ∫ ∫ ∫  for  (4.202) 

ijR′ and ijR′′  are the excess momentum flux tensors due to wave and turbulent components 

respectively. Longuet-Higgins and Steward (1962, 1964) call ijR′  the Radiation Stress. 
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4.4 Summary of Approximate Equations of Motion 

The approximate version of the equation for conservation of mass that is used in the finite 

element hydrodynamic model may be obtained from Equation (4.37): 

( )i
i

U h
t x
η η∂ ∂ ⎡ ⎤= +⎣ ⎦∂ ∂

 for  (4.203) 1, 2i =

 
The approximate equations of conservation of momentum that are used in the finite 

element hydrodynamic wave-driven model can be obtained from Equations (4.160) and 

(4.200): 

( )
( )

( )
1 B

ij ijj j j
i

i j i

R RU U
U g

t x x xh h

τη
ρ η ρ η

′ ′′∂ +∂ ∂ ∂= − − − +
∂ ∂ ∂ ∂+ +

 for  (4.204) , 1, 2i j =
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4.5 Radiation Stress expressed in terms of Velocity Potential 

At this stage it is useful to examine the equation for Radiation Stress with a view to 

expressing it exclusively in terms of velocity potential. This allows it to be used directly 

with the results of the NM-WCIM described in Chapter 3. 

 

4.5.1 Expression of wave orbital velocity in terms of velocity potential 

Expressing Equation (3.40) using Equation (3.109) gives: 

Re i t
i

i

u e
x

ω φ−⎛ ⎞∂′ = ⎜ ∂⎝ ⎠
⎟  for subscript  (4.205) 1, 2,3i =

 
Substituting the results of Equations (3.130) and (3.197) into Equation (4.205) gives: 

( )
[ ]

cosh
Re

cosh
i t

i
i

h z
u e

x h
ω κ

φ
κ

−
⎡ ⎤⎛ ⎞′ ′+⎡ ⎤∂ ⎣′ = ⎢ ⎦⎜ ⎟⎜ ⎟′∂⎢ ⎥⎝ ⎠⎣ ⎦

⎥ 1, 2,3i = for subscript  (4.206) 

 
Examining horizontal velocities only limits the variable subscript i to 1 and 2. An 

examination of Equation (3.216) shows that if  and  are considered to vary slowly in 

the horizontal direction the gradients of the vertical function may be discounted. This is 

considered an appropriate assumption in the case of this derivation. Therefore for 

horizontal coordinates Equation (4.206) becomes: 

κ h′

( )
[ ]

cosh
Re

cosh
i t

i
i

h z
u e

h x
ω κ φ

κ
−

⎡ ⎤′ ′+⎡ ⎤ ∂⎣ ⎦′ = ⎢ ′ ∂⎢ ⎥⎣ ⎦
⎥  for subscript  (4.207) 1, 2i =

 
Splitting φ  into its real and imaginary components, 1 2iφ φ φ= + , yields: 

( )
[ ]

1 2
cosh

Re
cosh

i t
i

i i

h z
u e i

h x x
ω κ φ φ

κ
−

⎛ ⎞′ ′+⎡ ⎤ ⎡ ⎤∂ ∂⎣ ⎦′ = ⎜ +⎢ ⎥⎜ ′ ∂ ∂⎣ ⎦⎝ ⎠
⎟⎟ 1, 2i = for subscript  (4.208) 

This may be expressed more explicitly as: 

( )
[ ] ( ) 1 2

cosh
Re cos sin

coshi
i i

h z
u t i t i

xh x
κ φ φω ω

κ
′ ′+⎡ ⎤ ⎛ ⎞⎡ ⎤∂ ∂⎣ ⎦′ = −⎜ ⎟+⎢ ⎥⎜ ⎟′ ∂ ∂⎣ ⎦⎝ ⎠

 for  (4.209) 1, 2i =

 
Equation (4.209) may be simplified as: 

( )
[ ]

1 2
cosh

cos sin
coshi

i i

h z
u t t

xh x
κ φ φω ω

κ
′ ′+⎡ ⎤ ⎡ ⎤∂ ∂⎣ ⎦′ = +⎢′ ∂ ∂⎣ ⎦

⎥ 1, 2i = for  (4.210) 
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Using Equation (3.184) and (3.195) the following can be stated: 

h z h z′ ′+ = +  (4.211) 
 

Using Equation (4.211) and examining vertical velocity alone leads to the following result 

of Equation (4.206): 

[ ] ( )( )+1Re cosh
cosh

i t

i

w e h z
h x

ω φ κ
κ

−⎡ ⎤∂′ = ⎡ ⎤⎢ ⎥⎣ ⎦′ ∂⎣ ⎦
 for  (4.212) 1, 2i =

This may be simplified as: 

( )
[ ]

sinh
Re

cosh
i t h z

w e
h

ω κ κ
φ

κ
−

⎡ ⎤+⎡ ⎤⎣ ⎦′ = ⎢ ⎥ 1, 2i =
′⎢ ⎥⎣ ⎦

 for  (4.213) 

 

Using Equation (4.211)  again yields: 

( )
[ ]

sinh
Re

cosh
i t h z

w e
h

ω κ κ
φ

κ
−

⎡ ⎤′ ′+⎡ ⎤⎣ ⎦′ = ⎢ ⎥ 1, 2i =
′⎢ ⎥⎣ ⎦

 for  (4.214) 

 

Splitting φ  into its real and imaginary components, 1 2iφ φ φ= + , yields: 

( )
[ ] ( 1 2

sinh
Re

cosh
i t h z

w e i
h

ω κ κ
)φ φ

κ
−

⎛ ⎞′ ′+⎡ ⎤⎣ ⎦′ = ⎜⎜ ′⎝ ⎠
+ ⎟⎟  (4.215) 

Expanding the exponential term yields: 

( )
[ ] ( ) (( 1 2

sinh
Re cos sin

cosh
h z

w t i
h

κ κ
ω ω ))t iφ φ

κ
′ ′+⎡ ⎤⎣ ⎦′ = −
′

+  (4.216) 

 
Equation (4.216) may be simplified as: 

( )
[ ] ( 1 2

sinh
cos sin

cosh
h z

w
h

κ κ
)t tφ ω φ ω

κ
′ ′+⎡ ⎤⎣ ⎦′ =
′

+  (4.217) 
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4.5.2 First term of Equation (4.201) in terms of velocity potential 

Initially an expression will be derived for the time averaged integral of
 
ζ ′  . 

Examining the free-surface gives: 

( )Reζ ζ′ =  (4.218) 

This may be expanded as follows: 

(Re i te ωζ ξ −′ = )

)t ⎤⎦

t

 (4.219) 

 
Expanding the exponential term in Equation  (4.219) gives: 

( )(1 2Re cos sini t iζ ξ ξ ω ω′ = + −⎡⎣  (4.220) 

 
Examining only the real terms of Equation (4.220) yields: 

1 2cos sintζ ξ ω ξ ω′ = +  (4.221) 

 
Squaring Equation (3.59) gives: 

2 2 2 2 2
1 2 1 2cos sin 2 cos sint t t tζ ξ ω ξ ω ξ ξ ω ω′ = + +  (4.222) 

 
Obtaining a time averaged integral of Equation (4.222)

 
gives the following: 

2 2 2 2 2
1 2 1 2

20 0 0 0

cos sin 2 cos sin
T T T T

dt tdt tdt t tdt

T T

ζ ξ ω ξ ω ξ ξ ω
ζ

′ + +
′= =

∫ ∫ ∫ ∫ ω

0

 (4.223) 

 
but: 

1 2
0

2 cos sin
T

t tdtξ ξ ω ω =∫  (4.224) 

 
 

so: 

2 2 2 2
1 2

2 0 0

cos sin
T T

tdt tdt

T

ξ ω ξ ω
ζ

+
′ =

∫ ∫
 (4.225) 

2T π
ω

=  (4.226) 
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Examining the first integral in Equation (4.225): 

An appropriate substitution is firstly selected: 

u ω= t   (4.227) 
 
Therefore: 

du dtω=  (4.228) 

1 du dt
ω

=  (4.229) 

 

With the substitution of Equation (4.227) the upper limit 
2π
ω

 changes to  and the 

lower limit remains 0 giving the following for the first integral in Equation (4.225): 

2π

2
2

0 0

1cos cos
T

tdt udu
π

ω
ω

=∫ ∫ 2  (4.230) 

 
The following mathematical identity can now be used: 

2 1 1cos sin
2 2

udu u u⎛ ⎞= +⎜
⎝ ⎠∫ ⎟  (4.231) 

 
Using Equation (4.231) with Equation (4.230) gives: 

2
2

0 0

1 1 1cos sin
2 2

T

tdt u u
π

ω
ω

⎡ ⎤⎛= +⎜⎢ ⎝ ⎠⎣ ⎦
∫ ⎞

⎟⎥  (4.232) 

 
After evaluation of the upper and lower limits Equation (4.232) becomes: 

2

0

1 1 1cos 2 sin 2
2 2

T

tdtω π
ω
⎡ ⎤⎛= +⎜⎢ ⎝ ⎠⎣ ⎦

∫ π ⎞
⎟⎥  (4.233) 

2

0

cos
T

tdt πω
ω

=∫  (4.234) 

 

 

 

Examining the second integral in Equation (4.225): 

An appropriate substitution is firstly selected: 

u ω= t   (4.235) 
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Therefore: 

 (4.236) du dtω=

1 du dt
ω

=  (4.237) 

 

With the substitution of Equation (4.235) the upper limit 
2π
ω

 changes to  and the 

lower limit remains 0 giving the following for the first integral in Equation (4.225): 

2π

2
2

0 0

1sin sin
T

tdt udu
π

ω
ω

=∫ ∫ 2  (4.238) 

 
The following mathematical identity can now be used: 

2 1 1sin sin
2 2

udu u u⎛ ⎞= −⎜
⎝ ⎠∫ ⎟  (4.239) 

 
Using Equation (4.239) with Equation (4.238) gives: 

2
2

0 0

1 1 1sin sin
2 2

T

tdt u u
π

ω
ω

⎡ ⎤⎛= −⎜
⎞
⎟⎢ ⎥⎝ ⎠⎣ ⎦

∫  (4.240) 

 
After evaluation of the upper and lower limits Equation (4.240) becomes: 

2

0

1 1 1sin 2 sin 2
2 2

T

tdtω π
ω
⎡ ⎤⎛= −⎜⎢ ⎝ ⎠⎣ ⎦

∫ π ⎞
⎟⎥  (4.241) 

2

0

sin
T

tdt πω
ω

=∫  (4.242) 

 

 

Using Equations (4.226), (4.234) and (4.242) in Equation (4.225) gives: 
2 2

1 2

2

2

ξ π ξ π
ω ωζ π

ω

+
′ =  (4.243) 

 
Simplification of Equation (4.243) gives: 

2 2
2 1 2

2 2
ξ ξζ ′ = +  (4.244) 
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4.5.3 Second term of Equation (4.201) in terms of velocity potential 

The product of Equations (4.210) and (4.217) is: 

( ) ( )
( ) ( )1 2

1 22

cosh sinh
cos sin cos sin

coshl
l l

h z h z
u w t t t t

h x x
κ κ κ φ φω ω φ ω φ ω

κ
′ ′ ′ ′+ +⎡ ⎤ ⎡ ⎤ ⎡ ⎤∂ ∂⎣ ⎦ ⎣ ⎦′ ′ = +⎢ ⎥′ ∂ ∂⎣ ⎦

+   

for  (4.245) 1, 2l =

 

Integrating Equation (4.245) over time and expressing it more explicitly gives: 

( )( )
( )

2 21 2
1 2

2
1 20 0

2 1

cos sin
sinh 2

cosh cos sin sin cos

T T
l l

l

l l

t t
h z x x

u w dt
h t t t t

x x

φ φφ ω φ ω
κ κ

φ φκ φ ω ω φ ω ω

∂ ∂⎡ ⎤+⎢ ⎥′ ′+ ∂ ∂′ ⎢ ⎥′ =
′ ∂ ∂⎢ ⎥+ +⎢ ⎥∂ ∂⎣ ⎦

∫ ∫

 
for  (4.246) 1, 2l =

 

It can be seen that the following is true: 

1
2

0

cos sin 0
T

l

t tdt
x
φ φ ω ω∂ =

∂∫  for  (4.247) 1, 2l =

2
1

0

sin cos 0
T

l

t tdt
x
φ φ ω ω∂ =

∂∫  for  (4.248) 1, 2l =

 

Hence Equation (4.246) can be simplified using the results of Equations (4.247) and 

(4.248): 

( )( )
( )

2 21 2
1 22

0 0

sinh 2
cos sin

cosh

T T

l
l l

h z
u w t t dt

h x x
κ κ φ φφ ω φ ω

κ
′ ′+ ⎡ ⎤∂ ∂′ ′ = +⎢ ⎥ 1, 2l =
′ ∂ ∂⎣ ⎦

∫ ∫  for  (4.249) 

 

Using the result of Equation (4.234) gives: 

21 1
1 1cos

T

l lT

tdt
x x
φ φ πφ ω φ

ω
∂ ∂=
∂ ∂∫  for  (4.250) 1, 2l =

 

Similarly using the result of Equation (4.242) gives: 

22 2
2 2 1, 2l =sin

T

l lT

tdt
x x
φ φ πφ ω φ

ω
∂ ∂=
∂ ∂∫  for  (4.251) 
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Using Equations (4.250) and (4.251) with Equation (4.249) gives the following: 

( )( )
( )

1 2
1 22

0

sinh 2
cosh

T

l
l l

h z
u w

h x x
κ κ φ φπ πφ φ

κ ω ω ⎟ 1, 2l =
′ ′+ ⎛ ⎞∂ ∂′ ′ = +⎜′ ∂ ∂⎝ ⎠

∫  for  (4.252) 

Division of Equation (4.252) by the wave period gives: 

( )( )
( )

1 2
1 22

sinh 21
coshl

l l

h z
u w

T h x x
κ κ φ φπ πφ φ

κ ω
⎡ ⎤′ ′+ ⎛ ⎞∂ ∂′ ′ =

ω
⎢ ⎥⎜′ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

+ ⎟ 1, 2l = for  (4.253) 

 
Equation (4.253) may be simplified as follows: 

( )( )
( )

1 2
1 22

sinh 2
2 coshl

l l

h z
u w

h x x
κ κ φ φω π φ φ

π ω κ
⎡ ⎤′ ′+ ⎛ ⎞∂ ∂′ ′ = + ⎟ 1, 2l =⎢ ⎥⎜′ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

 for  (4.254) 

( )( )
( )

1 2
1 22

sinh 2
2coshl

l l

h z
u w

h x x
κ κ φ φφ φ

κ
′ ′+ ⎛ ⎞∂ ∂′ ′ = + ⎟ 1, 2l =⎜′ ∂ ∂⎝ ⎠

 for  (4.255) 

 
Integration of Equation (4.255) over the depth yields: 

( ) ( )( )1 2
1 22 sinh 2

2coshl
l lz z

u w dz h z dz
h x x

η ηφ φκ φ φ κ
κ

⎛ ⎞∂ ∂′ ′ ′= +⎜ ⎟′ ∂ ∂⎝ ⎠
∫ ∫ ′+

))z+

 for  (4.256) 1, 2l =

 

An examination of the integration on the right hand side of Equation (4.256) can be 

carried out. 

Using Equation (4.211) an appropriate substitution is selected:  

((sinh 2u hκ=  (4.257) 
 
Therefore: 

2du
dz

κ=  (4.258) 

1
2

du dz
κ

=  (4.259) 

 
With the substitution of Equation (4.257) the upper limit η  changes to 2  and the 

lower limit z changes  to giving the following for the integral under 

examination: 

hκ ′

(2 z hκ + )

( )( )
( )

2

2

1sinh 2 sinh
2

h

z z

h z dz udu
η κ

κ

κ
κ

′

+

′ ′+ =∫
h
∫  (4.260)
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Evaluation of the integral may now be carried out as follows: 

( )( ) [ ] ( )
2

2

1sinh 2 cosh
2

h

z h
z

h z dz u
η

κ

κκ
κ

′

+
′ ′+ =∫  (4.261) 

 
After calculating the limits of Equation (4.261) the following is obtained: 

( )( ) ( ) ( )(1sinh 2 cosh 2 cosh 2
2z

h z dz h h z
η

κ κ
κ )κ⎡ ⎤′ ′ ′+ = − +⎣ ⎦∫  (4.262) 

 
Using Equation (4.211) again this becomes: 

( )( ) ( ) ( )(1sinh 2 cosh 2 cosh 2
2z

h z dz h h z
η

κ κ
κ )κ⎡ ⎤′ ′ ′ ′ ′+ = − +⎣ ⎦∫  (4.263) 

 
Combining Equations (4.263) and (4.256) gives 

( ) ( ) ( )( )1 2
1 22

1 cosh 2 cosh 2
2cosh 2l

l lz

u wdz h h z
h x x

η φ φκ φ φ κ κ
κ κ

⎛ ⎞∂ ∂ ⎡ ⎤′ ⎡ ⎤′ ′= + −⎜ ⎟ ′ ′+⎢ ⎥⎣ ⎦′ ∂ ∂ ⎣ ⎦⎝ ⎠
∫

 
for   (4.264) 1, 2l =

 
Obtaining the horizontal derivative of Equation (4.264) in the x direction yields: 

( ) ( )( )
( )

1 2
1 22

cosh 2 cosh 2

4 coshl
l lz

h h z
u w dz

x h x x

η κ κ φ φ
x

φ φ
κ

⎡ ⎤′ ′ ′− + ⎛ ∂ ∂∂ ∂⎣ ⎦′ ′ = +⎜′∂ ∂ ∂⎝ ⎠
∫

⎞
⎟∂

1, 2l = for  (4.265) 

 
Expressing Equation (4.265) more explicitly yields: 

( ) ( )( )
( )

2 22 2
1 1 2 2

1 22

cosh 2 cosh 2

4coshl
l l l l l lz

h h z
u wdz

x h x x x x

η κ κ φ φ φ φφ φ
κ

⎛ ⎞⎡ ⎤′ ′ ′− + ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂∂ ⎣ ⎦′ ⎜ ⎟′ = +⎜ ⎟ ⎜ ⎟⎜ ⎟′∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠
∫ x x

+ +
∂ ∂ ∂

 
for  (4.266) 1, 2l =

 
Integrating Equation (4.266) over the depth gives: 

( )
( )

( )( )

22
1 1

1

2 22
2 2

2

cosh 21
4cosh cosh 2

l l l
l

h z h

l l l

hx x x
u wdzdz dz

x h h z

x x x

η η η

φ φφ
κ

κ κφ φφ
− −

⎛ ⎞⎛ ⎞∂ ∂⎜ ⎟+ ⎜ ⎟ ′⎡ ⎤∂ ∂ ∂⎜ ⎟∂ ⎝ ⎠′ ′ = ⎢ ⎥⎜ ⎟′∂ ′ ′− +⎢ ⎥⎛ ⎞⎜ ⎟∂ ∂ ⎣ ⎦+ + ⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠

∫ ∫ ∫

 
for  (4.267) 1, 2l =
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Examining the integral on the right hand side of Equation (4.267) and using Equation 

(4.211) gives: 

( )
( )( ) ( ) ( )( )

cosh 2
cosh 2 cosh 2

cosh 2h h h

h
dz h dz h z dz

h z

η η ηκ
κ κ

κ− − −

′⎡ ⎤
′= −⎢ ⎥

′ ′− +⎢ ⎥⎣ ⎦
∫ ∫ ∫ +  (4.268) 

 
Equation (4.268) can be expressed as: 

( )
( )( ) ( ) ( )( )

cosh 2
cosh 2 cosh 2

cosh 2h h

h
dz h h h z dz

h z

η ηκ
η κ κ

κ− −

′⎡ ⎤
⎡ ⎤ ′= + − +⎢ ⎥ ⎣ ⎦′ ′− +⎢ ⎥⎣ ⎦

∫ ∫  (4.269) 

( )
( )( ) ( ) ( )( )

cosh 2
cosh 2 cosh 2

cosh 2h h

h
dz h h h z dz

h z

η ηκ
κ κ

κ− −

′⎡ ⎤
′ ′= − +⎢ ⎥

′ ′− +⎢ ⎥⎣ ⎦
∫ ∫

)h

 (4.270) 

 
 
An examination of the remaining integration on the right hand side of Equation (4.270) 

can be carried out. 

 

An appropriate substitution is selected:  

(2u zκ= +  (4.271) 
 
Therefore: 

2du
dz

κ=  (4.272) 

1
2

du dz
κ

=  (4.273) 

 
With the substitution of Equation (4.271) the upper limit η  changes to 2  and the 

lower limit -h changes 0 to giving the following for the integral under examination: 

hκ ′

( )( )
2

0

1cosh 2 cosh
2

h

h

h z dz udu
η κ

κ
κ

′

−

+ =∫ ∫  (4.274) 

 
Evaluation of the integral may now be carried out as follows: 

( )( ) [2

0

1cosh 2 sinh
2

h

h

h z dz u
η

κκ
κ

′

−

+ =∫ ]  (4.275) 
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After calculating the limits of Equation (4.275) the following is obtained: 

( )( ) ( )sinh 2
cosh 2

2h

h
h z dz

η κ
κ

κ−

′
+ =∫  (4.276) 

Combining Equations (4.270) and (4.276) gives 

( )
( )( ) ( ) ( )cosh 2 sinh 2

cosh 2
2cosh 2h

h h
dz h h

h z

η κ κ
κ

κκ−

′⎡ ⎤ ′
′ ′= −⎢ ⎥

′ ′− +⎢ ⎥⎣ ⎦
∫  (4.277) 

 
Now combining Equation (4.277) with (4.267) gives: 

( ) ( ) ( )

22
1 1

1

2 22
2 2

2

sinh 21 cosh 2
4cosh 2

l l l
l

h z

l l l

x x x h
u w dzdz h h

x h

x x x

η η

φ φφ
κ

κ
κ κφ φφ

−

⎛ ⎞⎛ ⎞∂ ∂⎜ ⎟+ ⎜ ⎟∂ ∂ ∂ ′⎜ ⎟ ⎡ ⎤∂ ⎝ ⎠′ ′ ′= −⎜ ⎟ ′⎢ ⎥′∂ ⎣ ⎦⎛ ⎞⎜ ⎟∂ ∂+ + ⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠

∫ ∫

 
for  (4.278) 1, 2l =
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4.5.4 Third term of Equation (4.201) in terms of velocity potential 

Squaring Equation (4.217) gives 

( )( )
( ) ( )

2 2
2 2 2 2 2

1 2 1 22

sinh
cos sin 2 sin cos

cosh
h z

w t t
h

κ κ
t tφ ω φ ω φ φ ω ω

κ
′ ′+′ = + +
′

 (4.279) 

 
Integrating Equation (4.279) over a wave period with respect to time gives: 

( )( )
( ) ( )

2 2
2 2 2 2 2

1 2 1 22
0 0

sinh
cos sin 2 sin cos

cosh

T Th z
w dt t t t t dt

h
κ κ

φ ω φ ω φ φ ω ω
κ

′ ′+′ = + +
′∫ ∫  (4.280) 

 
An examination of the integration on the right hand side of Equation (4.280) can be 

carried out. 

( )2 2 2 2
1 2 1 2

0
2 2 2

2 2 2 2
1 2 1 2

0 0 0

cos sin 2 sin cos

cos sin 2 sin cos

T

t t t t dt

tdt tdt t tdt

π π π
ω ω ω

φ ω φ ω φ φ ω ω

φ ω φ ω φ φ ω ω

+ + =

+ +

∫

∫ ∫ ∫
 (4.281) 

 
An appropriate substitution is selected:  

u ω= t   (4.282) 
 
Therefore: 

du dtω=  (4.283) 

1 du dt
ω

=  (4.284) 

 

With the substitution of Equation (4.282) the upper limit 
2π
ω

 changes to  and the 

lower limit remains zero to giving the following for the integral under examination: 

2π

( )2 2 2 2
1 2 1 2

0

2 2 22 2
2 21 2

1 2
0 0 0

cos sin 2 sin cos

cos sin 2 sin 2

T

t t t t

udu udu udu
π π π

φ ω φ ω φ φ ω ω

φ φ φ φ
ω ω

+ +

+ +

∫

∫ ∫ ∫

dt =
 (4.285) 
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Evaluation of the integral may now be carried out as follows: 

( )

[ ]

2 2 2 2
1 2 1 2

0

2 22 2
21 2 1 2
0

0 0

cos sin 2 sin cos

1 1sin 2 sin 2 cos 2
2 2 2 2

T

t t t t dt

u u u u u
π π

π

φ ω φ ω φ φ ω ω

φ φ φ φ
ω ω ω

+ + =

⎡ ⎤ ⎡ ⎤+ + − −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∫
 (4.286) 

 
After calculating the limits of Equation (4.286) the following is obtained: 

( )

[ ]

2 2 2 2
1 2 1 2

0

2 2
1 2

cos sin 2 sin cos

1 12 sin 4 2 sin 4
2 2 2 2

T

t t t tφ ω φ ω φ φ ω ω

φ φπ π π π
ω ω

+ +

⎡ ⎤ ⎡ ⎤+ + − −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∫

1 2 0

dt

φ φ
ω

=

)

 (4.287) 

 

(
2 2

2 2 2 2 1 2
1 2 1 2

0

cos sin 2 sin cos
T

t t t t dt φ π φ πφ ω φ ω φφ ω ω
ω ω

+ + = +∫  (4.288) 

 

Combining Equation (4.288) with Equation (4.280) gives: 

( )( )
( )

2 2 2 2
2 1 2

2
0

sinh
cosh

T h z
w dt

h
κ κ φ π φ π

κ ω
′ ′+ ⎡ ⎤′ = ⎢′ ⎣ ⎦

∫ ω
+ ⎥  (4.289) 

 
Division of Equation (4.289) by the wave period gives: 

( )( )
( )

2 2 2 2
2 1 2

2

sinh1
cosh

h z
w

T h
κ κ φ π φ π

κ ω
′ ′+ ⎡ ⎤′ = ⎢′ ⎣ ⎦ω

+ ⎥  (4.290) 

 
Expressing Equation (4.290) more explicitly yields: 

( )( )
( )

2 2 2 2
2 1 2

2

sinh
2 cosh

h z
w

h
κ κ φ π φ πω

π κ ω
′ ′+ ⎡ ⎤′ = ⎢′ ⎣ ⎦ω

+ ⎥  (4.291) 

 
Equation (4.291) may be simplified as follows: 

( )( )
( )

2 2
2

1 22

sinh
2cosh

h z
w

h
κ κ 2 2φ φ

κ
′ ′+′ ⎡= ⎣′

⎤+ ⎦  (4.292) 

 
Vertical integration of Equation (4.292) gives: 

( ) ( )( )
2

2 2 2 2
1 22 sinh

2coshh h

w dz h z dz
h

η ηκ φ φ κ
κ− −

′ ′ ′⎡ ⎤= +⎣ ⎦′∫ ∫ +  (4.293) 
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An examination of the integration on the right hand side of Equation (4.293) can be 

carried out. 

