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Abstract  

This thesis addresses the development of imaging techniques for the early 

detection of breast cancer, based on Ultra Wideband (UWB) radar, a promising 

emerging technology that exploits the dielectric contrast between normal and tumour 

tissues at microwave frequencies. Of particular interest in this work are issues related 

to the optimisation of UWB system design, as well as techniques for classification of 

potential breast tumours into benign and malignant. This is particularly important 

given the results from recent studies of the dielectric properties of breast and tumour 

tissue, which have found that strong similarities exist between the dielectric 

properties of malignant, benign and normal fibroglandular breast tissue. This creates 

a more challenging imaging scenario and motivates the development of enhanced 

signal processing techniques for UWB imaging systems.  

The issue of antenna configuration for UWB imaging systems is examined in 

this thesis through a detailed comparison of two antenna configurations (i) planar, 

and (ii) circular. UWB signals are simulated by means of the FDTD technique, and 

the backscattered signals recorded from each antenna configuration are processed by 

means of a beamformer in order to create UWB images of backscattered energy. The 

performance of each antenna configuration is evaluated by both quantitative methods 

and visual inspection, for a number of test conditions.  

Tumour growth and development patterns are modelled using Gaussian Random 

Spheres, using four discrete sizes and four different shapes. Feature extraction 

methods including Principal Component Analysis (PCA), Independent Component 

Analysis (ICA) and Discrete Wavelet Transform (DWT), are used to extract the most 

relevant features from the detailed Radar Target Signatures of the tumours, which 

are then classified with a number of different classification techniques: Linear 

Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA) and Support 

Vector Machines (SVM). In addition to these techniques, a number of different 

multi-stage classification architectures are considered. The feature extraction and 

classification algorithms are evaluated for both homogeneous and heterogeneous 

breast tissue models, for a range of different tumour sizes and shapes.   
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Chapter 1 

 

1.Introduction 

1.1.Motivation and Background 

Breast cancer is one of the most common types of cancer. In the United States, 

breast cancer is second only to lung cancer as the most incident cancer amongst 

women, affecting 26% of all female cancer patients [1], while it is the most frequent 

type of cancer amongst Irish women [2]. Approximately 182,000 cases are 

diagnosed in the United States [1] and over 2,400 cases are diagnosed in Ireland [2-

4], every year. In Ireland alone, the statistics show that 1 in 11 women are likely to 

develop breast cancer at some stage of their lives, with an incidence of 75% over the 

age of 50 and an incidence of 37% over the age of 65. Currently, over 25,000 women 

have survived breast cancer in Ireland. However, in the context of the 27 countries in 

the European Union, Ireland has the second highest incidence rates for breast cancer 

and ranks fifth place for highest mortality, as reported in [2]. 

The key factors in improving both survival rates and quality of life for cancer 

patients are: reliable diagnosis for early detection, early intervention and reliable 

monitoring. Statistics in Ireland from 1994-1997 have shown that in the period of 5 

years after breast cancer treatment, the survival rate of a breast cancer patient 

diagnosed at an early stage (stage I) is as high as 97±4% and at a later stage breast 

cancer (stage IV) is as low as 18±7% [5], emphasising the need for a reliable method 

for detection of cancer at the earliest possible stage of tumour development. 

One of the most common approaches for screening and diagnosis of breast 

cancer is the use of electronic imaging. Several imaging techniques are being used in 

the context of breast imaging. Currently, X-Ray mammography, Magnetic 

Resonance Imaging (MRI) and Breast Ultrasound are the most common. 

Additionally, other techniques have also been investigated for breast imaging, such 

as Scintimammography and Positron Emission Tomography (PET).  

X-Ray mammography is the current de facto screening method for detecting 
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non-palpable early-stage breast cancer, being a widespread low-cost technique. 

However this type of examination has some well-recognised limitations in terms of 

sensitivity and specificity (the proportion of patients correctly identified as having 

and not having cancer, respectively), presenting inherent health risk associated with 

ionising radiation, and causing patient discomfort due to breast compression [6-8]. 

Moreover, there is a high rate of both reported false positive and false negative cases, 

particularly common amongst younger women who typically have denser breast 

tissue. The false positive rate for X-Ray mammography can be as high as 75%, 

however much more worryingly is the high false negative rate of 34%. False positive 

results mean that the patient is falsely diagnosed with breast cancer, causing 

unnecessary distress to the patient and placing an unnecessary financial burden on 

the health service. Conversely, false negative results describe cancers that are only 

detected in follow-up examinations, and cancers that are interpreted as benign 

tumours. The occurrence of false negatives can result in cancers only being detected 

later in a more developed stage, considerably reducing the success of treatment [6-

10]. 

Another popular technique is Ultrasound, which is mainly used in follow-up 

examinations when suspicious masses are initially detected with X-Ray 

mammography and also for examination of women with denser breasts [4, 8]. 

Ultrasound is a low-cost non-ionising technique which uses ultrasonic waves to help 

classify a breast lump as a cyst or a solid mass. However, it is difficult to detect and 

characterise smaller tumours using Ultrasound due to a phenomenon known as 

speckle. Speckle is caused by the interference of echoes from randomly distributed 

scatterers that are too small to be resolved within the image, degrading both the 

contrast and spatial resolution. In Kuhl et al. [11], the sensitivity and specificity of 

Ultrasound were found to be 39.5% and 90.5%, respectively. 

Magnetic Resonance Imaging (MRI) is well-known for its high contrast and 

spatial resolution. Furthermore, this imaging modality does not require the use of 

ionising radiation as its technology is based on magnetic fields acting on the 

hydrogen atoms of the different tissues of the body. Breast tumours that have 

induced neighbouring vascularisation are often detected with MRI, however their 

classification of the tumours as benign or malignant is often difficult. Furthermore, 

early stage small tumours with insignificant vascularisation are often missed. It has 

been found that the sensitivity of MRI ranges between 88% and 100% and the 



Chapter 1: Introduction_________________________________________________ 

3 
 

specificity has a high variability between 28% and 100% [8]. In addition, the high 

cost of MRI means that it not a viable breast imaging modality for widespread 

screening. 

The two last imaging modalities, Scintimammography (also known as Nuclear 

Medicine Breast Imaging) and PET are both significantly expensive and require the 

use of radioactive agents to increase the contrast between tumour and normal tissues 

[8]. Although Scintimammography successfully detects vascularised tumours, the 

number of false positive results ranges between 66% and 73%, and the number of 

false negative results reduces significantly between 2% and 8%. Regarding PET, its 

sensitivity ranges between 80% and 100% and its specificity ranges between 75% 

and 85%, as obtained in small scale studies [8]. However, the radioactive agent used 

in PET is quite expensive on its own and only lasts a limited period of time. 

In this context, Microwave Imaging (MI) has been proposed as an appealing 

alternative to X-Ray mammography, Breast Ultrasound, MRI, Scintimammography 

and PET as a breast cancer diagnosis method [12-13], as it is potentially low cost, it 

is non-invasive, does not subject the patients to ionising radiation nor discomfort, 

offers good resolution and can potentially be used to detect tumours at an early stage 

of development. It is particularly attractive as an alternative to X-Ray 

Mammography as an imaging technique for initial screening. 

Microwave Imaging exploits the differences in dielectric properties between the 

constituent tissues of the breast and cancerous masses at microwave frequencies. The 

dielectric properties of normal and malignant breast tissues have been 

comprehensively examined for over 20 years across a number of studies. Generally it 

has been acknowledged that malignant tumours present high values for conductivity 

and relative permittivity due to higher concentrations of water, which is caused by 

abnormal vascularisation [13-14] and the fact that malignant tissues retain more fluid 

in the form of bound water [15-16]. Although, historically, studies indicate that there 

is a significant dielectric contrast between normal tissue and malignant tissues at 

microwave frequencies [15-25], recently Lazebnik et al. [26-27] have found that, in 

dielectric terms, only normal adipose tissue and tumour tissue properties differ 

significantly whereas normal fibroglandular, malignant and benign tumour tissues 

have rather similar dielectric properties. Therefore examinations performed on 

women with denser breasts (usually in younger women) are more likely to be 

inconclusive or to yield false positive or false negative results.  
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Three different approaches have been proposed in order to image the breast 

based on the contrasting dielectric properties at microwave frequencies: UWB Radar 

Imaging, Microwave Tomography and Time-Reversal FDTD methods. The UWB 

Radar Imaging involves illuminating the breast with a UWB pulse, and recording the 

resulting backscattered signals. Subsequently, these recorded signals are processed 

using a beamformer to identify the presence and location of significant dielectric 

scatterers within the breast [12, 28-29], which potentially indicate the presence of 

tumours. Microwave Tomography involves a full reconstruction of the dielectric 

profile of the breast, by solving a forward and inverse scattering problem. These 

algorithms seek to minimise the difference between measured and calculated electric 

fields [30-35]. The Time-Reversal Finite-Difference Time Domain (FDTD) 

approach involves applying time-reversed FDTD equations to all points of the breast 

grid, with the wave converging at the tumour point [36-38]. 

In order to overcome the high ratios of false positive and false negative results, a 

number of other approaches have been examined. For example, a number of 

researchers have emphasised the need for classification of suspicious regions within 

UWB images of the breast in order to identify a tumour as malignant or benign [10, 

26, 39]. Some approaches have involved the analysis of characteristics inherent to 

malignant tumours in the breast, such as shape and texture of surface [13, 40-43]. 

Previously used classification algorithms include those studied by Davis et al. [44], 

Chen et al. [45-47] and Teo et al. [48]. 

1.2.Contributions 

The significant contributions of this thesis in the area of UWB radar breast 

cancer imaging are as follows: 

• Creation of a large database of 480 benign and malignant 3D tumour models 

based on Gaussian Random Spheres (GRSs). The database of tumour models 

includes tumours of four different stages of development for benign and 

malignant tumours ranging between smooth, macrolobulated, microlobulated 

and spiculated models, and four different sizes ranging between 2.5, 5, 7.5 

and 10 mm in radius. This is one of the largest tumour databases based on 

GRSs (for classification by means of UWB) found in the literature, and also 
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the first to discriminate between smooth and macrolobulated GRSs as benign 

models. 

• A comparison of two antenna configurations, planar and circular, is 

completed using various performance metrics. The optimum number of 

antennas for both configurations is found for different imaging scenarios in 

which tumours of different sizes are placed in different locations of the breast 

and the robustness of the system is tested with increasing variance of 

dielectric properties.  

• Classification of size and shape of breast tumours when immerged in a 3D 

breast model by means of their Radar Target Signatures (RTS). Classification 

is pursued in two different imaging scenarios: a homogeneous breast model, 

and a breast model that accounts for dielectric heterogeneity based on 

realistic MRI-based models. 

• Comparison between different feature extraction methods for breast cancer 

classification.  

• Different classification methods applied to the RTS of the different tumours 

are compared. Classification architectures, comprising binary or direct 

classifiers, as well as different combinations of coarse and/or fine size and/or 

shape classifiers, are tested and compared. 

 

The following journal and conference publications have resulted from the work 

presented in this thesis: 

Journal publications: 

• R. C. Conceição, M. O’Halloran, M. Glavin and E. Jones, “Comparison of 

Planar and Circular Antenna Configurations For Breast Cancer Detection 

Using Microwave Imaging”, Progress In Electromagnetics Research, Vol. 

99, pp. 1-20, 2009 [49]. 

• R. C. Conceição, M. O'Halloran, E. Jones and M. Glavin, “Investigation of 

Classifiers for Early-Stage Breast Cancer Based on Radar Target Signatures”, 

Progress In Electromagnetics Research, Vol. 105, pp. 295-311, 2010 [50]. 

• R. C. Conceição, M. O’Halloran, M. Glavin and E. Jones, “Support Vector 

Machines for the Classification of Early-Stage Breast Cancer Based on Radar 

Target Signatures”, Progress In Electromagnetics Research B, Vol. 23, pp. 
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311-327, 2010 [51]. 

• R. C. Conceição, M. O’Halloran, M. Glavin and E. Jones, “Evaluation of 

Features and Classifiers for Classification of Early-Stage Breast Cancer”, 

Journal of Electromagnetic Waves and Applications, Vol. 25, pp. 1-14, 2011 

[52].  

• R. C. Conceição, M. O’Halloran, M. Glavin and E. Jones, “Effects of 

Dielectric Heterogeneity in the Performance of Breast Tumour Classifiers”, 

Progress In Electromagnetics Research M, Vol. 17, pp. 73-86, 2011 [53].  

• M. O’Halloran, R. C. Conceição, D. Byrne, M. Glavin and E. Jones, “FDTD 

Modeling of the Breast: A Review”, Progress In Electromagnetics Research 

B, Vol. 18, pp. 1-24, 2009 [54] (contribution in Section 4.2. Modeling the 

growth patterns and dielectric properties of benign and malignant breast 

tissue). 

• B. McGinley, M. O’Halloran, R. C. Conceição, F. Morgan, M. Glavin and E. 

Jones, “Spiking Neural Networks for Breast Cancer Classification Using 

Radar Target Signatures”, Progress In Electromagnetics Research C, Vol. 

17, pp. 79-94, 2010 [55] (contribution in Section 2. Tumor Modeling and in 

Section 4.1. Principal Component Analysis). 

• M. O’Halloran, B. McGinley, R. C. Conceição, F. Morgan, M. Glavin and E. 

Jones, “Spiking Neural Networks for Breast Cancer Classification in a 

Dielectrically Heterogeneous Breast”, Progress In Electromagnetics 

Research, Vol. 113, pp. 413-428, 2010 [56] (contribution in Section 2. 

Modeling and in Section 4.1.1. Discrete Wavelet Transform). 

 

Conference publications: 

• R. C. Conceição, D. Byrne, M. O'Halloran, M. Glavin and E. Jones, 

“Classification of Suspicious Regions within Ultrawideband Radar Images of 

the Breast”, 16th IET Irish Signals and Systems Conference, ISSC 2008, 

Galway, Ireland, Vol. 1, pp. 60-65, 2008 [57].  

• R. C. Conceição, M. O'Halloran, M. Glavin and E. Jones, “Antenna 

configurations for Ultra Wide Band Radar Detection of Breast Cancer”, in 

Proceedings of the SPIE BIOS West, San José, CA, USA, Vol. 7169, No. 9, 

pp. [71691M, 12], 2009 [58].  
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• R. C. Conceição, M. O'Halloran, D. Byrne, E. Jones and M. Glavin, “Tumor 

Classification Using Radar Target Signatures”, Progress In Electromagnetics 

Research Symposium, Cambridge, MA, USA, pp. 346-349, 2010 [59]. 

1.3.Chapter by Chapter Overview 

The remainder of the thesis is organised as follows: Chapter 2 describes the 

background of the work developed in the thesis in more detail, in particular the 

physiological background related to the breast and tumours, a historical examination 

of the study of dielectric properties within the breast and of cancer tissues, a brief 

review of UWB Microwave Imaging (MI) and a first introduction to classification 

techniques of breast masses in MI. Chapter 3 introduces the modelling of benign and 

malignant tumours based on GRSs. Chapter 4 describes a comparison between 

planar and circular antenna configuration evaluated using simple tumour models of 

different sizes in different locations of the breast by means of a number of 

performance metrics. Chapter 5 details the classification of tumours by comparing 

different feature extraction methods which allow the analysis of the RTS of tumours 

and different classification methods for a homogeneous breast model, while Chapter 

6 addresses the same issue in additional breast models that attempt to model 

heterogeneity within the breast. Finally the overall conclusions and suggestions for 

future work are presented in Chapter 7. 
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Chapter 2 

 

2. Background 

In this chapter the background information necessary for the understanding and 

design of the simulation procedures and consequent results, is addressed. First the 

physiological background is discussed in Sub-section 2.1, followed by the review of 

dielectric properties research in Sub-section 2.2; the algorithms for UWB Radar 

Microwave Imaging are described in Sub-section 2.3, finally, in Sub-section 2.4 the 

breast classification techniques developed in UWB imaging are examined. 

2.1.Physiological Background 

2.1.1. Outline of the Anatomy and Physiology of the Breast 

The breast is mainly composed of three types of tissue: breast fat (or adipose 

tissue), glandular tissue and connective tissue (fibrous strands called Cooper’s 

ligament). The proportions of these main types of tissue may vary from person to 

person [10, 26, 39] and the amount of water, fat and fibroglandular tissue may also 

vary due to normal hormonal changes in different stages of menstruation, pregnancy, 

lactation or menopause [10, 60]. For the purpose of bioelectrical studies, the 

anatomy of the breast can be simplified and presented as follows:  

• Below the skin there is an adipose tissue layer which consists of vesicular 

cells filled with fat which are collected into lobules and then separated by 

Cooper’s ligament. 

• The innermost tissue of the breast consists of mammary glands (lobules that 

produce milk). Each breast has about 15 to 20 sections termed lobes with 

many smaller sections of mammary glands, which are arranged in a circular 

fashion. Each section is terminated by thin tubes, called lactiferous ducts, 

which connect to a reservoir (also called ampulla) and ultimately connect to 



Chapter 2: Background_________________________________________________ 

9 
 

the nipple. These lobes and ducts are also surrounded by Cooper’s ligament. 

• Cooper’s ligament has the function of maintaining the inner structure of the 

breast and supporting the tissue attached to the chest wall. The breast is 

separated from the pectoralis major muscle by the retromammary fat [24]. 

The anatomy of a healthy breast in both frontal and sagittal views is shown in 

Figure 2.1. It should be noted that although lymph nodes are not constituents of the 

breast per se, they are represented in this figure as breast cancer can be diagnosed 

through detection of metastasised tumour cells particularly in the axillary lymph 

nodes, where approximately 50% of breast cancer occur [28, 61]. 

 

 

Figure 2.1. General anatomy of the breast in frontal and sagittal views. Image adapted from 

[4]. 

2.1.2. Formation of Tumours 

Tumours are defined by a growth of undifferentiated (or unspecialised) cells 

which form a lump. Usually the immune system is capable of destroying the 
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undifferentiated cells which can lead to the formation of a tumour through a process 

called apoptosis – cell self-destruction. However, if too many mutations occur in 

cells at the same time, the immune system may not be able to respond appropriately, 

and masses of tumour cells will be formed [62].  

A carcinogen is the generic name for something that induces the mutation of 

cells, leading to the formation of tumour cells [62]. Generally, there are two non-

exclusive possible origins for tumour cells. The first is the existence of oncogenes, 

which are the genes responsible for the proliferation of cells, and the second is the 

repression of the genes that usually restrain cell proliferation and allow apoptosis in 

order to maintain a controlled overall growth of cells [62-63]. 

The way proliferation of tumour cells occurs, i.e. the tumour growth, may 

indicate whether a tumour is benign or malignant. For benign tumours, the growth is 

controlled and will only be dangerous if nearby organs are pushed and compressed 

or if tumours either grow inside the skull or release unwanted hormones. Conversely, 

for malignant tumours, i.e. cancer, the growth is uncontrolled due to a high rate of 

replication and usually spreads to other parts of the body by metastases and destroys 

surrounding healthy tissues [62].  

The tumour cell suffers several changes in terms of cell surface, the state of 

water, viscosity, pH, growth regulation, the loss of contact inhibition, the 

cytoskeleton, temperature, membrane transport, and several other factors [10, 64]. 

Some of these changes will affect dielectric properties directly, so these will be 

studied in more detail. 

The grade of malignancy of the tumour can be determined by pathologically 

analysing how premature the cells are within the tumour. The less mature are the 

tumour cells, the older and more widespread the malignant tumour is likely to be, 

and therefore the lower the chances of a successful treatment. The different grades of 

development at which cells can be found is referred to as differentiation [62]. 

The cytoskeleton of tumour cells becomes disorganised due to the decrease and 

disorganisation of microfilaments and microtubules [64], causing the original shape 

of the cell to be lost (becoming more round) and the process of mitosis (cell 

replication) to become chaotic leading to both an uncontrolled growth of tissues and 

the loss of genetic information. Because the surface of the cells changes, the 

membrane permeability is altered and the regular osmosis process is also affected, 

causing the tumour tissues to retain more fluid than normal cells. Cancer cells retain 
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more fluid in the form of bound water.  

Additionally, cancer cells are not contact-inhibited, which means that huge 

masses of cancer cells grow over each other and are piled up on one another forming 

multiple layers, and are able to coexist in high concentrations. Furthermore, due to 

the large growth of cells in tumours, particularly in malignant tumours, networks of 

capillaries are created in order to nourish the newly formed cells [13]. In [65], it is 

noted that neoangiogenesis is induced by tumours with a dimension of at least 3mm. 

As the size of tumours becomes larger, these networks of capillaries may be 

developed into tiny veins and even arteries that will connect to major blood supply 

vessels [13], therefore the study of the level of vascularisation near a tumour is of 

importance to the characterisation of the grade of malignancy of a tumour. 

The increase of water within cancerous tissue is responsible for the high 

scattering in microwave imaging. The increase of sodium and water, particularly in 

bound water, within the tumour cell induce greater values of conductivity and 

relative permittivity in tumour tissues [15-16, 39]. 

Another feature that may help detect the presence of malignant tumours is the 

existence of calcifications. However these are only formed when severe necrosis has 

occurred, i.e. disorderly apoptosis, resulting in groups of dead cells which are not 

naturally absorbed by the organism [39]. 

Furthermore, other characteristics inherent to benign and malignant tumours 

have proven to be useful in terms of classification for different imaging modalities. 

Such characteristics are based on size, shape, margins, surface texture, depth, 

localisation and packing density [13, 24, 41, 44, 65]. Features of a tumour that may 

be of particular benefit for classification in the context of MI are the shape and 

texture of the tumour surface. Malignant tumours usually present the following 

characteristics: 

• Irregular, ill-defined and asymmetric shapes; 

• Blurred boundaries (lack of sharpness); 

• Rough and complex surfaces with spicules or microlobules; 

• Non-uniform permittivity variations; 

• Distortion in the architecture of the breast; 

• Irregular increase of tissue density (due to masses and calcifications). 

Conversely, benign tumours tend to have the following characteristics: 
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• Spherical, oval or at least present well-circumscribed contours; 

• Compact; 

• Smooth surfaces [13, 40-43]. 

2.1.3. Breast Cancer 

Breast cancers are more likely to develop in older women, similarly to what 

happens with other types of cancer [66]. This is due to the fact that cells have to 

undergo multiple genetic alterations before a cell becomes malignant [63]. There is 

also a higher incidence of breast cancer if previous family generations suffered from 

the same disease (family history) and also if the patient previously developed breast 

or any other type of cancer [66].  

