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General Abstract 
 

The main aims of this PhD thesis were 

 To develop a suite of satellite derived tools for the Irish monitoring 

programme for Harmful Algal Blooms (HABs) 

 To highlight the importance of in situ data for validating satellite derived data 

and developing regional algorithms and address the gap in the availability of 

such data in the North East Atlantic. 

In situ data is essential for the calibration, validation and bio-optical algorithm 

development of ocean colour remote sensing. Chapter 2 describes in detail the 

difficulties associated with ocean colour measurements in Irish waters due to the 

persistent issue with cloud cover. This chapter introduces how invaluable the optical 

data collected is for ocean colour research, especially in areas that are difficult to 

sample frequently. 

The main aims of this thesis were achieved by the successful installation and 

development of an operational hyperspectral radiometer system on board the RV 

Celtic Explorer, which collects valuable data for satellite validation, algorithm 

development, and water quality monitoring. Additionally, in chapters 4 and 5, I present 

a successful validation of the Red Band Difference (RBD) algorithm to monitor HABs 

in Irish coastal waters, and a preliminary feasibility study of the HABscope, an 

artificial intelligence technology for detecting Karenia spp. via their swimming 

pattern.  

The primary goal of this thesis was accomplished by introducing the three products to 

the Irish monitoring programme. The developed tools, including the hyperspectral 

radiometry system, the RBD algorithm, and the HABscope, are valuable for 

monitoring marine phytoplankton and associated optically active constituents and can 

be utilised by the Marine Institute, Researchers, and the global ocean colour 

community for effective HAB monitoring and mitigation efforts.



1 
 

1. General Introduction 
 

1.1.1 Phytoplankton 
 

Marine phytoplankton are extremely important ecosystem service providers (Naselli-

Flores and Padisak, 2022). They form the base of the food web, are primary producers, 

provide the world with atmospheric oxygen and also importantly, are a major sink for 

carbon dioxide from the atmosphere, as well as via carbon storage in sediments and 

the deep ocean (Tweddle et al., 2018). These microscopic unicellular plant-like 

organisms are immensely important for contributing to our marine and global 

production with marine phytoplankton responsible for approximately 98 % of marine 

system autotrophic production, and 50% of Earth's primary production (Carvalho et 

al., 2017). As marine ecosystems are impacted and altered by changes in community 

composition, phytoplankton can be seen as sensitive indicators of climate change 

(Käse and Geurer, 2018). According to Sournia et al. (1991) over 5000 different 

species of marine phytoplankton worldwide have been discovered. Phytoplankton are 

planktonic photosynthesizing organisms that can range from 1μm to over 100μm. At 

certain times of the year, favourable conditions for algae can occur naturally, 

conditions such as stratification in the water column (Gohin et al., 2003) an increase 

in nutrients in the water (Siegel et al., 1999) and an increase in water temperature 

(Thomas et al., 2003). Phytoplankton benefit from conditions such as these and 

because of this, cell numbers can increase, creating a low or high biomass bloom, 

depending on the species. The length of time a bloom is available for the cycling of 

carbon and nutrients and how much oxygen is produced depends on the balance 

between growth and mortality of the population (Steinberg and Landry, 2017). 

Approximately, 60-70% of phytoplankton production is consumed daily by 

microzooplankton (Landry and Calbet., 2004; Righetti et al., 2019). Anderson and 

Harvey, (2019) discussed the importance of microzooplankton in marine food webs 

based on their prey, their growth rates and their contribution of organic biomass to 

higher trophic levels. For the majority of the time, the explosive growth of microscopic 

algae is advantageous to the ecosystem as a whole, serving as a food source for 

aquaculture and wild fisheries, for example (Tweddle et al., 2018). A limited 

proportion of the species forming algal blooms do, however, have an adverse effect 
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on the ecosystem. These are known as harmful algal blooms (HABs), which can 

generate a small and large biomass bloom, and can have significant negative economic 

effects on marine industries like tourism, aquaculture, and fisheries in addition to 

having immeasurable effects on ocean health (Anderson et al., 2015). A HAB event 

can harm an environment through two main processes: oxygen depletion brought on 

by high cell concentrations, and toxin production by certain phytoplankton species 

(Purdie, 1996). Approximately five percent of marine dinoflagellate species have been 

identified to produce toxins. Humans are also at risk from eating contaminated filter 

feeding shellfish who have consumed toxic phytoplankton and or diffused through the 

water column (Steidinger et al., 2011; Farabegoli et al., 2018). It should be noted; 

large phytoplankton blooms aren't always indicative of toxic events. For example, the 

dinoflagellate species Dinophysis spp., known to cause Diarrhetic Shellfish Poisoning 

(DSP), can be harmful at mere hundreds or thousands of cells per litre – concentrations 

too low to detect from space (Broullón et al., 2020). This subtlety is typical for many 

toxin-producing species from the Alexandrium, Dinophysis, and Azadinium genera, 

which don't contribute significantly to the main biomass of a bloom, thus remaining 

undetectable in satellite imagery. 

For these reasons it is vital that efficient mitigation strategies are in place to reduce 

the detrimental effects of HABs on our marine food resources. When mechanisms for 

warning or alerting are in place, such as monitoring programmes, aquaculture business 

owners can minimise damage to their stock by refraining from moving, harvesting, 

and/or planting new seed. Stumpf and Tomlinson, (2005) discuss the importance for 

mitigating against the effects of HABs, that real-time detection, monitoring, tracking, 

and forecasting development is vital for preparing for and determining the direction 

the bloom is travelling. Satellite remote sensing techniques are effective tools to 

observe large areas in one measurement. 

As stated, the majority of phytoplankton are harmless and provide great benefits to the 

overall ecosystem. O’Boyle and Silke (2010) reviewed in detail the seasonal features 

of the phytoplankton ecology around Ireland. The authors discussed how 

phytoplankton growth in Irish waters is driven by the seasonal change in the vertical 

stability of the water column. During the winter season there is little phytoplankton 

growth due to large mixing depths and lack of light availability. Once the spring 

begins, and the water column stabilises, the spring bloom is triggered due to excess 
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winter nutrients and solar heating of the euphotic zone. Once the nutrients have been 

used up by the phytoplankton, bloom levels decline. Later in the summer months, 

nutrients from deeper waters promote the growth of large phytoplankton populations. 

During the autumn season, the thermocline breaks down completely, which in turn 

creates an opportunity for nutrients from the deep waters that were prevented from 

rising due to the thermocline, to break through into the eutrophic zone. This event 

supports an autumn bloom. This bloom tends to be short lived due to lack of sunlight 

throughout the winter months. Phytoplankton use dissolved organic matter (DOM) as 

a nutrient source in natural environments, including marine-derived organic 

substances in seawater and DOM that reaches coastal zones via rivers and rainfall. 

This utilisation stimulates growth and can be due to trace metal complexation or direct 

use of organic nitrogen (N) in small molecules like urea and amino acids. Additionally, 

phytoplankton may indirectly access nitrogen in DOM through remineralisation by 

bacterivores feeding on bacteria that used the DOM as a substrate. Direct ingestion of 

high-molecular-weight organic molecules is another potential but underexplored 

mechanism. Dissolved organic matter from river water undergoes bacterial 

degradation and photochemical transformations as it enters coastal waters, making it 

more available to bacteria. In coastal areas significantly affected by river runoff and 

rainfall, this can lead to increased phytoplankton growth, including blooms of harmful 

algal species, as a result of indirect utilisation of nitrogen previously bound to DOM 

(Granéli and Legrand 1999). 

Of course, annual cycles in phytoplankton blooms differ across the global oceans. 

Behrenfeld and Boss (2018) provide a comprehensive review of the variety of 

contrasting hypotheses that are described in the literature. The paper covers four main 

hypotheses: 

 The bottom up hypothesis which indicates that an increase in nutrient supply 

to the surface layer, whether by vertical mixing or horizontal advection, is 

what causes phytoplankton blooms. According to this hypothesis, 

phytoplankton growth should increase prior to or at the beginning of the 

bloom. 

 The top down hypothesis suggests that zooplankton grazing pressure is 

reduced, either as a result of seasonal migration, reproduction or predation, in 

turn leading to phytoplankton blooms. According to this hypothesis, the rate 
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of phytoplankton development should either be steady or decreasing before or 

at the beginning of the bloom. 

 The disturbance recovery hypothesis contends that physical disturbances like 

storms or frontal systems, which temporarily imbalance phytoplankton 

growth and loss rates, are the source of phytoplankton blooms. According to 

this hypothesis, the phytoplankton growth rate should be larger than the loss 

rate at the beginning of the bloom but lower than the loss rate as the bloom 

declines. 

 The dilution recoupling hypothesis, states that the seasonal transition from 

well-mixed to stratified conditions in the water column is what causes 

phytoplankton blooms. According to this theory, phytoplankton growth rate 

should be higher than loss rate after the commencement of the bloom but 

lower than loss rate prior to it. 

The study comes to the conclusion that none of these hypotheses can adequately 

account for all elements of the annual cycles of phytoplankton, and that a more 

thorough framework is required to take into account the intricate interconnections 

between physical, biological, and chemical components that affect phytoplankton 

dynamics (Behrenfeld and Boss 2018). 

 

Figure 1 Diagram illustrating all the elements involved in phytoplankton blooms along with seasonal trends. 

Source online: https://slideplayer.com/slide/15767305/ 

 

https://slideplayer.com/slide/15767305/
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1.1.2 Aquaculture 
 

Around the world, aquaculture is crucial for supplying food, nutrition, and 

employment. The FAO (2020) reports that in 2018, aquaculture production hit a record 

level. Between 1990 and 2018, the production of aquaculture worldwide increased by 

527%. With the decline in natural fish resources and the increasing world population, 

aquaculture will become even more crucial than ever (FAO, 2020). Dennis and 

Jackson (2019) explain that, in Ireland, aquaculture outputs were between 30,000 and 

50,000 tonnes, with the majority coming from the rearing of salmon and bivalves, and 

the country saw a net gain from under €100 million in 2009 to €180 million in 2018. 

In 2020, the Irish shellfish aquaculture industry was worth an estimated €51 million 

(Fernandes-Salvador et al., 2021). Numerous factors, both environmental and 

biological, including temperature, salinity, oxygen levels, and the availability of food, 

to name a few, affect aquaculture's potential to succeed (Mydlarz et al., 2006). HABs 

are a danger for both finfish and bivalve aquaculture (Callaway et al., 2012). As 

described, HABs can cause a range of issues, such as oxygen depletion and the 

production of harmful toxins. When there is a HAB, shellfish production area may 

have to be closed for public safety. Shellfish production areas are generally closed due 

to the occurrence of Diarrhetic Shellfish Toxins (DSTs), Paralytic Shellfish Toxins 

(PSTs) and Amnesic Shellfish Toxins (ASTs). The length of closure time and seasonal 

timing varies amongst events (Fernandes-Salvador et al., 2021). 

1.1.3 Climate change  
 

Climate change has profoundly impacted the ocean, primarily through warming and 

acidification. The absorption of anthropogenic carbon dioxide has reduced the ocean 

surface's pH by 0.1 since the onset of the industrial era. The ocean's increased 

warming, has contributed to a sea level rise of 0.19 m between 1901 and 2010. 

Additionally, shifts in salinity patterns and wind stress are causing noticeable changes 

in various regional areas. These alterations, together with human-induced factors like 

nutrient runoff, are transforming oceanic conditions. This not only affects biological 

processes but also regional climates, underscoring the broad and significant impact of 

climate change on the ocean's physical and ecological dynamics (Käse and Geurer 

2018). 



6 
 

Seasonal patterns of phytoplankton blooms have been associated with Irish waters, 

Anderson et al. (2021) discusses how an increase in temperature will alter 

phytoplankton growth. The authors state the thermal response will vary among 

phytoplankton species, in particular their results showed low latitude coccolithophores 

will face considerable decreases while cyanobacteria will face increases in growth 

rates. Therefore, the seasonal patterns may change due to climate change. Gobler et 

al. (2017) suggests that there is growing evidence that the frequency and intensity of 

harmful algal blooms (HABs) in marine environments may already be being impacted 

by climate change. Using high-resolution sea-surface temperature records and 

temperature-sensitive growth rates of two algae species, Dinophysis acuminata and 

Alexandrium fundyense, the study determines that in numerous coastal Atlantic 

regions between 40°N and 60°N, there are notable increases in the potential mean 

annual growth rates and length of bloom seasons. In recent decades, HABs have 

emerged and expanded in several regions. According to the study's findings, rising 

ocean temperatures have a significant role in escalating these HABs and posing a 

growing risk to human health. 

Wells et al. (2020) explores the evolving science of HABs in the context of global 

climate change. It acknowledges the growing concern that human-induced warming 

might significantly alter the distribution, patterns, and intensity of HABs. Various 

climate-related factors like temperature, stratification, ocean acidification, nutrients, 

and more are examined for their potential impacts on HAB dynamics. The study is a 

collection of deliberations from a symposium on HABs and climate change, discussing 

research challenges and new directions. This study highlights the complexity of 

predicting future HAB trends due to the integration of multiple climate drivers and 

emphasises the necessity of interdisciplinary research to understand and manage the 

future of HABs effectively. The study calls for a mix of laboratory and field studies, 

long-term observational programs, and socio-economic considerations to enhance 

forecasting and mitigation strategies. It is a comprehensive look at how climate change 

could reshape HAB occurrences and the scientific approaches needed to address these 

potential changes. 
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1.1.4 Phytoplankton Functional Types 

When discussing phytoplankton, and especially in the context of remote sensing, as 

stated there are thousands of species identified therefore it is useful to refer to 

phytoplankton in terms of functional types. Phytoplankton functional types (PFT) is a 

commonly used phrase to describe a group of phytoplankton. A PFT or phytoplankton 

biogeochemical class is frequently defined as a collection of organisms (regardless of 

taxonomic affiliation) that perform a specific chemical process, such as calcification, 

silicification, nitrogen fixation, or dimethyl sulfide production (DSP); these are also 

occasionally referred to as "biogeochemical guilds". Some of important functional 

types are: Nitrogen fixers, Calcifiers, Silicifiers, Size Classes and DMSP producers 

(IOCCG, 2014). This is an emerging area of remote sensing to determine groups of 

phytoplankton from space rather than just an overall chlorophyll concentration, 

Moisan et al. (2017) summarises the studies that are developing algorithms for the 

certain groups. 

1.1.5 Harmful Algae in Irish Waters 

One of the earliest published records of discoloured water in Ireland was in 1865 

(Wyatt, 2009). Toxic and harmful phytoplankton are monitored throughout the year at 

more than 100 Irish coastal sites. According to the Marine Institute data archive there 

are approximately 16 phytoplankton genera with species that can potentially cause 

dense blooms and 9 genera with the ability to generate biotoxins. The majority of 

shellfish production closures in Ireland are the result of phytoplankton species from 

the genera Dinophysis, Azadinium, Pseudo-nitzschia and Alexandrium. Human 

sicknesses caused by members of these genera include diarrhetic shellfish poisoning 

(DSP), azaspiracid poisoning (AZP), amnesic shellfish poisoning (ASP) and paralytic 

shellfish poisoning (PSP) (Cusack et al., 2016). In Ireland, Dinophysis spp. are 

responsible for diarrhetic shellfish poisoning and are generally found in their highest 

cell densities during the summer months and normally below the limit of detection 

during the winter months (November to February). Blooms of Dinophysis spp. are 

believed to develop at frontal regions, in open waters and transported to coastal areas 

(Raine et al., 2016). 
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The main organism causing PSP in Irish shellfish is Alexandrium minutum (Clarke, 

2020). The highest ever PSP concentrations recorded in Irish waters was in 2020 in 

the Southwest of Ireland (Bresnan et al., 2021). 

The genes Pseudo-nitzchia is responsible for ASP and generally blooms are observed 

from March to May ranging from the Southwest up along the west coast of Ireland 

(Clarke, 2020).  

In Ireland, AZP is primarily caused by Azadinium spinosum is the causative species 

of Azapiracids that are problematic around the Irish coastline, mainly in the northwest, 

west and southwest coasts (Fernandes-Salvador et al., 2021). 

1.1.6 Fundamentals of Ocean Colour 

For satellite ocean monitoring, it is essential to comprehend the basics of ocean colour. 

Remote sensing is the process of gathering data about an object without coming into 

contact with it directly. The colour of the ocean can be determined by measuring 

remote sensing reflectance (Rrs units: sr−1) or water leaving radiance (Lw) a method of 

measuring optically active constituents within the water column (chlorophyll-a, 

coloured dissolved organic matter (CDOM), the water itself, non-algal particles) 

(IOCCG, 2000). The process involves a measurement of spectral variations of water 

leaving radiance (Lw), or remote sensing reflectance (Rrs) [1] from the ocean surface, 

depending on what constituents the wavelengths of energy interacted with (Groom et 

al., 2019). Some of the sunlight that interacts with the ocean's surface is reflected back 

into the atmosphere. The angle at which the energy penetrates the ocean determines 

how much energy penetrates its surface (Lotliker et al., 2017). In order to identify and 

measure geophysical parameters, satellite sensors are designed to monitor upwelling 

radiation in a number of narrow bands in the visible (VIS) to near-infrared (NIR) 

spectral range (O’Reilly et al., 1998). 

𝑅𝑟𝑠 =
𝐿𝑤

𝐸𝑠
=

𝐿𝑠𝑢𝑟𝑓−𝐿𝑠𝑘𝑦∗𝜌

𝐸𝑠
 [1] 
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Figure 2 Diagram illustrating the wavelengths of light interacting with different properties at or just below the 

ocean surface, which shapes the surface reflectance. Online Source: https://seos-

project.eu/oceancolour/oceancolour-c01-p02.html 

Mobley (2001) describes how by understanding the fundamentals of how light travels 

to certain depths can determine different organic or inorganic optically active 

constituents in the water. Absorption and scattering are two processes that control the 

variation of downward and upward irradiance with depth, these processes are known 

as inherent optical properties (IOPs) (Kirk, 2011). The IOPs depend on the medium, 

or substance sampled, which in the case of ocean colour is seawater with dissolved 

and suspended particulate materials and are independent of the ambient light field. 

Apparent Optical Properties (AOPs) depend on both the medium IOPs and the 

directional structure of the ambient light field (Mobley, 2001). The water itself and 

optically active components in the water control the amount and spectral shape of light 

scattered upwards and towards the satellite sensor, which is known as the water 

leaving radiance. This process involves absorption and scattering of light at various 

wavelengths across the visible and near-infrared portions of the spectrum. The depth 

to which the satellite sensor can measure depends on both the wavelength of light and 

the optically active constituents (IOCCG, 2018). In order to obtain quantitative data 

on the types of compounds present in the water and their amounts, remote sensing 
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entails assessments of the fluctuations in magnitude and spectrum quality of the water-

leaving radiation (IOCCG, 2000). The following section describes the optically active 

or colour producing agents the satellite sensors recognise based on the water leaving 

radiance but in reality, none of these constituents would exist on their own, each 

category would include members of the other category, and this can be a problem for 

algorithms, which will be discussed in this chapter and throughout the thesis. 

1.1.7 Colour Producing Agents or Optically Active Constituents 
 

Colour producing agents (CPAs) or optically active constituents (OACs) within the 

water include coloured dissolved organic matter (CDOM), inorganic suspended 

particulate material (SPM), particulate organic matter (POM) or phytoplankton, 

chlorophyll-a (Prieur and Sathyendranath 1981). Water gets its distinctive colour 

through the interaction of the OACs in the medium with the ambient light through 

processes of absorption and scattering (Jungblut et al., 2017). The water itself also 

absorbs and scatters energy. Within 10 centimetres of the water surface, almost all the 

infrared energy (700 - 1000 nm) has been absorbed by water molecules. Longer 

wavelength light is absorbed more readily by pure water than shorter wavelength light. 

This allows for the deeper penetration of higher intensity light with short wavelengths, 

such as blue (Dutkiewicz et al., 2015). Pegau et al. (1997) describe that the process of 

absorption by water is dependent on both temperature and salinity which can affect 

the molecular structure of water, which in turn affects the absorption properties of the 

water. 

1.1.8 Case 1 and Case 2 waters 

Ocean colour measurements are typically classified with two water types, Case 1 and 

Case 2 waters. Morel and Prieur (1977) were the first to introduce the two water types. 

Since then, these descriptions have been refined for use in satellite work (Gordon and 

Morel, 1983; Morel, 1988; IOCCG, 2000; Mobley et al., 2004). Mobley et al. (2004) 

describe Case 1 waters ‘whose IOPs are dominated by phytoplankton’ and are 

typically classed as open ocean waters. Although Case 1 waters are associated with 

phytoplankton, CDOM and non-algal particles will also play a role in these waters. 

Case 2 waters are known as more optically complex waters due to their proximity to 

land and associated natural and anthropogenic effects. Bio-optical algorithms work 
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well in Case 1 waters due to less interference from other optical constituents. CDOM 

is present in Case 1 waters but is produced autochthonously by phytoplankton and the 

non-algal particles tend to be detritus caused by phytoplankton residues. Using this 

information, algorithms work well to determine phytoplankton concentration in Case 

1 waters, whereas in Case 2 waters, phytoplankton or chlorophyll concentrations tend 

to be overestimated due to the dominance from CDOM, which are sourced from rivers 

and resuspension of particles from the bottom. 

Mobley (1994) estimates that roughly 98% of the world’s oceans fall into the Case 1 

category. As Case 2 waters are heavily used by humans for the likes of recreation and 

fisheries, satellite remote sensing and regional algorithm development are of great 

interest to the scientific community. 

An earlier water type classification system, developed by Jerlov (1976), is often used 

for in situ studies, but less frequently in remote sensing work. This classification was 

summarised by Mobley et al. (2021). This system classifies waters bodies based on 

their optical properties, particularly on their light attenuation characteristics. Based on 

IOPs which are influenced by factors such as suspended particles, dissolved organic 

matter and water clarity, the Jerlov water types offer a technique to distinguish 

between various water masses. Jerlov categorised this data into five typical open-

ocean spectra, denoted by the letters I, IA, IB, II, and III and nine typical coastal 

spectra, labelled 1 to 9 (Jerlov, 1976). 

The Forel–Ule Index (FUI) is a colour scale for water. It categorizes water colours 

into 21 levels, ranging from blue to brown. This classification was first proposed by 

Forel in 1890 and later expanded by Ule in 1892. The scale is one of the oldest tools 

in optical oceanography and has been traditionally used to gauge water colour, 

primarily depending on water constituents. This index is advantageous as it does not 

rely on local retrieval algorithms and can characterize natural waters in a simple and 

globally effective manner. The FUI is instrumental in assessing water quality and 

understanding the ecological and biogeochemical states of water bodies (Ye and Sun, 

2022). 

Inversion algorithms, which are useful to quantitatively derive biogeochemical factors 

from the marine reflectance in the coastal ocean, are another method of classifying 
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water types in marine waters. The prevalent methods concentrate on the spectrum of 

optical variability unique to a designated coastal region through the creation of local 

or regional inversion algorithms. Although, this strategy may have a number of 

limitations, such as its strong reliance on the data set used to develop the algorithm 

and the possible restricted applicability of regional considerations for large-scale 

applications (Vantrepotte et al., 2012). 

1.1.9 Phytoplankton/Chlorophyll absorption  
 

In marine waters, phytoplankton's optical characteristics, particularly, in vivo 

absorption coefficients, are crucial in determining how far radiant energy penetrates 

seawater and to what extent it is used for photosynthesis. Pigments found in algae play 

two key roles in photosynthesis: they absorb sunlight and convert it into chemical 

energy. Chlorophylls, which are pigments found in phytoplankton, typically have two 

absorption peaks, one in the blue and one in the red (Mobley et al., 2021). Ocean 

colour is determined by radiometric quantities like Remote sensing reflectance (Rrs), 

defined as the ratio of water-leaving radiance to the total downwelling irradiance just 

above the water. This is a function of specific IOPs (e.g., spectral shapes of absorption 

and backscattering, volume scattering function) and concentrations of water 

constituents like chlorophyll-a SPM, and CDOM (Mobley, 1994). Estimation of 

phytoplankton biomass is generally calculated by measuring the concentration of 

chlorophyll-a, the photosynthetic pigment found in all algal species. Phytoplankton 

cells contain several pigments in their cells, depending on the growing conditions and 

species composition of the phytoplankton. These pigments include chlorophylls, 

carotenoids and phycobilins. The absorption process of these pigments shape the 

water-leaving radiance signal. Chlorophylls absorb light in the blue (440–475 nm) 

with a primary absorption peak near 440 nm and in the red (630–675 nm) regions of 

the spectrum with a secondary peak around 670 nm, while carotenoids and phycobilins 

do so in the 400–500 nm and 540–650 nm ranges (Meler et al., 2017), see figure 3 for 

an example of some absorption spectra of marine algal pigments. 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/downwelling
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Figure 3 An example of light absorption spectra for marine algal pigments. Much of the visible spectrum is 

utilised by different pigments at different wavelengths. Copyright Yarish et al. (2012). 

 

1.1.10  CDOM absorption 
 

Aurin et al. (2018) describes CDOM, which is also known as gilvin, gelbstoff, or 

yellow substance, as the result from the breakdown of plants and organic matter into 

humic material. Kostakis et al. (2021) estimates CDOM is responsible for the make 

up of 10-90% of DOM concentration in the upper water column. CDOM absorbs light 

in the UV and visible wavelengths, the strongest absorption takes place in the UV and 

diminishes close to zero in the red region (Wei et al, 2016a). One of the key 

constituents of marine waters is CDOM, which regulates the biogeochemical, 

photochemical, and biological processes that take place in marine ecosystems (Helms 

et al., 2008), because of this, CDOM can significantly impact on the productivity of 

the water column due to its optical behaviour. In addition to increasing primary 

production and shielding marine life from radiation, CDOM can also limit production 

in deeper waters due to its shady impact. CDOM can protect the upper ocean from 

damaging UV rays. CDOM must be considered before reflectance data can be reported 
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for phytoplankton and suspended sediment observations since its colour signal is 

crucial in remote sensing investigations (Tassan 1988; Karabashev, 1992).  

Figure 4 displays an example of Detritus, Phytoplankton, CDOM and Water 

Absorption  

  

Figure 4 An example of the mean relative contributions of Detritus, Phytoplankton, CDOM, and Water to total 

light absorption at wavelengths between 300 and 700 nm for the NAAMES dataset. Copyright Allen et al. (2020)  

 

1.1.11  Suspended Sediments 
 

Myint and Walker, (2002) discuss how suspended matter/sediments are primarily 

responsible for scattering light, whereas as already discussed above, Chlorophyll-a 

and CDOM are chiefly responsible for absorption. Suspended sediments can impact 

the optical property of the water by creating turbidity. Suspended solids are generally 

comprised of fine particulate matter with a diameter of less than 62 μm (Waters, 1995). 

The level of turbidity depends on the amount of suspended particles in the water. If 

the turbidity is high for the specific area this can block light from travelling through 

the water column. Turbidity and suspended solids are important parameters in many 

studies due to their link between incoming light and photosynthesis for the growth of 

algae and plankton. The complex nature of suspended solids in the water can change 

the reflectance of the waterbody and cause variation in colour, because of this remotely 

sensed data based on just the colour of the water may not be accurate (Gholizadeh et 
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al., 2016). In summary, suspended sediments is considered a proximal parameter in 

evaluation the distribution of the underwater light field. It influences the light field by 

altering the absorption and scattering of incident light due to suspended particles. This 

modification by suspended sediments affects the dynamics and distribution of light 

underwater, which can enhance the light field under certain conditions by increasing 

the scattering and potentially the absorption of light, thereby affecting the penetration 

and distribution of light within the water column (Li et al., 2022). 

1.1.12  Remote Sensing 

As described, a non-invasive approach of detecting optically active components within 

the water column is to measure Rrs or Lw (IOCCG, 2000). The spectral radiance of 

specific visible and infrared wavelengths are measured from the top of the atmosphere 

(TOA). Wang et al. (2009) describes how the ocean colour signal received by the 

satellite sensor is relatively small (<10%), due to light scattered by the atmosphere, 

and requires highly accurate correction methods. O’Reilly and Werdell (2019) discuss 

in detail the steps involved in deriving data from satellite measurements. To exclude 

the influence of the atmosphere from the overall signal and provide estimates of Rrs, 

atmospheric algorithm correction techniques are applied to the data (Mobley et al., 

2016). In order to estimate additional geophysical features, such as inherent optical 

properties (IOPs), which are the absorption and backscattering characteristics of 

saltwater and its particulate and dissolved constituents, bio-optical methods are then 

applied to the Rrs (Groom et al., 2019). 

1.1.13  Ocean Colour Sensors  
 

The Medium Resolution Imaging Spectrometer (MERIS), Moderate Resolution 

Imaging Spectroradiometer (Aqua-MODIS), Sea-Viewing Wide Field-of-View 

Sensor (SeaWiFS), The Visible Infrared Imaging Radiometer Suite (VIIRS), and the 

Ocean and Land Colour Instrument (OLCI) (Groom et al., 2019) are multispectral 

ocean colour sensors on satellites. Even though these sensors vary in band 

measurement, they are designed to measure the spectral radiance in several narrow 

bands to near infrared spectral range at the top of the atmosphere (O’Reilly et al., 

1998). Measurements of ocean colour from satellites began in the late 1970s with the 

launch of the Coastal Zone Colour Scanner (CZCS). Sensors and bio-optical 



16 
 

algorithms for measuring and quantifying optically active constituents have been 

improving since then to the most recent launch of ESA Sentinel 3B OLCI sensor in 

2018 (Groom et al., 2019). Werdell et al. (2019) describes NASA’s plan to launch a 

hyperspectral satellite sensor: Plankton, Aerosol Cloud, Ocean Ecosystem (PACE) in 

2024. This sensor will have the capability to measure a spectral resolution of 340 to 

890 nm and a spatial resolution of 1 km. The PACE mission comprises of three 

instruments, a hyperspectral radiometer (ocean colour instrument (OCI)) and two 

multispectral instruments. OCI is designed to tilt 20° north in the northern hemisphere 

and 20° in the southern hemisphere, this tilt was also included in the SeaWiFS mission 

to reduce the effects of sun glint and maximise the number of ocean colour pixels 

retrieved. The launch of PACE and its capabilities has the potential to revolutionise 

retrieval of aquatic optical and biogeochemical properties (McClain et al., 2022). 

1.1.14  Chlorophyll Algorithms 

Since the launch of the Coastal Zone Colour Scanner (CZCS) in 1978, chlorophyll-a 

has been a fundamental metric for measuring phytoplankton, marking the beginning 

of a significant era in ocean colour remote sensing (O’Reilly and Werdell, 2019). Its 

estimation is crucial for understanding various ecological and biogeochemical 

processes, such as the food web, marine biogeochemistry, and the carbon cycle, 

highlighting its importance in the broader context of marine science (Groom et al., 

2019). 

In response to this need, the ocean colour science community has historically utilised 

two primary types of algorithms to derive chlorophyll-a from Remote Sensing 

Reflectance (Rrs). Empirical algorithms, as described by Dierseen (2010) and 

exemplified by the ocean colour algorithm (OC4) developed by O’Reilly et al. (1998), 

rely on a statistical relationship between the blue-to-green ratio of Rrs and chlorophyll 

concentrations via a polynomial expression. These algorithms, including variations 

like OC3, OC5, and OC6, have proven effective in Case 1 waters dominated by 

phytoplankton and are adaptable to various sensors and locations. 

On the other hand, semi-analytical algorithms, outlined by IOCCG (2006) and detailed 

by Werdell et al. (2018), use radiative transfer equations to determine chlorophyll. 

These methods offer a more nuanced approach, incorporating the absorption and 
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backscattering properties of phytoplankton and are crucial in environments where the 

optical properties are primarily influenced by these organisms. 

In summary, while blue and blue-green bands are foundational in developing 

algorithms for chlorophyll-a estimation and other water quality parameters in clearer, 

Case 1 waters, the complexity of Case 2 waters often necessitates additional or 

alternative approaches. CDOM and sediments can lead to the overestimation of 

chlorophyll values in more complex waters. CDOM's strong absorption in UV and 

blue wavelengths, particularly at 443nm, a critical absorption peak for chlorophyll-a 

(Bricaud et al., 1981; O’Reilly et al., 1998), requires a shift in approach. This shift 

helps avoid the absorption of non-algal particles that can interfere with accurate 

readings. This is where algorithms that measure chlorophyll fluorescence become 

invaluable. With chlorophyll-a and other components inside plankton cells having 

maximum absorption around 440nm and fluorescence at 685nm, this method has 

served as a reliable proxy for phytoplankton biomass for over five decades (Babin 

2008; Lorenzen, 1996).  Addressing the specific challenges of Case 2 waters, the red 

band difference algorithm described by Amin et al. (2009) has shown promising 

results. This algorithm is less sensitive to CDOM, sediments, and atmospheric 

corrections, making it an essential tool for coastal waters and has been successfully 

employed in monitoring HABs in various regions. This algorithm has proven 

successful in monitoring HABs in the Gulf of Mexico (Amin et al., 2009), Chesapeake 

Bay (Wolny et al., 2020), Alaska (Vandersea et al., 2020) and the Celtic Sea (Jordan 

et al., 2021).  The upcoming hyperspectral resolution capabilities of NASA’s PACE 

mission are set to further transform chlorophyll estimation, allowing for sophisticated 

discrimination of HAB species from space. 

In the context of Irish waters, a pilot study in chapter 4 explores the red band difference 

algorithm's effectiveness compared to the traditional blue-green ratio algorithm used 

in the Irish monitoring program. This investigation is pivotal in adapting and refining 

remote sensing techniques to regional challenges, ensuring more accurate and efficient 

monitoring of aquatic environments. This approach, combining empirical and semi-

analytical methods with advanced fluorescence measurements, represents the 

multifaceted strategy required to effectively understand and monitor the complex 

dynamics of Case 2 waters and beyond. 
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1.1.15  HABS from Ocean Colour 
 

Satellite remote sensing techniques for detecting HABs typically involve measuring 

the concentration of chlorophyll-a as an indicator of algal biomass. Mueller, (1981) 

was the first to describe the value of remote sensing for monitoring HABs. There are 

key limitations to using remote sensing for determining specific HABs from satellites. 

Currently, ocean colour sensors are designed to measure specific wave bands as 

mentioned above in 1.1.13 Ocean Colour Sensors, because of this it is difficult to 

distinguish specific spectral signatures. 

Lin et al. (2021) study discuss the benefit of merging satellite observations with 

Lagrangian particle tracking. The method enhances monitoring by predicting changes 

in water properties like chlorophyll-a concentration and spectral qualities, crucial for 

identifying algal species from satellite ocean colour data. Applied to coastal areas of 

England, this approach significantly improved satellite data interpretation, offering 

detailed temporal and spatial resolution. The study's findings demonstrate a high 

correlation between predicted and observed chlorophyll-a concentrations, suggesting 

the method's potential as a valuable tool for marine ecosystem monitoring and 

supporting the aquaculture industry with early warnings of HABs. Despite inherent 

uncertainties in modelling and methodology, the method represents a significant 

advancement in predicting and understanding the dynamics of HABs. Future efforts 

aim to extend the approach to create quantitative risk maps for key high-biomass HAB 

species. 

Stumpf (2001) explored the use of sensors like SeaWiFS for monitoring Karenia 

brevis blooms in the Gulf of Mexico. The study highlights how integrating satellite 

data with field observations enhances the detection and management of HABs, despite 

challenges posed by the diverse nature of these organisms. Case studies demonstrate 

the practical application of this technology in real-world scenarios. The study 

concluded that while current efforts at that time focused on SeaWiFS and that future 

advancements in understanding phytoplankton will improve HAB monitoring and 

management.  Wolny et al., (2020) discuss how scientists in the US have moved to 

using Sentinel-3 satellites for detecting common HAB species like Alexandrium 

monilatum, Karlodinium veneficum, Margalefidinium polykrikoides, and 

Prorocentrum minimum. This detection is based on multispectral data products from 
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the OLCI sensor. These data are then analyzed in conjunction with in situ 

phytoplankton data and known ecological associations to identify the presence and 

extent of these specific algal species. The study highlights the potential of future 

hyperspectral instruments to improve species discrimination and the importance of 

integrating satellite data with in situ observations for effective resource management. 

It reviews how satellite data can aid in protecting shellfish resources and improving 

water quality monitoring. The paper also discusses how upcoming satellite missions 

with enhanced capabilities could further aid in understanding and managing HABs in 

the Chesapeake Bay, offering a more detailed and timely view of these ecological 

threats. 

Current ocean colour missions are designed to measure the spectral radiance in several 

narrow bands to near infrared spectral range at the top of the atmosphere therefore 

identifying HABs from space requires integrating satellite data with field observations 

(O’Reilly et al., 1998) but the unparalleled spectral coverage of the future NASA 

PACE satellite will enable the first-ever worldwide measurements intended to 

determine the makeup of phytoplankton communities. This would greatly enhance our 

capacity to recognise HABs by species (Werdell et al., 2019). 

Figure 5 shows the difference between a multispectral ocean colour sensor capabilities 

beside the future hyperspectral satellite for identifying HABs. 

 

Figure 5 The difference between a multispectral ocean colour sensor (VIIRS) capabilities beside the future PACE 

OLI  hyperspectral satellite for identifying HABs. Source: https://pace.oceansciences.org/about.htm 
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1.1.16  Deriving fluorescence from Remote Sensing 
 

Following their absorption of sunlight, phytoplankton's energy dynamics depend 

heavily on chlorophyll fluorescence. This system is crucial for regulating the amount 

of light energy chloroplasts absorb beyond what is necessary for photosynthesis, 

therefore minimising potential harm from bright light (Zhao et al., 2022). Chlorophyll-

a emits fluorescence with a quantum yield, which is only a small portion of the light 

that is absorbed (Zhou et al., 2008). A peak at 685 nm distinguishes this emission 

significantly (IOCCG, 2000). 

One well-known metric for evaluating the physiological alterations in phytoplankton 

is the Fluorescence Line Height (FLH). Understanding several facets of their activities 

and health is especially helpful (Blondeau et al., 2014). The three wavelengths that are 

used to calculate fluorescence loss head (FLH) are the central wavelength of maximal 

chlorophyll fluorescence, which is roughly 685 nm, and two additional wavelengths 

that aid in establishing a baseline around the fluorescence peak. According to Shehhi 

et al. (2019), these extra wavelengths are situated on either side of the peak. 

The Moderate Resolution Imaging Spectroradiometer (MODIS) on the Aqua satellite, 

the Ocean and Land Colour Instrument (OLCI) on the Sentinel-3A/Sentinel-3B 

satellites, have a range of fluorescence bands for measuring this metric, for instance 

the OLCI sensor measures FLH using a variety of bands, including 665, 674, 681, 710, 

and 761 nm (Zhao et al., 2022). 

1.1.17 Attenuation Coefficient and Kd (490) Algorithm  

As stated wavelengths of light that enters the water column will typically be absorbed 

and scattered by the optical constituents or the water itself. Diffuse downwelling 

attenuation (Kd) is defined as the reduction in the amount of downwelling irradiance 

(Ed) with depth, by measuring this parameter it is possible to determine the amount of 

light lost due to absorption and or scattering (Kirk, 2003; Moblet, 1994). One of the 

main causes of light attenuation in the ocean is phytoplankton. For photosynthesis, 

they absorb light, particularly in the blue and red part of the spectrum. In Lee et al. 

(2005), the numerous investigations and applications of measuring the diffuse 

attenuation coefficient Kd (λ) are covered. These include biological activities like 

photosynthesis, heat transmission in the upper ocean, and the turbidity of both oceanic 
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and coastal waters. According to IOCCG, 2019 there are three techniques for 

employing satellite reflectance data to determine the diffuse attention coefficient, Kd 

(λ) or Kd (490). The first approach is based on empirical connections between the 

blue/green ratio (Rrs (λ)) of remote sensing reflectance and in situ measurements of 

Kd (490). The second is an actual correlation between chlorophyll and Kd. The last 

technique uses a quasi-analytic approach to calculate absorption and backscattering 

from Rrs (λ). Kd (λ) is semi-analytically estimated using the obtained values. When 

Lee et al. (2005) examined the three algorithms, they discovered that the semi-

analytical method worked best for a variety of water types. SeaWiFS examines the 

ratio of water-leaving radiances at 443 and 490 using the Kd (490) algorithm. Remote 

sensing ocean colour algorithms are based on the measurement of parameters of AOPs 

such as Attenuation coefficients (Kd (λ)) and Remote sensing reflectance (Rrs) 

(Mobley, 2001). Joint and Groom (2000) explains the relationship between the vertical 

attenuation coefficient of irradiance in water and its inherent optical characteristics 

(IOPs), including the scattering and absorption coefficients. It is crucial to understand 

light behaviour in aquatic settings as this directly affects phytoplankton. 490nm is an 

area of the spectrum associated with phytoplankton absorption therefore can be useful 

to estimate the amount of light available for photosynthesis (Schanz et al.,1997).  The 

vertical attenuation of irradiance is fundamentally linked to phytoplankton through its 

effects on light penetration in water, a vital component of phytoplankton growth and 

dispersal. For marine ecosystems to be monitored effectively monitored and managed, 

it is essential to comprehend these processes Joint and Groom (2000). 