Using Equation (4.211) an appropriate substitution is selected: 

(u hκ= + )z  (4.294) 
 
Therefore: 

du
dz

κ=   (4.295) 

1 du dz
κ

=  (4.296) 

 
With the substitution of Equation (4.294) the upper limit η  changes to  and the 

lower limit -h changes 0 to giving the following for the integral under examination: 

hκ ′

( )( )2

0

1sinh sinh
h

h

h z dz udu
η κ

κ
κ

′

−

′ ′+ =∫ 2∫  (4.297) 

 
Evaluation of the integral may now be carried out as follows: 

( )( )2

0

1 1 1sinh sinh 2
2 2

h

h

h z dz u u
κη

κ
κ

′

−

⎡ ⎤⎛′ ′+ = − +⎜⎢ ⎝ ⎠⎣ ⎦
∫ ⎞

⎟⎥  (4.298) 

 
After calculating the limits of Equation (4.298) the following is obtained: 

( )( )2 1 1 1sinh sinh 2
2 2h

h z dz h h
η

κ κ
κ−

⎡ ⎛′ ′ ′ ′+ = − +⎜⎢ ⎝ ⎠⎣ ⎦
∫ κ ⎤⎞

⎟⎥  (4.299) 

( )( )2 sinh 2sinh
2 4h

hh z dz
η κκ

κ−

′ ′′ ′+ = − +∫
h

 (4.300) 

 

Combining Equation (4.293) and (4.300) gives: 

( )
( )

2 2 2
1 22

2

sinh 2
2cosh 2 4h

hw dz
h

η κ φ φ κ
κ κ−

+ ′ ′h⎡ ⎤′ = − +⎢ ⎥′ ⎣ ⎦∫  (4.301) 
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4.5.5 Fourth term of Equation (4.201) in terms of velocity potential 

Using Equation (4.210) the following can be calculated: 

( )( )
( )

2
1 2 1 2

2

cosh
cos sin cos sin

coshi j
i i j j

h z
u u t t t t

h x x x x
κ φ φ φ φω ω ω ω

κ
′ ′ ⎡ ⎤+ ⎡ ⎤∂ ∂ ∂ ∂′ ′ = + +⎢ ⎥⎢ ⎥′ ∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦ ⎣ ⎦  

for  (4.302) , 1, 2i j =

 
Expressing Equation (4.302) more explicitly yields: 

( )( )
( )

2 21 1 2 2
2

2
1 2 2 1

cos sin
cosh

cosh sin cos sin cos

i j i j
i j

i j i j

t t
x x x xh z

u u
h t t t t

x x x x

φ φ φ φω ω
κ

φ φ φ φκ ω ω ω ω

∂ ∂ ∂ ∂⎡ ⎤+⎢ ⎥∂ ∂ ∂ ∂′ ′+ ⎢ ⎥′ ′ =
⎢ ⎥′ ∂ ∂ ∂ ∂+ +⎢ ⎥∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦  

for  (4.303) , 1, 2i j =

 
Integrating Equation (4.303) with over a wave period with respect to time gives: 

( )( )
( )

2 21 1 2 2
2

2
1 2 2 10 0

cos sin
cosh

cosh sin cos sin cos

T T
i j i j

i j

i j i j

t t
x x x xh z

u u dt dt
h t t t t

x x x x

φ φ φ φω ω
κ

φ φ φ φκ ω ω ω ω

∂ ∂ ∂ ∂⎡ ⎤+⎢ ⎥∂ ∂ ∂ ∂′ ′+ ⎢ ⎥′ ′ =
⎢ ⎥′ ∂ ∂ ∂ ∂+ +⎢ ⎥∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦

∫ ∫

 
for  (4.304) , 1, 2i j =

 
It is clear that:  

1 2

0

sin cos 0
T

i j

t tdt
x x
φ φ ω ω∂ ∂ =

∂ ∂∫  for  (4.305) , 1, 2i j =

2 1

0

sin cos 0
T

i j

t tdt
x x
φ φ ω ω∂ ∂ =

∂ ∂∫  for  (4.306) , 1, 2i j =

 
Equation (4.304) can be rewritten with the aid of Equations (4.305) and (4.306): 

( )( )
( )

2
2 21 1 2 2

2
0 0

cosh
cos sin

cosh

T T

i j
i j i j

h z
u u dt t t dt

h x x x x
κ φ φ φ φω ω

κ
′ ′ ⎡ ⎤+ ∂ ∂ ∂ ∂′ ′ = +⎢ ⎥′ ∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦

∫ ∫  for  (4.307) , 1, 2i j =
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An examination of the integration on the right hand side of Equation (4.307) can be 

carried out. 
2 2

2 2 21 1 2 2 1 1 2 2

0 0 0

cos sin cos sin
T

i j i j i j i j

t t dt tdt tdt
x x x x x x x x

π π
ω ωφ φ φ φ φ φ φ φω ω ω

⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂+ = +⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦
∫ ∫ 2 ω∫

2

t

 
for  (4.308) , 1,i j =

 
An appropriate substitution is selected: 
u ω=   (4.309) 
 
Therefore: 

du dtω=  (4.310) 

1 du dt
ω

=  (4.311) 

 

With the substitution of Equation (4.309) the upper limit 
2π
ω

 changes to  and the 

lower limit remains 0 to giving the following for the integral under examination: 

2π

2 2
2 2 21 1 2 2 1 1 2 2

0 0 0

1 1cos sin cos sin
T

i j i j i j i j

t t dt udu udu
x x x x x x x x

π πφ φ φ φ φ φ φ φω ω
ω ω

⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂+ = +⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦
∫ ∫ 2∫

2for  (4.312) , 1,i j =

 
Evaluation of the integral may now be carried out as follows: 

2 21 1 2 2

0

2 2
1 1 2 2

0 2

cos sin

1 1 1 1sin 2 sin 2
2 2 2 2

T

i j i j

i j i j

t t dt
x x x x

u u u u
x x x x

π π

π

φ φ φ φω ω

φ φ φ φ
ω ω

⎡ ⎤∂ ∂ ∂ ∂+ =⎢ ⎥∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦

∂ ∂ ∂ ∂⎡ ⎤ ⎡+ + −⎢ ⎥ ⎢∂ ∂ ∂ ∂⎣ ⎦ ⎣

∫

⎤
⎥⎦

2 for  (4.313) , 1,i j =

 
After calculating the limits of Equation (4.313) the following is obtained: 

2 21 1 2 2

0

1 1 2 2

cos sin

1 1 1 12 sin 4 2 sin 4
2 2 2 2

T

i j i j

i j i j

t t dt
x x x x

x x x x

φ φ φ φω ω

φ φ φ φπ π π
ω ω

⎡ ⎤∂ ∂ ∂ ∂+ =⎢ ⎥∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦
∂ ∂ ∂ ∂⎡ ⎤ ⎡ π+ + −⎢ ⎥ ⎢∂ ∂ ∂ ∂⎣ ⎦ ⎣

∫
2

⎤
⎥⎦

, 1,i j = for  (4.314) 

 

2 21 1 2 2 1 1 2 2

0

cos sin
T

i j i j i j i j

t t dt
x x x x x x x x
φ φ φ φ φ φ φ φπ πω ω

ω ω
⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂+ = +⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦
∫  for  (4.315) , 1,i j = 2
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Combining Equations (4.307) and (4.315) gives: 

( )( )
( )

2
1 1 2 2

2
0

cosh
cosh

T

i j
i j i j

h z
u u dt

h x x x x
κ φ φ φ φπ π

κ ω ω ⎥ , 1, 2i j =
′ ′ ⎡ ⎤+ ∂ ∂ ∂ ∂′ ′ = +⎢′ ∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦

∫  for  (4.316) 

 

Division of Equation (4.316) by the wave period gives: 

( )( )
( )

2
1 1 2 2

2

cosh1
coshi j

i j i j

h z
u u

T h x x x
κ

x
φ φ φ φπ

κ ω
′ ′ ⎡ ⎤+ ∂ ∂ ∂ ∂′ ′ = + ⎥ , 1, 2i j =⎢′ ∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦

 for  (4.317) 

 

Expressing Equation (4.317) more explicitly yields: 

( )( )
( )

2
1 1 2 2

2

cosh
2 coshi j

i j i j

h z
u u

h x x x
κ

x
φ φ φ φω π

π κ ω
′ ′ ⎡ ⎤+ ∂ ∂ ∂ ∂′ ′ = +⎢ ⎥′ ∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦

 for  (4.318) , 1, 2i j =

 

Equation (4.318) may be simplified as follows: 

( )( )
( )

2
1 1 2 2

2

cosh
2coshi j

i j i j

h z
u u

h x x x x
κ φ φ φ φ

κ
′ ′ ⎡ ⎤+ ∂ ∂ ∂ ∂′ ′ = ⎢ +

′ ∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦
⎥ , 1, 2i j = for  (4.319) 

 
Vertical integration of Equation (4.319) gives: 

( ) ( )( )21 1 2 2
2

1 cosh
2coshi j

i j i jh h

u u dz h z dz
h x x x x

η ηφ φ φ φ κ
κ− −

⎡ ⎤∂ ∂ ∂ ∂′ ′ ′ ′= +⎢ ⎥′ ∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦
∫ ∫ +

)

 for  (4.320) , 1, 2i j =

 

An examination of the integration on the right hand side of Equation (4.293) can be 

carried out. 

Using Equation (4.211) an appropriate substitution is selected: 

(u h zκ= +  (4.321) 
 
Therefore: 

du
dz

κ=   (4.322) 

1 du dz
κ

=  (4.323) 

With the substitution of Equation (4.321) the upper limit η  changes to  and the 

lower limit -h changes 0 to giving the following for the integral under examination: 

hκ ′

( )( )2

0

1cosh cosh
h

h

h z dz udu
η κ

κ
κ

′

−

′ ′+ =∫ 2∫  (4.324) 
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Evaluation of the integral may now be carried out as follows: 

( )( )2

0

1 1 1cosh sinh 2
2 2

h

h

h z dz u u
κη

κ
κ

′

−

⎡ ⎤⎛′ ′+ = +⎜⎢ ⎝ ⎠⎣ ⎦
∫ ⎞

⎟⎥  (4.325) 

 
After calculating the limits of Equation (4.325) the following is obtained: 

( )( )2 1 1 1cosh sinh 2
2 2h

h z dz h h
η

κ κ
κ−

⎡ ⎤⎛′ ′ ′ ′+ = +⎜⎢ ⎝ ⎠⎣ ⎦
∫ κ ⎞

⎟⎥  (4.326) 

( )( ) ( )2 sinh 2
cosh

2 4h

hhh z dz
η κ

κ
κ−

′′′ ′+ = +∫  (4.327) 

 

 

Combining Equations (4.320) and (4.327) gives: 

( )
( )

1 1 2 2

2

sinh 2
2cosh 2 4
i j i j

i j
h

x x x x hhu u dz
h

η

φ φ φ φ
κ

κ κ−

⎛ ⎞∂ ∂ ∂ ∂+⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ′⎡ ⎤′⎝ ⎠′ ′ = +⎢ ⎥ , 1,i j =
′ ⎣ ⎦

∫ 2 for  (4.328) 
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4.5.6 Complete Expression of Radiation Stress in terms of Velocity Potential 

Replacing terms in Equation (4.201) with those from (4.244), (4.278), (4.301) and (4.328) 

gives the following: 

( )
( )

( )

( )
( )

1 1 2 2

2

2 2
1 2

22
1 1

1

2 22
2 2

2

sinh 2
2cosh 2 4

2 2 2

cosh 2

sinh 24cosh
2

i j i j
ij

l l l
ij

l l l

x x x x hhR
h

g

h hx x x
hh

x x x

φ φ φ φ
κ

ρ
κ κ

ξ ξρ

φ φφ κ
ρδ κκ φ φ κφ

⎛ ⎞∂ ∂ ∂ ∂+⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ′⎡ ⎤′⎝ ⎠′ = +⎢ ⎥′ ⎣ ⎦

⎛ ⎞
+⎜ ⎟

⎝ ⎠

⎛ ⎞⎛ ⎞∂ ∂⎜ ⎟+ ′ ′⎡ ⎤⎜ ⎟∂ ∂ ∂⎜ ⎟⎝ ⎠ ⎢ ⎥+ + ′⎜ ⎟ ⎢ ⎥′ −⎛ ⎞⎜ ⎟∂ ∂ ⎢⎣ ⎦+ + ⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠

( )
( )

2 2 2
1 2
2

sinh 2
2cosh 2 4

h h
h

ρκ φ φ κ
κ κ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎥
⎢ ⎥⎢ ⎥

⎢ ⎥⎣ ⎦⎢ ⎥
⎢ ⎥⎡ ⎤+ ′ ′⎡ ⎤⎢ ⎥⎢ ⎥− − +⎢ ⎥⎢ ⎥′ ⎣ ⎦⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

 for  (4.329) , 1, 2i j =

 
Equation (4.329) may be rearranged as follows to give an equation for Radiation Stress 

explicitly in terms of the velocity potential: 

( )
( )

( )

( )
( )

1 1 2 2

2

2 2
1 2

22
1 1

1

2 22
2 2

2

sinh 2
2cosh 2 4

2 2 2

cosh 2

sinh 24cosh
2

i j i j
ij

ij

l l l
ij

l l l

x x x x hhR
h

g

h hx x x
hh

x x x

φ φ φ φ
κ

ρ
κ κ

δ ρ ξ ξ

φ φφ κ
ρδ κκ φ φ κφ

⎛ ⎞∂ ∂ ∂ ∂+⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ′⎡ ⎤′⎝ ⎠′ = +⎢ ⎥′ ⎣ ⎦
⎛ ⎞

+ +⎜ ⎟
⎝ ⎠

⎛ ⎞⎛ ⎞∂ ∂⎜ ⎟+ ′ ′⎡ ⎤⎜ ⎟∂ ∂ ∂⎜ ⎟⎝ ⎠ ⎢+ ′⎜ ⎟ ⎢′ −⎛ ⎞⎜ ⎟∂ ∂ ⎢⎣+ + ⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠

( )
( )

2 2 2
1 2
2

sinh 2
2cosh 2 4ij

h h
h

ρκ φ φ κδ
κ κ

⎡ ⎤
⎢ ⎥
⎢ ⎥⎥
⎢ ⎥⎥
⎢ ⎥⎥⎦⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤+ ′ ′⎡ ⎤⎢ ⎥− − +⎢ ⎥′ ⎣ ⎦⎢ ⎥⎣ ⎦

 for  (4.330) , 1, 2i j =

 
Equation (4.330) allows Radiation Stress values for the NM-WDHM computer model to 

be obtained directly from the results of velocity potential obtained using the wave model. 
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4.6 Bottom Friction 

Equation (4.204) contains a time averaged bottom friction term, B
iτ . In order to use the 

equation for modelling wave-driven currents in any direction it is necessary to obtain an 

expression for B
iτ  that is valid in all directions. Mei (2005) suggests the following 

expression for the instantaneous bottom friction: 

2
B B
i i

f uρτ = − u  for  (4.331) 1, 2i =

 
Where f  is a friction coefficient. Ignoring the effects of turbulence and the minor 

contribution of turbulent fluctuations; Equation (4.331) can be expanded as follows using 

Equation (3.42): 

( )2
B B
i i

f U ui
ρτ ′′= − + +U u  for  (4.332) 1, 2i =

 
The bottom friction term means that the wave particle velocity need only be examined at 

the sea bed. Examining Equation (4.208) at z h′ = − ′  yields: 

( )
1 2Re

cosh

i t

i
i i

eu i ⎟⎟ 1, 2i =
h x x

ω φ φ
κ

−⎛ ⎞⎡ ⎤∂ ∂′ = +⎜ ⎢ ⎥⎜ ′ ∂ ∂⎣ ⎦⎝ ⎠
 for  (4.333) 

 
Expansion of Equation (4.333) gives: 

( ) ( ) 1 21Re cos sin
coshi

i i

u t i t i
x

1, 2i =
h x

φ φω ω
κ

⎛ ⎞⎡ ⎤∂ ∂′ = − +⎜ ⎟⎢ ⎥⎜ ⎟′ ∂ ∂⎣ ⎦⎝ ⎠
 for  (4.334) 

 
Further expansion of Equation (4.334) gives: 

( )
1 1 2 21Re cos sin cos sin

coshi
i i i i

u t i t i t t 1, 2i =
h x x x x

φ φ φ φω ω ω ω
κ

⎡ ⎤⎛ ⎞∂ ∂ ∂ ∂′ = − + +⎢ ⎥⎜ ⎟′ ∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦
 for 

 (4.335) 

 

It is only necessary to examine the real components of Equation (4.335) which gives: 

( ) ( )
1 2cos sin

cosh coshi
i i

t tu
h x h x

φ φω ω
κ κ

∂′ = +
′ ′∂ ∂

∂
1, 2i = for  (4.336) 
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Hence: 

( ) ( )
1cos sin ˆ

cosh coshi
i i

t tU
h x h x

φ φω ω
κ κ

⎛ ⎞∂ ∂′+ = + +⎜⎜ ′ ′∂ ∂⎝ ⎠
iU u e2 ⎟⎟  for  (4.337) 1, 2i =

 
Where  is the unit vector. Equation (4.331) can now be rewritten using the results of 

Equations (4.336) and (4.337): 

ê

 

( ) ( )

( ) ( )

( )

( )

1
22

1 1 1
2

1 2 2
2

2
2 2

2

cos cos2
cosh cosh cos

coshsin cos sin2 2
2 cosh cosh

sin
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j j j
j j j

i
B B
i j

j j j

j j

t tU U U
h x h x x tU

hf t t tU
h x x h x

t
h x x

φ φ φω ω
κ κ φω

κρ φ φ φω ω ωτ
κ κ

φ φω
κ

⎛ ⎞⎛ ⎞∂ ∂ ∂⎜ ⎟+ + ⎜ ⎟⎜ ⎟⎜ ⎟′ ′∂ ∂ ∂ ∂⎝ ⎠ +⎜ ⎟ ′∂ ∂ ∂⎜ ⎟= − + +⎜ ⎟′ ′∂ ∂ ∂
⎜ ⎟
⎜ ⎟⎛ ⎞∂ ∂⎜ ⎟+ ⎜ ⎟⎜ ⎟⎜ ⎟′ ∂ ∂⎝ ⎠⎝ ⎠

( )

1

2sin
cosh

i

i

x
t
h x

φω
κ

⎛ ⎞
⎜ ⎟∂⎜ ⎟
⎜ ⎟∂+⎜ ⎟⎜ ⎟′ ∂⎝ ⎠

  

for  (4.338) , 1, 2i j =

 
A time integral may now be obtained of Equation (4.338) to give the time averaged 

bottom friction term required for Equation (4.204): 

( ) ( )

( ) ( )

( )

( )

1
22

1 1 1
2

1 2 2
2

2
2 2

2

cos cos2
cosh cosh cos

coshsin cos sin2 2
2 cosh cosh
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j j j
j j j

i
B B
i j

j j j

j j

t tU U U
h x h x x tU

hf t t tU
T h x x h x

t
h x x

φ φ φω ω
κ κ ω

κρ φ φ φω ω ωτ
κ κ

φ φω
κ

⎛ ⎞⎛ ⎞∂ ∂ ∂⎜ ⎟+ + ⎜ ⎟⎜ ⎟⎜ ⎟′ ′∂ ∂ ∂ ∂⎝ ⎠ +⎜ ⎟ ′∂ ∂ ∂⎜ ⎟= − + +⎜ ⎟′ ′∂ ∂ ∂
⎜ ⎟
⎜ ⎟⎛ ⎞∂ ∂⎜ ⎟+ ⎜ ⎟⎜ ⎟⎜ ⎟′ ∂ ∂⎝ ⎠⎝ ⎠

( )

1

20 sin
cosh

T
i

i

x
dt

t
h x

φ

φω
κ

⎛ ⎞
⎜ ⎟∂⎜ ⎟
⎜ ⎟∂+⎜ ⎟⎜ ⎟′ ∂⎝ ⎠

∫

 

for  (4.339) , 1, 2i j =

 
For the purposes of the NM-WDHM the integration of the bottom friction term over a 

wave period is carried out using numerical integration. 
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4.7 Turbulent term in Hydrodynamic Equation 

The term ijR′′  in Equation (4.204) represents turbulent diffusion or lateral mixing due to 

wave breaking. It tends to cause a spreading out and smoothing of wave-driven effects 

across a larger area than would be expected for non-turbulent conditions. Kraus and 

Larson (1991) explain that lateral mixing is not well understood in the surf zone and is 

hence usually modelled using an eddy viscosity term. Mei et al. (2005) give a simpler 

specification based on the work of Longuet-Higgins (1970a). This method, however, is 

only appropriate for use in areas where the seabed slopes at a constant slope away from 

the beach on which the waves are shoaling. 

 

 
4.7.1 Turbulent Diffusion Term in NM-WDHM 

Kraus and Larson (1991) gives the following formulae for lateral mixing terms: 

1
x xx xy

U UL h h
h x x y y

ε ε
⎡ ⎤⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞′= +⎢ ⎜⎜ ⎟′ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦

′ ⎥⎟  (4.340) 

1
y yx yy

V VL h h
h x x y y

ε ε
⎡ ⎤⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞′= +⎢ ⎜⎜ ⎟′ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦

′ ⎥⎟  (4.341) 

where: 
 

( )
1

j
i

RL
xhρ η

⎡ ⎤′′∂= ⎢ ∂+ ⎣ ⎦
⎥  (4.342) 

 
Equations (4.340) and (4.341) can be expressed in tensor notation, using the nomenclature 

of the current project, as: 

( ) ( )1 j
j ij

i i

U
L

x xh
ε η

η
⎡ ⎤∂⎛∂= +⎢ ⎜∂ ∂+ ⎝ ⎠⎣ ⎦

h
⎞
⎥⎟

ε

 (4.343) 

 
Where  is the eddy viscosity. Battjes (1975) associates lateral mixing with wave orbital 

velocities as opposed to distance offshore. The methodology of Haas et al. (2003) can be 

followed where  is considered the same in every direction: 

ijε

ijε

11 22 12 21ijε ε ε ε ε= = = = =  (4.344) 
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Hence Equation (4.343) becomes: 

( ) ( )1 j
j

i i

U
L

x xh
ε η

η
⎡ ⎤∂⎛∂= +⎢ ⎜∂ ∂+ ⎝ ⎠⎣ ⎦

h
⎞
⎥⎟  (4.345) 

 

Equation (4.345) can be multiplied above and below the line by the density to give: 

( ) ( )1 j
j

i i

U
L

x xh
ρε η

ρ η
⎡ ⎤∂⎛∂= +⎢ ⎜∂ ∂+ ⎝ ⎠⎣ ⎦

h
⎞
⎥⎟  (4.346) 

 
The ijR′′  term of Equation (4.204) can now be obtained from Equation (4.346): 

 ( ) j
ij

i

U
R h

x
ρε η

∂
′′ = +

∂
 (4.347) 

 
The result of Equation (4.347) is used for turbulent diffusion in the NM-WDHM. 
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4.7.2 Relating lateral mixing to Wave Breaking 

An equation for , the eddy viscosity, must be developed. From the work of Battjes 

(1975) it can be seen that: 

ε

3 DM
h

ε
ρ

⎛ ⎞= ⎜
⎝ ⎠

⎟  (4.348) 

Where M is an empirical coefficient that defines the degree of spread of the turbulent 

mixing effects spread.  Battjes (1975) states that the values of M are expected to be of the 

order of unity.  is defined as follows: D

(D En
s

∂= −
∂

)C  (4.349) 

Where s  increases in the direction of wave propagation and E  is the wave energy. 

 

It is apparent from Equations (4.348) and (4.349) that to adequately model lateral 

dispersion in the NM-WDHM it will be necessary to obtain the variable  from the NM-

WCIM. The process for obtaining values of   for the model domain from the wave data 

of the NM-WCIM is discussed in Chapter 5.  

D

D

 

It is acknowledged at this point that in the case where wave direction is altered by wave-

current interaction the direction of energy propagation is not the exact same as the 

direction of wave propagation. In the case of the relatively weak currents being examined 

in this project it is considered that the effect of this on the calculated eddy viscosity would 

be very small especially considering the empirical nature of the formula. This assumption 

is further backed up by the widespread use of the Battjes (1975) eddy viscosity 

methodology to obtain a diffusion coefficient. Many modern computer models such as the 

MIKE-21 model, discussed by Danish Hydraulic Institute (2008a), consider the use of a 

constant diffusion coefficient not to be inaccurate for most cases. This is a considerably 

larger assumption than the aligning of energy propagation and wave propagation for the 

calculation of eddy viscosity.  

 



WAVE-DRIVEN HYDRODYNAMIC MODEL  C. Newell 
 

 
 345 

4.8 Finite Element Solution of NM-WDHM 

In order to utilise the depth and time averaged conservation of mass and momentum 

equations to examine wave-generated behaviour a solution scheme must be chosen. 

Pinder and Gray (1977) present a solution scheme for hydrodynamic equations that solves 

for unknown variables using a finite element technique over the area of the domain and 

iterates to a solution using a finite difference iterative technique. The process outlined 

below follows the overall methodology of Pinder and Gray (1977) while using the 

particular equations of this project. 