Mainly, there are two most common types of cancer: in situ (or non-invasive) 

and invasive. In situ cancers are those in which cancer cells remain within the 

basement membrane of the lobules and the draining lactiferous duct. Invasive 

cancers are those in which there is dissemination of cancer cells outside the 

basement membrane of the ducts and lobules into the surrounding adjacent normal 

tissue [67]. 

Some of the most frequently-occurring breast cancers are as follows: 

• The Ductal Carcinoma In Situ (DCIS) is a type of cancer in which cancerous 

cells are inside some of the ducts, but have not spread to other regions of the 

breast or body.  

• The Lobular Carcinoma In Situ (LCIS) is not a type of cancer per se, but in 

presence of this disease there are high chances of developing cancer. LCIS is 

characterised by changes in the cells within the breast lobes.  

• Invasive Ductal Carcinoma (IDC) is the most common type of breast cancer 

(70 to 80% of breast cancer cases), and occurs in the cells that line the ducts 

of the breasts.  

• Invasive Lobular Carcinoma (ILC) represents about 10% of breast cancer 

cases and occurs in the cells that line the lobules of the breast.  

• Inflammatory breast cancer is a rare type of breast cancer (1 or 2% of the 

cases) and induces an inflammation in the breast tissues caused by cancer 

cells which block the smallest lymph channels in the breast.  

• Paget’s disease is also rare (1 to 2% of the cases) and is manifested on the 
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breast skin, usually the nipple or areola (skin area surrounding the nipple), 

and statistics show that in approximately 90% of the cases this type of cancer 

is invasive [66]. 

The most common types of breast tumours, which are also the focus of this 

thesis, are shown in a simplified sagittal view of the breast in Figure 2.2. 

 

Figure 2.2. Simplified sagittal view of the breast with the representations of two of the most 

common types of breast tumour: in situ and invasive. Image adapted from [4]. 

2.2.Dielectric Properties 

The physiological and biochemical factors associated with breast cancer have 

been discussed in Sub-sections 2.1.2 and 2.1.3. From a microwave imaging 

perspective, these factors lead to changes in dielectric properties in the tissue.  

 The dielectric properties, conductivity and relative permittivity, determine the 

attenuation of a signal through a medium and the reflections caused by a medium, 

permitting the differentiation between different types of tissue within the breast at 

microwave frequencies. Several historical studies have been completed examining 

the in vivo and ex vivo dielectric properties of normal and malignant breast tissues in 

particular, and these are examined in detail in the following paragraphs.  

In 1984, Chaudhary et al. [17] first examined ex vivo specimens of breast tissue 

removed during cancer surgeries. A significant dielectric contrast between normal 
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and malignant tissues was found across the frequency range of 3MHz to 3GHz, at 

25°C. Chaudhary concluded that significant differences existed in the dielectric 

properties of normal and malignant tissues of the human female breast, with the 

greatest dielectric difference occurring at frequencies below 100 MHz. The contrast 

ratio found for relative permittivity and conductivity was 4.7:1 and 5:1, respectively. 

Figure 2.3 shows the variation of the dielectric properties of normal and malignant 

tissue with frequency reported in this paper. 

 

 

Figure 2.3. The variation of the relative permittivity (left) and conductivity (right) of normal 

and malignant tissue between 3 MHz and 3 GHz, as reported by Chaudhary et al. [17] 
 

In a later study in 1988, Surowiec et al. [19] measured the relative permittivity 

and conductivity of infiltrating breast carcinoma, the surrounding tissue and the 

peripheral tissue at frequencies between 20 KHz and 100 MHz. The ex vivo samples 

were taken from a population of seven patients and stored in physiological saline. 

Three measurements were made in three locations: the central part of the tumour, the 

tissue directly surrounding the tumour and the peripheral tissue approximately 2 cm 

away from the centre of the tumour. Their results, shown in Figure 2.4, may suggest 

that there are increased dielectric properties even at the edge of the tumour due to 

tumour cell proliferation, and that smaller tumours may still be detected using a 

UWB radar.  
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Figure 2.4. The variation of the relative permittivity (left) and conductivity (right) of tumour 

tissue, surrounding tissue, and peripheral tissue across the frequency band of 0.02 MHz and 

100 MHz, as reported by Surowiec et al. [19]. 

 

In 1992, Campbell and Land [20] provided detailed information for microwave 

thermography applications on the dielectric properties of ex vivo female breast tissue 

at 3.2 GHz. In this study a resonant cavity technique was used to measure the 

dielectric properties in four different types of tissue: fat tissue, normal tissue, benign 

breast tumour and malignant breast tumour. Their results are shown in Table 2.1. 

They found that dielectric properties overlap for benign and malignant tumour 

tissues and also observed a much greater range of dielectric properties for normal 

tissue, suggesting that normal tissue and both benign and malignant tissue may be 

difficult to differentiate solely based on their dielectric properties. 

 

Table 2.1. Dielectric properties of female breast tissue at 3.2 GHz, as reported by Campbell 

and Land [20]. 

 

Tissue Type Relative Permittivity Conductivity (Sm
-1

) Water content (%) 

Fat tissue 2.8-7.6 0.54-2.9 11-31 
Normal tissue 9.8-46 3.7-34 41-76 

Benign breast tumour 15-67 7-49 62-84 
Malignant breast tumour 9-59 2-34 66-79 

 

In 1994, Joines et al. [18] measured ex vivo samples at frequencies between 50 

to 900 MHz, a range typically used for microwave-induced hyperthermia. Taken 

from 12 patients, tissue samples were analysed and results showed significant 

differences between normal and malignant tissues for the mammary gland, with a 

difference ratio of 6.4:1 and 3.8:1 for the relative permittivity and conductivity, 
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respectively, which is in general agreement with the results reported by Chaudhary et 

al. [17]. Their results are plotted in Figure 2.5. 

 

Figure 2.5. The variation of the relative permittivity (left) and conductivity (right) of normal 

and malignant tissue between 50 MHz and 900 MHz, as reported by Joines et al. [18]. 

 

Also in 1994, Choi et al. [61] examined the dielectric properties of metastasised 

lymph nodes and normal lymph nodes, along with the dielectric properties of breast 

cancer tissue in a frequency ranging between 0.5 and 30 GHz. The results are shown 

in Figure 2.6, and it is observed that both metastasised lymph nodes and breast 

cancer tissue differ significantly from normal lymph nodes.  

 

Figure 2.6. The variation of the relative permittivity (left) and conductivity (right) of normal 

and malignant tissue between 0.5 GHz and 30 GHz, as reported by Choi et al. [61]. 

 

Meaney et al. [31] performed the first clinical analysis in vivo using a prototype 

microwave imaging system, in 2000. A 16 element monopole antenna array was 

used in a tomographic microwave imaging system between 300 and 1000 MHz. 
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Results at 900 MHz are shown in Table 2.2 and it can be observed that the average 

relative permittivity value is significantly higher, approximately between 31 and 36, 

than that published in Joines et al.’s study [18]. No malignant tissue was examined 

in the course of this study and so a direct comparison cannot be made to the previous 

ex vivo studies. 

 

Table 2.2. Average dielectric properties of female breast tissue at 900 MHz measured in 

vivo using an active microwave imaging system developed by Meaney et al. [31]. 

 

Patient Age Average relative permittivity (%) Average conductivity (Sm
-1

) 

1 76 17.22±11.21 0.5892±0.3547 
2 57 31.14±4.35 0.6902±0.3650 
3 52 36.44±6.24 0.6869±0.3156 
4 49 35.43±3.93 0.5943±0.3841 
5 48 30.85±7.22 0.6350±0.3550 

 

More recently, Lazebnik et al. [26-27] completed one of the most 

comprehensive studies to date on dielectric properties of the breast. The first study 

[26] focused on the dielectric properties of normal tissue, and the second study [27] 

focused on the dielectric contrast between normal, benign and malignant breast 

tissues. On both studies, the data were mapped to Cole-Cole representations in order 

to assist on the measurements of the dielectric properties. Hoping to improve on 

many of the apparent weaknesses of previous studies, such as small patient sample 

sizes and gaps in the frequency bands examined, Lazebnik analysed 

histopathologically a large pool of freshly excised breast tissue from patients and 

divided normal tissue samples into 3 groups, distinguishing each by the percentage 

of adipose, glandular and fibroconnective tissue contained in the sample before 

obtaining the values for the dielectric properties. The three groups were defined as 

follows: 

• Group 1 contains all samples with 0-30% adipose tissue; 

• Group 2 contains all samples with 31-84% adipose tissue; 

• Group 3 contains all samples with 85-100% adipose tissue. 

The main findings in their first study [26] were that breasts with high adipose 

and low fibroglandular contents presented lower average dielectric properties, 

whereas breasts with low adipose and high fibroglandular tissues presented higher 

dielectric properties, which suggested that a wide range of dielectric properties is 

possible within healthy breasts. Results are summarised in Figure 2.7. 
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Figure 2.7. The relative permittivity (left) and conductivity (right) of normal breast tissue as 

measured by Lazebnik et al. [26] over the frequency band 0.5 to 20GHz. Group 1 represents 

0-30% adipose tissue, group 2 represents 31-84% adipose and group 3 represents 85-100% 

adipose tissue. 

 

By comparing these results to previous dielectric studies, Lazebnik’s main 

conclusions were as follows: 

• The dielectric properties found for normal tissue in the samples of Group 3 

(the highest in adipose content) were lower than any previous studies. 

• The dielectric properties found for normal tissue in the samples of Group 1 

(the highest in fibroglandular content and lowest in adipose content) were 

higher than any previous studies. 

• The dielectric data spanned a much greater range of values than those 

reported in previous studies, with an exception to Campbell and Land’s study 

[20]. 

Overall, Lazebnik attributed these differences to the large heterogeneity in 

normal breast tissue, as previously noted in [20], and acknowledged the relation 

found between the content of tissues within the breast – more or less adipose – and 

the measured dielectric properties – lower or higher, respectively. 

In their second study, Lazebnik et al. [27] further addressed the differences 

between normal, benign and malignant tumours across a frequency range of 0.5 to 20 

GHz. Normal breast tissue included adipose, glandular and fibroconnective tissues; 

benign tumour tissue included fibroadenoma and cysts; and, finally, malignant 

tumour included ductal and lobular carcinomas (IDC, DCIS, ILC and LCIS). The 

results are shown in Figure 2.8.  
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Figure 2.8. The median relative permittivity (left) and conductivity (right) Cole-Cole curves 

for groups 1, 2 and 3 for normal tissue obtained from reduction surgeries and cancer 

surgeries. The median relative permittivity curve of the dielectric properties of samples that 

contained at least 30% malignant tissue content is also shown for comparison. All results 

correspond to the 50
th
 percentile [27]. 

 

Firstly, Lazebnik et al. [27] observed that measured dielectric values for 

malignant tissue were in general agreement with the studies by Chaudhary et al. 

[17], Surowiec et al. [19] and Joines et al. [18]. Furthermore, Lazebnik et al. 

justified the differences between the curves for group 2 with an experimental error 

due to the comparatively small sample size used in the cancer surgery study 

compared to the breast reduction surgery study, which varied from 16 to 84 samples. 

Also, it was acknowledged in [27] that dielectric properties for normal tissues 

obtained through breast cancer surgery were lower than those obtained in breast 

reduction surgery and noted that this is due to the fact that tumours usually develop 

in glandular tissue and consequently the non-affected tissues removed had 

comparatively higher content of adipose. 

Finally, by adjusting for the content of adipose within the samples Lazebnik et 

al. found that there only existed a 10% difference between the conductivity of 

normal tissue and malignant tissue, and an approximate 8% difference in relative 

permittivity at 5 GHz. However, by adjusting for the content of both adipose and 

fibroconnective tissues within the samples, they found no statistical difference 

between normal fibroglandular and malignant tumour tissues in the breast. The high 
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dielectric properties of benign/fibroglandular tissue overlap those of malignant tissue 

within the breast, and consequently materialise as ‘false positive’ results and create a 

much more difficult imaging scenario than previously believed. 

Overall, the studies in [26-27] greatly added to the knowledge of breast tissue 

dielectric properties by significantly increasing the population size, by having 

separate analysis depending on the proportion of different types of tissues within the 

breast, and by characterising the tissues across a wide frequency band between 0.5 

and 20 GHz. In [26-27], a very detailed database of dielectric properties based on 

Cole-Cole parameters was established for each tissue type, which is crucial to 

accurately develop a numerical breast phantom, later described in this chapter. 

Furthermore, in 2009, Halter et al. [68] presented the initial results from a 

clinical study with a smaller number of patients in which estimations of dielectric 

properties of malignant breast tissue were obtained in three different scenarios. The 

dielectric properties were taken (i) by estimation means of Electrical Impedance 

Tomography imaging, (ii) by direct measurement in vivo breast cancer with both 

Electrical Impedance Spectroscopy (EIS) and Microwave Impedance Spectroscopy 

(MIS) probes, and finally (iii) by direct measurement in ex vivo breast cancer 

specimens with both EIS and MIS probes. While some of the limitations of this 

particular study may be due to the small number of patients and the lack of 

simultaneous measurements for scenarios (i), (ii) and (iii) for each considered lesion, 

it was noted in this study that there may also be some limitations related to ex vivo 

measurements such as those in Lazebnik et al. [26-27]. 

In [68], it was observed that the dielectric properties for normal breast tissue 

estimated in scenario (i) agreed with the findings from previous studies, such as [26]. 

Furthermore, the estimations of dielectric properties in scenario (iii) also agreed well 

with previous ex vivo studies such as [19-20, 25, 27]. However, Haemmerich et al. 

[69] observed a change in some dielectric parameters after excising tissue and 

attributed those changes to variations of temperature, tissue dehydration and 

ischemic effects. Moreover, they also noted that those changes may occur within 

seconds after extraction of tissues and may stabilize for hours thereafter. Finally, for 

scenario (ii) in Halter’s study, they observed that values for conductivity and relative 

permittivity of breast cancer were significantly higher than those estimated in 

scenarios (i) or (iii). 
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2.3.Ultra Wideband Radar Microwave Imaging  

Ultra Wideband Radar Microwave Imaging has been extensively investigated in 

the context of breast cancer detection for over 10 years [12, 29, 44, 70-73]. 

Typically, the breast is illuminated with a UWB pulse from antennas placed at a 

number of different locations surrounding the breast and the resulting backscattered 

wave signals are recorded at the same antennas, sequentially. In a monostatic system, 

only one antenna transmits, and the reflected signals are received at the same 

antenna. In a multistatic system, for each transmitting antenna, all antennas in the 

system are simultaneously receivers. A microwave beamforming algorithm is 

applied to the recorded signals so that the backscattered signals can be spatially 

focused in order to create an image of the dielectric scatterers within the breast, 

which represent potential tumours. A block diagram of a typical UWB microwave 

imaging system is shown in Figure 2.9. 

 

 

Figure 2.9. Generic block diagram illustrating the microwave imaging system. 

 

To simulate and test UWB imaging algorithms, FDTD modelling is commonly 

used for generating anatomically and dielectrically accurate breast models. The 

FDTD method is briefly addressed in Sub-section 2.3.1. In Sub-sections 2.3.2 and 

2.3.3 two general types of beamforming are detailed: data-independent beamforming 

and data-adaptive beamforming, respectively. 
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2.3.1. FDTD Modelling Method  

The Finite Difference Time Domain (FDTD) modelling method is a numerical 

method commonly used for modelling the propagation of electromagnetic signals in 

biological tissue, first introduced by Yee [74]. The method is described in detail in 

the work by Taflove and Hagness [75]. As presented in [75], the main advantages of 

the FDTD method are as follows: 

1. FDTD does not use linear algebra and therefore it allows for FDTD models 

to have an infinite number of electromagnetic unknowns. 

2. FDTD is accurate and robust and sources of errors are well understood. 

3. FDTD treats impulse behaviour naturally since it can directly calculate the 

impulse response of an electromagnetic system, given that FDTD is a time 

domain method. 

4. FDTD treats nonlinear behaviour naturally as it is based on time domain 

technique. 

5. FDTD is a systematic approach since any structure under analysis can be 

reduced to the design of an appropriate FDTD grid. 

6. FDTD has increased capabilities as computer memory capacities are 

increasing rapidly and this will allow further fine discretisation of space (and 

time consequently). 

7. FDTD profits from increasingly advanced computational visualisation 

capabilities since the progression of electromagnetic signals can be 

monitored over stipulated periods of time. 

The FDTD method is based on the discretisation of the Maxwell’s equations in 

free space for the electric and magnetic fields, presented in (2.1) and (2.2), 

respectively. 

��
�� = �

�� ∇ × �                                                 (2.1) 

��
�� = �

�� ∇ × �                                                 (2.2) 

in which �� and  � are the permittivity and permeability of free space, respectively. 

For the discretisation of the above equations, the time and space resolutions, dt and 

dx, need to be defined. The space resolution is initially set and then the time 

resolution is calculated by the following equation: 
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!" = �#
$�                                                       (2.3) 

in which %� is the speed of light in free space. 

Particularly for the work developed in this thesis, the frequency-dependent 

nature of biological tissue is incorporated into the FDTD numerical model of the 

breast through a Debye formulation, defined by Luebbers et al. [76]: 

�&∗()* = �& + +
,-�� + ./

�0,-1                                       (2.4) 

where the following parameters are specific to each type of tissue: �2 is the relative 

permittivity, �� is the permittivity of free space, 3� is the electric susceptibility, 4 is 

the conductivity and 5 is the relaxation time. Finally, ) = 267 is the angular 

frequency. 

2.3.2. Data-Independent Beamforming 

In 1998, Hagness et al. [12] implemented a 2D monostatic system based on the 

Delay And Sum (DAS) beamformer where the breast is illuminated with a UWB 

pulse and resultant backscattered signals were time-shifted (or delayed) and added 

(or summed) to produce a synthetic focal point 8 = (�, �*, which corresponded to 

each pixel in the image. If a tumour existed at a specific focal point, then the returns 

from the tumour would add coherently. Returns from clutter due to natural 

heterogeneous tissue would add incoherently. The energy at this synthetic focus was 

measured and stored. An energy profile of the breast was created, in which high 

energy regions indicated the presence of malignant tissue and low energy regions 

represented normal tissue. If : is the number of monostatic antennas and ;< is the 

=�> backscattered signal, the pixel intensity at 8 is given by: 

?(8* = @∑ ;<B<C� D 5<(8*FG�
                                     (2.5) 

in which the calculated round-trip time delay between transmit and receive antennas 

is given by 5<(8* = 2!<(8* HIJ⁄ , where !<(8* = |8 − 8<| is the distance between 

the =�> transmitting antenna at 8< and the focal point (8*, H is the average velocity 

of signal propagation in the breast and IJ is the sampling interval between points. 

The traditional DAS beamformer was modified by Li et al. [70], in 2001, to 

compensate for attenuation due to radial spreading of the input signal from a 

transmitting antenna. Li also developed an artifact removal algorithm based on the 

average of the artifact present in all other channels. In this case, (2.5) becomes: 
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?(8* = @∑ M<N<B<C� D 5<(8*FG�
                                   (2.6) 

where M< represents the weight used to compensate for radial spreading and N< 

represents the backscattered waveform after compensation and artifact removal. 

Fear et al. [77] developed a similar monostatic system in 3D with patients in the 

prone position with a cylindrical antenna system as opposed to the planar antenna 

system described by Hagness et al. [12] (and modified by Li et al. [70] to 

accommodate a more realistic breast model). Both cylindrical and planar systems are 

represented in Figure 2.10. Fear et al. [77] included an artifact removal algorithm. In 

[29], Fear et al. tested this approach on both 2D and 3D models. For both their 

studies, they compensated for the radial spreading of the signals in a cylindrical 

system using a weighting factor of 1 O⁄ . 

 

 

Figure 2.10. The planar antenna configuration is shown on the left when the patient is in a 

supine position, while the circular antenna configuration is shown on the right when the 

patient is in a prone position. This image is adapted from [29]. 

 

In 2003, Nilavalan et al. [72] extended the monostatic DAS beamformer firstly 

developed by Hagness et al. [12] to the multistatic case [72]. In this study each 

transmitted signal was recorded in all receiving antennas simultaneously, 

significantly increasing the amount of energy recorded from any scatterer present. 

The following equation defines the energy return of a volume point of interest, over 

a window corresponding to the transmit pulse width τ: 

P = Q R∑ MS�S(" − IS*T(TU�* �⁄
SC� V�!"1

�                               (2.7) 

in which N represents the number of multistatic antennas, �S represents the signals 

and MS are factors that are applied to compensate for differences in the predicted 

attenuation between the round-trip paths (which depend on the depth of a point of 

interest and the spacing between the considered transmit and the receive antennas in 

the multistatic scenario). The recorded backscattered signals were spatially focused 

by time-aligning the signals based on the distance between the transmitting antenna 

to the point of interest and from this point to the receiving antenna. 
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Another variant of the simple DAS beamformer is the Delay-Multiply and Sum 

(DMAS) beamformer developed by Lim et al. [78]. This algorithm involved signals 

being time-shifted, multiplied in pairs and their products summed to form the 

synthetic focal point. The intensity value of the focal point ?(O�* is obtained by 

integrating the contributions over a time window WX: 

?(O�* = Q ;Y=Z!"[\
�                                              (2.8) 

in which ;Y=Z is the output signal after pairing multiplications, summing and 

squaring, WX = ]∆", and ] is an integer representing the number of FDTD time 

steps. With this algorithm, the reconstructed images provided an improvement in the 

identification of malignant tumours over the DAS algorithm, and identified tumours 

as small as 2 mm. 

In O’Halloran et al. [79], a novel channel-ranked beamformer, based on a simple 

DAS beamformer, was presented in which different weights were given to the 

backscattered signals depending on the propagation distance between the antenna 

locations and the synthetic focal point, so that the effect of dielectrically 

heterogeneous breasts would be minimised. The authors contended that signals with 

a longer propagation distance were more likely to encounter heterogeneity and 

therefore were more prone to incoherent addition, reducing the overall quality of the 

breast image, therefore extra weighting was attributed to signals with shorter 

propagation distances while lower weighting was attributed to signals with longer 

propagation. All signals were processed through a compensation algorithm so that 

deeper tumours could still be detected with this beamformer. The intensity value of 

the focal point ?(O�* is obtained by: 

?(O�* = Q @∑ ∑ M(S,,*;(S,,*D" − 5(S,,*FT,C�TSC� G�!">
�                      (2.9) 

in which M(S,,* is a channel-dependent weighting factor. O’Halloran et al. reported 

that for a number of different performance metrics, the channel-ranked beamformer 

outperformed the traditional DAS beamformer allowing for better detection and 

focusing of small tumours within the breast. 