1.1.18  Importance of Validation 

As previously mentioned, satellite data is an effective tool for tracking phytoplankton 

blooms and water quality. It is important to note there are some limitations to satellite 

monitoring such as cloud, sun glint and stripe artefacts from some sensors. For these 

and data quality control reasons satellite derived data need to be validated with on the 

ground data. Results from chapter 2 are a good example of why in situ data is required 

for Irish waters. Numerous studies compare various validation efforts and highlight 

the significance of validation (e.g. O’Reilly et al., 1998; Bailey and Werdell 2006; 

Zibordi et al., 2012; Garaba et al., 2015; Brando et al., 2016, Concha et al., 2021). As 

Wang et al. (2009) discussed the ocean colour signal received from the TOA is <10% 

due to the atmosphere therefore correction methods are needed.  A crucial stage in 
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determining whether the observations made by satellite sensors are correct is regional 

validation (IOCCG, 2012). In situ ocean surface remote sensing reflectance 

measurements are routinely made using above- and in-water hyperspectral optical 

radiometers. Applications for Rrs measurements include satellite validation, water 

quality monitoring, bio-optical modelling, and algorithm development. These 

applications are especially useful in coastal regions where high-quality in situ 

radiometry is advantageous because of the close proximity to land (e.g. Mobley 1999; 

Zibordi et al., 2002; Garaba et al., 2012; 2014a, 2014b; Garaba and Zielinski 2013; 

Hommersom et al., 2012; Zibordi et al., 2012; Brando et al., 2016; Tilstone et al., 

2017; 2020; Pitarch et al., 2020; Concha et al., 2021). 

Measurements known as fiducial reference measurements (FRMs) are exact and 

traceable measurements that serve as a benchmark for verifying and adjusting 

measurements obtained by satellite or remote sensing technologies. These measures 

are used as a standard by which to evaluate how accurate the data derived from 

satellites is. The term "fiducial" suggests that these measurements are established, 

well-defined, and trustworthy as benchmarks. Banks et al. (2020) introduces the 

Copernicus Marine Environmental Monitoring Service (CMEMS) and highlights the 

importance of calibration and validation in satellite missions. The focus is on ocean 

colourcolour radiometry (OCR) and the satellite missions (Sentinel-2 and Sentinel-3) 

designed to support CMEMS. The principles of calibration and validation are 

explained in the study, with a focus on their importance in guaranteeing the accuracy 

and dependability of data derived from satellites. The Fiducial Reference 

Measurements (FRM) programmes of the European Space Agency (ESA), in 

particular FRM4SOC, are presented as efforts aimed at verifying satellite data 

products concerning the land, ocean, and atmosphere. Establishing and sustaining SI 

traceable ground-based fiducial reference measurements for ocean colour is one of 

FRM4SOC's goals. The techniques for measuring water-leaving radiance and 

downwelling irradiance in the context of satellite ocean colour radiometry validation 

have been greatly improved by the FRM4SOC project. The project expands the scope 

to include all oceans, building on NASA Ocean Optics procedures and taking into 

account improvements since 2004. It emphasizes data collecting and processing 

uncertainties, which are critical in the FRM context. The specified measurement 

requirements include quality control, open publication of data processing software, 
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long-term data archiving in an open-access repository, ancillary data collection, 

uncertainty estimation, traceability to SI units, and in situ measurement of 

downwelling and water-leaving irradiance. 

The process of measuring a satellite-derived product's accuracy and characterising its 

uncertainties through analytical comparison with reference data which are thought to 

be representative of reality is known as validation in remote sensing (Justice et al., 

2000). Concha et al. (2021) discusses validation strategies employed by the ocean 

colour community to verify satellite derived products using in situ data were examined 

in this study. Using an identical dataset of in situ and satellite data, two primary 

methodologies proposed by Bailey and Werdell (2006) and Zibordi et al. (2009) were 

compared. High spatial resolution sensors were represented by Sentinel-2A/MSI, and 

medium spatial resolution sensors by Sentinel-3A/OLCI. The study discovered that 

the amount of match-ups and validation metrics are impacted by the validation 

approach selected, which in turn affects how accurate satellite products are judged to 

be. The results highlight the necessity for consistent techniques by indicating that 

validation statistics presented in various research may not always be directly 

comparable.  

Tilestone et al. (2021) study evaluated a range of statistical variables to assess 

algorithm performance, adhering to the techniques described by Muller et al. (2015) 

and Brewin et al. (2015). The type-II regression slope (S), intercept (I), Pearson 

correlation coefficient (r), bias (δ), bias-corrected root-mean-square error (Δ), and 

relative percentage difference (RPD) were among these measurements. Better linear 

consistency between in situ and satellite observations is indicated by a larger r. 

Furthermore, the data distribution around the regression line and outliers is indicated 

by Ψ, δ, and Δ. The relative difference between in situ and satellite data is represented 

by Ψ, which is sensitive to variations around the regression line. The bias corrected 

difference, denoted by Δ, is susceptible to anomalies. A value close to zero indicates 

that there is no systematic difference between the two datasets. The δ metric provides 

information on under- or overestimation of satellite data in comparison to in situ data. 

In chapter 3 the products that can be derived from above water hyperspectral 

radiometers are discussed for satellite validation and applications mentioned above. 

This chapter focuses on the value of in situ measurements of remote sensing 
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reflectance and how it was documented using a data management quality management 

framework pack. Validation statistics as described by Muller et al. (2015), Brewin et 

al. (2015) and Concha et al., (2021) are applied to the two datasets and discussed in 

further detail. 

 

1.2 Chapter Summary 
 

In summary, this introductory chapter describe various topics which will be discussed 

throughout the results chapters with an insight into new technologies or environmental 

monitoring instruments for the Irish monitoring programme. This thesis aims to 

advance the Irish monitoring programme for HABs by introducing and evaluating new 

remote sensing algorithms and technologies. Each chapter contributes to this 

overarching goal. 

Chapter 2 delves into the diffuse attenuation coefficient (Kd 490) and its potential 

applications in the HAB programme. While the chapter effectively discusses the use 

of in situ point measurements of Kd (490) to validate data from Sentinel-3A OLCI, 

there's an inherent challenge due to cloud cover and no daily satellite data was 

available. The chapter concludes that Irish waters' cloudiness limits remote sensing 

capabilities and underscores the need for more in situ measurements. These type of 

data can be used for algorithm development alongside other data sets; this conclusion 

directly informs the research approach in Chapter 3. 

Chapter 3 focuses on creating a data management quality management framework for 

a new hyperspectral radiometer system installed on the RV Celtic Explorer, which 

generates remote sensing reflectance (Rrs) measurements. This system is the first of 

its kind within the Marine Institute. The chapter includes a case study comparing these 

in situ Rrs measurements with the satellite derived CMEMS Rrs wavaebands, using the 

validation statistics previously mentioned. This system will be extremely benefitial to 

Irish monitoring programme for Ireland due to the potential for satellite validation, 

algorithm development and water quality monitoring.  

Chapter 4 demonstrates the successful introduction of the Red Band Difference 

Algorithm to Irish waters and its potential to detect and monitor a phytoplankton 
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bloom, despite the challenges posed by cloudiness in chapter 2, this bloom took place 

during the summer months and was visible using satellite technologies. 

We outline Ireland's possible use of the Red Band Difference algorithm as an 

additional monitoring tool within the current HAB alert system to offer an early 

warning approach for HABs, and specifically, blooms caused by Karenia spp. 

In order to improve the detection capabilities presented in Chapter 4, it is important to 

increase the quantity and methods of in situ samples, as suggested by the technique 

presented in Chapter 5. The pilot study using the HABscope in Ireland for the first 

time will highlight the connection between enhancing in situ sample availability and 

developing detection techniques for Karenia spp and potentially other species in the 

future. 

Overall, this thesis has effectively added a number of cutting edge instruments to the 

Irish monitoring programme. Significant breakthroughs have been made with the 

introduction of the Red Band Difference Algorithm, the deployment of a 

Hyperspectral Radiometer System, and the use of the HABscope, which uses artificial 

intelligence to detect the swimming patterns of Karenia spp.  
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2. Chapter 2: 

In situ Attenuation Coefficient and Satellite Derived Kd 

(490) in Irish Coastal and Oceanic Waters 
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1Earth and Ocean Sciences and Ryan Institute, School of Natural Sciences, University of 

Galway, H91 TK33 Galway, Ireland   
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2.1  Abstract  

 

This study presents an extensive analysis of in situ and satellite derived data to 

understand the optical properties of Irish waters, focusing on the vertical attenuation 

coefficient Kd at 490 nm and chlorophyll-a concentrations over a 20-year period 

(1999-2019). In situ measurements of Kd (490) were collected from various research 

surveys, displaying a range between 0.02-0.52 m-1 across different water types, 

including both Case 1 and Case 2 waters. Notably, the highest attenuation values were 

observed in the mixed waters of the Irish Sea. Complementing these in situ 

observations, satellite data from the GlobColour project, integrating measurements 

from MODIS, MERIS, SeaWiFS, and OLCI sensors, were analysed using the KD490-

LEE algorithm. This analysis elucidated the monthly climatology trends of Kd (490) 

and chlorophyll-a, although data for December were consistently unavailable due to 

cloud coverage. The in situ data highlighted the presence of CDOM absorption, 

particularly in the CV18012 stations, and chlorophyll-a absorption in the CE19009 

survey areas. Seasonal variation in Kd (490) indicated higher attenuation along coastal 

areas, especially during winter, aligning with increased rainfall and wind. A notable 

increase in attenuation and chlorophyll-a concentration was observed during spring 

and summer, suggesting a strong influence of biological and physical processes. 

Despite the limitations of satellite technology in capturing ocean colour under frequent 

cloud cover, this study emphasises the importance of in situ measurements, especially 

in under sampled areas. The integration of this algorithm into the Irish monitoring 

programme is proposed, offering significant benefits for comprehensive marine 

environment assessment and management. 
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2.2  Introduction 
 

The interaction of light with sea water is essential to many oceanic processes and the 

fundamentals of life (Mobley, 2001). The importance of light for marine life cannot 

be overstated. It transfers heat to the top of the water column, causing stratification 

and, as a result, shaping abiotic conditions over time (McFarland, 1986). Studies of 

light interaction in seawater are vital for understanding processes such as primary 

production, climate change, biogeochemical cycling, water clarity, ocean colour 

remote sensing, lidar bathymetry, photochemistry and much more (Mobley, 2001; 

Dickey et al., 2011). Remote sensing of ocean colour plays a key role in monitoring 

coastal and oceanic waters. Groom et al. (2019) provide a detailed summary of studies 

describing some of the practical uses of ocean colour data, including assessing water 

quality parameters, satellite validation, ecosystem model data assimilation, 

aquaculture site selection, and climate change time series, to name a few. However, as 

their study suggests, this is just a sampling of current and future uses of ocean colour 

data. Understanding the fundamentals of ocean colour is vital for satellite monitoring 

of our oceans.  

The Diffuse Attenuation coefficient (Kd (λ)) is defined as 'the decrease with depth of 

ambient down welling irradiance Ed (λ) which comprises of photons heading in all 

downwards direction' (Mobley, 1994).  Understanding how different wavelengths 

travel to certain depths can help determine what materials, organic or inorganic, are in 

the water body (Mobley, 2001). Two processes that control the variation of downward 

and upward irradiance with depth are absorption and scattering and are known as 

inherent optical properties (IOPs) (Kirk, 1994). Inherent optical properties depend on 

the medium and are independent of the ambient light field. Apparent optical properties 

(AOPs) depend on both the medium (IOPs) and the directional structure of the ambient 

light field (Mobley, 2001). The Diffuse Attenuation coefficient is classed as an 

apparent optical property (AOP) (Preisendorfer, 1976), and varies due to direction 

structure of the ambient light field, solar zenith angle and depth of the water column 

(Mobley, 1994; Gorden, 1989). AOP's are connected to IOP's through radiative 

transfer theory (Prisendorfer et al., 1976; Mobley, 2018; Mobley, 1994). Light 

absorption is a fundamental IOP and can influence the underwater light field (Kostakis 

et al., 2021). Absorption coefficient can be quantified as a(λ) (m-1) (Mobley, 2001).  
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2.2.1 Phytoplankton Absorption 

 

There are a range of processes that can be quantified by measuring absorption 

coefficients of constituents dissolved and suspended within the water column 

especially with the study of phytoplankton including pigments, taxonomic 

composition, size structure (Kostakis et al., 2021) and primary production (Behrenfeld 

and Falkowski 1997). One of the most important roles light plays in the ocean is it 

drives photosynthesis and therefore fuels the food web. Absorption takes place for 

photosynthetic organisms, depending on their spectral composition and pigments, 

within the visible wavelengths of the electromagnetic spectrum 400 – 700 nm (Kirk, 

2011), different species or groups of phytoplankton absorb light differently 

(Sathyendranath and Platt, 2007). Since 490 nm is an area of the spectrum associated 

with phytoplankton absorption this measurement can be useful to estimate the amount 

of light available for photosynthesis (Schanz et al., 1997) 

2.2.2 Water absorption 

 

Dutkiewicz et al. (2015) discusses how it is not only the constituents within the water 

that absorb or scatter the incoming electromagnetic radiation but also the water 

molecules itself. Water molecules absorb very strongly in the longer wavelengths. 

Absorption by water is dependent on both temperature and salinity which can affect 

the molecular structure of water, which in turn affects the absorption properties of the 

water (Pegau et al., 1997).  

The diffuse attenuation for pure water is in the range 0.016 to 0.022 m-1 for the visible 

spectrum (400 – 700 nm) (Smith and Baker 1981). Attenuation of light will vary in 

different water types, such as Case 1 and Case 2 water. Case 1 waters are associated 

with open waters and Case 2 with coastal waters and are more complex due to inputs 

(e.g. organic matter, suspended sediment) resulting from proximity to land. Morel and 

Prieur (1977) originally introduced these water types and the definitions have since 

been refined by Gordon and Morel, 1983; Morel, 1988; IOCCG, 2000; Mobley et al., 

2004. Waters, where the inherent optical properties ae dominated by phytoplankton 

are defined as Case 1 waters. Due to the proximity to land Case 2 waters are more 

complex and have higher concentrations of optical properties, these waters generally 

contain higher concentrations of CDOM, SPM, and inorganic particles in addition to 

https://www.frontiersin.org/articles/10.3389/fmars.2021.638889/full#B17
https://www.frontiersin.org/articles/10.3389/fmars.2021.638889/full#B35
https://www.frontiersin.org/articles/10.3389/fmars.2021.638889/full#B24
https://www.frontiersin.org/articles/10.3389/fmars.2021.638889/full#B33
https://www.frontiersin.org/articles/10.3389/fmars.2021.638889/full#B33
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phytoplankton (Mobley et al., 2004). Darecki et al. (2003) discusses the approach by 

Sathendranath (IOCCG, 2000) regarding Case 2 waters. The authors consider eight 

classes are associated with Case 2 waters therefore one algorithm would not be 

adequate and all complex Case 2 waters should be assessed by area and season.  

2.2.3 CDOM absorption 

 

Another optical constituent that controls the variation of irradiance is coloured 

dissolved organic matter (CDOM). CDOM results from the breakdown of plants and 

organic matter into humic material and is also known as gilvin, gelbstoff, or yellow 

substance as described in Aurin et al. (2018). It is estimated to make up 10-90% of 

DOM concentration in waters and the impacts of CDOM on the upper water column 

are well described in Twardowski et al. (2004). CDOM absorbs strongly in the UV 

and blue wavelengths (Bricaud et al., 1981) and decreases exponentially with 

increasing wavelengths (Dutkiewicx et al., 2015). Due to the fact CDOM absorption 

takes place near 443nm, there is an overlap with chlorophyll-a absorption and this 

becomes a problem for remote sensing algorithms as the chlorophyll a values may be 

overestimated (O’Reilly et al. 1998). Jordan et al. (2021) describe an algorithm for 

monitoring phytoplankton blooms in Irish waters using a chlorophyll fluorescence 

algorithm rather than the traditional blue-green ratio algorithm that avoids the 

absorption of CDOM and sediments (Amin et al., 2009). In terms of measuring algal 

blooms, ocean colour sensors and algorithms are being regularly updated and 

improved on since the launch of the first ocean colour sensor in 1978, the Coastal Zone 

Colour Scanner and the most recent Sentinel 3B OLCI sensor from ESA in 2018 

(Groom et al., 2019). 

2.2.4 Remote sensing 

 

Remote sensing of key water quality parameters using ocean colour satellite sensors 

is a valuable tool for monitoring our oceans. Strong practical justifications exist for 

using satellite remote sensing to examine the vast shelf seas of the Northeast Atlantic. 

It is a powerful tool to collect data over a large area in one single measurement, 

especially for monitoring the movement of an algal bloom (Stumpf and Tomlinson, 

2005). Algal blooms are naturally occurring and the whole ecosystem generally 

benefits from marine phytoplankton as primary production is the source of 
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approximately 50% of atmospheric O2, provide food for wild fisheries and aquaculture 

and provides climate regulation (Tweddle et al., 2018). Algal blooms occur during 

specific times of the year which include, increase in temperature, stratification and 

increase in nutrients (Siegel et al., 1999; Gohin et al., 2003; Thomas et al., 2003). 

Conditions like these are favourable for phytoplankton, and as a result, cell counts 

may rise and a low or high biomass bloom can result. A small percentage of the species 

responsible for algal blooms can cause harm to the overall ecosystem. These are 

known as Harmful Algal blooms (HABs). Two key mechanisms by which a HAB 

event might harm the environment are oxygen deprivation caused by high cell 

concentrations and toxin synthesis by particular dinoflagellate species (Purdie, 1996). 

Callaway et al. (2012) describes the dangers of HABs for aquaculture, both finfish and 

bivalve. Because phytoplankton blooms are both a benefit and can be harmful to the 

environment, it is vital remote sensing technology is utilised to mitigate against the 

impacts of HABs by providing warning systems but also to monitor the health of our 

oceans over a large scale. 

Remote sensing ocean colour algorithms are based on the measurement of parameters 

of AOPs such as Attenuation coefficients (Kd (λ)) and Remote sensing reflectance 

(Rrs), and as discussed AOP's are connected to IOP's through radiative transfer theory. 

The process of absorption and scattering of light at different wavelengths across the 

visible and near-infra-red portions of the spectrum by optically active constituents in 

the water and the water itself control the magnitude and spectral shape of light 

scattered upwards and towards the satellite sensor i.e water leaving radiance (Lw). The 

depth to which which the satellite sensor can measure depends on both the wavelength 

of light and the water properties (IOCCG, 2018). 

Lee et al. (2005) discusses the many studies and uses of measuring the diffuse 

attenuation coefficient Kd (λ), such as biological processes for instance, 

photosynthesis, heat transfer in the upper ocean and the turbidity of the ocean, both 

oceanic and coastal waters. 

According to IOCCG, (2019) there are three methods for using satellite reflectance 

data to estimate the diffuse attention coefficient, Kd (λ) or Kd (490). The first algorithm 

is based on empirical relationships between in situ measurements of Kd (490) and the 

blue/green ratio of remote sensing reflectance (Rrs (λ)). The second is an empirical 
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relationship between Kd and Chlorophyll. The final method is using a quasi-analytic 

method that derives absorption and backscattering from Rrs (λ), and the values are used 

to semi-analytically estimate Kd (λ). The three algorithms were compared by Lee et 

al. (2005) and the semi-analytical method was found to be the best for a range of water 

types. The Kd (490) algorithm used by SeaWiFS compares the ratio of water-leaving 

radiances at 443 and 490 nm. When the uncertainty of the SeaWiFS estimation of 

water-leaving radiance at 443 is greater than that at 490 nm, a revised algorithm using 

the ratio of water-leaving radiances at 490 and 555 nm to estimate Kd (490) is applied 

(Mueller, 2000). 

Due to the high incidence of cloud cover off the Irish coast in situ data is vital for 

validating against satellite data. There is also a lack of in situ optical data around 

Ireland.  

The original aim of this study was to compare in situ Kd (490) values with satellite 

derived values from different water bodies around the island of Ireland. In situ data 

from two research surveys are presented here: CV18012 (NE Atlantic Ocean and the 

Western Irish Sea) and CE19009 (NE Atlantic Ocean). Daily satellite values to 

correspond with the in situ values was investigated. There were zero cloud free days 

available. In situ attenuation data and 20 years of Kd (490) and Chlorophyll-a data 

were investigated to determine whether the Kd (490) algorithm would benefit the the 

Irish monitoring programme. 
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2.3  Material and Methods 

2.3.1 Study Area 

 

 

Figure 6 Study area broken into three sections: stations from CE19009 and CV18012; Aran Grounds and Western 

Irish Sea (WIS) 

Figure 6 displays the stations sampled for this study. The study area was broken into 

three distinct areas, the survey area for CE19009 and the survey area for CV18012. 

CV18012 is broken into two areas: CV18012 West: The Aran Grounds, west of Ireland 

and CV18012 East: the western Irish sea (WIS), east of Ireland: Stratified and Mixed 

stations. 

CV18012 

 

A multidisciplinary research survey was carried out on the RV Celtic 

Voyager (CV18012) from the 3 - 16 April 2018 and 38 stations were sampled within 

this time frame. Due to the multidisciplinary nature of the survey the areas selected 

were commercially important fishing grounds for Nephrops norvegicus as the larvae 

was being sampled (McGeady et al., 2019). The sample sites were broken into 

2 main areas: The Aran grounds (West of Ireland) and the Western Irish Sea 

stations (East of Ireland): a mixed, a stratified area and a fixed station were sampled 

within this area. 
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CE19009 

 

The Marine Institute’s Ocean Climate Survey from Galway to the Rockall Trough was 

carried out from May 24 - 6 June 2019 on the RV Celtic Explorer. The main purpose 

of this survey was to gather high quality oceanographic data to analyse essential 

climate variables along a targeted section of the Atlantic Ocean starting in Galway 

Bay along the 53° N line and heading out to the South Rockall Trough. Stations were 

also sampled off the SW coast of Ireland while in transit. 

2.3.2 Attenuation Coefficient 

 

A TriOS RAMSES-ACC Hyperspectral Irradiance Sensor with a wavelength 

range of 320-900 nm, 256 channel and a cosine response was used on both CV18012 

and CE19009 to create a profile of downwelling irradiance (Ed). The instrument has 

a pressure sensor incorporated to determine the depth in the water column. The 

instrument has an average spectral sampling of 3.3 nm per pixel and a spectral 

accuracy of 0.3 nm. The instrument was placed inside a frame and secured 

facing 'straight up' so as to detect photons travelling downwards to measure the 

spectral downward plane irradiance (Figure 7). The instrument was lowered at a speed 

of one metre per second. The TriOS RAMSES MSDA_XE software was 

programmed to take automatic measurements as the sensor travelled through the water 

column. The data acquired was stored using the software Multi-Sensor Data 

Acquisition (MSDA_XE ver. 8.9.2 2014-04-28) that was provided by TriOS GmbH. 

The data is radiometrically calibrated using the calibration files supplied by Trios 

GmbH. Matlab (Mathworks) was used to calculate the attenuation coefficient values 

at each site, determining the Kd (490) in situ values by taking the slope of a log 

irradiance vs depth plot. The error estimates are derived from calculating the 

confidence interval for the fit of Kz at each wavelength. It is calculated using linear 

regression analysis. 

See Appendix A1 for Matlab script. 
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Figure 7 (A) TriOS RAMSES irradiance sensor inside frame (B) Sensor being deployed off the ship 

2.3.3 Satellite Data 

 

Satellite data from the Ocean and Land Colour Instrument (OLCI) sensor on Sentinel 

3A were obtained from Copernicus Marine Service (CMEMS) (dataset-oc-atl-opt-

olci_a-l4-Kd490_1km_monthly-rt-v01_1628764606346.nc) and (dataset-oc-atl-opt-

olci_a-l4-Kd490_1km_monthly-rt-v01_1580124509985.nc). The region of interest 

covers all coastal waters around the island of Ireland.  The multispectral OLCI sensor 

has 21 spectral bands from 400 to 1020nm and has a spatial resolution of 300 m.  The 

Kd (490) algorithm identifies the turbidity of the water column, i.e., how visible light 

in the blue-green region of the spectrum penetrates within the water column. Daily 

satellite data was investigated but was unavailable on all the dates surveyed. L4 

monthly composites are illustrated for this study to show the monthly averages for the 

timeframe due to consistent cloud cover for both research surveys. 

20 years of monthly Kd (490) data was downloaded from GlobColour to display the 

climatology trends per month between 1999 and 2019. The GlobColour 1km x 1km 

product integrates data from multiple satellite sensors, such as MODIS, MERIS, 
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SeaWiFS and OLCI and all data is processed using the same algorithm, the KD490-

LEE. KD490-LEE is computed from the corresponding merged fully normalised 

remote sensing reflectance products at 443, 490, 555 and 670 nm using the semi-

analytical method of Lee and Arnone (Lee et al., 2005). The data included the months 

January to November as December was unavailable from 1999 to 2019.  

20 years of monthly Chlorophyll data was downloaded from GlobColour to illustrate 

Chlorophyll concentration (mg/m3) climatology trends per month between 1999 and 

2019. 

The data is generated by the GSM01 semianalytical bio-optical model, which 

invlolves merging of single sensor L3 normalised remote sensing reflectance. The 

GSM method uses the normalized reflectances at the original sensor wavelengths, 

without intercalibration (Maritorena and Siegel, 2005). 

Monthly climatology figures were created for each month using Matlab (Mathworks) 

using a workscript that was created to process a climatology for each month and 

visualise the multi-year satellite data. 

 

2.4  Results 
 

In situ attenuation coefficient data from two research surveys (CV18012 and 

CE19009) were calculated using in house Matlab scripts as mentioned above in the 

methods section. Figure 8 displays the Kd (490) values from both surveys ranging 

from 0.02-0.52 m-1 overall and 0.02 to 0.27 m-1 from stations on CE19009. Waters 

sampled during CE19009 would generally be classed as Case 1 waters. The lowest in 

situ value during CE19009 was of 0.02 m-1 Station 15. The highest in situ value of 

CE19009 was 0.27 m-1 was on shelf edge station 16. 

Stations sampled during CV18012 have a mix of both Case 1 and Case 2 waters. The 

stations to the west of Ireland, known as the Aran grounds, had Kd (490) values 

ranging from 0.08 to 0.33 m-1. The stations in the Irish sea, east of Ireland were known 

as mixed water stations and stratified water stations. The stratified stations had values 

ranging from 0.05 to 0.22 m-1 and values in the mixed water stations ranged from 0.11 

to 0.52 m-1, the highest attenuation recorded on both surveys. 
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Figure 8 displays how the majority of the stations to the west of Ireland range between 

0.02 and 0.20 m-1. The highest attenuation values are recorded in the Irish Sea. 

 

Figure 8 In situ Kd490nm values for CV18012 and CE19009 research surveys 

Figure 9 displays the surface chlorophyll values for all the stations sampled on 

CE19009. The highest chlorophyll values were recorded at the stations within the shelf 

and closest to the coast.   

 

Figure 9 In situ chlorophyll surface values for all stations sampled during CE19009 (May 24th June 6th 2019) 
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Figure 10 displays examples of the in situ attenuation coefficient data generated from 

different survey areas such as from the survey CV18012; the Aran grounds, Stratified 

and Mixed waters. And data from deep oceanic waters from survey CE19009. The 

plots display which wavelengths were attenuated throughout the water column. The in 

situ attenuation plots can help derive what constitutents were present in the water when 

the measurement was taken based on the absorption of specific wavelengths. It is 

evident from these plots that CDOM absorption took place at all the CV18012 stations 

displayed here with absorption peaks between 300 and 400nm in each of these plots. 

The CE19009 plots displayed here illustrates absorption in the red section of the 

spectrum, indicating chorophyll absorption and or the red wavelengths being absorbed 

by the ocean water.   
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Figure 10 Examples of in situ attenuation coefficient plots generated at CV18012: Aran grounds, Stratified and 

Mixed water stations and open water CE19009 with error bars. 
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Figure 11 shows the daily data composites for dates during (A) CV18012 and (B) 

CE19009. The grey space represents areas covered by cloud, which in both cases is 

over all of the survey areas. 

 

Figure 11 (A) Daily satellite derived Kd490 data from dates during CV18012. (B) Daily satellite derived Kd490 

data from dates during CE19009 

Figure 12 displays the average monthly data composites for dates during (A) 

CV18012 and (B) CE19009 
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Figure 12 (A) Monthly satellite derived Kd490 average data from dates during CV18012. (B) Monthly satellite 

derived Kd490 average data from dates during CE19009 

 

Figure 13 and 14 shows the Kd (490) and chlorophyll 20-year climatology for January 

to November (1999-2019). Data received for January and November are limited and 
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there was no data available for December due to cloud coverage. Figure 13 illustrates 

the seasonal changes in Kd (490) over Irish waters over 20 years. As can be seen there 

is higher attenuation along coastal areas than oceanic waters in general but particularly 

during the winter season, coinsiding with more rainfall and wind during the winter. 

The attenuation in the oceanic waters increases as the spring season starts. The change 

in attenuation of Kd (490) during spring would primarily driven by biological and 

physical processes in the water. This coincides with the rise in chlorophyll in spring 

and summer months both coastal and oceanic waters, as seen in figure 14.  
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Figure 13 Monthly climatology averages for Kd(490) from January to November (1999 - 2019) 
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Figure 14 Monthly climatology averages for Chlorophyll from January to November (1999 - 2019) 
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Figure 15, which displays the data coverage percentage over Ireland from 1997 to 

2019, reveals that very little data is available in December, with 0–10% coverage in 

certain northern Irish locations. The area around the Celtic Sea is the most covered; 

data coverage rises throughout July's warm months but stays relatively low in the shelf 

area to the west and north of Ireland. About 40% of the data is covered overall. 

 

 

Figure 15 (A) Full year percentage data coverage generated between 1997 and 2019. (B) July percentage data 

coverage generated between 1997 and 2019. (C) December percentage data coverage generated between 1997 

and 2019 
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2.5 Discussion 

 

Algorithms used for remote sensing ocean colour are based on measurements of AOP 

parameters including attenuation coefficients (Kd (λ)) and remote sensing reflectance 

(Rrs). There are numerous research and applications of measuring the diffuse 

attenuation coefficient Kd (λ), including biological processes like photosynthesis, heat 

transmission in the upper ocean, and ocean turbidity in both oceanic and coastal waters 

(Lee et al., 2005). 

In situ data is essential for checking against satellite data for many reasons but because 

of the high prevalence of cloud cover off the coast of Ireland, it is essential in situ data 

is measured, additionally, Irish waters lacks in situ optical data. 

The uncertainties surrounding satellite products and how they vary between satellite 

missions are another factor that makes validation crucial. In their analysis employing 

datasets from SeaWiFS, MODIS, and MERIS, Mélin et al. (2016) came to the 

conclusion that SeaWiFS Rrs tend to be somewhat higher than MODIS Rrs and look 

higher than MERIS Rrs. Seasonal dependence may be present in biases between 

mission specific Rrs. To minimize the effects of land pixels on the satellite data, the 

authors of the IOCCG Protocol Series (2019), chapter 5, advocate gathering in situ 

data for ocean colour validation at least five nautical miles from the coast. In the 

Eumetsat (2019) recommendations of ocean colour product validation, the authors 

recommend comparing in situ values within an hour of the satellite passing, this can 

be extended to 3 hours to enlarge dataset match up when few data are available. In this 

case, zero days were available to compare in situ values with due to cloud cover. 

Figure 15 displays data for percentage of data coverage between 1997-2019. This 

figure further displays how cloud cover can impact data coverage. This stresses the 

importance of collecting in situ data like attenuation coefficients and remote sensing 

reflectance regularly. In contrast to ocean colour satellite sensors, in-water and above-

water sensors have the benefit of being able to capture measurements of the ocean 

during days with a lot of cloud cover. Research vessels are mentioned as a source of 

in situ data for diverse parameters from the surface to the sea floor in Le Traon et al. 

(2019) and they discuss the significance of in situ data from various sources for The 

Copernicus Marine Environment Monitoring Service (CMEMS) services. The 

availability of in situ data for the Northwest European shelf region must be expanded, 
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according to those authors, who also emphasize the importance of data assimilation, 

verification, and monitoring. 

McKee et al. (2007) discussed the feasibility of applying the Kd (490) algorithm for 

the Irish and Celtic seas. Their results showed the algorithm performed poorly in the 

Case 2 waters and underestimated Kd (490) values greater than 0.3 m-1. Darecki et al. 

(2003) discuss the differences in how satellite ocean colour algorithms perform in 

Case 2 waters. Their study used case studies from waters in the Baltic and the Western 

Irish shelf. The authors discuss how in order for their results to be accurate in the Baltic 

water, a combination of spectral bands needed to be applied, whereas the more 

commonly used band ratio algorithm was suitable for the Irish shelf. They suggest in 

order for an accurate chlorophyll measurement to be made in different water bodies, a 

wider choice of spectral bands is needed. Multispectral ocean colour sensors with 

varying sensor properties that are commonly used are The Medium Resolution 

Imaging Spectrometer (MERIS), Moderate Resolution Imaging Spectroradiometer 

(Aqua-MODIS), Sea-Viewing Wide Field-of-View Sensor (SeaWiFS), The Visible 

Infrared Imaging Radiometer Suite (VIIRS), and the Ocean and Land Colour 

Instrument (OLCI) (Groom et al., 2019). The NASA Plankton, Aerosol, Cloud, Ocean 

Ecosystem (PACE) mission, which is due to launch in 2024 will cover a spectral 

resolution of 340 to 890 nm and a spatial resolution of 1 km, is one of the upcoming 

hyperspectral satellite missions (Werdell et al., 2019) and will create a lot more 

opportunities for accurate measurements of ocean colour. 

During this study 59 stations were sampled using a TriOS RAMSES-ACC 

hyperspectral irradiance sensor between the dates 3 – 16 April 2018 and 24 May – 6 

June 2019. In situ attenuation coefficients were generated for each sample location. 

Figure 10 illustrates examples of attenuation coefficient plots generated throughout 

the survey stations. In situ Kd (490) values were calculated from this data. The lowest 

value recorded was 0.02 m-1 at station 15 at 52.999 latitude and -14.9907 longitude 

from CE19009 in the North Atlantic and the highest attenuation coefficient value 

recorded was 0.52 m-1 from the mixed water stations in the Irish sea at station six 

CV18012 53.27493 latitude and -5.49753 longitude. Station 15 from CE19009 would 

be classed as Case 1 waters and station six from the mixed water stations would be 

classed as Case 2 waters. Only 12 out of 50 stations had a value of <0.10 m-1 and 92% 

of the 12 stations were from the West coast sampling stations and classed as Case 1 
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waters. At 46 stations the attenuation coefficient value was >0.10 m-1. The 46 stations 

were a mix of Case 1 and Case 2 waters. 8 out of the 59 stations had values >0.20 m-1 

and 75% of these stations were in Case 2 waters. 63% of the stations had a value of 

0.10 m-1-0.20 m-1 and again were a mix of Case 1 and Case 2 waters. The Irish Sea 

displays both case 1 and case 2 traits, the optical complexity results from regional 

variations in tidal mixing, freshwater influx, and bathymetry that form separate 

hydrographic regions (Gowen et al., 1995). Gowen et al. (1995) describe how the 

offshore waters of the western Irish Sea become seasonally stratified each year. During 

CV18012 11 stations were sampled in a stratified area of the Irish sea while nine were 

sampled in a mixed water area. The attenuation coefficient values from the mixed 

water area ranged from 0.11 m-1 to 0.52 m-1 and in the stratified area ranged from 0.05 

m-1 to 0.22 m-1, much lower values than the mixed water.  

Waters that are situated away from the coast in the west of Ireland in the North Atlantic 

would generally be considered Case 1 waters but during the CV18012 survey in April 

2018, surface water with lower salinity was observed above a warmer more saline 

bottom layer on the Aran grounds (McGeady et al., 2019). Huang et al. (1993) 

discusses the possible origin for this is from Ireland’s largest river, the River Shannon. 

According to Huang et al. (1993), as the River Shannon plume moves northward 

towards the Aran grounds, its temperature and salinity differ from the nearby coastal 

waters. With maximum temperature variations of 1.5°C, the plume is warmer in the 

summer and cooler in the spring relative to coastal seas. Because of the influx of fresh 

water, the waters can become more complex due to the influence of land. 

During CE19009 and CV18012 there were zero cloud free days to directly compare in 

situ values and satellite derived values. Because there were no cloud free days during 

that time it is difficult to compare the monthly value to the in situ value as this is an 

average value of 30 days, and as the authors have discussed water transparency is 

modified by changes in the water's optical active constituents including 

phytoplankton, suspended sediments, and coloured dissolved organic matter which 

affects the water column's attenuation of light (Curtarelli et al., 2020) and this can 

change daily.  

The Kd (490) and chlorophyll-a 20-year climatology for January through November 

of 1999–2019 are displayed in Figures 13 and 14. Limited data was received for 
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January and November, and due to cloud coverage, no data was available for 

December. The seasonal variations in Kd (490) over a 20-year period over Irish waters 

are shown in Figure 13. It is evident that there is more attenuation along coastal areas 

than in oceanic waters overall, but this is especially true in the winter when there is an 

increase in wind and precipitation. As spring arrives, the attenuation in the oceanic 

waters rises. The biological and physical activities occurring in the water would be the 

main causes of the shift in Kd (490) attenuation during the spring. This is in line with 

the springtime increase in chlorophyll and summer months both coastal and oceanic 

waters, as seen in figure 14. 

In order to perform photosynthesis, phytoplankton need light. The depth and intensity 

of light penetration in water are directly influenced by the attenuation coefficient, 

which in turn impacts the growth and productivity of phytoplankton. Changes in the 

attenuation coefficient can be a sign of altered water quality, which affects the 

dynamics of phytoplankton. Light penetration can be changed by elements such 

increasing turbidity or the presence of other particles, which might impact 

phytoplankton. Understanding the vertical attenuation of irradiance is critical for 

remote sensing techniques used in monitoring phytoplankton from space. These 

methods depend on a precise interpretation of the interactions and modifications of 

light by phytoplankton inside the water column. 

Based on this information Joint and Groom (2000) discusses how phytoplankton is 

essentially connected to the vertical attenuation of irradiance through its impact on 

light penetration in water, which is a critical factor for phytoplankton growth and 

distribution. Understanding these dynamics is key for effective monitoring and 

management of marine ecosystems. 

The benefits of combining ocean colour sensors are demonstrated by the use of the 

GlobColour product for a 20-year climatology. By merging data from multiple 

sensors, this method greatly increases the accuracy and reliability of Kd (490) and 

Chlorophyll-a calculations. Improved temporal and spatial coverage is the end result, 

which is especially useful for monitoring vast and dynamic marine environments. 

Combining sensors also offers a more consistent and comprehensive view of ocean 

conditions, supporting a range of industries from marine ecosystem management to 
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climate research and producing a more complex and in-depth understanding of ocean 

properties (Garnesson et al., 2019). 

2.6  Conclusions 
 

In this work we describe the collection of in situ attenuation coefficient values from 

two research surveys CV18012 and CE19009. The two research surveys took place in 

optically different water bodies, the open waters of the NE Atlantic (CE19009) and 

optically more complex waters, the Aran grounds and the Irish sea stations 

(CV18012). One of the orignial objective of this study was to compare and determine 

whether there was a relationship between the in situ dataset and satellite derived Kd 

(490) values. During the 26 days the in situ samples were collected there was constant 

cloud cover when the satellite passed therefore there was zero daily data to statistically 

compare to. We assessed the trends of 20 years worth of attenuation data around Irish 

waters. It is clear that attenuation around coastal areas is greater than in overall oceanic 

seas, and this is particularly true during the winter months when precipitation and wind 

are higher. The attenuation in the maritime waters increases as spring approaches. The 

primary causes of the change in Kd (490) attenuation in the spring would be the 

biological and physical activity taking place in the water. This is consistent with the 

rise in chlorophyll-a that occurs in the spring and the summer months in both marine 

and coastal waters, as shown in figure 14.  

This chapter recognises the limitations of satellite technology in monitoring Irish seas, 

notably during specific periods of the year when cloud cover the ocean colour sensor, 

but it also emphasises the critical significance of in situ data, particularly in under 

sampled regions. In situ data is vital for satellite validation and algorithm 

development.  On the other hand, the addition of a 20 year Kd (490) climatology and 

chlorophyll-a trends off the coast of Ireland highlights the considerable potential of 

satellite technology in clear sky situations. There are various benefits of integrating 

this algorithm into the Irish monitoring programme. 

Large-Scale Monitoring: The study of phytoplankton distribution is made easier by 

satellite technology, which provides thorough coverage across large and remote 

oceanic areas, beyond the capabilities of in situ approaches. 
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Temporal Coverage: Observing phytoplankton populations continuously using 

satellites allows scientists to track long-term trends, seasonal variations, and reactions 

to climate change. 

Water Quality and Productivity Indicator: One important measure of water clarity is 

the attenuation coefficient, which is obtained from satellite data. This has direct 

implications for phytoplankton photosynthesis, as clearer waters allow for deeper light 

penetration and potentially more robust phytoplankton growth. 

Monitoring the health of ecosystems: Because phytoplankton is essential to marine 

food webs, variations in the attenuation coefficient can be used to detect changes in 

phytoplankton populations. In order to assess the productivity and overall health of 

marine ecosystems, this data is crucial. 

Studies on Climate Change: By using satellite-derived attenuation coefficients to 

monitor phytoplankton, we can gain a better understanding of their role in sequestering 

carbon and the wider consequences for the global carbon cycle and climate change. 

Operational Efficiency: Satellite monitoring is a viable option for frequent and 

comprehensive evaluations because it is less expensive and labor-intensive than in situ 

sampling. 

The utilisation of attenuation coefficients generated from satellites offers a dynamic 

and all-encompassing viewpoint on phytoplankton activities, substantially expanding 

research endeavours in oceanography, marine resource management, and 

environmental protection.  