 

Applying a weighting function (equal to a shape function in the Galerkin method) to 

Equation (4.204) and integrating over the area of a triangular finite element yields: 

( )

( ) ( )

1

1

j jI I I
i

i j iA A A A

B
ij I Ii

iA A

U U R
N dA U N dA g N dA N dA

t x x h

R
N dA N dA

xh h

η
ρ η

τ
ρ η ρ η

′∂ ∂ ∂∂= − − −
∂ ∂ ∂ ∂+

′′∂
− +

∂+ +

∫∫ ∫∫ ∫∫ ∫∫

∫∫ ∫∫

ij I

x
 (4.350) 

 
Applying a shape function to the unknown gradient of U  with respect to time yields: j

( )

( ) ( )

1

1

J J JJj I J I I J I
i j ij

i jA A A A

J
BJ

J I I Ji
ij

iA A

dU N NN N dA U U N dA
J

i

Ng N dA R N d
dt x x xh

NR N dA N N dA
xh h

η
ρ η

τ
ρ η ρ η

⎛ ⎞ ∂ ∂ ′= − − −⎜ ⎟ ∂ ∂ +⎝ ⎠

∂′′− +
∂+ +

∫∫ ∫∫ ∫∫ ∫∫

∫∫ ∫∫

A∂
∂

 (4.351) 

 
Expressing Equation  (4.351) in matrix form yields: 

[ ] { j

j
U

dU
KI E

dt
⎧ ⎫

=⎨ ⎬
⎩ ⎭

}  (4.352) 

 
A similar process may now be undertaken for the equation of conservation of mass within 

the system. Equation (4.203), after applying a weighting function (equal to a shape 

function in the Galerkin method) and integration over the area of a triangular finite 

element, becomes the following: 

( )I
i

iA A

N dA U h N dA
t x
η η∂ ∂ ⎡ ⎤= − +⎣ ⎦∂ ∂∫∫ ∫∫ I  (4.353) 
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Applying a shape function to the unknown gradient of η  with respect to time yields: 
J

JI J J I
i i

iA A

N N dA U N U h N dA
t x
η η

⎛ ⎞∂ ∂ ⎡ ⎤= − +⎜ ⎟ ⎣ ⎦∂ ∂⎝ ⎠
∫∫ ∫∫  (4.354) 

 
Expressing Equation (4.353) in matrix form yields: 

[ ] { }dKI E
dt η
η⎧ ⎫

=⎨ ⎬
⎩ ⎭

 (4.355) 

 
Equations (4.352) and (4.355) now provide the three simultaneous equations that must be 

solved for the NM-WDHM: 

[ ] { }1

1
U

dUKI E
dt

⎧ ⎫ =⎨ ⎬
⎩ ⎭

 

[ ] { }2

2
U

dUKI E
dt

⎧ ⎫ =⎨ ⎬
⎩ ⎭

 

[ ] { }dKI E
dt η
η⎧ ⎫

=⎨ ⎬
⎩ ⎭

 

 
The solutions examined by this process are steady state problems where the driving force 

of the radiation stress terms in the hydrodynamic equations is balanced by the magnitude 

of set-up/set-down and currents. Hence an iterative solution scheme is set up using 

Equations (4.352) and (4.355) to obtain steady state values of , , 1U 2U η  that balance the 

radiation stress driving term. A finite difference iterative scheme discussed by Pinder and 

Gray (1977) is chosen. The time derivatives in Equations (4.352) and (4.355) are 

expressed using a finite difference scheme over the time period 
 
and the tΔ { }E vectors 

are averaged over the same time period to yield: 

[ ]{ } [ ]{ } { } { }1 1
2 2jj j Ut t t t t t

KI U KI U t E t E
+Δ +Δ

= + Δ + Δ
jU  (4.356) 

 

[ ]{ } [ ]{ } { } { }1 1
2 2t t t t t t

KI KI t E tηη η
+Δ +Δ

= + Δ + Δ Eη  (4.357) 
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Using the iterative scheme of Equations (4.356) and (4.357) iteration is carried out on 

successive time steps until the values of ,  and 1U 2U η  converge. Values of ,  and 1U 2U η  

at  can be set to any value but for this project zero values are always used.  0t =

 
 

Boundary conditions for ,  and 1U 2U η  are applied using the big number method. Where 

the solution value at a particular node is known this value is multiplied by a large number 

and the resulting product is inserted in the vector of unknowns for the t term. The 

large number is inserted in the corresponding diagonal of the stiffness matrix hence 

ensuring that when the finite element calculation is completed the known value at the 

node is maintained. 

t+ Δ

 
 

Various boundary conditions are used in the NM-WDHM depending on the particular 

circumstances being examined. This project utilises a no-slip boundary condition on the 

beach shore (i.e.  and  are set equal to zero on the beach boundary). For a model 

where longshore currents are not significant or where the side boundaries of the model are 

sufficiently far away from the portion of the domain where interest lies it is also possible 

to implement a non-slip boundary condition on these boundaries. In other cases where 

longshore current must pass through the boundary the longshore current values at the 

centre of the domain from the 

1U 2U

t timestep works very well as the boundary conditions at 

the edge of the domain for the t timestep. t+ Δ

 
 

Values of η  are also used as boundary conditions particularly in the case of linear or 

rectangular meshes. If the deep water boundary is remote from the breaking zone it is 

possible to apply a boundary condition for  η .  In most other cases no boundary 

conditions are applied to η . 

 
 

The solution is deemed to converge when the difference between two successive 

iterations  is equal to zero or reaches a specified lower limit. The length of time taken for 

convergence to occur depends on the chosen time step. Experience with the NM-WDHM  



WAVE-DRIVEN HYDRODYNAMIC MODEL  C. Newell 
 

 
 348 

 

has shown that the more complex meshed areas and more stringent boundary conditions 

as well as the inclusion of turbulent diffusion require smaller time steps and hence take 

longer to converge. Time scales of 2 to 36 hours have been experienced on desktop 

computers depending on model complexity. 

  



 

Chapter 5: Wave Energy Rays 
“Energy and persistence alter all things,” Benjamin Franklin. 

 

 

5.1 Introduction 

Clyne (2008) developed a new method to plot wave rays and hence calculate wave 

heights and breaking heights with a post-processing methodology based on the velocity 

potential solution of an elliptic mild-slope wave model. A similar process will be applied 

for this project to calculate wave heights and breaking heights as well as to obtain energy 

values from which eddy viscosity values can be obtained. These eddy viscosity values can 

be used for the lateral mixing terms of the NM-WDHM. The Clyne (2008) wave ray 

approach did not include the effects of current. The approach of this project will include 

these effects. 

 
The progression of this chapter is as follows: 

• A wave energy equation is developed – Section 5.2 

• A relationship is developed between amplitude and  phases of velocity potential 

and physical waves – Section 5.3 

• The results of Section 5.2 and 5.3 are combined to obtain a wave energy equation 

in terms of wave components – Section 5.4 

• A methodology to obtain eddy viscosity values from wave energy rays is 

developed – Section 5.5 

• A methodology to obtain wave heights from wave energy rays is developed – 

Section 5.6 

• Insipience criterion for wave breaking using energy rays is examined – Section 5.7 

• Input terms required for the Wave Energy Ray method are examined – Section 5.8 
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5.2 Development of Wave Energy Equation 

The elliptic mild-slope equation including currents is examined. The extended terms in 

the mild-slope equation will be discarded for this process due to their limited effect on the 

results. It will also be necessary in order to obtain an energy equation to disregard the 

effects of diffraction (i.e. use a plane wave solution) at some points during the derivation 

of the energy equation. This is considered acceptable because the energy equation will 

only be used within the breaking zone to obtain broken wave heights and turbulent 

coefficients. The majority of diffraction within the models being examined by this project 

occurs outside the breaking zone. 

 
Equation  (3.528) is the Mild-Slope Equation including the effects of current and energy 

dissipation: 

( )

( )

2
2 2 2

2

2

g
g g

k k k k

j j k
k k j j k

k j j k j k j

j
j

CC
CC CC

x x x x

U U Ui U i U U U U
kx x x x x x x

U i
x

φ φ φκ φσ ω φ

x
φ φ φ φω ω φ

γ φ ωγφ

∂∂ ∂+ + − +
∂ ∂ ∂ ∂

⎡ ⎤∂ ∂ ∂∂ ∂ ∂+ + − − −⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦
∂= −

∂

∂  

 
The velocity potential may be described as follows using Equation (3.135): 

iSA e φ
φφ =    

 
Initially it is necessary to examine the derivatives of Equation (3.135). 

First Derivative: 

iS iS

j j j

A S
e iA

x x x
eφ φφ φ

φ
φ ∂ ∂∂ = +

∂ ∂ ∂
 (5.1) 

 
Second derivative: 

2
iS iS

j j j j j j

A S
e iA

x x x x x x
φ φ

φ
φ ⎛ ⎞ ⎛∂ ∂∂ ∂ ∂= +⎜ ⎟ ⎜⎜ ⎟ ⎜∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝

e φφ ⎞
⎟⎟
⎠

 (5.2) 

 

Equation (5.2) may be expanded to give: 
2 22

iS iS iS iS iS

j j j j j j j j j j j j

A S A S S S S A
i e e A e iA e i

x x x x x x x x x x x x
eφ φ φ φ φφ φ φ φ φ φ φ φ

φ φ
φ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ = + − + +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
 (5.3) 
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Second cross-derivative: 
2 22

iS iS iS iS iS

j k j k j k k j j k j k

A S S S S S A A
i e iA e A e i e e

x dx x x x x x x x x x x
φ φ φ φ φφ φ φ φ φ φ φ φ

φ φ
φ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ = + − + +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
 (5.4) 

 
 

Substituting the results of Equations (5.1), (5.3), and (5.4) into Equation (3.532) gives: 

2 2

2 iS iS iS iS iSj j
j k

j j j k j j

iS iS iS iS iS
k j

j k j k k j j k j k

k
j

U UA S A S
i U e iA e i A e U e iA e

x x x x x x

A S S S S S A A
U U i e iA e A e i e e

x x x x x x x x x x

UU

φ φ φ φ φ

φ φ φ φ φ

φ φ φ φ
φ φ φ

φ φ φ φ φ φ φ φ
φ φ

ω ω
⎛ ⎞ ⎛ ⎞∂ ∂∂ ∂ ∂ ∂

+ + − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

− + − + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

∂−
∂

( ) ( )2 2 2

2 2

giS iS iS iS iS
g

k j j j j j

iS iS iS iS iS
g

j j j j j j j j j j

iS

CCA S A S
e iA e e iA e CC A

x x x x x x

A S A S S S S A
CC i e e A e iA e i e

x x x x x x x x x x

A e

eφ φ φ φ

φ φ φ φ φ

φ

φ φ φ φ
φ φ

φ φ φ φ φ φ φ φ
φ φ

φ

σ ω κ

γ

∂⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂
+ + + − − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + − + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

∂
=

φ
φ

iS iS iSj
j

j j j

U A S
U e iA e i A e

x x x
φ φ φφ φ

φ φγ ωγ
⎛ ⎞∂ ∂

+ + −⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠
 (5.5) 

 
 

Further expanding Equation (5.5) gives: 

2 2

2 iS iS iSj j
j k

j j j k j j

iS
k j

j k j k k j j k j k

iSk
j

k j j

U UA S A S
i U e iA i A e U e iA

x x x x x x

A S S S S S A A
U U e i iA A i

x x x x x x x x x x

A SUU e iA
x x x

φ φ φ

φ

φ

φ φ φ φ
φ φ φ

φ φ φ φ φ φ φ φ
φ φ

φ φ
φ

ω ω
⎛ ⎞ ⎛ ⎞∂ ∂∂ ∂ ∂ ∂

+ + − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

− + − + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

⎛ ∂ ∂∂− +
∂ ∂ ∂⎝

( ) ( )2 2 2

2 2

g iS iS
g

j j j

iS
g

j j j j j j j j j j

iS iS iS iSj
j j

j j j

CC A S
e iA CC A

x x x

A S A S S S S A
CC e i A iA i

x x x x x x x x x x

U A S
A e U e i U A e i A e

x x x

eφ φ

φ

φ φ φ φ

φ φ
φ φ

φ φ φ φ φ φ φ φ
φ φ

φ φ
φ φ φ

σ ω κ

γ γ γ ωγ

∂⎞ ⎛ ⎞∂ ∂
+ + − − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎠ ⎝ ⎠

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + − + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

∂ ∂ ∂
= + + −

∂ ∂ ∂

 

 (5.6) 
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All the terms in Equation (5.6) can now be multiplied by the complex conjugate of the 

velocity potential * iSA e φ
φφ −= : 

2

2 2

2 j j
j k

j j j k j j

k j
j k j k k j j k j k

k
j

k j j

U UA S A S
i U A iA i A A U iA

x x x x x x

A S S S S S A A
A U U i iA A i

x x x x x x x x x x

CA SUA U iA A
x x x

φ φ φ φ
φ φ φ φ φ

φ φ φ φ φ φ φ φ
φ φ φ

φ φ
φ φ φ

ω ω
⎛ ⎞ ⎛ ⎞∂ ∂∂ ∂ ∂ ∂

+ + − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

− + − + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

∂⎛ ⎞∂ ∂∂− + +⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

( ) ( )2 2 2 2

2 2

2 2 2

g
g

j j j

g
j j j j j j j j j j

j
j j

j j j

C A S
iA A CC

x x x

A S A S S S S A
A CC i A iA i

x x x x x x x x x x

U A S
A U A i U A i A

x x x

φ φ
φ φ

φ φ φ φ φ φ φ φ
φ φ φ

φ φ
φ φ φ φ

σ ω κ

γ γ γ ωγ

⎛ ⎞∂ ∂
+ − − −⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + − + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

∂ ∂ ∂
= + + −

∂ ∂ ∂

 

 (5.7) 
 
Examining only the imaginary components of Equation (5.7) gives: 

( )

2 2

2
2

2 2

2
2 2

2 j j
j k

j j k j

k j k j k j
j k j k j k

gk
j g

k j j j j j

g g j
j j j j j

U UA S
U A A A U

x x x x

A S S S
A U U A U U A U U

A
x x x x x

CCS S AUA U A A CC
x x x x x x

S S A S
A CC A CC U A

x x x x x

φ φ
φ φ φ

x

S

φ φ φ
φ φ φ

φ φ φ
φ φ φ

φ φ φ φ
φ φ φ

ω ω

γ ω

∂ ∂∂ ∂
+ −

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂
− − −

∂ ∂ ∂ ∂ ∂ ∂

∂∂ ∂ ∂∂− + +
∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
+ + = −

∂ ∂ ∂ ∂ ∂
2

φ φ

φ∂

Aφγ

 (5.8) 

 
Simplification of Equation (5.8) yields: 

2 2

2
2 2 2 2

2 2j j
j k k j

j j k j j k

k
k j j g j

j k k j j j j

U UA S A S
U A A A U A U U

x x x x x x

S S S SU 2A U U A U A CC U A A
x x x x x x x

φ φ φ φ
φ φ φ φ

φ φ φ φ
φ φ φ φ φ

ω ω

γ ωγ

∂ ∂∂ ∂ ∂ ∂
+ − −

∂ ∂ ∂ ∂ ∂ ∂

⎛ ⎞∂ ∂ ∂ ∂∂ ∂− − + =⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
−

 (5.9) 

 
Using Equation (3.189) in the absence of diffraction gives:  

k
k

S
U

x
φω σ

∂
= +

∂
 (5.10) 
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It is acknowledged that the use of Equation (5.10) somewhat limits the developed energy 

equation by neglecting diffractive effects. However, this assumption was necessary to 

obtain an energy equation in the form of Booij (1981).  

 

Substituting Equation (5.10) into Equation (5.9) gives: 

2 2

2
2 2 2

2 2

2

2

j j
j k k k

j k j k k j

k
k j k j j g

j k j k k j j j

j k
j k

U UA S S S
U A U A U A U

x x x x x x

A S S SUA U U A U U A U A CC
S

x x x x x x x

S S
U A A U

x x

φ φ φ φ
φ φ φ

φ φ φ φ φ
φ φ φ φ

φ φ
φ φ

σ σ

γ γ σ

∂ ∂∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞
+ + + −⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

⎛∂ ∂ ∂ ∂ ∂∂ ∂− − − + ⎜⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
∂ ∂⎛ ⎞

= − +⎜ ⎟∂ ∂⎝ ⎠

x
⎞
⎟  (5.11) 

 

 

Expanding Equation (5.11) gives: 

2 2 2

2
2 2 2

2 2

2 2

2

j j j
j j k k k

j j k j j k

k
k j k j j g

j k j k k j j j

j k
j k

U U U

k j

A A S S S
A U A U U A A U A U

x x x x x x x x

A S S S SUA U U A U U A U A CC
x x x x x x x x

S S
U A A U

x x

φ φ φ φ φ
φ φ φ φ φ

φ φ φ φ φ
φ φ φ φ

φ φ
φ φ

σ σ

γ γ σ

∂ ∂ ∂∂ ∂ ∂ ∂
+ + + −

∂ ∂ ∂ ∂ ∂ ∂ ∂

⎛∂ ∂ ∂ ∂ ∂∂ ∂− − − + ⎜⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
∂ ∂⎛ ⎞

= − +⎜ ⎟∂ ∂⎝ ⎠

∂
∂

⎞
⎟  (5.12) 

 

 

Equation (5.12) simplifies to become: 

2 2 2

2 2

2 j
j k j

j j k j j

j k
j k

U
g

j

A S S
A U A A U U A CC

x x x x x

S S
U A A U

x x

φ φ
φ φ φ φ

φ φ
φ φ

σ σ

γ γ σ

⎛ ⎞ ⎛∂∂ ∂∂ ∂+ − +⎜ ⎟ ⎜⎜ ⎟ ⎜∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝
∂ ∂⎛ ⎞

= − +⎜ ⎟∂ ∂⎝ ⎠

x
φ ⎞∂
⎟⎟
⎠  (5.13) 

 

 

Equation (5.10) can be utilised in Equation (5.13) to obtain: 

( )2 2 2

2

2 j
j k

j j k j

j k
j k

U
g

j

A S
A U A A U A CC

x x x x

S S
A U U

x x

φ φ
φ φ φ φ

φ φ
φ

σ σ ω σ

γ σ

⎛ ⎞∂∂ ∂∂ ∂+ − − + ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝
⎡ ⎤∂ ∂⎛ ⎞

= − +⎢ ⎥⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

x ⎠  (5.14) 
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The angular frequency  is a  constant non-varying value. Hence Equation (5.14) 

becomes: 

ω

2 2 2 22 j
j k g j

j j k j j j

UA S
A U A A U A CC A U U

x x x x x x x
φ φ

φ φ φ φ φ
σσ σ γ σ

⎛ ⎞ ⎡∂∂ ∂ ∂ ⎛ ⎞∂ ∂+ − + = − +⎜ ⎟ k
k

S Sφ φ ⎤∂
⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠⎝ ⎠ ⎣ ⎦

 (5.15) 

 

Equation (5.15) can be further simplified as: 

( )2 2 2
j g j k

j j j j

S S
A U A CC A U U

k

S
x x x x x

φ φ φ
φ φ φσ γ

⎛ ⎞ ⎡∂ ∂∂ ∂+ = − −⎜ ⎟ ⎢⎜ ⎟∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎣
σ

⎤∂
⎥∂ ⎦

 (5.16) 

2
g j

j j

S 2A CC U A
x x

φ
φ σ φγ σ

⎡ ⎤⎛ ⎞∂∂ + = −⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦
 (5.17) 
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5.3 Relating Amplitudes and Phases of Velocity Potential and Physical Waves 

At this point it is beneficial to change Equation (5.17) into a form expressed in terms of 

physical quantities. This may be accomplished by replacing the amplitude of velocity 

potential, Aφ ,with the physical wave amplitude, Aξ , and determining a relationship 

between the phase of velocity potential, Sφ , and the wave phase, Sξ . 

 

The difference between mean set-up and wave set-up has been defined as ζ ′ , as shown 

in Figure 3.4.  A harmonic difference between mean and instantaneous set-up may be 

expressed as follows: 

(Re i te ωζ ξ −′ = )  (5.18) 

 
Utilising the same plane wave method as discussed in Section 3.9.2 for this harmonic 

term gives the following: 
iSA e ξ

ξξ =  (5.19) 

 
Using Equation (3.109) with the Dynamic Free Surface Boundary Condition of Equation 

(3.91), yields: 

( ) ( ) ( ) 0i t i t i t
j

j

e U e g e
t x

ω ωφ φ ξ− − −∂ ∂+ + ω

∂ ∂
=  at z η= ,  (5.20) 1, 2j =

 
Simplification of Equation (5.20) gives: 

0j
j

i U g
x
φωφ ξ∂− + + =

∂
 at z η= ,  (5.21) 1, 2j =

 
Using the vertical function from Equation (3.130) with Equation (5.21) gives: 

( ) 0j
j

f
i f U g

x
φ

ω φ ξ
∂

− + + =
∂

 at z η= ,  (5.22) 1, 2j =

 
Acknowledging the fact that 1f =  at z η=  gives: 

0j j
j j

fi U U g
x x
φωφ φ ξ∂ ∂− + + + =

∂ ∂
 at z η= ,  (5.23) 1, 2j =
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Using Equations (3.135) and (5.19) with Equation (5.23) gives: 

( )
0

iS
iS iS iS

j j
j j

A e fi A e U U A e gA e
x x

φ

φ φ
φ

φ φω
∂ ∂− + + +

∂ ∂
ξ

ξ =  (5.24) 

0iS iS iS iS iS
j j j

j j j

A S fi A e U e U A ie U A e gA e
x x x

φ φ φ φ ξφ φ
φ φ φω

∂ ∂ ∂− + + + +
∂ ∂ ∂ ξ =  (5.25) 

 
For a plane wave solution on a constant depth, in the absence of diffraction, the following 

identities hold true 

0
j

A
x

φ∂
=

∂
  (5.26) 

0
j

f
x

∂ =
∂

 (5.27) 

 
Using Equations (5.26) and (5.27) with Equation (5.25) gives: 

0iS iS iS
j

j

S
i A e U A ie gA e

x
φ φ ξφ

φ φ ξω
∂

− + +
∂

=  (5.28) 

 
Equation (5.28) may be rewritten as follows to separate the terms containing velocity 

potential and wave components. 

iS iS
j

j

S
i A U A i e gA e

x
φ ξφ

φ φ ξω
⎛ ⎞∂

− =⎜ ⎟⎜ ⎟∂⎝ ⎠
 (5.29) 

 
Equation (5.29) may be expressed as follows: 

2
i S iS

j
j

S
A U A e gA e

x
φ

ξ

π
φ

φ φ ξω
⎛ ⎞−⎜ ⎟
⎝ ⎠

⎛ ⎞∂
−⎜ ⎟⎜ ⎟∂⎝ ⎠

=  (5.30) 

 
Equation (5.30) gives the relationship between wave amplitude and amplitude of velocity 

potential for a plane wave: 

j
j

S
A U A

x
A

g

φ
φ φ

ξ

ω
∂

−
∂

=  (5.31) 
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Using Equation (5.10) this relationship may be expressed as: 

gA
A ξ

φ σ
=  (5.32) 

 
Equation (5.30) also shows that the relationship between wave phase and phase of 

velocity potential is: 

2
S Sφ ξ

π− =  (5.33) 

 
Substituting Equations (5.33) and (5.31) into Equation (5.19) gives: 

2
j

i Sj

S
A U A

x
e

g
φ

φ
φ φ πω

ξ
⎛ ⎞−⎜ ⎟
⎝

∂⎡ ⎤
−⎢ ⎥∂⎢ ⎥=

⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

⎠  (5.34) 

 
Using Equation (3.135) with Equation (5.34) yields: 

2
j

i Sj
iS

S
U

x
e

g e
φ

φ

φ
πω

φξ
⎛ ⎞−⎜ ⎟
⎝

∂⎡ ⎤
−⎢ ⎥∂ ⎛ ⎞⎢ ⎥= ⎜ ⎟⎢ ⎥⎝ ⎠

⎢ ⎥
⎢ ⎥⎣ ⎦

⎠  (5.35) 

 
Simplifying Equation (5.35) gives the following: 

2

j i
j

S
U

x
e

g

φ
π

ω
ξ

−

∂⎡ ⎤
−⎢ ⎥∂⎢ ⎥=

⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

φ  (5.36) 

 
The exponential function in Equation (5.36) can be expanded to give the following 

equation: 

j
j

S
U

x
i

g

φω
ξ φ

∂⎡ ⎤
−⎢ ⎥∂⎢= −

⎢
⎢ ⎥
⎢ ⎥⎣ ⎦

⎥
⎥  (5.37) 
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Taking the minus inside the brackets in Equation (5.37) yields: 

j
j

S
U

x
i

g

φ ω
ξ φ

∂⎡ ⎤
−⎢ ⎥∂⎢=

⎢
⎢ ⎥
⎢ ⎥⎣ ⎦

⎥
⎥  (5.38) 

 
Using Equation (5.18) and Equation (5.38) an expression can be given for the wave 

fluctuation of  the free surface: 

( )Re Re
j

ji t i t

S
U A

x
e i e

g

φ
φ

ω

ω
ζ ξ φ−

⎡ ∂ ⎤⎛ ⎞
−⎢ ⎥⎜ ⎟∂⎢ ⎜′ = =

⎢ ⎜
⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

ω− ⎥⎟
⎥⎟  (5.39) 
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5.4 Expression of Energy Equation in terms of Wave Components 

The results of Sections 5.2 and 5.3 can now be combined to obtain an energy equation in 

terms of wave components. 

 

Equation (5.17) may now be rewritten using Equation (5.32): 
2 2 2 2

2 g j
j j

2

g A S g
CC U

x x
Aξ φ σ γσ

σ σ
⎡ ⎤⎛ ⎞∂∂ + = −⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

ξ  (5.40) 

 
Equation (5.40) may also be written as: 

2 2
g

j
j j

CCA S
U

x x
Aξ φ γ

σ σ σ
⎡ ⎤⎛ ⎞∂∂ + = −⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

ξ  (5.41) 

 
 

But we know that: 

21 1
8 2

2E gH gAξρ ρ= =  (5.42) 

 
Rewriting this in terms of the wave amplitude gives: 

22E A
g ξρ

=  (5.43) 

 
Using Equation (5.43) with Equation (5.41) gives: 

2 g
j

j j

CC SE U 2E
x g x

φ γ
σ gρ σ σρ
⎡ ⎤⎛ ⎞∂∂ + = −⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

 (5.44) 

 
Equation (5.44) can be simplified as: 

g
j

j j

CC SE U
x x

φ Eγ
σ σ σ
⎡ ⎤⎛ ⎞∂∂ + = −⎢ ⎜ ⎟⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

⎥  (5.45) 
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5.5 Obtaining Eddy Viscosity from Wave Energy Equation 

The development of an equation for eddy viscosity is carried out for a plane wave 

solution in order to compare the terms with the breaking methodology of Battjes (1975). 

The resulting equation, however, will be readily adaptable to the more general case 

necessary for this project.  