Microwave Imaging via Space-Time (MIST) beamforming was developed by 

Bond et al. [71] and Davis et al. [80], using a monostatic system based on a planar 

antenna configuration. They introduced a new data adaptive algorithm for the artifact 

removal, where the artifact was estimated in a particular channel by using a filtered 

combination of artifacts present in all other channels. The residual mean squared 
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error was then reduced in the region dominated by the early artifact. Overall, the 

space time beamformer compensated for frequency dependent propagation effects, 

such as path dependent dispersion and attenuation effects. 

Klemm et al. [81] presented an Improved Delay And Sum (IDAS) beamformer 

applied to a 3D FDTD model of the breast. They further developed the traditional 

DAS beamformer [12] by introducing an additional weight factor QF for each focal 

point r within the breast, which allowed for the improvement of image quality. An 

energy collection curve was calculated by summing radar signals and was 

normalised by multiplying by the fraction 1 (1 + 4_*⁄  , in which 4_ is the standard 

deviation of the energy of all radar signals. A second order polynomial (� = ]�� +
`� + %) was fitted to the normalised energy collection curve, in which a is the 

quality factor associated with that point. In particular, it was observed that the 

performance of the IDAS beamformer was comparable to the performance of a much 

more complex beamformer such as the data-adaptive Capon beamformer (presented 

in Sub-section 2.3.3), while it required comparably less computational time. 

O’Halloran et al. [82] tested the DAS, DMAS and IDAS with three realistic 

breast FDTD models based on MRIs available on the UWCEM repository [83] with 

the dielectric properties reported by Lazebnik et al. [26-27]. In [82], O’Halloran et 

al. observed that while both IDAS and DMAS significantly outperformed DAS in 

breast with higher adipose content, the performance of IDAS and DMAS was 

significantly reduced when applied to dense breasts with higher content of 

fibroglandular tissue. 

In 2010, O’Halloran et al. [84] created a system utilising a Quasi-Multistatic 

MIST beamformer. The monostatic MIST beamformer used in [71, 80] was modified 

to record signals from all receiving antennas. The signals were firstly coarsely time-

aligned, and then passed through a bank of FIR filters which compensated for the 

frequency-dependent propagation effects. The outputs from the filters were summed 

and time-gated, and the energy at that particular position was calculated. The focal 

point of the beamformer was then scanned throughout the breast, and an energy 

profile of the breast was created. O'Halloran et al.'s [84] multistatic MIST approach 

was tested on a MRI-derived model that included the recently reported dielectric 

properties of adipose and fibroglandular tissue established by Lazebnik et al. [26-

27]. Later in [85], the same algorithm was tested for robustness when examining 
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across a range of potential clinical scenarios: varying location of tumours, different 

size of tumours, natural variations in dielectric properties and the use of breast 

models with different proportions of adipose/fibroglandular tissue. 

2.3.3. Data-Adaptive Beamforming 

Data-adaptive beamforming achieves a maximum reception in a specific 

direction for each antenna array element using an estimation of the signal arrival 

(with noise) from a desired direction. Signals from other unwanted directions, such 

as interference or clutter, are rejected. Unwanted signals are separated from the 

desired signals by adjusting weights (or steering vectors) at each sensor in the 

antenna array. In general, data-adaptive beamforming allows for better resolution 

and better interference suppression capability than data-independent beamformers. 

The Standard Capon Beamformer (SCB), developed by Capon et al. [86] in 

1969, involved adaptively selecting weight vectors to minimise array output power 

provided that the desired signal did not suffer from distortion effects. The SCB is 

likely to outperform the data-independent methods, such as those described in Sub-

section 2.3.2, as a result of rejecting unwanted signals. However, in reality the 

steering vector is very sensitive to differences between the assumed and actual signal 

arrival angles and the performance of the Capon beamformer can be highly 

compromised.  

Several changes have been made to the SCB to improve on the robustness of the 

algorithm. For example, Li et al. [87-88] improved the SCB algorithm by 

introducing an uncertainty set for the array steering vectors, creating the Robust 

Capon Beamformer (RCB). The RCB also allowed for a scaling ambiguity when 

estimating the desired signal power, enhancing previous adaptations such as the 

Robust Minimum Variance Beamforming by Lorenz et al. [89-90], and allowed for 

simplified and efficient computation of the weight vectors. 

Guo et al. [91-92] introduced two changes to adapt the RCB for the specific case 

of breast cancer detection by creating: the Robust Weighted Capon Beamformer 

(RWCB) and the Amplitude and Phase Estimation (APES) approach. The RWCB 

used the strategy used in Li et al.’s [87-88] RCB algorithm, implementing a 

weighting strategy to improve performance based on the adjustment of the sample 

Covariance Matrix. The APES approach specifically assumed the signal waveform is 
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previously known, estimating energy from the calculated amplitude of the 

backscattered signal. 

Xie et al. [93-94] extended the RCB algorithm into 3D and the multistatic 

approach to create the Multistatic Adaptive Microwave Imaging (MAMI) algorithm. 

Their MAMI algorithm involved two stages of computation of the RCB algorithm to 

eliminate errors within the steering vector and making the algorithm more robust. 

First, the data-adaptive RCB was used spatially to calculate a vector with multiple 

backscattered waveforms for each probing signal. Second, using the RCB algorithm 

again, the previously estimated vector of waveforms was used to recover a scalar 

waveform which was used to compute the backscattered energy. 

For the work described in this thesis, the beamformer is based on the DAS 

principle. This is due to the fact that the DAS algorithm is easy to implement and 

because the development of an improved beamformer is outside the scope of this 

thesis in particular. The system used in this thesis is described in detail in Chapter 4. 

2.4.Classification Techniques 

In addition to using MI to create images of backscattered energy from which the 

presence of tumours may be inferred, a number of studies have also used more 

detailed analysis of backscatter in order to classify tumours. In addition to using MI 

to create images of backscattered energy from which the presence of tumours may be 

inferred, a number of studies have also used more detailed analysis of backscatter in 

order to classify tumours. In these studies, it has been confirmed that the morphology 

of tumours (namely shape, margin, size and density) highly influences the Radar 

Target Signature of a scattering object detected by UWB radar breast cancer 

imaging. Furthermore, it is acknowledged that the resonance scattering phenomenon 

varies with the border profiles of the lesions. Altogether, these findings suggest that 

benign and malignant tumour classification is feasible. The classification approaches 

available in the literature are briefly reviewed here for both 2D and 3D systems. 

2.4.1. Classification in 2D Systems 

Chen et al. [95] presented a preliminary study which addresses the effect of the 

morphology of a tumour mass on microwave signature in 2D UWB radar imaging. 
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In their study, a 2D breast phantom was modelled with homogeneous normal breast 

tissue and surrounded by a layer of skin matching the Debye parameters used in [71], 

and tumour shapes were created based on polygonal approximation of tumour 

boundaries in X-Ray mammograms by Rangayyan et al. [41]. Tumours were 

modelled with an ellipse baseline which is then modified with two parameters, Q and 

∆B, which determine the level of “ruggedness” to recreate whether the tumour is 

benign or malignant. In this study, a monostatic radar array was used, in which a 

UWB pulse was transmitted and the backscattered signal was recorded at the same 

location, one by one for all the antenna elements in the array. As first noted by Huo 

et al. [96-97], the early time response of UWB backscattered signals depends on the 

specular reflection from the surface of the target and is relatively independent of the 

mass morphology, while the late-time response is greatly influenced by the Complex 

Natural Resonances (CNRs) of different mass morphologies and dielectric properties 

of the targets, and so is directly affected by varying Q and ∆B. 

In [98], Chen et al. introduced some heterogeneity into the breast phantom by 

modelling areas of clutter around tumour models, recreating breast phantoms based 

on the three groups defined by Lazebnik et al. [27]; they also created breast 

phantoms with multiple tumour models. The Fractional-Sequence CLEAN (FS-

CLEAN) algorithm was used to examine the late-time response of high-scattering 

masses within the breast. While they obtained promising results on the detection of 

malignant tumours in high adipose breast phantoms, the classification of tumours 

was compromised in breast phantoms with higher content of fibroglandular tissue or 

when multiple tumours were placed within the breast. 

In later studies, Chen et al. [45-46] introduced the UWB Multiple-Input 

Multiple-Output (MIMO), or Multistatic Radar architecture which can transmit 

multiple probing signals that may be chosen arbitrarily and independently, allowing 

for improved performance in the detection of suspicious regions when compared to 

[98]. In this study the tumours were modelled in the same fashion as their previous 

studies and were grouped into two categories to represent benign and malignant 

tumours: oval/macrolobulated and microlobulated/spiculated, respectively. Also, all 

tumour models had the same average size throughout the study. In these studies, 

robust lesion binary classification was accomplished through two fusion schemes: 

the Selection-Combining (SC) fusion and Log-Likelihood-Ratio (LLR)-based fusion. 

On average, for both fusion strategies, the accuracy achieved for shape classification 
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using a binary classifier was 86.7%. 

In [47], Chen et al. investigated the feasibility of applying contrast agents to 

enhance the contrast between tumours and other types of normal tissue within the 

breast. The agents used in this study were microbubbles and Single-Walled Carbon 

NanoTubes (SWCNTs), as previously used by Mashal et al. [99-100]. Using a 

monostatic UWB radar, the late-time response of the target, before and after the 

inclusion of the contrast agents on the previously located tumour sites, was analysed 

and the differential damping factors of the CNRs were extracted. This study showed 

that diseased tissues can be correctly classified between 80.0-83.3% for 

microbubbles, and between 73.3-78.3% for SWCNTs. 

In [48], Teo et al. looked at the early-time portion of the backscatter breast 

response for tumour classification, as this provides a higher signal strength. It was 

also known beforehand that a rough tumour has more significant scattering spicules 

than a smoother tumour. In their paper, the position of the breast tumour was 

approximately known beforehand and a set of transceivers (transmit/receive 

antennas) were located around a portion of the breast. A system with a 2D 

heterogeneous breast modelled with clutter sources with 30 smooth and 30 

spiculated tumours was investigated and the two tumours were well separated for all 

results. 

2.4.2. Classification in 3D Systems 

Davis et al. [44] addressed the classification of breast tumour models based on 

their Radar Target Signature (RTS) obtained through Ultra Wideband microwave 

backscatter. The shape of the tumours was modelled using Gaussian Random 

Spheres, first introduced by Muinonen [101-102], to represent three different shapes 

(spiculated, microlobulated and smooth) and four different sizes of tumours (average 

radius of 2.5, 5, 7.5 and 10 mm).  

The different tumour models, as well as a homogeneous breast tissue, were 

modelled in a 3D Total-Field/Scattered-Field (TF/SF) FDTD model with the 

dielectric Debye parameters for malignant tissue and for normal homogeneous breast 

tissue, respectively, as presented by Bond et al. [71]. In such a simulation scenario 

only the response from the tumour is present in the backscattered signals and can be 

directly analysed. In their paper, Davis et al. acknowledged that while the UWB 
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radar will not provide sufficient resolution to reconstruct details on a millimetre 

scale, it can potentially provide enough information to classify a tumour by means of 

its RTS.  

In [44], a full classification algorithm was applied to a database of tumour 

models using the leave-one-out method [103]. The full classification algorithm is 

composed of two methods for basis selection, Principal Component Analysis (PCA) 

and Local Discriminant Bases (LDB), and is followed by a Linear Discriminant 

Analysis (LDA)-based classifier. The system was trained and tested with a 10 dB 

Signal-To-Noise Ratio. Since the results showed that the size classifier outperformed 

the shape classifier for the full database, approximately 97 and 70% respectively, a 

Size-Then-Shape Cascade Classifier was considered as the main classifier for the 

database of tumour models. A performance of approximately 86% was achieved for 

a shape classification in the Cascade Classifier. 

2.5.Conclusions 

This chapter presented background information on tumour cells and how breast 

cancer is formed, and also on the dielectric properties inherent to breast and tumour 

tissues. Different beamforming algorithms used in MI based on UWB Radar were 

reviewed as well as methods for classification of different types of tumours. The 

material presented in this chapter motivates the simulation experiments developed in 

the following chapters: 

• in Chapter 3 the modelling of tumours of different sizes and shapes is 

addressed; 

• in Chapter 4 the comparison between planar and circular antenna 

configurations, as well the optimisation of the number of antennas in both 

systems, is presented; 

• in Chapters 5 and 6, different classification algorithms are developed for 

classification of large tumour databases embedded in homogeneous and 

heterogeneous breast models, respectively. 

The next chapter discusses the methodology used for tumour modelling for the 

work described in this thesis.   
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Chapter 3 

 

3.Tumour Modelling 

3.1.Introduction 

This chapter discusses the methodology used to model benign and malignant 

tumours for the work subsequently described in this thesis. To aid in the 

development of classification methodologies, it is necessary to use a database of 

accurate numerical tumour models which incorporates different sizes, growth 

patterns from benign to malignant and corresponding dielectric properties as well as 

classification algorithms that further detect and differentiate between benign and 

malignant tumours.  

Gaussian Random Spheres (GRSs) are used to model benign and malignant 

tumours, following Muinonen’s [101] algorithm originally designed for modelling 

asteroids and comets in an astrophysics context. The reason the GRSs are used to 

model tumour growth and development is that they can be easily modified to provide 

different sizes, shapes and textures of surface in 3D, as these are characteristics that 

most significantly influence the Radar Target Signature (RTS) of tumours which are 

used for classification purposes. As noted in the previous chapter, benign tumours 

typically have smooth surfaces and have spherical, oval or at least well-

circumscribed contours. Conversely, malignant tumours usually present rough and 

complex surfaces with spicules or microlobules, and their shapes are typically 

irregular, ill-defined and asymmetric. Although size may play an important role 

when analysing the development of a tumour over a period of time, and may be an 

indication of malignancy, in this study the primary concern is the analysis of small 

tumours (up to 1cm in radius), therefore, shape and texture of the surface of a tumour 

are the two most important characteristics that will help differentiate between a 

benign and a malignant tumour [41-43, 57]. 
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3.2.Basis of the Gaussian Random Sphere Method 

The mathematical model for GRSs was developed and presented by Muinonen 

[101-102, 104], and later adjusted to the breast tumour context by Davis et al. [44]. 

The shape of the GRS is given by a radius vector, 8 = 8(a, b*, which is defined by 

the logradius, or logarithmic radius, c = c(a, b*: 

8(a, b* = d e�f gc(a, b* − �
� h�i                                  (3.1) 

c(a, b* = ∑ ∑ cjkljk(a, b*jkCUj∞jC�                                (3.2) 

In the equations above (a, b* stand for the spherical coordinates, d is the mean 

radius, h is the standard deviation of the logradius, ljk are the orthonormal spherical 

harmonics, cjk are the spherical harmonics weight coefficients, in which l and m 

stand for the degree and order of the expansion.  

Furthermore, the covariance functions of the radius and the logradius, d�Σ2 and 

Σm, respectively, and the corresponding variances, d�σ� and h�, are interrelated 

through:  

Σ2 = exp(Σm* − 1                                              (3.3) 

σ� = expDβ�F − 1                                              (3.4) 

in which σ represents the standard deviation of the radius. The covariance function 

of the logradius can be further given by: 

Σm = β
�Cm(γ*                                                  (3.5) 

in which, γ is the angular distance between two directions (a�, b�* and (a�, b�*, and 

Cm is the logradius correlation function. After adjusting for the degree of the 

expansion (l) as in [102], the correlation length ℓ and the correlation angle Γ are 

defined by: 

ℓ = �
sUtu(v*(�*

                                                  (3.6) 

Γ = 2 arcsin R�
� ℓV                                              (3.7) 

in which Cm(�* is the logradius correlation function in which Σm(�* is the second 

derivative of the covariance function with respect to γ = 0. GRSs can be modified 

mathematically to model both malignant and benign tumours of different sizes by 

varying the mean radius (d* and the covariance function of the logradius (Σm) [102]. 

The basis for the GRS method implemented in this work was taken from the “G-

sphere” software developed by Muinonen [104], translated into the Matlab 
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programming language. 

Four different models of tumours at four different sizes are considered in this 

chapter. Malignant tumours are represented by spiculated and microlobulated GRSs. 

In contrast with Davis et al. [44], benign tumours are divided into two type 

categories: smooth and macrolobulated. The aim of having two categories for benign 

tumours is twofold: it becomes possible to differentiate the stage of development of a 

benign tumour and a stage of pre-malignancy may be detected sooner, and, 

additionally, the number of sub-categories for malignant shapes and for benign 

shapes is equal, allowing for better training of classifiers. 

Microlobulated, macrolobulated and smooth GRSs are obtained by varying the 

correlation angle (Γ) discretely in intervals of 5°. The correlation angle varies 

approximately between 5° and 20° for microlobulated GRSs, between 25° and 45° 

for macrolobulated GRSs and between 50° and 90° for smooth GRSs. Smooth GRSs 

have a spherical or ellipsoid appearance with light distortions on the surface. 

Macrolobulated GRSs often resemble ellipsoid figures in which one of the 

dimensions is significantly higher than the other or show large lobular protuberances. 

Microlobulated GRSs are often represented by spherical volumes with several 

smaller lobular protuberances of different sizes on the surface. 

Spiculated GRSs are obtained by adding 3, 5 or 10 spicules to smooth GRSs, as 

previously used in [44]. The increasing number of spicules reflects the evolution of 

the tumour model as it suggests that the tumour is spreading in more directions. The 

spicules are modelled with cones of height 2 cm and with a radius matching the 

average radius of the smooth GRSs to which they are added. Consequently, this 

implies that the spicules are more prominent for GRSs with smaller average radius 

than for GRSs with larger average radius, as the length of the spicules remains 

constant. Finally, the centre of the GRSs matches the centre of the base of the 

spicules which are randomly directed to any direction. 

The average radius of all types of spheres are 2.5, 5, 7.5 or 10 mm, as previously 

used for the database in [44].  

3.3.Tumour Models 

For the work described in this thesis, a database of 480 tumour models is created 
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including 30 samples for each of the four sizes and the four shapes. Examples of 

benign tumour models based on the GRSs method, with radii of 5 and 10 mm, are 

shown in Figure 3.1 and Figure 3.2. 

 

 

(a) 

 
(b) 

Figure 3.1. Samples for different Gaussian Random Spheres (GRSs) representing benign 

tumour models. From top to bottom: (a) smooth and (b) macrolobulated. The GRS models 

have an average radius size of 5 mm. 
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(a) 

 
(b) 

Figure 3.2. Samples for different Gaussian Random Spheres (GRSs) representing benign 

tumour models. From top to bottom: (a) smooth and (b) macrolobulated. The GRS models 

have an average radius size of 10 mm. 

 

Examples of malignant tumour models, created with the GRS method, with radii 

of 5 and 10 mm are shown in Figure 3.3 and Figure 3.4. In particular, a 

microlobulated GRS is presented as well as spiculated GRSs with: 3, 5 and 10 

spicules. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3.3. Samples for different Gaussian Random Spheres (GRSs) representing malignant 

tumour models. From top to bottom: (a) microlobulated, (b) spiculated with 3 spicules, (c) 5 

spicules and (d) 10 spicules. The GRS models have an average radius size of 5 mm. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3.4. Samples for different Gaussian Random Spheres (GRSs) representing malignant 

tumour models. From top to bottom: (a) microlobulated, (b) spiculated with 3 spicules, (c) 5 

spicules and (d) 10 spicules. The GRS models have an average radius size of 10 mm. 
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All surface and interior points of the GRS models are then modelled with the 

Debye parameters using the single-pole formulation, as mentioned in (2.4) , repeated 

here for completeness: 

�~∗ ()* = �~ + 4�
�)��

+ ∆�
1 + �)5 

The parameters for malignant tissue, as established by Lazebnik et al. [27] are 

the following: �∞ = 6.749, ∆� = 50.09, 4J = 0.794 ;�U� and 5 = 10.50 fc. 

The numerical simulations detailed in Chapter 5 allow for the acquisition of the 

backscattered response of tumours embedded in a homogeneous breast model. As an 

example, the backscattered signals of a smooth tumour with different values of 

radius, and the backscattered signals of the smallest tumours (with 2.5 mm) with 

different shapes are presented in Figure 3.5 to illustrate the differences between the 

signals produced by tumours of different sizes and shapes. 

 

 
(a)                                                                                              (b) 

Figure 3.5. Sample of (a) backscattered signals for tumours of identical shape with different 

sizes and (b) backscattered signals for tumours of different shapes with identical size. 

3.4.Conclusions 

This chapter has discussed the modelling of tumours, which will be needed for 

simulation purposes in the following chapters, through the GRSs method. A database 

of 480 realistic tumour models based on GRSs was created, including four different 

shapes (two benign and two malignant) and four different sizes. With this database it 

was possible to recreate various stages of growth and development of tumours from 
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2.5 to 10 mm in radius size and between different degrees of benignity and 

malignancy. These variations are expected to influence the Radar Target Signature of 

tumours significantly enough to allow for the different sizes and shapes to be 

successfully classified.  

The next chapter will address the optimisation of the UWB system by comparing 

two different antenna configurations: the planar and the circular systems. The two 

antenna configurations are compared and evaluated using a number of performance 

metrics, and in a number of different conditions. 
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Chapter 4 

 

4. Comparison of Planar and Circular 

Antenna Configurations 

4.1.Introduction 

This chapter is motivated by the need to optimise the UWB system design for 

breast cancer imaging, in particular the antenna configuration. Different antenna 

configurations have been used in different studies, particularly planar and circular 

configurations.  

In this study, planar and circular antenna configurations are compared in a range 

of conditions. Firstly, both configurations are evaluated with tumours varying in size 

from 2 to 10 mm in diameter. In addition, the antenna configurations are evaluated 

for tumours placed in different locations of the breast. In each case, the optimum 

number of antennas for both antenna configurations is investigated. The robustness 

of the antenna configurations is investigated by increasing the dielectric variance in 

normal breast tissue. Evaluation is carried out using a range of different performance 

metrics that measure the ability of the imaging system to highlight tumours in the 

presence of clutter, and also evaluate the localisation ability of the system. 