The findings of this chapter form a foundation for the research presented in Chapter 

3, which focuses on developing a remote sensing reflectance monitoring system. This 

system is designed for continuous measurements, aiding in algorithm development 

and satellite validation, thereby reinforcing the value of integrating satellite and in situ 

data for oceanographic studies. 
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3.1 Abstract   
 

A five sensor above-water hyperspectral radiometry system was installed on the RV 

Celtic Explorer; Ireland’s largest research vessel. Instrumentation set-up included a 

TriOS RAMSES-ACC hyperspectral cosine irradiance meter for Es (λ) downwelling 

solar irradiance Es and four TriOS RAMSES ARC hyperspectral radiance meters: two 

for measuring radiance Lsfc (θsfc, ΦSun, λ) emerging from the sea surface and two for 

measuring sky leaving radiance Lsky (θsky, ΦSun, λ), with the sky and sea surface 

radiance sensors at zenith angles θsfc = 45° and θsky = 135°. The radiometers collect 

measurements automatically at 15-minute intervals with automatic time integration 

throughout the survey path over a spectral range of 300-950 nm using the TriOS 

RAMSES software Multi Sensor Data Acquisition System- Extended Edition 

(MSDA_XE). Measurements are autonomous and continuous during daylight hours 

(07:00-21:00) resulting in over 100,000 files for a three-week scientific survey. The 

end-to-end pipeline of hyperspectral data collection and processing was documented 

under the Marine Institute’s Data Management Quality Management Framework 

(DM-QMF) through the creation of an Implementation Pack for the TriOS RAMSES 

hyperspectral system on the RV Celtic Explorer. The DM-QMF implementation Pack 

consists of documented Standard Operating Procedures (SOPs), Process Flows, a 

Requirements and Acceptance Criteria Document, a Data Management Plan, a Data 
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Catalogue Record, Digital Object Identifiers and Performance Evaluations. The 

implementation pack documents cover both the operation of the hyperspectral system 

(including data processing) and the data management of the outputs produced by the 

system. The implementation of the DM-QMF by the Marine Institute fulfilled the 

Quality Management System requirement for accredited National Oceanographic Data 

Centre status, as awarded to the Marine Institute in 2019 by the International 

Oceanographic Data and Information Exchange of UNESCO’s Intergovernmental 

Oceanographic Commission (IOC-IODE). Remote sensing reflectance data, derived 

from the TriOS RAMSES above water radiometer measurements accompanied with 

ocean colour satellite derived data is presented here. Data from two RV Celtic 

Explorer research surveys between May 2019 and July 219 were used to determine 

whether a statistical relationship between the in situ and the satellite derived datasets 

was present. Comparisons are made between the RV Celtic Explorer hyperspectral 

above-water remote sensing reflectance and Copernicus Marine Environment 

Monitoring Service (CMEMS) satellite ocean colour ESA-CCI data products. Satellite 

derived remote sensing reflectance bands investigated included 443nm, 490nm, 

510nm and 560nm. Statistical results between the two datasets all returned a positive 

correlation and the strongest correlation was with the 560nm band (0.8540 p= <0.05) 

a low root mean square error value (Ψ 0.0012) and a relative percentage difference of 

33.5%.   

The objective of this study is to highlight the ship-based above-water radiometry 

system to the ocean colour community and the products associated with this data 

(satellite validation, water quality monitoring, bio-optical modelling and algorithm 

development) highlighted by a case study of satellite validation from 2019.  
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3.2 Introduction 
 

3.2.1 Ocean Colour 

 

Determining the colour of the ocean by measuring remote sensing reflectance (Rrs 

units: sr−1) or water leaving radiance (Lw) is a non-invasive method of measuring 

optically active constituents within the water column (chlorophyll-a, coloured 

dissolved organic matter (CDOM), the water itself, non-algal particles) (IOCCG, 

2000). Rrs, is defined as the ratio of water-leaving radiance (Lw, units: µW 

cm−2 sr−1 nm−1) to downwelling irradiance just above the sea surface (Es, units: µW 

cm−2 nm−1) (O’Reilly et al., 1998). 

Ocean colour satellite sensors provide large scale comprehensive observations of 

biogeochemical properties of the upper layer of the ocean (Groom et al., 2019). These 

measurements from space provide important information on marine life and ecological 

processes. Their worldwide coverage and range of temporal and spatial scales are in 

good agreement with the dynamics of these processes. Applications are numerous and 

include managing fisheries as well as comprehending biogeochemical cycles, 

ecosystem health, and climate change. Complementing other marine research 

techniques and models with satellite observations is essential for a thorough 

understanding of marine ecosystems (Sathyendranath et al., 2023). 

3.2.2 Satellite Validation 

 

Rrs is calculated from top of atmosphere (TOA) radiance and is the primary ocean 

colour product, this product is used to determine the optical constituents in seawater. 

The signal received by the satellite sensor is relatively small (<10%), due to light 

scattered by the atmosphere, and requires highly accurate correction methods (Wang 

et al., 2009). Therefore, regional validation is an essential step to provide an evaluation 

on whether the observations from satellite sensors are accurate (IOCCG, 2012). As 

previously stated, satellite data is a powerful tool to monitor water quality and 

phytoplankton blooms. However, reference of ground validation work of 

satellitederived products is required. This is accomplished through the comparison of 

satellite products with in situ products using various methods, many studies highlight 

the importance of validation and also the comparison of different validation efforts 



54 
 

(e.g. O’Reilly et al., 1998; Bailey and Werdell 2006; Zibordi et al., 2012; Garaba et 

al., 2015; Brando et al., 2016, Concha et al., 2021). Another reason why validation is 

essential is the uncertainties associated with satellite products and how they differ 

between satellite missions. Mélin et al. (2016) describe this, in their study using 

datasets from SeaWiFS, MODIS and MERIS they concluded SeaWiFS Rrs tend to be 

slightly higher than MODIS Rrs and appear higher than MERIS Rrs. Biases between 

mission specific Rrs may exhibit a seasonal dependence. In the IOCCG Protocol Series 

(2019), chapter 5, the authors recommend to collect in situ data for ocean colour 

validation at least five nautical miles from the coast in order to minimise the impacts 

of land pixels on the satellite data. For this study, statistical comparisons were made 

between in situ above-water radiometry and satellite data centered at the geographic 

location where the above-water measurements were collected as described in the ESA 

Ocean Colour Climate Change Initiative report (Calton, 2021). Concha et al., (2021) 

reviews the various validation approaches that are used by the ocean colour 

community and explains that not one single approach is used to quantify and report 

uncertainties associated with ocean satellite measurements. 

3.2.3 Hyperspectral Radiometers 

 

To determine Rrs in situ, radiometric measurements are performed and can be used for 

a variety of applications such as satellite validation, water quality monitoring, bio-

optical modelling, and algorithm development. These measurements can be made 

using above and in water approaches and from fixed platforms or ships (e.g. Mobley 

1999; Zibordi et al., 2002; Garaba et al., 2014a, 2014b; Garaba and Zielinski 2013; 

Hommersom et al., 2012; Zibordi et al., 2012; Brando et al., 2016; Tilstone et al., 

2017; 2020; Pitarch et al., 2020; Concha et al., 2021). The above-water sensors have 

the advantage that they can still be used to record measurements of ocean surface 

reflectance during days with cloud cover, unlike ocean colour satellite sensors. Many 

opportunities will exist in the future to develop more sophisticated algorithms for 

phytoplankton bloom detection with the use of both in situ hyperspectral radiometers 

and newer satellite technology, such as the PACE mission (Werdell et al., 2019). Le 

Traon et al. (2019) discusses the importance of in situ data from different sources for 

The Copernicus Marine Environment Monitoring Service (CMEMS) services, with 

research vessels named as a source of in situ data for multidisciplinary parameters 
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from the surface to the sea floor. These authors also stress the need to increase the in 

situ data coverage for the North West European shelf region, stating that data 

availability for all parameters plays a key role in data assimilation, verification, and 

monitoring. Since 2019, five TriOS RAMSES hyperspectral radiometers have been 

installed on the RV Celtic Explorer, Ireland’s largest research vessel. These types of 

radiometers are well reviewed in the literature (Garaba et al., 2012; 2014a, 2014b; 

2015; Alikas et al., 2020; Tilstone et al., 2020). 

Alikas et al. (2020) study compared two different radiometric systems: the TriOS-

Radiation Measurement Sensor with Enhanced Spectral resolution (RAMSES) and the 

Seabird-Hyperspectral Surface Acquisition System (HyperSAS). These systems were 

tested under various environmental conditions across the Atlantic Ocean. Their study 

aims to evaluate the consistency and reliability of these systems for measuring ocean 

colour and radiometry. Findings include variability in sensor responsivity, straylight 

effects within ±3%, and the impact of near-infrared correction on water-leaving 

reflectance and radiance. The study recommends additional sensor and environmental 

measurement characterization to refine in situ uncertainty estimates. The results 

generally agreed within uncertainty limits and showed satisfactory consistency with 

Sentinel-3A OLCI data. 

Tilestone et al. (2020) study discusses a field intercomparison of radiometer 

measurements conducted at the Acqua Alta Oceanographic Tower in the Adriatic Sea. 

This study aimed to assess the accuracy of in- and above-water radiometer 

measurements used for validating ocean colour products. Ten measurement systems 

were compared, all calibrated at the same reference laboratory. The study found good 

agreement among sensors for various radiometric quantities, with differences 

generally within acceptable limits. It highlighted the importance of minimising errors 

in downwelling irradiance measurements to reduce overall variability in 

remotesensing reflectance. 

The system will ensure above-water hyperspectral radiometer data is being collected 

long term and along each survey path the RV Celtic Explorer takes. These are the first 

time measurements of this kind to will be collected on Ireland’s national research 

vessel in Irish coastal, shelf and oceanic waters over a long period of time. The data 

provided by these sensors will be extremely useful for the applications mentioned 
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above, such as water quality monitoring, region specific bio-optical algorithm 

development, and satellite validation as detailed in this study.  The sensors will provide 

data during the days that satellite measurements are limited due to cloud cover, which 

account for many days of the year in Ireland, as seen in figure 15, chapter 2, 

approximately 40% of data coverage was available over Irish waters between 1997 

and 2019. 

However, when using these types of instruments, whether on a fixed ocean platform 

(e.g. data buoy) or a moving platform (research vessel), associated errors occur due to 

meteorological effects. An important factor to consider when installing sensors on a 

platform is to ensure there is no optical interference from the platform itself, therefore 

it is suggested to install the sensors high and clear of any surface area from the vessel 

or platform (Zibordi et al., 1999). 

Mobley (1999) explains that all measurements taken above the water surface are 

subject to contamination due to solar angle. This anomaly occurs when sun or skylight 

is reflected directly into the optical sensor (Busch et al., 2013). Principally, Rrs is 

calculated as the ratio of two properties; Lw and Es (Equation. [1]). However, Lw (the 

water leaving radiance) is difficult to measure directly, as above-surface sensors 

always have to look at a certain angle towards the sea surface to avoid self-shadowing. 

Therefore, the respective measurement Lsurf (radiance measured from the sea surface) 

contains also a certain proportion of skylight reflected by the sea surface (Lsky), which 

has to be measured separately in order to estimate Lw.  

𝑅𝑟𝑠 =
𝐿𝑤

𝐸𝑠
=

𝐿𝑠𝑢𝑟𝑓−𝐿𝑠𝑘𝑦∗𝜌

𝐸𝑠
      [1] 

The proportion factor ρ depends on a variety of parameters, including sea roughness 

(thus wind speed), wavelength, and viewing geometry (Mobley 1999, Lee et al., 

2010). Frequently, a value of ρ=0.028 is used, which is a reasonable estimate for a 

variety of conditions (Mobley 1999). Since Lw and Es are obtained independently and 

since assumptions regarding the water reflectivity rho had to be made to estimate Lw 

from the measured Lsky and Lsurf data, and all measurements are subject to errors from 

optical interference from platforms and meteorological effects, assessment of the 

quality of the hyperspectral data is crucial (Wei et al., 2016b).  
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 Wei et al. (2016b) raised the importance of quality assessment of large 

hyperspectral datasets. In this context, Garaba et al. (2012) discuss an empirical 

quality control protocol for above-water measurements, these authors describe their 

method which consists of meteorological flags that will mask dusk, dawn, 

precipitation, and low light conditions, utilising incoming solar irradiance (Es) spectra. 

In their work, this was achieved by testing 3,121 spectral measurements, of which 629 

passed the test conditions using the meteorological flags. The three meteorological 

flags were   ES (λ = 480 nm) >20 mW·m−2 ·nm−1 setting a threshold for which 

significant ES (λ) can be measured 

 ES (λ = 470 nm) /ES (λ = 680 nm) < 1 masking spectra affected by dawn/dusk 

radiation 

 ES (λ = 940 nm) / ES (λ = 370 nm) < 0.25 masking spectra affected by rainfall 

and high humidity 

Satellite and shipborne hyperspectral radiometry data have both advantages and 

disadvantages. Satellite data can have global coverage and a high temporal resolution 

while shipborne data have local coverage with low temporal resolution meaning the 

data is very detailed from that point in time but a satellite can provide more frequent 

and consistent observations of the ocean at different points. Satellite and shipborne 

data have different trade-offs between temporal resolution and data quality reduction. 

Another difference is that satellite hyperspectral data are affected by cloud cover, as 

described in chapter 2, this is a very big issue in Ireland, however, shipborne 

hyperspectral data do not have this problem, as the data are collected directly from the 

ocean surface. Combining both sets of data can provide a comprehensive and detailed 

picture of ocean properties and processes (Groom et al., 2019). 

3.2.4 Data Management Quality Management Framework (DM-QMF) 

 

Due to the large quantity of data collected using this type of system, it is vital a 

structured process is in place for the short and long-term storage of the data. It is also 

important that clear and concise instructions are available about the overall running of 

the hyperspectral system. For these reasons a Data Management Quality Management 

Framework (DM-QMF) implementation pack was developed for the hyperspectral 

radiometer system on board the RV Celtic Explorer. Leadbetter et al. (2019) provide 
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an in depth description of the various roles involved in the DM-QMF process such as 

data owner, data coordinator, data steward and data protection officer. 

The DM-QMF Implementation pack was developed with a series of templates that 

guide data stewards and data owners throughout the process. In 2013, The 

International Oceanographic Data and Information Exchange of UNESCO’s 

Intergovernmental Oceanographic Commission (IOC-IODE) released advice for 

National Oceanographic Data Centres (NODCs) to implement quality management 

systems for the successful delivery of oceanographic and related products. The IOC-

IODE encourage NODCs to implement a quality management system and to 

demonstrate they are in conformity with ISO 9001, the international standard for 

quality management. A goal of the IOC-IODE’s guidance is to “promote accreditation 

of NODCs according to agreed criteria.” (Leadbetter et al., 2019). The Marine Institute 

(as the Irish NODC) included ‘’Quality’’ as a goal in their Data Strategy (2017-2020) 

in response to the IOC-IODE guidance and to the requirements of funding agencies. 

Tray et al. (2020) describes the benefits of using the DM-QMF system for fish scales 

and otolith archives. Their study describes the importance of adequate storage of long-

term data and present a case study that describes an open source database which 

utilises the FAIR (Findable Accessible Interoperable and Reusable) open data 

principles (Wilkinson et al., 2016). Tanhua et al. (2021) also discusses the importance 

of FAIR data while quantifying carbon relevant ocean data in an accessible location 

and format is key to understanding and mitigating against anthropogenic impacts on 

the Earth’s climate. The DM-QMF process is beneficial for many reasons. It is a live 

system and documents can be updated as the project progresses. The documents are 

stored together on a shared drive within the Marine Institute. This is useful for current 

staff and when there is crossover of staff, all the documents on how the system works 

are available to new users and this helps ensure the existing sampling or processing 

methods are continued. The overall system is structured to include performance 

evaluations after the pack is complete and to ensure if the system needs improvement, 

it will be addressed annually to ensure continuity of the collection of high-quality data. 
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3.2.5 Objectives of this Chapter 

 

The primary objective of this study is to highlight the capabilities of a recently 

installed above-water hyperspectral radiometry system on board the RV Celtic 

Explorer with the steps taken to create a DM-QMF Implementation Pack, which 

ensures continuity and reproducibility of data also in the post-project phase. 

Throughout this paper the authors provide examples on data use and some products 

derived from the processed data.  Examples are presented to demonstrate how the end 

product Rrs data is acquired and processed. The above-water hyperspectral data is 

statistically compared with Rrs satellite data to establish how closely these datasets 

match to demonstrate how the data can be used for satellite validation.   

3.3 Methods  
 

3.3.1 Study Area 

 

108 stations were carried out between two research surveys: CE19009 and CE19010. 

These surveys took place between dates of May 24 2019 and July 24 2019. The survey 

path covered ocean areas between 47° N to 58° N and 5° W to 22° W. Areas in this 

region include the Bay of Biscay, the Celtic Sea, the Porcupine Bank and the Rockall 

Trough. Throughout those 108 stations 28 in situ Rrs spectra from the above water 

hyperspectral radiometer sensors were analysed for comparison with satellite derived 

data. The decrease from 108 to 28 stations was influenced by factors such as the 

number of daylight hours, the timing of satellite passes, and the availability of viable 

data. 

3.3.2 TriOS RAMSES Hyperspectral Radiometer System On Board The 

RV Celtic Explorer 

 

A TriOS RAMSES three sensor above-water hyperspectral radiometry system was 

installed on the RV Celtic Explorer for above-water surface reflectance measurements 

in 2018 (Figure 16 A). This system was upgraded to five sensors in 2020 (Figure 16 

B). The acquisition of two additional sensors allows for a sensor suite of dual port and 

starboard sensors (two reflectance angles) with one sensor measuring the overall 

downwelling irradiance. This design greatly increases the amount of useable data 

recovered while the ship is at sea under normal operation as during most operations 
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one set of sensors will not be impacted by solar glint, ship shadow or other 

interferences that result in interferences to reflectance data. It was anticipated that 

upon acquisition of the two additional radiance sensors that the percentage of useable 

reflectance data obtained from the Celtic Explorer would more than double. Thus 

depending on the ships’s operation and the length of the expedition, it was anticipated 

this would result in an increase from 20-30% useable data with the 2018 three sensor 

operation to 60-70% coverage with the five sensor system. As such this will greatly 

increase both the spatial and temporal coverage for reflectance data in Irish waters and 

provide new data for validation of satellite estimates of ocean colour parameters and 

provide baseline data for new inverse models of seawater optical properties.  

The instrumentation includes a TriOS RAMSES-ACC hyperspectral cosine irradiance 

meter for Es (λ) downwelling solar irradiance and TriOS RAMSES ARC 

hyperspectral radiance meters; two for measuring radiance Lsfc (θsfc, ΦSun, λ) emerging 

from the sea surface and two for measuring sky leaving radiance Lsky (θsky, ΦSun, λ), 

with the sky and sea surface radiance sensors at zenith angles θsfc = 45° and θsky = 

135°. The ACC hyperspectral cosine irradiance meter for Es (λ) and one pair of Lsfc 

and Lsky radiometers were mounted on the port side of the vessel (see Figure 16 A) and 

the other Lsfc / Lsky pair was mounted on the starboard side of the vessel (Figure 16 B). 

In the course of data processing, Es (λ) is used as downwelling solar irradiance for 

both pairs of sensors. The five instruments are mounted permanently on the vessel 

13.1 m above the sea surface. The sensors are mounted above the bridge on the vessel 

on a platform called ‘monkey island’ (Figure 16 C). Field of View (FOV) is 7◦ for 

radiance sensors and 180° for the irradiance sensor.  The radiometers collect irradiance 

and radiance measurements automatically at 15-minute intervals with automatic 

integration time throughout the survey path over a spectral range of 300-950 nm (λ) 

using the TriOS RAMSES software Multi Sensor Data Acquisition System- Extended 

Edition (MSDA_XE) (Figure 16 D). Measurements are autonomous and continuous 

during day light hours of 07:00-21:00 resulting in over 100,000 files for a three-week 

scientific survey. The system is sent to the TriOS factory in Germany every two years 

for a full calibration. See Appendix A3 for standard operating procedure for software 

set up. 
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Figure 16 (A) A TriOS RAMSES-ACC hyperspectral cosine irradiance meter for Es (λ) downwelling solar 

irradiance and 2 TriOS RAMSES ARC hyperspectral radiance meters; 1 for measuring radiance Lsfc (θsfc, ΦSun, λ) 

emerging from the sea surface and 1 for measuring sky leaving radiance Lsky (θsky, ΦSun, λ) on the port side of the 

vessel (B) 2 TriOS RAMSES ARC hyperspectral radiance meters; 1 for measuring radiance Lsfc (θsfc, ΦSun, λ) 

emerging from the sea surface and 1 for measuring sky leaving radiance Lsky (θsky, ΦSun, λ) (C) RV Celtic Explorer 

with an arrow pointing to the platform the sensors are mounted on, above the bridge (D) a screen grab of the 

TriOS Ramses software MSDA_XE where the sensors are controlled from. 

 

3.3.3 Process Flow 

 

As part of the DM-QMF implementation pack, a process flow was developed to 

visually represent how the system works from the factory calibration of sensors to 

exporting data before processing (Figure 17). This visual representation is directly 

connected to all SOPs required to run the system and includes in-depth descriptions of 

the routines followed. 
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Figure 17 Process Flow that visually describes the steps from Manufacturer calibration to Rrs Data output. 

 

TriOS RAMSES Data Processing Method 

Data collected during each scientific survey has its own dataset in the MSDA_XE 

software with global positional system (GPS) references. 

The Process Flow (Figure 17) includes a step to cross reference with the vessel 

underway GPS data when there is a query about ship position when the vessel is 

stationary, or when a GPS location is missing from the database. 

Figure 18 displays a detailed Process Flow, a graphic representation of how the raw 

data is processed and the Rrs product is generated. The data files are exported in a 

TriOS native file format (.dat) and processed using a five-step process with a series of 

Matlab (Mathworks, USA) scripts described below. The individual survey specific 

database is accessed using MSDA_XE software. The data is then exported in TriOS 

format (as a *.dat file). The raw data is transferred to at least two external hard drives 

for back-up and further processing. The folder with the raw data is linked to Matlab 

where five scripts (created by Jochen Wollschläger and are listed in Appendix A1) are 
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used to process the data. The five steps include (1) Create daily files, (2) Calibrate 

daily files with the TRIOS instrument factory sensor specific calibrated settings, (3) 

Create working files from the calibrated data, (4) Calculate the remote sensing 

reflectance, (Rrs) following Eq. [1], assuming ρ=0.028 (Mobley, 1999). Prior to Rrs 

calculation, unsuitable radiometric measurements were removed following the 

meteorological flagging approach of Garaba and Zielinski (2013). For sunglint 

correction, we used the method of Garaba et al. (2012), thus subtracting the minimum 

Rrs value in the range from 700 to 900 nm from the whole spectrum and (5) Calculate 

photosynthetically active radiation (PAR). The final data is stored as a *.dat and 

Matlab file (*.m). In the case study presented in this paper, a number of stations along 

a scientific survey path were analysed. An average of 10 scans were used for each 

spectra. Suitable Rrs from the survey path were compared to available satellite derived 

Rrs measurements.  

 

Figure 18 Detailed process flow describing each data processing step from accessing the raw data to the final data 

3.3.4 Satellite Data Match Up 

 

Level 3 daily mean satellite data was obtained from Copernicus Marine Environment 

Monitoring Service (CMEMS) (https://marine.copernicus.eu/). The Rrs products are 

available in CMEMS with a spatial resolution of 1 km x 1 km. The products 

downloaded for this study are part of the European space agency Climate Change 

Initiative (CCI). This is a two-part programme that aims to produce ‘climate quality’ 

merged data records from multiple sensors, derived from level 2 data produced by 

SeaDAS l2gen (SeaWiFS) and Polymer (MODIS, VIIRS, MERIS and OLCI-3A). All 

https://marine.copernicus.eu/
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sensors are binned to level 3. MODIS, VIIRS, MERIS and OLCI-3A were band shifted 

by computing inherent optical properties using the quasi-analytical algorithm (QAA) 

of Lee et al., (2009). The output Rrs were cleaned of any negative values. POLYMER 

atmospheric algorithm was applied to the VIIRS, MERIS, MODIS and OLCI satellite 

data and l2gen was applied to the SeaWiFS data prior to band shifting based on 

published criteria (OC-CCI 2014b, OC-CCI 2014c). Satellite data was generated from 

the study area with geographic latitude and longitude limits of between 47° N to 58° 

N and 5° W to 22° W. The four products used in this study included the wavelength 

bands 443 nm, 490 nm, 510 nm and 560 nm.  

An in-house Matlab script (see Appendix A1) was used to find the satellite derived Rrs 

values around 3 x 3 pixels centred at the geographic location where above-water 

measurements were collected between dates of May 24 2019 and July 24 2019. These 

measurements were within a few hours of satellite passing. The mean value of all 9 

pixels and 2 standard deviations of the 9 pixels as the 95% confidence interval was 

calculated. This value was used for statistical comparison with the in situ 

measurement. 

3.3.5 In situ Chlorophyll Analysis 

 

A CTD rosette equipped with Niskin bottles, connected to a Seabird CTD were used 

to collect water in near surface waters (5-6 m max). Known volumes of water were 

filtered through a 25mm 0.7 µm Glass Fibre Filter (GF/F). The filters were frozen at 

sea (-20° C) and analysed after the survey in the laboratory for chlorophyll a, b and c 

values. Filter paper were ground up using a Teflon grinder and pigments were 

extracted with 90 and subsequent measurement of the solution absorbance using an 

Ocean Optics Flame spectrophotometer with a low volume 10 cm pathlength cell and 

DT-mini light source. The trichromatic equation of Jeffrey and Humphrey (1975) was 

used to calculate the chlorophyll a concentration.  

3.3.6 Statistical Analysis 

 

Taylor statistics were calculated to determine the similarity between the in situ and the 

satellite derived data sets. Taylor statistics are quantified in terms of correlation 

coefficient, centred root-mean-square difference, and the amplitude of their 

variations (represented by standard deviations) (Taylor, 2001). A matlab script was 
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used to calculate Regression slope (S), Intercept (I), Bias (δ) and Relative Percentage 

Difference (RPD) (Brewin et al., 2015; Muller et al., 2015; Tilstone et al., 2021). 

Statistical analysis was computed in Matlab using the Taylor diagram function by 

Guillaume Maze (2022).  

3.3.7 Marine Institute Data Management Quality Management Framework 

(DM-QMF) 

 

A DM-QMF pack was developed for the TriOS RAMSES hyperspectral radiometer 

system. The implementation pack consists of several elements that structure the 

operation of the hyperspectral system including data processing. The elements 

include: (i) a Data Management Plan (Appendix A2) that describes what data are 

created and how they are stored and archived. (ii) Standard Operating Procedures 

(Appendix A3) that describe each of the elements in the DM-QMF TriOS RAMSES 

hyperspectral radiometer system. (iii) Documentation that is accessible to anyone 

using the instruments internally within the Marine Institute. (iv) Graphical 

representations of Process Flows (Figure 17 and 18) visually representing the different 

parts of the system and their connections. (v) An Acceptance and Criteria Document 

(Appendix A4) which contains set requirements for the data to be produced. For 

example, with the five-sensor hyperspectral system described in this study, in order 

for the Rrs value to be calculated, two radiance (one sky viewing and one sea viewing) 

and one irradiance sensor data is required. Having a set up on both sides of the vessel 

increases likelihood of usable data. (vi) A Data Catalogue entry, which is a central 

register of dataset descriptions within the Marine Institute. (vii) A Digital Objective 

Identifier (DOI) is assigned to data that will be made public, both are described in 

3.3.8 and 3.3.9 below.  

During the lifespan of the DM-QMF pack, Performance Evaluations are completed in 

order to highlight areas that need improvement, e.g., SOP’s or a particular process. 

Further information is available in Leadbetter et al. (2019) where the authors describe 

each step of the DM-QMF in detail.  

3.3.8 Data Catalogue 

 

The Marine Institute operates a public facing data catalogue (http://data.marine.ie/). 

The Data Catalogue is a central register of datasets curated by the Marine Institute. 
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The Data Catalogue system meets the requirements of the FAIR principles of data 

management and provides data records for harvesting by national and international 

data aggregators (e.g. the Irish Spatial Data Exchange and data.gov.ie) through 

standards compliant metadata publication (e.g. ISO19115/19139, Schema.org). The 

Data Catalogue is described in more detail in Leadbetter et al. (2020). A Data 

Catalogue entry was created for the processed 2019 Rrs data from this study. The 

catalogue is created using a check list with a series of questions that describe how and 

when the data was collected, who is responsible for the data, where is it stored and 

how it can be accessed. Using the data catalogue, a digital object identifier is then 

created for the dataset. 

3.3.9 Digital Objective Identifier 

 

A Digital Objective Identifier (DOI) and dataset citation was created for the above-

water 2019 Rrs data that was used in this study. The DOI for this above-water remote 

sensing reflectance dataset can be found at Jordan, C.; Croot, P; Cusack, C.; and 

Wollschlaeger, J. (2022). Remote sensing reflectance station data CE19009 & 

CE19010. Marine Institute, Ireland. doi: 10.20393/6410adf9-8a4e-44d3-a388-

40d85827b696 as seen in figure 19.  

 

Figure 19 A screen grab from the data catalogue from www.data.marine.ie 

3.3.10 Performance Evaluation 

 

Once the Implementation pack was complete for the TriOS RAMSES hyperspectral 

radiometers on board the RV Celtic Explorer, a Performance Evaluation was carried 

out and more will be scheduled annually. The Performance Evaluation is designed to 

improve processes and the quality management as a whole. See Table 4 in Leadbetter 
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et al. (2019) for a summary of the Performance Evaluation questionnaire. Performance 

Evaluations will continue throughout the project to ensure the highest standards of 

data collection continue. 

3.3.11 Celtic Explorer  

 

The Celtic Explorer is Ireland’s largest national research vessel. It conducts 

multidisciplinary surveys each year. The TriOS RAMSES hyperspectral radiometers 

are programmed to automatically collect data throughout each survey path. A survey 

specific database is set up prior to each survey. During 2019 for example, 16 research 

surveys were conducted on the RV Celtic Explorer covering a total of 42,147 nautical 

miles. These took place over 320 days from January to December 2019. Figure 20 

displays in detail the track paths the RV Celtic Explorer travelled, covering areas such 

of the NE Atlantic, specifically, The Celtic Sea, Bay of Biscay, Porcupine Bank, Malin 

Shelf, Scottish Shelf, Hebridean Shelf, Rockall Trough, The Baltic Sea and the North 

Sea. 

 

Figure 20 Track paths of the RV Celtic Explorer during 2019, 16 research surveys were conducted during this year 

covering a total of 42,147 nautical miles over the course of 320 days 
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3.4 Results 
 

Above-water hyperspectral radiometer data from stations during two research surveys 

between May 2019 and July 2019 (CE19009 and CE19010) were processed using the 

series of Matlab scripts as described above. Figure 21 (A) displays the stations from 

both CE19009 and CE19010 where in situ Rrs data was collected. Figure 21 (B) 

displays the data points that could be matched with satellite derived Rrs data.  Figure 

22 displays an example of Rrs plots derived from different stations in different water 

bodies during CE19009 and CE19010. 

 

 

Figure 21 (A) Stations from  both CE19009 and CE19010 research survey (B) Stations that were compared with 

satellite derived data 

 

Figure 22 shows examples of sea surface reflectance in different areas through 

CE19009 and CE19010. Station 03 from CE19010 plot shows a noticeable peak in the 

green part of the visible spectrum around 550nm. This peak is typically indicative of 

the reflective properties of the water, influenced by various substances such as 

chlorophyll found in phytoplankton. 

Station 32 CE19010, further north, this plot shows a noticeable peak in the 550-570 

nm range, which could be associated with chlorophyll absorption. Additionally, there's 

a smaller peak around 700 nm, which might be related to the water's scattering 

properties or other dissolved and particulate matter. 
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Station 43 CE19010, west of Ireland, in this plot there is a prominent peak in the 

reflectance curve occurring around the 550 nm wavelength. This peak is likely due to 

the spectral properties of water and can be influenced by the presence of biological 

materials like phytoplankton, which typically absorb light in other wavelengths and 

reflect more in the green spectrum. 

Station 60 CE19010, north west of Ireland, this plot is similar to previous with a 

distinct peak in the green part of the spectrum around 550 nm, again this peak is typical 

for oceanic waters which are influenced by chlorophyll concentration and other 

particulate matter, which generally have higher reflectance in the green region. 

Station 26 from CE19009: There is a distinct peak around the 550 nm mark, typical of 

chlorophyll's reflective response, indicating phytoplankton presence. 

Station 35 from CE19009: This plot shows two pronounced peaks in the reflectance 

curves. The first peak occurs just before 500 nm, and the second, more pronounced 

peak is around 550-570 nm. These peaks are characteristic of chlorophyll absorption 

and are commonly associated with the presence of phytoplankton in the water. 

Reflectance typically decreases beyond these peaks, especially after 700 nm, which is 

consistent with the absorption characteristics of water. 

The distinctive chlorophyll peaks at stations 32 CE19010 and 35 CE19009 and 

reflectance of much clearer waters (less chlorophyll) at stations 43 CE19010 and 60 

CE19010 are supported with in situ chlorophyll-a data from stations at 32 CE19010 

0.804 (ug/l) and 35 CE19009 0.907 (ug/l) compared to lower chlorophyll-a values at 

stations 43 CE19010 0.285 (ug/l) and 60 CE19010 0.090 (ug/l). 
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Figure 22  Remote Sensing Reflectance Plots from CE19010 ST03,32,43,60 and CE19009 ST26, 35 

 

Four satellite Rrs bands were selected to statistically compare with the above-water 

hyperspectral values as described in the methods section. Linear regression plots 

(Figure 23) were created for each band comparison, and Taylor statistics (correlation 

coefficient, centred root-mean-square difference (Ψ), the amplitude of their 

variations (represented by standard deviations), regression slope (S), intercept (I), bias 

(δ) and RPD were applied to the data. Results between the two datasets all returned a 

positive correlation. Statistical results are summarised in Table 1. For the 443 nm 

band, RMSE (Ψ 0.0010), indicating low error; Pearson's correlation is moderate at (r 

= 0.5974); the slope of (S = 0.7014) points to underestimation; the intercept and bias 

are very small; RPD is high at 17.3620. At 490 nm, RMSE is slightly higher at (Ψ 

0.0013), with a correlation of (r= 0.5645) and a slope of (S= 0.9388); RPD is 23.8400, 

denoting better predictive power. For 510 nm, RMSE increases marginally to (Ψ 

0.0014); correlation improves to (r = 0.6092); slope exceeds unity at (S= 1.0597); RPD 

further increases to 27.8900. The 560 nm band has an RMSE of (Ψ 0.0012), highest 
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correlation of (r = 0.8540), the slope is (S= 1.3865), indicating some overestimation; 

RPD is at its highest at 33.4750. 

 

 

Figure 23 Linear Regression plots between ESA-CCI CMEMS derived Rrs value and above-water radiometery 

values (A) 443 nm, (B) 490 nm, (C) 510 nm and (D) 560 nm 
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Table 1 Statistics Summary Table 

Wavelength 

sr−1 

 Average 

In Situ 

Average 

Satellite 

derived 

STDV 

Satellite 

derived RMSE Ψ 

Pearson’s 

Correlation p value 

Regression 

Slope (S)  Intercept (I)  Bias (δ) RPD  

Rrs 443 0.0047 0.0047 0.0011 0.0010 0.5974 <0.05 0.7014 0.0014 −2.2042×10−5 17.3620 

Rrs 490 0.0049 0.0041 0.0008 0.0013 0.5645 <0.05 0.9388 0.0010 -0.0008 23.8400 

Rrs 510 0.0044 0.0035 0.0008 0.0014 0.6092 <0.05 1.0597 0.0007 -0.0009 27.8900 

Rrs 560 0.0032 0.0023 0.0007 0.0012 0.8540 <0.05 1.3865 3.2921×10−5 -0.0009 33.4750 
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3.5 Discussion  
 

Ocean Colour (OC) is a key indicator of ocean health, according to the IOCCG (2008) 

and was listed as an essential climate variable. Due to the fact less than 10% of the 

TOA radiance is due to water radiance at sea level (Gordon and Morel, 1983), it is 

essential there are methods of measurements closer to the sea surface to correct for 

uncertainties. Gilerson et al. (2022) summarises the primary sources of uncertainty of 

Rrs from satellite ocean colour sensors. The authors concluded that the most significant 

uncertainties are those related to molecular (Rayleigh) scattering. In some settings, 

variations in sky light reflected from the ocean surface also contributed to errors in the 

blue; water variability proportional to Rrs peaked in the green at coastal sites. The 

processing of atmospheric corrections is likely to be greatly enhanced with the 

upcoming PACE mission (Werdell et al., 2019). Satellite ocean colour data is vital for 

the long-term monitoring of our oceans but in situ data is always needed validate 

satellite derived products (Le Traon et al., 2019). Volpe et al. (2012) explore an ocean 

colour observation system tailored for the Mediterranean, addressing key operational 

satellite oceanography issues. These include the capability for real-time monitoring of 

data flow uncertainties, providing alternative solutions to users in case of system 

failures, and conducting scientific evaluations of the quality of the data products. This 

study identifies the difficulties with the SeaDAS programme in the Mediterranean 

environment and emphasises the useful application of the SeaWiFS mission data. It 

implies that even though the SeaDAS update improves for chlorophyll retrieval 

worldwide, the Mediterranean still does not meet quality standards. The authors stat 

the importance for the need for these technologies to be continuously improved upon 

and regionally and adjusted in order to provide reliable oceanographic evaluations is 

emphasised in the conclusion. 

 Hernandez et al. (2015) also discuss the real-time assessment limitations due to 

availability and quality of observations but discuss the advancements that have been 

made in the past decade, highlighting operational forecasting centers have 

implemented mature validation and performance assessment procedures. These 

include diverse validation strategies, comparison of different model systems, and 

ensemble approaches for improved accuracy. 
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 The focus of this project was to establish an operational above-water hyperspectral 

radiometer system to collect long term hyperspectral data from Irish coastal and 

oceanic waters. As previously stated, this data can be used for a range of products; 

satellite ocean colour validation, algorithm development in Case 1 and Case 2 waters, 

water quality assessment, climate change assessment (e.g. Mobley 1999; Zibordi et 

al., 2002; Garaba et al., 2012; 2014a, 2014b; Garaba and Zielinski 2013; Hommersom 

et al., 2012; Zibordi et al., 2012; Brando et al., 2016; Tilstone et al., 2017; 2020; 

Pitarch et al., 2020; Concha et al., 2021). In shipborne remote sensing, we describe a 

technique that is suitable for automated continuous measurements. Documenting the 

structure and workings of a new system, as well as having a plan in place for managing 

and storing data in the short and long term, is essential to a successful project. Through 

the development of an Implementation Pack for the TriOS RAMSES hyperspectral 

system on the RV Celtic Explorer, the end-to-end pipeline of hyperspectral data 

collection and processing was documented under the Marine Institute's Data 

Management Quality Management Framework (DM-QMF). The Marine Institute's 

implementation of the DM-QMF met the Quality Management System requirement 

for accredited National Oceanographic Data Centre status, which was granted to the 

Institute in 2019 by UNESCO's Intergovernmental Oceanographic Commission's 

International Oceanographic Data and Information Exchange (IOC-IODE) 

(Leadbetter et al., 2019). There were numerous advantages to designing a DM-QMF 

Implementation pack for this project: 

 Without having to read a lengthy document, the process flows created for this 

system visually show how the process works. 

 Knowledge of a new system as it develops is stored in live documents on a 

shared place that other scientists inside the organisation can access. 

 By sharing the documents, any user of the system can ensure that the system's 

consistency and data quality are maintained. 

 Different people are involved at different stages of the process, which means 

that each person can go to the step that is most relevant to them while still 

seeing how their step fits into the larger picture. 

 The Data Management plan is important for determining how data will be 

managed and documented throughout the project. 
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 The Data Catalogue is very valuable as it contains a collection of metadata that 

describes the dataset and guides users to where the data is stored. 

 The Data Catalogue underpins the Digital Object Identifier assigned to the data 

 The Performance Evaluations ensure the processes involved are continually 

monitored and updated if needed. 

A high level of collaboration was required from the various members of the data 

coordinator team and the scientists involved in implementing this DM-QMF pack. 

Leadbetter et al., (2019) study provides more detail on the DM-QMF implementation 

packs described above as a lot of internal information is only available within the 

Marine Institute. 

The purpose of this study is to highlight the DM-QMF pack and a case study 

describing the steps involved in collecting and processing remote sensing data is 

presented. This initial study served as a pilot to verify the performance of the sensors 

and to demonstrate one of their potential applications, since it is a new system for the 

Marine Institute. The data analysed came from two research surveys, specifically from 

times when the ship was confirmed to be stationary, while on station. Future research 

aims to expand this work by automatically integrating data collected while the ship is 

moving, using scripts that can filter out effects caused by different weather conditions. 

Data has been collected for every survey and stored for future processing. This study 

highlights the use of this data for satellite validation purposes. Four remote sensing 

reflectance bands were selected to statistically compare the TriOS RAMSES above-

water radiometry with satellite derived remote sensing data to assess how significant 

the comparisons are. There will be unavoidable differences in statistical analysis due 

to differences that may be due to atmospheric corrections on satellite data or scale 

effects related to the different footprints of the sensors, but all four wavelength 

comparisons in this study returned a positive correlation result and good agreement 

between the in situ and satellite derived data. Groom et al. (2019) review paper also 

discusses the need for in situ measurements for satellite validation, within this study 

the IOOCG, (2013) highlight that ‘uncertainty requirements for scientific applications, 

e.g., 5% absolute in the blue and 1% relative’. The authors describe System Vicarious 

Calibration (SVC) is a method used for calibrating spaceborne sensors. In this 

technique, the measured top-of-atmosphere radiance from the satellite is compared to 
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the predicted radiance, which is determined by sending the measured water-leaving 

light through the atmosphere using the same atmospheric model that was used to 

retrieve the in-water radiance. Because SVC takes into consideration the effects of the 

complete processing chain, it is customised to each atmospheric correction operation 

and a calibration that is system-specific. 