 

Further examination of Equation (5.45) for a plane wave gives: 

1 1 2 2

g gCC CCS SE E
x x x x

φ φ Eγ
ω ω ω ω ω
⎡ ⎤ ⎡ ⎤∂ ∂⎛ ⎞ ⎛ ⎞∂ ∂+⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

= −  (5.46) 

2

2 2 2
1 1 2

g gECC ECCS S E
x x x

φ φ γ
ω ω

∂ ∂⎛ ⎞∂ + =⎜ ⎟∂ ∂ ∂⎝ ⎠ ω
−

2x

 (5.47) 

 
Equation (3.136) says for a plane wave: 

1 2S xφ κ κ= +  

 
Hence; 

2
2

S
x

φ κ
∂

=
∂

 (5.48) 

2

2
2

0
S
x

φ∂
=

∂
 (5.49) 

1
1

S
x

φ κ
∂

=
∂

 (5.50) 

Using Equation (5.49) with Equation (5.47) gives: 

2
1 1

gECC S E
x x

φ γ
ω ω

∂⎛ ⎞∂ = −⎜ ⎟∂ ∂⎝ ⎠
 (5.51) 

 
Using Equation (5.50) with Equation (5.51) gives: 

12
1

gECC E
x

κ γ
ω ω

⎛ ⎞∂ = −⎜ ⎟∂ ⎝ ⎠
 (5.52) 

 
For a plane wave the equations defined in Section 3.7.5.2 reduce to: 

gC nC=  (5.53) 
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C ω
κ

=  (5.54) 

Using Equations (5.53) and (5.54) with Equation (5.52) yields: 

12
1

EnC E
x

ω κ γ
ω κ ω

∂ ⎛ ⎞ = −⎜ ⎟∂ ⎝ ⎠
 (5.55) 

 
 

Expressing the  component of the plane wave in terms of  and wave direction 1κ κ θ  

gives: 

( )
1

cosEnC E
x

κ θ
γ

ω κ
−⎡ ⎤∂ = −⎢ ⎥∂ ⎣ ⎦ ω

 (5.56) 

1

cosEnC E
x

θ γ
ω ω

∂ ⎡ ⎤− ⎢ ⎥∂ ⎣ ⎦
= −  (5.57) 

 
Expressing Equation (5.57) in terms of wave direction s gives: 

EnC E
s

γ
ω ω

∂ ⎡ ⎤− = −⎢ ⎥∂ ⎣ ⎦
 (5.58) 

[ ]EnC E
s

γ∂− =
∂

−  (5.59) 

 

 
Using Equation (4.349) it can be seen that: 
D Eγ= −  (5.60) 
 
Although this development is carried out for a plane wave solution in order to compare 

the terms with the breaking methodology of Battjes (1975) the result of Equation (5.60) 

can be used for the full solution of Equation (5.45). 

 
Thus using Equation (4.348) , the eddy viscosity, may be linked with ε γ  the energy 

dissipation term as follows: 

3 EM
h

γε
ρ

⎛ ⎞= − ⎜
⎝ ⎠

⎟  (5.61) 
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5.6 Obtaining Wave Heights using Wave Energy Rays 

In order to use Equation (5.61) to obtain eddy viscosity, it is necessary to know the 

energy at any point. In order to calculate energy values the wave height must be known. 

Wave energy rays can be used to calculate the wave height. 

 
Examining Equation (5.45) in the absence of energy dissipation yields: 

( ) 0j j
j

E U
x σ
∂ ⎡ + =⎢∂ ⎣ ⎦

GC ⎤
⎥  (5.62) 

 
Where: 

g
j

j

CC S
x

φ

σ
∂

=
∂GC  (5.63) 

 
Figure 5.1 below shows energy rays following the direction of energy propagation 

through a domain where DA  is the area between the energy rays and the two perpendicular 

lines to the rays. 

 
Figure 5.1 – Geometry of Wave Energy Rays 
 

If Equation (5.62) is integrated over the area DA  the following result is obtained: 

( ) ( )
D

j j D j j j
jA s

E EU dA U n d
x σ σ
∂ ⎡ ⎤+ = +⎢ ⎥∂ ⎣ ⎦∫∫ ∫G GC C s  (5.64) 
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The term on the right hand side of Equation (5.64) can be expressed more explicitly as the 

sum of the energy equation along each side of the area in question: 

( ) ( )
4

i

i

j j j j j j
ss

E EU n ds U n ds
σ σ

= ⎡+ = +⎢⎣ ⎦
∑∫ G GC C ⎤

⎥  (5.65) 

 

It is obvious from Figure 5.1, however, that the integral over  and is zero because 

the normals to sides 3 and 4 (  and ) are perpendicular to the vector. Hence 

the following can be expressed using Equations (5.64) and (5.65): 

3s 4s

+3n 4n GC U

( ) ( ) ( )
1 2

0
D

j j D j j j j j j
jA s s

E E EU dA U n ds U n ds
x σ σ σ
∂ ⎡ ⎤+ = + + +⎢ ⎥∂ ⎣ ⎦∫∫ ∫ ∫G G GC C C =  (5.66) 

( ) 1 2
11

1 2

0
D

j j D
jA

E EE U dA b b
x σ σ σ
∂ ⎡ ⎤+ = − + + +⎢ ⎥∂ ⎣ ⎦∫∫ G G GC C U C 22

=U  (5.67) 

 
Where  and  are the distance between the rays along the first and second 

perpendicular lines. 

1b 2b

 

Rearranging Equation (5.67) yields: 

1
11

1
2

22
2

1

E b
E

b

σ

σ

+
=

+

G

G

C U

C U
 (5.68) 

 
Using Equation (5.42) with Equation (5.68) gives the following formula for wave height 

at the second perpendicular using a known wave height at the first: 
2

1
11

1
2

22
2

1

H b
H

b

σ

σ

+
=

+

G

G

C U

C U
 (5.69) 

Where: 

2 2

1
1 2

g gCC CCS S
U

x x
φ

σ σ
∂ ∂⎛ ⎞ ⎛

+ = + + +⎜ ⎟ ⎜∂ ∂⎝ ⎠ ⎝
GC U 2Uφ ⎞

⎟
⎠

 (5.70) 

 
The wave height can be calculated along any set of wave rays within a domain using 

Equation (5.69) and the results of the NM-WCIM for the same domain. An appropriate 
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wave height is chosen at the first point along a wave ray channel and the calculation 

process can then be carried forward in a step by step manner obtaining the wave height at 

each perpendicular line to the ray channel using the height at the previous perpendicular 

line. The spacing of these perpendiculars can be varied to aid computational efficiency 

but they must be sufficiently frequent to describe the wave profile accurately over a 

wavelength . When an incipient wave height is reached it is necessary to use a different 

formula that will account for breaking. Section 3.12.3.1 discusses the Battjes and Janssen 

(1978) wave breaking solution. The application of this breaking methodology to the wave 

energy ray method is discussed below. 

 

 

 

5.6.1 Battjes and Janssen (1978) Wave Breaking Solution in the Wave Energy Ray 

Method 

Using Equation (3.1027) with Equation (5.45) gives: 

2
g b

j
j j

CC S EQE U
x x r

φ ωα
σ σ σπ
⎡ ⎤⎛ ⎞∂∂ + = −⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

 (5.71) 

 
Equation (5.71) can be rewritten as: 

( ) 2
b

j j
j

EQE U
x r

ωα
σ σ

∂ ⎡ ⎤+ = −⎢ ⎥∂ ⎣ ⎦
GC

π
 (5.72) 

 
Equation (5.72) can be integrated over the area between two rays and intersecting 

perpendiculars as before: 

( ) 2
D D

b
j j D

jA A

EQE U dA dA
x r

ωα
σ π

∂ ⎡ ⎤+ = −⎢ ⎥∂ ⎣ ⎦∫∫ ∫∫GC Dσ
 (5.73) 

 
The resulting Equation is similar to that of Equation (5.67) with the inclusion of energy 

dissipation terms: 

1 2
1 2 2 21 2

1 21 2 2
c b bEQ EQE Eb b

r r
ωα

σ σ π σ σ
⎡ ⎤Δ ⎛ ⎞ ⎛ ⎞− + + + = − +⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎣ ⎦

G GC U C U  (5.74) 

 
Where  is the area of the cell under consideration.  cΔ
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Isolating the energy at the second point along the ray channel gives: 

2 1
2 2 2 22 1

2 2 2 1 1 1

1
2 2
c b c bQ QE b

r r
ωα ωα

σ π σ π σ σ
⎡ ⎤ ⎡Δ Δ+ + = − + +⎢ ⎥ ⎢
⎣ ⎦ ⎣

GC U C U 1 1
1 b E

⎤
⎥
⎦

G  (5.75) 

1
1 121

1
2

2
2 22

2 2

1
2

1
2

c b

c b

Qb E
r

E Qb
r

ωα
σ π

ωα
σ π

⎡ ⎤Δ+ −⎢ ⎥
⎣= Δ+ +

G

G

C U

C U

1 1

2

σ

σ

⎦  (5.76) 

 
Introducing the result of Equation (5.42) in Equation (5.76) gives the following equation 

for the wave height at the second perpendicular interceptor of the wave rays knowing the 

wave height at the first: 

1
1 121

1
2

2
2 22

2 2

1
2

1
2

c b

c b

Qb H
r

H Qb
r

ωα
σ π

ωα
σ π

⎡ ⎤Δ+ −⎢ ⎥
⎣= Δ+ +

G

G

C U

C U

1 1

2

σ

σ

⎦  (5.77) 

 
It should be noted at this point that  and hence  are initially unknown, hence a 

degree of iteration is required to obtain a result in the breaking zone. Clyne (2008) uses 

the same iterative process.  

2r 2bQ

 
 

 

5.6.2 Dally et al. (1985) Wave Breaking Solution in the Wave Energy Ray Method 

Dally et al. (1985) proposed a closed form solution to wave breaking based on energy 

dissipation. This method had the advantage of not requiring iteration on the wave heights 

of the solution. Authors such as Clyne (2008), Smith (2003) and Zhao et al. (2001) all 

examine this method. Dally et al. (1985) suggest that when a wave breaks it will continue 

breaking until its height becomes less than some stable wave height, which Dally et al. 

(1985) express as a percentage of the water depth. When this lower boundary for wave 

breaking is passed the breaking process stops.. Hence the Dally et al. (1985) method 

allows for the recovery of wave height where areas of shoaling are interrupted by areas of 

breaking. The ability to model this process is rare in wave breaking models.  
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Using the wave energy equation of this project to express the methodology of Dally et al. 

(1985) gives: 

( ) [ ]D GD
j j st

stj

K CKE E EU E
x h h

E Eγ
σ σ σ σ

′⎡ ⎤∂ ⎡ ⎤ ⎧ ⎫ ′+ = − + − + = − − = −⎨ ⎬⎢ ⎥⎢ ⎥∂ ⎣ ⎦ ⎩ ⎭⎣ ⎦
G G GC C U C U

σ
  

 (5.78) 

 

Where the subscript st  denotes the value of a property for the stable wave height. Hence: 

stH = Γh  (5.79) 

Where  is an empirical parameter relating wave height to water depth after Dally et al. 

(1985). 

Γ

 

Using Equation (5.78) with Equation (5.45) yields the following energy equation 

including the energy dissipation methodology of Dally et al. (1985): 

[g D
j

j j

CC S KE U
x x h

φ

σ σ σ
⎡ ⎤⎛ ⎞∂ +∂ + = − −⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

GC U ]stE E  (5.80) 

 
To benefit the further development of Equation (5.80) the result of Equation (5.42) may 

be included to give: 

2
2 2 2g D

j
j j

CC S KH U H
x x h

φ

σ σ σ
⎡ ⎤⎛ ⎞∂ +∂ h⎡ ⎤+ = − − Γ⎢ ⎥⎜ ⎟ ⎣ ⎦⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

GC U  (5.81) 

 
Using Figure 5.1 it is once again possible to integrate over the area between two rays and 

intersecting perpendiculars as before: 

( )
2 2 22

D D D

j j D D D D
jA A A

H hH U dA K dA K dA
x hσ σ

+ Γ +⎡ ⎤∂ + = − +⎢ ⎥∂ ⎣ ⎦
∫∫ ∫∫ ∫∫G

G

C U C U
C Dhσ

G  (5.82) 

( )
22

2

D D

j j D D D D
jA A A

H hH U dA K dA K dA
x hσ σ

+ +⎡ ⎤∂ + = − + Γ⎢ ⎥∂ ⎣ ⎦
∫∫ ∫∫ ∫∫G

G

C U C U
C

D

Dσ
G  (5.83) 

 
Equation (5.83) can be expressed in a more discrete manner as: 

2 22 2
1 21 2 1

1 21 2
1 2 1 1 2

2
1 21 2

1 2

2

2

c D

c D

H HKH Hb b
h h

h hK

σ σ σ σ

σ σ

2

2

⎡ ⎤+ +Δ− + + + = − +⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ + + ⎤Δ Γ+ +⎢ ⎥
⎣ ⎦

G G
G G

G G

C U C U
C U C U

C U C U
 (5.84) 
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Isolating the wave height at the second point along the ray channel gives: 

2 2
1 12 2 1

2 22
2 2 2 1 1

2 2
2 2 1

11
2 1

1
2 2 2

2

c D c D c D

c D

K K H K h
H b

h h

K h H b

σ σ σ

σ σ

⎡ Δ + ⎤ Δ + Δ Γ
+ + = − +⎢ ⎥

⎣ ⎦
Δ Γ +

+ + +

G G
G

G
G

C U C U C U
C U

C U
C U

2

1σ
+G

 (5.85) 

2 2 22
1 1 21 1 1

11
2 1 1 1 1
2

2
22

2 2 2

2 2 2
1

2

c D c D c D

c D

K H K h K hH b
hH

K
b

h

σ σ σ

σ σ

Δ + Δ Γ + Δ Γ +
+ − + +

=
Δ +

+ +

G G
G

G
G

C U C U C U
C U

C U
C U

2

2σ
G

 (5.86) 

 
The following equation for the wave height at the second perpendicular interceptor of the 

wave rays knowing the wave height at the first is now obtained: 

 

2 2 22
1 1 21 1 1

11
1 1 1 1

2
2

22
2 2 2

2 2 2
1

2

c D c D c D

c D

K H K h K hH b
hH

K
b

h

σ σ σ

σ σ

Δ + Δ Γ + Δ Γ +
+ − + +

=
Δ +

+ +

G G
G

G
G

C U C U C U
C U

C U
C U

2

2σ
G

 (5.87) 

 
22 2

22 1 11 2
1 1

1 1 2
2

22
2 2

2 2 2
1

2

c Dc D c D

c D

K hK H K hH b
h

H
Kb
h

σ σ

σ

+ Δ⎛ ⎞Δ Δ Γ− + +⎜ ⎟
⎝ ⎠=

⎛ ⎞Δ+ +⎜ ⎟
⎝ ⎠

G G

G

C U C U

C U

Γ +

 (5.88) 

 

 

Equation (5.88) can be used to progressively calculate broken wave height in the surf 

zone starting at the insipience point where the wave height is known. The selection of an 

appropriate insipience point is examined in Section 5.7. If the wave height at any stage 

drops below the stable wave height the breaking terms are deactivated. In contrast to 

Equation (5.77) no iteration is required on Equation (5.88). 
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5.7 Selection of Insipience Criterion for Wave Breaking In Wave Energy 

Methodology 

A number of authors including Weggel (1972) have examined criterion for selection of 

the insipience point. Four such methods for obtaining the insipient wave height are 

discussed in this section. 

 

5.7.1 Simple relationship between Water Depth and Wave Height  

The simplest form of equation to describe maximum wave height is a linear relationship 

between water depth and wave height. This method enjoys widespread use because of its 

simplicity. It has been discussed and used by authors such as Mei et al. (2005), Zhao et al. 

(2001), Péchon et al. (1997), Mei and Angelides (1977), Liu and Mei (1976), Newell et 

al. (2005b) and Newell and Mullarkey (2007b). Newell and Mullarkey (2007a) examine 

this among other methods in a sensitivity analysis of wave-driven current models. The 

relationship may be described as follows: 

0mH dγ=  (5.89) 

 
A value of approximately 0.78-0.8 has gained widespread acceptance as an appropriate 

value for 0γ  in the absence of available measured data. 

 

5.7.2 Miche (1954) Insipience Criterion 

Weggel (1972) and Zhao et al. (2001) present the criteria of Miche (1954). In Section 

3.12.3.1 this criteria was introduced to define the maximum stable wave height for the 

Battjes and Janssen (1978).  Weggel (1972) also presents the same formula for use in 

selection of an insipience point for other methods of wave breaking such as that of Dally 

et al. (1985).  The Miche (1954) formula is also based on the selection of a parameter 0γ . 

Equation (3.1030) gives the relationship between the wave height and depth as:  

00.88 tanh
0.88mH dγ κ

κ
⎡ ⎤= ⎢ ⎥⎣ ⎦

 

 
Zhao et al. (2001) suggest a value of 0.8 for . Newell and Mullarkey (2007a) use a 

value of 0.78. As stated in Section 5.7.1, above, values in the region of approximately 

0.78-0.8 have gained widespread acceptance as appropriate in the absence of available 

measured data. 

0γ

  
 
 368 
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5.7.3 Miche (1954) Insipience Criterion including the effects of Wave Steepness 

Battjes and Stive (1985) present an empirical formula to obtain a breaker index γ̂  based 

on the steepness of the wave in question. The formula for this breaker index proposed by 

Battjes and Stive (1985) is as follows: 

( 0ˆ 0.5 0.4 tanh 33 )sγ = +  (5.90) 
Where  is the deep-water wave steepness defined as: 0s

0
0

0

Hs
L

=  (5.91) 

 
Incorporating this wave steepness dependant breaker index into the Miche (1954) formula 

gives: 

ˆ0.88 tanh
0.88mH hγ κ

κ
⎡ ⎤= ⎢ ⎥⎣ ⎦

 (5.92) 

 
 
5.7.4 Dally (1990) Insipience Criterion 

Dally (1990) proposes a different breaking criterion also based on wave steepness. The 

expression is described as follows: 

( ) ( ) 4
5

0ˆ 0.0827bb m a m sγ = − b  (5.93) 

ˆmH hγ=  (5.94) 

 
Where  is the slope of the beach and  and  are functions of wave 

steepness. They are defined as follows by Smith (2003): 

bm ( )bb m ( )ba m

( ) ( 1943.8 1 m
ba m e−= − )  (5.95) 

( ) 19.5

1.56
1b mb m

e−=
+

 (5.96) 
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5.8 Calculation of Input Terms Required for Wave Energy Methodology 

In order to carry out the wave energy method described above it is necessary to have 

certain initial data. The following data is readily obtainable for the domain: 

• The Current, U  

• The Depth,  h

• The Chosen Width between Rays,  b  

• The Dally et al. (1985) empirical parameters, Γ, DK  

• The Battjes and Janssen (1978) empirical parameter,  α

 

The following data can be obtained using the NM-WCIM:  

• gC C  

•  σ

 

This leaves one unknown input parameter; 
S
x
φ∂

∂
. This can be readily obtained using the 

velocity potential results of the NM-WCIM as shown by Clyne (2008). Starting with 

Equation (3.135): 
iSA e φ

φφ =  

 
The gradient of Equation (3.135) is: 

iS iSA e i S A eφ φ
φ φφ∇ = ∇ + ∇ φ  (5.97) 

 
Isolating the gradient of Sφ  yields: 

iS

iS

A e
S

iA e

φ

φ

φ
φ

φ

φ∇ −∇
∇ =  (5.98) 

1A A
S

i
φ φ

φ

φ φ
φ

−∇ −∇
∇ =  (5.99) 

 
Splitting the velocity potential into its real and imaginary components gives: 

1 i 2φ φ φ= +  (5.100) 
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Using Equation (5.100) with Equation (5.99) gives: 
1 1

1 2 1

1 2

i A A i A A
S

i
φ φ φ φ

φ
2φ φ φ φ

φ φ

− −∇ + ∇ −∇ − ∇
∇ =

−
 (5.101) 

 
Multiplying above and below the line by the complex conjugate of the denominator 

yields: 

( ) 1 1
1 2 1 2 1 2

2 2
1 2

i i A A i A
S φ φ φ φ

φ

Aφ φ φ φ φ φ
φ φ

− −⎡ ⎤− − ∇ + ∇ − ∇ − ∇⎣ ⎦∇ =
+

 (5.102) 

2 1 1
1 1 1 2 1 1 2

1 2 1
2 1 2 2 1 2 2

2 2
1 2

i i A A A A

i A A i A
S

φ φ φ φ

φ φ φ φ
φ

φ φ φ φ φ φ φ

φ φ φ φ φ φ φ
φ φ

− −

− −

⎡ ⎤− ∇ + ∇ + ∇ − ∇
⎢ ⎥
− ∇ − ∇ + ∇ + ∇⎢ ⎥⎣∇ =

+
A ⎦  (5.103) 

 
Expanding the magnitude of the velocity potential in Equation (3.135) gives: 

iSA e φ
φφ =  (5.104) 

 
Using Equation (5.100) with Equation (5.104) gives: 

2 2 2 2
1 2 cos sinA S Sφ φ φφ φ+ = +  (5.105) 

 

Therefore: 

2 2
1 2 Aφφ φ+ =  (5.106) 

 
Squaring both sides of Equation (5.106) gives: 

2 2
1 2

2Aφφ φ+ =  (5.107) 

 
Equation (5.103) can be written as follows using the result of Equation (5.107): 

( )1 2
1 1 2 21 2 2 1

2 2 2
1 2

i i i A A A
S

A
φ φ φ

φ
φ

φ φ φ φφ φ φ φ
φ φ

−⎡ ⎤− ∇ − ∇ + ∇∇ − ∇ ⎣∇ = +
+

⎦  (5.108) 

 
Carrying out a derivation on Equation (5.107) gives: 

1 1 2 22 2 2 A Aφ φφ φ φ φ∇ + ∇ = ∇  (5.109) 

1 1 2 2 A Aφ φφ φ φ φ∇ + ∇ = ∇  (5.110) 
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Using Equation (5.110) with Equation (5.109) yields the following: 

( )
1 2 2 1

2 2 2
1 2

i A A iA A
S

A
φ φ φ φ

φ
φ

φ φ φ φ
φ φ

⎡ ⎤− ∇ + ∇∇ − ∇ ⎣ ⎦∇ = +
+

 (5.111) 

1 2 2 1
2 2

1 2

Sφ
φ φ φ φ

φ φ
∇ − ∇∇ =

+
 (5.112) 

 

Equation (5.112) represents an equation using which the gradient of wave phase can be 

obtained from the velocity potential results of the NM-WCIM. (Acknowledging that, 

from Equation (3.721),  in the case of the Helmholtz version of the model 
gCC

φ φ′
=  ).  

 

The magnitude of Sφ∇  can be obtained from Equation (5.112): 

1 2 2 1
2 2

1 2

Sφ
φ φ φ φ

φ φ
∇ − ∇

∇ =
+

 (5.113) 

 

Equation (5.113) can be expanded as follows: 
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Further expansion yields: 
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Expanding the squared terms in Equation (5.115) gives: 
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Equation (5.116) can be written as follows: 
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Using Equation (5.117) the following can be stated:
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Section 5.7 has shown that all the required values for implementation of the Wave Energy 

Ray method can be obtained from an non-breaking run of the NM-WCIM. 
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Chapter 6: Results and Discussion 
“Perfect numbers, like perfect men, are very rare,” René Descartes. 

 

6.1 Introduction 

This chapter examines the results of the one-dimensional and two-dimensional NM-

WCIM and NM-WDHM for a selection of  scenarios. The particular scenarios chosen are 

designed to examine the accuracy of the developed models in comparison with analytical 

formulae, measured data and published data from other numerical models. The chapter 

examines both the one-dimensional and two-dimensional versions of the NM-WCIM and 

NM-WDHM in comparison with published data.  The final section of this chapter utilises 

the NM-WCIM and NM-WDHM for a case study of Casheen Bay situated on the west 

coast of Ireland.  

 

For the purposes of this chapter a convention has been chosen for the direction of wave 

propagation. Unless otherwise stated, for models presented in this chapter, waves will 

propagate from right to left. The main exception to this convention is the case study of 

Casheen Bay where the plots are aligned to correspond with a northerly direction being 

towards the top of the page. In some cases it has been necessary to rotate or mirror results 

from other authors to match the convention used here. 

 

6.2 Wave Height vs. Analytical 

6.2.1 Introduction 

The NM-WCIM is initially run for various waves propagating towards a beach of uniform 

slope. The results of these runs prove the accuracy of the basic wave model created. The 

diagrams below show a selection of these results displaying the accuracy of the NM-

WCIM for waves propagating in the absence of a current. 

 
6.2.2 Results 

Figure 6.1 and Figure 6.2, below, show the amplitude of two different waves approaching 

a beach with a slope of 1 in 50. No breaking is evident on the graphs because in order to 

compare with the analytical shoaling formula of Mei et al. (2005) breaking effects are 

ignored. The effects of breaking are discussed in Section 3.12.3 above and are also 

examined in Section 6.4.  Figure 6.3 and Figure 6.4 show a further two waves 

approaching a beach with a slope of 1 in 20. Similarly, breaking is neglected for this 

check of accuracy. 
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Figure 6.1 – Plot of Analytical vs. Numerical Wave Amplitude for a 1m wave of 10 second period at a 
deep-water angle of 0 degrees on a slope of 1 in 50. Waves propagate from right to left. 
 

 

 

 

 

 
Figure 6.2 – Plot of Analytical vs. Numerical Wave Amplitude for a 0.5m wave of 15 second period at 
a deep-water angle of 30 degrees on a slope of 1 in 50. Waves propagate from right to left. 
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Figure 6.3 – Plot of Analytical vs. Numerical Wave Amplitude for a 0.8m wave of 8 second period at a 
deep-water angle of 45 degrees on a slope of 1 in 20. Waves propagate from right to left. 
 

 

 
Figure 6.4 – Plot of Analytical vs. Numerical Wave Amplitude for a 1.2m wave of 12 second period at 
a deep-water angle of 60 degrees on a slope of 1 in 20. Waves propagate from right to left. 
 

6.2.3 Discussion 

The figures presented in this section show that the results of the NM-WCIM for wave 

propagation are in line with those expected from analytical theory. Figure 6.1 and Figure 

6.2  above show that for small deep-water angles on gentle slopes the analytical and 

numerical results are indistinguishable. Figure 6.3 and Figure 6.4 show a slight degree of 

numerical variation in the results of the NM-WCIM caused by the quite large deep-water 

angle. This variation however is well within an acceptable range even up to the large 

angle of sixty degrees. 
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6.3 Wave Current Interaction vs. Mei et al. (2005) and Brevik and Aas (1980) 

6.3.1 Introduction 

Mei et al. (2005) and Brevik and Aas (1980) published plots showing the effective change 

of wave amplitude caused by wave-current interaction. These plots provided a good 

opportunity to test the accuracy of the NM-WCIM for wave propagation in the presence 

of a current. Section 6.3.2 examines the first plot of Mei et al. (2005) for waves at an 

angle to an assisting current and Section 6.3.3 examines the Brevik and Aas (1980) plots 

for waves with a collinear current.  Newell et al. (2005a) compare an early version of the 

NM-WCIM with these results. 