The findings hereby presented have been published in the following papers:  

• R. C. Conceição, M. O’Halloran, M. Glavin and E. Jones, “Comparison of 

Planar and Circular Antenna Configurations For Breast Cancer Detection 

Using Microwave Imaging”, Progress In Electromagnetics Research, Vol. 

99, pp. 1-20, 2009 [49]. 

• R. C. Conceição, M. O'Halloran, M. Glavin and E. Jones, “Antenna 

configurations for Ultra Wide Band Radar Detection of Breast Cancer”, in 

Proceedings of the SPIE BIOS West, San José, CA, USA, Vol. 7169, No. 9, 

pp. [71691M, 12], 2009 [58]. 
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4.2.Existing Antenna Configurations 

Different antenna configurations have been used in a number of studies 

regarding UWB Radar Microwave Imaging. In this study two main system 

configurations are considered: the planar configuration initially developed by 

Hagness et al. [12] and the circular configuration developed by Fear et al. [29].  

Each antenna configuration is defined by the orientation of the patient and the 

position of the antenna array. In the planar configuration, the patient is oriented in 

the supine position with a planar antenna array placed across the naturally flattened 

breast. This configuration has been used by Hagness et al. [12], Bond et al. [71], 

Davis et al. [80], Nilavalan et al. [72], Li et al. [70] and O’Halloran et al. [84].  

Conversely, in the circular configuration, the patient lies in the prone position 

with the breast naturally extending through an opening in the examination table, 

while a circular array of antennas surrounds the breast. The circular configuration 

has been used by Fear et al. [77, 105-106], Xie et al. [93-94], Klemm et al. [73, 81] 

and Craddock et al. [107]. In the literature, this configuration is often referred to as 

cylindrical or hemispherical due to its 3D configuration. In a cylindrical 

configuration, a circular array of antennas is placed at a certain depth of the breast to 

analyse the corresponding cross section through the breast; the same array of 

antennas is then vertically translated at different depths to further analyse the breast 

[77, 105]. For the hemispherical configuration, a circular array of antennas is placed 

around the base of the breast and then vertically translated at other depths towards 

the nipple, however for this configuration the antennas are kept at a constant distance 

from the skin [73, 81, 93-94, 106-107]. 

Both planar and circular antenna configurations are shown in Figure 2.10, and 

represented again below for completeness, for patients in supine and prone positions, 

respectively. 

 

 
Figure 2.10. The planar antenna configuration is shown on the left when the patient is in a 

supine position, while the circular antenna configuration is shown on the right when the 

patient is in a prone position. This image is adapted from [29]. 
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4.3.Simulation Procedure and Performance Metrics 

This sub-section describes the simulation procedure used for numerical 

modelling of the breast, as well as the performance metrics used to compare the 

performance of the planar and circular antenna configurations. 

4.3.1. Numerical Model of the Breast 

In order to test both antenna configurations, a numerical model of the breast is 

created for both configurations. A 2D FDTD model of the breast, similar to the 

model used by Hagness et al. [12] is used to examine the planar configuration, while 

a separate 2D breast model, as used by Fear et al. [77], is used to test the circular 

configuration. In both models, a 2 mm layer of skin covers the breast.  

As noted in Chapter 2, Debye parameters are used to model the frequency-

dependent propagation characteristics of the various tissues. The Debye parameters 

for skin are chosen to fit published data by Gabriel et al. [23], while the Debye 

parameters for malignant tissue are those used by Bond et al. [71]. Normal breast 

tissue is modelled with the Debye parameters for adipose tissue [12, 70, 77]. To 

account for the dielectric differences between fibroglandular and adipose tissues, a 

dielectric variation is randomly incorporated in a checkerboard fashion, using a 

Gaussian distribution, to 4-mm-side squares within the 2D model of the breast, as 

used in [12, 77]. The checkerboard pattern is randomly created for all simulations. 

Models of the breast are created to incorporate the following dielectric variations, 

which represent the variation within the normal breast tissue between adipose and 

fibroglandular tissue: ±10%, ±20%, ±30%, ±40% and ±50%, where these variations 

are with respect to the nominal dielectric properties calculated according to the 

Debye parameters for adipose tissue. The Debye parameters for each type of tissue, 

along with the relative permittivity and conductivity at the centre frequency, are 

shown in Table 4.1.  
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Table 4.1. Debye parameters for the FDTD model and dielectric properties of each tissue at 

the centre frequency of the input pulse.  

 

Tissue �∞ ∆� 
��  

(sm
-1

) 

�  

(ps) 
Relative Permittivity 

Conductivity  

(sm
-1

) 

Skin 15.63 8.2 0.82 12.6 21.65 2.35 
Tumour 7 47 0.15 7 49.2 6.1 
Adipose 3.20 1.65 0.035 16 4.30 0.38 

 

For the supine (planar) examination, the breast is naturally flattened and the 

antennas lie directly on the skin across a span of 80 mm. As the breast flattens, it is 

assumed that the maximum depth of the breast tissue is 42 mm [12]. The antenna 

array is backed by a synthetic material matching the dielectric properties of skin. The 

antenna array elements are modelled as electric-current sources. For the prone 

(circular) examination, the antennas form a circle around the breast. The radius of 

the breast is 36 mm, including the 2 mm layer of skin [77]. The breast and antenna 

array are once again backed by a synthetic material matching the dielectric properties 

of skin. A representation of both models is shown in Figure 4.1; these diagrams also 

show the co-ordinate system used for locating tumours in the breast. 

 

 
 (a)                                                                                          (b) 

Figure 4.1. The supine and prone breast models are shown in (a) and (b), respectively. In 

the grid area, the white regions represent adipose tissue, while the darker regions represent 

fibroglandular tissue. The tumour is represented in green. A 2 mm layer of skin limits both 

models (shown in dark grey), and on top of it the antenna locations are shown in red dots. 

 

The FDTD grid resolution, dx, is 0.5 mm and the time step, dt, is calculated as 

0.833 ps (by means of (2.3)). A scan involves sequentially illuminating the breast 

model with a UWB pulse from each antenna, while recording the backscattered 

signal at the same antenna. For the tests in this chapter the number of antennas varies 
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between 8 and 20. Before further processing, the signals are downsampled from 

1200 GHz (the sampling frequency of the FDTD simulation) to 50 GHz. The input 

signal is a 150 ps differentiated Gaussian pulse, with a centre frequency of 7.5 GHz 

and a -3dB bandwidth of 9 GHz. The time-domain and magnitude spectra of the 

UWB input pulse are represented in Figure 4.2. 

 

  
Figure 4.2. The time-domain (left) and magnitude (right) spectra of the UWB input pulse. 

4.3.2. UWB Imaging System 

A skin-breast artifact removal algorithm is applied to the recorded backscattered 

signals to remove the input signal and the reflection due to the skin-breast interface. 

Two different skin-breast artifact removal algorithms are used for the two parts of 

the experimental setup, as will be detailed later in this chapter. The first skin-breast 

artifact removal algorithm used is based on the algorithm described in Bond et al. 

[71]. Bond’s artifact removal is applied, channel-by-channel, by estimating the 

artifact in each channel as a filtered combination of the artifacts in all the signals 

from the remaining channels. A simplified block diagram of Bond’s artifact removal 

is presented in Figure 4.3, in which bi[n] represents discretised backscattered signal 

recorded in antenna i, and xi[n] represents the artifact-free backscattered signal. 
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Figure 4.3. Simplified block diagram representing the artifact removal algorithm as 

described in Bond et al. [71]. 

 

The second artifact removal algorithm used is an “ideal” artifact removal 

algorithm. The “ideal” artifact removal is applied by subtracting the backscattered 

signals from a homogeneous FDTD model without any tumour from the 

backscattered signals obtained from the heterogeneous FDTD model containing a 

tumour, channel by channel, therefore maintaining the effects from the breast 

heterogeneity and tumour in the backscattered signals, while removing the input 

signal and the skin-breast artifact. 

Finally, a monostatic Delay And Sum (DAS) beamformer is used to create the 

image of the breast. For the simple DAS beamformer used here, backscattered 

signals recorded by the antennas are time-shifted, scaled by a scaling factor k (which 

allows for the tumour response to have similar magnitudes independent of the 

antennas by accounting for the distance between a possible tumour and the 

antennas), summed and windowed (with a 5 mm window) to produce a synthetic 

focal point. The returns from high scattering regions in the breast, such as tumours, 

will add coherently, whereas returns from clutter, which result from the existence of 

different normal breast tissues within the breast, will add incoherently. In Figure 4.4, 

a block diagram of the simple delay and sum beamformer is presented. 
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Figure 4.4. Block diagram illustrating the simple delay and sum beamformer for a system 

with N antennas. The signals recorded in each antenna are time delayed, scaled by a scaling 

factor k and then added together, finally the signals are windowed and the energy profile is 

calculated. 

4.3.3. Performance Metrics 

In order to evaluate the performance and robustness of each antenna 

configuration, given different tumour sizes and locations within the breast, a number 

of different metrics are used: 

• Signal-to-Clutter Ratio within-breast (SCRwb) [49, 58, 106, 108]; 

• Signal-to-Clutter Ratio between-breast (SCRbb) [29, 58, 84, 106, 108];  

• Signal-to-Mean Ratio (SMR) [49, 78]; 

• The difference between the actual location of the tumour and the location of 

the energy peak in the resulting image of backscattered energy (Mdiff) [49, 58, 

84]; 

• The Full Width Half Maximum (FWHM), which estimates the physical 

extent of the tumour response [49, 58, 106, 108]. 

The SCRwb compares the maximum tumour response to the maximum clutter 

response in the same image of backscattered energy. To obtain the value of the 

maximum clutter, the maximum pixel value of the image is found in the area of the 

breast that excludes the tumour peak response up to twice the extent of the FWHM 

value [49, 58, 106, 108].  

The SCRbb compares the maximum tumour response with the intensity at the 

same location in an image formed with the modelled breast with no tumour. In a real 

life examination, the potential image without a tumour could be acquired from the 

opposite breast, as in principle both breasts from a patient should be similar in terms 

of average dielectric properties, though with different tissue configurations, and it is 

unlikely that both breasts will have tumours in the exact same location [29, 58, 84, 

106, 108]. 
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The SMR compares the maximum tumour response with the mean response of 

the different tissues across the breast in the same image of backscattered energy [49, 

78].  

The FWHM measures the distance between the energy peak response of the 

detected tumour and the point at which the energy of the peak response drops to half 

[49, 58, 106, 108]. This metric, as well as Mdiff, determines the ability of the 

beamformer to effectively localise the tumour within the breast. 

4.4.Simulation Results and Discussion 

The experiment is developed in two stages which are presented in the following 

two Sub-sections, 4.4.1 and 4.4.2. The optimisation of the number of antennas is 

carried out in two situations, when varying the size of tumours, and when varying 

the location of tumours. The two antenna configurations are then tested for 

robustness by increasing the variance within the normal tissues of the breast. 

4.4.1. Optimum Number of Antennas for Varying Tumour 

Size 

The first experiment involved the optimisation of the number of 

transmitting/receiving antennas that allow for improved performance. The planar and 

the circular configurations were tested with a tumour located at the following (span, 

depth) locations: (5,-2.4) cm and (3.6,-3.6) cm, respectively. The size of the tumour 

varied from 2 to 10 mm, in steps of 2 mm. Backscattered signals were processed 

with Bond’s artifact removal algorithm and a DAS beamformer. The performance 

for each antenna configuration was analysed and compared for a varying number of 

transmitting/receiving antennas (8 to 20), in a total of 650 FDTD simulations with 

different levels of dielectric heterogeneity, by visual inspection of backscattered 

images and by using performance metrics.  

A sub-set of the metric results, SCRwb and SCRbb, is presented in Figure 4.5, 

when 6 mm tumours are embedded within the normal breast tissue, with a ±10% 

dielectric variation. 
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                                           (a)                                                                                          (b) 
Figure 4.5. Absolute values for the performance metrics: (a) SCRwb and (b) SCRbb versus 

the number of antennas, with the presence of a 6 mm tumour with a dielectric variation of 

the normal breast tissue by ±10%. Quadratic curves were fitted to the data. For SCRwb the 

quadratic equations are given by � = 0.0003�� − 0.0557� + 10.3477 (circular) and 

� = −0.0004�� + 0.0437� + 5.5195 (planar). For SCRbb the quadratic equation are 

given by � = −0.0370�� + 1.1832� + 0.5994 (circular) and � = −0.0068�� +
0.2333� + 3.8701 (planar). 

 

From Figure 4.5 and all images of backscattered energy (data not represented), 

for both antenna configurations, improvement is noticed when 16 to 20 antennas are 

used. Therefore the optimum number of antennas used is 16 antennas for both 

antenna configurations, as this number allows for successful detection of tumours 

without additional computational load. Increasing the number of antennas beyond 

this point will not increase spatial diversity significantly and therefore will not affect 

performance significantly. 16 antennas was also found to be the optimum number for 

all tumour sizes; however for brevity only results for the 6 mm are plotted here, by 

way of example.  

The resulting backscattered images using 16 antennas with tumours from 2 to 10 

mm are shown in Figure 4.6, for the circular antenna configuration, and in Figure 

4.7, for the planar antenna configuration. 

 

 

 

 

 

 



Chapter 4: Comparison of Planar and Circular Antenna Configurations___________ 

50 
 

 
(a)                                                                                         (b) 

 
(c)                                                                                         (d) 

 
 (e) 

Figure 4.6. Images of backscattered energy (on a dB scale) for the circular antenna 

configuration, using 16 antennas. For all images, there is a tumour present with its centre at 

(3.6,-3.6) cm. The size of the tumours is the following: (a) 2mm, (b) 4mm, (c) 6mm, (d) 8mm, 

(e) 10mm. Note different intensity scales for the different plots. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 4.7. Images of backscattered energy (on a dB scale) for the planar antenna 

configuration, using 16 antennas. For all images, there is a tumour present with its centre at 

(5,-2.4) cm. The size of the tumours is the following: (a) 2mm, (b) 4 mm, (c) 6 mm, (d) 8 mm, 

(e) 10 mm. Note different intensity scales for the different plots. 
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For all considered tumours, it is observed that their positions are easily detected 

in Figure 4.6 and Figure 4.7. Comparing the two configurations, the circular 

configuration gives a clearer and more isolated position of the tumour when 

compared to the equivalent results for the planar configuration. Also in the circular 

configuration, the centre of the tumour is closer to its original position when 

compared to the planar configuration for which the tumour seems to be closer to the 

skin layer than it actually is, suggesting that having antennas around the tumour 

allows a better focusing of its location when compared to having antennas on only 

one side of the tumour. 

The performance metrics for both antenna configurations using 16 antennas is 

shown in Table 4.2. 

 

Table 4.2. Summary table with performance metrics results for both antenna configurations 

with different tumour sizes when using 16 transmitting/receiving antennas. 

 

Metrics Antenna Configuration 
Tumour Size (mm) 

2 4 6 8 10 

SCRwb 
Circular 5.8 10.7 9.6 8.4 7.2 
Planar 4.0 7.3 6.6 5.9 5.3 

SCRbb 
Circular 7.2 11.4 10.8 5.1 4.4 
Planar 4.3 7.3 5.8 5.4 4.5 

Mdiff 
Circular 0.5 0.5 0.5 0.5 0.5 
Planar 2.1 3.5 3.5 6.0 6.0 

FWHM 
Circular 2.5 4.3 6.0 3.9 1.5 
Planar 8.4 9.4 10.1 10.4 11.1 

 

The contrast between the tumour and the breast is higher for the circular than the 

planar configurations, as indicated by the SCRwb and SCRbb. An exception is for 8 

and 10 mm tumours for the SCRbb metric, although the results still remain 

comparable to those for the planar configuration. The tumour is better localised and 

“defined” for the circular than the planar configurations, as indicated by metrics Mdiff 

and FWHM (Mdiff is the metric that better reflects the contrast between both antenna 

configurations, which is supported by visual inspection). 

It should be noted that the values for SCRwb and SCRbb first increase when the 

tumour models increases from 2 to 6 mm, showing an improvement on the 

performance of the imaging configurations as the tumour shows a stronger response 

comparatively to clutter. However, when the tumour has a larger dimension of 8 and 

then 10 mm, these metrics drop in value. This is likely due to the fact that the 
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window used to isolate the tumour response is optimised for smaller tumours (the 

window size is 5 mm) and when larger tumours are detected, the window does not 

cover the entire tumour and, consequently, the system may consider that the rest of 

the tumour is clutter. 

 

   
(a)                                                                                 (b) 

  
(c)                                                                                 (d) 

Figure 4.8. Absolute values for four performance metrics varying the relative permittivity 

from ±10 to ±50%, in steps of 10%, using the circular and planar configurations with 16 

monostatic antennas in an FDTD breast model with the presence of a 6 mm tumour. 
 

Furthermore, it is possible to visually and quantitatively detect tumours as small 

as 2 mm, however, in the interest of brevity, subsequent results and discussion will 

focus on tumours with diameters of 6 mm. In order to test the robustness of the two 

antenna configurations with 16 antennas to greater variation in the dielectric 

properties of normal breast tissue, simulations were run for different percentages of 
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variation for the relative permittivity values of normal breast tissue, from ±10 to 

±50% in steps of 10%. The results for metrics SCRwb, SCRbb, Mdiff and FWHM 

using 16 monostatic antennas and a 6 mm tumour are plotted in Figure 4.8. 

Again, the different metrics indicate that the circular configuration performs 

better than the planar configuration, as observed by higher values for SCRwb and 

SCRbb, and lower values for Mdiff and FWHM.  

A decrease of SCRwb and SCRbb – Figure 4.8 (a) and (b), respectively – occurs 

with increased variance in relative permittivity, due to increased clutter in the 

background of the images. Regarding the Mdiff and FWHM value metrics – Figure 

4.8 (c) and (d), respectively – it is observed that the metrics for the circular 

configuration remain constant with increasing dielectric variation, whereas the 

metrics for the planar configuration of antennas display more erratic behaviour. 

4.4.2. Optimised Number of Antennas for Varying Tumour 

Location 

In this section, the two antenna configurations are evaluated with a 6 mm tumour 

placed at different locations in the breast, modelling the different tissues with the 

same dielectric properties as in Table 4.1. The planar configuration is evaluated with 

the centre of the tumour located at the following (span,depth) locations: (5,-2.4) cm, 

(3,-2.4) cm and (1,-2.4) cm. The locations at which the centre of the tumour is placed 

for the circular configuration are as follows: (3.6,-3.6) cm, (4.1,-3.95) cm and (4.6,-

4.3) cm. The performances of the planar and the circular antenna configurations are 

analysed and compared, using a number of performance metrics, for a varying 

number of transmitting/receiving antennas (8 to 20) in a total of 390 FDTD 

simulations with different levels of dielectric heterogeneity, similarly to the first 

experiment. In this section, the metric SCRbb is replaced by the SMR metric, 

because of the use of the “ideal” artifact removal. The “ideal” artifact removal is 

introduced at this stage as it removes the artifact caused by the skin-breast interface 

more efficiently and the design of an improved artifact removal is out of the scope of 

this experiment. 

For clarity of notation for both antenna configurations, the three locations of the 

tumour are considered to be at distances 0, d and 2d from the centre of the breast. 

For the planar and the circular configurations d represents a distance of 
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approximately 2 cm and 0.61 cm, respectively. The reasoning behind choosing these 

particular locations for the tumours was to keep an approximately constant distance 

between the tumour and the skin in each breast model. Consequently, for the planar 

configuration the tumours could be placed at any place along the span of the breast, 

and d stands for 2cm. However, for the circular configuration, changing the location 

of the tumours meant moving them closer to one side of the breast model skin, where 

d was chosen as 0.61 cm so that the proximity to the skin would have a reduced 

effect on the results. A diagram showing the locations of the tumours for both 

configurations is shown in Figure 4.9. 

 

 
Figure 4.9. The planar and circular antenna configurations are shown on the left and right, 

respectively. The different locations (0d, 1d and 2d) of the 6 mm tumours are shown in green 

circles. For the planar configuration the tumour is located at: (5,-2.4), (3,-2.4) and (1,-2.4) 

cm. For the circular configuration the tumour is located at: (3.6,-3.6), (4.1,-3.95) and (4.6,-

4.3) cm. 

 

The number of transmit/receive antennas is compared and an optimised number 

of antennas for improved performance is found through the following performance 

metrics: SCRwb and SMR. Due to the large amount of data available, the Mdiff and 

FWHM metrics are not plotted as they do not vary as much with the varying number 

of antennas as SCRwb and SMR. The results are shown in Figure 4.10 and Figure 

4.11. 
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 (a) Tumour at centre                                                                (b) Tumour at distance d 

 

 
    (c) Tumour at distance 2d 

Figure 4.10. SCRwb results versus the number of antennas used for both planar and 

circular configurations. Quadratic equations have been fitted to the data as follows: (a) 

� = −0.005�� + 0.211� + 9.355 (circular) and � = −0.009�� + 0.291� + 11.463 

(planar); (b) � = −0.009�� + 0.356� + 8.216 (circular) and � = −0.010�� + 0.304� +
11.186 (planar); (c) � = −0.018�� + 0.666� + 6.483 (circular) and � = −0.006�� +
0.155� + 10.421 (planar). 
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 (a) Tumour at centre                                                                (b) Tumour at distance d 

 

 
    (c) Tumour at distance 2d 

Figure 4.11. SMR results versus the number of antennas used for both planar and circular 

configurations. Quadratic equations have been fitted to the data as follows: (a) � =
−0.047�� + 1.472� − 2.327 (circular) and � = −0.029�� + 0.968� + 4.248 (planar); 

(b) � = −0.025�� + 0.906� + 0.792 (circular) and � = −0.026�� + 0.869� + 3.948 

(planar); (c) � = −0.015�� + 0.728� − 0.473 (circular) and � = −0.010�� + 0.269� +
4.990 (planar). 

 

Both SCRwb and SMR improve with increasing number of antennas for both 

configurations, with the exception of the planar configuration for the tumour furthest 

from the centre of the breast. The performance of the circular configuration is 

virtually independent of the tumour position. Conversely, the performance of the 

planar configuration tends to worsen when the distance of the tumour from the centre 

of the breast increases. This behaviour can be explained in terms of the average 

distances between the known tumour positions and the antennas for each 

configuration. When the average propagation distance increases, so too do the 

attenuation and phase effects of the channel, reducing the effectiveness of the 

beamformer. For the planar configuration, the average propagation distance 

increases the further the tumour is from the centre of the breast, whereas for the 
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circular configuration, the average propagation distance does not show the same 

variation – this is logical since in the circular configuration, if the tumour is further 

from one antenna, it necessarily means that it moves closer to another one. 