Brewin et al. (2016) discusses the importance of recording high-quality in situ 

radiometric measurements on a regular basis in order to validate new satellite sensors 

and to continuously evaluate the performance of long-operating devices. Inaccurate 

data trends may result from adding a new sensor to a Climate Data Record (CDR) too 

soon, failing to resolve problems with ageing devices, or correcting inter-sensor 

biases. 

Bio-optical equipment like flow-through absorption/attenuation instruments and 

above-water radiometers are being utilised more often on mobile platforms including 

research vessels, volunteer ships, and yachts owned by benefactors who care about the 

environment. It is imperative that the data collected along these routes be of a high 

calibre. Studies by Brewin et al. (2016) and Dall'Olmo et al. (2017) show that these 

systems are significantly increasing the number of satellite validation matchups. 

In terms of in situ databases, combining several data sources is essential for Sensor 

Vicarious Calibration (SVC) and satellite validation. A worldwide database 

comprising information from many sources has been established by the ESA Ocean 

Colour Climate Change Initiative (CCI) project. It is described in Valente et al. (2016) 

and is reachable through PANGAEA. The most recent version, v4, includes data on 

spectral diffuse attenuation coefficients, chlorophyll-a concentrations, spectral 

intrinsic optical characteristics, and total suspended matter that spans the years 1997 

to late 2017. 

The authors discuss the issue with satellite algorithms, with the spatial differences 

between the satellite radiance measurement and the in situ value. Comparing a 

measurement from a 1 km2 pixel and an in situ measurement leaves room for errors, 

Groom et al. (2019) highlights the study of Brewin et al. (2016) where the authors 

investigated obtaining multiple chlorophyll values within a satellite pixel. Their 

approach reduced uncertainty values to 0.157 log10 Chl-a on average, less than half 
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the value recorded in previous studies. These results further highlight the value of 

autonomous sensors on board research vessels. 

 However, it has to be considered that also the processing of the in situ radiometric 

data are not straightforward, especially not when performed from a moving vessel. For 

example, changing measurement geometry due to the ship movement influences the 

amount of sunglint reaching the sensors, as well as changing the validity of the 

assumptions about the sea-surface reflectivity ρ (Mobley 1999, Lee et al. 2010). 

Further, there are different methods for sunglint removal, which all have their 

advantages and disadvantages (see discussion in Garaba et al. 2013). Further 

investigations of these factors and refinement of measurement and data processing 

protocols would certainly be a reasonable aim for future studies in order to improve 

Rrs quality. Nevertheless, the purpose of the satellite validation aspect of this study is 

to highlight one of the products associated with this data. As described in the results 

section in situ data from two research surverys are presented here. This data was 

derived from stations when the ship was fully stopped and in situ hyperspectral data 

was compared with satellite derived wavebands. Figure 23 displays linear regression 

plots associated with the data. R2 values show results between the two datasets all 

returned a positive correlation and the strongest relationship was with the 560nm band. 

The statistical methods used to evaluate the relationship were: Average, standard 

deviation, Pearson’s correlation, Root Mean Square Error (RMSE) is a standard 

statistical measure used in satellite validation to quantify the accuracy of satellite 

derived data compared to in situ (Concha et al., 2021). Other metics used were: 

Regression slope (S) which shows how in situ measurements and satellite derived data 

relate to one another. In principle, it indicates the change in satellite data for each unit 

change in in situ data. When the slope is closer to 1, it indicates a strong linear 

relationship, which means the in situ observations and satellite data are closely 

matched. A slope that deviates significantly from 1 indicates a weaker link. Intercept 

(I): The intercept in a regression analysis represents the value of the dependent variable 

(satellite derived data) when the independent variable (in situ data) is zero. It's 

important for understanding the baseline level of satellite derived data when in situ 

measurements are absent or minimal.  Bias (δ): The systematic discrepancy between 

the in situ measurements and the satellite data is referred to as bias and when the bias 

is zero, it indicates that the satellite data is generally more accurate than the in situ 
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data. A bias that is either positive or negative means that the in situ measurements are 

regularly overestimated or underestimated by the satellite data, accordingly.  Relative 

Percentage Difference (RPD) is used to analyse how satellite and in situ data differ 

from one other in relation to their average value. The RPD is particularly useful in 

satellite validation studies to understand the degree of variation or error between 

satellite-derived measurements and ground-truth (in situ) data (Brewin et al., 2015; 

Muller et al., 2015; Tilstone et al., 2021). 

Results between the two datasets all returned a positive correlation. Statistical results 

are summarised in Table 1. Results include: 443nm band: The average values are very 

close, indicating a good agreement between the satellite and in situ data at first glance. 

For the in situ data, the standard deviation is marginally higher, indicating greater more 

variability. The low RMSE (Ψ 0.0010) suggests that the data derived from satellite is 

close to measurements made in situ. A moderate Pearson's correlation (r= 0.59741) 

suggests a linear link between the datasets. The regression slope of 0.70139 means 

that the satellite readings are generally lower than the actual in situ measurements. 

Bias and the intercept are extremely close to zero, indicating little systematic bias. 

RPD is 17.3620, which suggests a good predictive ability at this wavelength, 

indicating the satellite data is quite reliable when compared to in situ measurements. 

490nm band: The average values have a larger discrepancy compared to Rrs 443, 

standard deviation is higher for in situ data.  RMSE (Ψ 0.0012) is slightly higher than 

for Rrs 443, indicating greater differences between datasets. Pearson's correlation (r= 

0.56452) is slightly lower, suggesting a weaker linear relationship, but still positive. 

A higher proportional agreement is shown by the regression slope being closer to 1. 

In this case, the satellite data has a negative bias, indicating that it typically reports 

lower measurements than the in situ data. RPD is 23.8400, showing an even better 

predictive performance than at 443 nm, which implies a higher reliability of satellite 

data for this part of the spectrum.  

510nm band: The discrepancy in average values is even larger than for Rrs 490. 

Standard deviation remains higher for in situ data. RMSE (Ψ 0.0013) is slightly higher, 

consistent with the larger discrepancy in averages, although still a low value. Pearson's 

correlation (r= 0.60917) is moderate and similar to Rrs 443. Regression Slope is greater 

than 1, implying that satellite data overestimates the increase in in situ data.  Bias is 
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negative, indicating a systematic underestimation by the satellite. RPD of 27.8900, the 

satellite data's predictive capability at 510 nm is strong, suggesting a high level of 

accuracy in this wavelength's satellite measurements. 

560nm band: The average values show the largest difference among all wavelengths. 

Standard deviation is consistent with other wavelengths. RMSE (Ψ 0.0011) is also low 

with this waveband. Pearson's correlation (r= 0.85398) is the highest out of all the 

wavebands studied, suggesting a strong linear relationship between datasets. 

Regression Slope is significantly greater than 1, which could indicate a stronger 

response in satellite data as in-situ data increases. Bias is negative, and the satellite 

data consistently underestimates the in situ data, although the bias is quite small. The 

highest RPD value of 33.4750 at this wavelength indicates excellent predictive ability, 

meaning the satellite measurements at 560 nm are very reliable when predicting in situ 

data. The metrics for validating satellite derived data against in situ measurements of 

four different wavelengths are presented here. With an RPD of 17.3620 and a 

regression slope of 0.7014, the satellite data at 443 nm closely match the in situ data, 

indicating a minor understatement. With RPD values of 23.8400 and 27.8900, 

respectively, the agreement increases at 490 and 510 nm. The regression slopes closer 

to or slightly above 1, indicating improved predictive ability. The RPD shows a trend 

of overestimation by the satellite and peaks at 33.4750 at 560 nm, with the highest 

regression slope of 1.3865. The Pearson correlation coefficients, which have 

statistically significant p-values below 0.05 and vary from moderate to strong across 

all bands (0.5974 to 0.8540), support the validity of the satellite data. The biases are 

minimal, indicating overall good sensor performance.  

In situ data is essential for checking against satellite data for many reasons but because 

of the high prevalence of cloud cover off the coast of Ireland, it is essential in situ data 

is measured, additionally, Irish waters lack in situ optical data. As stated, the in situ 

sensors have an advantage to be able to generate measurements and Rrs data during 

days with cloud cover, unlike satellite technology. The DM-QMF pack will ensure 

data will continue to be collected, processed, managed and stored based on the 

standards set out in this study.  
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3.6 Conclusion 
 

 We highlight an above-water radiometry system that was recently installed on 

the RV Celtic Explorer in this study.  

 We present a case study that details the steps involved in determining the end 

product, remote sensing reflectance.  

 We demonstrate satellite validation product using this data from two research 

surveys.  

 We demonstrated positive statistical relationship across four wavebands  

  Future research aims to expand this work by automatically integrating data 

collected while the ship is moving, using scripts that can filter out effects 

caused by different weather conditions.   

 We described the DM-QMF implementation pack that was developed for this 

radiometry system and clarified by implementing this pack, it ensures that 

standards are adhered to at every stage of the process. 
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4.1 Abstract 
 

 

During the months of May, June, July and August 2019 the Red Band Difference 

algorithm was tested over Irish waters to assess its suitability for the Irish harmful 

algal bloom alert system. Over the 4 weeks of June an extensive localised surface 

phytoplankton bloom formed in the Celtic Sea, south of Ireland. Satellite imagery from 

the Sentinel-3a’s Ocean and Land Colour Instrument, processed using the Red Band 

Difference algorithm detected the bloom in surface shelf waters and helped monitor 

its movement. Daily satellite images indicated that the bloom appeared at the sea 

surface on the 2nd June 2019 and peaked in size and surface abundance in offshore 

shelf waters within 4 weeks, remnants remained at the surface into July. A particle 

tracking approach was used to replicate oceanic circulation patterns in the vicinity of 

the observed algal bloom and estimate its trajectory. The initial horizontal distribution 

of particles in the tracking model were based on a satellite imagery polygon of the 

bloom when it first appeared in surface waters. Good agreement was observed between 

satellite imagery of the bloom and the particle tracking model. In situ sampling efforts 

https://doi.org/10.3389/fmars.2021.638889
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from a research survey and the national inshore phytoplankton monitoring programme 

confirmed that Karenia mikimotoi was the causative organism of the bloom. This pilot 

study shows great potential to use the Red Band Difference algorithm in the existing 

Irish harmful algal bloom alert system. In addition, satellite ocean colour data 

combined with particle tracking model estimates can be a useful tool to monitor high 

biomass harmful algal bloom forming species, such as Karenia mikimotoi, in surface 

coastal waters around Ireland and elsewhere. 

4.2 Introduction 
 

Aquaculture is extremely important for providing food, nutrition and employment 

around the world. According to the FAO (2020), aquaculture production reached a 

record high in 2018. There has been a 527% increase in global aquaculture production 

from 1990 to 2018. Due to wild fish stocks declining and the population increasing 

globally, the role of aquaculture in society is more important than ever (FAO, 2020). 

Aquaculture is a highly valuable industry to the Irish economy. Production in Ireland 

had a net gain from under €100 million in 2009 to €180 million in 2018 with 

aquaculture outputs between 30,000 and 50,000 tonnes mainly from salmon and 

bivalve farming (Dennis and Jackson, 2019). The success of aquaculture is influenced 

by a range of conditions, both environmental and biological such as temperature, 

salinity, oxygen and food availability to name a few (Mydlarz et al., 2006). Harmful 

Algae Blooms (HABs) are a concern for both finfish and bivalve aquaculture 

(Callaway et al., 2012). In most cases, the proliferation of microscopic algae is 

beneficial to the overall ecosystem, e.g., as a source of food for wild fisheries and 

aquaculture (Tweddle et al., 2018). However, a small minority of algal bloom forming 

species have negative impacts on their surrounding environment. HABs, caused by 

either small or large biomass blooms, and depending on the species, can result in 

serious economic losses to marine sectors such as tourism, aquaculture and fisheries 

with additional, often unquantifiable, impacts on ocean health (Anderson et al., 2015). 

In order to mitigate against and prepare for the impacts of HABs, it is essential to 

detect, monitor, track and forecast their development and movement in real time 

(Stumpf and Tomlinson, 2005). Collecting samples in the field alone has limitations 

as the samples or measurements are collected at discrete points and times, and while 

this method generally offers high quality data from a specific point in time, temporal 
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and spatial limitations are a challenge. Combining different observational methods can 

greatly help managers detect and monitor HAB hazards. For example, satellite remote 

sensing techniques are powerful tools to detect and monitor the movement of surface 

phytoplankton blooms due to the vast area covered in one single swath measurement 

(Stumpf and Tomlinson, 2005). Emerging remote sensing techniques for Europe 

should positively impact the aquaculture industry. Ocean colour sensors and the 

algorithms designed to detect phytoplankton blooms or HABs have been continually 

improving since the launch of the first ocean colour sensor, the Coastal Zone Colour 

Scanner in 1978 and the most recent launch of ESA Sentinel 3B OLCI in 2018 (Groom 

et al., 2019). Satellite technology has proven very useful in mapping the geographical 

extent of blooms and movement (Miller et al., 2006; Stumpf et al., 2009). To 

determine the concentration of chlorophyll-a (Chl-a) or other optically active 

constituents such as coloured dissolved organic matter (CDOM) or suspended 

particulate matter (SPM), different types of algorithms have been developed by 

measuring the water leaving radiance, or reflectance (Groom et al., 2019). The use of 

satellite technology focussed on Chl-a and sea surface temperature (SST) combined 

with field sampling can support early warning systems for certain HAB types. 

Standard ocean colour algorithms that estimate chlorophyll concentration or HABs 

from satellite sensors use the blue and green spectral bands of the visible spectrum to 

monitor the colour of the ocean. These algorithms are very useful, especially in open 

ocean water, which are classified as Case 1 waters. The algorithms are not as accurate 

in the more complex Case 2 waters, situated close to the coast and inland, where most 

aquaculture takes place and HAB detection is most critical. The two water types were 

originally introduced by Morel and Prieur (1977). These descriptions have since been 

refined (Gordon and Morel, 1983; Morel, 1988; IOCCG, 2000; Mobley et al., 2004). 

Mobley et al. (2004) describe case 1 waters whose inherent optical properties (IOPs) 

are dominated by phytoplankton. Case 2 waters generally contain higher 

concentrations of CDOM, SPM, and inorganic particles in addition to phytoplankton. 

In Case 2 waters, as the band selection used for the standard algorithms is highly 

influenced by non-living suspensions, CDOM and sediment and can be misinterpreted 

as chlorophyll concentration. 

Standard algorithms that use the blue green ratio are very important and valid methods 

of retrieving chlorophyll concentrations. Due to the problems with CDOM and 
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sediment interference it is also useful to have an algorithm measuring chlorophyll 

fluorescence using the red bands. Chlorophyll fluorescence can be defined by red light 

re-emitted by chlorophyll molecules when excited by light (Zeng and Li, 2015). 

Chlorophyll fluorescence in the red band of the visible spectrum has proven successful 

to monitor HABs in coastal areas of the United States. A good example is the Gulf of 

Mexico where ocean colour is used to detect Karenia brevis blooms (Amin et al., 

2009). As described by Amin et al. (2009) the Red Band Difference (RBD) relative 

fluorescence algorithm is less sensitive to CDOM, SPM, and atmospheric corrections 

and therefore useful in coastal waters. Vandersea et al. (2020) describe how the RBD 

algorithm is also suitable for Karenia mikimotoi blooms and demonstrates how it was 

applied to monitor a 2013 bloom in Kachemak Bay, Alaska alongside field sampling 

and lab techniques. The RBD algorithm is also used off the east coast of the United 

States and can detect several HAB dinoflagellates of interest in Chesapeake Bay, the 

largest estuary in the United States and a location with very turbid waters. Scattering 

by sediments may interfere with algorithms in environments like this (Wolny et al., 

2020). The benefits of using the RBD algorithm in a turbid environment is that the 

algorithm is less sensitive to interference by non-algal pigments as it was designed to 

detect Chl-a fluorescence in the HAB blooming species K. brevis without interference 

from sediment, the algorithm is designed to return positive values in waters where 

blooms occur and negative values in high scattering waters (Amin et al., 2009). This 

is the first reported study using the RBD algorithm in Irish waters. 

While K. brevis blooms have never been recorded in Irish waters, K. mikimotoi blooms 

frequently occur in Irish waters (Ottway et al., 1979; Silke et al., 2005) and have been 

recorded historically and in recent years, reviewed recently by Li et al. (2019). Gentien 

(1998) describes K. mikimotoi as a common “red tide” or large bloom forming 

dinoflagellates in shelf waters of the northeast Atlantic. Previously referred to as 

Gyrodinium aureolum, Gymnodinium cf. aureolum, Gymnodinium nagasakiense, and 

Gymnodinium mikimotoi in the literature K. mikimotoi blooms are commonly 

associated with marine fauna kills (Brand et al., 2012; Li et al., 2019). Karenia are 

thought to overwinter in low numbers as motile cells and when favourable 

biogeochemical and physical conditions arrive in early to late summer Karenia will 

grow and bloom (Gentien, 1998). Globally, K. mikimotoi has adapted to a wide range 

of temperatures ranging between 4 and 30°C but the European isolate has a narrower 
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range of 6–20°C. The salinity ranges K. mikimotoi can survive in are also quite 

extensive ranging from 9 to 35 ppt, therefore suited to a range of environments (Li et 

al., 2019). Li et al., 2019 also describe that K. mikimotoi is known to grow well in low 

light environments, however, it is not photo inhibited by high light intensities, 

therefore capable of adapting to conditions at both the surface and at the bottom. One 

important feature of K. mikimotoi behaviour in the environment is that, like many 

dinoflagellates they are capable of vertically migrating over a diurnal cycle, beginning 

from depth before sunrise and reaching the surface before midday. This is known as 

diurnal vertical migration (DVM) (Olsson and Graneli, 1991; Koizumi et al., 1996; 

Park et al., 2001; Shikata et al., 2014, 2015, 2016). This phenomenon is likely why 

the RBD approach is so applicable to satellite detection of blooms of K. mikimotoi as 

the cells will be in the upper part of the water column at midday, close to the over pass 

time of the satellite, with a significant number of cells in the upper 2 m of the water 

column corresponding to the observable signal depth for red light in seawater 

(Doerffer, 1993). 

The true toxicity of K. mikimotoi is unknown but the dinoflagellate is known to 

produce toxins including haemolysin (Neely and Campbell, 2006) and gymnocin A 

and gymnocin B (Satake et al., 2002, 2005). Karenia mikimotoi is not known to create 

shellfish related biotoxins, but mass mortalities of shellfish have been associated with 

blooms of this species. Causes of mortalities include inhibiting larval settling rates, 

immune functions, gut tissue damage and larval spat mortalities. The blooms may not 

only impact the survival rate of shellfish but also affect the developmental processes, 

therefore blooms can greatly impact wild and farmed shellfish (Li et al., 2019). The 

effects of these blooms are not limited to shellfish but also wild and farmed fish and a 

range of invertebrates. Karenia mikimotoi senescent blooms are known to deplete the 

water of oxygen levels when bacterial respiration associated with the breakdown of 

the bloom begins, and when macro-organisms start to decay, and biochemical oxygen 

demand rises. Diaz and Rosenberg (2008) observed mass mortalities of benthic 

organisms when the water became anoxic after a Karenia bloom. Karenia mikimotoi 

also secrete mucus (with high concentrations of extracellular polysaccharide) that can 

increase the likelihood of mortalities, for example, when fish gills become clogged 

(Gentien et al., 2007). Li et al. (2019) describe how even at low algal densities gill 

damage and mortality in both wild and cultured salmon, rainbow trout and turbot were 
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reported, even in waters with high dissolved oxygen levels. Mortalities of a range of 

invertebrates, are also linked to blooms of this unarmoured dinoflagellate in European 

waters and evident in the literature since 1966 (Jones et al., 1982). The earliest 

published Irish report of a Karenia spp. bloom related to marine life mortalities off the 

south coast of Ireland was made by Ottway et al. (1979). Two Irish examples of 

exceptional Karenia spp. blooms include the months of May, June, and July of 2005 

(Silke et al., 2005) and more recently, a K. mikimotoi bloom in the summer (May to 

September) of 2012 (O’Boyle et al., 2016). In July 2012, Karenia spp. were at high 

concentrations, greater than one million cells per litre, in the surface waters at the 

Malin shelf off northwest Ireland suggesting a potential offshore origin for these 

blooms (Bresnan et al., 2013). 

Ireland has a weekly HAB bulletin, published to assist aquaculture business managers, 

helping them make practical decisions to mitigate against potential HAB impacts. The 

bulletin contains several data products based on historical and recent biotoxin and 

phytoplankton profiles, satellite and oceanographic in situ and modelled forecasting 

data. Products used by local scientists help to develop HAB alerts for the days ahead. 

In this paper, we demonstrate the potential benefits of implementing a novel bio-

optical chlorophyll fluorescence algorithm within the Irish HAB monitoring 

framework, which has already been proven effective in the United States for detecting 

K. brevis and various other HAB species,  

During the months of May, June, July and August 2019 the RBD algorithm was tested 

in Irish waters for the first time. During this time a phytoplankton bloom appeared in 

the Celtic Sea, south of Ireland. 

4.2.1 Objectives of this Study 

 

The objectives of this pilot study were: 

1. To test the RBD algorithm in Irish waters and assess its suitability for use in the 

Irish HAB monitoring system. 

2. To determine the phytoplankton taxa responsible for the bloom by analysing the 

drift trajectory of the bloom by using local water circulation patterns in a particle 

tracking model and analysing in situ phytoplankton data from the national inshore 

monitoring programme and an offshore phytoplankton survey. 
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4.3 Materials and Methods 
 

4.3.1 Study Area 

 

Figure 24 presents the study area where the phytoplankton bloom was identified via 

satellite imagery, including in situ sampling locations described in section “In situ 

Data.” The samples were from three inshore stations: Cork Harbour, Oysterhaven and 

Kinsale, and from eight offshore stations from the research survey CV19018; 138, 

139, 140, 141, 142, 143, 144, and 148 as described in section “In situ Data.” Also 

illustrated in Figure 24 (B) is the polygon that was created based on manual 

interpretation of satellite imagery from when the bloom first appeared at the surface. 

This polygon was used for the horizontal distribution of particles deployed in the 

Lagrangian Particle Tracking model as described in section “Lagrangian Particle 

Tracking.” The study area was in the Celtic Sea, an area of the NE Atlantic Ocean 

bordered by Ireland in the north, the United Kingdom in the east and the Bay of Biscay 

(47°N) in the south. The Celtic Sea is relatively shallow with depths ranging between 

100 and 200 m and decreasing in depth near the coast as illustrated in Figure 24. Tidal 

circulation across the Celtic Sea is weak, water movement is primarily due to wind 

action (Raine, 2014). In the Celtic Sea, the water tends to stabilise in April when the 

seasonal thermocline becomes established. Throughout the summer months, there is a 

deepening of the thermocline due to continued heating of the surface layer until the 

Autumn when the cooling phase begins, and the water column becomes well mixed 

again. Within the Celtic Sea there are exceptions to this in areas of tidally mixed fronts, 

these are found at the boundaries between thermally stratified and tidally mixed areas 

such as the entrance to the Irish Sea, where the Celtic Sea Front is located and at the 

Ushant front, located between the southwest United Kingdom and northwest France 

(Raine, 2014). 
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Figure 24 (A) Map of study area in the Celtic Sea. (B) In situ sample locations are noted as points and the polygon 

location for the particle tracking model is outlined by the black line. Bathymetry is represented in metres. 

4.3.2 Satellite Imagery 

 

The Red Band Difference satellite imagery was generated from the study area with 

geographic latitude and longitude limits of 47°N to 58°N, 2°W to 12°W. The region 

of interest covers all coastal waters around the island of Ireland. Satellite data from 

the Ocean and Land Colour Instrument (OLCI) sensor on Sentinel 3A were obtained 

from The European Organisation of Meteorological Satellites (EUMETSAT). The 

multispectral OLCI sensor has 21 spectral bands from 0.4 to 1.0 μm and has a spatial 

resolution of 300 m. The bands are optimised to measure ocean colour over open ocean 

and coastal zones. The whole field-of-view is shifted across track by 12.6° away from 

the sun to minimise the impact of sun glint. Once the OLCI L1B data were downloaded 

from EUMETSAT, the data were processed to L2 using the NOAA, National Centres 

for Coastal Ocean Science (NCCOS) satellite automated processing system which 

utilises NASA’s l2gen software included in the Sea-viewing Wide Field-of-view 

Sensor (SeaWiFS) Data Analysis System (SeaDAS) package (version 7.5.3). The 

l2gen processing produced a surface reflectance product (Rrhos) that is corrected for 

top-of-atmosphere solar irradiance, Rayleigh radiance and molecular absorption 

(Wynne et al., 2018). 

The RBD algorithm used to highlight areas of high fluorescence, indicative of high 

algal biomass, uses only pixels within the valid Rrhos range (0–1) described by Amin 

et al., 2009 and modified for OLCI Rrhos bands as follows:  

RBD = Rrhos (681) - Rrhos (665) 
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Due to the increase in reflectance caused by Chl-a fluorescence at 681 nm, the RBD 

is positive in areas of Chl-a fluorescence. The RBD data products were mapped to 

Universal Transverse Mercator (WGS 84) projection at 300 m horizontal resolution 

using a nearest neighbour interpolation. A land mask was applied, and the product 

saved to a GeoTiFF (an image file with georeferencing information embedded in the 

file as metadata) and stored in a database at NCCOS. Weekly mean composites of the 

daily images were created using a custom ArcGIS python toolbox, RS_Tools, that was 

developed specifically for working with products from the NOAA-NCCOS satellite 

processing system. 

Satellite imagery was produced for the weekly HAB bulletin using an algorithm 

developed by IFREMER, known as the OC5 product. The level 4 Chl-a product is 

extracted from the IFREMER FTP site1. Matlab (MathWorks) is used to convert the 

level 4 Netcdf files to ∗.grd files. Matlab is then used to calculate chlorophyll 

anomalies from the 60-day median value calculated using data between current date 

minus 74 and current date minus 14. This anomaly data is rendered as .png files 

(Leadbetter et al., 2018). 

 

4.3.3 Lagrangian Particle Tracking 

 

To examine the effect of local water circulation patterns on the drift trajectory of the 

Karenia bloom, a particle tracking simulation was conducted using outputs from a 3D 

hydrodynamic numerical ocean model. The northeast Atlantic Regional Ocean 

Modelling System (ROMS) model encompasses a large area of the northwestern 

European continental shelf including Irish territorial waters (NE_Atlantic model; 

Dabrowski et al., 2016). This model has a horizontal resolution of 1.1 to 1.6 km in 

Irish coastal waters with 40 terrain-following vertical layers (Dabrowski et al., 2016). 

The ROMS model output data was coupled with an offline 3D Lagrangian particle 

tracking mass-preserving scheme called ICHTHYOP; an individual-based model 

(Ichthyop v3; Lett et al., 2008). This was used to simulate particle transport from the 

Karenia bloom location (i.e., the potential HAB surface transport pathways). Particle 

tracking simulations were conducted using hourly ROMS ocean current speed and 

direction outputs using a Runge–Kutta 4th order numerical scheme and a 5-min time 
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step. The initial horizontal distribution of the particles, representing K. mikimotoi cells, 

was based on a polygon created from satellite observations of the bloom when it was 

first identified at the water surface (Figure 24). In total, 50,000 particles were released 

with a random vertical distribution between 0 and 20 m depth in the Celtic Sea. The 

50,000 particles were selected as this is the limit of detection for K. brevis (cells per 

litre) in the Gulf of Mexico, by legacy satellites (Tester et al., 1998). Particles were 

neutrally buoyant, so any movement of particles between depths was due to vertical 

currents. The model simulation did not include growth or grazing of the 

phytoplankton. In the simulation the particles were transported for a fixed duration of 

27 days from 2 to 29 June 2019. Maps were generated to show the density distribution 

of particles on different dates to show bloom progression and to compare with satellite 

imagery. 

4.3.4 In situ Data 

 

Availability of biological data in the region where the bloom occurred according to 

satellite imagery was investigated to establish the predominant phytoplankton in the 

area at the time. Figure 24 shows the locations where phytoplankton samples were 

collected at the time of the bloom. 

The Irish Marine Institute runs the national biotoxin and phytoplankton monitoring 

programme and releases a weekly HAB bulletin. Phytoplankton abundance and 

composition results (freely available at 

http://webapps.marine.ie/HABs/Locations/Inshore) from southern stations close to 

where the bloom occurred were downloaded for this study. When the results of the 

particle tracking model confirmed the direction the bloom travelled, Cork Harbour, 

Oysterhaven, and Kinsale inshore stations were selected. Local officers from the Sea-

Fisheries Protection Authority and other assigned personnel collect water and shellfish 

samples, at weekly intervals, from designated shellfish production areas. Samples are 

sent to the Marine Institute where the analyses are carried out. The programme carries 

an ISO 17025 quality accreditation. A 25 mL Lugol’s iodine fixed seawater sample is 

used to determine the abundances of biotoxin producing or problematic phytoplankton 

using the Utermöhl test method, a recognised standard method, described in detail in 

UNESCO, 2010, references therein. The limit of detection is 40 cells/L–1. 
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Coincidentally a phytoplankton field survey aboard the RV Celtic Voyager was being 

conducted in the Celtic Sea when the bloom was still visible via satellite imagery in 

July 2019. Water samples were collected at the periphery of the bloom at stations 135–

144 and 148 (see Figure 29) on 10 July. A phytoplankton net vertically deployed to a 

maximum depth of 50 m at each station determined the predominant phytoplankton in 

the water column. A SeaBird 9/11 plus CTD integrated with a carousel water sampler 

for real-time auto-fire operations was lowered to approximately 5 m above sea floor 

level. Niskin water bottles were fired on the up cast at discrete depths where peaks of 

relative fluorescence and temperature gradients were evident on the depth profile. A 

fine scale sampler (FSS) was used to study the vertical thin layer distributions of 

dinoflagellates and to examine the correlation to the thin layer water properties. The 

FSS was lowered to the depth of the desired thin layer and all 15 bottles were fired 

simultaneously. Water samples were fixed in Lugol’s iodine and stored in sterile 50 

mL Sarstedt© water sampling bottles. Phytoplankton species were identified with an 

inverted microscope, Olympus CKX4. Aliquots and cells counted following the 

Utermöhl method (UNESCO, 2010). 

 

4.4 Results 
 

Red Band Difference satellite imagery show a phytoplankton bloom (Figure 25), 

appearing in surface waters in the Celtic Sea, off southern Ireland on 2 June 2019. 

Weekly composites of satellite images show the bloom steadily increase in size 

(spatially) and magnitude (elevated surface pigment), the warmer colours on the 

images represent higher fluorescence which indicate higher bloom concentration in 

the weeks that followed (Figure 25). The images also show the extent of the bloom 

geographically. The surface bloom peaked in magnitude on the 27 June 2019 (Figure 

25) (Daily file for 27th June 2019 Appendix A5). Following this, the bloom began to 

disperse and dissipate in early July 2019, however, remnants remained visible in the 

satellite imagery until late July (Figure 25). 
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Figure 25 Sentinel-3a OLCI images with RBD algorithm displaying the phytoplankton bloom progression 

between 29th May 2019 and 23rd July 2019 (A–H). Colours indicate relative fluorescence, with warmer colours 

representing higher fluorescence indicative of higher bloom concentration. 

 

Figure 26 displays satellite imagery from the weekly HAB bulletin, weeks 24–28 (4th 

June, 2019–8th July 2019). Focussing on the study area in the Celtic Sea it is clear the 

increase in chlorophyll concentration at the surface was detected using both 

algorithms. In both Figures 25, 26 B there is a noticeable rise in chlorophyll 

concentration in the location the bloom was detected using the RBD algorithm. There 

is an increase from 1 mg/m3 to 3 mg/m3 between weeks 24 and 25 in Figure 26. 

Chlorophyll concentration peaks in concentration between dates 23 June 2019 

between and 30 June 2019 (D) and (E) using both algorithms. Comparing both Figures 

25, 26 it is evident the increase in chlorophyll concentration was detected in the Celtic 

Sea using both algorithms, but Figure 25 displays a clearer series of images displaying 

the bloom’s progression and movement. 
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Figure 26 OC5 IFREMER Level 4 Chlorophyll a data from the HAB bulletin weeks 24–28 (A–F) 4th June 2019 to 

8th July 2019. 

 

The exact reason for the stripe artefacts in the RBD satellite imagery are not resolved 

at present, typically this is due to detector striping where radiometric miscalibration in 

the detector array elements can result in along track striping. However, it can also arise 

from solar glint or the “smile effect.” 

Trajectories from the particle tracking simulation produced a similar pattern to that of 

the surface bloom in the RBD satellite images at the end of June 2019. Virtual particles 

that represent the bloom increase in spatial extent over the 4-week period, eventually 

a significant percentage of particles move toward the south coast of Ireland toward the 

last week of June in agreement with the Sentinel-3a OLCI RBD satellite imagery 

(Figure 27). Data from an inshore sampling station, in Cork Harbour confirm Karenia 

spp. as the predominant taxa recorded from late June to late July. The cell counts for 

Karenia spp. in Cork Harbour were 2,471,168 cells/L on the 30 June, 117,234 cells/L 

on 14 July and 257,634 cells/L on 28 July. Between June and July, Karenia spp. cell 
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counts at three inshore coastal stations (Cork Harbour, Oysterhaven, Kinsale; see 

Figure 24 for locations) positioned along the south coast of Ireland, showed a dramatic 

cell increase after being undetected at Cork Harbour and Kinsale coastal stations prior 

to the bloom detection in offshore waters. Karenia spp. had been detected in very low 

numbers in Oysterhaven in April 2019 (8,800 cells/L) and wasn’t recorded again until 

the 2 June (120 cells/L). Highest cell densities of Karenia spp. occurred on different 

days at each coastal station (Cork Harbour, Oysterhaven and Kinsale) and in a 

westward direction. Cork Harbour displayed the highest Karenia spp. cell count on 

the 30 June (2,471,168 cells/L), Oysterhaven on the 14 July (255,432 cells/L), and 

Kinsale on 28 July (398,736 cells/L) (Figure 28). 

 

Figure 27 Particle tracking model simulation results display current driven bloom dispersal on the left (A–D). 

Maps show the density distribution of particles on 08/06/2019, 15/06/2019, 22/06/2019, and 29/06/2019 compared 

with Sentinel-3a OLCI images with RBD weekly composites on the right (E-H). 
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Figure 28 In situ Karenia spp. cells/L counts for inshore stations in Cork Harbour, Oysterhaven, and Kinsale 

from the national monitoring programme June–August 2019. 

 

In 2019, the first inshore phytoplankton record of Karenia spp. (13,840 cells/L) in 

Cork Harbour was detected on 23 June. On 30 June the sharp rise in cell densities 

(2,471,168 cells/L) was detected, 3 days after the bloom peaked offshore. Around the 

same time (30 June) to the west, in Oysterhaven, 80,000 cells/L were recorded in water 

samples. These numbers increased to 260,000 cells/L by mid-July. Further west in 

Kinsale cell numbers rose from approximately 71,000 cells/L on 14 July to 398,736 

by the 28 July. Many other phytoplankton taxa were identified during the above dates 

but Karenia spp. was consistently the highest cells/L recorded in each instance (Full 

cell counts for the three southern stations can be viewed in Appendix A6). 

In July, phytoplankton cell counts from the research survey CV19018, that coincided 

with the time of the offshore bloom confirmed the predominant taxa observed was K. 

mikimotoi. The satellite imagery showed that stations ST134-144 were on the outer 

edge of the bloom and that station at ST148 was located in a high-density area of the 

bloom (Figure 29), the values in this graphic represent values closest to the surface. 

K. mikimotoi values of 1,710,000 cells/L at station 148 were recorded at deeper depths 
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but may not have been visible to satellite at that time due to the time the samples were 

taken and the behaviour of the phytoplankton. 

 

Figure 29 Sentinel-3a OLCI image with RBD algorithm from 10 July 2019. The red circles indicate cell 

concentrations determined using light microscopy for in situ samples collected on CV19018 on the same date. The 

grey colour in the image represents cloud cover 

 

Water samples collected with the CTD at stations 135–148 had an array of 

phytoplankton taxa identified (e.g., Dinophysis acuminata, Prorocentrum, Ceratium 

lineatum, Ceratium fusus, Ceratium furca, Ceratium tripos, Ceratium macroceros, 

Protoperidinium, Gyrodinium, Ceratium inflatum, Dinophysis acuta, Noctiluca) with 

Karenia mikimotoi present and the most abundant taxa recorded at stations sampled. 

The FSS bottles were deployed at 17–19 m at station 148 at 16:48 after a thin layer 

was identified on the CTD cast. K. mikimotoi was again the predominant taxa observed 

throughout the 5 bottles with cell counts of 3,146,000 cells/L, 4,258,000 cells/L, 

3,842,000 cells/L, 3,276,000 cells/L and 2,474,000 recorded (Full cell counts for 

CV19018 can be viewed in Appendix A7). 

In situ K. mikimotoi cell counts from stations 138–148 closest to the surface were used 

to clarify whether there were any potential associations between the satellite derived 
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RBD value, and in situ cell counts. While sampling was conducted over the course of 

the day from 09:03 to 16:34, it was difficult to determine the exact surface counts at 

the time of the satellite data acquisition given the DVM behaviour of Karenia spp. A 

linear regression was calculated, (Cells/L) = 1.97 × 108 (RBD) – 1.49 × 104, with an 

R2 value of 0.93 (n = 8) was determined (linear regression and data for this conclusion 

in Appendix A8). This suggests to us that an RBD value greater than approximately 

0.0005 makes a useful early threshold for bloom formation as it is roughly equivalent 

to 1 × 106 cells/L. However, given that there are several unknowns with regard to 

fluorescence characteristics and the DVM nature of K. mikimotoi, the timing of 

satellite measurement, in situ sample timing, and the low sample size the high 

correlation value could have been fortuitous as the samples acquired for this study 

were opportunistic therefore there are spatial and temporal mismatches involved. 

Future work to clarify this would require more dedicated in situ sampling at the time 

of satellite-measurement acquisition and an estimate of the Karenia spp. position 

within the water column at that time. The findings of such studies will help determine 

a threshold for a warning system. 

4.5 Discussion 
 

The RBD algorithm was tested in Irish waters for the first time during the months of 

May, June, July, and August 2019 to assess its suitability for adding to the established 

HAB monitoring system. A phytoplankton bloom occurred off the south coast at this 

time and was visible using the RBD satellite images. The results we have presented 

here show the RBD algorithm was proficient in assessing the timing of the initiation, 

movement, geographical extent, locations of the peak abundances and duration of the 

bloom. Although this study demonstrates the RBD’s use in detecting Karenia spp. 

blooms, the algorithm would be useful for monitoring HAB events in general as the 

detection of bloom presence with the RBD algorithm indicates some Chl-a 

fluorescence, as the radiance returned at 681 nm is greater than that returned from 665 

nm, even though 681 nm also includes strong Chl-a absorption (Wolny et al., 2020) 

and already used for Chesapeake Bay for monitoring a range of dinoflagellates. 

Unfortunately, there was not enough offshore data to do a rigorous validation, but, we 

were able to confirm the predominant phytoplankton in an area when the bloom 

appeared on satellite imagery using data from an offshore survey that coincided with 
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the bloom in July. Having confirmed the drift trajectory of the bloom based on local 

water circulation patterns using the particle tracking model we were confident in using 

the inshore data from the southern stations Cork Harbour, Oysterhaven, and Kinsale 

and confirmed that Karenia spp. was the predominate taxa identified. 

Although the authors are not trying to replace the current standard chlorophyll 

algorithm, it is hoped the preliminary use of RBD algorithm will become an extra 

monitoring tool within the HAB alert system. This paper presents the results from a 

pilot study and future studies will help improve methodologies with the 

implementation of more validation methods such as the use of hyperspectral 

radiometry from the national research vessel. 

The acquisition of new technical skills will further help support a sustainable 

aquaculture industry in Ireland. The use of satellite technology for observing the 

movement of phytoplankton blooms are well documented throughout the world 

(Stumpf et al., 2003, 2009; Stumpf and Tomlinson, 2005; Miller et al., 2006; Davidson 

et al., 2016; Groom et al., 2019). Of course, there are going to be limitations to using 

earth observation data, some of which include: clouds, difficulty differentiating 

between phytoplankton species and, depth limitations (Ruddick et al., 1999). As 

discussed, blue-green ratio chlorophyll algorithms can overestimate chlorophyll in 

waters close to the coast due to contamination of CDOM and sediment in the 

measurements. Satellite measurements of chlorophyll fluorescence are considered 

proficient to detect blooms in areas like this (Gower and King, 2012; Gower et al., 

2013). Introducing new methods of monitoring is useful to improve current mitigation 

efforts, given the diversity and complexity of HAB events and the different behaviours 

of phytoplankton functional types (Moisan et al., 2017). Understanding the history 

and behaviours of the most problematic species that are responsible for HAB events 

can help detect what type of bloom is forming offshore before it is possible to collect 

samples. This can be done by using algorithms with trained datasets (Martinez-Vicente 

et al., 2020) and also it is vital to understand the typical behaviour of the species. It is 

established that blooms of Karenia spp. originate in regions of the continental shelf 

that have weak tidal currents and are stratified in the summer (Brand et al., 2012). For 

example, in the Celtic Sea close to the Nymphe bank, where tidal streams are weak, 

the spring bloom develops earliest (Pingree et al., 1976; Raine, 2014). In this area, 

high densities of K. mikimotoi have been observed as early as May (Pemberton et al., 
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2004). The Nymphe Bank is located at 51°30′0″ N 7°30′0″W, an area where the centre 

of the bloom first appeared on satellite imagery, see Figure 24; 51°23′24″ N 

7°23′18″W. Large blooms of Karenia spp. have been recorded around Ireland in 

regions with similar slack circulation, areas such as the southern Malin shelf and the 

Irish shelf to the west of the Aran Islands (Gowen et al., 1998; Silke et al., 2005). 