 

6.3.2 Waves approaching a current at an angle 

Mei et al. (2005) examine waves approaching an assisting current at an angle. Figure 6.6  

shows the effect on wave amplitude of various magnitudes of current for eight different 

prevailing wave scenarios. Figure 6.5 shows a sketch of the model scenario to which 

Figure 6.6 relates. Figure 6.7 shows the results of this author versus those analytically 

obtained by Mei et al. (2005). Figure 6.9 shows the author’s results extended to include 

the effects of a retarding current. 
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Figure 6.5 – Sketch of Wave Scenario Under Examination in Figure 6.6 for Current Assisting Wave 
Propagation 
 

 
Figure 6.6 – Dimensionless Amplitude vs. Dimensionless Velocity values for Waves of Various Deep-
Water Angle and Period.  
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Figure 6.7  – Dimensionless Amplitude vs. Dimensionless Velocity values for Waves of Various Deep-
Water Angle and Period plotted against similar results by Mei et al. (2005) 
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Figure 6.8 – Sketch of Wave Scenario with Current Retarding Wave Propagation leading to the 
Upper Left Portion of Figure 6.9 
 
 

 

 
Figure 6.9 - Dimensionless Amplitude vs. Dimensionless Velocity values for Waves of various Deep-
Water Angles and Periods extended to include Retarding Currents. 

 
 381 



RESULTS AND DISCUSSION  C. Newell 
 
6.3.3 Waves with a Co-linear Current 

Brevik and Aas (1980) examined the effect of co-linear currents on wavelength and 

amplitude. Sketchs of this scenario are showing in Figure 6.10 and Figure 6.11. Current 

both directly in line with the direction of wave propagation and exactly against the 

direction of wave propagation are examined.  Figure 6.12 shows the effect on wavelength 

of various magnitudes of current for three different wave scenarios obtained numerically 

by this author and analytically by Brevik and Aas (1980). Figure 6.13 shows the effect on 

wave amplitude of various magnitudes of current for the same wave scenarios, again 

obtained numerically by this author and analytically by Brevik and Aas (1980). 

 

 
Figure 6.10 – Sketch of Wave Propagation in the Presence of a Co-linear Assisting Current 
 
 
 

 
Figure 6.11 – Sketch of Wave Propagation in the Presence of a Co-linear Retarding Current 
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Figure 6.12 – Dimensionless Wavelength versus Dimensionless Co-linear Current for three different 
waves compared with the results of Brevik and Aas (1980) 
 

 
Figure 6.13 - Dimensionless Wave Amplitude versus Dimensionless Co-linear Current for three 
different waves compared with the results of Brevik and Aas (1980) 
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6.3.4 Discussion 

Figures Figure 6.6 and Figure 6.7 show a good comparison between the numerical results 

of the NM-WCIM and the analytical solution of Mei et al. (2005). There is some variation 

in results when the plotted lines return towards a scaled amplitude of unity. This is to be 

expected because in this region the magnitude of the current with respect to the wave 

direction and size is very large. This particular scenario would be a very rare occurrence 

in nature and is at the outer bounds of what would be expected from a numerical model. It 

should also be pointed out that the section of the plot from the Mei et al. (2005) that 

extends above a scaled amplitude of unity represents a mathematically obtained 

asymptote and hence could not be obtained with a numerical model. The type of wave-

current interaction scenario that would cause a result in this region is very unique. Figure 

6.9 shows an extension of the plot, using the NM-WCIM, to include the effects of a 

retarding current on the wave train. As expected the magnitude of wave amplitude 

increases as the retarding effect of the current increases. 

 

Figure 6.12 is a plot by Brevik and Aas (1980) showing the effects of a co-linear current 

on the wave-length of three different wave trains. The results of the NM-WCIM for the 

same currents and wave-train are also plotted on this graph. In the presence of the 

retarding current there is good comparison between the values of the NM-WCIM and 

Brevik and Aas (1980). In the presence of an assisting current there is good comparison 

between the values for weaker currents. Figure 6.13 shows that in the presence of stronger 

assisting currents the results of the NM-WCIM and the  Brevik and Aas (1980) analytical 

solution compare well for the k0h0 = 50 solution. Some difference is evident in this region 

for the other two cases. In the case of a numerical model this would not be unexpected 

towards the extremities of the results. For a common wave period the case of k0h0 = 0.5 

represents a shallow water depth. 
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6.4 Different Breaker Methods 

6.4.1 Introduction 

Newell and Mullarkey (2007a) examine the sensitivity of the NM-WDHM to various 

breaking models, after Zhao et al. (2001), that are applied to the NM-WCIM. The results 

of Newell and Mullarkey (2007a) indicated that in order to get a clearly defined result of 

set-up/set-down it is necessary to use a breaking formula that gives a defined insipience 

point. The figures below examine breaking using a simple linear breaking relationship, 

the energy dissipation method of Battjes and Janssen (1978) discussed in Section 3.12.3.1 

and the Dally et al. (1985) method of Section 5.6.2. In the case of the Dally et al. (1985) 

breaking methodology a number of different methods are examined for selection of the 

insipience point. The radiation stress for each scenario is calculated from the velocity 

potential results of the NM-WCIM with the appropriate breaking methodology 

implemented. The radiation stress values are used in the NM-WDHM to calculate set-up 

and set-down for the various breaking methodologies. 

 

6.4.2 Results 

Figure 6.14 shows the broken wave height for a wave with a deep-water wave height of 

0.5m breaking on a beach slope of 1 in 50. The wave is propagating perpendicularly to 

the beach throughout. The six different breaking methodologies employed are detailed in 

Table 6.1 below. Figure 6.15 shows the set-up and set-down resulting from the wave 

heights plotted in Figure 6.14. Figure 6.16 examines the Miche (1954) formula for 

maximum stable wave height with a view to explaining why the third method in this 

section falls almost exactly in line with the second method. 
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Table 6.1 – Table of Different Breaking Methodologies used in Section 6.4 
Method 

Number 

Breaking Methodology Insipience Point 

1 Linear Relationship between 

Wave Height and Water 

Depth 

 = 0.78 

2 Dally et al. (1985)  = 0.78 

3 Dally et al. (1985) Miche (1954) Criterion with  = 0.78 

4 Dally et al. (1985) Miche (1954) Criterion including 

Battjes and Stive (1985) Wave 

Steepness Criterion 

5 Dally et al. (1985) Dally (1990) criterion including Wave 

Steepness Criterion 

6 Dally et al. (1985) Average of Insipience points for  

Methods 3 & 4 

7 Battjes and Janssen (1978) No Defined Insipience Point – 

Maximum Stable Height using Miche 

(1954) Criterion  

0γ

0γ

0γ

 
 

 
 
Figure 6.14 – Wave Height for different breaking methods on a wave of 0.5m Deep-Water Height 
breaking on a 1 in 50 slope. Waves propagate from right to left. 
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Figure 6.15 – Set-up/Set-down for different breaking methods for a wave of 0.5m Deep-Water Height 
breaking on a 1 in 50 slope  
 

 

 
Figure 6.16 – Comparison of Breaking Wave height obtained for a given wave using the simple 
Gamma = 0.78 formula and the Miche criterion for different Wave Periods. 
 

6.4.3 Discussion 

It is evident from the figures in this section that the choice of breaking methodology and 

maximum stable wave height has a significant effect on wave height obtained in the 

breaking zone. The results of Figure 6.15 show the corresponding difference caused in the 

set-up/set-down results though significant are not as dissimilar as the wave results in 
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Figure 6.14. It is evident in Figure 6.14 that in the majority of the breaker zone the wave 

height obtained using the linear breaking methodology is quite similar to that of the 

Battjes and Janssen (1978) method. The main difference being the defined peak in wave 

height using the linear method that is absent in the gentle change in wave height of the 

Battjes and Janssen (1978) method. The Dally et al. (1985) breaking methodology 

provides a concave effect on the wave heights in the surf-zone in contrast to the more 

convex approach of the Battjes and Janssen (1978) method. Considering the different 

types of breaking that can occur in a given situation (as discussed in Section 2.2.2.5) a 

decision on which breaking model to use should be guided by conditions at the site being 

examined. With regards to the insipience points it is clear that the Dally et al. (1985) 

method provides the highest sustainable wave height and the Miche (1954) criterion 

including Battjes and Stive (1985) wave steepness criterion provides the lowest. The  

Miche (1954) formula provides an incipient point very similar to the value of   = 0.78. 

Figure 6.16 shows why this is the case. The difference between the Miche (1954) formula 

and the simple linear relationship is very small for water depths below 1.5m and hence for 

waves with heights of up to 1m. This encompasses a large portion of waves in coastal 

regions. 

0γ

 

Figure 6.15 shows the various shapes of set-up/set-down obtained using the breaking 

methods described above. It is clear that the maximum set-up and the maximum set-down 

are affected by the breaking model chosen. However, considering the overall accuracy 

expected from any model of this type the difference between any of the methods is not 

large with the possible exception of set-down driven by the Battjes and Janssen (1978) 

breaking method. The degree of set-down obtained by this method is quite small due to 

the lack of a defined insipience point. Radiation stress calculations are based on the 

gradients of velocity potential. The rapid change in gradient caused by a defined 

insipience point produces a much more significant set-down than  the gradual change 

caused by breaking methods such as that of Battjes and Janssen (1978). Newell and 

Mullarkey (2007a) examine some other breaking models discussed by Zhao et al. (2001). 

The results of Newell and Mullarkey (2007a) suggest that the Battjes and Janssen (1978), 

Dally et al. (1985) and linear breaking methods are the most useful for obtaining radiation 

stress driving forces for a hydrodynamic model. 
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6.5 Turbulent Diffusion in NM-WDHM 

6.5.1 Introduction 

As discussed in Section 4.8 the two prevalent methods for energy dissipation due to 

turbulence in wave-driven current models are the simplified Longuet-Higgins (1970a) 

method which is suitable only for uniformly sloping beaches and the method of Battjes 

(1975) based on eddy viscosity which is useful in a more general context for varying 

bathymetry. The NM-WDHM has been developed to utilise either of these 

methodologies. Both the Longuet-Higgins (1970a) and the Battjes (1975) breaking 

methodologies contain an empirical parameter. The empirical parameter of Longuet-

Higgins (1970a) has been titled N after Mei et al. (2005) and that of Battjes (1975) is M, 

as discussed in Section 4.7.2. The figures in this section demonstrate the effects of 

turbulence on a longshore current with varying values of the empirical parameter of each 

method. Also presented is an analytical plot by Longuet-Higgins (1970b) of  similar data. 

Results of both the Longuet-Higgins (1970a) and the Battjes (1975) breaking 

methodologies are also compared with measured results from published data. 

 

6.5.2 Results 

Figure 6.17 shows a profile of longshore current for a wave of 1m deep-water height and 

30o deep water angle on a slope of 1 in 50 in the presence of varying intensities of 

Longuet-Higgins (1970a) type turbulent diffusion. A thirty degree angle was used for the 

results in Figure 6.17 to Figure 6.20. (The intensity was altered by altering the empirical 

parameter, N.) Figure 6.18 shows a non-dimensional plot of the same scenario. Figure 

6.19 shows a profile of longshore current for a wave of 1m deep-water height on a slope 

of 1 in 50 in the presence of varying intensities of Battjes (1975) type turbulent diffusion. 

(The intensity in this case was altered by altering the empirical parameter, M.) Figure 6.20 

shows a non-dimensional plot of the same scenario. 
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Figure 6.17 – Plot of Longshore Velocity versus Distance Offshore for a wave of 1m Deep-Water 
Height on a 1 in 50 slope with 30 degree incidence angle in the presence of Turbulent Diffusion after 
Longuet-Higgins (1970a) 
 
 

 
Figure 6.18 – Plot of Non-Dimensional Longshore Velocity versus Non-Dimensional Distance 
Offshore for a wave of 1m Deep-Water Height on a 1 in 50 slope with 30 degree incidence angle in the 
presence of Turbulent Diffusion after Longuet-Higgins (1970a) 
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Figure 6.19 – Plot of Longshore Velocity versus Distance Offshore for a wave of 1m Deep-Water 
Height on a 1 in 50 slope with 30 degree incidence angle in the presence of Turbulent Diffusion after 
Battjes (1975) 
 
 
 

 
Figure 6.20 – Plot of Non-Dimensional Longshore Velocity versus Non-Dimensional Distance 
Offshore for a wave of 1m Deep-Water Height on a 1 in 50 slope with 30 degree incidence angle in the 
presence of Turbulent Diffusion after Battjes (1975) 
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Figure 6.21 – Theoretical Form of Longshore Current from Longuet-Higgins (1970b) 
 
 

Figure 6.22 to Figure 6.26 shows a similar set of non-dimensional results with an angle of 

incidence of five degrees. The results are compared with measured data from Kim (2004) 

after Sonu (1975) and with measured laboratory results of Hamilton and Ebersole (2001) 

for both the Longuet-Higgins (1970a) and the Battjes (1975) breaking methodologies. 

 
 
 
 

 
Figure 6.22 – Plot of Non-Dimensional Longshore Velocity versus Non-Dimensional Distance 
Offshore for a wave of 1m Deep-Water Height on a 1 in 50 slope with 5 degree incidence angle in the 
presence of Turbulent Diffusion after Battjes (1975) 
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Figure 6.23 – Comparison of Non-Dimensional Longshore Velocity after Longuet-Higgins (1970a) 
and measured Longshore Velocity Values after Kim (2004) and Sonu (1975). 
 
 
 
 

 
Figure 6.24 – Comparison of Non-Dimensional Longshore Velocity after Longuet-Higgins (1970a) 
and measured Longshore Velocity Values after Hamilton and Ebersole (2001) 
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Figure 6.25 – Plot of Non-Dimensional Longshore Velocity versus Non-Dimensional Distance 
Offshore for a wave of 1m Deep-Water Height on a 1 in 50 slope with 5 degree incidence angle in the 
presence of Turbulent Diffusion after Battjes (1975) 
 
 
 

 
Figure 6.26 – Comparison of Non-Dimensional Longshore Velocity after  Battjes (1975) and 
measured Longshore Velocity Values after Kim (2004) and Sonu (1975) 
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Figure 6.27 – Comparison of Non-Dimensional Longshore Velocity after Battjes (1975) and measured 
Longshore Velocity Values after Hamilton and Ebersole (2001) 
 
 
 
6.5.3 Discussion 

There is an apparent difference between the almost linear rise to peak velocity in Figure 

6.21 and the more curved rise in the results in Figure 6.18 and Figure 6.20. This 

difference is not as apparent in Figure 6.22 or Figure 6.25. This would tend to indicate the 

angle of incidence of the wave has an effect on the obtained cross-shore profile of 

longshore current. The effect of varying the empirical factors in both the Longuet-Higgins 

(1970a) and the Battjes (1975) method provides the same spreading of lateral dispersion 

as that discussed by Longuet-Higgins (1970b).  From inspection of Figure 6.20 and 

Figure 6.25 it is clear that for different angles of incidence the spreading effect of each 

empirical parameter is different. Similar empirical parameters appear to cause a larger 

degree of spread for higher angles of wave incidence. This effect is also apparent to a 

lesser degree when comparing Figure 6.18 and Figure 6.22. 

 

In practice it is necessary to select an empirical factor that best matches the prevailing 

conditions. For a coastal site where measured longshore current data is available it is 

possible to calibrate the model against measured data to select an appropriate empirical 

factor. In the absence of such data the best estimate based on similar measurements 

elsewhere is chosen. Battjes (1975) suggests the value of M to be “of order one.” It is 
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further discussed by Battjes (1975) that most measured profiles of longshore current fell 

in the range of 0.0024 < N < 0.0096 with M values approximately 27 times greater. 

 

The comparisons between measured data and the results of this section show that the 

overall trend of spreading and reduction in peak of the idealised longshore current profile 

is in line with that experienced in nature. The results, however, further underline the 

necessity to choose appropriate empirical parameters for any given model. Figure 6.26 

and Figure 6.27 show that a relatively high value of M is appropriate in the circumstances 

under examination. Similarly, appropriate N values for the same circumstances, shown in 

Figure 6.23 and Figure 6.24, are comparatively high. 
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6.6 Comparison of Set-up/Set-down with Bowen et al. (1968) 

6.6.1 Introduction 

Bowen et al. (1968) published measured set-up/set-down values for a laboratory wave. 

Newell and Mullarkey (2007b) published results of the NM-WDHM for the same 

scenario based on radiation stress values from the NM-WCIM. This result is reproduced 

below. 

 
6.6.2 Results 

Figure 6.28 below shows the set-up/set-down results for a measured wave of period 1.14 

seconds and with a deep-water wave height of 6.45cm. The slope of the beach is 0.082. 

Included in the plot are the measured values of Bowen et al. (1968) as well as the results 

of the Bowen et al. (1968) theory. The results of the NM-WDHM for the same set of 

wave data is plotted in red. A linear breaking methodology was used and it was found for 

the case of this laboratory model that an insipience point of 1.1 provided the most 

accurate result. In this case waves propagate from left to right. 

 

 
Figure 6.28 – Comparison of Measured and Calculated Set-up/Set-down for a laboratory wave after 
Bowen et al. (1968) and Newell and Mullarkey (2007b). Waves propagate from left to right. 
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6.6.3 Discussion 

Figure 6.28 shows a close correspondence between the measured results of Bowen et al. 

(1968) and the results of the NM-WDHM. It is believed that the slightly higher than usual 

insipience point was required to compensate for the laboratory nature of the sea-bed and 

the scale of the wave.  Measured values of set-up are difficult to obtain for real coastal 

situations so the availability of the Bowen et al. (1968) measured data is quite useful for 

examining the accuracy of the NM-WDHM. 
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6.7 Iteration between NM-WCIM and NM-WDHM 

6.7.1 Introduction 

The development of the coupled NM-WCIM and NM-WDHM for this project allows for 

the examination of the circular nature of the relationship between waves and wave-

generated effects. Newell and Mullarkey (2007b) provides an examination of the effect of 

iteration between the NM-WCIM and the NM-WDHM for the purposes of examining a 

wave-generated current and set-up/set-down. 

 

6.7.2 Results 

Figure 6.29 shows the results for set-up/set-down obtained from the first and second steps 

of the iterative procedure. A wave of  0.6m deep-water height and ten second period with 

a deep-water angle of 30 degrees is examined on a beach of 1 in 50 slope. The NM-

WCIM is initially run in the absence of a current and radiation stress values from this 

model are used in the NM-WDHM to calculate the first set-up/set-down results as well as 

the magnitude of longshore current. A second iteration of the NM-WCIM is then carried 

out using the values of current to obtain a second set of radiation stress values. The 

second iteration of the NM-WDHM is then carried out to obtain a second set of results for 

set-up/set-down. 

 
Figure 6.29 – Plot of Set-up/Set-down for the first and second steps of an iterative use of the NM-
WCIM and NM-WDHM. Waves propagate from right to left. 
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6.7.3 Discussion 

The maximum difference between the plotted results in Figure 6.29 is of the order of 2%. 

Considering the level of accuracy expected of numerical wave-current interaction and 

hydrodynamic models this would be considered a very small difference and would tend to 

indicate that in the presence of purely wave-generated currents iteration of the NM-

WCIM and NM-WDHM would not usually be necessary unless there was some 

indication that the bathymetry would be such to cause an amplified wave-generated 

current. Obviously in the case of strong currents, that may not be generated by waves, 

iteration of the model to obtain appropriate wave-current interaction results is essential. 
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6.8 Wave Breaking and Recovery over an Offshore Bar 

6.8.1 Introduction 

As discussed in Section 5.6.2 the Dally et al. (1985) wave breaking solution allows for 

recovery of wave height when a wave train initially breaks over an offshore bar and 

continues into deeper water following this initial breaking. The Dally et al. (1985) 

breaking solution is unique in this regard among the breaking solutions examined by this 

project. The figures below show the effects of this wave recovery on both wave height 

and wave generated set-up/set-down and currents. 

 

6.8.2 Results 

The figures below present the results of the NM-WCIM and NM-WDHM for a wave of 

2m deep-water height and ten second period approaching an offshore bar at a deep-water 

angle of 30 degrees. Figure 6.30 shows the bathymetry of the offshore bar including the 

initial 1 in 20 slope, the 1 in 20 slope of the beach and the 1 in 20 slope in the opposite 

direction on the downwave side of the bar. A small flat area is provided at the crest of the 

bar and at the base of the trough. Figure 6.31 shows the results obtained using unbroken 

wave heights from the NM-WCIM and the Ray Energy Method as a post-processing 

method to obtain broken wave heights using the Dally et al. (1985) wave breaking 

solution. Figure 6.32  shows the longshore current obtained using the NM-WDHM with 

radiation stress values obtained from the broken wave heights and similarly Figure 6.33 

shows the set-up/set-down for the same scenario.  

 

 
Figure 6.30 – Bathymetry of Offshore Bar 
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Figure 6.31 – Wave Height in the presence of an Offshore Bar. Waves propagate from right to left. 
 

 

 
Figure 6.32 – Magnitude of Longshore Current in the presence of an Offshore Bar 
 

 

 
Figure 6.33 – Set-up/Set-down in the presence of an Offshore Bar 
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6.8.3 Discussion 

Figure 6.31 shows a reduction in wave height caused by breaking over the offshore bar. 

As the wave train progresses over the downwave side of the bar and the deeper section of 

the trough there is a region of gradual small change in the wave height before shoaling 

recommences on the 1 in 20 beach section to provide a recovered wave height. Breaking 

then occurs again on the recovered wave height in the vicinity of the beach. Figure 6.32 

shows the profile of longshore current caused by the wave breaking over the longshore 

bar and at the beach. The magnitude of current caused by the offshore bar is of the same 

order as that caused by breaking at the beach. Figure 6.33 shows the set-up/set-down 

caused by both the breaking on the offshore bar and the breaking on the beach. There is a 

noticeable region of set-down at the point of initial wave breaking and set-up on the bar 

side of this region. The set-up in this region decays quickly over the top of the bar. The 

set-up caused by the beach is of the same order as that caused by the bar but the set-down 

caused by breaking waves at the beach is approximately three times smaller than the 

magnitude of that caused by the bar. This difference is thought to be due to the relative 

magnitudes of the intial and recovered breaking waves. 

 

The shallowness of the bar examined in this case, at 2m, would be considered quite 

shallow and the NM-WCIM and NM-WDHM address this depth very well. There is a 

degree of numerical noise on the upwave side of the set-down and longshore current at 

the breakwater. However, this noise is does not affect the overall trend of the results. 
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6.9 Detached Breakwater of Liu and Mei (1976) 

6.9.1 Introduction 

In the presence of complicated bathymetry or offshore obstacles one-dimensional 

versions of the NM-WCIM and NM-WDHM would not provide sufficient results. In 

cases such as this the NM-WCIM and NM-WDHM are run in two-dimensional form. In 

this case the effect of a detached breakwater upon shoaling waves on a beach is examined 

using both the NM-WCIM and NM-WDHM. Liu and Mei (1976) examine a detached 

breakwater and the same bathymetry and layout have been chosen for the model in 

question to allow comparison. 

 

 

6.9.2 Results 

Figure 6.34 shows the scenario under examination. A detached breakwater is situated 

350m offshore on a beach of 1 in 50 slope. A wave of 10 second period and 1m deep-

water height approaches the beach perpendicularly. Because of the symmetry of the 

situation it was only necessary to model half the breakwater. Liu and Mei (1976) used the 

same process to produce results with a smaller domain. A circular boundary is applied to 

the open water side of the domain to allow backscattered waves to exit the domain. The 

water surface is shown in Figure 6.34 for unbroken waves. The same scenario is plotted in 

Figure 6.35 for broken waves. It is worth noting that Liu and Mei (1976) use an 

insipience criterion of . Although this would be considered quite low it was 

utilised in the NM-WCIM in this case to ensure the comparison of like with like. 

0 0.4γ =
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Figure 6.34 – Water surface in the presence of a Detached Breakwater with Unbroken Waves. Waves 
propagate from right to left. 

 
Figure 6.35 – Water Surface in the presence of a Detached Breakwater with Broken Waves. Waves 
propagate from right to left. 
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Figure 6.36 shows contour lines of where the water surface height is zero. These lines 

provide an ideal method of envisaging the wave phase. Figure 6.37 shows a  three-

dimensional plot of the same results as Figure 6.35. 

 
Figure 6.36 – Contours of Water Surface = 0 to indicate Wave Phase. Waves propagate from right to 
left. 

 
Figure 6.37 – Three dimensional plot of Water Surface for Broken Waves 
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Figure 6.38 and Figure 6.39 show plots of unbroken and broken wave heights respectively 

for the same scenario as the wave surfaces plotted above. 

 
Figure 6.38 – Unbroken Wave Height in the presence of a Detached Breakwater. Waves propagate 
from right to left. 
 

 
Figure 6.39 – Broken Wave Height in the presence of a Detached Breakwater. Waves propagate from 
right to left. 
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Figure 6.40 shows the set-up and set-down obtained from the NM-WDHM both in the 

region unaffected by the breakwater and the region behind the breakwater. Figure 6.41 

shows velocity vectors for the same area in the absence of any turbulent terms. Figure 

6.42 and Figure 6.43 show the effect on the vectors of including turbulence based on eddy 

viscosity. Figure 6.42 shows the results of the NM-WDHM using an empirical parameter 

of M=1.1 whereas Figure 6.43 shows the results in the case of an empirical parameter of 

M=2.0. The inclusion of turbulent terms can cause numerical noise in the velocity results 

at the tip of the breakwater therefore this region has been removed from the results plotted 

in  Figure 6.42 and Figure 6.43. 

 

The next figures show a more magnified view of approximately 4.3 hectares of the model. 

This allows for a more detailed examination of the velocity components in this area. 

Figure 6.44 shows the velocity components in this area in the absence of any turbulent 

terms. Figure 6.45 and Figure 6.46 show the velocity components in this area with the use 

of turbulent parameters of M=1.1 and M=2.0 respectively. The eddy viscosity values and 

breaking wave heights for  turbulent diffusion were obtained using the wave energy ray 

method discussed in Chapter 5. 

 

Figure 6.47 shows the velocity components in the same area plotted along with the set-

up/set-down results to allow examination of the effects of set-up and set-down on the 

velocity components. Figure 6.48 and Figure 6.49 show the velocity streamline and set-

up/set-down results obtained by Liu and Mei (1976) for the same scenario. Figure 6.50, 

that follows, shows a cross-section of longshore current along a line of y = 610m. This 

plot allows the examination of the effects of turbulent diffusion within the NM-WDHM. 
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Figure 6.40 – Set-up/Set-down in region behind 
Breakwater 

Figure 6.41 – Velocity behind Breakwater in the 
absence of turbulence 

Figure 6.42 – Velocity behind Breakwater with 
Turbulent Parameter M=1.1 

Figure 6.43– Velocity behind Breakwater with 
Turbulent Parameter M=2.0 
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Figure 6.44 – Velocity Plot in the absence of 
Turbulence 

Figure 6.45 – Velocity Plot with Turbulent 
Parameter M=1.1 

 

Figure 6.46 – Velocity Plot with Turbulent 
Parameter M=2.0 

Figure 6.47– Velocity Plotted alongside Set-
up/Set-down 
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Figure 6.48 – Streamlines showing direction and 
magnitude of vortex from Liu and Mei (1976). 
Values indicated on the plot are magnitudes of a 
streamline function. This plot has been mirrored 
to provide results for the same location as this 
project. 