 

 
(a) Tumour at centre 

 
(b) Tumour at distance d 

 
(c) Tumour at distance 2d 

Figure 4.12. Images of backscattered energy (on a dB scale) for the planar antenna 

configuration using 17 antennas. A 6 mm tumour is centred at: (a) (5,-2.4) cm, (b) (3,-2.4) 

cm, (c) (1,-2.4) cm. Note different intensity scales for the different plots. 

 

 Finally, little improvement is noticed when the number of antennas used 

exceeds 17, for both antenna configurations, meaning that 17 antennas is found to 

represent the optimum number of antennas. This finding is largely consistent with 

the first set of experimental results with tumours of different sizes, where 16 

antennas was found to be optimum. The resulting backscattered images for the 

planar antenna configuration and the circular antenna configuration are shown in 
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Figure 4.12 and Figure 4.13, respectively. A table comprising the metric results 

obtained for the optimum number of antennas, 17, is also presented in Table 4.3. 

 

  
 (a) Tumour at centre                                                               (b) Tumour at distance d 

 
(c) Tumour at distance 2d 

Figure 4.13. Images of backscattered energy (on a dB scale) for the circular antenna 

configuration using 17 antennas. A 6 mm tumour is centred at: (a) (3.6,-3.6) cm, (b) (4.1,-

3.95) cm, (c) (4.6,-4.3) cm. Note different intensity scales for the different plots. 

 

 

Table 4.3. Results for both antenna configurations with tumours located at three different 

distances from the centre of the breast (0, d and 2d) using 17 antennas. 

 

Metric Antenna Configuration 0 d 2d 

SCRwb (dB) 
Circular 8.34 8.96 7.76 
Planar 12.24 11.31 6.69 

SMR (dB) 
Circular 11.41 11.53 12.50 
Planar 13.83 13.51 11.36 

Mdiff (mm) 
Circular 0.00 1.50 1.80 
Planar 2.69 2.92 4.95 

FWHM (mm) 
Circular 4.88 4.50 4.25 
Planar 8.00 8.00 9.00 
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From Figure 4.12 and Figure 4.13, it is also observed that the circular 

configuration gives a clearer and more isolated position of the tumour when 

compared to its equivalent results for the planar configuration. This is also shown in 

the improved FWHM performance offered by the circular configuration, as shown in 

Table 4.3. Also the centre of the tumour is closer to its actual position for the circular 

configuration, as reflected in the Mdiff metric. 

As previously observed, using the planar configuration, the tumour appears 

closer to the skin than it actually is, suggesting that surrounding the breast with the 

antennas (as in the circular configuration) provides for improved tumour localisation. 

Conversely, it is observed that clutter is less significant in the planar images than 

in the circular images, which is consistent with the results for the SCRwb and the 

SMR presented in Figure 4.10 and Figure 4.11, respectively. The planar 

configuration shows better performance in terms of both SCRwb and SMR, except 

for the 2d distance, due to increased average distance between the antennas and the 

tumour location as previously discussed. However, the circular configuration allows 

for better localisation of the tumour, indicated by the improved Mdiff and FWHM 

results. 

Finally, in order to examine the robustness of the two antenna configurations to 

greater variation in the dielectric properties of normal breast tissue, simulations are 

performed for different tumour locations, with increasing percentages of variation 

for dielectric values of normal breast tissue, from ±10% to ±50%, in steps of 10%. 

These simulations all used the optimum number of 17 antennas for both 

configurations. The results are shown in Figure 4.14. 

. 
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(a) Tumour at centre                             (b) Tumour at distance d                          (c) Tumour at distance 2d 

 
(d) Tumour at centre                             (e) Tumour at distance d                          (f) Tumour at distance 2d 

 
(g) Tumour at centre                             (h) Tumour at distance d                          (i) Tumour at distance 2d 

 
(j) Tumour at centre                             (k) Tumour at distance d                          (l) Tumour at distance 2d 

Figure 4.14. Effects of dielectric heterogeneity on both planar and circular antenna 

configuration. Each row corresponds to the metrics: SCRwb, SMR, Mdiff and FWMH. Each 

column corresponds to a tumour located at distance 0, d and 2d from the centre of the 

breast. 
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Based on Figure 4.14, the SCRwb and the SMR metrics show an overall 

decrease with the increase of the dielectric variation, for both configurations. The 

tendency for the planar configuration to outperform the circular configuration when 

the distance between the tumour and the centre of the breast is 0 or d still holds with 

variation in dielectric properties. Conversely, the circular configuration outperforms 

the planar configuration for the simulations in which the tumour is the furthest from 

the centre of the breast. 

Small variations in Mdiff occur with increasing dielectric variation, suggesting 

both configurations are relatively robust for this metric. Finally, examining the 

FWHM, which expresses the physical extent of the tumour response, the circular 

configuration exhibits very small variation with increasing dielectric variation. This 

highlights the localisation robustness of the circular system. With the planar 

configuration, the FWHM of the tumour response remains relatively constant when 

the tumour is centred in the breast; however, with the increase of the distance 

between the tumour and the breast centre, the planar system outputs higher values for 

this metric when the dielectric variation increases, thus reducing the localisation 

performance of the planar configuration. 

4.5.Conclusions 

This chapter has examined the effect of antenna configuration on the 

performance of a UWB system for breast cancer detection. For test purposes, 2D 

FDTD models of the breast were created, with tumours of different sizes and with 

tumours at various locations in the breast. Planar and circular antenna configurations 

were tested through visual inspection and through metrics such as SCRwb, SCRbb, 

SMR, Mdiff and FWHM.  

Generally it was observed that the circular antenna configuration tended to 

outperform the planar configuration across the range of metrics, and it exhibits more 

robust behaviour when increasing dielectric variation is added to the simulations. 

For the analysis of tumours of different sizes in the centre of the breast, different 

numbers of monostatic antennas were tested through visual inspection and four 

quantitative metrics: SCRwb, SCRbb, Mdiff and FWHM. The quantitative metrics 

and visual quality of the images improved when 16 or more antennas were used.  
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For the analysis of tumours in various locations of the breast, both planar and 

circular antenna configurations were tested through visual inspection and with four 

quantitative metrics: SCRwb, SMR, Mdiff and FWHM. 17 antennas were found to be 

optimum for both configurations (similar to the optimum number of antennas for 

experiments with different tumour sizes), as this number offered the best 

compromise of performance versus efficiency. 

While the planar antenna configuration tended to outperform the circular 

configuration in terms of SCRwb and SMR when the tumour was located close to 

the centre of the breast, the circular antenna configuration outperformed the planar 

configuration for tumours further from the centre of the breast. 

Furthermore, the circular antenna configuration outperformed the planar 

configuration across the remaining metrics, suggesting that this configuration is 

much more effective and robust in terms of tumour localisation, given by Mdiff and 

FWHM. The justification for the improved performance of the circular configuration 

is twofold: Firstly, the greater spatial distribution of the antennas around the entire 

breast in the circular configuration provides for improved tumour localisation. 

Secondly, the shorter average propagation distance for signals recorded using the 

circular antenna configuration results in less attenuated reflections from the tumour.  

In conclusion, the circular configuration of antennas shows much more 

consistent results in terms of tumour identification (SCRwb, SCRbb and SMR), 

independent of the location of the tumour location within the breast, and generally 

more precise tumour localisation. It should, however, be mentioned that the planar 

system allows for the imaging of the underarm, where 50% of the breast cancers 

occur [28], and therefore the circular-based system should not be used exclusively as 

it does not cover this region. 

The results presented in this chapter compare to those presented in Fear et al. 

[29] in which planar and circular antenna configurations were studied under similar 

3D numerical simulations. The results presented in this chapter and in [29] suggest 

that both planar and circular antenna configurations allow for tumour detection. 

However in this chapter, detection of tumours with varying sizes and in different 

locations was examined while that study was not pursued in [29]. Although both 

studies addressed changing the number of antennas, the results cannot be directly 

compared since for this chapter the number of antennas was varied within a single 

2D array of antennas while in [29] the number of antennas was varied by changing 
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the number of arrays with antennas, as this was done in a 3D system. Furthermore, it 

is worth noting that the metrics applied to the antenna configurations in this chapter 

suggested that the circular configuration outperformed the planar in a number of 

scenarios. 

In the next chapter the classification of tumours will be addressed, using a 

circular configuration of antennas, since it is important to have robust information on 

the tumour, independently of its size and location.  
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Chapter 5 

 

5. Classification of Breast Tumours in 

Homogeneous Breast Tissue 

5.1.Motivation and Contributions 

In addition to detection of tumours based on imaging using UWB radar, there is 

increasing interest in further characterising tumours, including classification into 

categories of benign and malignant. However, this task is rendered more difficult by 

recent findings by Lazebnik et al. [26-27] in which it was found that the dielectric 

contrast between benign and malignant tumour may not be as significant as indicated 

in previous studies and therefore simple imaging based on backscattered energy may 

not be effective in this classification task. This problem is addressed in this chapter 

through investigating the Radar Target Signature (RTS) of dielectric scatterers 

within the breast, extending work developed by Davis et al. [44]. This involves 

simulating a homogeneous breast with tumours based on GRSs, as described in 

Chapter 3, which can represent the different stages of growth and development of a 

tumour through a range of shapes and sizes in a homogeneous breast. A range of 

features and classifiers are investigated, with a view to developing an effective 

system for classification of tumours into benign and malignant categories. 

The contributions in this chapter are as follows: 

• Adding to the three categories of tumour investigated in Davis et al. [44], 

extra granularity is added to the tumour classification process. A fourth 

tumour model is introduced, the macrolobulated GRS, which represents a 

benign tumour in a stage of development that may indicate that a tumour is in 

a pre-malignant stage. The introduction of this tumour model is useful 

because it is important to classify tumours at the earliest stage of 

development possible; 

• Principal Component Analysis (PCA), Independent Component Analysis 
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(ICA) and the Discrete Wavelet Transform (DWT) are compared as feature 

extraction methods for extracting the most significant information from the 

RTS of the tumours; 

• Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis 

(QDA) and Support Vector Machines (SVM) are investigated and compared 

as methods for classification of the RTS of tumours; 

• Eight different multi-stage classification architectures, which are 

combinations of coarse and/or fine size and shape classifiers, are investigated 

and evaluated; 

• A comprehensive study of classification results are compared between three 

feature extraction methods, PCA, ICA and DWT, and three classification 

approaches, LDA, QDA and SVM, using the eight classification 

architectures. 

The results of this work have been published in [50-52, 55, 59], by Conceição et 

al. and McGinley et al. 

5.2.Tissue and Tumour Simulation 

For the experiments reported here, a database of 352 tumours comprising four 

different sizes and four different shapes was created. The radii of tumours vary 

between the following discrete values: 2.5, 5, 7.5 and 10 mm. The four types of 

tumours are spiculated and microlobulated, both malignant types; and 

macrolobulated and smooth, both benign types. 

Both the breast and the tumour tissues are implemented in a 3D FDTD 

simulation, with a cubic grid resolution of 0.5mm. The FDTD numerical model of 

the breast is completed with the Debye formulation defined in (2.4), which is 

reproduced here for completeness: 

�&∗()* = �& + 4
�)��

+ 3�
1 + �)5 

The different tissues within the breast are modelled using Debye parameters for 

malignant tissue and for homogeneous lossy adipose tissue, as established by 

Lazebnik et al. [26-27]. The Debye parameters for malignant tissue are as follows: 

�∞ = 6.749, ∆� = 50.09, 4J = 0.794 smU� and 5 = 10.50 ps; whereas for 
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homogeneous lossy adipose tissue they are as follows: �∞ = 3.140, ∆� = 1.708, 

4J = 0.036 smU� and 5 = 14.65 ps. 

Additionally, the backscattered signals are generated through a Total-

Field/Scattered-Field (TF/SF) approach, in which the tumours are completely 

embedded in the Total-Field (TF) region, similar to [44, 50-51, 59]. For this 

experiment, the TF/SF region has the following dimensions: the Scattered-Field (SF) 

is a square geometric prism with square bases measuring 153.5 mm on the side and 

the height measuring 137.5 mm, while the TF is located at the centre of the SF and is 

represented by a cube with 40 mm on each side. The origins of the SF and the TF are 

co-located at (0,0,0) mm [50-51, 59]. The TF/SF region is terminated with a 6 mm 

Uniaxal Perfectly Matched Layer (UPML), so that the reflections of propagating 

electric and magnetic fields from the boundaries are absorbed [44, 50-51, 59]. The 

sampling frequency of the FDTD simulation is 1200 GHz, as before. 

 

 
Figure 5.1. Cross-section of the 3D FDTD space lattice partitioned into Total Field (TF), 

Scattered Field (SF) and UPML regions, for a homogeneous breast model. The target, a 

spiculated tumour located at the centre of the TF in this example, is illuminated by a pulsed 

plane wave propagating in the +z direction (represented by a dark line) and backscatter is 

recorded at the first observer location: (0,0,-74) mm (represented by a filled circle). All four 

observation points are represented by small circles in the image. 

 

A pulsed plane wave is transmitted towards the target from four equidistant 
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points, hitting the target at four different angles, equally spaced around the breast 

circumference. Figure 5.1, adapted from [50-51], shows a representation of the 

TF/SF grid, with the location of the origin of the first incident plane wave and 

respective observer point (filled circle) as well as the position of the tumour. All four 

observation points are represented by small circles. 

Each observation point is located in the SF all around the tumour at a constant 

distance of 74 mm (to match the dimensions of the prototype used in [73, 81, 109]) 

from the centre of the tumour, which is located at the centre of the TF/SF region. The 

resulting co-polarised backscatter signals are recorded and analysed from the same 

four observation points. It must be noted that only co-polarised backscatter is 

recorded as this was previously found to provide sufficiently high classification 

performance without the extra computational cost that would involve analysing full 

polarimetric backscatter [44]. The incident pulse is a modulated Gaussian pulse with 

centre frequency at 6 GHz and a 1 e⁄  full temporal width of 160 ps [44]. For the first 

and third observer locations, (0,0,-74) and (0,0,74), the pulse is linearly polarised in 

the y and x direction and transmitted in the z direction; while for the second and 

fourth observer locations, (-74,0,0) and (74,0,0), the pulse is linearly polarised in the 

y and z direction and transmitted in the x direction. A backscattered signal is 

recorded without the presence of a tumour and is subtracted from each of the four 

acquired backscattered signals for each tumour. The resulting signals are finally 

downsampled from 1200 to 75GHz. Noise was not added to the simulations. 

For the purpose of classification, and since eventually the purpose of a 

classification system is to be coupled with a tumour detection system, such as that 

described in Chapter 4, the frequency and bandwidth for the input signals used for 

classification is kept within the same range of the signals used for tumour detection. 

Although higher frequency pulses would possibly result in higher resolution and may 

help differentiate between fine differences in the sizes and shapes of tumours, the use 

of higher frequencies could compromise the detection of tumours which are deeper 

inside the breast and closer to the chest wall, due to greater attenuation effects. 

5.3.Feature Extraction  

The backscattered signals related to the four observer locations are firstly 
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processed through a feature extraction method so that the most relevant features from 

each signal can be highlighted and forwarded to the classification algorithms. The 

three feature extraction methods used in this chapter are Principal Component 

Analysis (PCA), Independent Component Analysis (ICA) and Discrete Wavelet 

Transform (DWT), which are detailed below.  

5.3.1. Principal Component Analysis 

Principal Component Analysis (PCA) is a feature extraction method which 

reduces the dimensionality of multivariate data and reveals simplified structures that 

are often hidden in the original data set while also disregarding less relevant 

information such as noise or colinearities in signals [110-111]. 

This process is accomplished when, by means of a linear algebraic operation, the 

basis that was used to record the original signals is changed into a new orthonormal 

basis that allows for a new representation to discriminate the original data set, i.e. 

when the new data set presents maximal variance. The principal components are 

ordered by decreasing variance, and furthermore the variance along each principal 

component provides a measurement of the relative importance of each dimension 

[111]. 

For the sake of computational simplicity, the original data should be well 

represented with the minimum number of principal components, thus creating a 

problem with the least number of dimensions possible [112]. To obtain the principal 

components of a matrix � represented by (� × =*, where � is the number of 

measurements and = is the number of samples, the mean of the sample for each ��> 

measurement is subtracted and finally the basis vectors �k, which are the 

eigenvectors of the covariance matrix � = ��������, are calculated. The mean-

corrected data are represented, for each ��> measurement, by its Karhunen-Loéve 

expansion: 

� − ���� = ∑ �k�kT�kC�                                      (5.1)  

in which �k represents each basis expansion coefficient and �k represents the full 

dimensionality of the problem [44, 111]. 
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5.3.2. Independent Component Analysis 

Similarly to PCA, Independent Component Analysis (ICA) is a statistical signal 

and data analysis method used for multivariate problems in which transformations 

are applied to the original data so that the new representation of data can capture the 

essential structure of the data, which can be handled more easily for further analysis. 

However, for ICA, statistically independent components are extracted through linear 

transformations from data with a non-Gaussian distribution, whereas for PCA, 

components are obtained through a linear transformation from data with a Gaussian 

distribution [113].  

To describe ICA, the following notation is defined: the observed data are given 

by x which stands for the random vector whose elements are the linear mixtures 

��, … , �<, the independent components are given by s which is the random vector 

with elements c�, … , c<, and n stands for the number of independent components, A 

stands for the mixing matrix with the basis vectors ]S,, the parameters that relate x 

with s. The ICA model can then be defined as: 

� = ��                                                     (5.2) 

For the ICA algorithm, only the random vector x is directly observed, and so 

both A and s have to be estimated. ICA implies that the components cS are 

statistically independent and also that they have non-Gaussian distributions. The 

objective of ICA is to estimate s and the solution can be represented by: 

� = ��                                                     (5.3) 

W is the inverse of A, which is responsible for the definition of each independent 

component. Finally, W can be estimated by iteratively balancing a cost function 

which either maximises the non-Gaussianity of the calculated independent 

components or minimises the mutual information, in a process detailed in [113]. 

There are several algorithms which have been created to efficiently calculate W; 

FastICA is a popular algorithm which is based on a fast fixed-point iteration scheme 

for maximising non-Gaussianity as a measure of statistical independence for ICA 

[113-114]. Once W is estimated, the independent components can be obtained using 

(5.3). 

Comparing ICA to PCA, it is worth noting that ICA has the following 

limitations: 

• The variance of the independent components cannot be determined; 



Chapter 5: Classification of Breast Tumours in Homogeneous Breast Tissue_______ 

71 
 

• The order of the independent components cannot be determined [113-114]. 

5.3.3. Discrete Wavelet Transform 

The Discrete Wavelet Transform (DWT) can be used as a feature extraction 

method by producing wavelet coefficients which may be used as discriminant bases 

for classification methods [115-116].  

Wavelets are localised basis functions which are translated and dilated versions 

of some fixed mother wavelet. The main feature of wavelets is that they are able to 

highlight localised frequency information about a function or a signal. However, for 

a successful feature extraction method based on DWT, different wavelet bases have 

to be evaluated to choose the wavelet which produces optimised classification. For 

the work presented here, a common library of wavelet filters was examined, which 

includes well-known wavelets such as: Daubechies, Coiflet, Symlet, Discrete Meyer, 

Biorthogonal and Reverse Biorthogonal [44, 115-118]. 

When the DWT is applied to a set of Radar Target Signatures, the wavelet 

coefficients are obtained by the decomposition low-pass filter and the decomposition 

high-pass filter. Subsequently, the low-pass band may be split again through a 

decomposition low-pass filter and a decomposition high-pass filter. It must be noted 

that for each iteration of the wavelet filters, the number of samples for the next stage 

is halved through signal decimation. This process continues to a desired number of 

levels. The final wavelet coefficients, given in a specific frequency subband, are 

supplied to the subsequent classification methods. 

For the results presented in this thesis, the chosen wavelet was Coiflet 5 [119], as 

this was the wavelet that allowed for the best performance. Coiflet 5 was chosen 

from a comprehensive library of 126 wavelet functions [117, 119] after analysing 

preliminary classification results with Linear Discriminant Analysis, which is 

described in detail in the following section. The frequency band that was used 

corresponds to the wavelet coefficients obtained from the low-pass band obtained 

after the decomposition of the low-pass filter after two levels of decomposition, as 

these were found to give the best classification performance compared to other 

subbands evaluated up to four levels of decompositions. More details are given in 

Sub-section 5.5.1. 

It must be noted that one of Davis et al.’s methods for feature extraction, Local 
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Discriminant Basis (LDB), also seeks to find an orthonormal basis for the data with 

localised time-frequency characteristics by means of wavelet packets, in specific a 

third-order Daubechies wavelet [44]. The difference between the DWT method used 

in this thesis and the LDB method is twofold: (i) a different wavelet was used in the 

thesis, a fifth-order Coiflet wavelet, and (ii) also up to four levels of decomposition 

were obtained to test the full library of wavelet coefficients and a second low-pass 

decomposition was chosen to allow for the best performance. 

5.4. Classification 

Three classification methods are used: LDA, QDA and SVM – these are detailed 

in the following sub-sections. All these classification methods are applied to the 

processed data using the cross-validation, or leave-one-out, method so that the 

performance of each classifier is evaluated using a testing set independent from the 

training set, hence minimising the generalisation error, i.e., the ratio of misclassified 

samples [120]. The cross-validation method is used as follows. For A-fold cross-

validation, the full set of 352 tumours is divided in A subsets, each of which contains 

one sample of each type and each size of tumours; each subset is then tested against 

the remaining (� − 1* subsets and, finally, all resulting A sub-classifications are 

averaged to obtain the overall performance of each classifier. 

In addition to these three classifier algorithms, a set of eight multi-stage 

classification architectures, which categorise the data according to different levels of 

granularity in size or shape, are also considered in this chapter; these are presented in 

Sub-section 5.4.4. 

5.4.1. Linear Discriminant Analysis 

Linear Discriminant Analysis (LDA) is a technique that allows for 

discrimination of groups which have multivariate normal Gaussian distributions and 

have the same covariance matrix. For a discriminant analysis there are dependent 

variables which represent the classes of the objects and independent variables which 

are the object features that may describe each class. In case each object is defined by 

two features, the separator between two groups of objects is a line, otherwise if 
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objects are defined by three or more features the separator is a hyperplane [121-125]. 