Subsequent growth and transport in coastal currents can spread their impact over large 

areas of the coastal zone (Davidson et al., 2009). Due to the proximity to land, the 

development of these blooms are difficult to detect without satellite technology. 

Many harmful algae display diurnal vertical migration behaviour (Park et al., 2001; 

Kononen et al., 2003). The algae are known to swim toward the surface at dawn and 

to deeper depths at dusk (Olsson and Graneli, 1991; Koizumi et al., 1996; Park et al., 

2001). Karenia mikimotoi are known to vertically migrate within an estimated daily 

depth range of 15–20 m (Koizumi et al., 1996; Li et al., 2019) they migrate before 

sunrise and reach the surface before midday (Li et al., 2019). When the cells assemble 

at the surface during upward migration, this has been shown to promote the formation 

of the red tide (Honjo, 2004). Previous observations have suggested that K. mikimotoi 

are frequently found in thin layers near the pycnocline (Brand et al., 2012) developing 

at or directly below the thermocline (Holligan et al., 1984) particularly at frontal 

regions between well-mixed and stratified waters (Pingree et al., 1977). Results from 

the FSS at station 148 on CV19018 show Karenia spp. between 17 and 19 m in a thin 

layer in extremely high densities. These samples were taken at 16:34, due to the DVM 

behaviour of the species, they were travelling to deeper depths before dusk and higher 

concentrations could have been identified at the surface if the samples were taken 

around midday. Knowing Karenia spp. exhibit these behaviours of surfacing around 

midday, it is a good reason to choose a fluorescence algorithm to monitor coastal 

waters. Fluorescence penetration depth is shallow because oceanic waters attenuate 

fluorescence and the signal only returns information of Chl-a in the subsurface waters 

of approximately 2 m (Xing et al., 2007). 

Additionally, in order to predict movement of the bloom, it is important we understand 

the water circulation patterns. The RBD images show the bloom was detected by 

satellite on the 2 June, 14 days before Karenia spp. was identified in the inshore 

samples. Historically, K. mikimotoi blooms are known to occur in shelf and coastal 

waters off the south, southwest, west and northwest of Ireland. Water circulation 
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around these coastal areas is heavily influenced by the Irish Coastal Current (Figure 

30) that flows in a clockwise direction around the Irish Atlantic coastline (Raine, 

2014). This coastal current is an important transport pathway in the northern Celtic 

Sea. In summer, the westward transport of planktonic organisms is heavily influenced 

by the Irish Coastal Current with faster flows, in a density driven current, found at 

depths of ∼25 m (Farrell et al., 2012).  

 

Figure 30 Coastal currents (red) and  the Shelf Edge Current (green) adapted from Hill et al. (2008) 

 

 In this study, relatively calm weather was reported in June with weak wind speeds 

and low significant wave heights (average 1.2 m) recorded at the M5 data buoy in the 

Celtic Sea, conditions suitable for the development of the K. mikimotoi bloom 

observed in offshore surface waters. The numerical hydrodynamic model used in this 

study was tightly coupled to meteorological data and the particle tracking model shows 

the advection of the K. mikimotoi bloom into inshore regions when the bloom was 

fully developed. Wind driven advection is important in this region. For example, in 

1998, weak wind driven upwelling in the region uplifted a subsurface K. mikimotoi 

bloom into surface waters off the SW coast, wind also played an important part in the 

transport of the bloom eastwards across the Celtic Sea where it was advected into 

coastal areas; this bloom was recorded using satellite ocean colour and thermal infra-

red sea surface temperature images alongside in situ measurements (Raine et al., 
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2001). The results from the particle tracking model confirm the bloom followed the 

pattern of the clockwise coastal current when Karenia spp. counts peaked in the three 

southern inshore stations at different times. Cork Harbour first, Oysterhaven and then 

Kinsale. 

The method explained in this study shows high-biomass blooms, like Karenia spp. can 

be detected and monitored with the RBD algorithm like in the Gulf of Mexico and 

Alaska (Amin et al., 2009; Vandersea et al., 2020) and now this study confirms it is a 

useful product to use in Irish waters. Wolny et al. (2020) describes how the RBD 

method is used to monitor the most common marine and estuarine HABs in 

Chesapeake Bay indicating the potential for other HAB blooms of interest in Ireland. 

Henderikx and Dierssen (2019) also evaluate the accuracy of Red RBD algorithms for 

measuring chlorophyll concentrations in coastal waters. Their study demonstrates how 

well RBD algorithms capture the dynamics of chlorophyll in both the summer and the 

winter, particularly when they use data from MERIS. The study shows that these 

algorithms are more dependable than other conventional approaches in complex 

estuarine environments and accurately reflect seasonal variations in phytoplankton 

concentration. The findings show that RBD algorithms could be significant in 

enhancing satellite-based monitoring of chlorophyll levels in coastal areas. The Le et 

al. (2013) study also assesses how accurate the RBD algorithm is at predicting the 

amounts of chlorophyll in coastal waters. The authors from this study also discuss 

about how well the RBD algorithm performs with MERIS data, showing how good it 

is for different ranges of chlorophyll and contrasting it with other algorithms. This 

study contains significant information on the algorithm's dependability and its use in 

satellite-based coastal water status monitoring. 

Further discrimination of genus or species level is difficult with just satellite 

technology, but combined with particle tracking and routine monitoring programmes, 

can further develop a more robust warning system. Aquaculture business owners can 

limit damage to their stock by avoiding moving, harvesting and/or planting new seed 

while warning systems are in place. 

Quantitative application of the RBD approach examined here, requires more data to 

better constrain the relationship between RBD values and cell numbers of Karenia 

mikimotoi as the observed reflectance/fluorescence is influenced by a suite of external 
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variables which may change with time (e.g., irradiance, photosynthetic efficiency, cell 

size, etc.). One such key parameter is the chlorophyll per cell of Karenia mikimotoi, 

with laboratory studies indicating it decreases with increasing irradiance and covers a 

wide range of values in the literature; 2–27 pg Chl cell–1 (Stæhr and Cullen, 2003; 

Chang and Gall, 2013; Wang et al., 2019; Zhao et al., 2019). Values of 2–6 pg Chl 

cell–1 (Stæhr and Cullen, 2003; Zhao et al., 2019) have been found under high light 

conditions similar to what was observed in the Celtic Sea at the time of our study, 

using the Cell numbers of ∼3,000,000 cells/L from the centre of the bloom at that time 

would indicate a value of 6–18 μg Chl/L potentially associated with Karenia 

mikimotoi. 

There was limited availability of offshore data to do a full validation for this study. If 

this algorithm was to be used as an operational satellite product, future work will 

investigate combinations of inshore and offshore sampling and combining 

hyperspectral radiometry data. 

4.6 Conclusion 
 

• We analysed remotely sensed data for the period of May–August 2019 testing the 

RBD algorithm in Irish waters for the first time. 

• The phytoplankton bloom we identified using the satellite technology was localised 

and was reflected in the inshore phytoplankton samples from around Ireland. 

• Both the satellite imagery and the particle tracking simulation results confirm the 

movement and the direction the bloom travelled. 

• Karenia spp. was present in high numbers only at southern stations at the time of the 

bloom and was not identified anywhere else along the Irish coastline. 

• A sudden increase of Karenia spp. in Cork Harbour, Oysterhaven and Kinsale 

occurred shortly after the bloom developed in offshore waters. 

• The appearance of Karenia spp. at the southern coastal stations followed an east to 

west pattern in line with what the expected transport of the Irish coastal current. 

• We established that the predominant phytoplankton observed in offshore samples 

was K. mikimotoi. 
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• We describe the potential for Ireland to use the Red Band Difference algorithm as an 

extra monitoring tool within the established HAB alert system to provide an early 

warning method of HABs and in particular, Karenia spp. blooms. 
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Combining Satellite Imagery and the HABscope in Irish 
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This was a feasibility and preliminary study to assess the suitability of the HABscope in 

Irish waters.  

5.1 Abstract 
 

A feasibility study was carried out using NOAA’s HABscope system in Irish waters 

for the first time during the summer months of 2021 on two research surveys CV21015 

and CV21021. The HABscope incorporates artificial intelligence technology that can 

detect the swimming pattern of Karenia spp. and provide a confirmation of presence 

or absence of the phytoplankton at a particular point in time or for more thorough 

studies, can provide estimates of cell concentration. This can then be used as a warning 

tool for harmful algal blooms.  

Results from research survey CV21015 in July 2021 showed that Karenia spp. were 

not detected at any surface sample during the survey and satellite results reflected low 

concentrations of chlorophyll fluorescence at the surface for the duration of the survey 

also. However, Karenia spp. were detected at station 17 at a depth of 38 meters at 

20:00, with microscope counts indicating 250,000 cells/L and HABscope results 

returning an estimation of 120,000 cells/L. In August 2021, the HABscope was used 

on a phytoplankton dedicated survey CV21021. During this time, high concentrations 

of phytoplankton fluorescence were detected via satellite imagery at the surface. The 

HABscope was used at various points throughout different transects as an additional 

tool to confirm the presence or absence of Karenia spp.  



102 
 

This device would work in conjunction with the RV Celtic Explorer's Hyperspectral 

Radiometers from Chapter 3 and the Red Band Difference satellite algorithm from 

Chapter 4 to provide an early warning system for Karenia spp. blooms. 

To summarise, implementing the HABscope technology in Ireland may enhance 

monitoring of the presence of Karenia spp. in aquaculture and marine ecosystems in 

general. 

5.2 Introduction 
 

Since the 1980s, Ireland's monitoring of Harmful Algal Blooms (HABs) has been 

conducted through a national phytoplankton and biotoxin program, using ISO 17025 

standard microscopy to identify phytoplankton species. These findings are 

disseminated weekly in the HAB bulletin, the development of which is detailed by 

Leadbetter et al. (2018). This bulletin, crucial for aquaculture management, includes 

additional data like satellite and oceanographic forecasts. 

Chapter 4 introduces the Red Band Difference (RBD) Algorithm, enhancing the 

bulletin with a satellite-based method for detecting and tracking HABs. Its 

effectiveness is supported by various studies (Amin et al., 2009; Le et al., 2013; El-

habashi et al., 2016; Henderikx and Dierssen 2019; Wolny et al., 2020; Vandersea et 

al., 2020; Jordan et al., 2021). 

NOAA's mitigation efforts include the HABscope, a new tool for detecting K. brevis. 

Developed as a citizen science project, the HABscope is a low-cost microscope paired 

with an iPod touch, allowing for daily sampling across many water bodies. K. brevis, 

known for producing harmful brevetoxins, is a significant concern in the US (Poli, 

1986; Backer et al., 2003). The HABscope's innovative approach involves citizens 

collecting samples, recording them with the iPod, and uploading videos for neural 

network analysis, focusing on K. brevis distinct characteristics (Hardison et al., 2019). 

Karenia spp. are dinoflagellates and these are more agile than most other 

phytoplankton types, as they can change their swimming speed and direction by 

adjusting their flagellar patterns. Fenchel, (2001) explains dinoflagellates have two 

flagella; a transversal flagellum and a trailing flagellum, which is responsible for their 

ability to swim. This study showed that the transverse flagellum causes the cell to 

rotate around its length axis, while the trailing flagella causes the cell to move forward 
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and also to rotate around an axis perpendicular to the length axis. The combination of 

these two rotations results in a helical swimming path that can be varied by changing 

the speed and direction of the flagella. Chang and Ryan (2004) compare the 

morphology and ultrastructure of a new species of Karenia genus that was isolated 

from the New Zealand coast in 2002. During this study the authors observed that when 

K. concordia cells were gently shaken within the culture flask they exhibited a falling 

leaf swimming pattern, meaning the cells would rotate around their longitudinal axis 

while descending slowly in a zigzag motion. Chang and Ryan (2004) also noted that 

the swimming pattern was similar to that of K. mikimotoi. Hardison et al. (2019) 

describes how K. brevis has a corkscrew swimming pattern, slightly different to K. 

mikimotoi but similar enough for the HABscope to determine the genus 

While K. brevis hasn't been observed in Irish waters, K. mikimotoi, with similar traits, 

poses a threat to marine life (Li et al., 2019). This study explores the use of the 

HABscope in Ireland, combined with satellite technology, to first test whether the 

instrument works in Irish waters and if so, can it identify K. mikimotoi's presence. The 

technology had not been used to identify K. mikimotoi before. 

The objective of this study was to trial the HABscope in Ireland for the first time 

combined with satellite technology to determine whether this piece of technology 

would be an asset to the HAB alert system for identifying whether K. mikimotoi is 

present in a sample. Another objective was to trial the technology on a research survey, 

which had never been done using this system. Further studies will be completed in the 

future to determine the accuracy of the cell count between the HABscope and in situ 

microscope results in Irish waters.  

We completed the objectives by combining satellite imagery and the HABscope on 

two phytoplankton research surveys during 2021. In this paper we present satellite 

imagery for both research surveys and how the HABscope was used to determine 

presence or absence of the HAB K. mikimotoi.  
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5.3 Methods  
 

5.3.1 Phytoplankton Research Surveys CV21015 and CV21021  

 

Two dedicated phytoplankton scientific surveys (CV21015 and CV21021) took place 

between 29 June and the 5 July 2021 (CV21015) and 8 August 2021 to 11 August 

2021 (CV21021) in the Celtic Sea on board the RV Celtic Voyager. Figure 31 

illustrates the stations from both surveys. Water samples and videos of live samples 

using the HABscope were taken throughout both surveys and uploaded when the ship 

was in 4G range, or when back on land. The water samples were fixed in Lugol’s 

iodine and stored in sterile 50 mL Sarstedt© water sampling bottles for analysis in the 

laboratory at a later date. Phytoplankton species were identified with an inverted 

microscope, Olympus CKX4. Aliquots and cells counted following the Utermöhl 

method (UNESCO, 2010).  

 

Figure 31 Stations from CV21015 and CV21021 

 

5.3.2 Red Band Difference Satellite imagery 

 

L1B data satellite data were downloaded from The European Organisation of 

Meteorological Satellites (EUMETSAT). The data was derived from Ocean and Land 

Colour Instrument (OLCI) sensor on Sentinel 3A OLCI is a multispectral sensor with 

21 spectral bands ranging from 400 to 1200 nm and has a spatial resolution of 300 m. 

https://www.frontiersin.org/articles/10.3389/fmars.2021.638889/full#B61
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The bands are optimised to measure ocean colour. The whole field-of-view is shifted 

to minimise the impact of sun glint across track by 12.6° away from the sun. The L1B 

data were then processed to L2 using the NOAA, National Centres for Coastal Ocean 

Science (NCCOS) satellite automated processing system which utilises NASA’s l2gen 

software included in the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Data 

Analysis System (SeaDAS) package (version 7.5.3). The l2gen processing produced 

a surface reflectance product (Rrhos) that is corrected for top-of-atmosphere solar 

irradiance, Rayleigh radiance and molecular absorption (Wynne et al., 2018). 

The RBD algorithm, described by Amin et al. (2009) highlights areas of high 

fluorescence, which suggests high algal biomass, at the surface of the water, uses only 

pixels within the valid Rrhos range (0–1) and modified for OLCI Rrhos bands as follows: 

 

RBD = Rrhos (681) - Rrhos (665) 

 

The RBD data products were mapped to Universal Transverse Mercator (WGS 84) 

projection at 300 m horizontal resolution using a nearest neighbour interpolation. The 

GeoTIFF (an image file with georeferencing information embedded in the file as 

metadata) created is stored in a database on the NCCOS server. Weekly mean 

composites of the daily images were created using a custom ArcGIS python toolbox, 

RS_Tools, that was developed specifically for working with products from the 

NOAA-NCCOS satellite processing system. 

 

5.3.3 HABscope 

The HABscope is a sampling device routinely used to sample for Karenia brevis in 

the United States. The device is designed to be used by both scientists and citizen 

scientists. The instrument consists of a standard classroom grade, low cost microscope, 

and a wireless, touchscreen controlled iPod touch (https://www.apple.com/ipod-

touch). Figure 32 shows the HABscope set up on research survey CV21015 on board 

the RV Celtic Voyager. The iPod attached to the microscope enables scientists to 

record a short video of a three-drop water sample, approximately 60 μL using a 

dropper pipette placed on a 100 μL depression slide. Once the sample was focused at 

40X, a 30 second video was recorded. The video is then uploaded via mobile hotspot, 

if in the field or using wifi if in the lab, videos are uploaded to the Gulf of Mexico 

https://www.frontiersin.org/articles/10.3389/fmars.2021.638889/full#B65
https://www.apple.com/ipod-touch
https://www.apple.com/ipod-touch
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Coastal Ocean Observing System (GCOOS) website. The video is analysed using a 

neural network programme trained to recognise K. brevis cells. Cell identification is 

based on the size, unique shape and characteristic corkscrew swimming pattern 

of K. brevis, which helps distinguish it from co-occurring species typically found 

during Karenia spp. blooms. Once the videos are uploaded to the GCOOS website 

they are verified by a NOAA staff member.  Hardison et al. (2019) describes the 

components of the HABscope microscope in detail. The HABscope was also tested in 

the laborary using a culture of K. mikimotoi prior to being brought to sea to ensure it 

worked. 

 

Figure 32 HABscope set up on research survey CV21015 

 

5.4 Results 
 

Figure 33 illustrates RBD imagery captured during the two research surveys. 33 (A) 

represents a weekly composite from 01 July – 07 July 2021 during CV21015 survey 

dates and 33 (B) represents a weekly composite from 05 August – 11 August 2021 
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during CV21021 dates. As can be seen in the imagery, very little phytoplankton 

activity was present at the surface during CV21015 dates and higher phytoplankton 

activity was present at the surface during CV21021 dates. 

 

Figure 33 Red Band Difference satellite imagery from the weeks research surveys CV21015 (A) and CV21021 

(B) took place 

 

Figure 34 displays a screen grab from a HABscope video showing two cells of K. 

mikimotoi identified in a water sample during a 30 second video from station 17, 

CV21015 from 38 m depth. Two cells equate to 120,000 Cells/L using the HABscope 

conversion tool. See Appendix A9 for conversion cells to cpl. Microscope results 

confirmed 250,000 Cells/L were present in that water sample.  
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Figure 34 Screen grab from a HABscope video demonstrating two cells identified using the neural network 

programme trained to recognise Karenia spp. cells 

 

Figure 35 displays a bubble map of K. mikimotoi in situ microscope results overlaid 

onto RBD satellite imagery during CV21021 survey dates. The highest cell count and 

largest bubble recorded using microscope analysis was 30,800 Cells/L at DE3 (Figure 

31). One cell was found on the AI utilising the HABscope at this location, and the 

sample contained an estimated 50,000 Cells/L. Smaller dots indicate samples with less 

than 10,000 cells per litre. 50,000 particles this is the limit of detection for K. brevis 

(cells per litre) in the Gulf of Mexico, by legacy satellites (Tester et al., 1998). 

K. mikimotoi counts at KE4 (Figure 31) were 27,680 Cells/L, on the HABscope 14 

cells of K. mikimotoi were identified from a 3 drop sample, approximately 60 μL but 

this was confirmed to be an over estimation due to the mixed assemblage of 

phytoplankton species at that station as seen in Figure 36.  
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Figure 35 A bubble map of K. mikimotoi in situ microscope results overlaid onto RBD satellite imagery during 

CV21021 survey dates 

 

 

Figure 36 Screen grab from the HABscope to illustrate a mixed assemblage of phytoplankton species and the 

neural network technology identifying Karenia spp. amongst other species 
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5.5 Discussion  
 

The HABscope, developed by the US National Oceanic and Atmospheric 

Administration (NOAA) and funded by NASA is used routinely by citizen scientists 

to monitor the development of K. brevis blooms in the US (Hardison et al., 2019).   

The aim of this study was to evaluate the feasibility of using the HABscope technology 

in Irish waters and to conduct a preliminary test of the equipment during a research 

survey, both for the first time. Specifically, this study aimed to validate the AI’s ability 

to detect Karenia spp. particularly K. mikimotoi in Irish waters and assess its potential 

for determining their presence or absence of K. mikimotoi without the need for labour 

intensive sample collection and transport to a laboratory. The technology had only 

identified K. mikimotoi in lab conditions before this study. The study’s results 

confirmed that the HABscope would be a valuable tool for detecting presence or 

absence of K. mikimotoi in Irish waters. 

A further validation study will be completed to determine how accurate the cell 

estimation between the HABscope and microscope counts are in future studies. Figure 

35 illustrates the spread of Karenia spp. during one research survey. These results only 

became available months after the survey was finished due to time pressure while the 

scientists are at sea and also when they return to the lab. The HABscope was used at 

stations DE3 and KE4 (Figure 31) during this survey to confirm presence or absence 

of the species. It proved to be a valuable tool to confirm Karenia spp. was present at 

that point in time.  

The RBD satellite imagery used in this study further complement the use of the 

HABscope technology. As stated earlier, satellite imagery is a useful tool for 

monitoring the ocean over vast distances, and the data provides early warnings against 

phytoplankton blooms (Stumpf and Tomlinson, 2005). Jordan et al. (2021) 

demonstrated the effectiveness of RBD satellite imagery as a valuable complement to 

the HABscope for monitoring and tracking Karenia spp. and other phytoplankton 

blooms in Ireland. In this study, Figure 33 displays RBD imagery depicting low levels 

of phytoplankton activity at the surface during the CV21015 survey, followed by a 

higher concentration of phytoplankton during the CV21021 survey. The HABscope's 

results corroborated these findings. Notably, K. mikimotoi was only observed at a 

depth of 38m at station 17 during CV21015, with no surface samples being recorded. 
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It should be noted station 17 was sampled at 20:00 therefore it is not surprising 

Karenia were found at 38m and not the surface, due to their DVM behaviour (Olsson 

and Graneli, 1991; Koizumi et al., 1996; Park et al., 2001; Shikata et al., 

2014, 2015, 2016). The main objective was to compare a wild Karenia spp. sample at 

sea, if found with the HABscope and in situ microscope data. In this instance, the 

HABscope estimated a cell count of 120,000 Cells/L after detecting two Karenia spp. 

cells. Subsequently, a microscope was used to validate the HABscope's estimation, 

and 250,000 Cells/L were identified in the same sample. This was one sample and no 

repeat samples were carried out at that time. 

During CV21021 in August 2021, RBD satellite imagery revealed high concentration 

of phytoplankton at the surface, which was further confirmed by HABscope 

recordings that displayed abundant phytoplankton activity with many species 

identified (see Figure 36). Despite the high diversity of species observed, the 

HABscope technology was able to distinguish K. mikimotoi from other species within 

the sample, emphasizing the value of this technology. Hardison et al. (2019) describe 

in detail how they trained the AI to distinguish K. brevis from other similar sized free 

swimming dinoflagellates. To enable the CNN to train to recognise the morphological 

distinctions between K. brevis and the other species, around 5,993 photos of K. brevis, 

Amphidinium sp., and Alexandrium catenella were collected. The system's capacity to 

distinguish K. brevis cells from other material was then tested by adding K. brevis cells 

to samples of natural water. It was discovered that occasionally debris particles that 

were agitated by microscope vibrations were mislabelled as K. brevis. To solve this 

issue, additional photos of detritus and K. brevis from natural samples were used to 

train the CNN. Over a five-month period, the training library was updated when fresh 

and/or improved photos were gathered. The CNN was periodically retrained using 

these newly captured images, and the new model was then saved. The training library 

currently has 5,993 images of debris and 15,666 photographs of K. brevis as on 2019-

04-22. 

Hardison et al. (2019) study compared cell abundance data using HABscope software 

and a particle counter. Between 120,000 and 9,200,000 cells per litre, the HABscope 

programme found Karenia brevis cells with a 31% Mean Absolute Percentage Error 

(MAPE). The low, medium, and high cell concentrations that are important for 

determining respiratory hazards fall within this range. The HABscope response was 

https://www.frontiersin.org/articles/10.3389/fmars.2021.638889/full#B40
https://www.frontiersin.org/articles/10.3389/fmars.2021.638889/full#B40
https://www.frontiersin.org/articles/10.3389/fmars.2021.638889/full#B26
https://www.frontiersin.org/articles/10.3389/fmars.2021.638889/full#B42
https://www.frontiersin.org/articles/10.3389/fmars.2021.638889/full#B53
https://www.frontiersin.org/articles/10.3389/fmars.2021.638889/full#B53
https://www.frontiersin.org/articles/10.3389/fmars.2021.638889/full#B51
https://www.frontiersin.org/articles/10.3389/fmars.2021.638889/full#B52
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linear over the whole range when compared to the Coulter Counter data, however it 

tended to overestimate the lowest concentrations. There was no discernible bias at 

other concentrations.  

The number of visible cells in the field of view (FOV) at a 40X magnification served 

as the HABscope's detection limit. 1-2 cells were visible in the field of view (FOV) at 

this magnification and concentration of 50,000 K. brevis cells per litre, indicating that 

50,000 cells per litre is the lower detection limit of the HABscope. The quantity of 

cells visible in the field of view increases with increasing cell concentration. 

In field tests, the HABscope exhibited a minor positive bias of 3% and a total error 

(mean absolute percentage error, MAPE) of 22% across a range of cell concentrations 

from 100,000 to 2,200,000 cells L-1. Although the data generally aligned well with the 

1:1 line across this range, there was a notably higher bias in two instances of low cell 

counts. This bias includes errors from both manual and HABscope cell counts. It's 

important to note that manual cell counts typically have an uncertainty of about 10–

20%. 

The accuray of the HABscope system in measuring K. brevis and assessing respiratory 

risks was assessed using various criteria. The mean absolute percentage error (MAPE) 

was used as a key metric for assessing accuracy, and it was found to be 52%, primarily 

due to a negative bias of 22%. This metric was chosen because error tends to be 

proportional to the magnitude of the data being analysed. With an overall accuracy of 

91%, the HABscope system demonstrated significant accuracy in classifying K. brevis 

concentrations into low, medium, and high respiratory risk groups. It's interesting to 

note that the algorithm accurately distinguished between high and low cell 

abundances. Based on the cell counts, 46 samples were identified as low-risk by the 

HABscope, which consistently placed them in that category. Nevertheless, there were 

variations among the group at moderate risk. Twelve samples were mistakenly 

identified as low-risk by the HABscope, and two were at 100,000 cells L-1, the lower 

limit of this category. The remaining samples were manually rated as medium-risk  

The system's performance was further elucidated in multiple danger categories using 

the HABscope categorization grid. For high-risk, the system's user accuracy was 

100%; for medium-risk, it was 73%; and for low-risk, it was 98%. The overall 

producer accuracy was 94% in terms of the frequency of accurate classifications. 
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These findings demonstrate that while the HABscope system reliably detects K. brevis 

levels for respiratory risk assessment, its accuracy varies, especially in the medium-

risk category (Hardison et al., 2019). 

As discussed in the introduction the HABscope is designed to identify K. brevis via 

its corkscrew swimming pattern, which generally helps distinguish the species from 

other species typically found during K. brevis blooms (Hardison et al., 2019) and 

Chang and Ryan (2004) discuss the falling leaf swimming pattern which was similar 

to K. mikimotoi. Judging by the results of this study, the two swimming patterns are 

similar enough for the K. mikimotoi to be identified. Barua et al. (2023) discuss a rapid 

detection method for K. brevis and the authors state how different Karenia species are 

distinguished from one another by high resolution microscopy and molecular 

approaches which examine rRNA probes and minute physical characteristics of the 

organisms (such as length of epitheca and nucleus shape and location). Future in situ 

installations will increase the training database, which would be beneficial, but given 

that all Karenia species have almost similar shapes and features, it might be difficult 

to identify each one uniquely from their in situ holographic images. In this case, all 

Karenia species can be detected collectively using in situ holography rather than 

individually. 

This pioneering study in Ireland has set the stage for future research, where a 

specialised sampling programme will be implemented to enhance the effectiveness of 

the HABscope. This tool will be particularly useful in improving the accuracy on 

research surveys and in identifying the presence of K. mikimotoi. Looking ahead, the 

HABscope could be integrated into phytoplankton research surveys, having already 

demonstrated its capability to detect K. mikimotoi at sea. It offers a practical solution 

for confirming the presence of Karenia spp. in blooms identified through satellite 

methods. 

The HABscope, an affordable microscope, is especially proficient at automatically 

identifying Karenia spp. This makes it an essential asset for decision-makers who need 

quick results, enabling them to verify the presence of Karenia spp. in samples and to 

estimate cell counts. 

Current challenges in distinguishing harmful algal blooms using multispectral 

satellites are expected to be mitigated by NASA’s upcoming PACE mission. The 
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hyperspectral sensors on this mission will greatly enhance the ability to differentiate 

between harmful and non-harmful blooms. 

In summary, the HABscope is a portable, user-friendly instrument, making it an 

invaluable asset for monitoring harmful algal blooms in coastal areas, on research 

surveys, and in aquaculture settings. When used in conjunction with the RBD satellite 

algorithm, it becomes a powerful tool for verifying the presence of Karenia spp. in 

coastal waters. Future endeavors will focus on validating cell count estimates in Irish 

waters and conducting pilot studies with aquaculture farms and citizen scientists. The 

HABscope represents a significant advancement in the detection of Karenia spp. 

blooms. Its successful application in the US paves the way for future developments, 

including training the AI to identify other harmful species, thereby enhancing the 

monitoring programs in Irish waters. 
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6. Summary Chapter  
 

6.1 Summary of thesis 
 

In summary, this thesis has effectively achieved its primary objectives by establishing 

an operational hyperspectral radiometer system aboard the RV Celtic Explorer, 

validating the Red Band Difference (RBD) algorithm for monitoring Harmful Algal 

Blooms (HABs) in Irish coastal waters, and conducting a preliminary feasibility study 

of the HABscope. These achievements have significantly enhanced our knowledge of 

ocean colour remote sensing in Irish waters and have introduced valuable assets to the 

realm of marine research and monitoring. 

Throughout the thesis, the pivotal role of in situ data for calibrating, validating, and 

developing algorithms for ocean colour remote sensing has been consistently 

highlighted and reinforced. 

Chapter 2 provided a comprehensive study of Irish waters, highlighting the challenges 

posed by persistent cloud cover and stressing the invaluable role of optical data 

collection in areas where frequent sampling is difficult. The chapter's focus on the 

vertical attenuation coefficient Kd at 490 nm and the 20-year climatology of Kd (490) 

and chlorophyll-a shed light on seasonal fluctuations and weather impacts, reinforcing 

the critical nature of in situ data for satellite validation and algorithm development. 

Chapter 3 introduced the DM-QMF pack and presented a case study on in situ remote 

sensing data collection and processing. The statistical findings comparing satellite and 

in situ data across different wavelengths highlighted the importance of continued data 

processing and algorithm refinement. 

Chapters 4 and 5 showcased the successful validation of the Red Band Difference 

(RBD) algorithm for monitoring Harmful Algal Blooms (HABs) in Irish coastal 

waters and the preliminary feasibility study of the HABscope, an AI technology for 

detecting Karenia spp. based on their swimming patterns. These developments have 

introduced valuable tools to the Irish monitoring program and the global ocean colour 

community for effective HAB monitoring and mitigation efforts. 

The integration of the hyperspectral radiometry system, the RBD algorithm, and the 

HABscope into the Irish monitoring programme marks a substantial achievement in 
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marine phytoplankton and optically active constituent monitoring. These tools will not 

only benefit the Marine Institute but also researchers and the global ocean colour 

community, contributing to more effective and comprehensive HAB monitoring and 

mitigation strategies. This thesis serves as a valuable contribution to the field of 

oceanography and remote sensing. 

 

6.1.1 Chapter 2 

 

Chapter 2 of this thesis offers a comphrehensive study of both in situ and satellite 

derived data to elucidate the characteristics of Irish waters, with a particular emphasis 

on the vertical attenuation coefficient Kd at 490 nm. Through various research surveys, 

in situ measurements of Kd (490) were measured, resulting in a range from 0.02-0.52 

m-1 across diverse water types, including Case 1 and Case 2 waters. It's noteworthy 

that the Irish Sea's mixed waters exhibited the highest attenuation values of 0.52m-1 

and the lowest values of 0.02m-1 was from station 15 at 52.999 latitude and -14.9907 

longitude from CE19009 in the North Atlantic. The 20 year climatology of Kd (490) 

and chlorophyll-a, spanning from January through November for the years 1999–

2019, are depicted in Figures 13 and 14. Limited data for January and November were 

obtained, and December yielded no data due to cloud coverage. Figure 13 illustrates 

the seasonal fluctuations of Kd (490) over these two decades in Irish waters, indicating 

more pronounced attenuation in coastal areas compared to oceanic waters, a trend that 

becomes especially pronounced during winter due to increased wind and precipitation. 

Conversely, as spring emerges, there's a noticeable increase in attenuation in oceanic 

waters. This shift during spring is attributed to the biological and physical activities in 

the water, correlating with the rise in chlorophyll during spring and summer, as 

demonstrated in Figure 14. 

While acknowledging the limitations of satellite technology in monitoring Irish 

waters, particularly during periods of significant cloud cover, this chapter also 

underscores the indispensable role of in situ data, especially in areas that are less 

frequently sampled. The in situ data highlighted the presence of CDOM absorption, 

particularly in the CV18012 stations, and chlorophyll-a absorption in the CE19009 

survey areas. In situ data is crucial for the validation of satellite measurements and the 

development of algorithms. Equally, the incorporation of a 20 year Kd (490) 



117 
 

climatology and chlorophyll-a trends off the Irish coast underscores the significant 

potential of satellite technology in clear sky conditions. The integration of this 

algorithm into the Irish monitoring programme offers numerous advantages, 

especially during the summer months in Ireland. 

The insights gained in this chapter lay the groundwork for the research in Chapter 3, 

which focuses on the development of a remote sensing reflectance monitoring system 

for continuous measurements. This system will aid in algorithm development and 

satellite data validation, further highlighting the importance of combining satellite and 

in situ data in oceanographic research. 

 

6.1.2 Chapter 3 

 

Chapter 3 of this thesis introduces a DM-QMF pack explains the benefits to using a 

system like this and features a case study that outlines the processes of collecting and 

processing in situ remote sensing data. This preliminary investigation served as a pilot 

project to test the sensor performance when the ship was stationary and demonstrate 

its potential uses, a first of its kind for the Marine Institute. The data evaluated 

originated from two research surveys, CE19009 and CE19010. 

The chapter outlines future research objectives, which include expanding the scope of 

data processing scripts to include periods when the ship is moving. This will be 

achieved using scripts designed to filter out effects from varying weather conditions. 

The analysis yielded positive correlations across both datasets. A summary of these 

statistical findings is provided in Table 1. Key results include: 

For the 443nm band, average values were closely aligned, suggesting a strong 

agreement between satellite and in situ data. The in situ data exhibited slightly higher 

variability. A low RMSE (Ψ 0.0010) indicates a close match between satellite and in 

situ measurements. A moderate Pearson's correlation coefficient (r= 0.59741) points 

to a linear relationship between the datasets. The regression slope (0.70139) suggests 

satellite readings are typically lower than in situ measurements. The minimal bias and 

intercept values imply negligible systematic bias. An RPD of 17.3620 indicates 

reliable satellite data at this wavelength. 



118 
 

In the 490nm band, average values showed a larger gap compared to the 443nm band, 

with a higher standard deviation for in situ data. The RMSE (Ψ 0.0012) was slightly 

increased, indicating a greater divergence between datasets. The Pearson's correlation 

(r= 0.56452) was lower, indicating a weaker but still positive linear relationship. The 

regression slope was closer to 1, showing higher proportional agreement. The satellite 

data had a negative bias, suggesting it typically reported lower values than the in situ 

data. An RPD of 23.8400 demonstrated improved predictive performance compared 

to the 443nm band. 

For the 510nm band, the discrepancy in average values was larger than in the 490nm 

band. The standard deviation remained higher for in situ data. The RMSE (Ψ 0.0013) 

increased slightly, in line with the larger average discrepancies. The Pearson's 

correlation (r= 0.60917) was moderate and similar to the 443nm band. The regression 

slope was greater than 1, indicating that satellite data overestimated the increase in the 

in situ data. A negative bias suggested systematic underestimation by the satellite. 

With an RPD of 27.8900, the satellite data showed strong predictive capability at this 

wavelength. 

The 560nm band displayed the most significant difference in average values among 

all wavelengths. The standard deviation was consistent with other bands. A low RMSE 

(Ψ 0.0011) was observed for this wavelength. The Pearson's correlation (r= 0.85398) 

was the highest, indicating a strong linear relationship between the datasets. The 

regression slope was significantly greater than 1, suggesting an amplified response in 

satellite data as in situ data increased. Despite the small bias, satellite data consistently 

underestimated in situ data. The highest RPD value of 33.4750 at this wavelength 

indicated an excellent predictive ability. 

The chapter concludes by summarising the metrics used for validating satellite derived 

data against in situ measurements across four different wavelengths. The results 

demonstrate a trend of slight underestimation by the satellite at 443 nm, with 

improving alignment at 490 and 510 nm, and a peak overestimation at 560 nm. The 

Pearson correlation coefficients, all statistically significant with p-values below 0.05, 

range from moderate to strong across all bands, supporting the validity of the satellite 

data. 
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The development of this system will ensure long term continued measurements of 

hyperspectral radiometry to build up a long term database from the Celtic Explorer 

survey coverage area. This chapter concludes the benefits of the DM-QMF pack for 

managing the long term data set and continued performance evaluations. Region 

specific algorithms can be developed with optical data alongside biological, chemical 

and physical water properties. This data will assist in the future of HAB monitoring in 

the Marine Institute. 

Chapter 3 details the examination of four remote sensing reflectance bands (443nm, 

490nm, 510nm, and 560nm) from CMEMS, seamlessly transitioning into Chapter 4. 

Here, the focus shifts to the Red Band Difference algorithm, which incorporates two 

other reflectance bands in the red part of the visible spectrum, at 681nm and 665nm, 

building upon the spectral insights gained previously. 

 

6.1.3 Chapter 4 

 

In Chapter 4, we explore a satellite derived algorithm for chlorophyll fluorescence. 

The analysis, which encompasses remotely sensed data from May to August 2019 

marks the first application of the RBD algorithm in Irish waters. Among the significant 

outcomes of this analysis is the detection of a phytoplankton bloom by the RBD 

algorithm, a finding corroborated by inshore phytoplankton samples across Ireland 

that reflected a similar concentration. 

Additionally, the chapter discusses the validation of the bloom's travel path and 

direction, supported by particle tracking simulation outcomes and satellite imagery. A 

notable discovery during this period was the presence of Karenia spp. in large 

concentrations (2.5 million cells per litre) specifically in Cork Harbour and other 

southern stations, with their absence noted in other parts of the Irish coast. This was 

followed by a considerable surge in Karenia spp. populations in locations like Cork 

Harbour, Oysterhaven, and Kinsale, soon after the bloom's development in offshore 

waters. 

The appearance pattern of Karenia spp. at southern coastal stations was consistent 

with the expected east to west migration pattern of the Irish coastal current. The 
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analysis also determined that K. mikimotoi was the predominant phytoplankton in 

offshore samples. 

Furthermore, the chapter highlights the potential of the Red Band Difference method 

to be integrated into Ireland’s current HAB alert system as an early warning tool for 

HABs, with a particular focus on Karenia spp. blooms. The successful application of 

this algorithm for locating and monitoring the movement of Karenia spp. blooms 

effectively lays the foundation for the introduction of the final chapter, the HABscope. 

 

6.1.4 Chapter 5 

 

In the concluding chapter of the thesis, the study presents the innovative combination 

of the Red Band Difference (RBD) algorithm with the HABscope system. This 

integration utilises AI technology to specifically identify the swimming patterns of 

Karenia spp., marking a significant advancement in phytoplankton monitoring 

techniques. This innovative approach was tested in Irish waters during two research 

surveys in summer 2021 for the first time. The RBD satellite imagery, combined with 

HABscope recordings, successfully identified high concentrations of phytoplankton 

and distinguished K. mikimotoi from other species. For instance, during survey 

CV21015 in July 2021, satellite imagery showed low phytoplankton activity at the 

ocean surface, which was confirmed by in situ microscope analysis. Interestingly, 

Karenia spp. was observed at a depth of 38m, with HABscope estimates closely 

matching microscope counts, despite being taken from a moving vessel. The survey 

CV21021 showcased the effectiveness of HABscope in accurately identifying Karenia 

spp. And this initial study successfully demonstrated HABscope's capability to 

distinguish Karenia spp. from other phytoplankton in samples collected from a 

moving vessel at sea affirming its role as a quick and reliable tool for the Irish 

monitoring programme. While the study on these two surveys were preliminary, future 

plans include a comprehensive validation of HABscope's precision, particularly its 

application in shellfish aquaculture.  

In summary each chapter of this thesis builds on the previous, culminating in a 

comprehensive approach to monitoring HABs in Irish waters using a combination of 

satellite and in situ data, and advanced algorithms. 
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6.2 Summary of products available from this PhD 
 

Based on the completion of this PhD and associated research into the most cited and 

recent research into ocean colour topics discussed in this thesis, the following tools 

will be made available to the Marine Institute, NUIG and the ocean colour community 

for use in monitoring for marine phytoplankton and associated optically active 

constituents:  

 A documented TriOS RAMSES hyperspectral radiometry system on board the 

RV Celtic Explorer. 

 The Red Band Difference Algorithm for use in the current monitoring 

programme. 

 The HABscope, that will ultimately compliment satellite imagery as a warning 

tool for Karenia spp. in Irish coastal waters. 

 

6.3 Future Studies 
 

I make the following recommendations for future research based on the work 

completed in this thesis: 

• Long term- continued measurements of hyperspectral radiometry to build up a 

long term database from the Celtic Explorer survey coverage area. 