Figure 6.49 – Contours of set-up/set-down from 
Liu and Mei (1976). This plot has been mirrored 
to provide results for the same location as this 
project. 

 

 
Figure 6.50 – Profile of Longshore Current at y = 610m showing the effect of Turbulence in the NM-
WDHM 

 
 411 



RESULTS AND DISCUSSION  C. Newell 
 
6.9.3 Discussion 

It is evident from the results of the NM-WCIM that the presence of a breakwater has a 

sheltering effect. The wave heights behind the breakwater are quite low. Diffraction is 

also evident behind the breakwater. Figure 6.36 shows how the waves diffract around the 

back of the breakwater after the wave train passes it. Figure 6.39, however, shows that the 

height of these waves behind the breakwater is significantly lower than those in the 

unsheltered region to the side of the breakwater. The presence of a standing wave on the 

deep-water side of the breakwater is also easily visible from the wave heights plotted in 

Figure 6.39. The fact that these standing waves do not affect the results elsewhere in the 

domain is a good indication that the radiation boundary condition on the open water 

boundary allows the backscattered wave energy to exit the domain effectively. 

 

The results of the NM-WDHM show that any noticeable set-up and set-down is confined 

to unsheltered region to the side of the breakwater. This is due to the magnitude of the 

waves behind the breakwater being too small to cause a strong radiation stress. It is 

evident from Figure 6.41, Figure 6.42 and Figure 6.43 that the inclusion of turbulent 

diffusion has a significant effect on the results of the NM-WDHM. Many previous wave-

driven hydrodynamic models ignore turbulent diffusion for the sake of speed of solution. 

The results of this model show that turbulent diffusion smoothens the results of the model 

and gives a more realistic view of the vortex created in the region behind the breakwater 

tip.  This is further proved by the magnified plots of Figure 6.44, Figure 6.45 and Figure 

6.46. The cross-section of longshore velocity in Figure 6.50 clearly shows the smoother 

results of the models including turbulent diffusion when compared with the jagged results 

of the model run without turbulent effects. Liu and Mei (1976) ignore the effects of 

turbulent diffusion. Figure 6.47 shows the relationship between set-up/set-down and wave 

driven currents. It is evident from this plot that the vortex formed behind the breakwater 

is caused by the difference in set-up  and set-down between the shadow region behind the 

breakwater and the unsheltered region to the side of it. The hydrostatic difference 

between the two causes a vortex to be created with flow from regions of higher pressure 

to regions of lower pressure. 

 

The results of the Liu and Mei (1976) model shown in Figure 6.48 and Figure 6.49 are 

comparable in trend with those of the NM-WDHM model. The set-up of the Liu and Mei 

(1976) model is approximately 0.15m higher than that predicted by the NM-WDHM 
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model. The reason for this difference is not clear. In Sections 6.6 and 6.11 the set-up 

predicted by the NM-WDHM compares favourably with that of experimental tests and 

existing numerical models. Using an approximate method for prediction of set-up from 

Smith (2003) for a wave of 10 second period and 1m height breaking on a beach with a 

slope of 1 in 50 gives a value of approximately 0.14m. In this model it is reasonable to 

expect that in regions remote from the breakwater the set-up would behave as it would in 

the absence of the obstacle. The set-up obtained by the NM-WDHM in this region is 

approximately 0.15m. The overall trend of the velocity vortex is shown to be comparable 

between the NM-WDHM and Liu and Mei (1976). The streamline solution of  Liu and 

Mei (1976) makes it difficult to compare magnitudes of velocities. 
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6.10 Detached Breakwater of Liu and Mei (1976) – Waves at an Angle 

6.10.1 Introduction  

This section examines the same bathymetry and dimensions as Section 6.9 but in this case 

the wave approaching the beach has a deep-water angle of 30 degrees to the beach. This 

process has also been examined by Liu and Mei (1976). Due to the wave direction in this 

model there was no symmetry about the centre of the breakwater and hence a larger semi-

circular domain was examined. 

 

6.10.2 Results 

Figure 6.51 shows the scenario under examination. A detached breakwater is situated 

350m offshore on a beach of 1 in 50 slope. A wave of 10 second period and 1m deep-

water height approaches the beach with a deep-water angle of 30 degrees. A circular 

boundary is applied to the open water side of the domain to allow backscattered waves to 

exit the domain. The water surface is shown in Figure 6.51 for unbroken waves. The same 

scenario is plotted in Figure 6.52 for broken waves. As previously discussed in Section 

6.9.4 Liu and Mei (1976) use an insipience criterion of  and the same is used in 

this case. 

0 0.4γ =

 
Figure 6.51 – Water surface in the presence of a Detached Breakwater with Unbroken Waves at an 
Angle. Waves propagate as indicated by the arrow. 
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Figure 6.52 – Water Surface in the presence of a Detached Breakwater with Broken Waves at an 
Angle. Waves propagate as indicated by the arrow. 
 
 

Figure 6.53 shows contour lines of where the water surface height is zero to aid the 

envisaging of wave phase. Figure 6.54 shows a  three-dimensional plot of the same results 

as Figure 6.52 to demonstrate the modelled results. 
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Figure 6.53 – Contours of Water Surface = 0 to indicate Wave Phase for Waves approaching  a 
Breakwater at an Angle. Waves propagate as indicated by the arrow. 
 

 
Figure 6.54 – Three dimensional plot of Water Surface for Broken Waves for waves at an Angle. 
Waves propagate as indicated by the arrow. 
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Figure 6.55 and Figure 6.56 show plots of unbroken and broken wave heights respectively 

for the same scenario as the wave surfaces plotted above. 

 
Figure 6.55 – Unbroken Wave Height in the presence of a Detached Breakwater for waves at an 
Angle. Waves propagate as indicated by the arrow. 

 
Figure 6.56 – Broken Wave Height in the presence of a Detached Breakwater for Waves at an Angle. 
Waves propagate as indicated by the arrow. 
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Figure 6.57 shows the set-up and set-down obtained from the NM-WDHM both in the 

region unaffected by the breakwater and the region behind the breakwater. Figure 6.58 

shows the same plot but with differing x-axis and y-axis scales for comparison with the 

similar plot of Liu and Mei (1976) in Figure 6.65.  Figure 6.59 shows velocity vectors and 

set-up/set-down from the NM-WDHM for the lower area of the modelled region in the 

absence of any turbulent diffusion. Figure 6.60 shows a plot of the same area with an 

empirical turbulent parameter of M=1.1 used for eddy viscosity in the turbulent diffusion 

terms. Figure 6.61 shows velocity vectors and set-up/set-down from the NM-WDHM for 

the upper area of the modelled region in the absence of any turbulent diffusion. Figure 

6.62 shows a plot of the same area with an empirical turbulent parameter of M=1.1 used 

for eddy viscosity in the turbulent diffusion terms. Where the NM-WDHM included the 

effects of turbulent diffusion; breaking wave heights and eddy viscosity values were 

obtained using the wave ray method discussed in Chapter 5 above.  Figure 6.63, that 

follows, shows a cross-section of longshore current along a line of y = 270m. This plot 

allows the examination of the effects of turbulent diffusion within the NM-WDHM. 

 
Figure 6.57 – Plot of Set-up and Set-down for Waves approaching a Breakwater at an Angle 
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Figure 6.58 – Plot of  Set-up and Set-down for Waves approaching a Breakwater at an Angle with 
exaggerated x-axis for comparison with  Liu and Mei (1976) solution 
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Figure 6.59 – Set-up/Set-down and Currents in region above Breakwater with no turbulence 
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Figure 6.60 – Set-up/Set-down and Currents in region above Breakwater with turbulence 
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Figure 6.61 – Set-up/Set-down and Currents in region below  Breakwater with no turbulence 
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Figure 6.62 – Set-up/Set-down and Currents in region below  Breakwater with turbulence 
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Figure 6.63 – Profile of Longshore Current at y = 270m showing the effect of Turbulence in the NM-
WDHM 
 

  
Figure 6.64 – Streamlines showing direction and 
magnitude of vortex from Liu and Mei (1976). 
Values indicated on the plot are magnitudes of a 
streamline function. 

Figure 6.65 – Contours of set-up/set-down from 
Liu and Mei (1976) (Differing scales of x-axis and 
y-axis) 
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6.10.3 Discussion 

The difference between the results in this section and Section 6.9 are clear. Due to the 

wave approaching the breakwater from an angle the shadow zone is shifted towards the 

upper end of the modelled area. Figure 6.52 and Figure 6.56 both display this shadow 

zone very well. Diffraction of waves behind the breakwater is also apparent in these 

results. The shape of the diffracted waves shown in Figure 6.53 and Figure 6.54 is slightly 

different to those in the previous section. Again, this is due to the deep-water angle of the 

examined wave. There is a standing wave field behind the breakwater. This field can be 

seen in Figure 6.52 and Figure 6.56 as well as in three-dimensional form in  Figure 6.54. 

The interesting set of peaks and troughs in this wave field is caused by the interaction of 

an incoming wave at a positive angle and the corresponding reflected (outgoing) wave 

having the reciprocal angle. As before the radiating boundary condition on the open water 

boundary efficiently deals with these backscattered waves and allows them to exit the 

domain thus not affecting any other modelled wave data in the domain. 

 

The results of the NM-WDHM for this scenario are further proof of the angled shadow 

zone visible in the wave results. Figure 6.57 shows how a certain amount of the set-up 

towards the lower portion of the modelled area is actually behind the breakwater because 

the angle of the incoming waves means this area, although behind the breakwater, is not 

in the shadow zone. Figure 6.59 and Figure 6.60 show the set-up/set-down and currents in 

the region just above the shadow zone caused by the breakwater. The set-up/set-down 

results of the NM-WDHM are not affected greatly by the inclusion or neglecting of the 

turbulence terms. However, as displayed in Section 6.9, earlier, the velocity field is 

described more realistically when the effect of turbulent diffusion is included. As before 

the vortex in this area is driven mainly by hydrostatic forces with flow from regions of 

higher pressure into regions of lower pressure. Figure 6.61 and Figure 6.62 show similar 

circumstances for set-up/set-down and currents in the region towards the lower end of the 

modelled area. Figure 6.63 shows a cross-section of longshore current velocities along a 

line at y = 270m. This plot shows the smoothing effect brought about by the inclusion of 

turbulent diffusion within the model. 

 

Figure 6.64 shows the streamlines obtained by Liu and Mei (1976) for velocity in the 

vicinity of a detached breakwater with waves approaching from an angle. The x-axis for 

the Liu and Mei (1976) results is at x = 1000m in the notation of this project. The 
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streamlines show a concurrence with the trend of the vortices obtained in the NM-

WDHM results. The method of streamline plotting by Liu and Mei (1976) makes it 

difficult to compare the values of velocity quantitatively. The streamlines are closer 

together in the locations where higher velocity values are predicted by the NM-WDHM..  

Figure 6.65 shows contours of the set-up and set-down obtained by Liu and Mei (1976). 

The values of set-down obtained by  Liu and Mei (1976) compare favourably with those 

of the NM-WDHM. Although the general trend of set-up contours are similar, the results 

of Liu and Mei (1976) predict a higher set-up at the shoreline than that of the NM-

WDHM. A similar difference was evident in the results of Section 6.9 and it is discussed 

in Section 6.9.3. 
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6.11 Detached Breakwater after Péchon et al. (1997) 

6.11.1 Introduction 

Péchon et al. (1997) examine a number of different wave-driven hydrodynamic models 

and their corresponding wave models. The title and origin of each of these models are 

detailed in Table 6.2.  Each of the models is examined for the same set of wave data and 

bathymetry. Newell et al. (2005b) examine the NM-WCIM and NM-WDHM for the same 

set of circumstances. The current version of the NM-WCIM and NM-WDHM are 

examined in this section for comparison with the results of the other wave-driven current 

models examined by Péchon et al. (1997). In order to provide measured results for the 

scenario in question Péchon et al. (1997) chose a small experimental sized domain with 

an experimental wave height. 

 
6.11.2 Results 

The experimental domain is 30m by 30m in size with a half detached breakwater of 

0.87m width and 6.66m long situated approximately 10m offshore. The underwater beach 

slope is 1 in 50 until a depth of 0.33m is reached and then a flat seabed continues to the 

outer end of the domain. The side walls of the experimental tank are reflective, hence in 

the NM-WCIM a radiation boundary is not be used on the sides. A wave of 1.7 second 

period and 7.5cm height at the outer end of the domain approaches the beach 

perpendicularly. Figure 6.66 shows the water surface results obtained using the NM-

WCIM for this scenario in the case of unbroken waves. The same scenario is plotted in 

Figure 6.67 for broken waves. 
 

Table 6.2 - Table of computer models examined by Péchon et al. (1997) 
Wave Model Hydrodynamic Model Developed by 

W1 ARTEMIS C1 TELEMAC-3D EDF-LNH, France 

W2 PROPS C2 CIRCO LIM-UPC, Spain 

W3 MIKE 21 PMS C3 MIKE 21 HD DHI, Denmark 

W4 FDWAVE C4 TIDEFLOW-2D HR Wallingford Ltd., UK 

W5 Wave Model C5 Hydrodynamic Model Maritime Group, University 

of Liverpool, UK 

W6 Wave Model C6 Hydrodynamic Model STCPMVN, France 

W7 Wave Model C7  Hydrodynamic Model Aristotle University of 

Thessaloniki, Greece 
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Figure 6.66 – Water surface in the presence of the Detached Breakwater of Péchon et al. (1997). 
Waves propagating from right to left. 

 
Figure 6.67 – Water Surface in the presence of the Detached Breakwater of Péchon et al. (1997). 
Waves propagating from right to left. 
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Figure 6.68 shows contour lines of where the water surface height is zero to describe 

wave phase. Figure 6.69 shows a  three-dimensional plot of the same results as Figure 

6.67. 

 
Figure 6.68 – Contours of Water Surface = 0 to indicate Wave Phase for Waves approaching  a 
Breakwater at an Angle. Waves propagating from right to left. 

 
Figure 6.69 – Three dimensional plot of Water Surface for Broken Waves in the presence of the 
Detached Breakwater of Péchon et al. (1997). 
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Figure 6.70 and Figure 6.71 show plots of unbroken and broken wave heights respectively 

for the same scenario as the wave surfaces plotted above. Figure 6.72 is a plot of the 

breaker lines from various wave models reproduced from Péchon et al. (1997) and 

adapted to include the results of the NM-WCIM. Similarly Figure 6.73 is a plot of wave 

heights obtained from various wave models by Péchon et al. (1997) at x = 20m and the 

results of the NM-WCIM have been included. For the NM-WCIM in this case a simple 

linear relationship between water depth and maximum wave height (with )  

proved appropriate to decide the insipience point. 

0 0.78γ =

 

 

 
Figure 6.70 – Unbroken Wave Height in the presence of the Detached Breakwater of Péchon et al. 
(1997). Waves propagating from right to left. 
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Figure 6.71 – Broken Wave Height in the presence of the Detached Breakwater of Péchon et al. 
(1997). Waves propagating from right to left. 
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Figure 6.72 – Comparison of breaking line for NM-WCIM and models examined by Péchon et al. 
(1997). Waves propagating from right to left. 
 
 
 

 
Figure 6.73 – Comparison of Wave Height for NM-WCIM and models examined by Péchon et al. 
(1997) at x = 20m. Waves propagating from right to left. 
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Figure 6.74 shows the set-up/set-down obtained from the NM-WDHM both in the region 

unaffected by the breakwater and the region behind the breakwater in the absence of 

turbulent diffusion. Figure 6.75 shows results in the same region when turbulent diffusion 

is included in the NM-WDHM. A turbulent parameter of M=1.1 is used for eddy viscosity 

in the turbulent diffusion terms. Eddy viscosity values are obtained along with broken 

wave heights for the turbulent model using the wave ray method described in Chapter 5 

above. Figure 6.76 shows velocity vectors and set-up/set-down from the NM-WDHM for 

the upper area of the modelled region (behind the breakwater) in the absence of any 

turbulent diffusion. Figure 6.77 shows a plot of the same area with an empirical turbulent 

parameter of M=1.1 used for eddy viscosity in the turbulent diffusion terms.  Figure 6.78, 

that follows, shows a cross-section of longshore current along a line of y = 20m. This plot 

allows the examination of the effects of turbulent diffusion within the NM-WDHM. 

Similarly Figure 6.79 shows a cross-section along a line at y = 27m. 

 

 

Figure 6.74 – Set-up/Set-down and Currents for 
Péchon et al. (1997) model using NM-WDHM 
with no turbulence 

Figure 6.75 – Set-up/Set-down and Currents for 
Péchon et al. (1997) model using NM-WDHM 
with turbulence 
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Figure 6.76 – Set-up/Set-down and Currents 
behind Breakwater with no turbulence 

Figure 6.77 – Set-up/Set-down and Currents 
behind Breakwater with turbulence 

 

 
Figure 6.78 – Profile of Longshore Current at y = 20m showing the effect of Turbulence Diffusion 
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Figure 6.79 – Profile of Longshore Current at y = 27m showing the effect of Turbulent Diffusion 
 
 
 

 
Figure 6.80 – Comparison of Set-up/Set-down for NM-WCIM and models examined by Péchon et al. 
(1997) at x = 21m 
 
 
 

6.11.3 Discussion 

The results of the NM-WCIM compare well with both the measured results of Péchon et 

al. (1997) and the results of other numerical models presented. The varying breaking 

criterion chosen by different models does not appear to have a large effect in this scenario 

and indeed a simple linear relationship between water depth and wave height allows  the 
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NM-WCIM to give a result similar to the other models. Similarly the linear breaking 

relationship applied in the NM-WCIM predicts a similar broken wave height to the other 

methods examined by Péchon et al. (1997). These results reiterate the need to select 

appropriate breaking and insipience criteria based on measured data from the site being 

considered. 

 
The NM-WDHM also provides results that compare well with the measured results of 

wave-generated effects presented by Péchon et al. (1997). The NM-WDHM does not 

appear to over-predict the set-up as much as some of the other models. Figure 6.76 and 

Figure 6.77 show some interesting results in this case. In the case of an experimental 

sized domain with a small wave of very short period the inclusion of turbulent effects in 

the NM-WDHM has a significant effect. Turbulence has a noticeable decreasing effect on 

the magnitude of the velocity vectors and it also appears to cause a change in the location 

of the centre of the developed vortex. This is further displayed by the differing x-

intercepts visible in Figure 6.79. (It should be noted that the unsteadiness of the velocity 

values in the region of the breakwater in Figure 6.79 is caused by numerical noise which 

is a function of turbulent interactions near the closed boundary of the domain. It only 

occurs near the breakwater tip and does not affect other results in the domain. This is 

demonstrated by the steady results of Figure 6.78.) 
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6.12 Comparison of Radiation Stress with Watanabe and Maruyama (1986) 

6.12.1 Introduction 

Watanabe and Maruyama (1986) present calculated radiation stress values for an 

experimental sized domain with small waves of short period. Newell et al. (2005b) 

compare radiation stress values calculated using the results of the NM-WCIM for this 

scenario. Similar results are presented here for the current version of the NM-WCIM. 

 
6.12.2 Results 

The experimental domain is 4m by 5m in size with a half detached breakwater 3.3m long 

situated approximately 3m offshore. The slope of the seabed is 1 in 50. A wave of 1.6 

second period and 4.2cm deep-water  height approaches the beach perpendicularly. Figure 

6.81 shows the water surface results obtained using the NM-WCIM for this scenario in 

the case of unbroken waves. The same scenario is plotted in Figure 6.82 for broken 

waves. 

 
Figure 6.81 – Water surface in the presence of the Watanabe and Maruyama (1986) Detached 
Breakwater with Unbroken Waves. Waves propagating from right to left. 
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Figure 6.82 – Water Surface in the presence of the Watanabe and Maruyama (1986) Detached 
Breakwater with Broken Waves. Waves propagating from right to left. 
 

Figure 6.83 shows contour lines of where the water surface height is zero. Figure 6.84 

shows wave rays obtained using the wave ray method of Chapter 5 plotted alongside the 

contours of Figure 6.83. Figure 6.85 shows a  three-dimensional plot of the same results 

as Figure 6.81. 
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Figure 6.83 – Contours of Water Surface = 0 to indicate Wave Phase for Waves approaching the  
Watanabe and Maruyama (1986) Detached Breakwater. Waves propagating from right to left. 

 
Figure 6.84 – Wave Rays (in blue) plotted alongside contours of Water Surface = 0 for Waves 
approaching the Watanabe and Maruyama (1986) Detached Breakwater. Waves propagating from 
right to left. 
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Figure 6.85 – Three dimensional plot of Water Surface in the vicinity of the Watanabe and 
Maruyama (1986) Detached Breakwater for Broken Waves  
 
 
 

Figure 6.86 and Figure 6.87 show plots of unbroken and broken wave heights respectively 

for the same scenario as the wave surfaces plotted above. Linear breaking has been used 

in this case with . Watanabe and Maruyama (1986) do not provide wave-driven 

currents or set-up/set-down results for this domain, however in the interests of 

completeness the NM-WDHM has been used to examine set-up/set-down and wave 

driven currents for the Watanabe and Maruyama (1986) scenario. These results of the 

NM-WDHM are shown in Figure 6.88. 

0 0.78γ =
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Figure 6.86 – Unbroken Wave Height in the presence of the Watanabe and Maruyama (1986) 
Detached Breakwater. Waves propagating from right to left. 

 
Figure 6.87 – Broken Wave Height in the presence of the Watanabe and Maruyama (1986) Detached 
Breakwater. Waves propagating from right to left. 
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Figure 6.88 – Set-up/Set-down and Wave-Driven Currents from NM-WDHM for Watanabe and 
Maruyama (1986) 
 
 

 

Radiation  stress values calculated using the method described in Section 4.5 are plotted 

below for comparison with radiation stress values presented by Watanabe and Maruyama 

(1986). Figure 6.89 and Figure 6.90 show the component of radiation stress in the 

longshore direction from the NM-WCIM and Watanabe and Maruyama (1986) 

respectively, Figure 6.91 and Figure 6.92 show the shear component of radiation stress 

from the NM-WCIM and Watanabe and Maruyama (1986) respectively and Figure 6.93 

and Figure 6.94 show the component of radiation stress in the crosshore direction from 

the NM-WCIM and Watanabe and Maruyama (1986) respectively. 
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Figure 6.89 – from NM-WCIM 22R′
 
 

 
Figure 6.90 – Syy from NM-WCIM Watanabe and Maruyama (1986) 
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Figure 6.91 – from NM-WCIM 12R′
 

 
Figure 6.92 - Sxy from NM-WCIM Watanabe and Maruyama (1986) 
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Figure 6.93 – from NM-WCIM 11R′
 
 

 
Figure 6.94 - Sxx from NM-WCIM Watanabe and Maruyama (1986) 
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6.12.3 Discussion 

The results of the NM-WCIM for the Watanabe and Maruyama (1986) scenario are as 

expected with the wave shoaling and breaking on the beach and a shadow zone with 

diffracted waves behind the breakwater. Figure 6.88 shows the development of a vortex 

behind the breakwater as experienced in other models with detached breakwaters. There 

is also a defined set-up and set-down in the region to the side of the breakwater and only a 

minor degree of set-up and set-down in the shadow zone behind the breakwater. 

 

The trend and contour plots of the radiation stress values presented in Figure 6.89 for the 

longshore direction compare well with those of Watanabe and Maruyama (1986) in 

Figure 6.90. The peak values in the surf zone and on the downwave side of the 

breakwater are in close agreement. There is a slight difference evident in the lower values 

at the nadir points up-wave of the breakwater. Similarly, the values for the shear 

component of radiation stress calculated from the results of the NM-WCIM and shown in 

Figure 6.91 compare well with those published by Watanabe and Maruyama (1986) for 

the same direction, as shown in Figure 6.92. The peak values are approximately the same 

but, as before, there is a slightly lower prediction of the nadir values on the upwave side 

of the breakwater by the NM-WCIM.  Interestingly, in the same region, the radiation 

stress values calculated from the NM-WCIM for the cross-shore direction (Figure 6.93) 

show a larger degree of difference from those of the same direction published by 

Watanabe and Maruyama (1986) (Figure 6.94). As before, the results in other regions of 

the model appear to compare favourably with those of Watanabe and Maruyama (1986).  

 

Wave-driven effects such as set-up and set-down only become evident in the surf-zone 

and the results of the NM-WCIM and Watanabe and Maruyama (1986) compare 

favourably with each other is this region for the three components of radiation stress. The 

presence of a standing wave field upwave of the breakwater may be the cause of the 

difference in results in that region. For the NM-WCIM a radiation boundary condition is 

applied to the open boundary to address the reflected waves from the breakwater. For the 

Watanabe and Maruyama (1986) model “flow rate” values are applied to the open 

boundary to address this issue. These may cause the model to yield different results to the 

NM-WCIM upwave of the breakwater. 
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6.13 Comparison with Attached Breakwater of Liu and Mei (1976) 

6.13.1 Introduction 

In addition to the detached breakwater examined in Section 6.9 and 6.10 Liu and Mei 

(1976) also examine the effects of an attached breakwater on wave-driven 

hydrodynamics. The NM-WCIM and NM-WDHM have been used to examine the same 

set of circumstances for further validation of the created models. 

 

6.13.2 Results 

Figure 6.95 shows the scenario under examination. An attached breakwater of 400m 

length is situation on a beach with a slope of 1 in 10. A wave of 10 second period and 1m 

deep-water height approaches the beach at a deep-water angle of 45 degrees. A semi-

circular boundary is applied to the open water side of the domain to allow backscattered 

waves to exit the domain. The water surface is shown in Figure 6.95 for unbroken waves. 

The same scenario is plotted in Figure 6.96 for broken waves. As in Sections 6.9 and 6.10 

Liu and Mei (1976) use an insipience criterion of . The same is used in this case 

for the purposes of comparison. 

0 0.4γ =

 
Figure 6.95 – Water surface in the presence of an Attached Breakwater with Unbroken Waves at an 
Angle 
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Figure 6.96 – Water Surface in the presence of an Attached Breakwater with Broken Waves at an 
Angle 
 

Figure 6.97 shows contour lines of where the water surface height is zero to demonstrate 

the wave phase. Figure 6.98 shows a series of wave rays to illustrate the direction of wave 

propagation in the model. They wave rays are also used as described in Chapter 5 above 

to give breaking wave heights and eddy viscosity terms for use in the NM-WDHM. 