With the LDA method, a linear combination representing the weighted sum of 

two or more independent variables defines the discriminant function, which will 

allow classification [121-125]. The discriminant score for each object, k, in the 

analysis is a summation of the values obtained by multiplying each independent 

variable, �S�, by its discriminant weight, WS. The discriminant Z score for each 

object is given in the equation below: 

�,� = ] + W���� + W���� + ⋯ + W<�<�                         (5.4) 

in which ] is the intercept and n is the total number of independent variables. In case 

there is more than two groups being discriminated at once, a series of classification 

functions is derived, which depends on the number of each pair of groups [125]. 

The mean, or centroid, for each group is obtained by averaging the discriminant 

Z scores for all objects within a group, and it represents the most typical location of 

an object from a particular group. There are as many centroids as the number of 

groups being classified at once. The distribution of the discriminant Z scores for each 

group influence the classification greatly [125].  

For LDA, a linear separator is built based on the centroid and the distributions of 

the discriminant Z scores. Classifiers based on LDA can be applied to the data using 

the cross-validation method so that the performance of each classifier is evaluated 

using a testing set, independent from the training set [120].  

5.4.2. Quadratic Discriminant Analysis 

Quadratic Discriminant Analysis (QDA) is a technique that allows for 

discrimination of classes which have significantly different class-specific covariance 

matrices, while the class populations represent multivariate normal Gaussian 

distributions with the same mean [121-123]. For a discriminant analysis there are 

dependent variables which represent the classes of the objects and independent 

variables which are the object features that may describe each class. As a result of 

having different covariance matrices for each class, the quadratic discriminant 

function involves both squared and cross-product terms. For a quadratic discriminant 

function, for a two-class scenario, an individual vector of scores x is classified as 

belonging to Group 1 if the following inequality holds: 
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��� ( �U� −  �U�*� − 2��( �U��� −  �U���* + (���  �U��� − ���  �U���* 

≥ ln £ / £
¤ v ¤ + 2 ln |¥/|

|¥v|                                                                          (5.5) 

in which the class means are given by �� and ��, and the covariance matrices are 

given by  � and  �, for Groups 1 and 2, respectively, 6� and 6� are the prior 

probabilities of observing a member of Groups 1 and 2, respectively [124-125].  

Generally, QDA offers increased flexibility over LDA at the cost of possibly 

“overfitting” the training data [122]. Similarly to LDA, classifiers based on QDA can 

be applied to the data using the cross-validation method so that the performance of 

each classifier is evaluated using a testing set, independent from the training set 

[120].  

5.4.3. Support Vector Machines 

The SVM learning algorithm is typically used as a method to handle nonlinear 

relations between the input vectors and their corresponding labels by transforming 

linearly inseparable data to a higher-dimensional space in which they can be more 

readily separated, usually into two groups [120, 126-130]. For the particular case of 

the SVM, the input vectors are mapped to a higher-dimension feature space by 

means of a Kernel (K) [129-130].  

The Kernel used for this study is the Radial Basis Function (RBF), which allows 

for all input vectors to be non-linearly mapped in an infinite-dimension feature 

space, typically a Hilbert Space. The decision hyperplane can then be obtained in the 

feature space and is generically given in the following format: 

¦� + ` = 0                                                  (5.6) 

in which w is the normal to the hyperplane, x represents the data and b is the bias. 

Knowing that the data can be represented by the inner product �S ∙ �, (this is an 

implication of using an infinite feature space), the equation for the RBF is defined as 

follows: 

¨D�S , �,F = e�f R−©ª�S − �,ª�V , © > 0                           (5.7) 

in which © is the scaling factor of the RBF Kernel [120, 126]. 

The decision hyperplane is supported by two parallel vectors, one on each side 

of the hyperplane. Each of these support vectors are at the same distance from the 
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hyperplane (the “margin”) and each of them delimits either the first or the second 

labelled class. A classifier will work better when the value for the margin is 

maximised, so the concept of a soft margin is introduced, as opposed to hard 

margins, as described in [126, 129-130]. When soft margins are used, it implies that 

the support vectors are most likely built with supporting samples that represent 

meaningful samples of the training group, while outlier samples, such as noisy data 

or unusual data, are ignored for the calculation of the support vectors. If such 

conditions are met, the learning machine ensures high generalisation [120, 127-128] 

and therefore will be able to successfully classify an independent testing group. 

Knowing that the training set is composed of sample-label pairs (�S, �S*, in which 

� = 1, … , ¬ represents each sample, �S represents the input vectors of each sample 

and �S represents the respective label, the soft margins can be calculated by 

following the mathematical optimisation: 

min­,®,¯ g�
� (¦ ∙ ¦* + ° ∑ ±S

j
SC� i                                  (5.8) 

with the following conditions: �S(¦ ∙ �S + `* ≥ 1 − ±S, in which the slack variable 

±S ≥ 1. For a hard margin the data are scaled so that the margin equals 1, while for a 

soft margin the margin can be below one as it is given by 1 − ±S. However, this 

results in the increase of the objective function since the sum of errors, given by 

∑ ±S
j
SC� , is multiplied by C [120, 130]. The function of C is two-fold: it controls the 

relative weighting to keep ¦ ∙ ¦ small (as the size of the margin is maximised) and it 

ensures that most samples have a functional margin of at least one [128]. 

 

For application of SVM, the data need to be preprocessed so that the SVM 

classification algorithm can be optimised adequately for the samples, as efficiently as 

possible. These preprocessing steps are as follows: 

i) Scaling of the training and data set; 

ii) Application of the Kernel function, RBF; 

iii) Application of the Cross-Validation method; 

iv) Optimisation of the RBF parameters. 

In the first step, the input vectors (represented by the signals pre-processed with 

a feature extraction method) for each sample in both training and testing group are 

scaled to the range [-1,+1]. This step is important so that attributes in greater 

numeric ranges do not dominate those in smaller numeric ranges, and also that the 
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computational load of the whole algorithm is restricted [120]. 

For the second step of the SVM algorithm, the RBF is applied.  

Another issue that has to be considered is the fact that the combination of (°, ©* 

for the RBF Kernel has to be tested on the training data through a cross-validation 

method. This method allows for outlier samples that represent noise or unusual data 

to be removed, and as a result, some of the outlier supporting samples may be 

omitted from the final solution. 

Finally, the parameters of the chosen Kernel function are adjusted so that the 

classifier is successful in classifying independent testing groups. For the RBF, the 

combination of (°, ©* is optimised, C is the penalty parameter of the error term, and 

as earlier mentioned, © is the scaling factor of the RBF Kernel. A parameter search, 

such as the grid-search described in [120], is applied to the data set. 

5.4.4. Classification Architectures 

Eight different classification architectures are considered, six of which are 

composed of a number of binary sub-classifiers (and are studied with LDA, QDA 

and SVM), and the remaining two are composed of direct sub-classifiers that classify 

four classes at once (and are used with LDA and QDA). SVM is typically used as a 

binary classifier, and that is the reason why it is not used in the two direct 

classification architectures in this chapter. The different architectures are defined by 

the size and shape granularity, i.e. how many categories are classified in each stage 

(two or four categories), and by the number of stages each size and/or shape 

classifier is composed of (one or two stages). A coarse shape classifier is used to 

classify tumours into either malignant or benign tumours, which may, for example, 

give sufficient information to a doctor in a clinical setting. However, extra 

granularity in the shape classifier allows further classification of tumours into 

spiculated, microlobulated (both malignant tumours), and in macrolobulated and 

smooth (both benign tumours), giving additional clinical information on the 

development stage of a breast tumour, which may also be useful to a clinician. For 

instance a macrolobulated shape could potentially be an indicator of pre-malignancy 

and therefore closer surveillance of the patient may be required. 

Each of the classifier architectures will now be described. The first classifier 

architecture, Coarse-Shape (CS), splits the RTS of the tumours in one stage into two 
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shape groups: malignant or benign. Similarly, the Fine-Shape (FS) initially classifies 

the RTS of the tumours into the same shape categories as the CS, but then adds 

another level of shape granularity by dividing malignant tumours into spiculated and 

microlobulated tumours and benign tumours into macrolobulated and smooth 

tumours. The CS and FS architectures can be used with LDA, QDA and SVM 

classifiers and are both shown in Figure 5.2. 

 

                   
(CS)                                                                           (FS) 

Figure 5.2. Classification architecture in which only shape classifications are applied: CS 

and FS. 

 

The Coarse-Size-Coarse-Shape (CSCS) splits the RTS of the tumours in one 

stage into two size groups (the first group contains 2.5 and 5 mm tumours and the 

second group contains 7.5 and 10 mm tumours), before further classifying the 

tumours into either benign or malignant. Similarly, the Coarse-Size-Fine-Shape 

(CSFS) initially classifies the RTS of the tumours into the same size and shape 

categories as the CSCS, but then adds another level of shape granularity by dividing 

malignant tumours into spiculated and microlobulated tumours, and benign tumours 

into macrolobulated and smooth tumours in a second stage of shape classification. 

The CSCS and CSFS architectures can be used with LDA, QDA and SVM 

classifiers and are both shown in Figure 5.3. 

      
 (CSCS)                                                                              (CSFS) 

Figure 5.3. Classification architectures in which a 1-stage coarse size classification is 

applied before shape classification: CSCS and CSFS. 

 

The Fine-Size-Coarse-Shape (FSCS) and Fine-Size-Fine-Shape (FSFS) 

classification architectures further classify the RTS of the tumours into four 
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subcategories of size (2.5mm, 5mm, 7.5mm and 10mm) in two stages. The FSCS 

then divides them into two categories of shape, benign and malignant, while the 

FSFS classifies them into four shape categories: spiculated, microlobulated, 

macrolobulated and smooth in two stages. The FSCS and FSFS classifiers can be 

used with LDA, QDA and SVM classifiers and are shown in Figure 5.4. 

 

 
 (FSCS)                                                                                  (FSFS) 

Figure 5.4. Classification architectures in which a 2-stage fine size classification is applied 

before shape classification: FSCS and FSFS. 

 

The Direct-Fine-Shape (DFS) classification architecture performs the same 

function as the FS classifier, but divides the RTS of the tumours into four shape 

categories in one stage. The Direct-Fine-Size-Fine-Shape (DFSFS) performs the 

same function as the FSFS classifier, but firstly divides the RTS into four size 

categories, and then classifies the RTS of the tumours into the four shape categories 

in a second stage. The architectures of the DFS and the DFSFS classifiers can be 

used with LDA and QDA classifiers and are shown in Figure 5.5.  
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(DFS)                                                                                 (DFSFS) 

Figure 5.5. The classification architectures in which a direct fine size and/or shape 

classifications are applied: DFS and DFSFS. 

 

The experiments are divided into four parts, which are described in more detail 

in Section 5.5: 

• Firstly, different feature extraction methods are used to extract the most 

significant bases from the RTS of the tumours: PCA, ICA and DWT (with 

Coiflet 5 wavelet). In particular, a dimensionality reduction of PCA is 

accomplished as a pre-processing step so that the more representative bases 

of the data are selected. The method to optimise feature extraction by means 

of DWT is briefly detailed. 

• Secondly, the backscattered signals obtained in four observation points are 

compared in terms of LDA and QDA when using the three feature extraction 

methods. 

• Thirdly, the SVM classifier is tested on the data obtained after the application 

of the three feature extraction methods. 

• Finally, the three feature extraction methods are evaluated and their effects 

on three classifiers are compared in a single comprehensive study. 
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5.5.Results and Discussion 

5.5.1. Comparison of PCA, ICA and DWT 

PCA, ICA and DWT are used as feature extraction methods to extract the most 

important features that will allow the determination of the RTS of the different 

tumours, which will then be classified. In this sub-section the issue of dimensionality 

and how the feature extraction methods are applied are addressed. 

Firstly, the dimensionality reduction of PCA is investigated. For that purpose, 

performance is obtained for both a coarse size (partial size classifier in CSCS and 

CSFS) and a coarse shape (CS) classifiers for varying numbers of PCA components, 

from 2 to 100, using both LDA and QDA approaches. For this part of the experiment 

the backscattered results from the four observation points are used. These graphs are 

shown in Figure 5.6, in which the accuracy of LDA (black line) and QDA (blue line) 

classifiers versus the number of principal components is plotted. The performance 

results for the coarse size classifier are shown on the left and for the coarse shape 

classifier on the right. 

 

   

Figure 5.6. Accuracy of LDA (black line) and QDA (blue line) classifiers versus the number 

of principal components used. The accuracy results for the coarse size classifier are shown 

on the left and the accuracy results for the coarse shape classifier are shown on the right. 

Note that the axes are different for the two graphs. 

 

From Figure 5.6, it can be seen that a dimensionality in the range of 25-30 

components appears to be a reasonable compromise between computational 

complexity and performance, as the classification performances start to saturate at 
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this level. Therefore, the use of 30 principal components offers a good compromise 

between classification accuracy and computational time, which had also been found 

in [44].  

Regarding ICA, the FastICA algorithm [114] outputs 16 independent 

components to represent each signal. 

For the DWT method, the wavelet function in use is Coiflet 5, and the wavelet 

coefficients from the low-pass subband after the decomposition of the low-pass filter 

with two iterations represent the best features for classification. As the DWT 

algorithm is applied twice, the original length of the signal is downsampled to half in 

two instances. Given that the original RTS signal used for analysis is 100 samples in 

length, the final number of samples used for classification is 25. A simple block 

diagram of the DWT decomposition “tree” with the relevant sub-band highlighted is 

presented in Figure 5.7. 

 

 
Figure 5.7. Simple block diagram of the DWT decomposition “tree” with the relevant sub-

band highlighted. 

5.5.2. Comparison between LDA and QDA Classifiers 

In this sub-section the eight binary and direct classification architectures, 

described in Section 5.4.4, are compared using two specific classifiers, LDA and 

QDA, to assess the shape of tumour models. The performance for all classification 

architectures are shown for all combinations, between the LDA and QDA classifiers 

and the three feature extraction methods, in Table 5.1. The results are shown in three 

columns which represent: 
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• The partial accuracy for the size classification; 

• The partial accuracy for the shape classification; 

• The overall accuracy for the size-then-shape classification. 

The accuracy of the partial size and the partial shape classifiers is expressed in 

terms of the proportion of tumours correctly identified in terms of size or shape, 

respectively, while considering those attributes in isolation. The overall accuracy for 

the size-then-shape classifier is calculated by multiplying the partial accuracies for 

the size and shape classifiers and represents the percentage of tumours correctly 

classified in terms of both size and shape. Finally, the best performance for each 

stage of the classification architectures is highlighted in blue. Note that several of the 

architectures are single-stage, and therefore “partial classification” into particular 

categories is not applicable in these cases (e.g. partial size classification is not 

applicable for the CS classifier). 

A first observation from Table 5.1 is that applying a size classifier to the whole 

dataset of tumours offers higher accuracy than the shape classifier; this is consistent 

with the results in Figure 5.6. In absolute terms, the best performance of the coarse 

size classifier is 13.64% higher than the best performance of the coarse shape 

classifier (94.32% versus 80.68%). As for the best fine size classifier and fine shape 

classifier, there is an improvement of 28.69% (85.51% versus 56.82%). This 

provides a measure of justification for the use a cascade of a size classifier followed 

by a shape classifier to provide a more accurate shape classification, as reflected in 

the CSCS, CSFS, FSCS, FSFS and DFSFS architectures.  

It can also be observed from Table 5.1 that the PCA and the DWT feature 

extraction methods allow for more accurate classifications with both LDA and QDA 

than those obtained through the components selected with ICA. By averaging all 

classification accuracies obtained for both partial size and shape classifiers, 

individually for each feature extraction method, it was found that while PCA and 

DWT-based classifications perform similarly with an average between 74% and 

75%, the classifications based on ICA perform with an average of approximately 

68%. Between PCA and DWT-based features, they both result in similar LDA and 

QDA performance, with DWT-based classification generally outperforming PCA-

based classifications. Examining Table 5.1, it must be noted that there is a form of 

“error propagation” when a partial coarse size (or shape) classifier is extended to a 
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fine size (or shape) classifier, as any misclassified tumours in the first stage of the 

size (or shape) classification are necessarily misclassified in the second stage of size 

(or shape) classification. This error propagation results in an absolute performance 

decrease of 8.81% for the best partial size classification and between 17.90% and 

23.86% for the best partial shape classification. 

 

Table 5.1. Accuracy for size classifier, subsequent shape classifiers and overall size-then-

shape classifier combining feature extractions (PCA, ICA and DWT) with LDA and QDA 

classifiers for eight different classification architectures. The best accuracy for each stage of 

the classification architecture is highlighted. 

 

Architectures 

of classifiers 

Feature 

extraction 

methods 

Partial size 

classifier (%) 

Partial shape 

classifier (%) 

Size-then-shape 

classifier (%) 

LDA QDA LDA QDA LDA QDA 

Coarse-Shape 

PCA 

N/A 
79.83 80.68 

N/A ICA 73.58 75.00 
DWT 79.54 80.11 

Fine-Shape 

PCA 

N/A 
54.83 56.82 

N/A ICA 41.19 45.17 
DWT 54.26 53.98 

Coarse-Size-

Coarse-Shape 

PCA 94.03 92.04 85.23 79.26 80.14 72.96 
ICA 91.48 92.33 76.14 77.27 69.65 71.34 

DWT 94.32 92.04 85.23 79.54 80.38 73.22 

Coarse-Size-

Fine-Shape 

PCA 94.03 92.04 65.91 56.82 61.98 52.30 
ICA 91.48 92.33 53.12 53.98 48.60 49.84 

DWT 94.32 92.04 65.34 59.09 61.63 54.39 

Fine-Size-

Coarse-Shape 

PCA 84.37 74.15 85.51 83.81 72.15 62.14 
ICA 79.54 72.16 79.83 73.86 63.50 53.30 

DWT 85.51 73.86 86.08 82.67 73.61 61.06 

Fine-Size- 

Fine-Shape 

PCA 84.37 74.15 68.18 63.64 57.53 47.18 
ICA 79.54 72.16 57.95 52.84 46.10 38.13 

DWT 85.51 73.86 68.18 58.81 58.30 43.44 

Direct-Fine-

Shape 

PCA 

N/A 
54.26 59.37 

N/A ICA 42.90 38.07 
DWT 55.40 53.12 

Direct-Fine-

Size-Fine-

Shape 

PCA 81.53 74.71 59.94 61.65 48.87 46.06 
ICA 72.44 71.59 51.42 58.52 37.25 41.90 

DWT 82.39 75.57 63.64 56.53 52.43 42.72 

 

Results obtained with PCA and DWT are now discussed. Examining the CS/FS, 

CSCS/CSFS and FSCS/FSFS architectures, the results in Table 5.1 show that the 

accuracy for the partial shape classification is considerably higher when a previous 

size classifier is used for both LDA and QDA, with an exception for the shape 

classifier in CSCS when using QDA as the corresponding performance in CS is 

higher. Even though the accuracy of the fine size classifier (in FSCS/FSFS) is lower 

than the coarse classifier (in CSCS/CSFS), the higher granularity of the fine size 
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classifier allows for better performance in the subsequent shape classifiers. 

In summary, examining the overall performance of the classification 

architectures, there are several findings: 

• When considering the overall accuracy of a size-then-shape cascade 

classifier, the accuracy of the cascade classifiers worsens with increasing 

number of stages in the partial size and/or shape classifications, i.e. when 

fine-size and/or fine-shape classifiers are used. This may not be unexpected, 

since fine classification is more challenging than coarse classification.  

• FS and DFS are the least accurate shape classifiers, leading to the conclusion 

that a shape classifier is more accurate when preceded by a size classifier. 

• There is little performance difference between the FSFS and DFSFS 

architectures (the architectures with highest granularity in both size and 

shape), for both PCA and DWT feature extraction methods. FSFS and 

DFSFS performed better with LDA instead of QDA. However it must also be 

noted that DFSFS results do not deteriorate to the same extent as FSFS when 

using the alternative discriminant analysis method, QDA, suggesting that 

FSFS is more robust. 

• The best classifier to simply detect whether a tumour is malignant or benign 

is FSCS for both QDA and LDA, in which a fine-size classifier is used.  

• To obtain a clearer discrimination of the shape of tumours beyond simply 

malignant and benign (spiculated, microlobulated, macrolobulated or 

smooth), the FSFS performs best. 

Also, for the results based on the PCA and DWT feature extraction methods, 

there is no single “better” classification method. However it is observed that 

generally LDA outperforms QDA in the used architectures.  

5.5.3. Classification Using SVM 

In this chapter a novel classification scheme based on SVM is applied to the six 

binary-based classification architectures described in Section 5.4.4 (CS, FS, CSCS, 

CSFS, FSCS and FSFS). The performance for the SVM-based classification 

architectures depends on optimal values for parameters γ and C, as described in 

5.4.3. The downsampled UWB backscattered signals are processed through the same 

three feature extraction methods: PCA, ICA and DWT, and the SVM parameters are 
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optimised for best classification performance with each feature, through a grid-

search procedure. 

For the results presented here, the optimal SVM parameters are as follows: for 

PCA γ=23 and C=28, for ICA γ=25 and C=225 and for DWT γ=27 and C=227. Results 

for the different binary-based classification architectures are shown in Table 5.2, in 

which the best accuracy for each stage of the classification architectures is 

highlighted. The results are shown in three columns in the same fashion as for Table 

5.1. 

 

Table 5.2. Accuracy for size and subsequent shape classifiers and overall size-then-shape 

classifier using SVM binary classifier for six different classification architectures. The best 

accuracy for each stage of the classification architecture is highlighted. 

 

Architectures 

of classifiers 

Feature 

extraction 

methods 

Partial size 

classifier (%) 

Partial shape 

classifier (%) 

Size-then-

shape 

classifier (%) 

Coarse-Shape 

PCA 
N/A 

89.20 

N/A ICA 84.66 
DWT 86.08 

Fine-Shape 

PCA 
N/A 

72.73 

N/A ICA 66.19 
DWT 67.33 

Coarse-Size-

Coarse-Shape 

PCA 94.89 90.62 85.99 
ICA 94.32 87.21 82.26 

DWT 94.60 91.19 86.27 

Coarse-Size-

Fine-Shape 

PCA 94.89 75.00 71.16 

ICA 94.32 70.17 66.18 
DWT 94.60 74.43 70.41 

Fine-Size-

Coarse-Shape 

PCA 86.93 90.34 78.53 

ICA 79.83 86.93 69.40 
DWT 84.38 90.91 76.70 

Fine-Size- 

Fine-Shape 

PCA 86.93 75.28 65.44 

ICA 79.83 69.60 55.56 
DWT 84.38 75.00 63.28 

 

After a first analysis of Table 5.2 it is reasonable to assume that PCA as a feature 

extraction method allows for better classification using SVM in most cases when 

compared to the alternative features. By averaging all classification accuracy 

percentages obtained for both partial size and shape classifiers, individually for each 

feature extraction method, it is confirmed that while PCA and DWT-based 

classifications perform similarly with an average of approximately 86% and 84%, 

respectively, the classifications based on ICA perform with an average of only 81%, 

and so the ICA feature extraction method is the one that gives poorer discriminative 
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information for the SVM classifier, similar to the results for LDA and QDA reported 

in Table 5.1. 