• Further advancement and expanding the scope of data processing scripts to 

include periods when the ship is moving. This will be achieved using scripts 

designed to filter out effects from varying weather conditions. 

• Intercomparison between existing chlorophyll algorithm and the red band 

difference algorithm to assess which products can best support in situ 

monitoring programmes / water quality / environmental assessments (Case 1 

and Case 2). 

• Testing other chlorophyll algorithms for Irish waters. 

• Investigate Phytoplankton “functional type” discrimination - spectral 

signatures, changes of phytoplankton with time, growth season, environmental 

assessments, fisheries, etc. 
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• To include measurements from Case 1 and 2 waters HABs and other 

phytoplankton are strongly associated with complex waters (Case 2), therefore, 

determining optical properties is difficult from satellite (CDOM, sediment, 

land pixels) (IOCCG 2021). 

• A feasibility study using the HABscope at aquaculture farms around Ireland. 

• A spectral library with cultures in the Marine Institute labs was started during 

this PhD. Expand this work to include more phytoplankton cultures and 

unialgal blooms in the field. 

• Region specific algorithms can be developed with optical data alongside 

biological, chemical and physical water properties as the dynamics of 

individual ecosystems will change from one area to another. 

• With the launch of NASA’s PACE satellite in 2024 the scope of this work will 

increase. 
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Appendices 
 

Appendix A1. Matlab Scripts 
 

Find Pixel Matlab Script Prof. Peter Croot 2019 

 

function [data,pixmean,pixstd] = findpixel(filename,latpix, longpix) 

%findpixel 

%   function to find values of 3 x 3 pixels around a point from Copernicus  

%   Satellite data 

%   this version uses Kd490 data long x lat x time 

% Peter Croot NUIG Feb 2019 

 

lon=ncread(filename,'longitude'); 

lat=ncread(filename,'latitude'); 

Kd490=ncread(filename,'KD490'); 

time=ncread(filename,'time'); 

T=datetime(time,'ConvertFrom','posixtime') 

 

[latd,ilat]=min(abs(lat-latpix)); 

[lond,ilon]=min(abs(lon-longpix)); 

 

[m,n,o] = size(Kd490); 

 

for i=1:o 

    data(1:3,i)=Kd490(ilon-1:ilon+1,ilat-1,i); 

    data(4:6,i)=Kd490(ilon-1:ilon+1,ilat,i); 

    data(7:9,i)=Kd490(ilon-1:ilon+1,ilat+1,i); 

    pixmean(i)=mean(data(:,i)); 

    pixstd(i)=std(data(:,i)); 

end 

hold 

plot(T,data(5,:),'r*') 

 

% errorbar function can not handle dates need work around 

 plot(T,pixmean,'k+') 

 plot(T,pixmean+pixstd,'k*') 

 plot(T,pixmean-pixstd,'k*')  
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TRIOS Log Kz Matlab Script Prof. Peter Croot 2020 

 

function [Kz,sm,r] = TRIOSlogKz(l,nSpec,pn,j,ln) 

%Function to analyze TRIOS RAMSES underwater irradiance data 

%  looks at the decrease with depth  

% Quick version  

% Oct 2020 

logI=log(abs(nSpec(:,:))); 

nx=length(ln); 

for i=1:nx 

[Kz(i),b(i),r(i),sm(i),sb(i),xbar(i),ybar(i)] = lsqfitma(-10*pn(j),logI(j,ln(i))); 

end 

%plot(l(ln),Kz) 

errorbar(l(ln),Kz,sm)  
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Five Hyperspectral Radiometer Data processing Matlab scripts 

STEP 1 

%Script for summarizing radiometer data into daily files 

% 

% The script is based on processing the ".dat" files coming from the 

% radiometers (one file per measurement). The radiometer data is collected  

% in daily files and is written to tab-delimited text files (.dat). 

% 

% All input files have to be storedin the folder specified under  

% "FolderInName" (Parameters-section). Then the script can be executed. 

% 

% ************** 

% 

% Jochen Wollschläger, October 2018 

% 

% Changelog: 

% 

 

%-------------------------------------------------------------------------- 

 

clc 

clear 

BasicPath=pwd; 

addpath(genpath([BasicPath,'\RequiredFiles'])) 

 

%% Parameters 

 

%Full path of the folder that contains the input files 

FolderInName='D:\Uni\TSS_Spiekeroog_Radiometer\SingleFiles\2013'; 

 

%Full path of the folder that will contain the data output files (will be created) 

FolderOutName='D:\Uni\TSS_Spiekeroog_Radiometer\RawFiles\2013'; 

 

%Names of radiometers 

Name_Es=[{'SAM_8503'} ]; %Irradiance radiometers (Es) 

Name_Lsky=[{'SAM_8504'} {'SAM_86C1'}]; %Radiance radiometers looking upward 

(Lsky) 

Name_Lsfc=[{'SAM_860D'} {'SAM_86C2'}]; %Radiance radiometers looking 

downward (Lsfc) 

 

%Determining which data type is considered for creation of the datily files 

DesiredDataType='RAW'; 

% DesiredDataType='Calibrated'; 
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%Metadata 

%Write all metadata that you would like to have in the file in the 

%"Metadata" variable below. For each line, use a new string enclosed in a 

%cell (e.g. {'Teststring 1'}; {'Teststring 1'}) 

Metadata=[{'Time Series Station Spiekeroog'};... 

          {'Measurement method: Radiometer (RAMSES, TriOS GmbH, Germany'};... 

          {'Azimuth=30°'};... 

          {'Nadir=30°'};... 

          {'SetupHeight=13.1 m'};... 

          {'Latitude=53 45 00.94095 °N'};... 

          {'Longitude=7 40 16.00638 °E'};... 

          {'Research project: Time Series Station Spiekeroog'};... 

          {'Contact: University of Oldenburg, ICBM, Working group Marine Sensor 

Systems (Oliver Zielinski)'};... 

          {'E-mail: oliver.zielinski@uol.de; jochen.wollschlaeger@uol.de'};... 

          ]; 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

 

%% Creating list of all *.dat-files in folder 

 

cd(FolderInName) 

 

Content=dir; 

Folders=[Content.isdir]; 

FileList={Content(~Folders).name}'; 

Time_Index=false(size(FileList)); 

for i=1:length(FileList) 

    if ~isempty(strfind(FileList{i},'.dat')) 

        Time_Index(i)=true; 

    end 

end 

FileList=FileList(Time_Index); 

clear i Time_Index Content Folders Index 

 

%% Create a collection variable 

%The structure is based on the first file in the folder 

 

[~,Data]=hdrload(FileList{1}); 

if isempty(Data) 

    Data=zeros(256,4); 

end 
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Unit1=zeros(length(FileList),size(Data,1)+10); 

Unit2=zeros(length(FileList),size(Data,1)+10); 

DataID=cell(length(FileList),1); 

Device=cell(length(FileList),1); 

DataType=cell(length(FileList),1); 

IntegrationTime=zeros(length(FileList),1); 

clear Data 

 

%% Open the files one after another and store the data 

 

FilesToImport=length(FileList); 

for i=1:length(FileList) 

    [DataHeader,Data]=hdrload(FileList{i});     

    if isempty(Data) 

    else 

        Index=strcmpi(strtok(cellstr(DataHeader)),'IDData');     

        DataIDTemp=strsplit(DataHeader(Index,:)); 

        DataID(i,1)=DataIDTemp(3); 

 

        Index=strcmpi(strtok(cellstr(DataHeader)),'IDDevice'); 

        DeviceTemp=strsplit(DataHeader(Index,:)); 

        Device(i,1)=DeviceTemp(3); 

 

        Index=strcmpi(strtok(cellstr(DataHeader)),'IDDataTypeSub1'); 

        DataTypeTemp=strsplit(DataHeader(Index,:)); 

        DataType(i,1)=DataTypeTemp(3); 

 

        Index=strcmpi(strtok(cellstr(DataHeader)),'IntegrationTime'); 

        IntegrationTimeTemp=strsplit(DataHeader(Index,:)); 

        IntegrationTime(i,1)=str2double(IntegrationTimeTemp(3)); 

         

        Unit1(i,1:size(Data,1))=transpose(Data(:,1)); 

        Unit2(i,1:size(Data,1))=transpose(Data(:,2)); 

    end 

     

    FilesToImport=FilesToImport-1; 

    display(FilesToImport) 

end 

clear DataHeader Data i FileList DataIDTemp DeviceTemp DataTypeTemp 

TimestampTemp... 

      IntegrationTimeTemp FilesToImport Index 

   

cd(BasicPath) 
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%% Delete data 

 

%Unnecessary columns   

Index=sum([Unit1;Unit2],1)==0; 

Unit1(:,Index)=[]; 

Unit2(:,Index)=[]; 

clear Index 

 

%Unnecessary rows 

Index=sum([Unit1,Unit2],2)==0; 

DataID(Index,:)=[]; 

Device(Index,:)=[]; 

DataType(Index,:)=[]; 

IntegrationTime(Index,:)=[]; 

Unit1(Index,:)=[]; 

Unit2(Index,:)=[]; 

clear Index 

 

%Data without the desired string in "DataType" 

Index=strcmpi(DataType,DesiredDataType); 

Unit1=Unit1(Index,:); 

Unit2=Unit2(Index,:); 

DataID=DataID(Index,:); 

Device=Device(Index,:); 

IntegrationTime=IntegrationTime(Index,:); 

clear Index DataType 

 

%Data-doublettes 

[~,Index,~]=unique(Unit2,'rows','stable'); 

Unit1=Unit1(Index,:); 

Unit2=Unit2(Index,:); 

DataID=DataID(Index,:); 

Device=Device(Index,:); 

IntegrationTime=IntegrationTime(Index,:); 

clear Index 

 

%Data with incorrect integration time (< 2 ms) 

Index=IntegrationTime<2; 

Unit1(Index,:)=[]; 

Unit2(Index,:)=[]; 

DataID(Index,:)=[]; 

Device(Index,:)=[]; 

IntegrationTime(Index,:)=[]; 

clear Index 
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%% Taking the parameters occurring in the majority of files for all data 

 

Parameters=unique(Unit1,'rows'); 

Number=zeros(size(Parameters,1),1); 

for i=1:length(Number) 

    Number(i)=sum(ismember(Unit1,Parameters(i,:),'rows')); 

end 

[~,Index]=max(Number); 

Parameters=Parameters(Index,:); 

clear i Number Index Unit1 

 

%% Convert radiometer list and device names in upper case characters 

 

Name_Es=upper(Name_Es); 

Name_Lsky=upper(Name_Lsky); 

Name_Lsfc=upper(Name_Lsfc); 

Device=upper(Device); 

 

%% Collecting the data for the different radiometers 

 

%Irradiance radiometer (Es) 

Index_Device=ismember(Device,Name_Es); 

Es_Data=Unit2(Index_Device,:); 

Es_Device=Device(Index_Device,:); 

Es_IntegrationTime=IntegrationTime(Index_Device,:); 

Es_DataID=DataID(Index_Device,:); 

 

%Radiance radiometer upward (Lsky) 

Index_Device=ismember(Device,Name_Lsky); 

Lsky_Data=Unit2(Index_Device,:); 

Lsky_Device=Device(Index_Device,:); 

Lsky_IntegrationTime=IntegrationTime(Index_Device,:); 

Lsky_DataID=DataID(Index_Device,:); 

 

%Radiance radiometer downward (Lsfc) 

Index_Device=ismember(Device,Name_Lsfc); 

Lsfc_Data=Unit2(Index_Device,:); 

Lsfc_Device=Device(Index_Device,:); 

Lsfc_IntegrationTime=IntegrationTime(Index_Device,:); 

Lsfc_DataID=DataID(Index_Device,:); 

 

clear Index_Device Index_Deletion DataID_TimestampFormat Unit2 DataID... 

      Device IntegrationTime   
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%% Create the timestamps from the data ID 

 

%Es 

Es_Timestamp=NaN(size(Es_DataID,1),6); 

for i=1:size(Es_Timestamp,1) 

    ID_String=strsplit(Es_DataID{i},{'_','-'});    

    

Index=cellfun(@strfind,ID_String,repmat({'20'},size(ID_String)),'UniformOutput',0); 

    Index=~cellfun(@isempty,Index); 

    [~,Index]=find(Index,1,'first');    

    ID_String=ID_String(:,Index:end); 

    ID_String=[ID_String{:}]; 

    ID_String=datevec(ID_String(1:14),'yyyymmddHHMMSS'); 

    Es_Timestamp(i,:)=ID_String; 

end 

clear i Index ID_String 

 

%Lsky 

Lsky_Timestamp=NaN(size(Lsky_DataID,1),6); 

for i=1:size(Lsky_Timestamp,1) 

    ID_String=strsplit(Lsky_DataID{i},{'_','-'}); 

    

Index=cellfun(@strfind,ID_String,repmat({'20'},size(ID_String)),'UniformOutput',0); 

    Index=~cellfun(@isempty,Index); 

    [~,Index]=find(Index,1,'first');      

    ID_String=ID_String(:,Index:end); 

    ID_String=[ID_String{:}]; 

    ID_String=datevec(ID_String(1:14),'yyyymmddHHMMSS'); 

    Lsky_Timestamp(i,:)=ID_String; 

end 

clear i ID_String Index 

 

%Lsfc 

Lsfc_Timestamp=NaN(size(Lsfc_DataID,1),6); 

for i=1:size(Lsfc_Timestamp,1) 

    ID_String=strsplit(Lsfc_DataID{i},{'_','-'}); 

    

Index=cellfun(@strfind,ID_String,repmat({'20'},size(ID_String)),'UniformOutput',0); 

    Index=~cellfun(@isempty,Index); 

    [~,Index]=find(Index,1,'first');     

    ID_String=ID_String(:,Index:end); 

    ID_String=[ID_String{:}]; 

    ID_String=datevec(ID_String(1:14),'yyyymmddHHMMSS'); 
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    Lsfc_Timestamp(i,:)=ID_String; 

end 

clear i ID_String Index 

 

%% Sort the data by timestamp 

 

[~,Index_Es]=sort(datenum(Es_Timestamp)); 

[~,Index_Lsky]=sort(datenum(Lsky_Timestamp)); 

[~,Index_Lsfc]=sort(datenum(Lsfc_Timestamp)); 

 

Es_Data=Es_Data(Index_Es,:); 

Es_DataID=Es_DataID(Index_Es,:); 

Es_Device=Es_Device(Index_Es,:); 

Es_IntegrationTime=Es_IntegrationTime(Index_Es,:); 

Es_Timestamp=Es_Timestamp(Index_Es,:); 

 

Lsky_Data=Lsky_Data(Index_Lsky,:); 

Lsky_DataID=Lsky_DataID(Index_Lsky,:); 

Lsky_Device=Lsky_Device(Index_Lsky,:); 

Lsky_IntegrationTime=Lsky_IntegrationTime(Index_Lsky,:); 

Lsky_Timestamp=Lsky_Timestamp(Index_Lsky,:); 

 

Lsfc_Data=Lsfc_Data(Index_Lsfc,:); 

Lsfc_DataID=Lsfc_DataID(Index_Lsfc,:); 

Lsfc_Device=Lsfc_Device(Index_Lsfc,:); 

Lsfc_IntegrationTime=Lsfc_IntegrationTime(Index_Lsfc,:); 

Lsfc_Timestamp=Lsfc_Timestamp(Index_Lsfc,:); 

 

clear Index_Es Index_Lsky Index_Lsfc 

 

%% Going to or creating the folder where the data will be saved 

if exist(FolderOutName,'dir')==0 

    mkdir(FolderOutName) 

end 

cd(FolderOutName) 

 

%% Writing irradiance radiometer (Es) data 

 

%Writing one file per day 

DayList=Es_Timestamp; 

DayList(:,4:6)=0; 

DayList=unique(DayList,'rows'); 

 

Es_Files_To_Write=size(DayList,1); 
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for i=1:size(DayList,1) 

     

    %Indexing the data of the respective day 

    Index_Day=ismember(Es_Timestamp(:,1:3),DayList(i,1:3),'rows'); 

     

    if strcmp(DesiredDataType,'RAW') 

        %Creating the file name 

        Es_FileName=[datestr(DayList(i,:),'yyyymmdd'),'_Es_RAW.dat']; 

         

        %Completing the metadata 

        Radiometer=Es_Device(Index_Day); 

        Radiometer=Radiometer{1}; 

        Es_Metadata=[{['Radiometer: ',Radiometer]};{'Parameter: Irradiance 

(Es)'};{'Unit: Counts'};{''};Metadata;{''}]; 

        for j=1:size(Es_Metadata,1) 

            Es_Metadata{j}=['#',Es_Metadata{j}]; 

        end 

        clear j Radiometer 

         

        %Creating the file header 

        Es_DataHeader=[{'Year'} {'Month'} {'Day'} {'Hour'} {'Minute'} {'Second'} 

{'IntTime [ms]'} num2cell(Parameters)]; 

         

        %Creating the file content of the respective day 

        

Es_Content=[Es_Timestamp(Index_Day,:),Es_IntegrationTime(Index_Day,:),Es_Data

(Index_Day,:)]; 

        clear Index_Day 

         

        %Writing the file 

        fid=fopen(Es_FileName,'w'); 

        for j=1:size(Es_Metadata,1) 

            fprintf(fid,'%s\n',Es_Metadata{j}); 

        end 

        clear j 

        

fprintf(fid,['%s\t%s\t%s\t%s\t%s\t%s\t%s',repmat('\t%.0f',1,size(Es_Data,2)),'\n'],Es

_DataHeader{1,:}); 

        for j=1:size(Es_Content,1) 

            

fprintf(fid,['%.0f\t%.0f\t%.0f\t%.0f\t%.0f\t%.0f\t%.0f',repmat('\t%f',1,size(Es_Data,

2)),'\n'],Es_Content(j,:)); 

        end 

        clear j 
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        fclose(fid); 

        Es_Files_To_Write=Es_Files_To_Write-1; 

        display(Es_Files_To_Write) 

         

    elseif strcmp(DesiredDataType,'Calibrated') 

         

        %Creating the file name 

        Es_FileName=[datestr(DayList(i,:),'yyyymmdd'),'_Es_Calibrated.dat']; 

         

        %Completing the metadata 

        Radiometer=Es_Device(Index_Day); 

        Radiometer=Radiometer{1}; 

        Es_Metadata=[{['Radiometer: ',Radiometer]};{'Parameter: Irradiance 

(Es)'};{'Unit: mW m-2 sr-1'};{''};Metadata;{''}]; 

        for j=1:size(Es_Metadata,1) 

            Es_Metadata{j}=['#',Es_Metadata{j}]; 

        end 

        clear j Radiometer 

         

        %Creating the file header 

        Es_DataHeader=[{'Year'} {'Month'} {'Day'} {'Hour'} {'Minute'} {'Second'} 

num2cell(Parameters)]; 

         

        %Creating the file content of the respective day 

        Es_Content=[Es_Timestamp(Index_Day,:),Es_Data(Index_Day,:)]; 

        clear Index_Day 

         

        %Writing the file 

        fid=fopen(Es_FileName,'w'); 

        for j=1:size(Es_Metadata,1) 

            fprintf(fid,'%s\n',Es_Metadata{j}); 

        end 

        clear j 

        

fprintf(fid,['%s\t%s\t%s\t%s\t%s\t%s',repmat('\t%.0f',1,size(Es_Data,2)),'\n'],Es_Dat

aHeader{1,:}); 

        for j=1:size(Es_Content,1) 

            

fprintf(fid,['%.0f\t%.0f\t%.0f\t%.0f\t%.0f\t%.0f',repmat('\t%f',1,size(Es_Data,2)),'\n'

],Es_Content(j,:)); 

        end 

        clear j 

        fclose(fid); 

        Es_Files_To_Write=Es_Files_To_Write-1; 
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        display(Es_Files_To_Write) 

    end    

end 

clear i Es_Files_To_Write ans fid 

 

%% Writing upward looking radiance radiometer (Lsky) data 

 

%Writing one file per day 

DayList=Lsky_Timestamp; 

DayList(:,4:6)=0; 

DayList=unique(DayList,'rows'); 

 

Lsky_Files_To_Write=size(DayList,1); 

for i=1:size(DayList,1) 

     

    %Indexing the data of the respective day 

    Index_Day=ismember(Lsky_Timestamp(:,1:3),DayList(i,1:3),'rows'); 

     

    if strcmp(DesiredDataType,'RAW') 

        %Creating the file name 

        Lsky_FileName=[datestr(DayList(i,:),'yyyymmdd'),'_Lsky_RAW.dat']; 

         

        %Completing the metadata 

        Radiometer=Lsky_Device(Index_Day); 

        Radiometer=Radiometer{1}; 

        Lsky_Metadata=[{['Radiometer: ',Radiometer]};{'Parameter: Radiance 

(Lsky)'};{'Unit: Counts'};{''};Metadata;{''}]; 

        for j=1:size(Lsky_Metadata,1) 

            Lsky_Metadata{j}=['#',Lsky_Metadata{j}]; 

        end 

        clear j Radiometer 

         

        %Creating the file header 

        Lsky_DataHeader=[{'Year'} {'Month'} {'Day'} {'Hour'} {'Minute'} {'Second'} 

{'IntTime [ms]'} num2cell(Parameters)]; 

         

        %Creating the file content of the respective day 

        

Lsky_Content=[Lsky_Timestamp(Index_Day,:),Lsky_IntegrationTime(Index_Day,:),Ls

ky_Data(Index_Day,:)]; 

        clear Index_Day 

         

        %Writing the file 

        fid=fopen(Lsky_FileName,'w'); 
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        for j=1:size(Lsky_Metadata,1) 

            fprintf(fid,'%s\n',Lsky_Metadata{j}); 

        end 

        clear j 

        

fprintf(fid,['%s\t%s\t%s\t%s\t%s\t%s\t%s',repmat('\t%.0f',1,size(Lsky_Data,2)),'\n'],

Lsky_DataHeader{1,:}); 

        for j=1:size(Lsky_Content,1) 

            

fprintf(fid,['%.0f\t%.0f\t%.0f\t%.0f\t%.0f\t%.0f\t%.0f',repmat('\t%f',1,size(Lsky_Dat

a,2)),'\n'],Lsky_Content(j,:)); 

        end 

        clear j 

        fclose(fid); 

        Lsky_Files_To_Write=Lsky_Files_To_Write-1; 

        display(Lsky_Files_To_Write) 

         

    elseif strcmp(DesiredDataType,'Calibrated') 

         

        %Creating the file name 

        Lsky_FileName=[datestr(DayList(i,:),'yyyymmdd'),'_Lsky_Calibrated.dat']; 

         

        %Completing the metadata 

        Radiometer=Lsky_Device(Index_Day); 

        Radiometer=Radiometer{1}; 

        Lsky_Metadata=[{['Radiometer: ',Radiometer]};{'Parameter: 

Radiance(Lsky)'};{'Unit: mW m-2 sr-1'};{''};Metadata;{''}]; 

        for j=1:size(Lsky_Metadata,1) 

            Lsky_Metadata{j}=['#',Lsky_Metadata{j}]; 

        end 

        clear j Radiometer 

         

        %Creating the file header 

        Lsky_DataHeader=[{'Year'} {'Month'} {'Day'} {'Hour'} {'Minute'} {'Second'} 

num2cell(Parameters)]; 

         

        %Creating the file content of the respective day 

        Lsky_Content=[Lsky_Timestamp(Index_Day,:),Lsky_Data(Index_Day,:)]; 

        clear Index_Day 

         

        %Writing the file 

        fid=fopen(Lsky_FileName,'w'); 

        for j=1:size(Lsky_Metadata,1) 

            fprintf(fid,'%s\n',Lsky_Metadata{j}); 
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        end 

        clear j 

        

fprintf(fid,['%s\t%s\t%s\t%s\t%s\t%s',repmat('\t%.0f',1,size(Lsky_Data,2)),'\n'],Lsky

_DataHeader{1,:}); 

        for j=1:size(Lsky_Content,1) 

            

fprintf(fid,['%.0f\t%.0f\t%.0f\t%.0f\t%.0f\t%.0f',repmat('\t%f',1,size(Lsky_Data,2)),'\

n'],Lsky_Content(j,:)); 

        end 

        clear j 

        fclose(fid); 

        Lsky_Files_To_Write=Lsky_Files_To_Write-1; 

        display(Lsky_Files_To_Write) 

    end    

end 

clear i Lsky_Files_To_Write ans fid 

      

%% Writing downward looking radiance radiometer (Lsfc) data 

 

%Writing one file per day 

DayList=Lsfc_Timestamp; 

DayList(:,4:6)=0; 

DayList=unique(DayList,'rows'); 

 

Lsfc_Files_To_Write=size(DayList,1); 

for i=1:size(DayList,1) 

     

    %Indexing the data of the respective day 

    Index_Day=ismember(Lsfc_Timestamp(:,1:3),DayList(i,1:3),'rows'); 

     

    if strcmp(DesiredDataType,'RAW') 

        %Creating the file name 

        Lsfc_FileName=[datestr(DayList(i,:),'yyyymmdd'),'_Lsfc_RAW.dat']; 

         

        %Completing the metadata 

        Radiometer=Lsfc_Device(Index_Day); 

        Radiometer=Radiometer{1}; 

        Lsfc_Metadata=[{['Radiometer: ',Radiometer]};{'Parameter: Radiance 

(Lsfc)'};{'Unit: Counts'};{''};Metadata;{''}]; 

        for j=1:size(Lsfc_Metadata,1) 

            Lsfc_Metadata{j}=['#',Lsfc_Metadata{j}]; 

        end 

        clear j Radiometer 
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        %Creating the file header 

        Lsfc_DataHeader=[{'Year'} {'Month'} {'Day'} {'Hour'} {'Minute'} {'Second'} 

{'IntTime [ms]'} num2cell(Parameters)]; 

         

        %Creating the file content of the respective day 

        

Lsfc_Content=[Lsfc_Timestamp(Index_Day,:),Lsfc_IntegrationTime(Index_Day,:),Lsfc

_Data(Index_Day,:)]; 

        clear Index_Day 

         

        %Writing the file 

        fid=fopen(Lsfc_FileName,'w'); 

        for j=1:size(Lsfc_Metadata,1) 

            fprintf(fid,'%s\n',Lsfc_Metadata{j}); 

        end 

        clear j 

        

fprintf(fid,['%s\t%s\t%s\t%s\t%s\t%s\t%s',repmat('\t%.0f',1,size(Lsfc_Data,2)),'\n'],

Lsfc_DataHeader{1,:}); 

        for j=1:size(Lsfc_Content,1) 

            

fprintf(fid,['%.0f\t%.0f\t%.0f\t%.0f\t%.0f\t%.0f\t%.0f',repmat('\t%f',1,size(Lsfc_Dat

a,2)),'\n'],Lsfc_Content(j,:)); 

        end 

        clear j 

        fclose(fid); 

        Lsfc_Files_To_Write=Lsfc_Files_To_Write-1; 

        display(Lsfc_Files_To_Write) 

         

    elseif strcmp(DesiredDataType,'Calibrated') 

         

        %Creating the file name 

        Lsfc_FileName=[datestr(DayList(i,:),'yyyymmdd'),'_Lsfc_Calibrated.dat']; 

         

        %Completing the metadata 

        Radiometer=Lsfc_Device(Index_Day); 

        Radiometer=Radiometer{1}; 

        Lsfc_Metadata=[{['Radiometer: ',Radiometer]};{'Parameter: 

Radiance(Lsfc)'};{'Unit: mW m-2 sr-1'};{''};Metadata;{''}]; 

        for j=1:size(Lsfc_Metadata,1) 

            Lsfc_Metadata{j}=['#',Lsfc_Metadata{j}]; 

        end 

        clear j Radiometer 
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        %Creating the file header 

        Lsfc_DataHeader=[{'Year'} {'Month'} {'Day'} {'Hour'} {'Minute'} {'Second'} 

num2cell(Parameters)]; 

         

        %Creating the file content of the respective day 

        Lsfc_Content=[Lsfc_Timestamp(Index_Day,:),Lsfc_Data(Index_Day,:)]; 

        clear Index_Day 

         

        %Writing the file 

        fid=fopen(Lsfc_FileName,'w'); 

        for j=1:size(Lsfc_Metadata,1) 

            fprintf(fid,'%s\n',Lsfc_Metadata{j}); 

        end 

        clear j 

        

fprintf(fid,['%s\t%s\t%s\t%s\t%s\t%s',repmat('\t%.0f',1,size(Lsfc_Data,2)),'\n'],Lsfc_

DataHeader{1,:}); 

        for j=1:size(Lsfc_Content,1) 

            

fprintf(fid,['%.0f\t%.0f\t%.0f\t%.0f\t%.0f\t%.0f',repmat('\t%f',1,size(Lsfc_Data,2)),'\

n'],Lsfc_Content(j,:)); 

        end 

        clear j 

        fclose(fid); 

        Lsfc_Files_To_Write=Lsfc_Files_To_Write-1; 

        display(Lsfc_Files_To_Write) 

    end    

end 

clear i Lsfc_Files_To_Write ans fid 

 

cd(BasicPath) 
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STEP 2 

%Script for calibrating radiometer data according to the RAMSES manual 

 

clc 

clear 

BasicPath=pwd; 

addpath(genpath([BasicPath,'\RequiredFiles'])) 

 

%% Parameters 

 

%Full path of the folder that contains the uncalibrated files 

FolderInName='D:\TRIOS\Celticexplorer_Radiometer\RawFiles'; 

 

%Full path of the folder that will contain the calibrated data output files (will be 

created) 

FolderOutName='D:\TRIOS\Celticexplorer_Radiometer\CalibratedFiles'; 

 

%Full path of the folder that contains instrument calibration files 

FolderInstrumentFiles='C:\Users\CatherineJordan\Documents\MATLAB\Scripts\Dat

aProcessing_Radiometer\InstrumentData'; 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

%% Import of *.ini-files for the radiometers 

 

cd(FolderInstrumentFiles) 

 

%Creating list of all *.ini-files in folder 

Content=dir; 

Folders=[Content.isdir]; 

FileList={Content(~Folders).name}'; 

Index=false(size(FileList)); 

for i=1:length(FileList) 

    if ~isempty(strfind(FileList{i},'.ini')) 

        Index(i)=true; 

    end 

end 

IniFileList=FileList(Index); 

clear i Index Content Folders FileList 

 

%Open the files and store the data 

IniFilesContent=cell(length(IniFileList),8); 
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for i=1:length(IniFileList) 

     

    fid=fopen(IniFileList{i}); 

    Data=textscan(fid,'%s%s%s%s','Delimiter',' ','MultipleDelimsAsOne',1); 

    fclose(fid); 

     

    Data=[Data{:}]; 

       

    IniFilesContent{i,1}=Data{ismember(Data(:,1),'IDDevice'),3}; 

    IniFilesContent{i,2}=Data{ismember(Data(:,1),'c0s'),3}; 

    IniFilesContent{i,3}=Data{ismember(Data(:,1),'c1s'),3}; 

    IniFilesContent{i,4}=Data{ismember(Data(:,1),'c2s'),3}; 

    IniFilesContent{i,5}=Data{ismember(Data(:,1),'c3s'),3}; 

    IniFilesContent{i,6}=Data{ismember(Data(:,1),'DarkPixelStart'),3}; 

    IniFilesContent{i,7}=Data{ismember(Data(:,1),[{'DarkPixelEnd'} 

{'DarkPixelStop'}]),3}; 

    IniFilesContent{i,8}=[Data{ismember(Data(:,1),'DateTime'),3},' 

',Data{ismember(Data(:,1),'DateTime'),4}]; 

end 

clear i Data ans fid 

clc 

 

IniFilesContent(:,2:7)=num2cell(str2double(IniFilesContent(:,2:7))); 

 

%Check for and delete data-doublettes 

[~,Index,~]=unique(str2double(IniFilesContent(:,2:end)),'rows','stable'); 

IniFilesContent=IniFilesContent(Index,:); 

clear Index 

 

cd(BasicPath) 

 

%% Import of BACK and CAL files for the radiometers 

 

cd(FolderInstrumentFiles) 

 

%Creating list of all *.dat-files in folder 

Content=dir; 

Folders=[Content.isdir]; 

FileList={Content(~Folders).name}'; 

Index=false(size(FileList)); 

for i=1:length(FileList) 

    if ~isempty(strfind(FileList{i},'.dat')) 

        Index(i)=true; 

    end 
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end 

FileList=FileList(Index); 

clear i Index Content Folders Index 

 

%Create a collection variable 

%The structure is based on the first file in the folder 

 

[~,Data]=hdrload(FileList{1}); 

if isempty(Data) 

    Data=zeros(256,4); 

end 

Instrument_Pixel=zeros(length(FileList),size(Data,1)+10); 

Instrument_Spectrum=zeros(length(FileList),size(Data,1)+10); 

Instrument_ErrorCounts=zeros(length(FileList),size(Data,1)+10); 

Instrument_DataID=cell(length(FileList),1); 

Instrument_Device=cell(length(FileList),1); 

Instrument_DataType=cell(length(FileList),1); 

Instrument_IntTime=zeros(length(FileList),1); 

clear Data 

 

%Open the files one after another and store the data 

for i=1:length(FileList) 

    [DataHeader,Data]=hdrload(FileList{i});     

    if isempty(Data) 

    else 

        Index=strcmpi(strtok(cellstr(DataHeader)),'IDData');     

        DataIDTemp=strsplit(DataHeader(Index,:)); 

        Instrument_DataID(i,1)=DataIDTemp(3); 

 

        Index=strcmpi(strtok(cellstr(DataHeader)),'IDDevice'); 

        DeviceTemp=strsplit(DataHeader(Index,:)); 

        Instrument_Device(i,1)=DeviceTemp(3); 

 

        Index=strcmpi(strtok(cellstr(DataHeader)),'IDDataTypeSub1'); 

        DataTypeTemp=strsplit(DataHeader(Index,:)); 

        Instrument_DataType(i,1)=DataTypeTemp(3); 

 

        Index=strcmpi(strtok(cellstr(DataHeader)),'IntegrationTime'); 

        IntegrationTimeTemp=strsplit(DataHeader(Index,:)); 

        Instrument_IntTime(i,1)=str2double(IntegrationTimeTemp(3)); 

         

        Instrument_Pixel(i,1:size(Data,1))=transpose(Data(:,1)); 

        Instrument_Spectrum(i,1:size(Data,1))=transpose(Data(:,2)); 

        Instrument_ErrorCounts(i,1:size(Data,1))=transpose(Data(:,3)); 
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    end 

end 

clear DataHeader Data i FileList DataIDTemp DeviceTemp DataTypeTemp... 

      IntegrationTimeTemp Index 

 

%Delete unnecessary columns   

Index=sum([Instrument_Pixel;Instrument_Spectrum;Instrument_ErrorCounts],1)==

0; 

Instrument_Pixel(:,Index)=[]; 

Instrument_Spectrum(:,Index)=[]; 

Instrument_ErrorCounts(:,Index)=[]; 

clear Index 

 

%Delete unnecessary rows 

Index=sum([Instrument_Pixel,Instrument_Spectrum,Instrument_ErrorCounts],2)==

0; 

Instrument_DataID(Index,:)=[]; 

Instrument_Device(Index,:)=[]; 

Instrument_DataType(Index,:)=[]; 

Instrument_IntTime(Index,:)=[]; 

Instrument_Pixel(Index,:)=[]; 

Instrument_Spectrum(Index,:)=[]; 

Instrument_ErrorCounts(Index,:)=[]; 

clear Index 

 

%Getting the timestamp from the data ID 

Instrument_Timestamp=NaN(size(Instrument_DataID,1),6); 

for i=1:size(Instrument_Timestamp,1) 

    ID_String=strsplit(Instrument_DataID{i},{'_','-'});    

    

Index=cellfun(@strfind,ID_String,repmat({'20'},size(ID_String)),'UniformOutput',0); 

    Index=~cellfun(@isempty,Index); 

    [~,Index]=find(Index,1,'first');    

    ID_String=ID_String(:,Index:end); 

    ID_String=[ID_String{:}]; 

    ID_String=datevec(ID_String(1:14),'yyyymmddHHMMSS'); 

    Instrument_Timestamp(i,:)=ID_String; 

end 

clear i Index ID_String 

 

%Taking the pixel occurring in the majority of files for all data 

Instrument_Pixel=unique(Instrument_Pixel,'rows'); 

if size(Instrument_Pixel,1)>1 

    errordlg('Different pixel information in the BACK and CAL files! Script aborted!') 
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    return 

end 

 

%Converting the device names in upper case letters 

Instrument_Device=upper(Instrument_Device); 

 

cd(BasicPath) 

 

%% Calibrate the radiometer rawdata 

%according to the procedures given in the TriOS RAMSES manual 

 

cd(FolderInName) 

 

%Creating list of all *RAW.dat-files in folder 

Content=dir; 

Folders=[Content.isdir]; 

FileList={Content(~Folders).name}'; 

Index=false(size(FileList)); 

for i=1:length(FileList) 

    if ~isempty(strfind(FileList{i},'RAW.dat')) 

        Index(i)=true; 

    end 

end 

FileList=FileList(Index); 

clear i Index Content Folders Index 

 

cd(BasicPath) 

 

FilesToCalibrate=size(FileList,1); 

for i=1:size(FileList,1) 

     

    cd(FolderInName) 

     

    %Open the radiometer file 

    fid=fopen(FileList{i},'r'); 

    [Metadata, Data]=hdrload(FileList{i}); 

    Metadata=cellstr(Metadata); 

    Metadata=Metadata(1:end-1,:); 

    fclose(fid); 

    clear ans fid 

     

    %Getting the radiometer name from the metadata 

    Radiometer=Metadata{~cellfun(@isempty,strfind(Metadata,'Radiometer'))}; 

    Radiometer=strsplit(Radiometer,' '); 
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    Radiometer=upper(Radiometer{2}); 

     

    %Getting the parameter name from the metadata 

    Parameter=Metadata{~cellfun(@isempty,strfind(Metadata,'Parameter'))}; 

    Parameter=strsplit(Parameter,' '); 

    Parameter=upper(Parameter{3}); 

     

    %Dividing the radiometer data 

    Timestamp=Data(:,1:6); 

    IntTime=Data(:,7); 

    Spectra=Data(:,8:end); 

    clear Data 

     

    cd(BasicPath) 

        

    %% Get the BACK data for the radiometer  

     

    %By data type and device type         

    Instrument_DataID_Temporary=Instrument_DataID; 

    Instrument_DataType_Temporary=Instrument_DataType; 

    Instrument_Device_Temporary=Instrument_Device; 

    Instrument_ErrorCounts_Temporary=Instrument_ErrorCounts; 

    Instrument_IntTime_Temporary=Instrument_IntTime; 

    Instrument_Spectrum_Temporary=Instrument_Spectrum; 

    Instrument_Timestamp_Temporary=Instrument_Timestamp; 

     

    

Index=ismember(Instrument_DataType_Temporary,'BACK')&ismember(Instrument

_Device_Temporary,Radiometer);     

    Instrument_DataID_Temporary=Instrument_DataID_Temporary(Index,:); 

    Instrument_DataType_Temporary=Instrument_DataType_Temporary(Index,:); 

    Instrument_Device_Temporary=Instrument_Device_Temporary(Index,:); 

    

Instrument_ErrorCounts_Temporary=Instrument_ErrorCounts_Temporary(Index,:); 

    Instrument_IntTime_Temporary=Instrument_IntTime_Temporary(Index,:); 

    Instrument_Spectrum_Temporary=Instrument_Spectrum_Temporary(Index,:); 

    Instrument_Timestamp_Temporary=Instrument_Timestamp_Temporary(Index,:); 

    clear Index 

     

    %From all BACK data available select the one that is closest to the radiometer file 

    Diff=datenum(Instrument_Timestamp_Temporary)-datenum(Timestamp(1,:));     

    Index=ismember(Diff,max(Diff(Diff<0)));     

    if sum(Index)~=1 
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        errordlg(['No or wrong BACK data for radiometer ',Radiometer,' available! 

Script aborted!']) 

        return 

    end 

    BackSpectrum=Instrument_Spectrum_Temporary(Index,:); 

    BackErrorCounts=Instrument_ErrorCounts_Temporary(Index,:); 

    BackID=Instrument_DataID_Temporary(Index,:); 

    Back_Timestamp=datestr(Instrument_Timestamp_Temporary(Index,:),'yyyy-mm-

dd HH:MM:SS'); 

    clear Index Diff Instrument_DataID_Temporary 

Instrument_DataType_Temporary... 

          Instrument_Device_Temporary Instrument_ErrorCounts_Temporary... 

          Instrument_IntTime_Temporary Instrument_Spectrum_Temporary... 

          Instrument_Timestamp_Temporary 

     

    %% Get the CAL data for the radiometer  

     

    %By data type and device type         

    Instrument_DataID_Temporary=Instrument_DataID; 

    Instrument_DataType_Temporary=Instrument_DataType; 

    Instrument_Device_Temporary=Instrument_Device; 

    Instrument_ErrorCounts_Temporary=Instrument_ErrorCounts; 

    Instrument_IntTime_Temporary=Instrument_IntTime; 

    Instrument_Spectrum_Temporary=Instrument_Spectrum; 

    Instrument_Timestamp_Temporary=Instrument_Timestamp; 

     

    

Index=ismember(Instrument_DataType_Temporary,'CAL')&ismember(Instrument_

Device_Temporary,Radiometer);     

    Instrument_DataID_Temporary=Instrument_DataID_Temporary(Index,:); 

    Instrument_DataType_Temporary=Instrument_DataType_Temporary(Index,:); 

    Instrument_Device_Temporary=Instrument_Device_Temporary(Index,:); 

    

Instrument_ErrorCounts_Temporary=Instrument_ErrorCounts_Temporary(Index,:); 

    Instrument_IntTime_Temporary=Instrument_IntTime_Temporary(Index,:); 

    Instrument_Spectrum_Temporary=Instrument_Spectrum_Temporary(Index,:); 

    Instrument_Timestamp_Temporary=Instrument_Timestamp_Temporary(Index,:); 

    clear Index 

     

    %From all CAL data available select the one that is closest to the radiometer file 

    Diff=datenum(Instrument_Timestamp_Temporary)-datenum(Timestamp(1,:));     

    Index=ismember(Diff,max(Diff(Diff<0)));     

    if sum(Index)~=1 
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        errordlg(['No or wrong CAL data for radiometer ',Radiometer,' available! Script 

aborted!']) 

        return 

    end 

    CalSpectrum=Instrument_Spectrum_Temporary(Index,:); 

    CalErrorCounts=Instrument_ErrorCounts_Temporary(Index,:); 

    CalID=Instrument_DataID_Temporary(Index,:); 

    Cal_Timestamp=datestr(Instrument_Timestamp_Temporary(Index,:),'yyyy-mm-

dd HH:MM:SS'); 

    clear Index Diff Instrument_DataID_Temporary 

Instrument_DataType_Temporary... 