Figure 6.99 shows a  three-dimensional plot of the same results as Figure 6.96. 
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Figure 6.97 – Contours of Water Surface = 0 to indicate Wave Phase for Waves approaching  an 
Attached Breakwater at an Angle 

 
Figure 6.98 – Wave Rays (in blue) plotted alongside contours of Water Surface = 0 for Waves 
approaching  an Attached Breakwater at an Angle 
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Figure 6.99 – Three dimensional plot of Water Surface for Broken Waves for waves at an Angle 
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Figure 6.100 and Figure 6.101 show plots of unbroken and broken wave heights 

respectively for the same scenario as the wave surfaces plotted above. 

 

Figure 6.100 – Unbroken Wave Height in the 
presence of a Detached Breakwater for waves at 
an Angle 

Figure 6.101 – Broken Wave Height in the 
presence of an Attached Breakwater for Waves 
at an Angle 
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Figure 6.102 shows the set-up and set-down obtained from the NM-WDHM both in the 

region unaffected by the breakwater and the region behind the breakwater. Figure 6.103 

shows velocity vectors and set-up/set-down from the NM-WDHM. Figure 6.104 to Figure 

6.107 show the set-up and set-down and currents in the region in proximity to, and just 

upwave the attached breakwater. These include figures with increased scales in the cross-

shore direction in order to compare with Figure 6.108 and Figure 6.109 of Liu and Mei 

(1976). Figure 6.110 to Figure 6.113 show similar data in the region downwave of the 

breakwater. As before  figures with increased scales in the cross-shore direction are 

included in order to compare with results of Liu and Mei (1976), as shown in Figure 

6.114 and Figure 6.115. Figure 6.108 and Figure 6.114  show velocity streamlines 

obtained by Liu and Mei (1976). Figure 6.109 and Figure 6.115 show contours of set-up 

and set-down obtained by Liu and Mei (1976) downwave and upwave of the breakwater 

respectively. 

 

Figure 6.102 – Set-up/Set-down from NM-
WDHM for an Attached Breakwater 

Figure 6.103 – Set-up/Set-down and Currents 
from NM-WDHM for an Attached Breakwater 
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Figure 6.104 – Set-up/Set-down in the vicinity of 
the Attached Breakwater 

Figure 6.105 – Set-up/Set-down upwave of the 
Attached Breakwater with increased scale in x-
direction 

  
Figure 6.106 – Set-up/Set-down and Currents 
upwave of the Attached Breakwater with 
increased scale in x-direction in the presence of 
turbulent diffusion 

Figure 6.107 – Set-up/Set-down and Currents 
upwave of the Attached Breakwater with 
increased scale in x-direction in the absence of 
turbulent diffusion 
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Figure 6.108 – Streamlines showing Direction 
and Magnitude of Velocities Upwave of the 
Attached Breakwater from Liu and Mei (1976). 
Values indicated on the plot are magnitudes of a 
streamline function. 
 

Figure 6.109 – Contours of set-up/set-down 
downwave of the Attached Breakwater from Liu 
and Mei (1976). 
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Figure 6.110 – Set-up/Set-down and Currents 
downwave of the Attached Breakwater 

Figure 6.111 – Set-up/Set-down downwave of the 
Attached Breakwater with increased scale in x-
direction 

 
Figure 6.112 – Set-up/Set-down and Currents 
downwave of the Attached Breakwater with 
increased scale in x-direction in the presence of 
turbulent diffusion 

Figure 6.113 – Set-up/Set-down and Currents 
downwave of the Attached Breakwater with 
increased scale in x-direction in the absence of 
turbulent diffusion 

 
 455 



RESULTS AND DISCUSSION  C. Newell 
 

Figure 6.114 – Streamlines showing Direction 
and Magnitude of Velocities downwave of the 
Attached Breakwater from Liu and Mei (1976). 
Values indicated on the plot are magnitudes of a 
streamline function. 
 

Figure 6.115 – Contours of set-up/set-down 
upwave of the Attached Breakwater from Liu 
and Mei (1976). 
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Figure 6.116 – Magnified View of Set-up/Set-
down and Currents upwave of the Attached 
Breakwater 

 

 

 

6.13.3 Discussion 

The plotted results of the NM-WCIM show an approximately triangular shaped shadow 

zone downwave of the attached breakwater as expected. Figure 6.96 and Figure 6.99 both 

show a zone of wave field interaction where the wave reflected off the breakwater 

interacts with the incoming wave resulting in the unique peak and trough effect seen 

before. As before the semi-circular radiating boundary on the open water sides of the 

domain is used to address the removal of this backscattered wave energy from the 

domain. Figure 6.98 shows an interesting phenomenon with respect to the closest wave 

ray to the breakwater. Once it reaches the breakwater it travels along the downwave 

impermeable face to the shore. 

 
Figure 6.102 shows the set-up/set-down for the entire region under examination. As 

expected there is a region of very little set-up in the shadow zone downwave of the 

breakwater. A less expected result is the region of intermittent set-up and set-down on the 

upwave side of the breakwater. This corresponds in trend with the set-up/set-down results 

of the Liu and Mei (1976) model, shown in Figure 6.109. The magnitude of peak set-up 
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presented by Liu and Mei (1976) is larger than that calculated by the NM-WDHM. This is 

similar to the difference seen in Sections 6.9 and 6.10. The reason for this difference is 

not clear. Sections 6.6 and 6.11 also examine set-up values calculated by the NM-WDHM 

and the results are comparable with measured and modelled data.   

 

The intermittent set-up and set-down can be explained by examination of the velocity 

vectors of Figure 6.116. The regular rip currents that form prevent set-up from occurring 

in some regions. These rip-currents obtained using the NM-WDHM shown in Figure 

6.106, Figure 6.107 and Figure 6.116 occur in similar locations to those of Liu and Mei 

(1976), shown in Figure 6.108. The velocity results of Liu and Mei (1976) are presented 

in the form of streamlines which makes quantitative comparison with the values of the 

NM-WDHM difficult. The velocity streamlines of Liu and Mei (1976) appear to disagree 

in direction with the vectors obtained by the NM-WDHM shown in Figure 6.116. The rip-

current calculated by the NM-WDHM meets an incoming current in the region just 

upwave of the set-down area, the velocity streamlines of Liu and Mei (1976) are 

continuous in this region. Figure 6.107 shows that if the NM-WDHM is run in the 

absence of turbulent diffusion the direction of the vectors agree with the streamlines of 

Liu and Mei (1976). Liu and Mei (1976) state that their model does not include turbulent 

diffusion. 

 

Downwave of the attached breakwater the set-up and set-down results of the NM-WCIM 

are shown in Figure 6.110 to Figure 6.113 and those of Liu and Mei (1976) are shown in 

and Figure 6.115. As was noted upwave of the breakwater there is a difference in the 

magnitude of set-up obtained by each model. The same comments apply here. It is worth 

noting that Liu and Mei (1976) obtain a slight vortex in the area just upwave of the 

breakwater. This is shown in Figure 6.114. The same vortex is not immediately evident in 

the NM-WDHM results. It is considered that the low magnitude of the currents in this 

area combined with the turbulent diffusion terms and the size of the finite elements may 

explain this difference. 
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6.14 Currents around a Conical Island after Mei and Angelides (1977) 

6.14.1 Introduction 

Mei and Angelides (1977) and Mei et al. (2005)  examine the occurrence of a longshore 

current on a conical island. The dimensions of the island in question and hence the 

surrounding coastal waters are on quite a large scale thus challenging the NM-WCIM and 

NM-WDHM models to produce wave data and currents on a much larger scale than the 

previous examples. 

 

6.14.2 Results 

Presented below are the NM-WCIM and NM-WDHM results for the conical island 

labelled “Case I” by Mei and Angelides (1977).  The emergent radius of the island is 

10,000ft (approx. 3048m) and the seabed slope of 1 in 20 continues until the seabed is at a 

depth of 100ft (approx. 30.48m) at a total radius of 12,000ft (approx. 3657.6m). The wave 

approaching the island has a 10 second period and a deep-water height of 3ft (approx. 

0.9144m). The water surface is shown in Figure 6.117 for unbroken waves. The same 

scenario is plotted in Figure 6.118 for broken waves. Both of these sets of results have 

been obtained using the NM-WCIM. Mei and Angelides (1977) use classic wave ray 

theory to examine wave behaviour around the island. 
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Figure 6.117 – Water surface for Waves approaching a Conical Island in the absence of Breaking. 
Waves Propagating from Right to Left. 

 
Figure 6.118 – Water surface for Waves approaching a Conical Island with Breaking. Waves 
Propagating from Right to Left. 
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Figure 6.119 shows contour lines of where the water surface height is zero. Figure 6.120 

shows a series of wave rays obtained using the wave ray methodology of Chapter 5. This 

post processing wave ray process provides the same rays as Mei and Angelides (1977) 

obtained. Wave heights were calculated along these rays (in a denser form) and hence 

eddy viscosity and breaking wave heights were obtained. Figure 6.121 shows a  three-

dimensional plot of the same results as Figure 6.118. 

 

 
Figure 6.119 – Contours of Water Surface = 0 to indicate Wave Phase for Waves approaching  a 
Conical Island. Waves Propagating from Right to Left. 
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Figure 6.120 – Wave Rays (in blue) plotted alongside contours of Water Surface = 0 for Waves 
approaching  a Conical Island. Waves Propagating from Right to Left. 

 
Figure 6.121 – Three dimensional plot of Water Surface for Breaking Waves approaching a Conical 
Island. Waves Propagating from Right to Left. 
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Figure 6.122 and Figure 6.123 show plots of unbroken and broken wave heights 

respectively for the same scenario as the wave surfaces plotted above. Figure 6.124 and 

Figure 6.125 show a closer view of broken and unbroken wave heights for a section of the 

conical island’s coast. 

 
Figure 6.122 – Unbroken Wave Height for Waves approaching a Conical Island. Waves Propagating 
from Right to Left. 
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Figure 6.123 – Broken Wave Height for Waves approaching a Conical Island. Waves Propagating 
from Right to Left. 
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Figure 6.124 – Unbroken wave height for a section of coast on a Conical Island. Waves Propagating 
from Right to Left. 
 
 

 
Figure 6.125 – Broken wave height for a section of coast on a Conical Island. Waves Propagating 
from Right to Left. 
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Figure 6.126 shows the set-up and set-down obtained from the NM-WDHM. Figure 6.127 

and Figure 6.128 show set-up, set-down and velocity vector results for a portion of island 

coast with and without the inclusion of turbulent diffusion in the NM-WDHM 

respectively.  Figure 6.129 and Figure 6.130 show a similar comparison between the 

hydrodynamic results of the NM-WDHM with and without turbulent diffusion for a more 

exposed section of coast towards the east of the island as plotted. Figure 6.131 shows the 

streamlines obtained by Mei and Angelides (1977) for the conical island in question. 

 
Figure 6.126 – Plot of Set-up and Set-down for Waves approaching a Conical Island 
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Figure 6.127 – Set-up/Set-down and Currents towards the Lee Coast of a Conical Island Including 
Turbulence 

 
Figure 6.128 – Set-up/Set-down and Currents towards the Lee Coast of a Conical Island with No 
Turbulence 
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Figure 6.129 – Set-up/Set-down and Currents along the Exposed Coast of a Conical Island Including 
Turbulence 

 
Figure 6.130 – Set-up/Set-down and Currents along the Exposed Coast of a Conical Island with No 
Turbulence 
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Figure 6.131 – Streamlines showing direction and magnitude of Longshore Currents for a Conical 
Island from Mei and Angelides (1977). Values indicated on the plot are magnitudes of a streamline 
function. 
 
 
6.14.3 Discussion 

The plotted results from both the NM-WCIM and NM-WDHM show that the models can 

accomodate the larger scale scenario presented here. The finite element size needed to 

allow results for the domain to be computed on a desktop computer is larger than that 

needed for the models discussed in previous sections. The NM-WCIM and NM-WDHM 

do not appear to display a significant degree of sensitivity to this enlarged element size. 

 

It is evident from Figure 6.118, Figure 6.119 and Figure 6.121 that the island creates a 

shadow zone on the downwave side into which waves diffract. Figure 6.126 shows the 

effect this shadow zone has on wave-driven hydrodynamics. There is negligible set-up, 

set-down or longshore current created in this shadow zone. The magnitude of set-up/set-

down gradually decreases along the shore of the island as the degree of exposure to waves 

decreases. The velocity values obtained from the NM-WDHM appear to be in good 

agreement with the trend of the streamlines of Mei and Angelides (1977) in Figure 6.131. 

The use of streamlines by Mei and Angelides (1977) make it difficult to examine values 

of longshore velocity but the streamlines appear to be closer together in the regions where 

the NM-WDHM predicts the strongest currents.  It is considered that for the scale of the 

scenario in question some of the streamlines shown in Figure 6.131 are far enough apart 

to indicate a current too small to be effectively modelled using a numerical finite element 

model such as the NM-WDHM. 
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6.15 Wave-Current Interaction of Chen et al. (2005) and Kostense et al. (1988) 

6.15.1 Introduction 

Chen et al. (2005) and Kostense et al. (1988) present the results of a wave-current 

interaction model for the analytical rip-current of Arthur (1950). The NM-WCIM model 

was examined for the same set of circumstances to examine similarities between the 

results. The Chen et al. (2005) and Kostense et al. (1988) models are quite similar to the 

NM-WCIM. They are both finite element wave-current interaction models that iterate to a 

solution for velocity potential. The Chen et al. (2005) model contains a modified form of 

the dispersion relation for waves in the shallow water zone. 

 

6.15.2 Results 

The results in this section compare the NM-WCIM with the Chen et al. (2005) and 

Kostense et al. (1988)  models of wave-current interaction. Arthur (1950) provides a 

formula for analytical longshore and cross-shore velocities at any point in the domain. 

The formula is also used by this project, Chen et al. (2005)  and Kostense et al. (1988) 

with appropriate adjustment for the differing coordinate regime. The wave affected by the 

calculated current is an 8 second wave with a unit height in deep-water. The wave 

approaches the beach perpendicularly. The data below is presented for unbroken wave 

heights throughout. Figure 6.132 and Figure 6.133 show the wave results for the NM-

WCIM interacting with the given current. Figure 6.138 shows a three-dimensional plot of 

the same scenario for conceptualisation. Figure 6.134 and Figure 6.135 show contours of 

wave height equal to zero obtained by the NM-WCIM for the given situation. Figure 

6.136 and Figure 6.137 show plots of wave height for the given wave-current interaction 

scenario. Figure 6.139 and Figure 6.140 show the results of Chen et al. (2005) and 

Kostense et al. (1988) respectively for the same wave-current interaction. Figure 6.141 

shows a plot of Chen et al. (2005) comparing the results of Yoon and Liu (1989) with 

those of Chen et al. (2005). The NM-WCIM results have been added to this plot and this 

author has endeavoured to include an approximation of the results of Kostense et al. 

(1988). The Kostense et al. (1988) approximation is hampered by the lack of dimensions 

on the Kostense et al. (1988) plot and the poor quality of the reproductions available. 
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Figure 6.132 – Water Level for Wave-Current 
Interaction of Chen et al. (2005). Waves 
Propagating from Right to Left. 

Figure 6.133 – Water Level in region of strong 
current for Wave-Current Interaction of Chen et 
al. (2005). Waves Propagating from Right to 
Left. 

Figure 6.134 – Contours of Zero Amplitude for 
Wave-Current Interaction of Chen et al. (2005). 
Waves Propagating from Right to Left. 

Figure 6.135 – Contours of Zero Amplitude in 
region of strong current for Wave-Current 
Interaction of Chen et al. (2005). Waves 
Propagating from Right to Left. 
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Figure 6.136 – Wave Amplitude for Wave-
Current Interaction of Chen et al. (2005). Waves 
Propagating from Right to Left. 

Figure 6.137 – Wave Amplitude in region of 
strong current for Wave-Current Interaction of 
Chen et al. (2005). Waves Propagating from 
Right to Left. 

 
 
 

 
Figure 6.138 – Three-dimensional view of Water Surface in the presence of Wave-Current 
Interaction of Chen et al. (2005). Waves propagating in the direction shown by the arrow. 
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Figure 6.139 – Results of Chen et al. (2005) for Wave Phase and Amplitude during Wave-Current 
Interaction 
 

 
Figure 6.140 – Results of Kostense et al. (1988) for Wave Phase and Amplitude during Wave-Current 
Interaction (Adjusted to produce Height Values for Unit Deep-Water Wave Height) 
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Figure 6.141 – Cross-Section of Wave Amplitude at y = 240m showing results of Chen et al. (2005) 
(Thin Black), NM-WCIM (Blue), Kostense et al. (1988) (Orange) and Yoon and Liu (1989)  (Thick 
Black). Waves Propagating from Right to Left. 
 
 
6.15.3 Discussion 

It is clear from Figure 6.135 and Figure 6.139 that the phase obtained by the NM-WCIM 

is similar to that of Chen et al. (2005). This indicates a good degree of agreement between 

the phase of the velocity potential results obtained from both models.  

 

It is noticeable that the factor to which the incoming wave height is amplified by the 

current is greater in the Chen et al. (2005) results. The Chen et al. (2005) model shows a 

peak change due to current of about 5.5 times the deep-water amplitude whereas the NM-

WCIM shows a peak change due to current of 4.15 times the deep-water amplitude. The 

Kostense et al. (1988) model while slightly higher than the NM-WCIM, at 4.5 is within 

the same range. The Yoon and Liu (1989) method is based on a parabolic model and 

although in the correct range cannot obtain the increase in unbroken wave height towards 

the shore obtained by the elliptic models. It is possible that the different dispersion 

relation used in the shallow water zone by the Chen et al. (2005) may be the factor that 

causes the apparent difference between results. The correspondence of phase results 

between the Chen et al. (2005) model and the NM-WCIM tends to indicate that the 

implementation of the elliptic equation is similar in the two models. Kostense et al. 

(1988) use the same dispersion relation as the NM-WCIM and iterate on the gradient of 

phase in a similar way. The wave height results of Kostense et al. (1988) are comparable 

to the NM-WCIM results. 
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The results of Section 6.3 of this project also examine the effect of currents on the wave 

height obtained by the NM-WCIM. Section 6.3 shows that in the presence of a co-linear 

current the NM-WCIM gives an increase in wave height similar to the analytically 

predicted increase. 
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6.16 Energy Rays vs. Wave Rays 

6.16.1 Introduction 

Chapter 5 of this thesis discusses a post-processing method to obtain wave energy rays. 

Clyne (2008) introduced wave rays obtained as a post-processing technique on a wave 

model whose results were in terms of velocity potential. Clyne (2008) used the wave rays 

as a means of calculating broken wave height, especially in cases where recovery of wave 

height was necessary. This thesis uses the same methodology to assess broken wave 

height in a variety of the models discussed so far in Chapter 6. The wave ray technique 

can also be used to obtain eddy viscosity values necessary for the inclusion of turbulent 

diffusion in the NM-WDHM. However, as shown in Chapter 5 the wave rays of Clyne 

(2008) cannot be directly applied to the results of the NM-WCIM due to the presence of 

currents. Hence the wave energy ray technique of Chapter 5 was developed. This section 

shows the difference between the standard wave rays of Clyne (2008) method and the 

wave energy rays of this thesis. 

 

6.16.2 Results 

Plotted below are the phase lines for a 10 second wave of 1m height propagating in deep-

water. The wave encounters a hindering current of varying magnitude between 500m and 

1500m off the artificial deep-water shore. The blue lines on the plot are wave rays 

obtained using the Clyne (2008) method and the pink rays are the energy rays of this 

project. 

 
 476 



RESULTS AND DISCUSSION  C. Newell 
 

 
Figure 6.142 – Wave Rays using Clyne (2008) method (blue) vs. Wave Energy Rays (pink) plotted 
against Wave Crests (black) 
 
6.16.3 Discussion 

The plot above shows that the rays of the Clyne (2008) method are perpendicular to the 

direction of wave propagation, as they are supposed to be in the absence of a current. 

Figure 6.142 shows that as the waves change direction due to the crossing current the 

wave rays also change direction. However, the wave energy rays of this project follow the 

transmission of energy through the domain as opposed to the direction of wave 

propagation. The results of this section indicate that energy transmission continues in the 

direction of original wave propagation and is unaffected by the presence of a current.  
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The results of this section have interesting implications and could prove useful for any 

process that involves the identification of areas of focused wave energy. A classic 

example would be the selection of an appropriate location for a wave energy device in a 

bay. To position the device in an area of high energy one would look for a region where 

energy rays concentrate. If the traditional wave rays were utilised the region may not be 

selected appropriately due to the rays being affected by currents. 

 

 

 
 478 



RESULTS AND DISCUSSION  C. Newell 
 
6.17 Case Study – Casheen Bay 

6.17.1 Introduction 

In order to fully utilise the NM-WCIM and NM-WDHM it was deemed necessary to 

carry out a case study of a real location. It was necessary to chose a location where there 

are reasonably strong currents so the effect of wave-current interaction in the NM-WCIM 

could be examined. Dr. Tomasz Dabrowski and Dr. Michael Hartnett of NUI, Galway 

generously provided measured data of bathymetry and modelled data of tidal currents for 

Casheen Bay, in Galway Bay on the west coast of Ireland. Casheen Bay proved to be an 

ideal case study for the NM-WCIM and NM-WDHM. 

 
6.17.2 Casheen Bay – Location and Bathymetry 

Casheen Bay is located on the West Coast of Ireland in the Galway Bay area as shown in 

Figure 6.143. It is situated approximately 45km west of Galway City as shown in Figure 

6.144. Figure 6.145 shows an overhead photograph of the Casheen Bay area. The 

measured bathymetry of Casheen Bay is shown in Figure 6.146 and a three-dimensional 

plot of the same is shown in Figure 6.147 for visualisation purposes. It was necessary to 

create an artificial zone at the outer edge of the modelled area to allow appropriate 

radiation of backscattered wave energy and allow the modelled incoming waves to settle 

before approaching any rapid changes of depth. The depth of this region was set at 15m. 

 

 
Figure 6.143 – Approximate Location of Casheen Bay, in Galway Bay, on the West Coast of Ireland 
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Figure 6.144 – Location of Casheen Bay with respect to Galway City and Galway Bay 
 
 
 

 
Figure 6.145 – Overhead Photograph of Casheen Bay 
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Figure 6.146 – Bathymetry of Casheen Bay 
 

 
Figure 6.147 – Three Dimensional Plot of Casheen Bay Bathymetry 
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6.17.3 Wave Propagation in Casheen Bay 

The prevailing wave direction on the west coast of Ireland  is approximately south west. 

Although there is no measured wave data for Casheen Bay it is not unreasonable to 

assume the same is true especially considering the aerial photograph of Figure 6.145 

indicates that this direction is the most exposed part of Casheen Bay to the main body of 

the Atlantic Ocean. The NM-WCIM was used to model waves approaching Casheen Bay 

from the south-west. Waves approaching from the west were also modelled for 

comparison purposes. In each case a wave height of 1m at the open boundary was chosen. 

The chosen period was 10 seconds.  

 

Figure 6.148 and Figure 6.149 show the finite element mesh used for the NM-WCIM in 

this model. The mesh was made dense in areas where the wave behaviour is expected to 

be intricate and less dense where a simple wave solution is expected. Figure 6.149 shows 

a range of element sizes and the increase in mesh density near the island. The figures 

between Figure 6.150 and Figure 6.157 examine water surface, wave height and phase for 

each of the waves. Figure 6.158 is also included to show the wave rays obtained for the 

domain in the case of the south-westerly wave.  
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Figure 6.148 – Diagram of Finite Element Mesh for NM-WCIM of Casheen Bay. Section Highlighted 
in Green expanded in Figure 6.148. 
 
 

 
Figure 6.149 – Section of Finite Element Mesh for NM-WCIM of Casheen Bay as highlighted in 
Figure 6.148. 
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Figure 6.150 – Water Surface in Casheen Bay for Waves approaching from South-West 

 
Figure 6.151 – Water Surface in Casheen Bay for Waves approaching from West 
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Figure 6.152 – Plot of Water Level = 0 in Casheen Bay for Waves approaching from South-West 

 
Figure 6.153 – Plot of Water Level = 0 in Casheen Bay for Waves approaching from West 
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Figure 6.154 – Three Dimensional Plot of Water Surface in Casheen Bay for Waves approaching 
from South-West 
 
 
 

 
Figure 6.155 – Three Dimensional Plot of Water Surface in Casheen Bay for Waves approaching 
from West 
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Figure 6.156 –Plot of Wave Height in Casheen Bay for Waves approaching from South-West 

 
Figure 6.157 – Plot of Wave Height in Casheen Bay for Waves approaching from West 
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Figure 6.158 – Plot of Wave Rays (in blue) in Casheen Bay for Waves approaching from South-West 
 

 

6.17.4 Wave-Current Interaction in Casheen Bay 

Using modelled tidal flood and ebb velocities obtained from Dr. Dabrowski and Dr. 

Hartnett of NUI, Galway wave-current interaction in Casheen Bay can be examined. The 

NM-WCIM was run with a wave approaching from the south-west for both the maximum 

tidal flood velocity and the maximum tidal ebb velocity. The data presented below 

examines the changes in wave phase brought about by this wave-current interaction. A 

wave of 10 second period with a height of 1m at the boundary of the domain was once 

again chosen. Figure 6.159 and Figure 6.160 show the magnitude of modelled velocity 

distributed throughout Casheen Bay at maximum ebb tidal flow and maximum flood tidal 

flow respectively.  
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Figure 6.159 – Plot of Modelled Velocity Magnitude in Casheen Bay for Maximum Ebb Tidal Flow 

 
Figure 6.160 – Plot of Modelled ‘Velocity Magnitude in Casheen Bay for Maximum Flood Tidal Flow 
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Using Figure 6.159 and Figure 6.160 it was possible to select three locations to examine 

wave-current interaction in detail. The selected locations were between the two islands in 

the north-east of the bay, in the narrow channel between the coast and the southernmost 

island and in the triangular shaped inlet on the north edge of the southern inlet. The next 

series of plots present the coordinates and velocity values at each of these locations.  

 
Figure 6.161 – Diagram showing Locations of detailed Wave-Current Interaction Analysis 
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Figure 6.162 – Maximum Ebb Flow between two islands in Casheen Bay 

Figure 6.163 – Maximum Flood Flow between two islands in Casheen Bay 
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Figure 6.164 – Maximum Ebb Flow South of Southerly Island Casheen Bay 

Figure 6.165 – Maximum Flood Flow South of Southerly Island Casheen Bay 
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Figure 6.166 – Maximum Ebb Flow in an Inlet Casheen Bay 

Figure 6.167 – Maximum Flood Flow in an Inlet Casheen Bay 
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Using the velocity values shown, the NM-WCIM was run for both maximum ebb tidal 

flow and maximum flood tidal flow. Plots of wave phase lines for the identified locations 

are shown below. The plots include phase lines for maximum ebb flow, maximum flood 

flow and in the absence of any current. 