Similarly to Table 5.1, there is an “error propagation” in Table 5.2 when a partial 

coarse size (or shape) classifier is extended to a fine classifier. This error propagation 

results in an absolute performance decrease of 7.96% for the best partial size 

classification and between 15.63% and 16.47% for the best partial shape 

classification. 

Examining the six architectures in Table 5.2, it can be observed that applying a 

size classifier, both coarse and fine, to the whole group of 352 tumours, results in 

better performance than applying a shape classifier in isolation, also for both coarse 

and fine classifiers. In absolute terms, the performance of the best coarse size 

classifier is 5.69% higher than the best coarse shape classifier, and the best fine size 

classifier is 14.20% higher than the best fine shape classifier when applied directly to 

the whole data set. Given these results it is sensible to investigate the performance of 

a shape classifier when a size classifier is previously applied, like in architectures 

CSCS, CSFS (Figure 5.3), FSCS and FSFS (Figure 5.4).  

It is observed that the partial shape classifier has slightly higher performance 

when there is a previous size classifier compared to when there is no previous size 

classification: the partial coarse shape classifier is highest in CSCS, 91.19% and the 

partial fine shape classifier is highest in FSFS, 75.28%. However, it must be noted 

that the performance of the partial shape classifier does not vary significantly 

whether there is a previous size classifier (and therefore a cascade classifier) or not; 

in absolute terms, the performance of the coarse shape classifier in CSCS is 1.42% 

higher than in CS (89.20% versus 90.62%) and the performance of the fine shape 

classifier in FSFS is 2.55% higher than in FS (72.73% versus 75.28%).  

In terms of the overall performance of the classifiers it is observed that the more 

stages of partial size and/or shape classifiers the lower the overall performance. This 

might be expected, as the greater the level of granularity in the classification, the 

more challenging the problem. Conversely, the fewer stages of partial size and/or 

shape classifiers the higher the overall performance. The overall performance drops 

by 23.76%, in absolute terms, from the architectures CS to FSFS. The performance 

of the classifiers decreases with the increase of granularity for two specific reasons: 

Firstly, for fine classification (e.g., differentiating between smooth and 
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macrolobulated), the RTS of the tumours are quite similar, so classification is much 

more difficult and misclassifications are much more likely to occur. Secondly, when 

classifiers are grouped in architectures such as the ones used in this study, errors can 

propagate through the multi-stage classifier. For instance, a microlobulated tumour 

which is first classified as benign will never be classified correctly in a fine shape 

classifier (as it will automatically be misclassified as a smooth or a macrolobulated 

tumour). 

For analysis purposes, errors in classification in terms of both size and shape 

were recorded at each stage of the classification architectures. In general it was 

observed that the number of tumours misclassified for one class was very similar to 

the number of tumours misclassified for the second class (for binary classification as 

used here for each individual stage). However, there were two exceptions: 

• The fine shape classifier misclassified several smooth tumours as 

macrolobulated and vice-versa despite the type of size pre-classification. This 

is due to the similarity between these two types of benign tumours. 

• There was a significant number of spiculated tumours misclassified as 

microlobulated and vice-versa for larger tumours (with 7.5 and 10 mm 

radius). This can be explained by the fact that the spicules of the spiculated 

tumours are always the same length (independent of the tumour radius). 

Therefore, in smaller tumours models, the spicules extend further beyond the 

surface of the tumour compared to larger tumours. In larger malignant 

tumours, the spicules may not influence the RTS of the tumours as much as 

for smaller spiculated tumours, and therefore misclassifications between 

larger spiculated and microlobulated tumours are more likely to occur. 

5.5.4. Overall Evaluation of Feature Extraction and 

Classification 

The results discussed in Sections 5.5.2 and 5.5.3 are combined in Table 5.3 for 

direct comparison on the database of 352 tumour models. 
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Table 5.3. Summary table for the classification performance with PCA, ICA and DWT as 

feature extraction methods, and LDA, QDA and SVM classifiers for a range of different 

classification architectures. The best accuracy for each stage of the classification 

architecture is highlighted. 

 

Architectures 

of classifiers 

Feature 

extraction 

methods 

Partial size classifier 

(%) 

Partial shape 

classifier (%) 

Size-then-shape 

classifier (%) 

LDA QDA SVM LDA QDA SVM LDA QDA SVM 

Coarse-Size- 

Coarse-Shape 

PCA 94.03 92.04 94.89 85.23 79.26 90.62 80.14 72.96 85.99 
ICA 91.48 92.33 94.32 76.14 77.27 87.21 69.65 71.34 82.26 

DWT 94.32 92.04 94.60 85.23 79.54 91.19 80.38 73.22 86.27 

Coarse-Size- 

Fine-Shape 

PCA 94.03 92.04 94.89 65.91 56.82 75.00 61.98 52.30 71.16 

ICA 91.48 92.33 94.32 53.12 53.98 70.17 48.60 49.84 66.18 
DWT 94.32 92.04 94.60 65.34 59.09 74.43 61.63 54.39 70.41 

Fine-Size- 

Coarse-Shape 

PCA 84.37 74.15 86.93 85.51 83.81 90.34 72.15 62.14 78.53 

ICA 79.54 72.16 79.83 79.83 73.86 86.93 63.50 53.30 69.40 
DWT 85.51 73.86 84.38 86.08 82.67 90.91 73.61 61.06 76.70 

Fine-Size- 

Fine-Shape 

PCA 84.37 74.15 86.93 68.18 63.64 75.28 57.53 47.18 65.44 

ICA 79.54 72.16 79.83 57.95 52.84 69.60 46.10 38.13 55.56 
DWT 85.51 73.86 84.38 68.18 58.81 75.00 58.30 43.44 63.28 

 

Based on the data presented in Table 5.3, the overall average results between 

each combination of feature extraction method (PCA, ICA and DWT) and 

classification methods (LDA, QDA and SVM), considering both partial size and 

shape sub-classifiers, are calculated and presented in Table 5.4. The accuracy for the 

size-then-shape classifier is not considered in this calculation since it is a simple 

multiplication of the partial size and shape sub-classifiers. 

 

Table 5.4. Averaged results for each combination of feature extraction and classification 

methods, for partial size and shape sub-classifiers. For each classification method, the 

feature extraction method showing the best average accuracy is highlighted. 

 

Feature 

extraction 

methods 

Classification 

methods 

LDA QDA SVM 

PCA 82.7 77.0 86.9 

ICA 76.1 73.4 82.8 
DWT 83.1 76.5 86.2 

 

In general, the best feature extraction method for use with the LDA classifier 

(across the range of classifier architectures) was found to be DWT, with a 

performance average of approximately 83.1%. The DWT outperformed both PCA 

and ICA by approximately 0.4% and 7% on average, respectively. Similarly, in the 

case of QDA, the optimum feature extraction method was PCA, with a performance 

average of 77.0%, which was shown to provide an approximate average 
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improvement of 3.6% and 0.5% over ICA and DWT, respectively. Finally, when the 

SVM classifier is considered, the best feature extraction method was found to be 

PCA, with a performance average of 86.9%, which outperformed both ICA and 

DWT by approximately 4.1% and 0.7%, respectively. 

In terms of the best combination of feature extraction method and classifier for 

size classification, both coarse and fine classification performed best with PCA 

combined with SVM, achieving a performance of 94.89% and 86.93%, respectively 

(Table 5.3). Regarding shape classification, the best combination of feature 

extraction method and classifier for simply determining whether a tumour was 

benign or malignant was SVM with the DWT, which provided the best results at 

91.19% (Table 5.3). Finally, if extra shape granularity is required, the optimum 

configuration is SVM used with the PCA feature extraction method, yielding an 

overall performance of 75.28% (Table 5.3). 

5.6.Conclusions 

This chapter of the thesis has described experiments conducted on the analysis of 

UWB radar backscatter signals, with the aim of classifying breast tumours in terms 

of size and type (malignant or benign), and ultimately attempting to determine the 

stage of development based on shape (spiculated, microlobulated, macrolobulated 

and smooth) in homogeneous breast tissue. A set of 352 tumour models of different 

sizes and shapes was classified using different combinations of three feature 

extraction methods (PCA, ICA and DWT) and three classifiers (LDA, QDA and 

SVM).  

As far as PCA is concerned, it was found that 30 principal components offer a 

good compromise between classification accuracy and computational time. For 

DWT the best performance was obtained when extracting the features from the 

lowest frequency subband after applying DWT twice with a Coiflet 5 wavelet. 

Comparing the classification approaches, the SVM outperforms both LDA and 

QDA for all the binary-based architectures and for the comparable architectures DFS 

and DFSFS (used with LDA and QDA exclusively). SVM is the best classifier in this 

study because it is able to handle nonlinear relations between measurements and 

their classes by mapping the measurements in a higher dimension feature space, 
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allowing for an optimised classification, whereas the dimension feature space of 

LDA and QDA is limited by the dimensions of the measurements. 

Regarding feature extraction methods, both PCA and DWT exhibited better 

performance of the classifiers in the different classification architectures, with PCA 

having a slight advantage over DWT. The third feature method extraction, ICA, 

proved to be the least robust, particularly for the more complex classification 

architectures. 

Overall, the best coarse-shape classifier is obtained with the CSCS architecture, 

in which DWT and SVM are used, achieving an accuracy as high as 91.19%. The 

best fine-shape classifier is obtained with the FSFS architecture, in which PCA and 

SVM are used, achieving an accuracy as high as 75.28%.  

With reference to previous results in the literature, specifically in Davis et al. 

[44], the shape classification using PCA and LDA, was accomplished with an 

accuracy of 86.1% after a previous size classification. In this context the present 

coarse shape classification of 91.19% obtained with DWT and SVM presents a 

promising improvement for the classification algorithm described in this chapter. 

These results are very promising for improved diagnosis and treatment of early-

stage breast cancer within the context of UWB Radar Imaging, under the conditions 

of the experiment. The next chapter will look at classification of breast tumours in a 

more realistic scenario as the breast tissue will be modelled with a portion of 

heterogeneous tissue based on realistic MRI-based models of the breast [83]. 
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Chapter 6 

 

6. Classification of Breast Tumours in 

Heterogeneous Breast Tissue 

6.1. Motivation and Contributions 

In this chapter, the effect of heterogeneity on the classification algorithms 

presented in the previous chapter is addressed by introducing an amount of 

fibroglandular breast tissue extracted from 3D MRI models of the breast, taken from 

the UWCEM Numerical Breast Phantom Repository [83]. This chapter is closely 

related to the previous chapter as a 3D database of tumours of different sizes and 

shapes based on GRSs are again modelled with dielectric properties as reported by 

Lazebnik et al. [26-27]. Nonetheless, the inclusion of fibroglandular tissue in the 

breast models in this chapter presents a much more challenging scenario for 

classification analysis than the homogeneous breast models used in the previous 

chapter. 

The contributions of this chapter are as follows: 

• Use of a larger database with 480 tumour models based on GRSs comprising 

30 models for each of the 4 sizes and 4 shapes, with tumours embedded in 

two different breast model scenarios: (i) breast model with a cluster of 

fibroglandular breast tissue in a fixed location independent of the tumour 

location, and, finally, (ii) breast model with a cluster of fibroglandular breast 

tissue, in a fixed location, possibly overlapping with tumour. The cluster of 

fibroglandular tissue is extracted from a MRI model of the breast with a high 

content of adipose tissue compared to fibroglandular tissue. 

• Evaluation of three feature extraction methods, PCA, ICA and DWT, with 

three classification methods, LDA, QDA and SVM, combined with the 

classification architectures which performed best in the study reported in 

Chapter 5: CSCS, CSFS, FSCS and FSFS; 
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• Study of a more challenging heterogeneous scenario in which the one or two 

clusters of fibroglandular tissue are modelled across a range of different 

locations within the breast.  

The results of this work are presented in Conceição et al. [53] and O’Halloran et 

al. [56]. 

6.2. Tissue Modelling 

The numerical simulation for this chapter is similar to that described in the 

previous chapter, in Section 5.2. For the sake of brevity only the differences between 

the two simulations are described in this section.  

The breast models in which simulations are carried out are based on the models 

presented in the precedent chapter, however one or two fibroglandular clusters are 

introduced in different locations. The inclusion of clusters of fibroglandular breast 

tissue in the breast models allow for the analysis of the effect of dielectric 

heterogeneity on the tumour classification methods. This is an important 

consideration as the inclusion of heterogeneity permits a more realistic test platform 

for the classification algorithms. The simulations are carried out as follows: 

• The Total Field (TF) is located at the centre of the Scattered Field (SF) and is 

represented by a larger cube with 50 mm on each side. Figure 6.1, adapted 

from [50-51], shows a representation of the TF/SF grid, with the location of 

the origin of the first incident plane wave and observer point (filled circle) as 

well as the position of the tumour. All four observation points are represented 

by small circles. 

• A cluster of fibroglandular breast tissue is a block volume of 1 cm3 

representing a well-defined fibroglandular structure taken from a mostly fatty 

breast model [83]. This cluster is located within the TF region in different 

locations, and quantities, depending on the breast model.  
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Figure 6.1. Cross-section of the 3D FDTD space lattice partitioned into Total Field (TF), 

Scattered Field (SF) and UPML regions, for a heterogeneous breast model. In this example, 

the target, a spiculated tumour located at the centre of the TF, is illuminated by a pulsed 

plane wave propagating in the +z direction (represented by a dark line) and backscatter is 

recorded at the first observer location: (0,0,-74) mm (represented by a filled circle). All four 

observation points are represented by small circles in the image.  

 

The block of fibroglandular breast tissue is extracted from a geometrically and 

dielectrically accurate 3D breast model provided by the UWCEM Numerical Breast 

Phantom Repository at the University of Wisconsin [83], which provides the spatial 

distribution of the different constituent tissues within the breast. These are 3D MRI-

derived models taken from patients lying in the prone position. As before, the 

different tissues within the breast are mapped to the dielectric properties from 

Lazebnik et al. [26-27]. For this work, a 1 cm3 grid is extracted from a mostly fatty 

breast phantom available in [83], in particular the phantom with ID 071904. The 

reason why a mostly fatty breast phantom is used for selection of a fibroglandular 

volume of breast tissue is due to the fact that fibroglandular structures can be isolated 

more clearly in such a phantom.  

The different tissues within the breast models are modelled using Debye 

parameters for malignant tissue and for homogeneous lossy adipose tissue, as 

established by Lazebnik et al. [26-27]. For the fibroglandular clusters which account 

for breast heterogeneity, there are three different levels of fibroconnective/glandular 
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tissue, as established in [83]. The dielectric properties are shown in Table 6.1 below: 

 

Table 6.1. Debye parameters for the FDTD model. Parameters are established in: (1) 

Lazebnik et al. [26-27] and (2) UWCEM website [83]. 

 

Tissue �∞ ∆� �� (sm
-1

) � (ps) 

Lossy adipose tissue 
(1)

 3.140 1.708 0.036 14.65 
Fibroconnective/glandular – low 

(2)
 9.941 26.60 0.462 10.90 

Fibroconnective/glandular – median 
(2)

 7.821 41.48 0.713 10.66 
Fibroconnective/glandular – high 

(2)
 6.151 48.26 0.809 10.26 

Malignant tissue 
(1)

 6.749 50.09 0.794 10.50 

 

Two different configurations of fibroglandular tissue, with increasing levels of 

difficulty, are considered in this chapter. The first scenario, represented by Models I 

and II, have a cluster of fibroglandular tissue which is kept located in one place 

within the TF region of the breast model. For the second scenario, the best feature 

extraction and classifier methods are picked from the results from the first scenario 

and are applied to Models III and IV. For Models III and IV, there are, respectively, 

one and two clusters of fibroglandular tissue which can be randomly and 

independently located within the TF region of the breast model. Further detail on the 

two scenarios is detailed in the following text. 

6.2.1. Modelling with Fixed Location of Fibroglandular 

Tissue 

For this part of the results, the tumour database is increased from 352 to 480 

models, so that there are 30 tumour models for each of the four sizes and four shapes 

of tumours considered in Chapter 3. There are two different Models (I and II), 

represented through a FDTD simulation.  

For Model I the portion of fibroglandular breast tissue is located within the cubic 

TF region in one of its vertices. For Model II the same block of fibroglandular breast 

tissue is also located within the TF region, at a distance of √5´  �� from one vertex 

of the cubic TF region, i.e. the block is moved 5 mm in each of the X, Y and Z axes 

towards the centre of the TF region. In Figure 6.2, a representation of a sample of 

benign tumours in Model I and Model II is shown. 
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(a)                                                                                        (b) 

Figure 6.2. Samples of different Gaussian Random Spheres representing benign tumours. 

The (a) smooth and (b) macrolobulated tumour models are represented in Model I and 

Model II, respectively.Tumousr are represented in blue and fibroglandular clusters in black. 

 

In the first modelling scenario, the feature extraction methods (PCA, ICA and 

DWT) and the classification approaches (LDA, QDA and SVM) are applied to the 

backscattered signals of the tumour models in the same fashion as in the previous 

chapter. However, only the following classification architectures are utilised, as 

these were the ones found to perform the best and most robustly in Chapter 5: CSCS, 

CSFS, FSCS and FSFS. 

6.2.2. Modelling with Varying Location of Fibroglandular 

Tissue 

For the second modelling scenario, the tumour database includes 160 models, 10 

tumour models for each of the four sizes and four shapes considered in Chapter 3. 

Two different Models (III and IV) are considered for this section of results. 

 

 
(a)                                                                                       (b) 

Figure 6.3. Samples of different Gaussian Random Spheres representing malignant tumours. 

The (a) microlobulated and (b) spiculated (10 spicules) tumour models are represented in 

samples of Model III and Model IV, respectively. Tumours are represented in blue and 

fibroglandular clusters in black. 
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For Model III the block of fibroglandular breast tissue is randomly located in 

one out of ten locations spread within the TF region. For Model IV the TF region is 

modelled with two independent blocks of fibroglandular breast tissue which can be 

located in one out of ten random pairs of locations. In Figure 6.3, a representation of 

a sample of malignant tumours in Model III and Model IV is shown. 

For Models III and IV, and since PCA provides the best results when combined 

with SVM regarding the first modelling scenario, only the results for this 

combination will be reported in the interest of brevity. For the second set of 

experiments reported on here, the same four multi-stage classification architectures 

(CSCS, CSFS, FSCS and FSFS) are used. 

It should be noted that for the simulations in both Chapters 5 and 6, the tumour 

response is not isolated from the rest of the signal. As an example, Figure 6.4 

presents the backscattered signals from a smooth tumour with a radius of 2.5 mm 

embedded in different breast models: a homogeneous breast model as described in 

Chapter 5, and in heterogeneous Model II and Model IV as described in this chapter. 

 

 
Figure 6.4. Sample of backscattered signals for smooth tumour with a 2.5 mm radius in a 

homogeneous breast model (black), in a heterogeneous breast model with fixed location of 

fibroglandular cluster (Model II in blue) and in a heterogeneous breast model with varying 

location of two fibroglandular cluster (Model IV in red). 
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6.3. Results and Discussion 

6.3.1. Classification with Fixed Location of Fibroglandular 

Tissue 

The performance results for the simulations for Models I and II are shown in 

Table 6.2 and Table 6.3, respectively. In these tables, the classification is ordered by 

the four classification architectures composed of partial size and shape classifiers. As 

before, partial size and shape classifiers provide classification of tumours in terms of 

either size or shape only, respectively, while the size-then-shape classifiers attempt 

to classify a tumour in both size and shape. Finally, the best performances for each 

stage of the classification architectures are highlighted. 

 

Table 6.2. Classification performance for Model I. 

 

Architectures 

of classifiers 

Feature 

extraction 

methods 

Partial size classifier 

(%) 

Partial shape 

classifier (%) 

Size-then-shape 

classifier (%) 

LDA QDA SVM LDA QDA SVM LDA QDA SVM 

Coarse-Size- 

Coarse-Shape 

PCA 93.75 91.46 94.79 84.79 83.33 92.71 79.49 76.21 87.88 

ICA 92.29 90.62 93.12 79.17 77.50 91.46 73.06 70.23 85.17 
DWT 93.33 91.87 94.37 83.96 82.50 91.46 78.36 75.80 86.31 

Coarse-Size- 

Fine-Shape 

PCA 93.75 91.46 94.79 61.25 54.37 74.58 57.42 49.73 70.70 

ICA 92.29 90.62 93.12 54.17 46.67 72.08 49.99 42.29 67.13 
DWT 93.33 91.87 94.37 58.96 55.83 74.58 55.03 51.30 70.39 

Fine-Size- 

Coarse-Shape 

PCA 83.12 73.33 85.83 86.25 82.08 92.71 71.69 60.19 79.57 

ICA 79.79 73.12 81.46 82.71 76.04 90.62 65.99 55.60 73.82 
DWT 84.17 75.00 85.21 86.87 81.25 92.71 73.12 60.94 78.99 

Fine-Size- 

Fine-Shape 

PCA 83.12 73.33 85.83 68.12 57.71 73.96 56.63 42.32 63.48 
ICA 79.79 73.12 81.46 58.75 49.37 71.87 46.88 36.10 58.55 

DWT 84.17 75.00 85.21 66.67 56.87 75.83 56.11 42.66 64.62 

 

A first analysis of the two tables obtained in this chapter, compared with Table 

5.3 in Chapter 5, indicates that the introduction of a portion of fibroglandular breast 

tissue in a fixed location within the breast model does not influence greatly the 

classification results, suggesting that the system is quite robust under the conditions 

in this study. A more detailed analysis of the two tables is presented in the following 

text.  
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Table 6.3. Classification performance for Model II. 