          Instrument_Device_Temporary Instrument_ErrorCounts_Temporary... 

          Instrument_IntTime_Temporary Instrument_Spectrum_Temporary... 

          Instrument_Timestamp_Temporary    

       

    %% Get the INI data for the radiometer 

     

    %By device type         

    IniFilesContent_Temporary=IniFilesContent; 

    IniFileList_Temporary=IniFileList; 

    Index=ismember(IniFilesContent_Temporary(:,1),Radiometer); 

    IniFilesContent_Temporary=IniFilesContent_Temporary(Index,:); 

    IniFileList_Temporary=IniFileList_Temporary(Index,:); 

     

    %By timestamp 

    Diff=datenum(IniFilesContent_Temporary(:,8),'yyyy-mm-dd HH:MM:SS')-

datenum(Timestamp(1,:));     

    Index=ismember(Diff,max(Diff(Diff<0)));        

    if sum(Index)~=1 

        errordlg(['No or wrong INI data for radiometer ',Radiometer,' available! Script 

aborted!']) 

        return 

    end 

    IniData=IniFilesContent_Temporary(Index,:); 

    IniFileName=IniFileList_Temporary(Index,:); 

    clear Diff Index IniFilesContent_Temporary IniFileList_Temporary 

     

    %% Converting pixels into wavelengths 

     

    Wavelengths=repmat(IniData{2},size(Instrument_Pixel)); 

    Wavelengths=Wavelengths+(Instrument_Pixel+1).*IniData{3}; 

    Wavelengths=Wavelengths+((Instrument_Pixel+1).^2).*IniData{4}; 

    Wavelengths=Wavelengths+((Instrument_Pixel+1).^3).*IniData{5}; 

    Wavelengths=[Instrument_Pixel(:,1) Wavelengths(2:end)]; 
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    %% Calibration 

     

    Spectra_Cal=Spectra./65535;     

    

Background=repmat(BackSpectrum,size(Spectra_Cal,1),1)+repmat(IntTime,size(Bac

kSpectrum))./8192.*repmat(BackErrorCounts,size(Spectra_Cal,1),1);     

    Spectra_Cal=Spectra_Cal-Background; 

    

Offset=mean(Spectra_Cal(:,Instrument_Pixel(Instrument_Pixel==IniData{6}+1):Instr

ument_Pixel(Instrument_Pixel==IniData{7}+1)),2,'omitnan'); 

    Spectra_Cal=Spectra_Cal-repmat(Offset,1,size(Spectra_Cal,2)); 

    Spectra_Cal=Spectra_Cal.*8192./repmat(IntTime,1,size(Spectra_Cal,2)); 

    Spectra_Cal=Spectra_Cal./repmat(CalSpectrum,size(Spectra_Cal,1),1); 

    Spectra_Cal=[Spectra(:,1) Spectra_Cal(:,2:end)]; 

    Spectra_Cal(:,Instrument_Pixel(Instrument_Pixel==IniData{6}):end)=NaN; 

    clear Background Offset Index_Device Index_Ini     

     

    %% Replacing "inf" and "-inf" values by NaN 

     

    Index=isinf(Spectra_Cal); 

    Spectra_Cal(Index)=NaN; 

    clear Index 

     

    %% Saving the data 

 

    %Going to or creating the folder where the CALIBRATED data will be saved 

    if exist(FolderOutName,'dir')==0 

        mkdir(FolderOutName) 

    end 

 

    cd(FolderOutName)     

     

    %Changing the file name 

    SaveFileName=FileList{i}; 

    SaveFileName=strrep(SaveFileName,'RAW','Calibrated'); 

     

    %Supplementing the metadata 

    Metadata_Calibrated=Metadata; 

    if strcmp(Parameter,'(ES)') 

        

Metadata_Calibrated(~cellfun(@isempty,strfind(Metadata_Calibrated,'Unit')))={'#U

nit: mW m-2'}; 

    else 
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Metadata_Calibrated(~cellfun(@isempty,strfind(Metadata_Calibrated,'Unit')))={'#U

nit: mW m-2 sr-1'}; 

    end 

    Metadata_Calibrated=[Metadata_Calibrated;... 

                         {['#Instrument initialization file: ',IniFileName{:},'; ',IniData{8}]};... 

                         {['#c0: ',num2str(IniData{2})]};... 

                         {['#c1: ',num2str(IniData{3})]};... 

                         {['#c2: ',num2str(IniData{4})]};... 

                         {['#c3: ',num2str(IniData{5})]};... 

                         {['#DarkPixelStart: ',num2str(IniData{6})]};... 

                         {['#DarkPixelStop: ',num2str(IniData{7})]};... 

                         {'#'}]; 

    Metadata_BackgroundSpectrum=['#Background spectrum: 

',num2cell(BackSpectrum(2:end))]; 

    Metadata_BackgroundErrorCounts=['#Background error counts: 

',num2cell(BackErrorCounts(2:end))]; 

    Metadata_CalibrationSpectrum=['#Calibration spectrum: 

',num2cell(CalSpectrum(2:end))]; 

    Metadata_CalibrationErrorCounts=['#Calibration error counts: 

',num2cell(CalErrorCounts(2:end))]; 

     

    %Creating the data header 

    Header=[{'Year'} {'Month'} {'Day'} {'Hour'} {'Minute'} {'Second'} 

num2cell(Wavelengths)]; 

     

    %Creating the file content 

    Content=[Timestamp Spectra_Cal]; 

     

    %Writing the file 

    fid=fopen(SaveFileName,'w'); 

    for j=1:size(Metadata_Calibrated,1) 

        fprintf(fid,'%s\n',Metadata_Calibrated{j}); 

    end 

    clear j 

    fprintf(fid,'%s\n',['#Background file: ',BackID{:},'; ',Back_Timestamp]); 

    fprintf(fid,['%s',repmat('%f ',1,size(Metadata_BackgroundSpectrum,2)-

1),'\n'],Metadata_BackgroundSpectrum{:}); 

    fprintf(fid,['%s',repmat('%f ',1,size(Metadata_BackgroundErrorCounts,2)-

1),'\n'],Metadata_BackgroundErrorCounts{:}); 

    fprintf(fid,'%s\n','#'); 

    fprintf(fid,'%s\n',['#Calibration file: ',CalID{:},'; ',Cal_Timestamp]); 

    fprintf(fid,['%s',repmat('%f ',1,size(Metadata_CalibrationSpectrum,2)-

1),'\n'],Metadata_CalibrationSpectrum{:}); 
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    fprintf(fid,['%s',repmat('%f ',1,size(Metadata_CalibrationErrorCounts,2)-

1),'\n'],Metadata_CalibrationErrorCounts{:}); 

    fprintf(fid,'%s\n','#');     

    

fprintf(fid,['%s\t%s\t%s\t%s\t%s\t%s',repmat('\t%.0f',1,size(Wavelengths,2)),'\n'],H

eader{1,:}); 

    for j=1:size(Content,1) 

        

fprintf(fid,['%.0f\t%.0f\t%.0f\t%.0f\t%.0f\t%.0f',repmat('\t%f',1,size(Spectra_Cal,2))

,'\n'],Content(j,:)); 

    end 

    clear j 

    fclose(fid);     

    clear Metadata_Calibrated Metadata_BackgroundSpectrum... 

          Metadata_BackgroundErrorCounts Metadata_CalibrationSpectrum... 

          Metadata_CalibrationErrorCounts 

     

    cd(BasicPath) 

     

    FilesToCalibrate=FilesToCalibrate-1; 

    display(FilesToCalibrate) 

end 
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STEP 3 

%Script for creating working data from the calibrated radiometer data 

 

clc 

clear 

BasicPath=pwd; 

addpath(genpath([BasicPath,'\RequiredFiles'])) 

 

%% Parameters 

 

%Full path of the folder that contains the calibrated files 

FolderInName=''D:\TRIOS\Celticexplorer_Radiometer\CalibratedFiles'; 

 

%Full path of the folder that will contain the working data output files (will be 

created) 

FolderOutName=''D:\TRIOS\Celticexplorer_Radiometer\WorkingFiles'; 

 

%Wavelength range and resolution for the working files 

Wavelength_Min=320; 

Wavelength_Max=950; 

Resolution=2; 

 

%Threshold for outlier spectra (Spectra containing lower values will be omitted) 

Outlier=-1; 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

 

%% Creating list of all *.dat-files in folder 

 

cd(FolderInName) 

 

Content=dir; 

Folders=[Content.isdir]; 

FileList={Content(~Folders).name}'; 

Index=false(size(FileList)); 

for i=1:length(FileList) 

    if ~isempty(strfind(FileList{i},'.dat')) 

        Index(i)=true; 

    end 

end 

FileList=FileList(Index); 

clear i Index Content Folders 
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cd(BasicPath) 

 

%% Create working data 

 

FilesToProcess=size(FileList,1); 

for i=1:size(FileList,1) 

     

    cd(FolderInName) 

     

    %Get the metadata 

    [Metadata,~]=hdrload(FileList{i}); 

    Metadata=cellstr(Metadata); 

    Metadata=Metadata(1:end-1,:); 

     

    %Get the header 

    fid=fopen(FileList{i},'r'); 

    Wavelengths=textscan(fid,[repmat('%s', 1, 3000) '%*[^\n]'],1, 'delimiter', 

'\t','CommentStyle','#', 'collectoutput', true); 

    Wavelengths=[Wavelengths{:}]; 

    fclose(fid); 

    clear fid ans  

     

    %Get the data 

    fid=fopen(FileList{i},'r'); 

    Data=textscan(fid,[repmat('%f', 1, 3000) '%*[^\n]'], 'delimiter', 

'\t','HeaderLines',size(Metadata,1)+1, 'collectoutput', true); 

    Data=[Data{:}]; 

    fclose(fid); 

    clear fid ans 

     

    %Delete empty cells 

    Index=cellfun(@isempty,Wavelengths); 

    Wavelengths(:,Index)=[]; 

    Data(:,Index)=[]; 

    clear Index 

     

    %Convert the wavelengths into numerical data 

    Wavelengths=cellfun(@str2double,Wavelengths); 

     

    %Refine the wavelengths and divide data into timestamps and real data 

    Index=isnan(Wavelengths);     

    Wavelengths(:,Index)=[]; 

    Wavelengths=Wavelengths(:,2:end); 

    Timestamp=Data(:,Index);     
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    Spectra=Data(:,~Index); 

    Spectra=Spectra(:,2:end); 

    clear Data Index 

     

    %Deletion of outlier spectra 

    Index=logical(sum(Spectra<=Outlier,2)); 

    Spectra(Index,:)=[]; 

    Timestamp(Index,:)=[];     

     

    %In case all data has been deleted, a dummy spectrum is created 

    if isempty(Spectra) 

        Spectra=NaN(size(Wavelengths)); 

    end 

         

    %Interpolate the spectra on the desired range and resolution 

    Wavelengths_interpol=Wavelength_Min:Resolution:Wavelength_Max; 

    if size(Spectra,1)==1 

        Spectra=interp1(Wavelengths,Spectra,Wavelengths_interpol,'linear'); 

    else 

        

Spectra=transpose(interp1(Wavelengths,transpose(Spectra),Wavelengths_interpol,'

linear')); 

    end 

    Wavelengths=Wavelengths_interpol; 

    clear Wavelengths_interpol 

     

    cd(BasicPath) 

     

    %% Save the data 

     

    %Going to or creating the folder where the WORKING data will be saved 

    if exist(FolderOutName,'dir')==0 

        mkdir(FolderOutName) 

    end 

 

    cd(FolderOutName)   

     

    %Changing the file name 

    SaveFileName=FileList{i}; 

    SaveFileName=strrep(SaveFileName,'Calibrated','Working');    

     

    %Creating the data header 

    Header=[{'Year'} {'Month'} {'Day'} {'Hour'} {'Minute'} {'Second'} 

num2cell(Wavelengths)]; 
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    %Creating the file content 

    Content=[Timestamp Spectra]; 

     

    %Writing the file 

    fid=fopen(SaveFileName,'w'); 

    for j=1:size(Metadata,1) 

        fprintf(fid,'%s\n',Metadata{j}); 

    end 

    clear j 

    

fprintf(fid,['%s\t%s\t%s\t%s\t%s\t%s',repmat('\t%.0f',1,size(Wavelengths,2)),'\n'],H

eader{1,:}); 

    for j=1:size(Content,1) 

        

fprintf(fid,['%.0f\t%.0f\t%.0f\t%.0f\t%.0f\t%.0f',repmat('\t%f',1,size(Spectra,2)),'\n']

,Content(j,:)); 

    end 

    clear j 

    fclose(fid);  

     

    cd(BasicPath) 

     

    FilesToProcess=FilesToProcess-1; 

    display(FilesToProcess) 

end      

 

  



172 
 

STEP 4 

%Script for calculation of Rrs spectra from Ramses radiometer data 

 

clc 

clear 

BasicPath=pwd; 

addpath(genpath([BasicPath,'\RequiredFiles'])) 

 

%% Parameters 

 

%Full path of the folder that contains the radiometer working files 

FolderInName='D:\TRIOS\Celticexplorer_Radiometer\\WorkingFiles_correctedEs'; 

 

%Full path of the folder that will contain the working data output files (will be 

created) 

FolderOutName='D:\TRIOS\Celticexplorer_Radiometer\RemoteSensingReflectance'

; 

 

%Threshold for the minimum light condition flag (at Es480) 

Threshold_Es=10; 

 

%Ranges for the meteorological condition flag (Ratio Es940/Es370) 

Threshold_Meteo_Min=0.2; 

Threshold_Meteo_Max=0.25; 

 

%Thresholds for the sunglint flags 

Threshold_Lw=2; %mean values from 700-900 nm 

Threshold_Rrs=0.01; %min value from 700-900 nm 

 

%Reflectivity of water used in Lw calculation 

rho=0.0265; 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% *****FROM HERE, ONLY MAKE CHANGES IF YOU KNOW WHAT YOU ARE 

DOING!***** % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

%% Creating list of all *.dat-files in folder 

 

cd(FolderInName) 

 

Content=dir; 
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Folders=[Content.isdir]; 

FileList={Content(~Folders).name}'; 

Index=false(size(FileList)); 

for i=1:length(FileList) 

    if ~isempty(strfind(FileList{i},'.dat')) 

        Index(i)=true; 

    end 

end 

FileList=FileList(Index); 

clear i Index Content Folders 

 

%% Creating list of available days 

 

DayList=cell(size(FileList)); 

for i=1:size(FileList,1) 

    CurrentDay=strsplit(FileList{i},'_'); 

    DayList(i)=CurrentDay(1); 

end 

DayList=unique(DayList,'stable'); 

clear i CurrentDay 

 

%% Omitting days where not all radiometers were available 

 

%Creating a temporary file list 

FileList_Temporary=cell(size(FileList)); 

for i=1:size(FileList,1) 

    FileList_Temporary{i}=strsplit(FileList{i},'_'); 

end 

clear i 

FileList_Temporary=vertcat(FileList_Temporary{:}); 

 

OmittedFiles=false(size(FileList)); 

 

for i=1:size(DayList,1) 

    Index=ismember(FileList_Temporary(:,1),DayList(i)); 

    Parameters=FileList_Temporary(Index,2); 

    if sum(ismember(Parameters,[{'Es'} {'Lsky'} {'Lsfc'}]))<3 

        OmittedFiles(Index,:)=true; 

    end    

end 

FileList(OmittedFiles)=[]; 

clear i Index Parameters FileList_Temporary OmittedFiles DayList 

 

cd(BasicPath) 
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%% Creating new list of available days 

 

DayList=cell(size(FileList)); 

for i=1:size(FileList,1) 

    CurrentDay=strsplit(FileList{i},'_'); 

    DayList(i)=CurrentDay(1); 

end 

DayList=unique(DayList,'stable'); 

clear i CurrentDay 

 

%% Creating a new temporary file list 

FileList_Temporary=cell(size(FileList)); 

for j=1:size(FileList,1) 

    FileList_Temporary{j}=strsplit(FileList{j},'_'); 

end 

clear j 

FileList_Temporary=vertcat(FileList_Temporary{:});  

 

%% Process each day 

 

DaysToProcess=size(DayList,1); 

for i=1:size(DayList,1) 

     

    cd(FolderInName) 

     

    %% Opening the irradiance (ES) files of the specific day 

     

    Index=ismember(FileList_Temporary(:,1),DayList(i)) & 

ismember(FileList_Temporary(:,2),{'Es'}); 

     

    %Get the metadata 

    [Metadata_Es,~]=hdrload(FileList{Index}); 

    Metadata_Es=cellstr(Metadata_Es); 

    Metadata_Es=Metadata_Es(1:end-1,:); 

     

    %Get the header 

    fid=fopen(FileList{Index},'r'); 

    Wavelengths_Es=textscan(fid,[repmat('%s', 1, 3000) '%*[^\n]'],1, 'delimiter', 

'\t','CommentStyle','#', 'collectoutput', true); 

    Wavelengths_Es=[Wavelengths_Es{:}]; 

    fclose(fid); 

    clear fid ans  
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    %Get the data 

    fid=fopen(FileList{Index},'r'); 

    Data_Es=textscan(fid,[repmat('%f', 1, 3000) '%*[^\n]'], 'delimiter', 

'\t','HeaderLines',size(Metadata_Es,1)+1, 'collectoutput', true); 

    Data_Es=[Data_Es{:}]; 

    fclose(fid); 

    clear fid ans Index 

     

    %Delete empty cells 

    Index=cellfun(@isempty,Wavelengths_Es); 

    Wavelengths_Es(:,Index)=[]; 

    Data_Es(:,Index)=[]; 

    clear Index 

     

    %Convert the wavelengths into numerical data 

    Wavelengths_Es=cellfun(@str2double,Wavelengths_Es); 

     

    %Refine the wavelengths and divide data into timestamps and real data 

    Index=isnan(Wavelengths_Es);     

    Wavelengths_Es(:,Index)=[]; 

    Timestamp_Es=Data_Es(:,Index);     

    Spectra_Es=Data_Es(:,~Index); 

    clear Data_Es Index 

     

    %% Opening the upward looking irradiance (Lsky) files of the specific day 

     

    Index=ismember(FileList_Temporary(:,1),DayList(i)) & 

ismember(FileList_Temporary(:,2),{'Lsky'}); 

     

    %Get the metadata 

    [Metadata_Lsky,~]=hdrload(FileList{Index}); 

    Metadata_Lsky=cellstr(Metadata_Lsky); 

    Metadata_Lsky=Metadata_Lsky(1:end-1,:); 

     

    %Get the header 

    fid=fopen(FileList{Index},'r'); 

    Wavelengths_Lsky=textscan(fid,[repmat('%s', 1, 3000) '%*[^\n]'],1, 'delimiter', 

'\t','CommentStyle','#', 'collectoutput', true); 

    Wavelengths_Lsky=[Wavelengths_Lsky{:}]; 

    fclose(fid); 

    clear fid ans  

     

    %Get the data 

    fid=fopen(FileList{Index},'r'); 
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    Data_Lsky=textscan(fid,[repmat('%f', 1, 3000) '%*[^\n]'], 'delimiter', 

'\t','HeaderLines',size(Metadata_Lsky,1)+1, 'collectoutput', true); 

    Data_Lsky=[Data_Lsky{:}]; 

    fclose(fid); 

    clear fid ans Index 

     

    %Delete empty cells 

    Index=cellfun(@isempty,Wavelengths_Lsky); 

    Wavelengths_Lsky(:,Index)=[]; 

    Data_Lsky(:,Index)=[]; 

    clear Index 

     

    %Convert the wavelengths into numerical data 

    Wavelengths_Lsky=cellfun(@str2double,Wavelengths_Lsky); 

     

    %Refine the wavelengths and divide data into timestamps and real data 

    Index=isnan(Wavelengths_Lsky);     

    Wavelengths_Lsky(:,Index)=[]; 

    Timestamp_Lsky=Data_Lsky(:,Index);     

    Spectra_Lsky=Data_Lsky(:,~Index); 

    clear Data_Lsky Index 

     

    %% Opening the downward looking radiance (Lsfc) files of the specific day 

     

    Index=ismember(FileList_Temporary(:,1),DayList(i)) & 

ismember(FileList_Temporary(:,2),{'Lsfc'}); 

     

    %Get the metadata 

    [Metadata_Lsfc,~]=hdrload(FileList{Index}); 

    Metadata_Lsfc=cellstr(Metadata_Lsfc); 

    Metadata_Lsfc=Metadata_Lsfc(1:end-1,:); 

     

    %Get the header 

    fid=fopen(FileList{Index},'r'); 

    Wavelengths_Lsfc=textscan(fid,[repmat('%s', 1, 3000) '%*[^\n]'],1, 'delimiter', 

'\t','CommentStyle','#', 'collectoutput', true); 

    Wavelengths_Lsfc=[Wavelengths_Lsfc{:}]; 

    fclose(fid); 

    clear fid ans  

     

    %Get the data 

    fid=fopen(FileList{Index},'r'); 

    Data_Lsfc=textscan(fid,[repmat('%f', 1, 3000) '%*[^\n]'], 'delimiter', 

'\t','HeaderLines',size(Metadata_Lsfc,1)+1, 'collectoutput', true); 
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    Data_Lsfc=[Data_Lsfc{:}]; 

    fclose(fid); 

    clear fid ans Index 

     

    %Delete empty cells 

    Index=cellfun(@isempty,Wavelengths_Lsfc); 

    Wavelengths_Lsfc(:,Index)=[]; 

    Data_Lsfc(:,Index)=[]; 

    clear Index 

     

    %Convert the wavelengths into numerical data 

    Wavelengths_Lsfc=cellfun(@str2double,Wavelengths_Lsfc); 

     

    %Refine the wavelengths and divide data into timestamps and real data 

    Index=isnan(Wavelengths_Lsfc);     

    Wavelengths_Lsfc(:,Index)=[]; 

    Timestamp_Lsfc=Data_Lsfc(:,Index);     

    Spectra_Lsfc=Data_Lsfc(:,~Index); 

    clear Data_Lsfc Index 

     

    %% Checking data availability 

     

    Available_Es=true; 

    Available_Lsky=true; 

    Available_Lsfc=true; 

     

    if isequal(isnan(Spectra_Es),isnan(NaN(1,size(Spectra_Es,2)))) 

        Available_Es=false; 

    end 

     

    if isequal(isnan(Spectra_Lsky),isnan(NaN(1,size(Spectra_Lsky,2)))) 

        Available_Lsky=false; 

    end 

     

    if isequal(isnan(Spectra_Lsfc),isnan(NaN(1,size(Spectra_Lsfc,2)))) 

        Available_Lsfc=false; 

    end 

         

    if Available_Es==true && Available_Lsky==true && Available_Lsfc==true 

         

        %% Assigning the closest measurements of Es and Lsky to the Lsfc 

measurements 

        %The difference in time has to be smaller than the measurement interval of 

Lsfc 
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        %Conversion of timestamps 

        Timestamp_Es=datenum(Timestamp_Es); 

        Timestamp_Lsky=datenum(Timestamp_Lsky); 

        Timestamp_Lsfc=datenum(Timestamp_Lsfc); 

         

        %Calculate the measurement interval of Lsfc 

        if size(Timestamp_Lsfc,1)==1 

            Interval_Lsfc=1; 

        else 

            Interval_Lsfc=abs(Timestamp_Lsfc(1)-Timestamp_Lsfc(2)); 

        end 

 

        %Creating new Es and Lsky variables         

        Timestamp_Es_New=NaN(size(Timestamp_Lsfc,1),1); 

        Timestamp_Lsky_New=NaN(size(Timestamp_Lsfc,1),1);         

        Spectra_Es_New=NaN(size(Spectra_Lsfc)); 

        Spectra_Lsky_New=NaN(size(Spectra_Lsfc)); 

 

        %Assigning Es 

        for j=1:size(Timestamp_Lsfc,1) 

            Diff=Timestamp_Es-Timestamp_Lsfc(j); 

            Index=find(Diff<=0,1,'last'); 

            Value=abs(Diff(Index)); 

            if Value<Interval_Lsfc 

                Timestamp_Es_New(j,:)=Timestamp_Es(Index,:); 

                Spectra_Es_New(j,:)=Spectra_Es(Index,:);  

            end 

        end 

        clear Diff Value Index j 

 

        %Assigning Lsky 

        for j=1:size(Timestamp_Lsfc,1) 

            Diff=Timestamp_Lsky-Timestamp_Lsfc(j); 

            Index=find(Diff<=0,1,'last'); 

            Value=abs(Diff(Index)); 

            if Value<Interval_Lsfc 

                Timestamp_Lsky_New(j,:)=Timestamp_Lsky(Index,:); 

                Spectra_Lsky_New(j,:)=Spectra_Lsky(Index,:);   

            end 

        end 

        clear Diff Value Index j Interval 

 

        %Replacing the old variables by the new ones 
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        Timestamp_Es=Timestamp_Es_New; 

        Timestamp_Lsky=Timestamp_Lsky_New; 

        Spectra_Es=Spectra_Es_New; 

        Spectra_Lsky=Spectra_Lsky_New; 

        clear Timestamp_Es_New Timestamp_Lsky_New... 

              Spectra_Es_New Spectra_Lsky_New 

 

        %Deleting all rows where in one measurement is a NaN 

        Index=logical(sum(isnan([Timestamp_Es Timestamp_Lsfc 

Timestamp_Lsky]),2));         

        Timestamp_Es(Index,:)=[]; 

        Timestamp_Lsky(Index,:)=[]; 

        Timestamp_Lsfc(Index,:)=[]; 

        Spectra_Es(Index,:)=[]; 

        Spectra_Lsky(Index,:)=[]; 

        Spectra_Lsfc(Index,:)=[];         

        clear Index         

         

        %Conversion of timestamps back to vectors 

        Timestamp_Es=datevec(Timestamp_Es); 

        Timestamp_Lsky=datevec(Timestamp_Lsky); 

        Timestamp_Lsfc=datevec(Timestamp_Lsfc);  

         

        %Taking the Lsfc timestamp and wavelengths as the final ones 

        Timestamp=Timestamp_Lsfc; 

        Wavelengths=Wavelengths_Lsfc; 

        clear Wavelengths_Es Wavelengths_Lsfc Wavelengths_Lsky... 

              Timestamp_Es Timestamp_Lsfc Timestamp_Lsky         

    end 

     

    %% Check again data availability 

     

    if isempty(Spectra_Es) 

        Available_Es=false; 

    end 

     

    if isempty(Spectra_Lsky) 

        Available_Lsky=false; 

    end 

     

    if isempty(Spectra_Lsfc) 

        Available_Lsfc=false; 

    end 
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    if Available_Es==true && Available_Lsky==true && Available_Lsfc==true 

           

        %% Calculate Rrs 

 

        %To avoid divisions by zero, replace all zeros by NaN 

        Spectra_Es(Spectra_Es==0)=NaN; 

        clear Index 

 

        %Lw 

        Lw=Spectra_Lsfc-(rho.*Spectra_Lsky); 

 

        %Remote sensing reflectance Rrs 

        Rrs=Lw./Spectra_Es; 

 

        %Interpolate the NaN values in the corrected Rrs spectra 

        for j=1:size(Rrs,1) 

            Index=isnan(Rrs(j,:)); 

            if Index>0                 

                Rrs(j,:)=interp1(Wavelengths(~Index),Rrs(j,~Index),Wavelengths); 

            end 

        end 

        clear j Index   

 

        %Smoothing the spectra by interpolation with loess to reduce noise         

        Rrs=loess_matrix(Wavelengths,Rrs,Wavelengths,0.03); 

 

        %Correct the spectra for reflectance in the infrared region 

        Rrs_min=min(Rrs(:,Wavelengths>=700&Wavelengths<=900),[],2,'omitnan'); 

        Rrs_corr=Rrs-repmat(Rrs_min,1,size(Rrs,2));      

         

        %% Creating flags 

         

        %Creating minimum light flag based on intensity of Es at 480 nm 

        Flag_Light=ones(size(Rrs,1),1); 

        Index=Spectra_Es(:,Wavelengths==480)<Threshold_Es; 

        Flag_Light(Index)=0; 

        clear Index 

         

        %Create light quality flag based on the shape of Es 

        Flag_Daylight=ones(size(Rrs,1),1); 

        Index=(Spectra_Es(:,Wavelengths==480)./Spectra_Es(:,Wavelengths==680))<1; 

        Flag_Daylight(Index)=0; 

        clear Index        



181 
 

         

        %Create flag for meterological conditions based on Es 

        Flag_Weather=ones(size(Rrs,1),1); %Weather conditions ok 

        

Index_1=(Spectra_Es(:,Wavelengths==940)./Spectra_Es(:,Wavelengths==370))<= 

Threshold_Meteo_Min; 

        Index_2=(Spectra_Es(:,Wavelengths==940)./Spectra_Es(:,Wavelengths==370))> 

Threshold_Meteo_Min &... 

               (Spectra_Es(:,Wavelengths==940)./Spectra_Es(:,Wavelengths==370))< 

Threshold_Meteo_Max; 

        Flag_Weather(Index_1)=2; %Precipitation 

        Flag_Weather(Index_2)=3; %High humidity 

        clear Index_1 Index_2 

 

        %Create sunglint flag based on Lw (Garaba et al. (2012): Sunglint detection for 

unmanned and automated platforms) 

        Flag_Glint_Lw=ones(size(Rrs,1),1); 

        Index=mean(Lw(:,ismember(Wavelengths,700:1:900)),2)>Threshold_Lw; 

        Flag_Glint_Lw(Index,:)=0; 

        clear Index 

 

        %Create sunglint flag based on Rrs (Garaba et al. (2012): Sunglint detection for 

unmanned and automated platforms) 

        Flag_Glint_Rrs=ones(size(Rrs,1),1); 

        Index=Rrs_min>Threshold_Rrs; 

        Flag_Glint_Rrs(Index)=0; 

        clear Index 

         

        %% Creating new metadata 

         

        

Radiometer=[strsplit(Metadata_Es{1});strsplit(Metadata_Lsky{1});strsplit(Metadata

_Lsfc{1})]; 

         

        Index_Written=find(ismember(Metadata_Lsfc,{'#'}),2,'first'); 

                

        Metadata=[{'#Parameter: Rrs'};... 

                  {['#Irradiance sensor (Es): ',Radiometer{1,2}]};... 

                  {['#Upward radiance sensor (Lsky): ',Radiometer{2,2}]};... 

                  {['#Downward eadiance sensor (Lsfc): ',Radiometer{3,2}]};... 

                  {'#Unit: sr-1'};... 

                  {'#Rrs is corrected for sunglint by subtracting the minimum at 700-900 

nm.'};... 
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                  {'#However, the sunglint flags were determined by the original 

spectrum.'};... 

                  {'#To get the original spectrum, just add the minRrs value to the 

spectrum.'};... 

                  Metadata_Lsfc(Index_Written(1):Index_Written(2),:);... 

                  {'#Correction procedures: Irradiance (Es) has been corrected for drift 

(Period 1: 2004-2012; Period 2: 2013-2016'};... 

                  {'#'};... 

                  {['#Sea surface reflectivity (rho): ',num2str(rho)]};... 

                  {'#'};... 

                  {'#Flagging for light availability'};... 

                  {['#Threshold [mW m-2 s-1]: ',num2str(Threshold_Es)]};... 

                  {'#1 = Sufficient light'};... 

                  {'#0 = Light too low'};... 

                  {'#'};... 

                  {'#Flagging for light quality'};... 

                  {'#1 = Daylight conditions'};... 

                  {'#0 = Twilight conditions'};... 

                  {'#'};... 

                  {'#Flagging for weather state'};... 

                  {['#Threshold min/max: ',num2str(Threshold_Meteo_Min),' / 

',num2str(Threshold_Meteo_Max)]};... 

                  {'#1 = Weather ok'};... 

                  {'#2 = Precipitation'};... 

                  {'#3 = Humidity'};... 

                  {'#'};... 

                  {'#Flagging for sunglint (based on water leaving radiance Lw)'};... 

                  {['#Threshold [mW m-2 s-1]: ',num2str(Threshold_Lw)]};... 

                  {'#1 = Mean value of 700-900 nm is below the threshold (no sunglint)'};... 

                  {'#0 = Mean value of 700-900 nm is above the threshold (sunglint)'};... 

                  {'#'};... 

                  {'#Flagging for sunglint (based on remote sensing reflectance Rrs)'};... 

                  {['#Threshold [sr-1]: ',num2str(Threshold_Rrs)]};... 

                  {'#1 = Minimum value of 700-900 nm is below the threshold (no 

sunglint)'};... 

                  {'#0 = Minimum value of 700-900 nm is above the threshold (sunglint)'};... 

                  {'#'}]; 

            clear Radiometer Index_Written 

 

        %% Saving the data 

         

        %Going to or creating the folder where the Rrs data will be saved 

        if exist(FolderOutName,'dir')==0 

            mkdir(FolderOutName) 
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        end 

 

        cd(FolderOutName)   

 

        %Creating the file name 

        SaveFileName=[DayList{i},'_Rrs.dat'];   

 

        %Creating the data header 

        Header=[{'Year'} {'Month'} {'Day'} {'Hour'} {'Minute'} {'Second'}... 

                {'Flag Light Availability'} {'Flag Light Quality'} {'Flag Weather'} {'Flag 

Sunglint (Lw)'} {'Flag Sunglint (Rrs)'}... 

                {'minRrs'} num2cell(Wavelengths)]; 

 

        %Creating the file content 

        Content=[Timestamp Flag_Light Flag_Daylight Flag_Weather Flag_Glint_Lw 

Flag_Glint_Rrs Rrs_min Rrs_corr]; 

 

        %Writing the file 

        fid=fopen(SaveFileName,'w'); 

        for j=1:size(Metadata,1) 

            fprintf(fid,'%s\n',Metadata{j}); 

        end 

        clear j 

        

fprintf(fid,['%s',repmat('\t%s',1,11),repmat('\t%.0f',1,size(Wavelengths,2)),'\n'],Hea

der{1,:}); 

        for j=1:size(Content,1) 

            

fprintf(fid,['%.0f',repmat('\t%.0f',1,10),repmat('\t%f',1,size(Rrs_corr,2)+1),'\n'],Cont

ent(j,:)); 

        end 

        clear j 

        fclose(fid);  

 

        cd(BasicPath) 

         

    end 

    clear Available_Es Available_Lsky Available_Lsfc 

   

DaysToProcess=DaysToProcess-1; 

display(DaysToProcess) 

end 
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STEP 5 

%Script for calculating PAR from "Working" radiometer data (Es) 

 

clc 

clear 

BasicPath=pwd; 

addpath(genpath([pwd,'\RequiredFiles'])) 

%% Parameters 

 

%Full path of the folder that contains WORKING files 

FolderInName='D:\TRIOS\Celticexplorer_Radiometer\WorkingFiles_correctedEs'; 

 

%Full path of the folder that will contain the output files (will be created) 

FolderOutName='D:\TRIOS\Celticexplorer_Radiometer\PAR\'; 

 

%Threshold for minimum light condition (in mW at 480 nm) 

Threshold_Es=10; 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

 

%% Creating list of all irradiance (Es) *.dat-files in folder 

 

cd(FolderInName) 

 

Content=dir; 

Folders=[Content.isdir]; 

FileList={Content(~Folders).name}'; 

Index=false(size(FileList)); 

for i=1:length(FileList) 

    if ~isempty(strfind(FileList{i},'.dat')) 

        Index(i)=true; 

    end 

end 

FileList=FileList(Index); 

clear i Index Content Folders 

 

FileList_Temporary=cell(size(FileList,1),3); 

for i=1:size(FileList,1) 

    FileList_Temporary(i,:)=strsplit(FileList{i},'_'); 

end 

clear i 
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Index=ismember(FileList_Temporary(:,2),{'Es'}); 

FileList=FileList(Index,:); 

clear Index FileList_Temporary 

 

cd(BasicPath) 

 

%% Processing the data 

 

FilesToProcess=size(FileList,1); 

for i=1:size(FileList,1) 

     

    cd(FolderInName) 

     

    %% Get the metadata 

    [Metadata,~]=hdrload(FileList{i}); 

    Metadata=cellstr(Metadata); 

    Metadata=Metadata(1:end-1,:); 

     

    %% Get the header 

    fid=fopen(FileList{i},'r'); 

    Wavelengths=textscan(fid,[repmat('%s', 1, 3000) '%*[^\n]'],1, 'delimiter', 

'\t','CommentStyle','#', 'collectoutput', true); 

    Wavelengths=[Wavelengths{:}]; 

    fclose(fid); 

    clear fid ans  

     

    %% Get the data 

    fid=fopen(FileList{i},'r'); 

    Data=textscan(fid,[repmat('%f', 1, 3000) '%*[^\n]'], 'delimiter', 

'\t','HeaderLines',size(Metadata,1)+1, 'collectoutput', true); 

    Data=[Data{:}]; 

    fclose(fid); 

    clear fid ans 

     

    %% Delete empty cells 

    Index=cellfun(@isempty,Wavelengths); 

    Wavelengths(:,Index)=[]; 

    Data(:,Index)=[]; 

    clear Index 

     

    %% Convert the wavelengths into numerical data 

    Wavelengths=cellfun(@str2double,Wavelengths); 

     

    %% Refine the wavelengths and divide data into timestamps and real data 



187 
 

    Index=isnan(Wavelengths);     

    Wavelengths(:,Index)=[]; 

    Timestamp=Data(:,Index);     

    Spectra=Data(:,~Index); 

    clear Data Index 

     

    %% Calculating Photon Flux (PAR & Total) 

    Index_PAR=ismember(Wavelengths,400:1:700); 

    E_photon=(6.63e-34.*2.998e8)./(Wavelengths./1000000000);%Energy of a single 

photon of the respective wavelength 

    E_total=Spectra./1000;%Conversion mW in W 

    N_photons=E_total./repmat(E_photon,size(E_total,1),1);%Calculation of the 

number of photons 

    uMol_photons=(N_photons./6.022e23).*1000000;%Convert the number of 

photons in µmol  

    PhotonFlux_PAR=trapz(uMol_photons(:,Index_PAR),2);%Integrate over the PAR-

spectrum (400-700 nm) 

    PhotonFlux_Total=trapz(uMol_photons,2);%Integrate over the whole available 

spectrum 

    clear E_photon E_total uMol_photons Index_PAR N_photons  

 

    %% Calculating Irradiance in W m-2 (PAR & Total) 

    Index_PAR=ismember(Wavelengths,400:1:700); 

    Irradiance_PAR=trapz(Spectra(:,Index_PAR)./1000,2); 

    Irradiance_Total=trapz(Spectra./1000,2); 

    clear Index_PAR 

     

    %% Setting all values below zero to zero 

    PhotonFlux_PAR(PhotonFlux_PAR<0)=0; 

    PhotonFlux_Total(PhotonFlux_Total<0)=0; 

    Irradiance_PAR(Irradiance_PAR<0)=0; 

    Irradiance_Total(Irradiance_Total<0)=0; 

     

    %% Saving the data 

     

    %Going to or creating the folder where the PAR data will be saved 

    if exist(FolderOutName,'dir')==0 

        mkdir(FolderOutName) 

    end 

 

    cd(FolderOutName) 

     

    %Changing the file name 

    SaveFileName=FileList{i}; 
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    SaveFileName=strrep(SaveFileName,'Working','Irradiance_PhotonFlux');    

     

    %Complementing the metadata 

    Metadata_Temporary=[Metadata;... 

                        {'#'};... 

                        {'#Correction procedures:'};... 

                        {'#Irradiance spectra (Es) have been corrected for drift (Period 1: 

2004-2012; Period 2: 2013-2016.'};... 

                        {'#Furthermore, all values for irradiance and photon flux below zero 

have been set to zero.'};... 

                        {'#'};... 

                        {'#PAR: 400-700 nm'};... 

                        {['#Total spectrum: ',num2str(min(Wavelengths)),'-

',num2str(max(Wavelengths)),' nm']};... 

                        {'#'}]; 

     

    %Creating the header 

    Header=[{'Year'} {'Month'} {'Day'} {'Hour'} {'Minute'} {'Second'}... 

            {'Photon Flux (PAR) [µmol photons m-2]'} {'Photon Flux (Total) [µmol photons 

m-2]'}... 