 
Figure 6.168 – Plot of Wave Phase between two islands in Casheen Bay. Blue Lines represent 
Maximum Flood, Green Lines represent Maximum Ebb & Black lines represent No Current. 
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Figure 6.169 – Plot of Wave Phase south of Southerly Island in Casheen Bay. Blue Lines represent 
Maximum Flood, Green Lines represent Maximum Ebb & Black lines represent No Current. 

 
Figure 6.170 – Plot of Wave Phase in an Inlet in Casheen Bay. Blue Lines represent Maximum Flood, 
Green Lines represent Maximum Ebb & Black lines represent No Current. 
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The figures below examine the effect of the presence of a current on wave height between 

the two islands previously examined. Figure 6.171 and Figure 6.172 show the wave 

height at the location for maximum flood and maximum ebb flow respectively. Figure 

6.173 shows the percentage difference between the two. 

Figure 6.171 – Wave Height between Two Islands 
in Casheen Bay in the Presence of Max Flood 
Flow  
 

Figure 6.172 – Wave Height between Two 
Islands in Casheen Bay in the Presence of Max 
Ebb Flow 

 
Figure 6.173 – Percentage Difference in Wave Height at Flood and Ebb Flow between Two Islands in 
Casheen Bay 
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6.17.5 Wave-Driven Hydrodynamic Behaviour In Casheen Bay 

The NM-WDHM was run also run to examine wave-driven hydrodynamic effects in 

Casheen Bay. The NM-WDHM was run using the results of the initial NM-WCIM in the 

absence of a current both for a westerly approaching wave and a south-westerly 

approaching wave. Figure 6.175 and Figure 6.176 show the set-up and set-down in 

Casheen Bay for a wave approaching from a south-westerly and westerly direction 

respectively. Figure 6.177 and Figure 6.178 show the set-up/set-down and longshore 

currents generated on the exposed coast of the largest island in Casheen Bay for both the 

south-westerly and westerly approaching waves. Similarly Figure 6.179 and Figure 6.180 

show the same data for the exposed coast of the southerly island within Casheen Bay. 

 
 

 
Figure 6.174 – Diagram showing the Locations of Detailed Wave-Driven Current and Set-up/Set-
down Analysis 
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Figure 6.175 – Set-up/Set-down in Casheen Bay for a Wave Approaching from the South-West 
 

 
Figure 6.176 – Set-up/Set-down in Casheen Bay for a Wave Approaching from the West 
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Figure 6.177 – Set-up/Set-down and Wave-Generated Currents on the coast of Large Island in Casheen 
Bay – South-West Wave 

Figure 6.178 – Set-up/Set-down and Wave-Generated Currents on the coast of Large Island in Casheen 
Bay – West Wave 
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Figure 6.179 – Set-up/Set-down and Wave-Generated Currents on the coast of Southerly Island in 
Casheen Bay – South-West Wave 

Figure 6.180 – Set-up/Set-down and Wave-Generated Currents on the coast of Southerly Island in 
Casheen Bay – West Wave 
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The figures plotted below show the wave-generated currents at the locations discussed in 

Section 6.17.4. They are shown to give an indication of the relative magnitudes of wave 

generated currents and tidal currents in a real bay. Figures Figure 6.181, Figure 6.183 and 

Figure 6.185 show wave-generated currents for a south-westerly approaching wave and 

Figure 6.182, Figure 6.184 and Figure 6.186 show the same data in the case of waves 

approaching from a westerly direction. 
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Figure 6.181 – Wave-Generated Currents for region between two Islands in Casheen Bay – South-West 
Wave 

Figure 6.182 – Wave-Generated Currents for region between two Islands in Casheen Bay – West Wave 
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Figure 6.183 – Wave-Generated Currents for region South of Southerly Island in Casheen Bay – South-
West Wave 

Figure 6.184 – Wave-Generated Currents for region South of Southerly Island in Casheen Bay – West 
Wave 
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Figure 6.185 – Wave-Generated Currents for an Inlet in Casheen Bay – South-West Wave 

Figure 6.186 – Wave-Generated Currents for an Inlet in Casheen Bay – West Wave 
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6.17.6 Discussion 

The results of the NM-WCIM for waves approaching Casheen Bay are interesting. It is 

obvious from Figure 6.157 that waves approaching Casheen Bay penetrate the depth of 

the bay to a much greater degree if they approach from the west (an unlikely event) than 

if they approach from the south-west as shown in Figure 6.156. A visual examination of 

the shape and bathymetry of the bay would tend to suggest that the bay developed as it 

did partially because of the prevailing wave direction. If the high wave heights shown 

deep in the bay for the westerly approaching wave occurred much in reality it is not 

unreasonable to believe that the shape of the bay would be different. This is further 

backed up by evidence from the NM-WDHM. Figure 6.176 shows strong wave generated 

effects deep in the bay for a wave approaching from a westerly direction whereas Figure 

6.175 shows lesser wave-generated affects in the same area.  

 

The wave-current interaction results of the NM-WCIM are as expected. The results show 

a small degree of variation in the wave phase due to the differing tidal currents. The areas 

where this change is most evident is where flow is concentrated, such as at the bottleneck 

between the two small islands in the north-east of the bay. The percentage difference of 

wave heights in this area between maximum flood and ebb flows is shown in Figure 

6.173. Variation of up to 30% is evident. Larger variations are also evident but localised 

to small areas of coast where wave phase changes significantly for the different currents. 

This is caused by one of the more interesting results of the wave-current interaction 

model, that in some cases the change in wave behaviour due to wave-current interaction 

has a greater effect on the wave phase at the coastline even though the velocity there is of 

the same magnitude and indeed in some cases smaller. This effect is shown quite well in 

Figure 6.168. 

 

The NM-WDHM shows how a small change in the direction of wave propagation can 

have quite a large effect on hydrodynamics within a specific area. For example Figure 

6.179 and Figure 6.180 show how the longshore current along the exposed shore of the 

island occurs in almost opposite directions for the two wave scenarios examined despite 

the fact that the waves in question are only separated by a  relatively small angle. An 

inspection of the wave fields in Figure 6.150 and Figure 6.151 shows why this is the case. 

It is evident that the change in direction of waves approaching the island in question can 

cause high waves to approach the island towards the middle of its western coast or 
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towards the top, thus influencing the direction of longshore current. Figure 6.146 shows 

the bathymetry in this region is quite complex thus causing the difference in waves 

approaching the island. Figure 6.177 shows how at the southern tip of the large island in 

the bay there is a good degree of wave generated disturbance for a wave approaching 

from the south-west in contrast to the lack of any significant effects at the same area in 

Figure 6.178 for waves approaching from the west. 



 

Chapter 7: Conclusion & Recommendations 
 “Ask, and it shall be given you; seek; and you shall find; knock and it shall be opened unto you.”  

Matthew 7:7-8 
 
 
7.1 Conclusion 

The stated aim of this thesis is to examine wave-current interaction and wave-generated 

hydrodynamics in the surf-zone. The preceding chapters do this in detail and in the 

process the NM-WCIM and NM-WDHM are derived and utilised effectively. They have 

been shown to provide results that compare well with expected values and trends and 

represent a step forward in the modelling of waves, wave-current-interaction and wave-

driven hydrodynamics both within and outside the surf-zone. 

 

Chapter 3 of this thesis develops a basic set of equations for the examination of wave-

current interaction in the surf-zone. This derivation is carried out using a Galerkin-

Eigenfunction method to obtain an extended elliptic mild-slope equation for waves and 

wave-current interaction including energy dissipation. The derivation of such an equation 

has not been presented previously using a Galerkin-Eigenfunction method. The use of this 

method gives an improvement in the quality of the final equations by including terms, 

such as extended current terms, that are neglected in previous derivations of similar 

formulae. The wave-current interaction equation is derived with the inclusion of energy 

dissipation from the outset, thus leading to an equation containing a more complete set of 

energy dissipation terms than many previously published equations.  The equation is also 

presented in Helmholtz form to ensure adequate comparison with existing formulae. The 

usefulness of the formula derived is demonstrated effectively by its use in the finite 

element model whose results are presented in Chapter 6. The results compare favourably 

with both measured values and previously published numerical results. 

 

Chapter 3 also presents the development of the extended elliptic mild-slope equation for 

waves and wave-current interaction including energy dissipation into a form that can be 

solved using the finite element method on a desktop computer. This development uses the 

Galerkin finite element method where shape functions and weighting functions are set to 

equal one another. The model uses two-dimensional triangular finite elements. The  

scalability of the mesh elements allows the model domain to be created  in such a way as 

to maximise computer efficiency. Many existing computer models of a similar nature 
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utilise the finite difference methodology. Many of those that utilise finite elements do not 

include all the terms included in the basic equations for the NM-WCIM. Results from the 

NM-WCIM are shown in Chapter 6 of this thesis. The results obtained compare well with 

both measured data and results of previous similar models. The scalability and efficiency 

of the model are also demonstrated by the range of scenarios and scale of domains 

examined; from simple waves approaching a uniform beach to complex real-world 

bathymetry and large scale problems. 

 

The iterative technique chosen to obtain convergence for wave-current interaction in the 

NM-WCIM is also effective. Convergence is achieved in quite a small number of iterative 

steps by inspecting the changes in the gradient of phase. Iteration on the gradient of phase 

is an effective and succinct method of examining wave-current interaction. 

 

Chapter 4 of this thesis develops a numerical model for the examination of wave-driven 

hydrodynamics (NM-WDHM). The basic equations for this model are widely used but the 

driving forces for wave-driven effects selected by this project are unique. Chapter 4 

presents the development of an equation to calculate radiation stress driving forces for the 

NM-WDHM based on the velocity potential results of the NM-WCIM. The development 

of a radiation stress formula directly in terms of velocity potential is an advance in the 

field of wave-driven hydrodynamics. The NM-WDHM also contains a state of the art 

bottom friction term and includes a turbulent diffusion term based on eddy viscosity 

values. The inclusion of such features ensure it performs well when compared with 

existing similar models. Chapter 6 presents the results of the NM-WDHM and 

comparison with measured data and the results of previous models. The results compare 

favourably with previously published modelled and measured results. The NM-WDHM is 

a finite-element areal model that iterates to a converged solution using a finite difference 

scheme. It is used on a desktop computer to solve problems with complex bathymetry. 

 

Chapter 5 of this thesis continues the examination of Clyne (2008) of an new method for 

obtaining wave rays. This post-processing method using velocity potential results of a 

wave model or wave-current interaction model holds a lot of potential for the continued 

use of wave rays as an investigative tool for engineers. This project develops a wave 

energy ray that can be used for waves in the presence of a current. The wave energy rays 

are used to obtain breaking wave heights, particularly in regions where breaking waves 
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may recover due to complex bathymetry. Wave energy rays are also used in this project to 

obtain values of eddy viscosity, which are useful for the modelling of turbulent diffusion 

in the wave-driven hydrodynamic model. The fact that the wave ray process can be 

applied as a post-processing technique to any set of velocity potential results means that it 

is very computationally efficient. This technique is demonstrated in the results of Chapter 

6 of this thesis. 

 

This thesis has developed a new coupled model for the examination of wave-current 

interaction and wave-generated hydrodynamics both within and outside the surf-zone. 

The mathematical methods used to develop these models are innovative and succinct and 

the results of the models themselves compare well with published results and 

measurements. 

 
7.2 Recommendations for Future Work 

In the general area of investigation of waves and wave-current interaction it is apparent 

from the results of this project that further mathematical investigation is needed into the 

processes involved in wave breaking. Current formulae for wave breaking and energy 

dissipation due to wave breaking vary widely and are based largely on empirical 

evidence. Although wave breaking is a difficult field to investigate it is probable that a 

formula  can be developed to link the various breaker types to bathymetry and wave 

conditions and hence provide a more universal equation for energy dissipation due to 

wave breaking. 

 

The NM-WCIM could be modified to perform various extra functions. A possible future 

enhancement would be the inclusion of a subroutine to examine wave forces imparted on 

structures. A subroutine such as this could lead to the NM-WCIM being used for design 

of coastal structures such as breakwaters and jetties. This may or may not be coupled with 

an extension of the model to three dimensions.  

 

The NM-WDHM could be enhanced to carry out various other functions with the addition 

of extra subroutines. Due to its basis in the overall equations of hydrodynamics any 

hydrodynamic behaviour of a fluid could be added to the model. Examples include 

subroutines to examine tidal effects, shipping wakes or sediment suspension and 

dispersion.  



 

 



 

 
 511 

Appendix A: Finite Element Methodology 
  
A.1 Introduction 

This appendix gives a brief description of the finite element method as it is applied to the 

NM-WCIM and NM-WDHM. The description is not intended to be a complete discussion 

of the finite element technique. It is a specification of the particular type of finite element 

technique used in this thesis. For a complete discussion of the finite element technique the 

reader is referred to Zienkiewicz (1977). 

 

A.2 Finite Element Technique 

The finite element technique in general terms is a method of solving a set of equations for 

a series of unknown variables throughout a given domain. At the boundaries of said 

domain boundary conditions must be applied using known variables or relations to allow 

for the solution of the unknown variables across the domain. The domain is discretised 

into a number of different elements. A matrix of equations is then calculated for each 

individual element and combined into one overall “stiffness” matrix for the domain. This 

stiffness matrix multiplied by a vector of the unknown variables is equal to a vector of 

known boundary conditions. Hence the inverse of this mass matrix multiplied by the 

vector of known boundary conditions gives the solution to the vector of unknown 

variables. 

 

A.3 Method of Weighted Residuals 

Following the methodology of Pinder and Gray (1977); consider an operator   that acts 

on an unknown function  in a domain 

Π

vv B  to generate a known function vf . 

vv vfΠ =  in a domain B  (A.1) 

  

A function  is made up of a linear combination of functions that satisfy the known 

conditions of  and the boundary. 

( )vv x

vv

( ) ( )
1

M
J J

v
J

v x a N x
=

=∑  (A.2) 

 

Where  are shape functions and ( )JN x Ja  are a serious of constants chosen to ensure the 

boundary conditions of the domain B  are satisfied. 
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Substituting Equation (A.2) in Equation (A.1) yields: 

( ) ( ) ( ) ( ) ( )
1

M
J J

v v v
J

x v x f x a N x f x
=

⎡ ⎤ℜ = Π − = Π −⎢ ⎥⎣ ⎦
∑  (A.3) 

Where ( )xℜ  is a residual. 

 

The method of weighted residuals is a method through which the residual ( )xℜ  is forced 

to equal zero in an average sense through the selection of appropriate values of Ja : 

 

( ) ( ) 0I

B

x W x dxℜ =∫ ,     (A.4) 1, 2,.....,I = M

M

Where  is a weighting function. ( )IW x

 

Equation (A.4) for the method of weighted residuals can be expressed more explicitly as: 

( ) ( ) ( )
1

0
M

J J I
v

JB

a N x f x W x dx
=

⎡ ⎤⎛ ⎞Π −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦
∑∫ = 1, 2,.....,I =,     (A.5) 

 

 

A.3 Galerkin Method 

A wide variety of functions may be chosen for the weighting function of the method of 

weighted residuals. The Galerkin Method is a special case of the method of weighted 

residuals where the weighting function IW  is set equal to the shape functions IN . Thus 

the following version of Equation (A.5) is obtained for the Galerkin Method: 

1
0

M
J J I

v
JB

a N f N dx
=

⎡ ⎤⎛ ⎞Π −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦
∑∫ = 1, 2,.....,I =,     (A.6)  M

M

M

 

1
0

M
J J I I

v
JB B

a N N dx f N dx
=

⎛ ⎞Π −⎜ ⎟
⎝ ⎠
∑∫ ∫ = 1, 2,.....,I =,      (A.7) 

 

1

M
J J I I

v
JB B

a N N dx f N dx
=

Π =∑∫ ∫ ,  (A.8) 1, 2,.....,I =
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The series of equations in Equation (A.8) can be expressed in matrix form as: 

[ ]{ } { }VB A F=  (A.9) 

 

Where the elements of [ ]B  are made up using the shape functions and . The vector Π { }A

is constructed from the unknown variables Ja  and the vector { }VF  from the known 

function vf . 

 

The unknown variables  Ja  can then be solved as follows: 

{ } { }[ ] 1
VA F B −=  (A.10) 

 

Equation (A.10) shows the final form of the Galerkin Method as used in the NM-WCIM.  
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A.4 Shape Functions 

A.4.1 Introduction 

For this project a linear shape function was deemed appropriate for describing the 

behaviour of unknowns within a domain. This was chosen because of its simplicity and 

the fact that the elements chosen were deemed small enough that a linear shape function 

would provide an accurate result.  

 

A.4.2 One-Dimensional Linear Shape Function 

 
Figure A.1 – Linear One-Dimensional Finite Element 

 

 

The chosen linear shape function, , for the one-dimensional models of this project 

is: 

( )IN s

( )1 1 sL s
l

= −  (A.11) 

( )2 sL s
l

=  (A.12) 

Where l  is the length of the element. 

 

The derivatives of this shape function are as follows: 

( )1 1d L s
ds l

⎡ ⎤ = −⎣ ⎦  (A.13) 

( )2 1d L s
ds l

⎡ ⎤ =⎣ ⎦  (A.14) 

 

The integral of the one-dimensional shape function is: 

( ) ( ) ( )
1 2 ! !

1 !s

L L ds
α β α lβ

α β
=

+ +∫  (A.15) 
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A.4.3 Two-Dimensional Linear Shape Function 

 

 
Figure A.2 – Triangular Two-Dimensional Finite Element 

 

The chosen areal shape function, ( )IL s , for the two-dimensional models of this project is: 

( )1
2

I I I
j jN a b x 1, 2, 3I =

A
= + , ,  (A.16) 1, 2j =

Where I  is the local node number and j  denotes the coordinate direction. A  is the area 

of the triangular element. 

 
Ia  and Ib  are obtained using the determinants of the matrix as follows: 
1 1 3 3

1 2 1 2a x x x x= − 2

3

1

3
2

1
2

2
2

3
1

1
1

2
1

 (A.17) 

2 3 1 1
1 2 1 2a x x x x= −  (A.18) 

2 1 2 2
1 2 1 2a x x x x= −  (A.19) 

1 2
1 2b x x= −  (A.20) 

2 3
1 2b x x= −  (A.21) 

3 1
1 2b x x= −  (A.22) 

1 2
2 1b x x= −  (A.23) 

2 3
2 1b x x= −  (A.24) 

3 1
2 1b x x= −  (A.25) 

 

The derivative of the shape function is as follows: 

2

II
j

j

bdN
dx A

= , ,  (A.26) 1, 2, 3I = 1, 2j =
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The integral of the two-dimensional shape function is: 

( ) ( ) ( ) ( )
1 2 3 ! ! ! 2

2 !A

N N N dA
α β γ α Aβ γ

α β γ
=

+ + +∫∫  (A.27) 
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Appendix B: Comparison of Nomenclature with Clyne (2008) 
 
 
 

Newell Clyne 

 

 

 

A   =  Area Δ  
A  = Wave Amplitude  

DA  = Area between Energy Rays and Perpendicular Lines to Rays  

Aξ  =  Amplitude of Instantaneous Set-Up  (Wave Amplitude)  

Aφ   =  Amplitude of Velocity Potential Aφ  
m
ma   =  Divergence of the Vector A m

ma  
 

 

 

B  =  Empirical Wave Breaking Constants  

b   =  Width between Rays 1b ,  2b

 

 

 

C   =   Constant  

C  =  Relative Wave Celerity C  

preciseC  =  Absolute Wave Celerity  

gC   =  Relative Wave Group Velocity gC  

jGC  = g
j

S
CC

x
φσ

∂
∂

 GC  
No Current 

cn = Jacobian Elliptic Function  

 

 

 

D  = ( )EnC
s

∂−
∂
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E  =  Energy E  

xE  =  Basis Vector xE  
ê  =  Unit Vector ê  

{ }1UE  = [ ] 1dUKI
dt

⎧ ⎫
⎨ ⎬
⎩ ⎭

 
 

{ }2UE  = [ ] 2dUKI
dt

⎧ ⎫
⎨ ⎬
⎩ ⎭

 
 

{ }Eη  = [ ] dKI
dt
η⎧ ⎫

⎨ ⎬
⎩ ⎭

 
 

 

 

 

F   =  External Force per unit Volume  

Bf   =  Friction Coefficient  

 f  =  Vertical Function such that ( ) ( ) (, , , )x y z f z x yφ φ=  Z 

 
 

 

( )iGα  =  The Cofactor of gαβ   

g  =  Gravitational Acceleration g  

xxg   =  Metric Tensor xxg  
ijg  =  Conjugate Metric Tensor ijg  

g   =  Determinant of the Metric Tensor Matrix g  

 
 

 

stH  =  Stable Wave Height  

0H  =  Deep-Water Wave Height 0H  

bH  =  Breaking Height bH  

mH  =  Maximum Sustainable Wave Height mH  
H  =  Wave Height H  
h  =  Depth h  
h′  = h η+   
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I   =  Integral of Various Functions I 

i = 1−  i 

 
 

 

K  =  Effective Wave Number K  
K   =  Pressure Vector  

Κcn = Parameter of Jacobian Elliptic Function 

[ ]KI  = Mass Matrix  

 
 

 

IL   =  One-Dimensional Shape Function IL  
L  =  Wave Length L  

jL  =  Lateral Mixing Term  

0L  =  Deep-Water Wave Length 0L  
l = Length of Element Dl  

M  =  Mass M  
M  =  Empirical Turbulence Coefficient  

bm  =  Slope of Beach  

 

 

 

N  =  Empirical Turbulence Coefficient  
IN  =  Two-Dimensional Shape Function IN  

n   =  Outward Unit Normal to Surface n  
NM-WCIM   =  Newell Mullarkey Wave-Current Interaction Model  

NM-WDHM  =  Newell Mullarkey Wave-Driven Hydrodynamic 

Model 

 

 

 

 

p   =  Pressure p  

p  =  Momentum p  
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bQ  =  2
(1 )bQ

re
− −

 
bQ  

 

 

 

ijR  =  Radiation Stress  

R∂  =  Boundary Curve  

ER  =  Reynolds Number  

( )sr   =  Positional Vector ( )sr  

r  = 
2 m

H
H

 r  

{ }jUR and { }Rη = Residual Vectors  

 

 

 

S   =  Surface  

Sφ   =  Phase of Velocity Potential  

0s   =  Wave Steepness 0s  
 

 

 

T  =  Period T  
t  =  Time t 
t  = Tangent t  

tΔ   =  Time Step  

 

 

 

U   =  Steady Component of Instantaneous Velocity  

( 1 2 3, ,u u u=u )  = Instantaneous Velocity  

u  =  Unsteady Component of Instantaneous Velocity  

′u  =  Wave Fluctuation of Velocity  

′′u  =  Turbulent Fluctuation of Velocity  

1u ,  =  Horizontal Velocity 2u  
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V   =  Volume V  
 

 

 

 

IW  =  Weighting Function  

vW   =  Steady Component of Instantaneous Vertical Velocity  

w  =  Vertical Velocity =  3u w  

w =  Unsteady Component of Instantaneous Vertical Velocity  

w′  =  Wave Fluctuation of Vertical Velocity  

w′′  =  Turbulent Fluctuation of Vertical Velocity  

 

 

 

 

( , )x y=x = Horizontal Coordinates  

1x , 2x  =  Horizontal Coordinates 1x , 2x   
 

 

 

 

z   =  Vertical Coordinates  

z′  =  z η−   

 

 

 

 

xA , xB , xC , xD , xE , xH , xJ ,  

xM , xP , xW , xQ ,Q ,Q , , Q  =  Various Functions of h , ,

,

′ ′′
UQ′′ ′′ ′ λ′

κ η , I and  z′

 

 

 

 

 

α  =  An Empirical Wave Breaking Constant 
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Γ =  Empirical Parameter Relating Wave Height to Water Depth Γ  

xΓ  =  Boundary xΓ  
γ  =  Energy Dissipation Factor γ  

0γ  =  Wave Breaking and Insipience Constant  

γ̂   =  Breaker Index γ̂  
 

 

 

ijδ  =  Kroneker Delta ijδ  
δ  = Boundary Layer Thickness  

 

 

 

ijε   =  Eddy Viscosity  

 

 

 

ζ  = Complex Wave Set-up 

 

 

ζ ′  =  Wave Fluctuation of Free Surface 

 = ( )Re ζ  =  ( )Re i te ωξ −

 

ζ ′′  =  Turbulent Fluctuation of Free Surface 
 

 

 

  

 

( , , )x y tη   =  Free Surface in the absence of turbulence  
  = ζ η′+   

 

( , , )x y tη   =  Free Surface  η  
( , , )x y tη′′   =  Free Surface  

  = ζ ζ η′ ′′+ +    = ζ η′′+  
 

( ),x yη   =  Steady Component of Free Surface  

 

 
 

κ  =  Wave Number  κ  
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λ  =  Empirical Wave Breaking Constants  

λ′  = 
2

g
σ  

 

 

 

 

μ   =  Viscosity  

 

 

 

ν  = μ
ρ

  

 

 

 

ξ  =  Complex Instantaneous Set-Up η  

 

 

 

ρ   =  Density ρ  

 

 

 

σ  =  Intrinsic/Relative Frequency  

ijσ′  =  A Stress Tensor  

 

 

 

B
jτ  =  Bottom Stress  

F
jτ  =  Stress at the Free Surface  

 

 

 

ϒ  = 
d
ds

⋅ nt  
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)( , , ,x y z tΦ             =     Velocity Potential in Three-Dimensional  

 and Time Space      ( )Re ( , , ) i tx y z e ωφ −=

Φ  

1( , , ) 2x y z iφ φ φ= +   =   Velocity Potential in Three-Dimensional Space 

   ( ) ( , )f z x yφ=  

ϕ  

( ) 1, 2x y iφ φ φ= +      =   Velocity Potential in Two-Dimensional Space φ  

gCCφ φ′ =  = Scaled Helmholtz Style Velocity Potential φ̂  

1ˆ iSA e φ
φφ =   = One-Dimensional Velocity Potential 

gCC
φ

 

 

 

 

 

ψ  = 22

1

4
Sd

ds n
φ

∂⎛ ⎞⎛ ⎞⋅ + ⎜ ⎟⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠

nt

 
ψ  

ψ̂  = 2 2

1
4κϒ +

 
ψ̂  

 

 

 

 

Ω  =  External Force Potential  

 

 

 

 

ω   =  Angular Frequency (in rad/s)  

 
 
 

 

x y z
∂ ∂ ∂∇ = + +
∂ ∂ ∂

 ∇
 

h x y
∂ ∂∇ = +
∂ ∂

 h∇
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