 

Architectures 

of classifiers 

Feature 

extraction 

methods 

Partial size classifier 

(%) 

Partial shape 

classifier (%) 

Size-then-shape 

classifier (%) 

LDA QDA SVM LDA QDA SVM LDA QDA SVM 

Coarse-Size- 

Coarse-Shape 

PCA 92.71 91.87 94.79 83.96 82.71 92.08 77.84 75.99 87.29 

ICA 92.29 90.83 94.17 78.33 77.50 91.46 72.29 70.39 86.12 
DWT 93.12 90.62 94.79 85.42 82.50 91.04 79.54 74.76 86.30 

Coarse-Size- 

Fine-Shape 

PCA 92.71 91.87 94.79 59.79 55.00 75.42 55.43 50.53 71.49 

ICA 92.29 90.83 94.17 52.92 47.08 74.37 48.84 42.77 70.04 
DWT 93.12 90.62 94.79 59.79 54.37 74.17 55.68 49.28 70.30 

Fine-Size- 

Coarse-Shape 

PCA 82.71 75.21 85.62 86.25 83.33 91.25 71.33 62.67 78.13 
ICA 79.37 72.92 81.46 82.08 77.50 88.96 65.15 56.51 72.46 

DWT 83.12 73.12 85.83 86.87 81.87 92.50 72.21 59.87 79.39 

Fine-Size- 

Fine-Shape 

PCA 82.71 75.21 85.62 66.67 60.00 75.42 55.14 45.12 64.57 
ICA 79.37 72.92 81.46 58.33 50.62 71.04 46.30 36.91 57.87 

DWT 83.12 73.12 85.83 66.04 57.92 75.42 54.90 42.35 64.73 

 

Regarding Table 6.2, for both partial size and shape classifiers, the best results 

are obtained with the SVM classifier. On average, SVM outperforms LDA and QDA 

by approximately 5.8% and 11.2%, respectively. In terms of the feature extraction 

methods, PCA and DWT allow for very similar classification results, with PCA 

presenting a small advantage. On average, PCA allows for a classification that 

outperforms ICA and DWT by approximately 3.5% and less than 0.1%, respectively. 

It is also worth mentioning that the best coarse-shape and fine-shape classifications 

are achieved with both CSCS and FSCS, and FSFS, respectively. 

Similarly, the results presented in Table 6.3 show that the SVM method allows 

for best partial size and shape classifications, where the fibroglandular tissue is 

located closer to the tumour. On average, SVM outperforms LDA and QDA by 

approximately 6.35% and 11.1%, respectively. In terms of the feature extraction 

method, PCA and DWT also allow for very similar classification results as for Table 

6.2, with PCA outperforming DWT. On average, PCA allows for a classification that 

outperforms ICA and DWT by approximately 3.6% and 0.4%, respectively. It is also 

worth mentioning that the best coarse-shape and fine-shape classifications are 

achieved with FSCS and both CSFS and FSFS, respectively. 

6.3.2. Classification with Varying Location of 

Fibroglandular Tissue 

In the breast models used for the work reported in this section, the fibroglandular 
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tissue does not have a fixed position within the homogenous breast model. For 

Model III there is one cluster of fibroglandular tissue which is randomly located in 

one of ten different locations within the breast whereas for Model IV there are two 

independent clusters of fibroglandular tissue which are randomly located in one of 

ten different pairs of locations. The performance results of the classifiers for Models 

III and IV are shown in Table 6.4, in the same fashion as for the previous section.  

As noted earlier, in this section only results for SVM combined with PCA are 

reported, for the sake of brevity. This choice is motivated by the results from the 

previous section, where SVM was found to be the best classifier and PCA 

outperformed the other feature extraction methods.  

 

Table 6.4. Classification performance for Models III and IV (one and two randomly-located 

heterogeneous clusters, respectively). 

 

Architectures of 

classifiers 

Number of 

heterogeneous clusters 

(Model) 

Partial size 

classifier (%) 

Partial shape 

classifier (%) 

Size-then-

shape 

classifier (%) 

Coarse-Size- 

Coarse-Shape 

one (III) 96.25 91.87 88.43 
two (IV) 91.87 87.50 80.39 

Coarse-Size- 

Fine-Shape 

one (III) 96.25 71.87 69.18 

two (IV) 91.87 65.00 59.72 

Fine-Size- 

Coarse-Shape 

one (III) 83.12 90.62 75.33 
two (IV) 80.00 85.00 68.00 

Fine-Size- 

Fine-Shape 

one (III) 83.12 68.12 56.63 
two (IV) 80.00 61.25 49.00 

 

Table 6.4 indicates that a small decrease is observed when classifying tumours 

embedded in breast models with varying locations, when one heterogeneous cluster 

is included (Model III), compared to results in the previous section (Models I and II). 

It is also observed that there is further performance decrease when the number of 

fibroglandular clusters increases to two, in Model IV. This is particularly noticeable 

in the fine shape classifiers where the difference can be as high as 6.87% (71.87% 

versus 65.00% for CSFS and 68.12% versus 61.25% for FSFS). 

6.4. Conclusions 

A database of different tumours with varying size and shape are classified in two 

different scenarios, with variations regarding breast heterogeneity, using the same 



Chapter 6: Classification of Breast Tumours in Heterogeneous Breast Tissue_______ 

100 
 

feature extraction and classification algorithms as in Chapter 5. Four breast models 

were considered: Model I includes a single cluster of fibroglandular tissue which is 

isolated from the tumour, Model II has a single cluster of fibroglandular tissue which 

may overlap with the tumour, Model III has a single cluster of fibroglandular tissue 

that varies in its location within the breast and Model IV includes two clusters of 

fibroglandular tissue in varying locations within the breast. 

Three different feature extraction methods (PCA, ICA and DWT) were used to 

extract the most significant features, which in turn were used with three classifiers 

(LDA, QDA and SVM), and using the four classification architectures that provided 

the best results from studies using homogeneous breast tissue models in Chapter 5 

(CSCS, CSFS, FSCS and FSFS).  

For the first scenario of breast models with fibroglandular tissue fixed in one 

location, and for both partial size and shape classifiers, SVM was the most accurate 

classifier, being the more robust to breast model changes. For Model I, the coarse 

and fine shape classification achieved a performance as high as 92.71% and 75.83%, 

respectively. For Model II the coarse and fine shape classification achieved a 

performance as high as 92.50% and 75.42%, respectively. For both Models I and II, 

PCA allows for the best classifications (closely followed by DWT), while ICA 

provides poorer classification performance.  

For Model III, where the fibroglandular tissue randomly assumed one of 10 

different locations within the homogeneous breast model, the coarse and fine shape 

classification achieved a performance as high as 91.87% and 71.87%, respectively. 

Finally, for Model IV (two fibroglandular clusters randomly located within the 

breast), the coarse and fine shape classification achieved a performance as high as 

87.50% and 65.00%, respectively.  

Overall, the best classification accuracy results are comparable, independent of 

the breast model in which the tumours are embedded. In fact, the introduction of a 

fixed structure of fibroglandular tissue does not introduce any significant changes in 

the classification performance when compared to results for a homogeneous breast 

model. However, the introduction of cluster(s) of fibroglandular tissue in varying 

locations within the breast induces a decrease in the system performance, particularly 

for the fine shape classifier, more noticeable when two varying fibroglandular 

clusters are introduced in the breast model at once. 

Comparing to previous results in the literature, specifically in Chen et al. [45-46] 
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a coarse shape classification was accomplished with an accuracy of 86.7% using a 

fixed heterogeneous 2D breast model. Comparable results in Chapter 6 have 

indicated a coarse shape classification between 87.50% and 92.71% between the 

models with fixed and random location of fibroglandular cluster(s). Even though the 

breast models present more heterogeneity in [45-46], it must also be noted that the 

breast models in Chapter 6 are considered in 3D as well as tumours of four different 

sizes (versus tumours with a constant radius size in [45-46]). 

The results presented in this chapter are promising for breast tumour 

classification, within the context of UWB radar imaging, since the feature extraction 

methods and the classification methods analysed in the previous chapter have shown 

to behave quite robustly with the tumour databases of different sizes, and with the 

inclusion of clusters of fibroglandular tissue in fixed locations or in a more realistic 

scenario in which the clusters can take varying locations within the breast. Future 

work may include the inclusion of multiple clusters of fibroglandular tissue within 

the breast model for even more realistic simulations. 
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Chapter 7 

 

7. Conclusions and Discussion 

7.1. Summary of Work 

In this thesis, a number of aspects of Ultra Wideband Radar system design for 

breast imaging were addressed, with a view to the development of systems for robust 

detection and classification of breast cancer.  

The physiological background regarding the breast and tumour development was 

first presented. Historical research related to the measurement of dielectric properties 

of the human female breast, as well as breast tumours was reviewed. In particular, it 

was reported that recent findings from Lazebnik et al. [26-27] have identified 

overlapping dielectric properties between normal fibroglandular breast tissues and 

tumour tissues (both benign and malignant), which renders the task of tumour 

detection based on dielectric properties more difficult, and which prompted much of 

the work developed in this thesis. The development of UWB Radar algorithms for 

early-stage breast cancer detection was also reviewed, as well as the state of the art 

in UWB-based classification algorithms for malignant and benign tumours, in order 

to set the context for the research described in this thesis. 

One of the largest current databases of tumours for tumour classification using 

UWB was created for this work, comprising 480 tumour models based on Gaussian 

Random Spheres ranging between four sizes and four shapes, which included two 

types of benign and two types of malignant tumours. This database was used as the 

simulation platform for subsequent tests in the thesis.  

Two different approaches for the antenna configuration in a UWB imaging 

system, planar and circular, were compared and optimised in different breast model 

scenarios, with the aid of a number of performance metrics. Firstly, both antenna 

configurations were optimised for tumours of varying sizes, between 2 and 10 mm, 

and secondly, the antenna configurations were optimised for tumours varying 

between three different locations within the breast. Both antenna configurations were 
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also tested in terms of their robustness to increases in the variability of the dielectric 

constants of the tissue models.  

Finally, classification of tumours was addressed by the use of a number of 

different feature extraction and classification algorithms, which operate on the Radar 

Target Signatures (RTS) produced by tumours. Three feature extraction methods 

were investigated Principal Component Analysis (PCA), Independent Component 

Analysis (ICA) and Discrete Wavelet Transform (DWT). Three classifiers were also 

considered: Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis 

(QDA) and Support Vector Machines (SVM). The feature extraction and 

classification algorithms were evaluated in various combinations in order to 

determine the best approach for tumour classification. The use of different multi-

stage classification architectures was also proposed to further optimise classification 

performance. Classification was obtained for both homogenous and heterogeneous 

breast models; in particular, the breast models that include heterogeneity were tested 

in two different scenarios, one with a single fibroglandular tissue cluster in a fixed 

location, and a second scenario with fibroglandular tissue cluster(s) with varying 

locations within the breast model. The inclusion of fibroglandular tissue in the breast 

models presents a more challenging test environment than has generally been 

considered in the existing literature. 

7.2. Conclusions and Discussion 

This section discusses the primary results arising from the work presented in this 

thesis, organised according to the main individual components of research. 

7.2.1. Modelling of Tumours  

An algorithm for creation of tumour models based on Gaussian Random Spheres 

(GRSs) was adapted and developed, and different types of benign and malignant 

tumours of different sizes were created to complete a large database that served as 

the test set for classification algorithms, also addressed in this thesis. This is one of 

the largest databases of breast tumour models based on GRSs that has been reported 

so far, comprising 480 models of four different sizes and four different shapes, in 

which two shapes represent benign tumours and the other two represent malignant 
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tumours. Furthermore, the range of tumour shapes contained in the database was 

extended to allow for differentiation of benign tumours into smooth and 

macrolobulated categories; this is an important addition, since the macrolobulated 

tumour may be an indicator of pre-malignancy in a clinical setting.  

7.2.2. Antenna Configurations 

Planar and circular antenna configurations were compared in detail for tumours 

of varying size, and varying location in the breast, and the optimum number of 

antennas was found for each condition. The antenna configurations, were tested 

using a number of performance metrics: Signal to Clutter Ratio within breast 

(SCRwb), Signal to Clutter Ratio between breast (SCRbb), Signal to Mean Ratio, 

(SMR), all of which reflect the strength of the tumour energy response against 

clutter, and Full Width Half Maximum (FWHM) extent of the tumour response, and 

the distance between the actual location of the tumour and the location of its peak 

location (Mdiff), all of which reflect how correctly the location of the tumour is 

determined.  

Simple tumours as small as 2 mm were detected successfully in the first 

described scenario. Comparing the two antenna configurations, it was found that the 

circular configuration allowed for better performance in detecting small tumours; for 

example, for a 6 mm tumour, the SCRwb for the circular configuration was up to 4 

dB better than the SCRwb for the planar configuration. Furthermore, the circular 

configuration was more robust to changes in the dielectric variability. For the 

circular configuration, the centre of the tumour in the UWB image is closer to its 

correct position compared to the planar configuration, for which the tumour appears 

to be closer to the skin layer than it actually is. This indicates that having antennas 

arranged around the tumour allows for better detection of its location, compared to 

having antennas on only one side of the tumour. 

For the second set of experiments with tumours located in different parts within 

the breast, the tumour again appears closer to the skin than it actually is in the planar 

configuration, as found in the first set of experiments with varying tumour sizes. 

However, it was observed that clutter is less significant in the planar images than in 

the circular images. The planar configuration shows better performance in terms of 

both SCRwb and SMR metrics, except for the case where the tumour is located 
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furthest from the centre of the breast, due to increased average distance between the 

antennas and the tumour location. However, the circular configuration allows for 

better localization of the tumour, indicated by better Mdiff and FWHM results for this 

configuration. For the circular configuration, the performance metrics remained 

relatively constant independent of the tumour location. In general, it was also found 

that both planar and circular antennas were quite robust to dielectric variance 

changes.  

The optimum number of antennas was found to 16 antennas for tumours of 

different sizes, and 17 antennas for tumours of different locations, given the results 

of the performance metrics and visual inspection. Therefore, on the order of 17 

antennas should be a useful guide figure for the design of UWB imaging systems. 

Although the circular configuration was found to be the configuration with better 

performance, it should also be noted that this configuration should not be used 

exclusively, as it does not allow for the effective examination of tumours developing 

in the underarm region, where a sizeable proportion of breast tumours may occur. 

7.2.3. Classification of Tumours in a Homogeneous 

Tissue 

For a database of 352 tumours embedded in a homogeneous breast tissue model, 

three feature extraction methods (PCA, ICA and DWT) and three classifiers (LDA, 

QDA and SVM) were investigated. Furthermore, eight different multi-stage 

classification architectures containing different combinations of size and/or shape 

classifiers were proposed, for different applications.  

Firstly, the LDA and QDA classifiers were compared with the three feature 

extraction methods (PCA, ICA and DWT). It was found that shape classifiers 

performed better with a preceding size classifier to “filter” the results. In addition, it 

was found that binary-based classification architectures performed more robustly. 

The accuracy of coarse and fine shape classifications were as high as 86.08% and 

68.18%, respectively, for PCA and DWT combined with LDA, when a previous fine 

size classifier was used (corresponding to the FSCS and FSFS multi-stage 

classification architectures presented in Chapter 5). When considering the overall 

accuracy of a size-then-shape cascade classifier, the accuracy of the cascade 

classifiers worsens with increasing number of stages; this may not be unexpected, 
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since fine classification is a more challenging problem than coarse classification. It 

was observed that, overall, LDA outperforms QDA as a classification algorithm. 

Classification based on the use of Support Vector Machine (SVM) was also 

examined for the same feature extraction methods. In this case, the subset of multi-

stage classification architectures that performed the best in the initial set of 

experiments was used. Again, it was found that both PCA and DWT result in higher 

coarse and fine shape performance, 91.19% and 75.28%, when combined with 

architectures with previous size classifications, CSCS and FSFS respectively. SVM 

was also found to significantly outperform the LDA and QDA approaches. PCA and 

DWT provided similar classification performance, while ICA was significantly 

poorer in extracting relevant features. While classification errors at any particular 

stage in the multi-stage architectures did not show any particular bias (i.e. the 

number of misclassification for one class was generally similar to the errors for the 

other classes), there were some exceptions. For example, the similarity between 

some smooth and macrolobulated tumours resulted in greater numbers of 

classification errors in these cases. 

In terms of the best combination of feature extraction method and classifier for 

size classification for the homogeneous tissue case, both coarse and fine 

classification performed best for PCA combined with SVM, achieving a 

performance of 94.89% and 86.93%, respectively. For shape classification, the best 

combination was found to be DWT combined with SVM, which provided 

classification performance of 91.19%. If extra granularity in shape classification is 

required, the best configuration is PCA combined with SVM, which yielded an 

overall performance of 75.28%. 

7.2.4. Classification of Tumours in Heterogeneous 

Tissue 

Research into the classification of tumours in homogeneous tissue summarised in 

the previous section was extended to the scenario where one or more clusters of 

fibroglandular tissue was included in the breast. The robustness of the classification 

algorithms was tested using a larger tumour database comprising 480 models, in 

more realistic breast models which accounted for dielectric heterogeneity. Two 

scenarios are tested; firstly, one in which a single fibroglandular cluster is located in 
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a fixed placed within the homogeneous breast model (both independent of, and 

overlapping with the tumour), and a second scenario in which one or two 

fibroglandular clusters vary location randomly within the breast.  

Classification performance remained high for the breast models with fixed 

fibroglandular clusters (when compared to performance with homogeneous breast 

models), showing very small average variations between the two heterogeneous 

breast scenarios. The best coarse classification of tumours varied between 92.71% 

(in CSCS and FSCS) and 92.50% (in FSCS), while fine classification of tumours 

varied between 75.83% (in FSFS) and 75.42% (in CSFS and FSFS). As before, fine 

size or shape classifications result in lower performance than coarse classifications, 

because of the more challenging classification problem. The best performance was 

obtained using SVM and PCA or DWT as the classifier and feature extraction 

methods. 

The introduction of one or two randomly-located fibroglandular clusters within 

the model of homogeneous breast tissue had a slightly larger effect on the robustness 

of the algorithms. PCA combined with SVM were used for classification, as these 

algorithms were generally found to be the best performing from the previous 

experiments. The best coarse shape classification of tumours was 91.87% and 

87.50%, when one or two clusters of fibroglandular tissue were present in the breast 

model, respectively. This was obtained using the CSCS architecture. Furthermore, 

the best fine shape classification of tumours was 71.87% and 65.00% (in CSFS), 

when one or two clusters of fibroglandular tissue were modelled, respectively.  

The development of classification algorithms for heterogeneous breast models 

addressed in this thesis presents a much more challenging problem than the 

homogeneous breast tissue case. This is particularly significant in light of recent 

findings suggesting that there is significant overlap between the dielectric properties 

of normal fibroglandular tissue, and tumour tissue. The results obtained are 

promising, and point to the basic viability of classification of tumours based on radar 

target signatures obtained using a UWB imaging system. 

7.2.5. Summary of contributions 

The main contributions of the thesis are briefly summarised in the following 

bullet points: 
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• Creation of a large tumour database of 480 tumours comprising four 

sizes and four shapes of tumour models based on GRSs; this is one of the 

largest databases based on GRSs reported thus far. 

• Inclusion of macrolobulated as an additional type of benign tumour, to 

model the case of a tumour in the pre-malignant stage. 

• Evaluation of circular and planar antenna configuration for a number of 

different scenarios, and establishment of the circular configuration as the 

one which generally performed better.  

• Comprehensive evaluation of a range of feature extraction and 

classification algorithms for tumour categorisation, and proposal of a 

range of multi-stage architectures. The best performance obtained was 

91.19% using DWT as the feature extraction method and SVM as the 

classifier, for coarse classification. 

• Evaluation of classifiers in the much more challenging scenario of 

heterogeneous breast models, containing one or two clusters of 

fibroglandular tissue in fixed and varying locations. Coarse shape 

classification performance as high as 92.71% was obtained, with fine 

shape classification performance as high as 75.83%, for fixed locations 

of fibroglandular clusters. For varying locations of fibroglandular 

clusters, coarse shape classifier performed as high as 91.87% and 

87.50%, and the fine shape classifier performed as high as 71.87% and 

65.00%, with one and two clusters of fibroglandular tissue, respectively, 

using PCA and SVM. 

7.3. Suggestions for Future Work 

The work developed in this thesis presents many areas which can be further 

investigated in order to improve the detection and classification of early breast 

tumours. Suggestions for future work as a follow-on to the work presented in this 

thesis include the following topics. 

The present work included a number of realistic modelling scenarios, 

particularly those involving fibroglandular tissue in heterogeneous breast models. 

The range of models used for system development and evaluation could be further 
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enhanced, for example, even more clusters of fibroglandular tissue, with randomly 

varying locations, may be included. The range of breast models may be extended to 

include a full range of tissue topologies, ranging from very fatty breasts to very 

dense beasts. The modelling of dense breasts is of particular interest for the 

development of systems for screening women at an earlier age, as the breast tissue is 

denser in younger women, and the imaging problem is more significant.  

A different approach to modelling tumours may also be considered, for example, 

based on the models presented in Chen et al. [45-47, 95, 98]. In their algorithms, the 

tumours are modelled through a 2D polygonal approximation of tumour boundaries 

from X-Ray mammograms [41]. This work could be extended to a more realistic 3D 

environment, and would allow for the creation of a sizeable database for further 

classification purposes. 

Additional features for classification could be developed and evaluated. For 

example, the DWT feature extraction framework may be extended to include 

information over a broader part of the Radar Target Signature (RTS) spectrum. The 

DWT could be replaced by the Wavelet Packet Transform, which provides greater 

resolution in frequency than the DWT, and opens up the possibility for a more 

powerful representation of the tumours by selection of the best basis based on e.g. 

entropy or an alternative criterion. More powerful features may improve the 

performance of the classification system by providing better discrimination in cases 

where classification shows scope for improvement, e.g. in the case of distinguishing 

between smooth and macrolobulated tumours discussed above.  

Finally, in addition to the classification algorithms examined in this thesis, other 

classification algorithms may be considered, such as the following: Multi-Layer 

Perceptrons, Genetic Algorithms and Spiking Neural Networks. The use of genetic 

algorithms or Spiking Neural Networks may allow for evolution of classifier 

parameters based on more “intelligent” signal processing algorithms. It may also 

permit greater levels of adaptivity to allow classifiers to better adjust to changes in 

tissue characteristics, as opposed to most of the standard classification algorithms 

whose performance is largely dependent on the range of data available to train them. 
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