            {'Irradiance (PAR) [W m-2]'} {'Irradiance (Total) [W m-2]'}]; 

     

    %Creating the file content 

    FileContent=[Timestamp PhotonFlux_PAR PhotonFlux_Total Irradiance_PAR 

Irradiance_Total]; 

     

    %Writing the file 

    fid=fopen(SaveFileName,'w'); 

    for j=1:size(Metadata_Temporary,1) 

        fprintf(fid,'%s\n',Metadata_Temporary{j}); 

    end 

    clear j 

    fprintf(fid,['%s',repmat('\t%s',1,size(Header,2)-1),'\n'],Header{1,:}); 

    for j=1:size(FileContent,1) 

        

fprintf(fid,['%.0f\t%.0f\t%.0f\t%.0f\t%.0f\t%.0f',repmat('\t%f',1,size(FileContent,2)-

6),'\n'],FileContent(j,:)); 

    end 

    clear j 

    fclose(fid);  

     

    clear Metadata_Temporary 

     

    cd(BasicPath) 
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    FilesToProcess=FilesToProcess-1; 

    display(FilesToProcess) 

end  
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Appendix A2. Data Management Plan Checklist  
 

Data Management Plan Checklist  

Dataset Overview 

Process Flow Title Trios Ramses Hyperspectral Radiometer on the Celtic Explorer 

Dataset Description  Reflectance data collected from the Celtic Explorer sensors 

Date of First Version  17/01/2020 

Date of Second Version 03.03.2021 

  

Data Collection 

What data will you collect or create?   

Remote sensing reflectance data is being automatically created using the 5 Trios Ramses sensors 

on the Celtic Explorer, connected to a PC in the dry lab on the Celtic Explorer. 

How will the data be collected or created?   

The data is created using 5 Trios Ramses hyperspectral sensors that measure light reflectance off 

the surface of the ocean. The sensors are mounted permanently on the side of the vessel on 

monkey island on the Explorer and the cables run from there to the dry lab. Raw data is being fed 

to a PC in the dry lab every 15 minutes during day light hours and stored on an external hard 

drive specifically for the reflectance data. The data is then removed post survey and a new 

database is set up for the next survey 

 

Documentation and Metadata 

What documentation and metadata will accompany the data? 

Underway data is requested from the Marine institute after each survey to accompany the data to 

determine GPS locations. Each data point will have a data and time stamp associated with the 

measurements in order to determine place and time sample was recorded. 
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Ethics and Legal Compliance 

How will you manage any ethical issues? 

Not applicable  

How will you manage copyright and Intellectual Property Rights (IPR) issues? 

Once operational Data will have an ‘Open’ classification. 

 

From grant aid agreement of Catherine Jordan's Cullen fellowship: The Grantee is required to take 

all necessary steps to: 

15.2.1 Preserve and protect such Intellectual Property Rights (IPR) including, where 

appropriate, by applying for patent registration; and  

15.2.2 Actively to exploit in a timely fashion any discoveries, inventions or processes 

resulting from the research, by means of commercial licensing arrangements and 

otherwise. 

15.2.3 Whenever possible, intellectual property shall be managed for the benefit of enterprise 

development in Ireland 

 

 

 

Storage and Backup 

How will the data be stored and backed up during the research? 

The data is collected at the end of each survey by Catherine Jordan and stored on an external hard 

drive   

 

Request has been submitted to IT-Ops for 14GB annually 

How will you manage access and security? 

The data is part of a Cullen Fellowship PhD and access is only needed by Catherine Jordan 

currently but this will be readdressed once the PhD is coming to an end and the sensors are 

operational for the Marine Institute 
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Selection and Preservation 

Which data are of long term value and should be retained, shared, and/or preserved? 

The raw data are of long term value and should be retained. 

What is the long-term preservation plan for the dataset? 

Currently the 4 years of the PhD, this will be updated  

 

Data Sharing 

How will you share the data? 

Open access data  

Are any restrictions on data sharing required? 

Pre-operational - Currently the data will only be used for Catherine Jordan's PhD. Sharing the data 

would have to be discussed with the Catherine Jordan's supervisor’s Peter Croot (NUIG) and 

Caroline Cusack (OSIS, MI) and Catherine Jordan. 

 

Responsibilities and Resources 

Who will be responsible for data management? 

Catherine Jordan Cullen Fellow 

What resources will you require to deliver your plan? 

Disk storage is the primary resource requirement to cope with the expanding database over time. 

14GB of annual storage has been requested from the Marine Institute 
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Appendix A3. Hyperspectral Radiometer Software Set Up 
 

TriOS RAMSES MSDA_XE Software SOP 

At the beginning of each survey a new database will be set up. Software to be set this 

prior to each survey: 

How to set up a new database at the beginning of each survey 

Store the empty database in a single folder on the hard drive/desktop 

Store calibration files for each sensor in same folder 

In MSDA_XE software click on database  

Clicked on configuration 

-Databases 

-Create new database 

Under Target 

Path- clicked on folder with empty database 

name- named it the survey eg: CE19009 

Create new database 

Restart software 

Re add in calibration files for the sensors. 

 

Open MSDA_XE software on the desktop 

Device manager should be open with the sensors ‘On-line’ Sensors are called 

SAM_8504 SAM_8503, SAM_860D, SAM_86C2 and SAM_86C1 

If they are not showing up click on one (eg SAM_8504) and click Scan 

If the sensors are still not showing up click Options, Port manager and make sure the 

active COM port is selected) 

Five boxes SAM_8504 and SAM_8503, SAM_860D, SAM_86C2 and SAM_86C1 

should be open side by side (resize each window to fit them in onto the screen) 

If the boxes are not open on the screen click on one sensor in device manager and 

click Control and repeat for 2nd,3rd 4th and 5th sensor (again, resize boxes if needed to 

fit across the screen) 

Keep SAM_8504 and SAM_8503 SAM_860D SAM_86C2 and SAM_86C1 open 

side by side 

In SAM_8504 check these options are selected or do the following if starting from 

scratch: 

Comment box. To edit click the … symbol. Comment should be the survey name eg: 

CE19009 

Click OK 

Click the arrow beside (More…) 

In the General tab: 
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Measurement: Integration automatic  

Storing: Boxes to be ticked- Database, File, Raw and Calibrated 

Automatic Measurements: Click Configure: Click Interval and select 15 minutes 

(00:15:00), then click the box beside Restrict down the bottom and select the hours 

07:00 and 21:00 then click OK 

Select bursts of 10 (10 measurements will be taken by each sensor every 15 minutes) 

Calibration Tabs: Check Calibration driver files are there, if not, they can be added 

in by clicking database- import files and select calibration files 

Repeat same steps with SAM_8503 

Repeat same steps with SAM_860 D 

Repeat same steps with SAM_86C2 and SAM_86C1 

Once ALL sensors have been set up have the 5 boxes (SAM_8504 SAM_8503 

SAM_860D SAM_86C2 and SAM_86C1) open side by side. 

Click Auto in each box one after the other, this will start the sensors taking 

measurements every 15 minutes 

If you are unable to select Auto check the top right hand corner of that box and make 

sure the red circle is green by clicking on it once. 

To check data is being collected check the database after 5 minutes by clicking 

Database- Data and you should see new measurements for that day (make sure each 

sesnor is recording 10 measurements each, every 15 minutes) 

Once Auto has been selected you can minimise the software and it can be left 

running in the background. Make sure it is minimised and not x’d out of. 

Trouble shooting  

 Cannot get the sensors to show up in Device Manager? Click Options, Port 

Manager, search through COM ports that are available and go back to device 

manager, click on SCAN and sensors should now show up, continue with 

searching through COM ports if the sensors don’t show up. 

 Software keeps crashing? A new database needs to be set up prior to each 

survey* as once the database goes past 1500MB it will start to crash and will 

be difficult taking data off post survey, therefore if the software is crashing, 

check the size of the database (DB- bottom left hand corner of screen, 

remove data and set up a new database). 

*Before a new database is set up make sure ALL data is exported to another 

hard drive as it is difficult to recover once a new database has been set up. 

 

 Error message: No reaction on measurement of device… after… sec 
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Temporary communication problem with the device. No answer received, after 

command was sent by the computer. 

If taking automatic measurements. Press AUTO on each of the sensor box (this will 

stop the sensors taking measurements). 

Disconnect the cable of the sensor with the error from the IPS for around 10 seconds 

or all of them if unsure which sensor is which. 

Reconnect the cable(s) and click SCAN on the device manager. 

Click AUTO on all sensors which should start each sensor taking measurements 

again. 

Still getting an error message? check the sensors are recording every 15 minutes, if 

anything less, it can overwhelm the software so this is why it is set to 15 minutes. 

Connecting GPS to TRIOS Software: 

The GPS output from the ship is normally 9600 baud, 8 bytes, 0, 1, Software 

Xon/Xoff 

Make sure this is what the input to the TRIOS is by looking in Port Manager in 

MSDA_XE. Check also that you have the right com port.  

To change the baudrate (or other settings), please do the following: 

1. Close MSDA_XE 

2. Go to the folder MSDA_XE on your computer (standard setting: 

C:\Users\Public\Documents\MSDA_XE\UserData\Ini Files) and open the .ini 

file. 

3. Scroll down to ports, there you will see a list of ports 

4. Change the baudrate of the port to be used accordingly 

5. Save the .ini file 

6. Open MSDA_XE again 

 

You can also use a terminal program to check the output from the GPS feed: 

MSDA_XE only interprets rows with $GPGGA. Here is an example: 

$GPGGA,hhmmss.ss,llll.ll,a,yyyyy.yy,a,x,xx,x.x,x.x,M,x.x,M,x.x,xxxx*hh 

 hhmmss.ss = UTC of position 

llll.ll = latitude of position 

a = N or S 

yyyyy.yy = Longitude of position 

a = E or W 

x = GPS Quality indicator (0=no fix, 1=GPS fix, 2=Dif. GPS fix) 

xx = number of satellites in use 
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x.x = horizontal dilution of precision 

x.x = Antenna altitude above mean-sea-level 

M = units of antenna altitude, meters 

x.x = Geoidal separation 

M = units of geoidal separation, meters 

x.x = Age of Differential GPS data (seconds) 

xxxx = Differential reference station ID 

These rows should show up in your terminal program. 

If data flow stops or fails to initiate, try switching off the active connection and then 

turn it on again within the programme as this often restarts it.  
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Appendix A4. Requirements and Acceptance Criteria 
 

Requirements and Acceptance Criteria 

 

Requirements for Cullen Project (Grant-aid Agreement No. CF/17/03/01) 

WP3: Install and collect hyperspectral irradiance and radiance sensors on the Celtic 

Explorer or Celtic Voyager for the collection of in situ reflectance data. 

Objectives: Obtain hyperspectral sea surface reflectance for the validation of satellite 

retrievals along the Irish west coast. 

Task 3.1: Installation of the Trios RAMSES hyperspectral sensors on the Celtic 

Explorer or Celtic Voyager for long term determination of at sea reflectance data. 

Optimize the installation to minimize the impact of solar glint. Develop quality 

controls for processing the data impacted by solar glint, sunrise or sunset and rain 

events. 

Deliverable 3.3: Database of values of the measured parameters obtained during the 

ship board expeditions 

Requirements (why do we need this data) 

Ocean colour satellite sensors provide measurements of spectral remote sensing 

reflectance (Rrs). Bio optical algorithms are applied to Rrs measurements to produce 

estimates of optical and geophysical quantities such as phytoplankton pigment 

concentration and spectral marine inherent optical properties (IOPs). Time series of 

remotely sensed IOPs provide long valuable data sets for studying long term changes 

in our ocean-ecosystems. IOPs, spectral absorption and scattering properties of 

seawater and its particulate and dissolved constituents can be used to interpret the 

contents of the upper ocean. This information is critical for our understanding of 

biogeochemical oceanic processes such as phytoplankton community dynamics, 

carbon exchanges and ecosystem responses to disturbances. 

Remote sensing ocean colour algorithms are also based on the measurement of 

parameters of Apparent optical properties (AOPs) such as Attenuation coefficients 

(Kd) as well as Remote sensing reflectance (Rrs). 



198 
 

Calibration and validation of satellite observations are essential to ensure that 

processing methods accurately account for atmospheric and environmental effects, in 

order to have valid data for calibration/validation it is necessary to measure the light 

field both above and in the water column. 

To determine Rrs in a non-invasive manner that can be used in sensor validation, 

automated above-water hyperspectral radiometers can be mounted to a moving 

platform such as a research vessel to collect continuous spectral data while the ship is 

at sea. Ships can provide a suitable platform to collect spatially diverse data for 

regional validation purposes. The continuous spectral acquisition along the ships track 

enables spatial resampling to match the satellite footprint. 

In order to determine the water leaving Rrs above the sea surface the Marine Institute 

currently have 1 x hyperspectral cosine irradiance hyperspectral meter that measures 

the incoming solar radiation/downwelling spectral plane irradiance incident onto the 

sea surface, 4x hyperspectral radiance meters with a field of view of 7° in air, that 

measure the radiance emanating from the sea surface and the sky, Lsfc, Lsky (θ, Φ, 

λ), respectively. A frame is designed by the Trios Ramses to hold the irradiance meter 

facing upward and the sky and surface radiance meters at zenith angles θ = 45° and 

135°. The sensor set up currently on the RV Celtic Explorer is mounted on the port 

and starboard side of the vessel on monkey island. The five sensor set up is required 

because the sensors are collecting data continuously while the ship is at sea therefore 

would encounter a lot of issues such as sun glint, ships shadow and foam reflected 

glint therefore being able to switch between sides is the most effective way of getting 

reliable data.  

 

Acceptance: 

Radiance sensors on the Celtic Explorer: SAM_8504, SAM_860D, SAM_86C2 and 

SAM_86C1  

Irradiance sensor on the Celtic Explorer: SAM_8503 

In order to calculate reflectance two radiance and one irradiance sensor data is 

required. 
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The complete set up of five sensors ensures approximately 60-70% useable data from 

the full length of a scientific survey. Data from only three sensors will amount to 

approximately 20-30% useable data due to the unavoidable conditions such as sunglint 

and ships shadow. 

All Data must include: Date|Time, IDData, Device, DataType (Raw/Calibrated), 

Latitude|Longitude (if GPS fails during a survey, use underway data to match up 

location)  
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Appendix A5. Daily RBD image for the 27th June 2019. 
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Appendix A6. Full Species count lists for Cork, Oysterhaven and 

Kinsale 
 

Date Cork Species Cells/L 

04/08/2019 

Cobh (CK-

CH-CH) Armoured dinoflagellate 560 

  Chaetoceros (Hyalochaete) spp. 1840 

  

Cylindrotheca closterium/ Nitzschia 

longissima 12200 

  Detonula confervacea 20920 

  Dinophysis acuminata 600 

  Dinophysis acuta 400 

  Karenia mikimotoi 12960 

  Leptocylindrus minimus 18440 

  Oxyrrhis spp. 400 

  Prorocentrum micans 680 

  Prorocentrum triestinum 720 

  Rhizosolenia spp. 2840 

  Rhizosolenia styliformis 680 

  Scrippsiella spp. 480 

  Thalassiosira nordenskioeldii 600 

  Thalassiosira spp. 560 

  Tintinnids 920 

  Tripos furca 160 

11/08/2019 

Cobh (CK-

CH-CH) Amphiprora spp. 2680 

  Chaetoceros (Hyalochaete) spp. 72384 

  Dinophysis acuminata 80 

  Dinophysis acuta 80 

  Karenia mikimotoi 868770 

  Leptocylindrus minimus 1563786 

  Oxyrrhis spp. 480 

  Pleurosigma sp 1400 

  Prorocentrum micans 480 

  Prorocentrum triestinum 92568 

  Protoperidinium spp. 160 

  Rhizosolenia spp. 640 

  Rhizosolenia styliformis 160 

  Scrippsiella spp. 5320 

  Scrippsiella trochoidea 4280 

  Thalassiosira rotula/gravida 2280 

  Tripos furca 120 

18/08/2019 

Cobh (CK-

CH-CH) Alexandrium spp. 2240 

  Amphidinium spp. 40 
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  Armoured dinoflagellate 1520 

  Centric diatom 320 

  Ceratium spp. 40 

  Cilliates 280 

  

Cylindrotheca closterium/ Nitzschia 

longissima 73776 

  Dinophysis acuminata 120 

  Diplopsalis spp. 640 

  Gyrodinium spirale 40 

  Heterocapsa triquetra 40 

  Karenia mikimotoi 200 

  Lauderia / Detonula sp 160 

  Leptocylindrus danicus 2160 

  Leptocylindrus minimus 1312808 

  Mesodinium rubrum 800 

  Naked dinoflagellate 1520 

  Nematodinium spp. 80 

  Paralia sp. 1000 

  Pennate diatom 200 

  Pleurosigma/Gyrosigma 480 

  Polykrikos spp. 440 

  Prorocentrum balticum/minimum 40 

  Prorocentrum micans 280 

  Prorocentrum spp. 53592 

  Protoperidinium spp. 80 

  Pseudo-nitzschia seriata complex 280 

  Rhizosolenia spp. 1040 

  Scrippsiella spp. 88392 

  Tintinnids 40 

25/08/2019 

Cobh (CK-

CH-CH) Asterionellopsis glacialis 23880 

  Ceratium fusus 40 

  Ceratium tripos 80 

  Cilliates 1800 

  Dinobryon spp. 120 

  Karenia mikimotoi 120 

  Leptocylindrus minimus 36640 

  Prorocentrum micans 280 

  Pseudo-nitzschia seriata complex 4640 

  Scrippsiella trochoidea 960 

  Skeletonema costatum 8200 

  Thalassiosira rotula/gravida 560 

  Tintinnids 2880 

 

Date Oysterhaven Species Cells/L 

02/06/2019 

Oysterhaven (CK-ON-

ON) Amphiprora spp. 560 
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  Cilliates 1680 

  Coscinodiscus radiatus 160 

  Heterocapsa triquetra 680 

  Karenia mikimotoi 120 

  Leptocylindrus danicus 16880 

  Leptocylindrus minimus 6280 

  Licmophora spp. 3280 

  Pennate diatom 4160 

  Pseudo-nitzschia seriata complex 1880 

  Skeletonema costatum 8160 

  Skeletonema spp. 7080 

  Tintinnids 480 

16/06/2019 

Oysterhaven (CK-ON-

ON) Alexandrium spp. 80 

  Armoured dinoflagellate 440 

  Azadinium/heterocapsa spp. 440 

  Cerataulina spp. 1360 

  Ceratium fusus 320 

  Coccolithophorids 160 

  

Cylindrotheca closterium/ Nitzschia 

longissima 960 

  Dinophysis acuminata 40 

  Dinophysis acuta 200 

  Gyrodinium lachryma 560 

  Karenia mikimotoi 2160 

  Leptocylindrus minimus 5400 

  Licmophora spp. 2560 

  Phalacroma rotundatum 80 

  Protoperidinium spp. 80 

  Pseudo-nitzschia seriata complex 4920 

  Scrippsiella trochoidea 480 

  Tripos lineatus 2200 

30/06/2019 

Oysterhaven (CK-ON-

ON) Armoured dinoflagellate 1240 

  Ceratium fusus 160 

  Chaetoceros (Hyalochaete) spp. 5640 

  Dinophysis acuminata 480 

  Dinophysis acuta 680 

  Gyrodinium lachryma 2680 

  Heterocapsa spp. 4200 

  Heterocapsa triquetra 1280 

  Karenia mikimotoi 71688 

  Oxyrrhis spp. 2080 

  Paralia sulcata 1880 

  Phalacroma rotundatum 120 

  Polykrikos kofoidii 3760 

  Prymnesiophytes 164952 
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  Scrippsiella spp. 2240 

  Scrippsiella trochoidea 3480 

  Thalassiosira rotula/gravida 600 

07/07/2019 

Oysterhaven (CK-ON-

ON) Armoured dinoflagellate 4320 

  Dinophysis acuminata 600 

  Dinophysis acuta 560 

  Euglena/Eutreptiella spp. 3880 

  Gymnodinium spp. 4160 

  Gyrodinium lachryma 1880 

  Heterocapsa spp. 1080 

  Heterocapsa triquetra 560 

  Karenia mikimotoi 70992 

  Karenia spp. 6280 

  Microcystis (colony) 120 

  Navicula spp. 680 

  Noctiluca scintillans 80 

  Paralia sp. 2240 

  Paralia sulcata 4080 

  Phalacroma rotundatum 80 

  Protoperidinium spp. 200 

  Rhizosolenia setigera 400 

  Rhizosolenia spp. 600 

  Skeletonema spp. 122496 

  Striatella unipunctata 3320 

  Thalassiosira rotula/gravida 5480 

  Thalassiosira spp. 178872 

  Tripos furca 1520 

  Tripos lineatus 2920 

14/07/2019 

Oysterhaven (CK-ON-

ON) Akashiwo sanguinea 280 

  Armoured dinoflagellate 5000 

  Azadinium/heterocapsa spp. 4880 

  Cerataulina spp. 2560 

  Ceratium trichoceros 80 

  

Cylindrotheca closterium/ Nitzschia 

longissima 87000 

  Dinophysis acuminata 80 

  Dinophysis acuta 400 

  Euglena/Eutreptiella spp. 96744 

  Heterocapsa spp. 12720 

  Karenia mikimotoi 255432 

  Navicula spp. 3520 

  Paralia sp. 9480 

  Paralia sulcata 8280 

  Polykrikos kofoidii 4960 

  Prorocentrum micans 2960 
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  Protoperidinium quinquecorne 41040 

  Protoperidinium spp. 1360 

  Rhizosolenia spp. 4320 

  Rhizosolenia styliformis 3520 

  Striatella unipunctata 8640 

  Tintinnids 8760 

21/07/2019 

Oysterhaven (CK-ON-

ON) Actinoptychus spp. 760 

  Ceratium fusus 1360 

  Chaetoceros (Hyalochaete) spp. 14440 

  Chaetoceros affinis 18280 

  Coscinodiscus centralis 200 

  Coscinodiscus granii 80 

  Coscinodiscus spp. 120 

  Dinophysis acuminata 2560 

  Dinophysis acuta 1280 

  Favella ehrenbergii 160 

  Gyrodinium lachryma 1240 

  Gyrodinium spirale 200 

  Gyrodinium spp. 880 

  Karenia mikimotoi 240 

  Karenia spp. 160 

  Noctiluca scintillans 200 

  Oxyrrhis spp. 640 

  Paralia sulcata 280 

  Phalacroma rotundatum 80 

  Prorocentrum micans 15240 

  Protoperidinium spp. 400 

  Pseudo-nitzschia seriata complex 4200 

  Rhizosolenia spp. 9640 

  Rhizosolenia styliformis 4200 

  Scrippsiella spp. 840 

  Scrippsiella trochoidea 760 

  Thalassiosira rotula/gravida 480 

  Tintinnids 1200 

  Tripos furca 3920 

  Tripos lineatus 2360 

  Tripos longipes 240 

28/07/2019 

Oysterhaven (CK-ON-

ON) Ceratium fusus 160 

  Dinophysis acuminata 320 

  Dinophysis acuta 80 

  Leptocylindrus minimus 153036 

  Prorocentrum micans 2760 

  Protoperidinium quinquecorne 160 

  Protoperidinium spp. 200 

  Pseudo-nitzschia seriata complex 2680 
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  Rhizosolenia setigera 1040 

  Rhizosolenia spp. 3880 

  Tintinnids 55440 

  Tripos furca 480 

04/08/2019 

Oysterhaven (CK-ON-

ON) Armoured dinoflagellate 3880 

  Azadinium/heterocapsa spp. 480 

  Ceratium fusus 200 

  Cilliates 2240 

  

Cylindrotheca closterium/ Nitzschia 

longissima 7520 

  Dinophysis acuminata 120 

  Heterocapsa triquetra 1160 

  Karenia mikimotoi 3360 

  Leptocylindrus minimus 24440 

  Navicula spp. 1760 

  Noctiluca scintillans 200 

  Odontella spp. 14640 

  Paralia sp. 4280 

  Paralia sulcata 8760 

  Phalacroma rotundatum 80 

  Prorocentrum micans 1200 

  Protoperidinium quinquecorne 20640 

  Pseudo-nitzschia seriata complex 8560 

  Scrippsiella spp. 4960 

  Scrippsiella trochoidea 3640 

  Striatella unipunctata 640 

  Tintinnids 2240 

  Tripos furca 240 

  Tripos lineatus 160 

11/08/2019 

Oysterhaven (CK-ON-

ON) Amphiprora spp. 1200 

  Cilliates 1680 

  Detonula sp. 218544 

  Euglena/Eutreptiella spp. 5680 

  Gymnodinium spp. 1280 

  Karenia mikimotoi 1640 

  Karenia spp. 680 

  Katodinium spp. 600 

  Leptocylindrus minimus 117624 

  Licmophora spp. 3600 

  Navicula spp. 16200 

  Paralia sulcata 1320 

  Pennate diatom 16760 

  Prorocentrum micans 1880 

  Pseudo-nitzschia seriata complex 6920 

  Rhizosolenia setigera 160 
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  Rhizosolenia spp. 880 

  Scrippsiella spp. 2880 

  Scrippsiella trochoidea 3200 

  Skeletonema spp. 13084 

25/08/2019 

Oysterhaven (CK-ON-

ON) Cilliates 1040 

  Lauderia / Detonula sp 178872 

  Leptocylindrus danicus 72384 

  Leptocylindrus minimus 297192 

  Prasinophytes 70296 

  Prorocentrum micans 80 

  Protoperidinium quinquecorne 200 

  Pseudo-nitzschia delicatissima complex 22920 

  Pseudo-nitzschia seriata complex 16240 

  Rhizosolenia setigera 600 

  Rhizosolenia spp. 1080 

  Scrippsiella spp. 3680 

  Scrippsiella trochoidea 960 

  Striatella unipunctata 120 

  Thalassiosira nordenskioeldii 7520 

  Thalassiosira rotula/gravida 680 

  Thalassiosira spp. 5280 

  Tintinnids 2040 

 

 

Date Sampling location Species Cells/L 

02/06/2019 

Kinsale Bridge (CK-

KE-KB) Actinoptychus spp. Present 

  Armoured dinoflagellate Present 

  Azadinium/heterocapsa spp. 440 

  Chaetoceros (Hyalochaete) spp. Present 

  Chaetoceros curvisetus Present 

  Chaetoceros debilis Present 

  Chaetoceros socialis Present 

  Dinophysis acuminata 160 

  Dinophysis acuta 120 

  Gonyaulax spp. Present 

  Gonyaulax verior Present 

  Gyrodinium lachryma Present 

  Haptophytes Present 

  Heterocapsa triquetra Present 

  Karenia mikimotoi 160 

  Lauderia / Detonula sp Present 

  Navicula spp. Present 

  Nitzschia spp. Present 

  Protoperidinium spp. 280 



208 
 

  Prymnesiophytes Present 

  Pseudo-nitzschia seriata complex 1880 

  Scrippsiella spp. Present 

  Scrippsiella trochoidea Present 

  Skeletonema costatum Present 

  Skeletonema spp. Present 

  Thalassiosira nordenskioeldii Present 

  Thalassiosira spp. Present 

  Tintinnids Present 

16/06/2019 

Kinsale Bridge (CK-

KE-KB) Alexandrium spp. 400 

  Armoured dinoflagellate Present 

  Azadinium/heterocapsa spp. 680 

  Centric diatom Present 

  Ceratium fusus Present 

  Chaetoceros (Hyalochaete) spp. Present 

  Chaetoceros curvisetus Present 

  Chaetoceros debilis Present 

  Chaetoceros socialis Present 

  Dinophysis acuminata 400 

  Dinophysis acuta 200 

  Guinardia flaccida Present 

  Gyrodinium lachryma Present 

  Karenia mikimotoi 22760 

  Mesodinium rubrum Present 

  Navicula spp. Present 

  Phalacroma rotundatum 40 

  Prorocentrum micans Present 

  Protoperidinium bipes 240 

  Protoperidinium spp. 1840 

  Scrippsiella spp. Present 

  Scrippsiella trochoidea Present 

  Thalassiosira anguste-lineata Present 

  Thalassiosira rotula/gravida Present 

  Thalassiosira spp. Present 

  Tintinnids Present 

  Tripos furca Present 

23/06/2019 

Kinsale Bridge (CK-

KE-KB) Amphidinium spp. 120 

  Azadinium/heterocapsa spp. 1160 

  Ceratium horridum Present 

  Chaetoceros socialis Present 

  Dinophysis acuminata 160 

  Dinophysis acuta 840 

  Gyrodinium britannicum Present 

  Gyrodinium fusiforme Present 

  Gyrodinium lachryma Present 
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  Gyrodinium spirale 6040 

  Heterocapsa spp. 10760 

  Karenia mikimotoi 5320 

  Phalacroma rotundatum 80 

  Pleurosigma angulatum Present 

  Pleurosigma sp Present 

  Prorocentrum micans Present 

  Prorocentrum triestinum Present 

  Protoperidinium brevipes 600 

  Protoperidinium marie-lebouriae 280 

  Protoperidinium spp. 280 

  Pseudo-nitzschia seriata complex 3720 

  Scrippsiella spp. Present 

  Scrippsiella trochoidea Present 

  Thalassiosira nordenskioeldii Present 

  Thalassiosira rotula/gravida Present 

  Torodinium robustum Present 

30/06/2019 

Kinsale Bridge (CK-

KE-KB) Actinoptychus spp. Present 

  Alexandrium spp. 320 

  Ceratium fusus Present 

  

Cylindrotheca closterium/ Nitzschia 

longissima Present 

  Dinophysis acuminata 160 

  Dinophysis acuta 1240 

  Gyrodinium lachryma Present 

  Gyrodinium spirale 2080 

  Heterocapsa spp. 600 

  Heterocapsa triquetra Present 

  Karenia mikimotoi 31320 

  Leptocylindrus minimus Present 

  Noctiluca scintillans 80 

  Oxyrrhis spp. Present 

  Pennate diatom Present 

  Phalacroma rotundatum 80 

  Pleurosigma sp Present 

  Polykrikos kofoidii Present 

  Protoperidinium spp. 1080 

  Scrippsiella spp. Present 

  Scrippsiella trochoidea Present 

  Skeletonema costatum Present 

  Skeletonema spp. Present 

14/07/2019 

Kinsale Bridge (CK-

KE-KB) Alexandrium spp. 280 

  Armoured dinoflagellate Present 

  Azadinium/heterocapsa spp. 600 

  Cerataulina pelagica Present 



210 
 

  Coscinodiscus granii Present 

  Dinophysis acuminata 2560 

  Dinophysis acuta 360 

  Dinophysis spp. 440 

  Gyrodinium lachryma Present 

  Heterocapsa spp. 6200 

  Karenia mikimotoi 70902 

  Prorocentrum micans Present 

  Protoperidinium quinquecorne 2160 

  Protoperidinium spp. 1040 

  Pseudo-nitzschia delicatissima complex 11760 

  Pseudo-nitzschia seriata complex 5160 

  Scrippsiella spp. Present 

  Scrippsiella trochoidea Present 

  Thalassiosira rotula/gravida Present 

  Tintinnids Present 

  Tripos furca Present 

21/07/2019 

Kinsale Bridge (CK-

KE-KB) Ceratium fusus Present 

  Dictyocha fibula 160 

  Dinophysis acuminata 160 

  Dinophysis acuta 160 

  Diploneis spp. Present 

  Karenia mikimotoi 400 

  Karenia spp. 80 

  Licmophora spp. Present 

  Melosira spp. Present 

  Navicula spp. Present 

  Plagiogrammopsis spp. Present 

  Pleurosigma angulatum Present 

  Pleurosigma sp Present 

  Protoperidinium depressum 80 

  Pseudo-nitzschia delicatissima complex 2400 

  Striatella unipunctata Present 

  Tripos furca Present 

28/07/2019 

Kinsale Bridge (CK-

KE-KB) Akashiwo sanguinea 80 

  Ceratium fusus Present 

  Dinophysis acuminata 560 

  Dinophysis acuta 520 

  Eucampia zodiacus Present 

  Guinardia delicatula Present 

  Karenia mikimotoi 398736 

  Leptocylindrus danicus Present 

  Leptocylindrus minimus Present 

  Navicula spp. Present 

  Noctiluca scintillans 200 
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  Prorocentrum micans Present 

  Protoperidinium spp. 160 

  Rhizosolenia spp. Present 

  Thalassiosira rotula/gravida Present 

  Tintinnids Present 

  Tripos furca Present 

  Tripos lineatus Present 

04/08/2019 

Kinsale Bridge (CK-

KE-KB) Actinoptychus spp. Present 

  Akashiwo sanguinea 680 

  Bacillaria paxillifera Present 

  Dinophysis acuta 80 

  Euglena/Eutreptiella spp. Present 

  Guinardia flaccida Present 

  Navicula spp. Present 

  Noctiluca scintillans 920 

  Prorocentrum micans Present 

  Prorocentrum triestinum Present 

  Protoperidinium spp. 160 

  Thalassiosira rotula/gravida Present 

  Tripos furca Present 

  Tripos lineatus Present 

  Tripos macroceros Present 

11/08/2019 

Kinsale Bridge (CK-

KE-KB) Akashiwo sanguinea 30040 

  Alexandrium spp. 3480 

  Armoured dinoflagellate Present 

  Cilliates Present 

  Coscinodiscus centralis Present 

  Coscinodiscus spp. Present 

  Dactyliosolen fragilissimus  Present 

  Dinophysis acuminata 80 

  Euglena/Eutreptiella spp. Present 

  Guinardia flaccida Present 

  Gymnodinium spp. Present 

  Gyrodinium lachryma Present 

  Heterocapsa triquetra Present 

  Karenia mikimotoi 2440 

  Navicula spp. Present 

  Noctiluca scintillans 40 

  Paralia sp. Present 

  Paralia sulcata Present 

  Pennate diatom Present 

  Prorocentrum micans Present 

  Prorocentrum triestinum Present 

  Protoperidinium spp. 440 

  Prymnesiophytes Present 
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  Scrippsiella spp. Present 

  Scrippsiella trochoidea Present 

  Thalassiosira rotula/gravida Present 

  Tintinnids Present 

  Tripos furca Present 

18/08/2019 

Kinsale Bridge (CK-

KE-KB) Alexandrium spp. 880 

  Armoured dinoflagellate Present 

  

Cylindrotheca closterium/ Nitzschia 

longissima Present 

  Dactyliosolen fragilissimus  Present 

  Diplopsalis spp. Present 

  Heterocapsa triquetra Present 

  Lauderia / Detonula sp Present 

  Leptocylindrus minimus Present 

  Mesodinium rubrum Present 

  Paralia sp. Present 

  Pennate diatom Present 

  Pleurosigma/Gyrosigma Present 

  Polykrikos spp. Present 

  Protoperidinium spp. 40 

  Pseudo-nitzschia seriata complex 280 

  Rhizosolenia spp. Present 

  Scrippsiella spp. Present 

  Skeletonema spp. Present 

  Striatella spp. Present 

25/08/2019 

Kinsale Bridge (CK-

KE-KB) Actinoptychus spp. Present 

  Alexandrium spp. 2200 

  Armoured dinoflagellate Present 

  Detonula confervacea Present 

  Lauderia / Detonula sp Present 

  Leptocylindrus minimus Present 

  Odontella spp. Present 

  Plagiogrammopsis spp. Present 

  Pleurosigma angulatum Present 

  Pseudo-nitzschia delicatissima complex 1760 

  Pseudo-nitzschia seriata complex 720 

  Scrippsiella spp. Present 

  Scrippsiella trochoidea Present 

  Skeletonema costatum Present 
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Date 

Cork Harbour Karenia 

cells/L 

Oysterhaven Karenia 

cells/L 

Kinsale Karenia 

cells/L 

02/06/2019 0 120 160 

16/06/2019 0 2160 22760 

23/06/2019 13840 0 5320 

30/06/2019 2471168 71688 31320 

07/07/2019 760 70992 0 

14/07/2019 117234 255432 70902 

21/07/2019 0 240 400 

28/07/2019 257634 0 398736 

04/08/2019 12960 3360 0 

11/08/2019 868770 1640 2440 

18/08/2019 200 0 0 

25/08/2019 120 0 0 

 

 
 

Appendix A7. Phytoplankton counts from CV19018
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Appendix A8. RBD values V Surface Cell counts  
 

  

Station  

K. mikimotoi in situ cell 

concentration cells/L  RBD satellite value  

138  106600  0.000713  

139  50800  0.00014  

140  2000  0.0001  

141  4200  0.0001  

142  1800  0.000161  

143  4400  0.000179  

144  6000  0.0001  

148  192800  0.000985  
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Appendix A9. HABscope conversion chart 
 

Cells: 0 = 50000 c/L Cells: 1 = 120000 c/L Cells: 2 = 590000 c/L Cells: 3 = 642000 c/L Cells: 4 

= 694000 c/L Cells: 5 = 698000 c/L Cells: 6 = 703000 c/L Cells: 7 = 1055000 c/L Cells: 8 = 

1103000 c/L Cells: 9 = 1151000 c/L Cells: 10 = 1868000 c/L Cells: 11 = 1936000 c/L Cells: 12 

= 2004000 c/L Cells: 13 = 2072000 c/L Cells: 14 = 2258000 c/L Cells: 15 = 2444000 c/L Cells: 

16 = 2631000 c/L Cells: 17 = 2817000 c/L Cells: 18 = 3004000 c/L Cells: 19 = 3190000 c/L 

Cells: 20 = 3377000 c/L Cells: 21 = 3563000 c/L Cells: 22 = 3750000 c/L Cells: 23 = 3936000 

c/L Cells: 24 = 4123000 c/L Cells: 25 = 4309000 c/L Cells: 26 = 4496000 c/L Cells: 27 = 

4744000 c/L Cells: 28 = 4992000 c/L Cells: 29 = 5240000 c/L Cells: 30 = 5488000 c/L Cells: 

31 = 5737000 c/L Cells: 32 = 5985000 c/L Cells: 33 = 6233000 c/L Cells: 34 = 6481000 c/L 

Cells: 35 = 6729000 c/L Cells: 36 = 6978000 c/L Cells: 37 = 7226000 c/L Cells: 38 = 7474000 

c/L Cells: 39 = 7722000 c/L Cells: 40 = 7970000 c/L Cells: 41 = 8219000 c/L Cells: 42 = 

8467000 c/L Cells: 43 = 8715000 c/L Cells: 44 = 8963000 c/L Cells: 45 = 9212000 c/L Cells: 

46 = 9839000 c/L Cells: 47 = 10467000 c/L Cells: 48 = 11095000 c/L Cells: 49 = 11722000 c/L 

Cells: 50 = 12350000 c/L Cells: 51 = 12978000 c/L Cells: 52 = 13606000 c/L Cells: 53 = 

14233000 c/L Cells: 54 = 14861000 c/L Cells: 55 = 15489000 c/L Cells: 56 = 16116000 c/L 

Cells: 57 = 16744000 c/L Cells: 58 = 17372000 c/L Cells: 59 = 18000000 c/L Cells: 60 = 

18279000 c/L Cells: 61 = 18558000 c/L Cells: 62 = 18837000 c/L Cells: 63 = 19116000 c/L 

Cells: 64 = 19395000 c/L Cells: 65 = 19674000 c/L Cells: 66 = 19953000 c/L Cells: 67 = 

20232000 c/L Cells: 68 = 20511000 c/L Cells: 69 = 20790000 c/L Cells: 70 = 21069000 c/L 

Cells: 71 = 21348000 c/L Cells: 72 = 21627000 c/L Cells: 73 = 21906000 c/L Cells: 74 = 

22186000 c/L Cells: 75 = 22465000 c/L Cells: 76 = 22744000 c/L Cells: 77 = 23023000 c/L 

Cells: 78 = 23302000 c/L Cells: 79 = 23581000 c/L Cells: 80 = 23860000 c/L Cells: 81 = 

24139000 c/L Cells: 82 = 24418000 c/L Cells: 83 = 24697000 c/L Cells: 84 = 24976000 c/L 

Cells: 85 = 25255000 c/L Cells: 86 = 25534000 c/L Cells: 87 = 25813000 c/L Cells: 88 = 

26093000 c/L Cells: 89 = 26372000 c/L Cells: 90 = 26651000 c/L Cells: 91 = 26930000 c/L 

Cells: 92 = 27209000 c/L Cells: 93 = 27488000 c/L Cells: 94 = 27767000 c/L Cells: 95 = 

28046000 c/L Cells: 96 = 28325000 c/L Cells: 97 = 28604000 c/L Cells: 98 = 28883000 c/L 

Cells: 99 = 29162000 c/L Cells: 100 = 29441000 c/L Cells: 101 = 29720000 c/L Cells: 102 = 

30000000 c/L Cells: 103 = 30000000 c/L Cells: 104 = 30000000 c/L Cells: 105 = 30000000 c/L 

Cells: 106 = 30000000 c/L Cells: 107 = 30000000 c/L Cells: 108 = 30000000 c/L Cells: 109 = 

30000000 c/L Cells: 110 = 30000000 c/L   



225 
 

 

Appendix A10. Communication of PhD thesis to the public 
 

NOAA Science Seminar June 2021 

https://noaabroadcast.adobeconnect.com/pb5txbj5895u/ 

RTE brainstorm article July 2021 https://www.rte.ie/brainstorm/2021/0726/1237300-

harmful-algal-blooms-seas-oceans-satellites-algorithms/ 

Marine Institute Cullen Profile 2022 https://www.marine.ie/site-area/news-

events/news/cullen-scholar-catherine-jordan 

Soapbox Science Presenter June 2019 http://soapboxscience.org/2019/05/28/take-

pride-in-your-work-meet-catherine-jordan/ 

https://www.marine.ie/site-area/news-events/news/marine-institute-and-nui-galway-

phd-student-speak-soapbox-science 

April 2018 CV218012 Celtic Voyager Nephrops Larvae Survey Blog No 2 

Celtic Voyager - Distribution of Nephrops larvae and associated oceanographic 

conditions http://scientistsatsea.blogspot.com/2018/04/celtic-voyager-nephrops-

larvae-survey_10.html 

Blog for Ocean Climate survey June 219 http://scientistsatsea.blogspot.com/2019/06/ 

Press releases on the HABscope trial: 

https://www.marine.ie/site-area/news-events/press-releases/irish-scientists-

collaborate-noaa-test-new-habscope 

https://www.siliconrepublic.com/innovation/habscope-algal-blooms-marine-

institute-nui-galway 
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